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A nodal space-time flux reconstruction (FR) method is developed to solve conservation 

laws. In this method, the spatiotemporal flow system is discretized in a finite-difference-

like format without requirement for numerical quadrature. A dual time stepping method 

is used to solve the nonlinear system resulted from the space-time discretization. The 

nodal space-time FR method developed here can achieve arbitrarily high-order spatial 

and temporal accuracy without time step limitation. The numerical performance of this 

method has been verified with both the one dimensional (1D) and two dimensional (2D) 

linear wave propagation and nonlinear inviscid flow problems. It is found that if the 

Gauss-Legendre points are selected as solution points in the spatiotemporal element, the 

space-time FR method is superconvergent in time, no matter for the short- or long-term 

unsteady simulations. Similar to the findings reported by Asthana et al. (2017) [1], the 

space-time FR method shows superconvergent properties in space for long-term 

unsteady simulation.   

I. Introduction 

 With the dramatic increase in computing power, computational fluid dynamics (CFD) has gradually 

become a very important method to explore challenging flow physics, e.g., those from atmospheric flow, 

turbomachinery flow, and bio-inspired flow. These flow physics usually feature unsteady multi-scale 

vortex structures over complex geometries. The discontinuous high-order methods on unstructured grids 

are promising candidates to accurately capture the multi-scale flow features over complex geometries. 

These methods include but not limited to discontinuous Galerkin (DG) [2, 3, 4, 5], staggered-grid multi 

domain (SGMD) [6, 7], spectral volume (SV) [8], spectral difference (SD) [9, 10], and flux 

reconstruction/correction procedure via reconstruction (FR/CPR) [11, 12, 13, 14].  

 We note that the high-order methods mentioned previously are mostly restricted to spatial 

discretization. The method-of-lines approach is usually adopted for time integration. If an explicit time 

marching method, e.g., the explicit Runge-Kutta method, is used to solve the semi-discretization form of 

the governing equations, the maximum time step is usually limited by the numerical stability requirement 

but not the flow physics. As a result, huge computational cost hinders the application of explicit time 

marching methods for practical flow simulation. Instead, implicit time marching methods, e.g., the 

backward differentiation formula (BDF), and the implicit Runge-Kutta method, can be used to improve 

the simulation efficiency. However, the BDF family with an order greater than two is not A-stable. Due to 

this deficiency, the second-order BDF is usually partnered with high-order spatial discretization to solve 

unsteady flow problems. Time steps should be small enough to ensure that temporal errors are consistent 

with those from spatial discretization. The implicit Runge-Kutta method can achieve higher-order of 

accuracy with good stability properties, but needs much effort to solve the resulting nonlinear system. 

 Alternatively, the space-time formulation provides a uniform treatment of both space and time [15]. 

Although some research [16, 17, 18] has been conducted for the space-time DG method, more work is 

still needed to fully explore the potential of this method. In this work, the nodal high-order space-time FR 
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method is developed. An implicit space-time method with right Radau points in time (equivalent to the 

Radau IIA method) has been developed by Huynh [19] for conservation laws. The FR approach is used in 

the derivation to reduce the weighted residual form to the differentiation one. Different from this 

approach, the time is treated as an extra dimension equivalent to the spatial dimension in the present 

study. Then a new space-time divergence term can be formulated. As a result, the FR approach can be 

used to directly reconstruct the space-time fluxes. As will be demonstrated later, the developed nodal 

space-time FR method can easily achieve arbitrarily high-order spatial and temporal discretization. 

 The remainder of the paper is organized as follows. In Section II, the nodal space-time FR method is 

introduced. Then dual time stepping methods to solve the space-time formulation are presented in Section 

III. The nodal space-time FR method is then tested with both the 1D and 2D linear advection problems 

and the nonlinear inviscid flow problems, and the results are reported in Section IV. Finally, Section V 

concludes the study. 

II. Nodal space-time flux reconstruction method  

 Consider the conservation form of the compressible Euler equations, 

 
𝜕𝑄

𝜕𝑡
+ ∇ ∙ 𝑭(𝑄) = 0, (1)  

defined on 𝛺 × [0, 𝑇] with the spatial domain 𝛺  bounded by 𝜕𝛺 , where 𝑄  is the vector of conserved 

variables, and 𝑭 is the spatial flux vector including both inviscid and viscous terms. Let 𝒙 = (𝑥1, ⋯ , 𝑥𝑑) 
be the spatial coordinates, where the subscript ‘d’ stands for the dimension of the problem. Now we 

introduce the space-time domain 𝛺0→𝑇
𝑠𝑡 = {(𝒙, 𝑡)|0 ≤ 𝑡 ≤ 𝑇, 𝒙 ∈ 𝛺} ,  and the gradient operator ∇𝑠𝑡=

(𝜕𝑥1 , 𝜕𝑥2 ,⋯ , 𝜕𝑥𝑑 , 𝜕𝑡) for the space-time domain. Eq. (1) can then be written as 

 ∇𝑠𝑡 ∙ 𝑭
𝑠𝑡(𝑄) = 0, (2)  

where 𝑭𝑠𝑡(𝑄) = (𝑭(𝑄),𝑄) is the space-time flux vector. 

 We approximate the exact solution using a space-time element-wise continuous polynomial 𝑄ℎ(𝒙, 𝑡) ∈
𝑃𝑘(𝛺0→𝑇

𝑠𝑡 ), where 𝑃𝑘 is the polynomial space of order equal to or less than k. Let 𝑊(𝒙, 𝑡) be an arbitrary 

weighting function or test function. The weighted residual form of the governing equations on each space-

time element 𝛺𝑡𝑖→𝑡𝑖+1
𝑠𝑡,𝑗

 (for simplicity, this is denoted as 𝛺𝑖
𝑗
) then reads 

 ∫ ∇𝑠𝑡 ∙ 𝑭
𝑠𝑡(𝑄ℎ)𝑊𝑑𝑉

𝛺𝑖
𝑗

= 0. (3)  

 Applying integration by parts twice to Eq. (3), one obtains 

 ∫ ∇𝑠𝑡 ∙ 𝑭
𝑠𝑡(𝑄ℎ)𝑊𝑑𝑉

𝛺
𝑖
𝑗

+∫ (𝐹𝑐𝑜𝑚
𝑠𝑡,𝑛 − 𝐹𝑠𝑡,𝑛)𝑊𝑑𝑆

𝜕𝛺
𝑖
𝑗

= 0, (4)  

where 𝐹𝑠𝑡,𝑛 = 𝑭𝑠𝑡 ∙ 𝒏𝑠𝑡 . Note that to ensure conservation, the normal flux term 𝐹𝑠𝑡,𝑛  from the first 

integration-by-parts operation is replaced with a common flux 𝐹𝑐𝑜𝑚
𝑠𝑡,𝑛(𝑄ℎ

𝑖,𝑗
, 𝑄ℎ

𝑖+,𝑗+
, 𝒏𝑠𝑡) , where 𝑄ℎ

𝑖+,𝑗+
 

denotes the solution outside the current element 𝛺𝑖
𝑗
, and 𝒏𝑠𝑡 is the outward unit normal vector of ∂𝛺𝑖

𝑗
. For 

the inviscid common flux (including 𝑄  in the space-time domain) calculation, various approximate 

Riemann solvers can be used, e.g. the Roe Riemann solver [20].  

 The surface integral in Eq. (4) is then cast into the form of a volume integral via the introduction of a 

correction field, i.e., 𝛿𝑠𝑡,𝐶 ∈ 𝑃𝑘(𝛺𝑖
𝑗
). This is expressed as 
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 ∫ 𝛿𝑠𝑡,𝐶𝑊𝑑𝑉
𝛺𝑖
𝑗

= ∫ (𝐹𝑐𝑜𝑚
𝑠𝑡,𝑛 − 𝐹𝑠𝑡,𝑛)𝑊𝑑𝑆

𝜕𝛺𝑖
𝑗

. (5)  

 On substituting Eq. (5) into Eq. (4), one obtains 

 ∫ 𝑊(∇𝑠𝑡 ∙ 𝑭
𝑠𝑡(𝑄ℎ) + 𝛿

𝑠𝑡,𝐶)𝑑𝑉
𝛺𝑖
𝑗

= 0. (6)  

 Denote a projection of ∇𝑠𝑡 ∙ 𝑭
𝑠𝑡 to 𝑃𝑘(𝛺𝑖

𝑗
) by ℙ(∇𝑠𝑡 ∙ 𝑭

𝑠𝑡). Then Eq. (6) can be reduced to a finite-

difference-like format as 

 ℙ(∇𝑠𝑡 ∙ 𝑭
𝑠𝑡) + 𝛿𝑠𝑡,𝐶 = 0. (7)  

 This completes the derivation of the space-time FR formulation. For an efficient implementation, this 

formulation can be transformed into a standard (or computational) space-time element. In this study, 

Gauss-Legendre quadrature points are used in both the spatial and temporal discretization. 

 Compared with the method of lines using spatial FR/CPR discretization (this classical approach can be 

found in Ref. [21]), the space-time FR formulation Eq. (7) is intrinsically more compact and compute-

bound. It can achieve arbitrarily high-order accuracy in both space and time with relatively small effort. 

III. Dual time stepping methods   

 An efficient solution strategy for the nonlinear system (i.e., Eq. (7)) resulting from the new space-

time formulation needs to be developed for excellent numerical performance. With the dual time stepping 

procedure, Eq. (7) is augmented with the pseudo-time derivative term as follows 

 
𝜕𝑄

𝜕�̃�
+ ℙ(∇𝑠𝑡 ∙ 𝑭

𝑠𝑡(𝑄ℎ)) + 𝛿
𝑠𝑡,𝐶 =

𝜕𝑄

𝜕�̃�
+ 𝑅𝑠𝑡(𝑄ℎ

𝑛) = 0. (8)  

where �̃� is the pseudo time, and the unsteady residual 𝑅𝑠𝑡 = ℙ(∇𝑠𝑡 ∙ 𝑭
𝑠𝑡) + 𝛿𝑠𝑡,𝐶. A general practice is to 

directly solve this equation with the Newton’s method [22]. In this approach, the nonlinear system is 

firstly linearized with respect to the current solution state 𝑄ℎ
𝑛. The resulting linear system becomes 

 (
𝐼

∆�̃�
+ (

𝜕𝑅𝑠𝑡

𝜕𝑄
)

𝑛

)∆𝑄 = −𝑅𝑠𝑡(𝑄ℎ
𝑛), (9)  

where ∆𝑄 = 𝑄ℎ
𝑛+1 − 𝑄ℎ

𝑛. We note that the size of the Jacobian matrix 𝜕𝑅𝑠𝑡 𝜕𝑄⁄  can be very large, and the 

matrix pattern can be very complex for the unstructured mesh tessellated with space-time elements. To 

handle the memory and matrix pattern issues, the block LU-SGS method [23, 24, 25] can be used to solve 

the linearized space-time formulation. In this approach, instead of calculating the full Jacobian matrix 

𝜕𝑅𝑠𝑡 𝜕𝑄⁄ , the elementwise Jacobian matrix 𝜕𝑅𝑐
𝑠𝑡 𝜕𝑄𝑐⁄ , where the subscript ‘c’ stands for the current 

element, is calculated. Readers are referred to Ref. [26] for more details about the implementation of the 

block LU-SGS method in context of dual time stepping.  

 It is observed that the calculation of the elementwise Jacobian matrix 𝜕𝑅𝑐
𝑠𝑡 𝜕𝑄𝑐⁄  can still be very 

expensive for unsteady problems if it is computed during each physical time step. In this study, an explicit 

strong stability preserving (SSP) three-stage Runge-Kutta method is used for pseudo-time marching. This 

can be expressed as 

{
 
 

 
 
𝑄(1) = 𝑄𝑛 + ∆�̃�𝑅𝑠𝑡(𝑄𝑛)                          

𝑄(2) =
3

4
𝑄𝑛 +

1

4
𝑄(1) +

1

4
∆�̃�𝑅𝑠𝑡(𝑄(1))

𝑄𝑛+1 =
1

3
𝑄𝑛 +

2

3
𝑄(2) +

2

3
∆�̃�𝑅𝑠𝑡(𝑄(2))

. 
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We note that a similar explicit approach has been adopted in Ref. [16] to conduct pseudo-time stepping in 

a space-time DG method. 

IV. Numerical results 

 In this section, the performance of the nodal space-time FR method is tested with the linear advection 

problems and the nonlinear inviscid flow problems. The 𝐿2 errors of the numerical scheme are measured 

in two ways. In the first approach, the 𝐿2 error is measured in the space-time slab 𝛺𝑛
𝑠𝑡 = 𝛺 × [𝑡𝑛 − ∆𝑡, 𝑡𝑛] 

as 

 𝐿2(𝑢;𝛺𝑛
𝑠𝑡) = (

∫ (𝑢𝛿 − 𝑢𝑒𝑥𝑎𝑐𝑡)
2
𝑑𝑉𝑠𝑡𝛺𝑛

𝑠𝑡

∫ 1 𝑑𝑉𝑠𝑡𝛺𝑛
𝑠𝑡

)

1
2

, (10)  

where 𝑢𝛿 is the numerical solution from the space-time FR method. In the second approach, the 𝐿2 error 

is measured only in the spatial domain 𝛺 at a specific time, e.g. the final time 𝑡𝑓𝑖𝑛𝑎𝑙 of a simulation. This 

is written as 

 𝐿2(𝑢; 𝛺) = (
∫ (𝑢𝛿,𝐼 − 𝑢𝑒𝑥𝑎𝑐𝑡)

2
𝑑𝑉

𝛺

∫ 1 𝑑𝑉
𝛺

)

1
2

. (11)  

Herein, 𝑢𝛿,𝐼  is the interpolated value from the space-time element. Specifically, 𝑢𝑛
𝛿,𝐼

can be calculated 

from the space-time slab 𝛺 × [𝑡𝑛 − ∆𝑡, 𝑡𝑛] as  

 𝑢𝑛
𝛿,𝐼 =∑𝐿𝑖(1)𝑢𝑖

𝛿

𝑁

𝑖=1

,   𝐿𝑖(𝜏) = ∏
𝜏 − 𝜏𝑗

𝜏𝑖 − 𝜏𝑗

𝑁

𝑗=1,𝑗≠𝑖

. (12)  

where 𝜏𝑖 ∈ [−1,1], 𝑖 = 1,⋯ ,𝑁, are the temporal solution points in the standard space-time element.   

 

IV.1. 1D linear advection problem 

 Consider the 1D linear wave equation, 

 
𝜕𝑢

𝜕𝑡
+
𝜕(𝑐𝑢)

𝜕𝑥
= 0, 𝑐 > 0, (13)  

defined on the space-time domain [0,1] × [0,+∞). The initial condition is set as 𝑢0(𝑥) = 𝑠𝑖𝑛(2𝜋𝑥), and 

𝑐 = 1 in this study.  

 The spatial convergence rates using 𝑃1 to 𝑃5 spatial reconstructions are shown in Figure 1. In Figure 

1(a), the simulation is conducted until 𝑡 = 1 (i.e., 1T). It is observed that the spatial convergence rates 

match the optimal values. In Figure 1(b), the histories of convergence rates for 𝑃2  and 𝑃3  spatial 

reconstructions are displayed during a long-term simulation. It is observed that the space-time FR 

schemes show superconvergent properties for long-term unsteady simulations. These observations agree 

with the discovery in Ref. [1].  

 The temporal convergence rates using 𝑃1 to 𝑃4 temporal reconstructions are presented in Figure 2. In 

Figure 2(a), the 𝐿2 errors are calculated from the space-time slab [1 − ∆𝑡, 1]. The temporal convergence 

rates match the optimal values. In Figure 2(b), the 𝐿2 errors are calculated at 𝑡 = 1. It is clear that the 

temporal convergence rates show superconvergent properties. Specifically, for a 𝑃𝑘  temporal 

reconstruction, the convergence rate is 2𝑘 + 1. In Figure 2(c), the histories of convergence rates for 𝑃2 
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and 𝑃3 temporal reconstructions are displayed during a long-term simulation. It is found that the 𝐿2 errors 

evaluated from the space-time slab [𝑡𝑛 − ∆𝑡, 𝑡𝑛] show superconvergence during the entire simulation 

period; the 𝐿2  errors evaluated at the time 𝑡𝑛  gradually show superconvergence during the unsteady 

simulation, reaching 2𝑘 + 1 for a 𝑃𝑘  temporal reconstruction. The histories of the 𝐿2  errors evaluated 

from the space-time slab [𝑡𝑛 − ∆𝑡, 𝑡𝑛] and at the time 𝑡𝑛 are displayed in Figure 3. It is found that the 

errors evaluated from the space-time slab will gradually approach those evaluated at the end time of the 

space-time slab. 

 

 
                                              (a)                                                                                            (b) 

Figure 1. (a) Rates of spatial convergence from the grid refinement studies using 𝑃1 to 𝑃5 spatial reconstructions for 

the 1D linear wave equation at 𝑡 = 1  (i.e. 1T). (b) Long-term rates of convergence for 𝑃2  and 𝑃3  spatial 

reconstructions. 

 

 
                                                (a)                                                                                          (b) 
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        (c) 

Figure 2. Rates of temporal convergence from the time-step refinement studies using 𝑃1  to 𝑃4  temporal 

reconstructions for the 1D linear wave equation at 𝑡 = 1 (i.e. 1T). (a) Rates of convergence evaluated from the last 

space-time slab [1 − ∆𝑡, 1]; and (b) rates of convergence evaluated at the final time 𝑡 = 1. (c) Long-term rates of 

convergence evaluated from both the last space-time slab and the final time for 𝑃2 and 𝑃3 temporal reconstructions.  

 

 

                                                    (a)                                                                                         (b) 

Figure 3. Histories of 𝐿2 errors calculated at time 𝑡𝑛 and from the corresponding space-time slab [𝑡𝑛 − ∆𝑡, 𝑡𝑛]. (a) 𝐿2 

errors of the 𝑃2 temporal reconstruction; and (b) 𝐿2 errors of the 𝑃3 temporal reconstruction. 

 

IV.2. Method of manufactured solutions for the Euler’s equation with source terms  

 Consider the 1D Euler equation with source terms, 

 
𝜕𝑄

𝜕𝑡
+
𝜕𝐹

𝜕𝑥
= 𝑆, (14)  
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defined on the space-time domain [−0.1,0.2] × [0,0.5]. Herein, the conservative variable and flux are 

expressed as 

𝑄 = (

𝜌
𝜌𝑢
𝐸𝑡
) , 𝐹 = (

𝜌𝑢

𝜌𝑢2 + 𝑝

𝑢(𝐸𝑡 + 𝑝)
), 

where 𝜌 is the fluid density, 𝑢 is the velocity, 𝑝 is the pressure, and 𝐸𝑡 is the total energy expressed as 

𝐸𝑡 =
𝑝

𝛾 − 1
+
1

2
𝜌𝑢2. 

 In the method of manufactured solutions (MMS), the source terms are calculated from the exact 

solution 

 {

 𝜌 = 0.5(𝑠𝑖𝑛(𝑥2 + 𝑡2) + 1.5)

 𝑢 = 𝑠𝑖𝑛(𝑥2 + 𝑡2) + 0.5          

𝐸𝑡 = 0.5(𝑐𝑜𝑠(𝑥
2 + 𝑡2) + 1.5)

. (15)  

Similar to the linear advection problem, the 𝐿2  errors are measured both from the space-time slab 

𝛺𝑛
𝑠𝑡 = 𝛺 × [𝑡𝑓𝑖𝑛𝑎𝑙 − ∆𝑡, 𝑡𝑓𝑖𝑛𝑎𝑙] and at the final time.  

 The spatial convergence rates for the space-time FR schemes using 𝑃1 to 𝑃5 spatial reconstructions 

are presented in Figure 4(a). In this case, the Rusanov Riemann solver is used. From the grid refinement 

study, the convergence rates of the even orders (i.e. 𝑃1, 𝑃3, and 𝑃5)  can reach the optimal values. The 

convergence for the odd order (i.e. 𝑃2, and 𝑃4)  is slow but its rate approaches the optimal value when the 

grid size decreases. The temporal convergence rates evaluated from the last space-time slab [0.5 −
∆t, 0.5] and at the final time 𝑡 = 0.5 using 𝑃1 to 𝑃4 temporal reconstructions are presented in Figure 4(b) 

and 4(c), respectively. The temporal convergence rates evaluated from the space-time slab reach the 

optimal value. Due to the source terms, the 𝐿2 errors calculated at the final time do not show apparent 

superconvergent features. 

 The spectral convergence properties are also tested for this problem. The results for the spatial 

spectral convergence tests are presented in Figure 5(a) and those for the temporal spectral convergence 

tests are presented in Figure 5(b). It is clear that both spatial and temporal discretization has shown the 

spectral convergence properties. 
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(a) 

 
                                                (b)                                                                                          (c) 

Figure 4. (a) Rates of spatial convergence from the grid refinement studies using 𝑃1 to 𝑃5 spatial reconstructions for 

the 1D MMS at 𝑡 = 0.5; (b) rates of temporal convergence evaluated from the last space-time slab [0.5 − ∆𝑡, 0.5] 
using 𝑃1 to 𝑃4 temporal reconstructions; and (c) rates of temporal convergence evaluated at the final time 𝑡 = 0.5 

using 𝑃1 to 𝑃4 temporal reconstructions. 

 

D
ow

nl
oa

de
d 

by
 M

ei
lin

 Y
u 

on
 J

an
ua

ry
 2

2,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

7-
30

95
 



9 
 

 
                                              (a)                                                                                            (b) 

Figure 5. (a) Spatial and (b) temporal spectral convergence tests for the 1D MMS. Note that in (b) the 𝐿2 errors are 

evaluated both at the final time 𝑡 = 0.5 and from the last space-time slab [0.5 − ∆𝑡, 0.5]. 

 

IV.3. 2D linear advection problem 

 Consider the 2D wave equation, 

 
𝜕𝑢

𝜕𝑡
+
𝜕(𝑐1𝑢)

𝜕𝑥
+
𝜕(𝑐2𝑢)

𝜕𝑦
= 0, (16)  

where 𝑐1 and 𝑐2 are the wave speeds in the x- and y-directions, respectively. In this study, 𝑐1 = 0.5 and 

𝑐2 = 0.5. The computational domain is [−2,2] × [−2,2]. 

 The spatial convergence rates using 𝑃1 to 𝑃5 spatial reconstructions, and the temporal convergence 

rates evaluated at the final time 𝑡 = 4 (i.e. 1T) using 𝑃1 to 𝑃3 temporal reconstructions are presented in 

Figures 6(a) and 6(b), respectively. From the grid refinement study, it is observed that the spatial 

convergence rates match the optimal values. For the temporal convergence study, the 𝐿2 errors from 𝑃1 to 

𝑃3 temporal reconstructions are calculated at the final time. It is observed that the temporal convergence 

rates show superconvergent features. Specifically, for a 𝑃𝑘 temporal reconstruction, the convergence rate 

is 2𝑘 + 1. 
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                                                (a)                                                                                          (b) 

Figure 6. (a) Rates of spatial convergence from the grid refinement studies using 𝑃1 to 𝑃5 spatial reconstructions for 

the 2D advection problem at 𝑡 = 4 (i.e. 1T); and (b) rates of temporal convergence evaluated at the final time 𝑡 = 4 

using 𝑃1 to 𝑃4 temporal reconstructions. 

 

IV.4. 2D isentropic vortex propagation  

 The 2D Euler equation can be written as 

 
𝜕𝑄

𝜕𝑡
+
𝜕𝐹

𝜕𝑥
+
𝜕𝐺

𝜕𝑦
= 0, (17)  

where the conservative variable and fluxes are expressed as 

𝑄 = (

𝜌
𝜌𝑢
𝜌𝑣
𝐸𝑡

) , 𝐹 = (

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣

𝑢(𝐸𝑡 + 𝑝)

) , 𝐺 = (

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝

𝑣(𝐸𝑡 + 𝑝)

). 

 Following Ref. [27], one analytical solution for the isentropic vortex can be given as 

{
 
 
 
 

 
 
 
 𝜌 = (1 −

1

2
(𝛾 − 1)𝑢𝑚𝑎𝑥

2 𝑒
1−
𝑟2

𝑏2)

1/(𝛾−1)

   

𝑝 =
1

𝛾
(1 −

1

2
(𝛾 − 1)𝑢𝑚𝑎𝑥

2 𝑒
1−
𝑟2

𝑏2)

𝛾/(𝛾−1)

𝑢 = 𝑈0 −
𝑢𝑚𝑎𝑥
𝑏

𝑟𝑒
1
2
(1−

𝑟2

𝑏2
)
𝑠𝑖𝑛𝜃                   

𝑣 = 𝑉0 +
𝑢𝑚𝑎𝑥
𝑏

𝑟𝑒
1
2
(1−

𝑟2

𝑏2
)
𝑐𝑜𝑠𝜃                   

. 

Herein, 𝑟 = √(𝑥 − 𝑈0𝑡)
2 + (𝑦 − 𝑉0𝑡)

2, 𝑈0 and 𝑉0 are the advection velocities of the free stream in the x- 

and y-directions, respectively, and 𝜃 is the angle with respect to the x-direction. In this study, (𝑈0, 𝑉0) =
(0.5,0), 𝑢𝑚𝑎𝑥 = 0.25, and 𝑏 = 0.2. The computational domain is [−2,2] × [−2,2]. 
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 The spatial convergence rates using 𝑃2 to 𝑃5 spatial reconstructions at 𝑡 = 0.5 (i.e. T/8) are displayed 

in Figure 7. In this case, the Roe Riemann solver is used. From the grid refinement study, the spatial 

convergence rates can reach the optimal values. For the temporal convergence study, the 𝐿2 errors are 

evaluated at 𝑡 = 4 (i.e. 1T) and from the space-time slab [4 − ∆𝑡, 4]. The results are presented in Figure 

8. It is observed that when the 𝐿2 errors are calculated at 𝑡 = 4, the temporal convergence rates can reach  

2𝑘 + 1 for a 𝑃𝑘  temporal reconstruction; when the 𝐿2  errors are calculated from the space-time slab 

[4 − ∆𝑡, 4], the temporal convergence rates match the optimal values. 

 

 

Figure 7. Rates of spatial convergence from the grid refinement studies using 𝑃2 to 𝑃5 spatial reconstructions for the 

2D isentropic vortex propagation at 𝑡 = 0.5 (i.e. T/8). 

 

 
                                                (b)                                                                                          (c) 

Figure 8. (a) Rates of temporal convergence evaluated at the final time 𝑡 = 4 (i.e. 1T) using 𝑃1  to 𝑃3  temporal 

reconstructions; and (b) rates of temporal convergence evaluated from the last space-time slab [4 − ∆𝑡, 4] using 𝑃2 

and 𝑃3 temporal reconstructions. 
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V. Conclusions 

 In this study, a nodal space-time FR method is developed to solve conservation laws. A dual time 

stepping strategy with the explicit SSP Runge-Kutta method is used to march the nonlinear system 

originated from the space-time discretization in pseudo time. The space-time formulation is in the 

differentiation form with no numerical quadrature involved in calculation. This formulation can easily 

achieve arbitrarily high-order spatial and temporal accuracy. Both 1D and 2D linear wave propagation 

and nonlinear inviscid flow problems are simulated to verify its numerical performance. Several 

observations are summarized as follows: 

 For hyperbolic equations without source terms, the space-time FR method using Gauss-Legendre 

points is spatially superconvergent during long-term unsteady simulations. Specifically, for a 𝑃𝑘 

spatial reconstruction, the convergence rate of the numerical scheme is 2𝑘 + 1. This has been 

reported by Asthana et al. (2017) for the FR method in a semi-discretization form. 

 When the errors are measured from the space-time slab, for hyperbolic equations without source 

terms, the space-time FR method using Gauss-Legendre points is temporally superconvergent 

during long-term unsteady simulations. Specifically, for a 𝑃𝑘  temporal reconstruction, the 

convergence rate of the numerical scheme is 2𝑘 + 1. For short-term simulation, the temporal 

convergence rates match the optimal values. 

 When the errors are measured at any specific time, for hyperbolic equations without source terms, 

the space-time FR method using Gauss-Legendre points is temporally superconvergent during 

both short-term and long-term unsteady simulations. However, if there exist source terms in the 

governing equations, the superconvergent features do not strictly hold. More study is still needed 

to examine the numerical properties of the space-time FR method. 
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