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ABSTRACT

Title of dissertation: A SWAPPING METHOD AND
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To provide significant outcomes, it is imperative that health care profession-

als, medical practitioners and policy-makers acquire evidence of the effectiveness of

different treatments or interventions. This is most commonly done by looking into

treatment and control groups and determining if the treatment has a causal effect

on the outcome. Ideally, treatment assignment is performed through randomiza-

tion so that the groups formed are comparable with respect to their features; thus,

randomized controlled trials are the gold standard. However, some factors, such as

cost, time, and ethical issues behind the treatment, may make it difficult to assign

treatments at random. This leads to the use of observational studies instead in

assessing the treatment or intervention effect.

The lack of randomization can be an issue for both observational studies and

clinical trial studies so that systematic differences in the covariates of the treat-

ment and control groups may exist, which poses an inherent problem in estimating



average treatment effect. Current trends in data analysis utilize propensity score

matching as a remedy to the imbalance among covariates between the treatment

and control groups under comparison. However, assumed matched pairs or groups

formed through propensity scores continue to reflect imbalance in the covariates be-

tween the two groups. Hence, an improved method is proposed, based on the direct

classification of categorical covariates and balance between groups on continuous

covariates, which consequently provides a more stable estimate of the average treat-

ment effect. The proposed method begins with forming homogeneous subgroups

in terms of qualitative features and then generates the estimates of average treat-

ment effect using a method that infuses “swapping” of models based on classical

regression and eventual combination of such estimates over all subgroups based on

meta-analyses procedures. The “swapping” procedure allows for the imputation of

the missing potential outcome for units in one of the control and treatment groups

while meta-analysis provides some means of combining the effect sizes calculated

from each matched group while addressing the issue of homogeneity. Simulation

studies show that the proposed method is able to capture the true treatment ef-

fect and provide more stable estimates in comparison to standard propensity score

measures.

Exploratory analysis via simultaneous regression inference is likewise presented

to provide information on the magnitude of difference between the treatment and

control regression models. The confidence bands generated through this analysis

provide graphical representations of the average treatment effect.
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Chapter 1

Introduction

1.1 Causal Inference

In causal inference, the potential outcome framework is founded on the idea

that every unit has a pair of potential outcomes
(
Y (0), Y (1)

)
which refers to the

unit’s response had it been assigned to the control and treatment group, respectively.

However, in observational studies or non-randomized trials, having both outcomes

at once is impossible and consequently, one is always missing. The observed value

for each subject is then defined as

Yi = DiY
(1)
i + (1−Di)Y

(0)
i , (1.1)

where Di = 0 if the ith unit is in the control group and Di = 1 if the ith unit is

in the treatment group. Under this setup, the treatment effect for each subject is

Y
(1)
i − Y

(0)
i and the average treatment effect (ATE)is defined by E

[
Y

(1)
i − Y (0)

i

]
,

which is the target estimand for inference.

In randomized controlled trials, the treatment allocation is not confounded

by the covariates. This allows for the direct comparison of outcomes between the

treatment and control groups. However, in observational studies, there may exist

systematic differences in the covariates of the two groups; hence, estimates derived

by direct comparison are biased because differences in the response between the two

1



groups may be attributed to the disparity in covariates and not the treatment effect

itself. Under such situations, methods have been proposed to remove bias caused

by confounding. With this, proper estimation of the average treatment effect is

conducted so that the difference in treatment outcomes realized is truly attributed

to the treatment and not on the said systematic differences in covariates between

groups.

Propensity scores analysis is a commonly used method that addresses this

issue. This matching method posits that less biased estimates are realized when the

comparison of outcomes is made on groups that are as similar as possible in terms

of the covariates. Such balance between the two groups is achieved by matching

based on a single score, e(x), known as propensity scores (PS), that summarizes

the n-dimensional vector of pre-treatment characteristics [24]. This score is defined

as the conditional probability of having been assigned with the treatment given a

vector x of observed covariates; that is e(x) = P (Di = 1|x). A vast literature on

the matching and estimation methods based on the propensity scores are available

such as Stratification Matching [25, 1], Propensity Score Matching [24, 26, 1], and

Inverse Probability of Treatment Weighting (IPTW) using propensity scores [27, 1]

which are briefly discussed in the following sections.

1.2 Stratification Matching

A common procedure in controlling the systematic differences existing between

covariates is creating subgroups based on the computed propensity scores and di-

2



rectly comparing the units in treatment and control groups from each subgroup

formed. To achieve this stratification of subjects into mutually exclusive subgroups,

subjects are ranked based on their propensity scores and are then stratified into

subsets based on previously defined threshold based on it. In the application of

this method, it has been established that 90% of the biases due to the covariates

are removed by using five subgroups [25, 1]. This is done by checking the balance

achieved by comparing the covariates of the treatments across the different strata.

The key point of this method lies on the idea that when the propensity score model

has been correctly specified, the distribution of measured covariates will be approxi-

mately similar between treated and untreated subjects within the same stratum [4],

which can be then be likened to a randomized study. Hence, direct comparisons

between the two groups can be performed.

An estimate for the average treatment effect under this setup is obtained using

a direct adjustment of the subgroup-specific estimates generated. This is simply

formulated as the average of the K subgroup differences of the mean responses

between the treatment groups [25]. This expression is summarized [35] as

τ̂ =
K∑
k=1

nk
N

(ȳ1k − ȳ0k) (1.2)

with a corresponding variance of

V ar(τ̂) =
K∑
k=1

(nk
N

)2
V ar(ȳ1k − ȳ0k). (1.3)

In theory, all strata must be balanced with respect to the different covariates to

ensure that an unbiased average treatment effect is calculated. However, in practice,

this balance might not be easily achieved. In such a case, it is vital that the clinical

3



significance be justified or the amount of reduction in imbalance after stratification

be investigated.

1.3 Propensity Score Matching

Propensity score matching forms matched sets of units in the treatment and

control groups whose propensity scores are almost similar. The most common of

which is the one-to-one matching or pair matching. In this method, a treated unit i

with an estimated propensity score êi is matched to a control unit (or set of control

units C(i)) where C(i) = minj||pi−pj||. For pair matching, this is a singleton which

is most often the case. Multiple nearest neighbors, nonetheless, may be realized but

is very rare especially if the set of covariates include continuous variables [5].

With these matched samples, the treatment effect is calculated by directly

comparing the outcomes, as in randomized studies. For continuous responses, this

refers to the difference between the mean of the response variable of the treated

group and untreated group in the matched sample. On one hand, if the outcome

is binary, the treatment effect is estimated as the difference in the proportion of

units that are experiencing the event of interest between the treated and untreated

groups [24, 26]. Other measures that gauge average treatment effect used in many

applications are relative risk and odds ratio [2, 3, 4].

Generally, the average treatment effect estimator for continuous response is

4



given by

τ̂ =
1

NT

∑
i∈T

Y T
i −

∑
j∈C(i)

wijY
C
j


=

1

NT

∑
i∈T

Y T
i −

1

NT

∑
j∈C

wijY
C
j , (1.4)

where Y T
i is the response of the treated unit, Y C

j is the response of the matched

control unit, NT is the number of units in the treatment group and wij =
1

NC
i

are its weights. In the case of a pair matching, this formulation simplifies to a

direct computation of the average treatment effect as described. The corresponding

variance of the estimator, assuming fixed weights and independent outcomes across

units, is given by

V ar(τ̂) =
1

(NT )2

[∑
i∈T

V ar
(
Y T
i

)
+
∑
j∈C

(wij)
2V ar

(
Y C
j

)]

=
1

NT
V ar

(
Y T
i

)
+

1

(NC)2

∑
j∈C

(wij)
2V ar

(
Y C
j

)
. (1.5)

It is suggested that within the matched sample, the treatment and control units

should be regarded as independent [29]. In contrast, some researchers argue that the

estimate and its corresponding variance should be derived under the paired setup

[12]. Hence, a paired t-test and Mcnemar Test [20] should be used for statistical

inference in continuous and dichotomous responses, respectively.

1.4 Inverse Probability Treatment Weighting

Another common propensity score approach is the inverse probability of treat-

ment weighting (IPTW). This method is particularly attractive because a treatment

effect estimate can be calculated even if the response is a rare binary outcome and

5



adjustments on the covariates are necessary [36]. In this procedure, once the propen-

sity scores are estimated, an estimator for the average treatment effect is given by

τ̂ =

(
n∑
i=1

YiDi

êi

)(
n∑
i=1

Di

êi

)−1
−

(
n∑
i=1

Yi(1−Di)

(1− êi)

)(
n∑
i=1

(1−Di)

(1− êi)

)−1
(1.6)

which is essentially the difference in marginal means of the treatment and control

groups, µT −µC . The corresponding estimate of the variance of this treatment effect

estimator is derived [36] as

n ˆV ar(τ̂) = V̂un − v̂T
(

2M̂1 − M̂2

)
v̂, (1.7)

where supposing ŵ1 = 1
n

∑n
i=1

Di

êi
and ŵ0 = 1

n

∑n
i=1

1−Di

1−êi ,

V̂un =
1

ŵ2
1

1

n

n∑
i=1

(Yi − µ̂1)
2Di

ê2i
+

1

ŵ2
0

1

n

n∑
i=1

(Yi − µ̂0)
2(1−Di)

(1− êi)2

v̂ =
1

ŵ1

1

n

n∑
i=1

x̂i(Yi − µ̂1)Di(1− êi)
êi

+
1

ŵ0

1

n

n∑
i=1

x̂i(Yi − µ̂0)(1−Di)êi
(1− êi)

M̂1 =

(
1

n

n∑
i=1

x̂ix̂
T
i êi(1− êi)

)−1

M̂2 = M̂1

(
1

n

n∑
i=1

x̂ix̂
T
i (Di − êi)2

)
M̂1. (1.8)

This estimator has been shown to have comparable statistical properties to stratifi-

cation and matching methods and, in certain circumstances, it is a more preferable

analysis procedure.

Looking into the idea of balance in propensity scores, it is defined based on

the closeness of the propensity score calculated for each i. However, careful assess-

ment on the matches based on the first two methods continue to show imbalanced

covariates; thus, a modified method is proposed. In this procedure, matching is

conducted based on some of the covariate information where each group made is

6



assured to be balanced with respect to the categorical variables and an alternative

test in checking the balance of continuous variables within each matched group is

presented.

In the implementation of these different methods, careful consideration must

be taken to ensure that the assumption of strong ignorability imposed by the propen-

sity score is achieved. This means that the researchers must include all variables

related to the treatment and the response, while excluding the response variable,

in the construction of the propensity score model. Also, irrelevant covariates will

inflate variance estimates as it adds up to the noise in the model, while deleting im-

portant variables can result in serious bias [22]. However, it is preferred to include

unimportant covariates and consequently lose efficiency rather than increase the bias

by deleting a variable [28]. It is for this reason, that most propensity score models

are built on as many variables as possible given the data. In the proposed method,

however, the mechanism works when the data set contains manageable number of

variables and the goal is to estimate the average treatment effect.

Another advantage in comparison to propensity score methods is the use of

meta-analysis which addresses homogeneity in the combined treatment effect. Mean-

while, the “swapping” method allows the incorporation of covariate information in

average treatment effect estimation. All of these analyses are geared towards pro-

viding appealing features in estimating average treatment effect in comparison to

propensity score methods.
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1.5 Motivation for the Proposed Procedure

In analyzing observational studies, the main issue lies in the presence of sys-

tematic differences in the features of the treatment and the control groups. The

solution provided by propensity score analysis is to find ample matches for the treat-

ment and control unit which are close to each other based on the balancing score,

e(x). However, this definition of balance, when closely assessed, do not absolutely

provide matches whose characteristics or baseline features are the same.

For instance, propensity score matching methods are applied on Lalonde data

set from a 1999 seminal study on the comparison of treatment and control groups to

determine causal effects of a job training program [15]. The Lalonde data combines

the treated units from a randomized evaluation of the National Supported Work

(NSW) demonstration with the control units drawn from survey data. This public

data is widely used to illustrate propensity scores and matching methods. The

outcome of interest is RE78 (real earnings in 1978) with the treatment defined as

the participation in the NSW job training program. The continuous covariates

considered in the study are age and education quantified by the number of years in

school while the categorical variables are Black (1 if black, 0 otherwise), Hispanic

(1 if Hispanic, 0 otherwise), married (1 if married, 0 otherwise) and nodegree (1

if no degree, 0 otherwise). The total number of observations used in the analysis

is n = 445, nC = 260 of which are under the control group while the remaining

nT = 185 observations are treatments.
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A propensity score logistic model is estimated so that

logit(P (Di|xi)) = 1.1092 + 0.0101age− 0.00009age2 − 0.2245black − 0.0719ed

−0.8515hisp+ 0.1608married− 0.9026nodeg. (1.9)

With this estimated model, a balancing score is assigned to each of the unit in the

treatment and control groups. Under the pair matching method, a treatment unit is

matched to a control unit where its corresponding absolute difference in propensity

score is smallest in the pool of control units. However, assessing the features of

the matched pair, it can be shown that disparity in characteristics of some matches

formed exist. A subset of the matches made using this method is shown in Table

1.1.

Matches Group Age Educ Black Hisp Married Nodeg e(x)

1
T 27 10 0 1 0 1 0.2393
C 17 10 0 1 0 1 0.2391

2
T 17 9 0 1 0 1 0.2394
C 17 10 0 1 0 1 0.2392

3
T 20 11 1 0 0 1 0.2559
C 18 8 0 1 0 1 0.2558

4
T 21 7 0 1 0 1 0.2786
C 19 11 0 1 1 1 0.2738

5
T 26 10 1 0 0 1 0.2813
C 19 6 0 1 0 1 0.2856

Table 1.1: Subset of Matches Formed on NSW Data Based on Pair Matching

Evidently, in some cases such as Matches 1 and 2, exact matches are formed

with respect to the categorical variable. However, some matches, like Matches 3,

4, 5, do not share the same categorical characteristics. For instance, Matches 3
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and 4 involve comparing a black, non-hispanic program participant to a non-black,

hispanic respondent. Similarly, in Match 4, a married respondent is being matched

with a participant who is single by civil status. This illustrates the inability of

the propensity score method to come up with matches that reflect “balance” with

respect to at least the categorical features. It can also be observed that for Match

2, the pair is composed of two 17-year old respondents while for Match 1, there is a

10-year age gap between the pair derived. Meanwhile, with respect to the number

of years spent in school, Match 1 is comparable, where both respondents have spent

10 years in school. However, for Match 5, the control unit has spent fours years

in school less than the treatment unit. These observations suggest that while the

propensity scores calculated are quite similar, the covariates of the matches made

are not completely “balanced”.

Looking into the quality of the matched groups formed via the stratification

method, the same propensity score model is used and the balancing scores are ranked

to create the five strata. The results of the strata formed are shown in Table 1.2. It is

shown that the composition of the categorical variables in some of the strata formed

vary. For Strata 1 and 2, very minimal disparity is established in the composition of

the treatment and control groups. However, Stratum 3 is composed of 9% married

respondents for the treatment group and only 3% are married for the control group.

Strata 4 and 5 have likewise varied percentages of respondents who are married and

has no degree. Such results indicate a sense of imbalance in the groups formed using

propensity scores.

From this illustration, it can be shown that the features of the matches made
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Stratum Group n Black Hisp Married Nodeg

1
T 29 20 (69%) 9 (31%) 2 (7%) 29 (100%)
C 54 38 (70%) 16 (30%) 3 (6%) 54 (100%)

2
T 32 32 (100%) 0 (0%) 0 (0%) 32 (100%)
C 60 60 (100%) 0 (0%) 0 (0%) 60 (100%)

3
T 34 32 (94%) 1 (3%) 3 (9%) 33 (97%)
C 51 48 (94%) 1 (2%) 2 (4%) 50 (98%)

4
T 41 32 (78%) 1 (2%) 20 (49%) 35 (85%)
C 45 35 (78%) 1 (2%) 26 (58%) 43 (96%)

5
T 46 40 (87%) 0 (0%) 8 (17%) 2 (4%)
C 40 34 (85%) 0 (0%) 9 (23%) 0 (0%)

Table 1.2: Matched Groups of NSW Data Based on Stratification Matching

may be different; hence, it is not completely balanced. Although it is balanced by

the closeness of its propensity scores, the features of the covariates of the matches

are not alike which may indicate that systematic differences in the treatment and

control groups continue to exist. This may consequently lead to biased estimates

of the average treatment effect. In the proposed method, this imbalance is being

addressed by forming subgroups that are perfectly balanced with respect to the

categorical features of the data set. An alternative way of checking the balance with

respect to the continuous variables are also assessed and a test of homogeneity is

introduced in the estimation of the average treatment effect. All of these components

are geared towards providing a better estimate of the average treatment effect.
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Chapter 2

Proposed Balancing and Estimation Method

2.1 Overview

As an alternative to the methods of propensity score analysis, a new procedure

of analyzing observational data to establish average treatment effect is proposed. In

this method, subgroups are formed based on the nature of the relevant covariates in

predicting the outcome of interest. Classical regression and the “swapping” idea are

then infused and implemented to find appropriate matches that will estimate missing

potential outcomes. Also, meta-analysis procedures are used to combine subgroup

estimates and consequently to generate the average treatment effect. In the suc-

ceeding sections, the data setup and general approach for the proposed method are

more clearly described.

2.2 Data Setup

For a subgroup i, let Y˜ be an N × 1 vector of observed outcomes on the

response variable and X be an N × q matrix of observed covariates, where N is the

total number of observations and q be the number of selected independent variables
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available in the data set. Thus, the data matrix is given by

Y˜ =



Y1

...

Yn

Yn+1

...

YN



,X =



X11 X12 . . . X1q

...

Xn1 Xn2 . . . Xnq

X(n+1)1 X(n+1)2 . . . X(n+1)q

...

XN1 XN2 . . . XNq



(2.1)

Assume that the first n observations belong to the treatment group and the

remaining m = N − n observations are members of the control group so that the

data matrix can be partitioned into the treatment group and control group as

Y˜ (1) =


Y1

...

Yn

 ,X(1) =


X11 X12 . . . X1q

...

Xn1 Xn2 . . . Xnq

 (2.2)

and

Y˜ (0) =


Yn+1

...

YN

 ,X(0) =


X(n+1)1 X(n+1)2 . . . X(n+1)q

...

XN1 XN2 . . . XNq

 , (2.3)

respectively, with min{n,m} > q. These submatrices can then be redefined such

that each unit j = 1, 2, . . . , ni in the treatment group will have
(
Y

(1)
j ,X

(1)
j

)
=

(Uj,vj) where Uj is the observed response value and vj is the realized vector of

covariates. Similarly, the observed quantities for the control units are redefined

such that
(
Y

(0)
j ,X

(0)
j

)
= (Zj,wj), where Zj and wj are the observed outcome value

and vector of independent variable values, respectively, for every j = 1, 2, . . . ,mi. It
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is emphasized that based on the nature of observational studies, the matrices v and

w share the same characteristics but balance is not guaranteed to occur between

the two groups. This balance is desired so that any realized effect can be attributed

solely to the treatment and not on the systematic differences between the groups.

2.3 General Approach

In general, the proposed method involves three major steps: creation of bal-

anced subgroups, estimation of treatment effect for each subgroup and combination

of these estimates for the average treatment effect. Through these steps, issues on

balance and homogeneity of subgroups are addressed. It must be noted, however,

that this procedure is most applicable for data sets with manageable number of

confounders. This proposed method is performed through the following mechanism:

(1) Create subgroups based on the k(k ≤ q) categorical variables, forming a total

of G =
k∏
l=1

bl subgroups, where bl is the number of levels in the lth categorical

variable. This step assures that each of the G subgroup are balanced with

respect to the categorical variables. Hence, no balance checking procedure is

necessary between treatment and control groups in each of the G subgroup.

In the case that a large number of subgroups formed have sparse data, the levels

of some categorical variables are pooled if there is a natural way of doing it. If

subgroups remain to be sparse even after pooling, these sparse subgroups are

then discarded. This results to n∗ and m∗ remaining observations classified into

G∗ valid subgroups. Each of these i = 1, 2, . . . , G∗ have ni observations for
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the treatment group and mi for the control group such that
G∗∑
i=1

ni = n∗ and

G∗∑
i=1

mi = m∗ with N∗ = n∗ +m∗ total number of observations remaining.

Note that in each of these subgroups, the data setup is as described in section

2.2.

(2) Subgroups with non-sparse observations are further validated for balance with

respect to the remaining p = q − k continuous variables. A multivariate test is

applied to check whether the balance is achieved on the continuous variables.

The test is for the equality of two mean vectors under the assumption of unequal

dispersion matrices Σ. Several tests have been proposed in the literature for solv-

ing this problem, also known as multivariate Behrens-Fisher problem. Available

tests are Yao’s Test [37], Johansen’s Test [13], Nel and Van der Merve’s Test

[21], Krishnamoorthy and Yu’s test [14], and the generalized p-value test [34].

See subsection 2.4 for the details of these different tests.

(3) After checking the balance of the covariates between the treatment and control

groups, estimates of the treatment effect, θi, are derived for each subgroup.

That is,

(a) If balance in a specific subgroup is achieved, proceed to the direct computa-

tion of effect sizes. Since balance is ensured, no systematic difference exist as

in a randomized study. Thus, direct difference in the averages of treatment

and control groups can be applied to calculate the subgroup estimate.

(b) If balance is not achieved, proceed to the “swapping” method from which
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the missing potential outcome is imputed. The details are described in

Chapter 3.

(4) Upon deriving the treatment effect θi in each subgroup, a test for homogeneity

is conducted. That is, test if θ1 = θ2 = . . . = θG∗ = θ, where θ is a common

treatment effect value.

(a) If the assumption of homogeneity is satisfied, the G∗ effect sizes are com-

bined using meta-analysis methods.

(b) If the assumption of homogeneity is not satisfied, a random effects model is

postulated and a homogeneity parameter is estimated.

The combined effect sizes is the estimated ATE, E[Y (1)−Y (0)]. The estimators and

standard errors of this proposed procedure are derived in details in Chapter 3 for

continuous response variable.

2.4 Test for Equality of Mean Vector of Covariates

Balance checking among covariates is an essential step prior to the computation

of treatment effect. Each subgroup is assured to have balance with respect to the

categorical variables but not on the continuous covariates. To check this balance,

a multivariate test for the equality of two mean vectors under the assumption of

unequal dispersion matrices is applied. Several progresses have been done in solving

this problem. Among these tests are Yao’s invariant test [37], Johansen’s invariant

test [13], Nel and Van der Merwe invariant test [21] and Krishnamoorthy and Yu
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modified invariant test [14]. Also, new methods are being proposed that provide

more reasonable size and power of the test [34].

The general formulation of the test suggests that for a subgroup, suppose that

the treatment and control groups are from a p-variate normal populations given by

N(µ˜T ,ΣT ) and N(µ˜C ,ΣC), respectively, where µ˜T and µ˜C are unknown p×1 vectors

and ΣT and ΣC are unknown p× p positive definite matrices. For balance checking,

the test Ho: µ˜T = µ˜C vs H1 : µ˜T 6= µ˜C must be conducted. For n > p, consider

the estimators X̄T =
1

ni

ni∑
j=1

XjT and X̄C =
1

mi

mi∑
j=1

XjC which are sufficient for the

mean vectors of the two groups. Also, let AT =

ni∑
j=1

(XjT − X̄)(XjT − X̄)′ and AC =

mi∑
j=1

(XjC − X̄)(XjC − X̄)′ be sufficient estimators of the dispersion matrices. It is

noted that for k = T,C, these quantities are independent variables with distributions

X̄k ∼ N

(
µk,

Σk

nik

)
(2.4)

Ak ∼ Wp(nik − 1,Σk) (2.5)

where Wp(df = r,Σ) is a p−dimensional Wishart distribution. Define

Sk =
Ak

nik − 1
(2.6)

S̃k =
Sk
nik

(2.7)

S̃ = S̃T + S̃C (2.8)

T 2 = (X̄T − X̄C)′S̃−1(X̄T − X̄C) (2.9)

where the test based on T 2 is a natural invariant test.

Among the available multivariate tests are the following:
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(a) Yao’s test [37] suggests a multivariate test based on T 2 ∼
(

vp

v − p+ 1

)
Fp,v−p+1

where

v =

[
1

niT

(
X̄′dS̃

−1S̃T S̃−1X̄d

X̄′dS̃
−1X̄d

)
+

1

niC

(
X̄′dS̃

−1S̃CS̃−1X̄d

X̄′dS̃
−1X̄d

)]−1
(2.10)

and

X̄d = X̄T − X̄C . (2.11)

(b) Johansen’s test [13] suggests that T 2 ∼ q∗Fp,v where

q∗ =
p+ 2D − 6D

p(p− 1) + 2

v =
p(p+ 2)

3D

and

D =
1

2

∑
k=T,C

trace[(I − (S̃−1T + S̃C)−1S̃−1k )2] + trace[(I − (S̃−1T + S̃C)−1S̃−1k )]2

nik

(2.12)

Studies conducted on this test show that it performs better than the usual

Hotelling’s T where the covariance matrices are assumed to be equal.

(c) Nel and Van der Merve’s test [21] is an approximate solution to the multi-

variate Behrens-Fisher problem which is a non-variant test based on T 2 ∼(
vp

v − p+ 1

)
Fp,v−p+1 where v is redefined as

v =
trace(S̃2) + [trace(S̃)]2

1
niT

[trace(S̃2
T ) + [trace(S̃T )]2] + 1

niC
[trace(S̃2

C) + [trace(S̃C)]2]
(2.13)

(d) Krishnamoorthy and Yu’s test [14] modifies the approximation provided by

Nel and Van der Merve’s invariant test. This modification simplifies to the
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approximate solution to the univariate case and is similarly based on T 2 ∼(
vp

v − p+ 1

)
Fp,v−p+1 but the degrees of freedom is given by

v =
p+ p2

1
niT

[trace(S̃T S̃−1)2 + [trace(S̃T S̃−1)]2] + 1
niC

[trace(S̃CS̃−1)2 + [trace(S̃C)S̃−1]2]

(2.14)

The simulations based on the test demonstrated that it is as powerful as the

other methods explored while controlling for the sample sizes.

At present, the multivariate Behrens-Fisher problem remains to be an interest-

ing research area in statistics. Equally more powerful tests are being developed such

as the test based on Roy’s union-intersection principle with generalized P−value [34]

which might be useful in establishing the equality of continuous covariates between

the treatment and control groups given a specific subgroup.

For subgroups where the equality of mean vectors are established, direct cal-

culation of the effect size is done as there exists no systematic differences between

groups that could affect the average treatment effect. This treatment effect is calcu-

lated as the difference in mean response values of the treatment and control groups.

If the null hypothesis is rejected, then the proposed swapping procedure is applied.
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Chapter 3

Average Treatment Effect Estimation

3.1 Overview

Upon the creation of subgroups and balance checking with respect to the

continuous variables, the “swapping” method is applied to subgroups that are found

to be unbalanced while direct computation is done for balanced ones. This will allow

generation of subgroup estimates for the treatment effect.

3.2 Swapping Method

The rationale of the “swapping” method is based on the idea that in the

presence of a good model for the distribution of the response under the treatment

group, the missing potential outcome Y (1) for units in the control group can be

predicted. Similarly, the missing Y (0) of the treatment units could be estimated

by looking into its predictive values under the model established using the control

group. As an initial step to the swapping method, models are built using classical

regression methods. For a fixed subgroup i, the response variable in the treatment

group is

Uj = β0,T + β1vj1 + . . .+ βpvjp + εj (3.1)

20



where εj ∼ N(0, σ2
T ). Hence, Uj|v˜j ∼ N(v˜′jβ˜T , σ2

T ) for j = 1, 2, . . . , ni. In classical

regression, a centered form of the model can be considered so that

Uj = β
′

0,T + β1vj1 + . . .+ βpvjp + εj

= β
′

0,T + β1(vj1 − v̄1) + . . .+ βp(vjp − v̄p) + εj (3.2)

where v̄l =

ni∑
j=1

vjl and

β
′

0,T = β0,T + β1v̄1 + . . .+ βpv̄p (3.3)

for l = 1, 2, . . . , p.

In matrix form, vectors U˜ , β˜T , ε˜ and matrix V∗ can be defined as

U˜ =


U1

...

Uni


ni×1

, β˜T =



β0,T

β1

...

βp


(p+1)×1

, ε˜=


ε1

...

εni


(ni×1)

where ε˜∼ Nni
(0˜, σ2

T I) and

V∗ =


1 v11 − v̄1 . . . v1p − v̄p
...

...
...

...

1 vni1 − v̄1 . . . vnip − v̄p


(ni×(p+1))

(3.4)

which provides the least squares estimates of

β̂˜∗T =



β̂
′
0,T

β̂1,T

...

β̂p,T


=

 β̂
′
0,T

β̂˜∗∗T
 =

(
V∗
′
V∗
)−1

V∗
′
U˜ =



ni 0 0 . . . 0

0

... Svv

0



−1

V∗
′
U˜ .

(3.5)
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where Svv is a p× p matrix of sum of squares and cross-products of deviations with

the ij−elements aij =

ni∑
j=1

(vjl − v̄l)(vjq − v̄q) for l, q = 1, 2, . . . , p.

This formulation simplifies the distributional properties of β̂˜∗T into

E
(
β̂˜∗T
)

=



β
′
0,T

β1

...

βp


=

 β
′
0,T

β˜∗
 (3.6)

Cov
(
β̂˜∗T
)

= σ2
T



1
ni

0 0 . . . 0

0

... S−1vv

0


. (3.7)

Focusing on the control group of subgroup i, the same least squares estimation

on response variable of the control

Zj = β0,C + β1wj1 + . . .+ βpwjp + εj (3.8)

is performed where εj ∼ N(0, σ2
C). Thus, Zj|w˜j ∼ N(w˜ ′jβ˜C , σ2

C) for j = 1, 2, . . . ,mi.

For a more parsimonious form for the dispersion matrix of the estimates, a centered

form is likewise considered in its estimation where

Zj = β
′

0,C + β1wj1 + . . .+ βpwjp + εj

= β
′

0,C + β1(wj1 − w̄1) + . . .+ βp(wjp − w̄p) + εj (3.9)

with w̄l =

mi∑
j=1

wjl for l = 1, 2, . . . , p and

β
′

0,C = β0,C + β1w̄1 + β2w̄2 + . . .+ βpw̄p. (3.10)
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Similarly, the vector of response of the control group can be expressed in matrix

form as Z˜ = W∗′β˜C + ε˜ where

Z˜ =


Z1

...

Zmi


mi×1

, β˜C =



β0,C

β1

...

βp


(p+1)×1

,

W∗ =


1 w11 − w̄1 . . . w1p − w̄p
...

...
...

...

1 wmi1 − w̄1 . . . wmip − w̄p


(mi×(p+1))

, ε˜=


ε1

...

εmi


(mi×1)

with ε˜ ∼ Nmi
(0˜, σ2

CI). Under this specification, the least squares estimates of the

response in the control group is given by

β̂˜∗C =



β̂
′
0,C

β̂1,C

...

β̂p,C


=

 β̂
′
0,C

β̂˜∗∗C
 =

(
W∗′W∗

)−1
W∗′Z˜ =



mi 0 0 . . . 0

0

... Sww

0



−1

W∗′Z˜
(3.11)

where Sww is a p×p matrix of sum of squares and cross-products of deviations with

ij−element bij =

mi∑
j=1

(wjl − w̄l)(wjq − w̄q) for l, q = 1, 2, . . . , p and

β̂˜∗C =



β̂
′
0,C

β̂1

...

β̂p


(p+1)×1
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Under this centered form, the expectation of β̂˜∗C remains the same as the

treatment group except for its intercept β
′
0,C while its variance is simplified into the

form

E
(
β̂˜∗C
)

=



β
′
0,C

β1

...

βp


=

 β
′
0,C

β˜∗
 (3.12)

Cov
(
β̂˜∗C
)

= σ2
C



1
mi

0 0 . . . 0

0

... S−1ww

0


. (3.13)

A crucial assumption in the model specifications above is that there exists a

common β˜∗ in both groups which implies that the effect of the covariates on the

response is the same regardless of treatment assignment. Furthermore, any effect of

the treatment on a unit is reflected only through the intercepts of the models. To

mitigate the estimation of the common parameter β˜∗, the two independent estimates

β̂˜∗∗T and β̂˜∗∗C with known variance-covariance matrices, ΣT = σ2
TS
−1
vv and ΣC =

σ2
TS
−1
ww, respectively, are combined via multivariate meta-analysis by

β̂˜∗ =

( ∑
k=T,C

Σ−1k

)−1( ∑
k=T,C

Σ−1k β̂˜∗∗k
)

=

(
Svv
σ2
T

+
Sww
σ2
C

)−1( ∑
k=T,C

Σ−1k β̂˜∗∗k
)
, (3.14)

where

β̂˜∗ ∼ N

β˜∗,
( ∑
k=T,C

Σ−1k

)−1
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and σ2
T and σ2

C are estimated by σ̂2
T =

SSET
ni − (p+ 1)

and σ̂2
C =

SSEC
mi − (p+ 1)

, re-

spectively. Marginally,
(ni − (p+ 1))σ̂2

T

σ2
T

∼ χ2
(ni−(p+1)) and

(mi − (p+ 1))σ̂2
C

σ2
C

∼

χ2
(mi−(p+1)) so that the hypothesis Ho : σ2

T = σ2
C can be tested by the usual F-

test. The non-rejection of the null allows simplification of

( ∑
k=T,C

Σ−1k

)−1
into

1

σ2
(Svv + Sww). Another assumption made on this procedure is that homogeneous

effect sizes exist between treatment and control groups since the possible values of

the covariates belong to the same space with some overlap. Hence, the two estimates

may be combined accordingly.

After the model-building and estimation of the common parameter β˜∗, the

“swapping” mechanism is applied. For a subgroup i, the swapped quantities

Ũj = β̂
′

0,C + β̂1(v11 − w̄1) + . . .+ β̂p(vnip − w̄p) (3.15)

Z̃j = β̂
′

0,T + β̂1(w11 − v̄1) + . . .+ β̂p(wmip − v̄p) (3.16)

are defined which estimates the missing potential outcome in the framework de-

scribed below:

(a) For the units in the treatment group where the potential outcome observed is

only Y
(1)
j , estimate its corresponding potential outcome Y

(0)
j by Ũj. Therefore,

for j = 1, 2, . . . , ni in the treatment group, potential outcomes (Y
(1)
j , Y

(0)
j ) are

estimated by (Uj, Ũj). The rationale is that Ũj is the estimated response of unit

i had it taken the placebo or the control.

(b) For the control group where only the potential outcome Y
(0)
j is observed, esti-

mate the treatment potential outcome Y
(1)
j using Z̃j for each unit j = 1, 2, . . . ,mi.
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This will provide an estimate for potential outcome (Y
(1)
j , Y

(0)
j ) of (Z̃j, Zj). This

structure posits that Z̃j is the response value of unit j had it undergone the

treatment.

These model-building procedures for both groups are done for subgroups 1, 2, . . . , G∗

with unbalanced covariates. Upon model-fitting, a certain criteria is defined to aid in

determining a good model to be used for “swapping”. Measure such as the coefficient

of determination, R2, can be used to facilitate the choice of model for cases assuming

normality. Another adhoc method that can be used in choosing the model used for

swapping is the absolute difference of the quantities v˜jβ̂˜∗∗T − v˜jβ̂˜∗ and w˜jβ̂˜∗∗C −w˜jβ̂˜∗.
The smaller of the quantities s =

ni∑
j=1

|v˜jβ̂˜∗∗T − v˜jβ̂˜∗|
ni

and t =

mi∑
j=1

|w˜jβ̂˜∗∗C − w˜jβ̂˜∗|
mi

will determine which model has a better fit relative to the combined estimate β̂˜∗. If

s < t, then the treatment model has a better fit and hence, it will be used to predict

the potential outcome Y (1) of the control units through the estimated Z̃j. On one

hand, if s > t, then the control model may be used to estimate the missing Y (0) of

the treatment units through Ũj. The rationale in this procedure is that the model

whose predicted value from the combined coefficients is closest to the ones in the

classical model would provide a better prediction for the missing potential outcome.

This matching and “swapping” method allows estimation of (Y (1), Y (0)) from which

the parameter of interest E(Y (1) − Y (0)) is derived.
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3.3 Estimation

To estimate the parameter or the effect size of interest, ATE, defined by

E(Y (1)−Y (0)), we consider the fitted models under the treatment and control groups

in each G∗ subgroups. For a subgroup i, one of the four cases could occur:

(1) There is a good fit, as defined in Section 3.2, in the control group but not

the treatment group. In this instance, for each treatment unit j = 1, 2, ..., ni,

δj = Uj − Ũj is computed as the treatment effect. To derive its distribution,

note that β̂˜∗ is computed using standard meta-analysis formula so that

β̂˜∗ =

( ∑
k=T,C

Σ−1k

)−1( ∑
k=T,C

(Σ−1k β̂˜∗∗k )

)
=

(
Σ−1T + Σ−1C

)−1 (
Σ−1T β̂˜∗∗T + Σ−1C β̂˜∗∗C

)
=

(
Svv
σ2
T

+
Sww
σ2
C

)−1(
Svv
σ2
T

DTU˜ +
Sww
σ2
C

DCZ˜
)

=

(
Svv
σ2
T

+
Sww
σ2
C

)−1
Svv
σ2
T

DTU˜ +

(
Svv
σ2
T

+
Sww
σ2
C

)−1
Sww
σ2
C

DCZ˜ (3.17)

where DT is the p× ni matrix of the (V∗
′
V∗)−1V∗

′
with the first row removed

from the calculation of the treatment group data while DC is the p×mi matrix

of the (W∗′W∗)−1W∗′ from the control group data with the first row removed.

To simplify the derivation, quantities

D∗T =

(
Svv
σ2
T

+
Sww
σ2
C

)−1
SvvDT =


dT11 . . . dTni1

...
...

...

dT1p . . . dTnip

 =


d˜T1

...

d˜Tp

 (3.18)
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and

D∗C =

(
Svv
σ2
T

+
Sww
σ2
C

)−1
SwwDC =


dC11 . . . dCmi1

...
...

...

dC1p . . . dCmip

 =


d˜C1

...

d˜Cp

 (3.19)

of dimensions p × ni and p × mi, respectively, are defined where row vectors

d˜T l =

(
dT1l . . . dTnil

)
and d˜Cl =

(
dC1l . . . dCnil

)
for l = 1, 2, . . . , p.

This means that

β̂˜∗ =
1

σ2
T

D∗TU˜ +
1

σ2
C

D∗CZ˜ (3.20)

with dimension p× 1. Hence,

Ũj =

(
1 (vj1 − w̄1) . . . (vjp − w̄p)

) Z̄

1

σ2
T

D∗TU˜ +
1

σ2
C

D∗CZ˜


Ũj =

(
1 (vj1 − w̄1) . . . (vjp − w̄p)

)



Z̄

1

σ2
T

d˜T1U˜ +
1

σ2
C

d˜C1Z˜
...

1

σ2
T

d˜TpU˜ +
1

σ2
C

d˜CpZ˜



.
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Therefore, Ũj can similarly be defined by the following three quantities:

Ũj = β̂
′

0,C + β̂1(vj1 − w̄1) + . . .+ β̂p(vjp − w̄p) (3.21)

Ũj =

(
1 (vj1 − w̄1) . . . (vjp − w̄p)

) Z̄

β̂˜∗
 (3.22)

Ũj = Z̄ +
1

σ2
T

(vj1 − w̄1)d˜T1U˜ +
1

σ2
C

(vj1 − w̄1)d˜C1Z˜ + . . .+

1

σ2
T

(vjp − w̄p)d˜TpU˜ +
1

σ2
C

(vjp − w̄p)d˜CpZ˜ . (3.23)

For the distributional properties of Ũj, it can be easily established that

E(Ũj) =

(
1 (vj1 − w̄1) . . . (vjp − w̄p)

)


β
′
0,C

β1

...

βp


(3.24)

V ar(Ũj) = v∗
′

j



σ2
C

mi

∑mi

q=1 dCq1

mi

∑mi

q=1 dCq2

mi

. . .

∑mi

q=1 dCqp

mi∑mi

q=1 dCq1

mi∑mi

q=1 dCq2

mi

(∑
i=T,C

Σ−1i

)−1
...∑mi

q=1 dCqp

mi


v∗j

= v∗
′

j ΛCv
∗
j (3.25)
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since the covariance of Z̄ and any parameter β̂l, l = 1, 2, . . . , p is given by

Cov
(
Z̄, β̂l

)
= Cov

(
Z̄,

1

σ2
T

d˜T lU˜ +
1

σ2
C

d˜ClZ˜
)

= Cov

(
Z1 + . . .+ Zmi

mi

,
1

σ2
C

(dC1lZ1 + . . .+ dCmilZmi
)

)
=

1

mi

1

σ2
C

[dC1lV ar(Z1) + . . .+ dCmilV ar(Zmi
)]

=
1

mi

mi∑
q=1

dCql. (3.26)

Under this distributional properties of Ũj, the distribution of the ni differences

between observed treatment response and the estimated control response, δ˜, is

derived as

δ˜ =


δ1

...

δni

 ∼ Nni

(
α1˜,Ψ)

with α = β0,T − β0,C and the elements of the Ψ matrix given by

V ar(δj) = σ2
T + v˜∗′j Λcv˜∗j − 2v˜′jd˜∗Tj (3.27)

Cov(δj, δj′ ) = −v˜′j′d˜∗Tj−v˜′jd˜∗Tj′+v˜∗′j Λ∗cv˜∗j′+ 1

mi

mi∑
q=1

v˜′jd∗Cq+ 1

mi

mi∑
q=1

v˜′j′d∗Cq. (3.28)

where

v˜j =


(vj1 − w̄1)

...

(vjp − w̄p)

 , d˜∗Tj =


dTj1

...

dTjp

 , d˜∗Cj =


dCj1

...

dCjp

 ,
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Λ∗C =



σ2
C

mi

0 0 . . . 0

0

...

(∑
i=T,C

Σ−1i

)−1
0


and v˜∗j and ΛC are as previously defined. Details of the derivation are shown in

Appendix A.

With the ni differences in response for each j, δ′js, calculated for a specific

subgroup, an optimal estimate of the effect size for a subgroup i, ∆i in the

treatment group can be provided by

∆̂i =
1˜′Ψ−1δ˜
1˜′Ψ−11˜ ∼ N

(
α, σ∗2i

)
(3.29)

where σ∗2i =
1

1˜′Ψ−11˜.

(2) There is a good fit in the treatment group but not the control group. In this case,

good estimates will be derived using the predictive model under the treatment

group over the control. For each control unit j = 1, 2, ...,mi, δ
∗
j = Z̃j − Zj

can be calculated as the treatment effect under the same rationale as Case 1.

Ultimately, a corresponding effect size for subgroup i in the control group may

be computed as

∆̂i =
1˜′Ψ∗−1δ˜∗
1˜′Ψ∗−11˜ ∼ N

(
α, σ∗2i

)
(3.30)

where σ∗2i =
1

1˜′Ψ∗−11˜ and Ψ∗ have diagonal elements σ2
C+w˜∗′j ΛTw˜∗j−2w˜ ′jd˜∗Cj and

off-diagonal elements −w˜ ′j′d˜∗Cj−w˜ ′jd˜∗Cj′ +w˜∗′j ΛTw˜∗j′ + 1

n

n∑
q=1

w˜ ′jd˜∗Tq+
1

n

n∑
q=1

w˜ ′j′d˜∗Tq
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where

ΛT =



σ2
T

ni

∑ni

q=1 dTq1

ni
. . .

∑ni

q=1 dTqp

ni∑ni

q=1 dTq1

ni

...

(∑
i=T,C

Σ−1i

)−1
∑ni

q=1 dTqp

ni


(p+1)×(p+1)

Λ∗T =



σ2
T

mi

0 0 . . . 0

0

...

(∑
i=T,C

Σ−1i

)−1
0


(p+1)×(p+1)

w˜∗j =



1

(wj1 − v̄1)

...

(wjp − v̄p)


((p+1)×1)

, w˜j =


(wj1 − v̄1)

...

(wjp − v̄p)


(p×1)

, d˜∗Cj =


dCj1

...

dCjp


(p×1)

The derivations follow from the same formulation as Appendix A of Case 1.

(3) There is a good fit in both groups. If the model under the control group is

deemed better, the method and estimates presented in Case 1 will be applied.

Otherwise, those derived in Case 2 will be used to calculate for the subgroup’

respective effect size, δj.

(4) There is no good fit in neither groups; that is, the available covariates are not

good predictors of the response in the said subgroup. This implies that there
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is no systematic difference in the covariates that will affect the difference in

treatments realized. This is further justified by the existing balance in the

subgroup with respect to the covariates. Thus, the effect size for a subgroup i

under this circumstance is given by

∆̂i = Ū − Z̄ (3.31)

where Ū =
1

ni

ni∑
i=1

Ui and Z̄ =
1

mi

mi∑
j=1

Zi with a corresponding estimated vari-

ance of

σ̂∗2i = V ar
(
Ū − Z̄

)
=
σ̂2
T

ni
+
σ̂2
C

mi

. (3.32)

Given these four cases, the effect size ∆̂i and standard error for each subgroup

may be calculated. To estimate the ATE, E[Y (1) − Y (0)], meta-analysis procedures

are proposed to combine the G∗ effect sizes [9].

Consider the G∗ independent subgroups with the ith subgroup having an

estimated effect size of ∆̂i and estimated variance of ∆̂i of σ̂∗2i , i = 1, 2, . . . , G∗

as computed above. Assuming homogeneous effect sizes across groups, that is,

∆1 = . . . = ∆G∗ = ∆ where ∆ is the common population effect size, then the com-

bined estimate of the average treatment effect is given by the weighted combination

of the ∆̂i’s defined as

∆̂ =

G∗∑
i=1

wi∆̂i

G∗∑
i=1

wi

,

where wi is a non-negative weight assigned to the ith group. The choice of wi is one

that makes the V ar(∆̂) as smallest as possible and this is given by wi =
1

σ2∗
i

for
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i = 1, 2, . . . , G∗. However, this value is unknown and hence must be estimated by

σ̂∗2i resulting to a modified weighted combination of average treatment effect size of

∆̃ =

G∗∑
i=1

∆̂i/σ̂
∗2
i

G∗∑
i=1

1/σ̂∗2i

, (3.33)

with an estimated variance of

σ̂2(∆̃) =
1

G∗∑
i=1

1/σ̂∗2i

. (3.34)

It must be noted that these pooled estimates are based on the assumption of

homogeneous effect sizes. To test the validity of this assumption, a chi-square test

on the data from the G∗ subgroups is applied. Using ∆̃, the test statistic χ2 is

calculated where

χ2 = Qc =
G∗∑
i=1

(∆̂i − ∆̃)2

σ̂∗2i
=

G∗∑
i=1

∆̂2
i

σ̂∗2i
−

(∑G∗

i=1 ∆̂i/σ̂
∗2
i

)2
∑G∗

i=1 1/σ̂∗2i
(3.35)

where the null hypothesis is rejected if Ho if χ2 > χ2
G∗−1,α. The test statistic Qc is

also called the Cochran’s test statistic [9]. Upon the non-rejection of the null, one

is able to pool the G∗ effect sizes as discussed above. However, when there is lack

of homogeneity, it may be an indicator that some of the covariates have behaved

differently in each of the G∗ subgroups which implies that combining effect sizes

as described above may not be suitable. In such a case, a random effects model is

considered.

In the one-way random effects model, ∆̃i ∼ N(∆, ψ2 + σ∗2i ), where ψ2 ≥ 0

refers to the variability between the subgroups constructed or the heterogeneity
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parameter [10]. For known ψ2 and σ∗2i , i = 1, 2, . . . , G∗, the maximum likelihood

estimator of ∆̃ is given by

∆̃ =

G∗∑
i=1

∆̂i/(ψ
2 + σ̂∗2i )

G∗∑
i=1

1/(ψ2 + σ̂∗2i )

, (3.36)

with a corresponding variance of ∆̃ given by

σ̂2(∆̃) =
1

G∗∑
i=1

1/(ψ2 + σ̂∗2i )

. (3.37)

A wide literature is available for the estimation of ψ2 [10]. Among these include

the maximum likelihood estimator (MLE), restricted maximum likelihood estimator

(RMLE), ANOVA-type estimator by Rao, Kaplan and Cochran [23], Mandel-Paule

estimator [19] and Sidik and Jonkman estimator [33]. In this paper, a commonly

used estimator for ψ2 called the Dersimonian and Laird estimator [6] is used. The

estimator is defined by

ψ̂2
DSL =

Qc − (G∗ − 1)
G∗∑
i=1

r̂i −
∑G∗

i=1 r̂
2
i∑G∗

i=1 r̂i

, (3.38)

where r̂i = 1/σ̂∗2i and Qc is the test Cochran’s test statistic defined and used above

for the test of homogeneity of effect sizes. The pooled estimates derived under these

meta-analysis methods represent the estimate for the ATE.
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Chapter 4

Applications

4.1 Overview

The proposed procedure presented in the preceding chapter is applied on dif-

ferent simulated data sets. In these simulations, the response variable is generated

from covariates with the same increased effect. Also. scenarios where the response

variable is based on covariates having mixed, either increasing or decreasing, effect

on the outcome. It is likewise implemented on real data sets; one involving a study

on the social sciences and another on the medical field. The analyses on these sim-

ulated and real data sets using the proposed methods are compared with known

propensity score methods.

4.2 Simulation with Covariates Having Increased Effects on Yi

For each simulation run, we generate two continuous covariates for n = 2, 200

records such that xi = (xi1, xi2)
′

where µ = (10, 10)
′

and Σ has variances equal to

5 with correlation 0.5. Three categorical covariates, each with two levels, were also

generated such that xi3 ∼ Be(0.7), xi4 ∼ Be(0.3) and xi5 ∼ Be(0.6). The response

Y is generated for all i as Yi = xi1 + xi2 + 0.1xi3 + 0.1xi4 + 0.1xi5 + τDi + εi , where

εi ∼ N(0, 1), where τ is the population average treatment effect. Three mechanisms
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are considered for assigning treatment, including:

(i) assignment depends only on x1 and x3

(ii) assignment depends only on x2 and x4

(iii) assignment depends equally on x1 and x2, as well as equally on x3 , x4 and x5.

Without loss of generality for additive treatment effects, τ = 0 for all simulations.

Scenarios 1 and 2 reflect the instances when only a subset of the relevant predictors

of the outcome affect the treatment assignment, while the last scenario looks into

the circumstance when all variables affect both the response and the treatment

assignment.

4.2.1 Scenario 1: assignment depends only on x1 and x3

In this simulation, treatments are assigned from Bernoulli distributions where

logit(P (Di = 1|xi)) = −7.8 + 0.5xi1 + 0.5xi3. (4.1)

Thus, treatment assignment depends only on x1 and x3 . The simulation setup

generates nC = 1, 737 control units and nT = 463 treatment units.

A total of G = 23 = 8 groups are created based on the levels of the categorical

variables x3, x4 and x5. The multivariate test on the equality of the mean vector

of continuous variables with unequal Σ also suggests that there is an imbalance in

all groups; hence, the swapping mechanism is applied. To perform this, regression

models of the response Y on x1 and x2 are built using treatment units only as well

as control units only for each of the eight groups. To determine which model to
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use for the swapping mechanism in order to predict the missing potential outcome,

the adhoc method presented in Section 3.2 is implemented for each subgroup. In

the 8 groups, the treatment model is used twice so that Y (1) is predicted for the

control units; thus,case 2 of treatment effect estimation is implemented. Also, case

1 is implemented for the rest of the 6 subgroups. Upon testing the homogeneity of

the 8 treatment effects, non-rejection of the null is concluded and therefore, effect

sizes can be combined via meta-analysis formula.

To compare the performance of the generated average treatment effect esti-

mate through the proposed method, propensity score-based estimates are likewise

calculated. Results of these are shown in Table 4.1.

Method ATE SE(ATE) 95% C.I.

Swapping -0.0129 0.0884 (-0.1858 , 0.1624)

Pair Matching 1.8734 0.5782 (0.7401, 3.0067)

Stratification 1.4999 0.5081 (0.5040, 2.4957)

IPTW 1.7369 0.9778 (-0.1796 , 3.6534)

Table 4.1: Average Treatment Effect Estimates of Simulation 1, Scenario 1

The results of the different ATE estimation procedures indicate the superiority

of the proposed method over the propensity score-based methods. First, the estimate

derived from “swapping” is the most stable as evident in its standard error (SE),

which is smallest among the four estimates. Second, the absolute value of the

estimate generated from the proposed method is closest to the true ATE, τ = 0.

This suggests that the proposed method provides the most reliable average treatment
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effect estimate. Third, the confidence interval formed through these estimates does

not include τ = 0 except for the proposed model and IPTW estimate. Hence, both

procedures are able to include the true ATE; however, the former is still preferred

over latter taking into account their standard errors and absolute differences from

τ = 0.

4.2.2 Scenario 2: assignment depends only on x2 and x4

In this scenario, treatment units are assigned from Bernoulli distributions

where

logit(P (Di = 1|xi)) = −7.8 + 0.5xi2 + 0.5xi4. (4.2)

This setup results to a total of nC = 1, 752 control units and nT = 448 treatment

units. Eight subgroups are then formed that are assured to be balanced with respect

to categorical variables but have been established to be unbalanced with respect to

the continuous variables x1 and x2. This results to the implementation of the “swap-

ping” mechanism. Based on the adhoc method suggested in choosing the groups for

swapping, the control group model is selected seven times for imputing Y (0) for the

treatment units. This means that treatment effect estimate presented in case 1 has

been implemented seven times. The null hypothesis of the test of homogeneity is not

rejected; therefore, the eight treatment effect estimates calculated can be combined

using meta-analysis. Table 4.2 presents the result of the proposed method along

with the other propensity score-based estimates for comparison under this scenario.
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Method ATE SE(ATE) 95% C.I.

Swapping 0.0742 0.0999 (-0.1217, 0.2725)

Pair Matching 1.5832 0.6220 (0.3641, 2.8023)

Stratification 1.3596 0.5154 (0.3494,2.3698)

IPTW -0.1589 0.9565 (-2.0336, 1.7158)

Table 4.2: Average Treatment Effect Estimates of Simulation 1, Scenario 2

The results of the methods applied on the simulated data for the second sce-

nario show that the proposed method provides an estimate with the smallest stan-

dard error and is closest in magnitude to the true average treatment effect, τ = 0.

While the IPTW estimate is comparable to the derived estimate from “swapping” in

its ability to capture τ = 0, the proposed estimate is still preferred since its standard

error is smallest among all estimates.

4.2.3 Scenario 3: treatment assignment depends equally on x1 and

x2 , as well as equally on x3 , x4 , and x5

In this scenario, treatment assignment is made from Bernoulli distributions

where

logit(P (Di = 1xi)) = −7.8 + 0.25xi1 + 0.25xi2 + 0.15xi3 + 0.15xi4 + 0.15xi5. (4.3)

This formulation indicates that the treatment assignment depends on all the avail-

able covariates. This generates nC = 1, 810 control units and nT = 390 treatment

units. The balance with respect to the categorical variable is guaranteed when dis-

tinct subgroups are created based on the different levels of the categorical variables.
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The multivariate test on the vector of continuous variables for these subgroups sug-

gest the need for “swapping” models for the estimation of missing potential outcome.

The estimated regression model suggests that the control model is used seven times;

thus, case 1 was implemented seven times for the calculation of treatment effect

estimates. It is further established that the treatment effects are homogeneous and

can be combined accordingly. The results of the proposed method is shown in Table

4.3.

Method ATE SE(ATE) 95% C.I.

Swapping -0.1101 0.1596 (-0.4519, 0.2079)

Pair Matching 1.9155 0.6316 (0.6776, 3.1534)

Stratification 1.7183 0.4485 (0.8392, 2.5974)

IPTW 0.8607 1.3399 (-1.7655, 3.4869)

Table 4.3: Average Treatment Effect Estimates of Simulation 1, Scenario 3

Table 4.3 shows similar conclusions as the previous scenarios. An estimate

with a smaller standard error and an absolute value closest to τ = 0 is realized from

the proposed method, which is as desired. The calculated confidence interval based

on the “swapping” method also includes the true ATE.

In general, the use of covariate information, as in the “swapping” method, is

preferred over the propensity score-based procedures due to the stability of estimates

derived and its closeness to the true average treatment effect. More specifically,

estimates derived from the nearest neighbor matching are based on matches that

have varied covariate feature upon inspection. Also, in the stratification method,
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some matched groups remain unbalanced with respect to some covariate despite

redefinition of the propensity scores. This may be an indicator that the calculated

within-stratum estimates, and consequently, the average treatment effect estimate,

are biased. Lastly, for the IPTW, although it is able to reflect the true treatment

effect, relatively larger standard errors are realized. This results to wider confidence

intervals and larger p-values that provide unreliable conclusions.

However, it is noted that the three treatment assignment mechanism induce

low prevalence of the treatment units. As a result, one-to-one matching and strat-

ification have the least desirable results due to the elimination of several units in

the estimation of ATE. This also suggests that the data set realized after propensity

score matching via stratification and one-to-one pairing may have minimal overlap

with the data set used in the proposed procedure and IPTW. Hence, comparable re-

sults are generated for the “swapping” method and IPTW but not for stratification

and one-to-one matching.

Running the procedure on k = 1, 500 simulated data, the type I error at

α = 0.05 and power of the test at τ = 0.25 and τ = 0.5 are derived. The results

suggests that the Type I error is a little inflated; however, the test has a good power

of identifying the true average treatment effect. Table 4.4 shows the results of this

procedure.
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Scenario Type I Error Power (τ = 0.25) Power (τ = 0.5)

Scenario 1 0.0604 0.7327 0.9121

Scenario 2 0.0574 0.5625 0.8793

Scenario 3 0.0554 0.6938 0.8920

Table 4.4: Type I Error and Power of the Test

Given the simulated data sets for all three scenarios, an approximation of the

standard error and confidence interval of the ATE estimator is derived via bootstrap-

ping. Through this procedure, we are able to obtain estimates of characteristics of

ATE by generating re-samples of size 1, 200 and repeating this procedure sufficiently

large number of times, B. In this case, B = 2, 000. The results suggest that low

standard errors are generated through the proposed method. Also, the confidence

interval is able to capture the true ATE, τ = 0 as shown in Table 4.5.

Scenario Bootstrap Estimate Standard Error Confidence interval

Scenario 1 0.0014 0.0027 (-0.0039, 0.0067)

Scenario 2 -0.0039 0.0028 (-0.0094, 0.0017)

Scenario 3 -0.0044 0.0029 (-0.0101, 0.0014)

Table 4.5: Bootstrap Estimates of ATE under Simulation 1

To further look into the performance of the swapping method, coverage proba-

bilities were calculated for each scenario considered. Given the data set, re-samples

of size 1, 200 were generated and an estimate of the ATE along with its correspond-

ing CI are derived. This procedure is repeatedly performed 500 times. The coverage

probability is then calculated by determining the proportion of confidence inter-
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vals containing the true ATE τ = 0 among the 500 confidence intervals derived via

bootstrapping. Results are shown in Table 4.6.

Scenario Coverage Probability

Scenario 1 86.4

Scenario 2 87.2

Scenario 3 86.8

Table 4.6: Coverage Probability of Swapping Method under Simulation 1

Based on the scenarios from which the simulated data are generated, it is shown

that the proposed procedure is able to capture the true average treatment effect as

well as provide a good power of the test. In these circumstances, the “swapping”

method performs better than the known propensity score methods as shown in the

small absolute differences between its estimated value and true value. However,

the coverage probabilities also suggest that there is a need for some mechanism to

correct the inaccuracies of these procedure.

4.3 Simulation with Covariates Having Mixed Effects on Yi

The same specifications on the covariates are generated for the second simula-

tion. The response variable, however, is defined by covariates having increased and

decreased effect on its value. In this simulation, the response Y is generated for all i

as Yi = 0.9xi1− 0.5xi2 + 0.1xi3− 0.3xi4 + 0.15xi5 + τDi + εi , where εi ∼ N(0, 1) and

τ = 0 without loss of generality. The same three scenarios on treatment assignment

as Section 4.2 are likewise considered.

44



4.3.1 Scenario 1: assignment depends only on x1 and x3

Under the scenario that the treatment assignment is based on a Bernoulli

distribution with logit(P (Di = 1|xi)) = −7.8 + 0.5xi1 + 0.5xi3, nC = 1, 926 units

are assigned to the control group while the remaining nT = 274 units are given

the treatment. With the eight subgroups formed, “swapping” method is applied

since balance is not established with respect to its continuous covariates. Separate

regression models are built and its estimated parameters are combined through mul-

tivariate meta-analysis under the common parameter β˜∗ assumption. Based on the

adhoc method, smaller average absolute differences in the control units are realized

for six groups; hence, the potential outcome Y (0) is imputed for the treatment units.

Meta-analysis methods are implemented to combine these subgroup estimates since

the null hypothesis for the test of homogeneity is not rejected. Table 4.7 shows the

performance of the proposed method on the simulated data in comparison to the

known propensity score methods.

Method ATE SE(ATE) 95% C.I.

Swapping 0.0169 0.0882 (-0.1599, 0.1978)

Pair Matching 0.3705 0.1944 (-0.0105, 0.7515)

Stratification 0.2752 0.6932 (-1.0845, 1.6339)

IPTW 0.0538 0.4763 (-0.8800, 0.9873)

Table 4.7: Average Treatment Effect Estimates of Simulation 2, Scenario 1

Based on the results above, it could be deduced that the proposed method has

the least absolute value difference from the true average treatment effect τ = 0. It
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also has the smallest standard error, as desired, as this indicates that the method

produces the most stable estimate. However, it can be deduced from the confidence

intervals that the “swapping” method and the propensity score methods are able

to capture the true ATE. While this suggests that the common propensity scores

will generate valid conclusions, the proposed method is preferred due to its close

estimate to the population average treatment effect.

4.3.2 Scenario 2: assignment depends only on x2 and x4

Another scenario considered is when the treatment assignment follows a Bernoulli

distribution where its probability of assigning a unit to the treatment group is given

by logit(P (Di = 1|xi)) = −7.8 + 0.5xi2 + 0.5xi4. This treatment assignment gen-

erates nC = 1, 958 control units and nT = 242 treatment units. “Swapping” is

implemented on each subgroup created by performing regression analysis, multi-

variate meta-analysis and the adhoc method. The subgroups are combined using

meta-analysis to generate an average treatment effect estimate, as shown in Table

4.8, along with the results of the common propensity score methods implemented

on the simulated data.

Method ATE SE(ATE) 95% C.I.

Swapping 0.0120 0.0843 (-0.1627, 0.1788)

Pair Matching -0.0998 0.1885 (-0.4623, 0.2697)

Stratification 0.1584 0.5839 (-0.9861, 1.3028)

IPTW 0.1371 0.1501 (-0.1501, 0.4313)

Table 4.8: Average Treatment Effect Estimates of Simulation 2, Scenario 2
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In all four methods, the true ATE is captured by the confidence intervals. The

“swapping” method is preferred though since it has the closest absolute difference

from the true effect and it reflects the smallest standard error for the estimates.

4.3.3 Scenario 3: treatment assignment depends equally on x1 and

x2 , as well as equally on x3 , x4 and x5

The last simulation scenario lies on the idea that the treatment assignment

mechanism depends on drawing from a Bernoulli distribution with the probability

of assigning a unit to the treatment group depending on all available covariates.

One data set generated under this scenario contains nC = 1, 982 observations for

the control group and nT = 218 for the treatment group. The same procedures as

the first two scenarios were implemented on the eight balanced subgroups formed

based on the categorical variables and the results are reflected in Table 4.9 along

with the estimates calculated via propensity score methods.

Method ATE SE(ATE) 95% C.I.

Swapping -0.0651 0.0879 (-0.2460, 0.1181)

Pair Matching 0.2637 0.2111 (-0.1501, 0.6775)

Stratification 0.0840 0.5271 (-0.9491, 1.1171)

IPTW -0.0120 0.1623 (-0.3301, 0.3061)

Table 4.9: Average Treatment Effect Estimates of Simulation 2, Scenario 3

Table 4.9 shows that the proposed method and the IPTW have comparable

estimates for the average treatment effect and their standard error. These estimates
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are also the closest values to τ = 0. However, it can be deduced from the confidence

intervals that the all methods are able to capture the true ATE.

As a summary, the estimates generated from the “swapping” are generally pre-

ferred under these scenarios since it provides the smallest absolute value difference

from τ = 0 and standard errors. However, it should be mentioned that the same

treatment assignment mechanisms have been imposed on Model 2 as Model 1; thus,

much smaller number of treatment units are generated. Under the stratification

and one-to-one matching procedures, several of the control units will be discarded

and consequently, distinct data sets will be used for the estimation of the ATE for

the “swapping”, stratification and one-to-one matching procedure. Since IPTW es-

timates the ATE only as a function of the e(x) and does not discard units in the

estimation procedure, it reasonably compares well to the “swapping” method.

To calculate the type I error of the procedure α = 0.05 and its power with

τ = 0.25 and τ = 0.5, k = 1, 500 simulated data are derived. Table 4.10 reflects the

results of the said power analysis. The results suggests that the Type I error is close

to the set α = 0.05 and the power substantially increases to roughly 87% when the

true value of the parameter is τ = 0.5.

Scenario Type I Error Power (τ = 0.25) Power (τ = 0.5)

Scenario 1 0.0514 0.6413 0.8766

Scenario 2 0.0509 0.6297 0.8786

Scenario 3 0.0489 0.6255 0.8651

Table 4.10: Type I Error and Power of the Test
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Similar to simulation 1, bootstrap estimates are likewise calculated to depict

the characteristics of the ATE. As shown in Table 4.11, lower standard errors are

realized for the proposed method. However, the results also suggest that when the

treatment assignment is based only on x1 and x3, the “swapping” method fails to

capture the true ATE under the specified model where covaariates have mixed effects

on the response.

Scenario Bootstrap Estimate Standard Error Confidence interval

Scenario 1 0.0210 0.0013 (0.0185, 0.0233)

Scenario 2 -0.0038 0.0026 (-0.0089, 0.0012)

Scenario 3 -0.0026 0.0026 (-0.0077, 0.0023)

Table 4.11: Bootstrap Estimates of ATE under Simulation 2

The accuracy of the proposed method under this simulation setup is likewise

investigated by calculating the coverage probabilities of the different scenarios. Some

level of inaccuracy was also detected given the low coverage probabilities calculated,

as shown in Table 4.12. This inaccuracy could potentially be attributed to the

minimal treatment units possible drawn in the re-samples which may affect the

estimation of the ATE.

Scenario Coverage Probability

Scenario 1 84.2

Scenario 2 85.2

Scenario 3 85.8

Table 4.12: Coverage Probability of Swapping Method under Simulation 2
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In general, the simulations conducted show that the proposed method is able

to capture the true average treatment effect and provide estimates that are close to

the true value and have small standard errors. This is particularly true for cases

when the treatment assignment depends on the subset of covariates x2 and x4 or

when it depends on all of the available confounders on the data set. Hence, scenarios

have been detected where the proposed method performs well.

4.4 IPTW vs. Proposed Method

In the simulations discussed in Sections 4.2 and 4.3, the inverse probability

treatment weighting method of the propensity score analysis is generally shown

to be comparable to that estimates of the “swapping” method. To compare the

performance of the proposed method and IPTW, a simulation scenario where the

latter is proven to be successful in estimating the average treatment effect is applied

on the proposed method.

A small simulation study has been conducted by Williamson, et al. [36], to

illustrate the statistical properties of IPTW and its estimates provided in the section

1.4. In this simulation, treatment assignment is generated with D ∼ Bernoulli(0.5)

and four independent baseline confounders X1, X2, X3 and X4 are considered, each

coming from a Normal(0, 9). The continuous response variable Y is simulated from

Normal(µ, 0.25) where µ = 0.8X1 + 0.5X2 + 0.15X3 + 2D. Under these specifica-

tions, the marginal correlations within the treatment and control groups between

the response variable and each of the four confounders X1, X2, X3 and X4 are 0.8,
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0.5, 0.15 and 0, respectively. Furthermore, the true treatment effect as measured

by the mean difference, is 2. The data generation procedure suggests drawing 100,

200 and 1,000 sample sizes, resulting to approximately 50, 100 and 500 units for

the treatment and control groups. For each sample size, 5,000 data sets were simu-

lated. With this scenario, it has been established that there is no large bias in the

IPTW estimate for all the sample sizes considered. To investigate the performance

of the proposed method in this scenario where the IPTW provides good estimate,

the “swapping” method is implemented on a simulated data with the same nature.

Table 4.13 reflects the results of the IPTW estimators [36] and the proposed

model estimates implemented on the simulated data described above. It can be

concluded that the proposed method provided comparable estimates and that it is

able to manifest the true average treatment effect for all sample sizes considered.

The estimated variance, calculated by the mean of the variance estimates, for the

IPTW is higher than that of the proposed method which suggests superiority of

the estimates generated from the “swapping” method. In all cases, the empirical

variance, defined by the empirical variance across all 5,000 simulations, for the pro-

posed model are very close to the estimated variance which reflects that more stable

estimates of the average treatment effect are derived from the proposed method.
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Sample Estimate Est Var Emp Var Type I error

IPTW Proposed IPTW Proposed IPTW Proposed IPTW Proposed

100 2.01 1.998 0.342 0.010 0.327 0.011 0.042 0.056

200 2.00 1.999 0.170 0.005 0.170 0.005 0.046 0.047

1000 2.00 1.999 0.034 0.001 0.034 0.001 0.052 0.043

Table 4.13: Comparison of IPTW and Proposed Method (True Value = 2.0)

As a summary, the proposed method performs better than the IPTW estimates

as shown by its comparable estimate and lower variances. For the proposed model,

the type I error is likewise not significantly deflated and is approximately equal to

α = 0.05. It can be noticed that the type I error lowers as the sample size increases,

which is as expected.

In terms of the power, it can be shown that the IPTW and “swapping” method

have comparable power except when the sample size is small (n=100) for τ = 0.25.

In this scenario, it is shown that the IPTW is able to reject the null hypothesis more

often and depict the true nature of the average treatment effect. Thus, IPTW is

a preferable analysis in determining the average treatment effect. However, when

τ = 0.5, comparable power between the two procedures are detected regardless of

sample size. Results are shown in Table 4.14.
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Sample τ = 0.25 τ = 0.50

IPTW Proposed IPTW Proposed

100 0.8374 0.5954 0.8074 0.8174

200 0.7622 0.8654 0.9996 0.9916

1000 0.9999 0.9999 0.9999 0.9999

Table 4.14: Comparison of Power of IPTW and Proposed Method

Also, in a study by Austin, stratification on propensity score result in great

bias when estimating average treatment effect [4]. It also tends to perform well when

the covariate distributions have common support and/or the covariate distributions

have substantial overlap between the treatment and the control group. On matching,

it has been shown that it does not perform well for simulations where the covariate

distribution for the treatment group is not contained within that of the control

group [8]. Thus, the proposed method is deemed to be the most superior estimation

procedure in comparison to the common propensity score methods.

4.5 Data Analysis

4.5.1 National Supported Work Data

To illustrate the proposed procedure, we apply the proposed matching method

and estimation procedure of the average treatment effect to Lalonde data set on the

comparison of treatment and control groups to determine causal effects of a job

training program, described on Section 1.5. Revisiting the data set, the outcome of
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interest is the real earnings in 1978 with the participation in the NSW job training

program as the treatment. The covariates considered are age, education, black,

hispanic, married and no degree. The total number of observations is n = 445;

nC = 260 are under the control group and nT = 185 observations are under the

treatment group.

At the initial stage, subgroups are created based on the four categorical vari-

ables mentioned above. With each variable having two levels, G = 24 = 16 total sub-

groups that are balanced with respect to the categorical variables are constructed.

The frequencies of the groups are shown in Table 4.15.
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Group Characteristic Control Treat Total

1 non-black, non-hispanic, single, with degree 6 7 13

2 black, non-hispanic, single, with degree 26 37 63

3 non-black, hispanic, single, with degree 1 1 2

4 black, hispanic, single, with degree 0 0 0

5 non-black, non-hispanic, married, with degree 0 2 2

6 black, non-hispanic, married, with degree 9 6 15

7 non-black, hispanic, married, with degree 1 1 2

8 black, hispanic, married, with degree 0 0 0

9 non-black, non-hispanic, single, no degree 10 8 18

10 black, non-hispanic, single, no degree 154 90 244

11 non-black, hispanic, single, no degree 23 7 30

12 black, hispanic, single, no degree 0 0 0

13 non-black, non-hispanic, married, no degree 1 1 2

14 black, non-hispanic, married, no degree 26 23 49

15 non-black, hispanic, married, no degree 3 2 5

16 black, hispanic, married, no degree 0 0 0

Table 4.15: Frequency of Subgroups of NSW Data

Since Groups 3, 4, 5, 7, 8, 12, 13, 15 and 16 are sparse groups, 13 observations

from these groups are discarded for further analysis. This results to a total of n∗ =

432 experimental units with n∗C = 254 control units and n∗T = 178 treatment units.

For the 7 remaining subgroups, we test for equality of mean vector with unknown

Σ to verify the balance of the groups with respect to the continuous variables. The

results of the multivariate testing based on Yao’s multivariate test are reflected in

Table 4.16.
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Group p-value Conclusion

1 0.9452 Do not reject

2 0.8387 Do not reject

6 0.7156 Do not reject

9 0.5501 Do not reject

10 0.9572 Do not reject

11 0.8878 Do not reject

14 0.6634 Do not reject

Table 4.16: Multivariate Test on NSW Data

The results above reflect that there is balance in the subgroups with respect to

the continuous variables. This implies that there is no systematic difference in the

covariates between the treatment and the control group in all the subgroups formed.

Hence, it mimics a randomized setup and thus, direct estimation can be made in

each group as in Case 4, for the average treatment effect estimation. Table 4.17

below reflects the estimates of the average treatment difference in each subgroup,

where the direct difference above is applied.
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Prior to using the weighted combination formula for ∆̃, the data is tested for

homogeneity. With the quantities given in Table 4.17, the test statistic of χ2 is

calculated as

χ2 =
G∗∑
i=1

(∆̂i − ∆̃)2

σ̂∗2i
=

G∗∑
i=1

∆̂2
i

σ̂∗2i
−

(∑G∗

i=1 ∆̂i/σ̂
∗2
i

)2
∑G∗

i=1 1/σ̂∗2i
= 13.33− 0.00372

0.00000242
= 7.8225

(4.4)

The rejection region states that the null hypothesis is rejected if χ2 > χ2
0.05,6. With

the test statistic value of 7.8225 and a critical value of χ2
0.05,6 = 12.529, the null is

accepted and it can be concluded that the assumption of homogeneity is satisfied.

Thus, the weighted combination formula provides a suitable estimate of the average

treatment effect. The average treatment effect for this example is given by

∆̃ = 1506.7

with a corresponding standard error of σ̂(∆̃) = 641.8281.

To investigate the performance of this method, the estimated average treat-

ment effect is compared with those derived from propensity scores methods. In

stratification, the estimated treatment effect is computed by summing the within-

stratum difference in means between the treatment and control groups. For the

matching, each control group is matched with a treatment group and the estimate

is derived by taking the mean of these paired differences. Also, a randomized-

experiment benchmark estimate has been presented [7] to facilitate comparison of

the generated estimates. The results are shown in Table 4.18.
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Propensity Scores Proposed Method Randomization

Stratification Matching

$1,608 $1,691 $1,506 $1,794
(1,571) (2,209) (642) (633)

Table 4.18: NSW Data Analysis based on Propensity Score and Proposed Methods

Based on the results above, it can be observed that both propensity score

estimates are closer to the experimental benchmark as compared to the proposed

method. However, it was shown that the standard errors of estimates from stratifi-

cation and matching are substantially higher than that of the “swapping” estimate.

4.5.2 Lilly Clinical Trial Data

We also applied the proposed matching method to estimate the ATE of a

randomized, open-label clinical trial performed by Lilly. The primary objective

of the study was to demonstrate that dulaglutide (treatment A) was noninferior

to liraglutide (treatment B) in changing the control in glycosylated hemoglobin

A1C in patients with type 2 diabetes. The outcome of interest is the hemoglobin

levels of patients and the treatments considered are dulaglutide and liraglutide. The

covariates explored are age, BMI, ethnicity (Hispanic/Latino or otherwise), region

of residence (North America, South America and Europe), and gender (Male and

Female). The total number of observations is n = 551, with nA = 275 subjects

treated with dulaglutide and nB = 276 subjects with luraglutide. Subgroups are

created based on the three categorical variables, with two levels for gender and
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ethnicity and three levels for region, resulting to G = 12 subgroups. The frequencies

of the groups are shown in Table 4.19.

Subgroup Characteristic Dulaglutide Liraglutide Total

1 North America , Female , Hispanic 22 21 43

2 South America , Female , Hispanic 15 16 31

3 Europe , Female , Hispanic 2 1 3

4 North America , Male , Hispanic 20 19 39

5 South America , Male , Hispanic 5 7 12

6 Europe , Male , Hispanic 4 2 6

7 North America , Female , Not Hispanic 29 24 53

8 South America , Female , Not Hispanic 0 0 0

9 Europe , Female , Not Hispanic 82 77 159

10 North America , Male , Not Hispanic 17 23 40

11 South America , Male , Not Hispanic 0 0 0

12 Europe , Male , Not Hispanic 79 86 165

Table 4.19: Frequency of Categories of Lilly Data

Since subgroups 3, 6, 8, and 11 are sparse, 9 observations from these groups

are discarded for further analysis. This results to a total of n∗ = 542 subjects with

n∗A = 269 units for treatment A and n∗B = 273 for treatment B. For the 8 remaining

subgroups, the test for equality of mean vectors with unknown Σ is implemented to

verify the balance of the treatment and control groups with respect to the continuous

variables. The results of the multivariate testing based on Yao’s multivariate test

statistic suggest that there is balance between groups in the subgroups with respect

to the continuous variables. This implies that there is no systematic difference in

the covariates between the groups in all the subgroups. Therefore, the data may be
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likened to a completely randomized setup; thus, direct estimation can be made in

each subgroup to generate treatment effect. Table 4.20 reflects the estimates of the

treatment effect in each subgroup as calculated by the difference in mean response

values of the two treatment groups.

Subgroup nA nB Mean Difference Standard Error

1 22 21 -0.1915 0.3399

2 15 16 0.0117 0.2931

4 20 19 -0.1718 0.3746

5 5 7 -0.5200 0.6042

7 29 24 0.1818 0.2116

9 82 77 -0.1482 0.1165

10 17 23 0.0201 0.2327

12 79 86 -0.1673 0.1194

Table 4.20: Subgroup Estimates of Lilly Data

The test of homogeneity is then performed on the treatment effects of all

subgroups prior to applying meta-analysis for the estimation of the ATE. Using the

quantities in Table 4.20, a test statistic of

χ2 = 3.2626

is calculated. The rejection region states that the null hypothesis is rejected if

χ2 > χ2
0.05,7. Therefore, given the critical region of χ2

0.05,7 = 14.0671, the null

hypothesis is not rejected. Because the assumption of homogeneity is satisfied, the

weighted combination calculation is used. The ATE estimator is given by

∆̃ = −0.1043
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with the standard error of σ̂(∆̃) = 0.0682. This estimate is shown to be comparable

with the classical test on difference between two population means, where the ATE

is calculated as

∆̃ = −0.1054

with the standard error σ̂(∆̃) = 0.0737. Although, the estimates are comparable,

the swapping method provides an advantage of eliminating probable bias induced

by covariates.

The propensity scores methods were also applied to the Lilly data for compar-

ison. The results are shown in Table 4.21. The results suggest that the proposed

method generates comparable results to the z-test and other propensity score meth-

ods except stratification, where larger difference and standard errors are calculated.

Also, all confidence intervals include 0 which imply that non-inferiority of dulaglu-

tide over liraglutide. However, it can also be observed that the “swapping” method

has the smallest standard error which shows the advantage of using the proposed

method.
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We created a modified data set to mimic imbalance between groups for in-

vestigating the performance of the swapping method. To do this, 36% and 35% of

the subjects under Treatment A in subgroups 9 and 12, respectively, were dropped.

Only subjects with ages lower than the median age 56 were considered for drop-outs.

Meanwhile, 50% of the subjects in subgroup 9 and 35% of the subjects in subgroup

12 under Treatment B with ages higher than 56 were dropped. Under this mecha-

nism, imbalance is induced; thus, the swapping mechanism may be applied to the

modified subgroups. The Yao’s Test performed on subgroups 9 and 12 establishes

the imbalance with p-values 0.0492 and 0.0478, respectively. Treatment effect esti-

mates on subgroups 9 and 12 are based on the swapping method while the treatment

effects for remaining subgroup differences are based on the direct difference of mean

response values. The result of the swapping procedure is shown in Table 4.22.

Subgroup nA nB Difference Error

1 22 21 -0.1915 0.3399

2 15 16 0.0117 0.2931

4 20 19 -0.1718 0.3746

5 5 7 -0.5200 0.6042

7 29 24 0.1818 0.2116

9∗ 71 64 -0.1422 0.1413

10 17 23 0.0201 0.2327

12∗ 79 86 -0.2776 0.1456

* : Modified groups with drop-out rates to allow the implementation of the
swapping method

Table 4.22: Frequency of Categories under Modified Data Set of Lilly Data

The homogeneity testing procedure suggests that a random effects model is
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not necessary with

χ2 = 4.2816.

An average treatment effect estimate of

∆̃ = −0.1181

with standard error σ̂(∆̃) = 0.0772, is calculated for the modified data set. The

result suggests that the proposed swapping procedure is able to produce comparable

ATE estimates with acceptable standard errors to the full data set even with the

presence of drop-out.

The estimated ATE is compared with those derived from propensity scores

methods as well as the classical test of two population mean difference. The results

are shown in Table 4.23. The results reflect that the proposed method is the most

comparable to the estimate based on the full data set, with the relatively small

standard error. The results support that the swapping method can correct the bias

due to the potential non-randomization induced even by an open-label study design.

In general, the data analyses performed show that the use of the swapping

method yields comparable results to standard propensity score methods and the

natural estimator for the difference in two population means. However, it can be

observed that smaller standard errors are realized when the swapping method is im-

plemented. This may be attributed to the elimination of bias induced by systematic

differences in covariates through the proposed method.
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It can also be observed that the “swapping” method produces similar ATE

estimates with or without drop-outs, as evident by the small absolute difference

between the “swapping” estimates reflected in Tables 4.21 and 4.23. In both data

sets, the proposed method produces small standard errors and the establish the

non-inferiority of one drug over the other.

4.6 Summary of Results

The simulations and data analyses on two real-life data sets suggest that the

proposed “swapping” procedure is able to provide reasonable estimates under the

following conditions:

(a) There is a common parameter β∗ such that β∗T = β∗C = β∗. Intuitively, this

suggests that the covariates affect the outcome in the same way; thus, the

effects of the treatments are reflected only in the model coefficients.

(b) Ignorability can be reached through sequential balancing in the categorical

and continuous covariates.

(c) Residual bias for potential outcome distribution can be reasonably modeled

parametrically by the continuous variables; hence, along with assumption (b),

the distribution of the treatment and the control are exchangeable.

(d) Sequential balancing in the categorical and continuous variables imply simul-

taneous balancing across all categorical and continuous variables.

(e) The treatment and the control have homogeneous effect sizes, β∗T and β∗C , so
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that the two estimates can be combined according to the formula presented

in Section 3. This is probable because the possible values of the covariates

belong to the same space with some overlap. Hence, the two estimates may

be combined accordingly.

Also, it is emphasized that in the simulations, although the proposed method

is able to capture the true mean and provide smaller standard errors and absolute

value difference from the true mean in comparison to propensity score methods,

this does not imply that the latter is not able to handle the data at hand properly.

The results are as such due to the low prevalence rate of the treatment units in the

simulation setup and thus, one-to-one matching and stratification discard several

observations in the data. As a consequence, almost distinct data sets are used to

compare the proposed procedure and the propensity scores methods.
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Chapter 5

Subject Profile Analysis

5.1 Overview

In reality, covariates could potentially affect the response to a degree where it is

only effective on a set of subjects with certain covariate features. Hence, it would also

be of interest to look into the behavior of the ATE given certain constraints on the

covariates. In this section, exploratory analysis is performed to assess the treatment

effect based on the subject covariate profile. This is performed via simultaneous in-

ference of regression models where the ATE is perceived in the context of confidence

bands. Such analysis will aid in determining the aspects of a subject’s covariate

profile for which the treatment illustrates positive or negative effects while ensur-

ing perfect balance with respect to the categorical covariates. Balanced subgroups

are formulated using the available information on categorical variables, similar to

the swapping mechanism described in the previous chapters. Confidence bands,

which reflect the magnitude of difference between treatment and control responses,

are then calculated to describe the differences in outcomes between treatment and

control groups with respect to the remaining continuous variables.
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5.2 Simultaneous Inference of Regression Models

The average treatment effect can be assessed using regression models of the

treatment and control groups which describe the relationship of the treatment out-

come Y on a same set of predictors x1, x2, . . . , xp. In general, suppose the two linear

regression models are

Yi = Xiβi + ei, i = T,C (5.1)

where Yi = (Yi,1, Yi,2, . . . , Yi,ni
)′ is a vector of treatment outcomes, Xi is an ni×(p+1)

design matrix with full column rank and the first column is a vector of 1′s while the

l-th column is (xi,1,l, xi,2,l, . . . , xi,ni,l)
′,βi = (βi,0, βi,1, . . . , βi,p)

′ is a vector of unknown

regression coefficients and ei = (ei,1, ei,2, . . . , ei,p) is a vector of random errors where

ei,j ∼ N(0, σ2), i = 1, 2, j = 1, 2, . . . , ni. Under this setup, YT and YC are the

observed outcomes of treatment and control groups, respectively, that depends on

the same p covariates. While it is important to determine if the two models are

different, the magnitude of dissimilarity of these regression lines is of more interest

for the estimation of the average treatment effect.

To assess the magnitude of difference between the two models, a simultaneous

confidence band

x′βT − x′βC = (1, x1, x2, . . . , xp)βT − (1, x1, x2, . . . , xp)βC (5.2)

to bound the difference between the two models over the whole covariate space is

generated [17]. To estimate this band, suppose β̂ = β̂T − β̂C and β = βT − βC .

It can be verified that β̂ ∼ Np+1(β, σ
2∆) where ∆ = (X ′TXT )−1+(X ′CXC)−1,

σ̂

σ
∼√

χ2
v

v
with v = nT + nC − 2(p+ 1) and β̂ and σ̂ are independent random variables.
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Hoel [11] and Scheffe [31, 32] generalized an exact 1 − α simultaneous confidence

band for x′βT − x′βC over the whole covariate space as

x′βT − x′βC ∈ x′β̂T − x′β̂C ±
√

(p+ 1)fαp+1,vσ̂
√
x′∆x ∀ x(0) ∈ Rp,

where fαp+1,v is the upper α point of an F−distribution with degrees of freedom

p + 1, v as defined above and σ̂2 =
nT − p− 1

nT + nC − 2(p+ 1)
σ̂2
T +

nC − p− 1

nT + nC − 2(p+ 1)
σ̂2
C

with σ̂2
T and σ̂2

C being the respective mean square residuals of the treatment and

control regression models. If the two models are the same, then the difference in

treatment outcome is the zero hyperplane x′0 which is included in the confidence

band with probability 1 − α. This specification results to a size α test of the

hypotheses H0 : βT = βC against Ha : βT 6= βC using the confidence where the null

is rejected if and only if x′0 is outside the band for at least one x(0) ∈ Rp.

However, in many real-life applications, the values of the covariates do not

span the entire Rp space. In such cases, estimating confidence bands as above is

inefficient and inappropriate particularly if the models hold only over a restricted

region. In fact, Stewart [30] discussed possible drawbacks of visualizing the bands

over the entire Rp. This led to the development of a more useful confidence band

for the difference between two models over a restricted region of the covariates. A

two-sided constant-width simultaneous confidence band for x′βT − x′βC over the

covariate region χr = {(x1, x2, . . . , xp) : ai ≤ xi ≤ bi, i = 1, 2, . . . , p} has the form

x′βT − x′βC ∈ x′β̂T − x′β̂C ± cσ̂
√
x′∆x ∀ x(0) ∈ χr, (5.3)

where c is a critical constant chosen so that the simultaneous confidence level of

the band is 1− α [17]. The confidence level of this simultaneous confidence band is
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given by P (S < c), where

S = sup
x(0)∈χr

|x′(β̂T − βT − β̂C + βC)|
(σ̂)
√
x′∆x

= sup
x(0)∈χr

|(Px)′(P−1(β̂T − βT − βC + β̂C)/σ̂)|√
(Px)′(Px)

= sup
x(0)∈χr

||(Px)′T |
||Px||

= sup
v∈C(P,χr)

|v′T |
||v||

(5.4)

with P being the square matrix of ∆, T ∼ Tp+1,v and C(P, χr) = {λPx : λ ≥ 0,x(0) ∈ χr} =

{λ(p0 + x1p1 + . . .+ xppp), xi ∈ [ai, bi]} for i = 1, . . . , p. C(P, χr) can be viewed as

the cone spanned by these vectors. It is apparent that if p ≥ 1, then the derivation

of the distribution of S and essentially the critical constant c becomes non-trivial.

Simulation-based methods have been presented to calculate c and has shown to be

as close to the exact values as possible under sufficiently large number of replications

[18].

It is noted that the distribution of the pivotal quantity S is independent of

the unknown parameters σ and β but is dependent on the bounds [ai, bi] as well

as the design matrix X. Lui [16] described the complicated relationship of these

components in a general setting.

In this study, confidence bands based on a restricted covariate space is consid-

ered. These bands are used to determine the average treatment effect based on the

available subject profile information. Simulation-based methods to estimate c were

also applied. With these bands, the behavior of the ATE is presented based on the

remaining continuous covariates.
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5.3 Proposed Exploratory Analysis

Given the G∗ non-sparse subgroups that were formed given the different lev-

els of the categorical variables, regression models were fitted and simultaneous re-

gression inference were performed. Confidence bands given a restricted region are

constructed on subgroups with sufficiently large number of subjects. These bands

will determine the magnitude of treatment effect difference between the treatment

and control groups. If the zero hyperplane is contained in the band, then there is

no significant difference in treatment effect between the two groups for a certain

group of subjects with similar categorical covariate features. On one hand, if the

zero hyperplane is not included in the band, it is indicative of a significant treatment

effect between the two groups. The magnitude and direction of the difference will

likewise be determined in these bands. Through this procedure, one is able to detect

for which group of subjects will the treatment effect difference be significant (either

in the positive or negative direction) or insignificant.

For continuous covariates with a narrow range for [ai, bi], one may investigate

the subject profile by looking into the behavior of each independent variable con-

sidered in the confidence band while holding the other variables fixed. This will

aid in understanding the behavior of treatment difference with respect to a single

independent, continuous variable under fixed values of the remaining predictors.

This exploratory mechanism is advantageous for several reasons. First, par-

tial balance is achieved due to the creation of independent subgroups based on the

categorical variables. This eliminates any bias induced by such variables since units
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in each generated subgroups are made as similar as possible with respect to their

categorical characteristics. Second, more extensive analysis of the subjects’ covari-

ate profiles is performed. This provides a comprehensive idea on the behavior of the

covariates for which positive and negative ATE are realized. Consequently, medical

practitioners are presented with a means of identifying patients for which the in-

tended treatment will be effective or not. However, a limitation of this procedure is

that it is only applicable for small number of covariates although this is typical of

observational studies.

5.4 Illustration

To illustrate the proposed exploratory procedure, we revisit the data sets con-

sidered in Sections 4.5.1 (NSW Data) and 4.5.2 (Lilly Clinical Trial Data). We then

look into the behavior of the average treatment effect on the different subgroups

formed from the categorical variables of the given data set.

5.4.1 National Supported Work Data

Given the 4 categorical variables of this data set, 7 non-sparse groups were

formed. Confidence bands, illustrating the magnitude in the earning difference be-

tween subjects who participated in the NSW job training program and those who

did not, were generated using the continuous predictors age and number of years in

school. The Lalonde dataset is best modeled with these main effects and a quadratic

term on age [15]. This same relationship is used in modeling the real earnings of the
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treatment and control groups for each of the 7 subgroups formed. The results of the

regression modeling procedure are shown in Table 5.1. Information on the restricted

covariate region of interest of the independent variables age (x1) and number of years

in school (x2) is also presented in the same table.

Subgroup Model Estimates Covariate Region

1
ŷT = 91111− 4477X1 − 1365X2 + 69.43X2

1 x1 : [20, 41]
ŷC = −395310 + 40276X1 − 10393X2 − 757.48X2

1 x2 : [12, 14]

β̂ = (486420,−44753, 9028.2, 826.9)

2
ŷT = −59637 + 3622X1 + 942.2X2 − 54.03X2

1 x1 : [18, 46]
ŷC = −13265 + 1010X1 + 278.2X2 − 17.84X2

1 x2 : [12, 16]

β̂ = (−46372, 2612, 664.0,−36.2)

6
ŷT = −339270 + 11101X1 + 15105X2 − 183.5X2

1 x1 : [23, 42]
ŷC = −102010 + 6671X1 + 139.4X2 − 103.82X2

1 x2 : [12, 14]

β̂ = (−237260, 4429.7, 14966,−79.7)

9
ŷT = −25544 + 1287X1 + 1749.5X2 − 22.38X2

1 x1 : [17, 38]
ŷC = −4341 + 2097X1 − 1683.9X2 − 39.29X2

1 x2 : [7, 11]

β̂ = (−21203,−810.1, 3434.4, 16.92)

10
ŷT = −2308 + 322.4X1 + 269.8X2 − 5.06X2

1 x1 : [17, 55]
ŷC = 3499− 167.9X1 + 244.7X2 + 3.67X2

1 x2 : [3, 11]

β̂ = (−5807, 490.3, 25.01,−8.74)

11
ŷT = 141450− 10180X1 − 3471.8X2 + 238.7X2

1 x1 : [17, 50]
ŷC = −22538 + 1524X1 + 1148.7X2 − 27.01X2

1 x2 : [4, 11]

β̂ = (163990,−11704,−4620.5, 265.7)

14
ŷT = −4526 + 952X1 − 210.7X2 − 15.7X2

1 x1 : [19, 46]
ŷC = 61464− 3860X1 − 113.7X2 + 63.6X2

1 x2 : [4, 11]

β̂ = (−65991, 4812,−97.01,−79.4)

Table 5.1: Regression Estimates of NSW Data

Upon generation of the regression model estimates for both groups, the critical

constant c was simulated using the proposed procedure of Lui, et al [18]. It is noted

that the values of β̂, σ2 and ∆ are based on the design-matrix. These components
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were calculated using MATLAB. The same program was used in generating the

graphs of the confidence bands for each subgroup.

Based on the figures of the simultaneous confidence bands, shown in Figure

5.1 to Figure 5.7, it can be observed that the zero hyperplane is included in the

band which implies that there is no significant treatment difference between the two

groups for all subgroups except subgroup 1 where the treatment difference between

the two groups is shown to be negative in some portion of the surface of x1 and x2.

Table 5.2 shows the p-value of the simultaneous inference in regression, which

support the graphs of the confidence band as evident by the p-values greater than

α = 0.05. Based on the p-value, it can be deduced that for subgroup 1, the zero

hyperplane x′0 is outside the band for at least one x(0) in χr. Graphically, it

can be observed that this conclusion occurs on lower values of age and number of

years in school. This shows that those who have attended the NSW job training

still tended to have lower earnings than those who did not avail of the training

for the younger respondents who have not attended much years in school. For the

remaining subgroups, the p-value suggests that x(0) is contained in all possible x0

in the restricted region.
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Figure 5.1: Simultaneous Confidence Band of Y , ATE, for Subgroup 1 on the re-
stricted covariate region x1 : [20, 41] and x2 : [12, 14]
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Figure 5.2: Simultaneous Confidence Band of Y , ATE, for Subgroup 2 on the re-
stricted covariate region x1 : [18, 46] and x2 : [12, 16]
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Figure 5.3: Simultaneous Confidence Band of Y , ATE, for Subgroup 6 on the re-
stricted covariate region x1 : [23, 42] and x2 : [12, 14]
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Figure 5.4: Simultaneous Confidence Band of Y , ATE, for Subgroup 9 on the re-
stricted covariate region x1 : [17, 38] and x2 : [7, 11]
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Figure 5.5: Simultaneous Confidence Band of Y , ATE, for Subgroup 10 on the
restricted covariate region x1 : [17, 55] and x2 : [3, 11]
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Figure 5.6: Simultaneous Confidence Band of Y , ATE, for Subgroup 11 on the
restricted covariate region x1 : [17, 50] and x2 : [4, 11]
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Figure 5.7: Simultaneous Confidence Band of Y , ATE, for Subgroup 14 on the
restricted covariate region x1 : [19, 46] and x2 : [4, 11]
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Subgroup p-value Conclusion

1 0.0308 Reject Ho

2 0.1568 Do not reject Ho

6 0.1057 Do not reject Ho

9 0.6005 Do not reject Ho

10 0.8425 Do not reject Ho

11 0.0658 Do not reject Ho

14 0.1163 Do not reject Ho

Table 5.2: Simultaneous Inference p-values on Subgroups of NSW Data

This behavior is compared to the classical z-test for testing means of two

independent populations. The mean differences of the subgroups are reflected in

Table 4.17. The negative mean difference calculated for subgroup 1 is likewise

observed on the confidence band. However, the confidence band suggests that the

difference in regression model fit between the two groups are significantly different.

This is not reflected on the z-test carried out for subgroup 1 (p-value = 0.3795).

For the remaining subgroups, consistent results are observed as depicted by the non-

rejection of the null hypothesis for the t-test and the inclusion of the zero hyperplane

in the confidence bands.

Given that the bounds for the number of years of education for this data set

is narrow, one may be able to explore the ATE by looking into the behavior of the

confidence bands as a function of one variable in each of the subgroup. By finding the

solutions of the confidence bands under a fixed covariate xj, one is able to determine

the value of xi, i 6= j for which the direction of the treatment effect changes. The
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choice of the independent variable to be held fixed is based on the covariate region,

where xj with the narrowest region is chosen. In the NSW data set, an ATE function

in terms x1 is generated by holding the number of education (x2) fixed because the

x2−region is narrower than the x1− region. For a fixed covariate, the ideal scenario

is for the confidence bands to illustrate a positive treatment effect over the entire

covariate regions of interest. This implies that for the training will increase the

salary of all subjects across all age and number of years of education. Although,

this result may not necessarily hold true across all subgroups. In some instances,

varying directions may occur and thus, the fixed value for which the function with

a positive treatment effect is not clearly identified. While this occurrence may be

true about this exploratory analysis, it will, on one hand, provide a good idea of the

subject profile for which the treatment is effective or not.

Tables 5.3 - 5.9 reflect the forms of confidence bands for fixed values of x2 while

Figures 5.8 - 5.14 show the corresponding quadratic function of x1 given a constant

x2. Specifically, the minimum, mean and maximum values of x2 were considered

as fixed points. The tables reflect the forms of each confidence band, including the

simulated critical constant c and regression estimates.

For subgroup 1, it can be observed that given a maximum possible value of x2,

a positive treatment effect is guaranteed across all possible values of x1, as shown

in Table 5.3 and Figure 5.8. However, when the minimum and mean values are

considered to be the fixed points, the ATE is positive or negative on some interval

of x1. Real solutions are also calculated, as reflected in the table, which implies that

for some value of x1 and under a fixed value of x2, no treatment effect is observed.
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This suggests that a respondent with a subject profile defined by subgroup 1, that

is non-black, non-hispanic, single and has an educational degree with 14 years spent

in school, will most likely have positive earnings given the job training regardless of

their age. This relationship is more clearly illustrated in Figure 5.8.

x2 Confidence Band: x′β̂T − x′β̂C ± cσ̂
√
x′∆x Solution on χR

12
826x21 − 44753x1 + 594760 x1+ = 23.39, 30.93

±4.37(2.78)

√
33x41−3000x31+152400x21−2760000x1+18850000

5000
x1− = 23.46, 30.68

12.23
826x21 − 44753x1 + 596836.44 x1+ = 23.82, 30.31

±4.37(2.78)

√
33x41−3000x31+152446x21−2762300x1+18878129

5000
x1− = 23.63, 30.59

14
826x21 − 44753x1 + 612816 x1+ = φ

±4.37(2.78)

√
33x41−3000x31+152800x21−2780000x1+19130000

5000
x1− = φ

Table 5.3: Confidence Bands for Subgroup 1 under fixed x2

For subgroup 2, it can be observed that across all the possible range of x2, the

ATE can be non-negative or negative. This implies that there is no guarantee on

which ranges of x1 and x2 is the treatment effective in increasing earnings, for black,

non-hispanic, single and with degree. These results are reflected in the solutions

of the confidence bands fixed at x2, as shown in Table 5.4. However, figure 5.9

demonstrates that the behavior of the ATE on the restricted region of x1 and fixed

values of x2 considered tends more towards the positive direction. Hence, it can

be deduced that most of the black, non-hispanic, single respondents regardless of

degree status will gain positive effects from the job training.
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Figure 5.8: Simultaneous Confidence Band of Y , ATE, for Subgroup 1 on fixed
minimum, mean and maximum values of x2. The red, blue and green confidence
bands indicate the behavior of ATE as a function of x1 given a fixed value of x2 at
the minimum, mean and maximum, respectively.
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x2 Confidence Band: x′β̂T − x′β̂C ± cσ̂
√
x′∆x Solution on χR

12
−36x21 + 2612x1 − 38404 x1+ = 20.48, 52.07

±(3.12)(2.58)

√
39x41−4000x31+164600x21−2980000x1+19820000

500000
x1− = 20.50, 52.04

12.37
−36x21 + 2612x1 − 38158.32 x1+ = 20.27, 52.34

±(3.12)(2.58)

√
78x41−8000x31+329792x21−5989600x1+40053549

1000000
x1− = 20.28, 52.22

16
−36x21 + 2612x1 − 35748 x1+ = 18.29, 54.28

±(3.12)(2.58)

√
39x41−4000x31+167800x21−3140000x1+23580000

500000
x1− = 18.31, 54.23

Table 5.4: Confidence Bands for Subgroup 2 under fixed x2

Meanwhile, for subgroup 6, there is a guaranteed behavior realized when x2

is fixed at the minimum, according to the results shown in Table 5.5. Figure 5.10

displays this relationship as well. The graph suggests that for black, non-hispanic,

married respondents with a degree, the ATE is negative over all possible domain of

x1 when x2 is at the minimum. On one hand, the behavior of the ATE is always

positive when x2 is held fixed at the maximum for all possible values of x1. This

change in behavior may be an indicator of the effect of the number of years in school

on the direction of the treatment effect for this group of respondents. It shows that

positive earnings are achieved after the training for respondents who have stayed for

14 years in school while an opposite behavior is observed for those who have stayed

for 12 years.
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Figure 5.9: Simultaneous Confidence Band of Y , ATE, for Subgroup 2 on fixed
minimum, mean and maximum values of x2. The red, blue and green confidence
bands indicate the behavior of ATE as a function of x1 given a fixed value of x2 at
the minimum, mean and maximum, respectively.
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x2 Confidence Band: x′β̂T − x′β̂C ± cσ̂
√
x′∆x Solution on χR

12
−79x21 + 4430x1 − 57665 x1+ = φ

±(3.96)(3.29)

√
3x41−375x31+18595x21−3980000x1+3132500

3125
x1− = φ

12.47
−79x21 + 4430x1 − 50630.98 x1+ = 15.70, 40.42

±(3.96)(3.29)

√
960x41−120000x31+5959424x21−127961600x1+1012176329

1000000
x1− = 16.04, 39.99

14
−79x21 + 4430x1 − 27733 x1+ = 7.10, 48.97

±(3.96)(3.29)

√
3x41−375x31+18715x21−406000x1+3270250

3125
x1− = 7.27, 48.82

Table 5.5: Confidence Bands for Subgroup 6 under fixed x2

On the other hand, the confidence band of subgroup 9, which is composed of

subjects who are non-black, non-hispanic, single and non-degree holder, a positive

treatment effect is guaranteed at a fixed, maximum value of x2. This is apparent in

the solutions of its corresponding band reflected in Table 5.6. This behavior is also

true for all values of x1 given the fixed mean value of x2. At the minimum, however,

it can be established that the training has a negative effect when the number of years

in school is fixed at 7 years. This means that subjects who did not spend much time

in school and did not attend the training tend to have higher earnings; thus, the

training is not beneficial for this group of subjects. This behavior is illustrated also

in Figure 5.11.
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Figure 5.10: Simultaneous Confidence Band of Y , ATE, for Subgroup 6 on fixed
minimum, mean and maximum values of x2. The red, blue and green confidence
bands indicate the behavior of ATE as a function of x1 given a fixed value of x2 at
the minimum, mean and maximum, respectively.
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x2 Confidence Band: x′β̂T − x′β̂C ± cσ̂
√
x′∆x Solution on χR

7
17x21 − 811x1 + 2843 x1+ = 3.98, 44.12

±(3.67)(1.67)

√
9x41−800x31+28034x21−418200x1+2301800

10000
x1− = 4.29, 43.85

9.67
17x21 − 811x1 + 12014.45 x1+ = φ

±(3.67)(1.67)

√
450x41−40000x31+1409977x21−21257100x1+118143412

500000
x1− = φ

11
17x21 − 811x1 + 16583 x1+ = φ

±(3.67)(1.67)

√
9x41−800x31+28282x21−428600x1+2401800

10000
x1− = φ

Table 5.6: Confidence Bands for Subgroup 9 under fixed x2

For subgroup 10, it is shown that the solutions of the confidence bands for any

of the fixed values of x2 considered is around the lower extremes of x1, as reflected

in Table 5.7. This suggests that the change of behavior in the effectiveness of the

treatment is reflected more among younger subjects. Figure 5.12 shows that the

ATE is dominantly positive, at least for values of x1 for which is it defined; hence,

the treatment is effective. Based on the graph, we note that observations could be

made only on some values of x1 as the confidence bands under any of the fixed values

of x2 are not defined in the entire domain of x1.
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Figure 5.11: Simultaneous Confidence Band of Y , ATE, for Subgroup 9 on fixed
minimum, mean and maximum values of x2. The red, blue and green confidence
bands indicate the behavior of ATE as a function of x1 given a fixed value of x2 at
the minimum, mean and maximum, respectively.
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x2 Confidence Band: x′β̂T − x′β̂C ± cσ̂
√
x′∆x Solution on χR

3
−9x21 + 490x1 − 5733 x1+ = 17.01

±(3.06)(1.17)

√
3x41−400x31+16980x21−309900x1+2430200

1000000
x1− = 17.03

9.61
−9x21 + 490x1 − 5567.75 x1+ = 16.15

±(3.06)(1.17)

√
150x41−20000x31+868920x21−16557400x1+121042193

50000000
x1− = 16.16

11
−9x21 + 490x1 − 5533 x1+ = 15.987

±(3.06)(1.17)

√
3x41−400x31+17460x21−335500x1+2503800

1000000
x1− = 15.993

Table 5.7: Confidence Bands for Subgroup 10 under fixed x2

Looking at subgroup 11, real solutions are calculated within the range of x1

for the mean and maximum. This indicates that there is a change in direction of

ATE for some values of x1; hence, the effect of the training on subjects that are

non-black, hispanic, single and no degree cannot be easily determined when they

have spent 9.61 and 11 years in school. It is interesting to note, on one hand, that

the training yields positive effect for subjects who share the same categorical profile

but has spent only 3 years in school. These observations are shown in Table 5.8 and

Figure 5.13.
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Figure 5.12: Simultaneous Confidence Band of Y , ATE, for Subgroup 10 on fixed
minimum, mean and maximum values of x2. The red, blue and green confidence
bands indicate the behavior of ATE as a function of x1 given a fixed value of x2 at
the minimum, mean and maximum, respectively.
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x2 Confidence Band: x′β̂T − x′β̂C ± cσ̂
√
x′∆x Solution on χR

4
266x21 − 11704x1 + 145505 x1+ = φ

±(3.34)(3.20)

√
21x41−2000x31+74900x21−1180000x1+7960000

50000
x1− = φ

8.90
266x21 − 11704x1 + 122862.1 x1+ = φ

±(3.34)(3.20)

√
21x41−2000x31+74165x21−1555700x1+7422225

50000
x1− = φ

11
266x21 − 11704x1 + 113158 x1+ = 15.56, 29.05

±(3.34)(3.20)

√
21x41−2000x31+73850x21−1145000x1+7522500

50000
x1− = 15.52, 29.11

Table 5.8: Confidence Bands for Subgroup 11 under fixed x2

For the last subgroup, subgroup 14, the solutions of the confidence bands on a

fixed x2 at the minimum, mean and maximum suggest that there is no guaranteed

ATE behavior detected as shown in Table 5.9 because the solutions fall in the range

of x1. Similar to other subgroups, this is indicative of a change in treatment effect

within the domain; thus, no guaranteed observation on the behavior of ATE may

be established. Although, Figure 5.14 suggests that majority of the ATE behavior

realized is towards the negative direction. It shows that respondents who are black,

hispanic, married and has no degree tend to have a negative treatment effect, at

least for those with ages that are at the extremes and regardless of the number

of years in school since this relationship holds true for all three fixed points of x2

considered.
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Figure 5.13: Simultaneous Confidence Band of Y , ATE, for Subgroup 11 on fixed
minimum, mean and maximum values of x2. The red, blue and green confidence
bands indicate the behavior of ATE as a function of x1 given a fixed value of x2 at
the minimum, mean and maximum, respectively.
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x2 Confidence Band: x′β̂T − x′β̂C ± cσ̂
√
x′∆x Solution on χR

4
−80x21 + 4812x1 − 66374 x1+ = 21.42, 38.74

±(3.19)(2.78)

√
x41−140x31+6859x21−119000x1+1025000

25000
x1− = 21.44, 38.71

9.90
−80x21 + 4812x1 − 66940.4 x1+ = 21.81, 38.36

±(3.19)(2.78)

√
2x41−280x31+13995x21−255700x1+2180685

50000
x1− = 21.88, 38.26

11
−80x21 + 4812x1 − 67046 x1+ = 21.92, 38.23

±(3.19)(2.78)

√
x41−140x31+7025x21−129500x1+1116000

25000
x1− = 21.94, 38.21

Table 5.9: Confidence Bands for Subgroup 14 under fixed x2

Although there is no unifying behavior of the average treatment effect across

the various subgroups on a specified covariate region, these analyses remain to be

helpful in identifying the behavior of the treatment effect given certain information

on the covariates. In this specific example, the expected treatment effect of a subject

is identifiable based on information of their gender, marital status, ethnicity, age and

number of years in school.
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Figure 5.14: Simultaneous Confidence Band of Y , ATE, for Subgroup 14 on fixed
minimum, mean and maximum values of x2. The red, blue and green confidence
bands indicate the behavior of ATE as a function of x1 given a fixed value of x2 at
the minimum, mean and maximum, respectively.
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5.4.2 Lilly Clinical Trial Data

For the Lilly clinical trial data, 8 non-sparse subgroups are formed using the

categorical variables. The magnitudes of difference in hemoglobin A1C levels be-

tween dulaglutide and liraglutide are illustrated using confidence bands. As an initial

step, regression estimates are generated. A linear regression model was used to esti-

mate the mean hemoglobin A1C level for each of the treatment groups. The results

are shown in Table 5.10. Also, the covariate regions of the independent variables,

age (x1) and body mass index (BMI)(x2), are reflected in the same table.
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Subgroup Model Estimates Covariate Region

1
ŷT = 5.3096− 0.0005X1 + 0.0601X2 x1 : [28, 72]
ŷC = 6.8927 + 0.0045X1 + 0.0087X2 x2 : [19.8, 44.2]

β̂ = (−1.5830,−0.0050, 0.0514)

2
ŷT = 3.3269 + 0.0116X1 + 0.0078X2 x1 : [23, 67]
ŷC = 1.9487− 0.0102X1 + 0.1578X2 x2 : [26.3, 41.7]

β̂ = (1.3782, 0.0218,−0.0800)

4
ŷT = 5.7410 + 0.0361X1 − 0.0207X2 x1 : [35, 74]
ŷC = 3.5169 + 0.0149X1 + 0.0995X2 x2 : [20.8, 44.3]

β̂ = (2.2240, 0.0212,−0.1202)

5
ŷT = 9.1803− 0.0807X1 + 0.0487X2 x1 : [41, 67]
ŷC = 3.2242− 0.0030X1 + 0.1292X2 x2 : [24.5, 34.5]

β̂ = (5.9561,−0.0776,−0.0806)

7
ŷT = 6.0661− 0.0132X1 + 0.0349X2 x1 : [33, 75]
ŷC = 6.6703− 0.0049X1 − 0.0023X2 x2 : [24.6, 47.2]

β̂ = (−0.6042,−0.0083, 0.0372)

9
ŷT = 5.0199 + 0.0101X1 + 0.0270X2 x1 : [35, 77]
ŷC = 6.8766 + 0.0127X1 − 0.0300X2 x2 : [21.8, 44.8]

β̂ = (−1.8567,−0.0026, 0.0569)

10
ŷT = 7.8321− 0.0050X1 − 0.0342X2 x1 : [38, 74]
ŷC = 4.5625 + 0.0238X1 + 0.0142X2 x2 : [24.1, 43.6]

β̂ = (3.2696,−0.0288,−0.0484)

12
ŷT = 6.8136− 0.0106X1 + 0.0094X2 x1 : [35, 73]
ŷC = 9.0976− 0.0198X1 − 0.0363X2 x2 : [21.4, 45.7]

β̂ = (−2.2840, 0.0092, 0.0456)

Table 5.10: Regression Estimates of Lilly Data

Based on the linear regression estimates in Table 5.10 , confidence bands are

created for the specified covariate regions in each subgroup. To do so, the critical

constant c is simulated and the data-based components σ and ∆ are calculated.

Figures 5.15 - 5.22 show the generated confidence bands. Looking at the surfaces of

each subgroup, we observe that the zero hyperplane is inside the band for all x(0) in
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the covariate regions for all 8 subgroups. This suggests that the average treatment

effect is insignificant for all groups.

The conclusions drawn from the confidence bands can be further established

using the p-value of the simultaneous inference in regression models, shown in Table

5.11. For all subgroups considered, the p-values are significantly greater than α =

0.05 which lead to the non-rejection of the null hypothesis that βA − βB = 0. This

establishes further the insignificant ATE between the two drugs; thus, dulaglutide

is non-inferior to liraglutide in stabilizing hemoglobin A1C levels among type II

diabetes patients.

Subgroup p-value Conclusion

1 0.8282 Do not reject Ho

2 0.6638 Do not reject Ho

4 0.2584 Do not reject Ho

5 0.7311 Do not reject Ho

7 0.6018 Do not reject Ho

9 0.0940 Do not reject Ho

10 0.7061 Do not reject Ho

12 0.1028 Do not reject Ho

Table 5.11: Simultaneous Inference p-values on Subgroups of Lilly Data

Although the regions of the covariates considered are relatively wider than the

NSW data in Section 5.4.1, the behavior of the average treatment effect was still

explored by holding one independent variable fixed and formulating the difference in

treatment effect as a function of the other variable. Since BMI (x2) has a narrower
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Figure 5.15: Simultaneous Confidence Band of Y , ATE, for Subgroup 1 on the
restricted covariate region x1 : [28, 72] and x2 : [19.8, 44.2]
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Figure 5.16: Simultaneous Confidence Band of Y , ATE, for Subgroup 2 on the
restricted covariate region x1 : [23, 67] and x2 : [26.3.8, 41.7]
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Figure 5.17: Simultaneous Confidence Band of Y , ATE, for Subgroup 4 on the
restricted covariate region x1 : [35, 74] and x2 : [20.8, 44.3]
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Figure 5.18: Simultaneous Confidence Band of Y , ATE, for Subgroup 5 on the
restricted covariate region x1 : [41, 67] and x2 : [24.5, 34.5]

106



Figure 5.19: Simultaneous Confidence Band of Y , ATE, for Subgroup 7 on the
restricted covariate region x1 : [33, 75] and x2 : [24.6, 47.2]

107



Figure 5.20: Simultaneous Confidence Band of Y , ATE, for Subgroup 9 on the
restricted covariate region x1 : [35, 77] and x2 : [21.8, 44.8]
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Figure 5.21: Simultaneous Confidence Band of Y , ATE, for Subgroup 10 on the
restricted covariate region x1 : [38, 74] and x2 : [24.1, 43.6]

109



Figure 5.22: Simultaneous Confidence Band of Y , ATE, for Subgroup 12 on the
restricted covariate region x1 : 35, 73] and x2 : [21.4, 45.7]
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range than age (x1), a treatment effect function in terms of age (x1) by holding (x2)

fixed, was derived. The fixed values of x2 were also set at the minimum, mean and

maximum BMI for each subgroup. These results are presented for each subgroup in

Tables 5.12 - 5.19. In these tables, one may also be able to identify the simulated

critical constant c and corresponding σ of the data set in each subgroup.

Looking at the solutions of these bands at a fixed x1, it can be deduced that

for any value of x1 on the given fixed values of x2, the ATE is non-zero for subgroups

1, 4, 5, 7, 9 and 12. For the remaining subgroups 2 and 10, there are real solutions

calculated that for specific values of x1. This indicates that there is a change in

ATE behavior across some interval of x1 given the fixed values of x2 considered.

Hence, no absolute behavior of the treatment effect can be determined for these

subgroups. Figures 5.23 - 5.30 reflect the behavior of the response as a function of

x1. The results show that the relationship of x1 and the treatment effect is depicted

by hyperbolic bands that include the x1-axis in most subgroups.

For subgroup 1, no solution for the confidence band as a function of x1 is

calculated, as shown in Table 5.12. Given the hyperbolic relationship between Y

and x1, this suggests a consistent behavior in the ATE for majority of the groups, as

shown in Figure 5.23. This implies that hyperbolic bands generated for each fixed

value of x2 envelop the x1-axis; thus, one treatment does not perform better over

the other. It is noticeable, however, that the corresponding hyperbolic band for the

fixed mean value of x2 provides the narrowest band among the 3 fixed values of x2

considered. These hyperbolic bands also tend to be narrower towards the mean of

the observed x1 but wider near the two ends. This indicates that a wider range of
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disparity in hemoglobin levels are observed for younger or older patients between

the two groups. However, with the inclusion of y = 0 in the bands, the superiority

of a drug still cannot be established.

x2 Confidence Band: x′β̂T − x′β̂C ± cσ̂
√
x′∆x Solution on χR

19.8
−250x1−28269

50000
± (2.2614)(1.1440)

√
200x21−21785x1+701094

125000
x1+ = φ

x1− = φ

31.4
−250x1+1543

50000
± (2.2614)(1.1440)

√
200x21−21205x1+583876

125000
x1+ = φ

x1− = φ

44.2
−250x1+34439

50000
± (2.2614)(1.1440)

√
200x21−20565x1+661444

125000
x1+ = φ

x1− = φ

Table 5.12: Confidence Bands for Subgroup 1 under fixed x2

Meanwhile, subgroup 2 displays a different behavior. From the results shown

in Table 5.13, real solutions for the upper band are calculated. This suggests that for

some interval of x1, consistent behavior of ATE is observed. Based on its correspond-

ing figure, Figure 5.24, it can be observed that given a fixed x2 at the minimum, the

ATE is negative for x1 ∈ [23, 56.26]. This means that for female subjects from South

America with Hispanic descent and with BMI = 26.8, liraglutide produces increased

hemoglobin A1C levels. For the mean and maximum values of x2, although calcu-

lations show that the hyperbolic band has real solutions, these values are outside

the covariate region of interest of x1. As shown in Figure 5.24, the ATE is likewise

negative. Therefore, under the same categorical subject profile mentioned and BMI

equal to 31.7 and 41.7, liraglutide provides higher hemoglobin levels. Generally for

this subgroup, we can observe the inferiority of dulaglutide as a treatment.
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Figure 5.23: Simultaneous Confidence Band of Y , ATE, for Subgroup 1 on fixed
minimum, mean and maximum values of x2. The red, blue and green confidence
bands indicate the behavior of ATE as a function of x1 given a fixed value of x2 at
the minimum, mean and maximum, respectively.
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It is also interesting to note that among the three fixed values of x2, the mean

generates the narrowest hyperbolic band.

x2 Confidence Band: x′β̂T − x′β̂C ± cσ̂
√
x′∆x Solution on χR

26.8
109x1−13209

5000
± (2.6702)(0.7357)

√
300x21−28080x1+759951

250000
x1+ = 20.32, 56.26

x1− = φ

31.7
109x1−16884

5000
± (2.6702)(0.7357)

√
1200x21−119180x1+3128739

1000000
x1+ = 2.21, 73.03

x1− = φ

41.7
109x1−24384

5000
± (2.6702)(0.7357)

√
1200x21−133180x1+4964139

1000000
x1+ = −13.02, 85.53

x1− = φ

Table 5.13: Confidence Bands for Subgroup 2 under fixed x2

Table 5.14 and Figure 5.25 illustrate the behavior of the covariates for subgroup

4 which consists of male, Hispanic respondents from North America. Based on the

solutions of the hyperbolic bands, it can be concluded that the bands provided for the

ATE estimate contains 0. This suggests that one drug is non-inferior over the other.

The width of the bands for the minimum and maximum values of x2 are comparable,

while the confidence band on a fixed maximum value of x2 is considerably wide. In

all three fixed values though, the band is narrower towards the mean of the observed

x1−values. The wide band may be an indicator that for subjects with this subject

profile and has high BMI, liraglutide gives higher hemoglobin levels as shown in the

majority of band being negative. This behavior is not quite apparent in the fixed

minimum and mean values of x2, because the band also contains comparable range

in the positive side.
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Figure 5.24: Simultaneous Confidence Band of Y , ATE, for Subgroup 2 on fixed
minimum, mean and maximum values of x2. The red, blue and green confidence
bands indicate the behavior of ATE as a function of x1 given a fixed value of x2 at
the minimum, mean and maximum, respectively.
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x2 Confidence Band: x′β̂T − x′β̂C ± cσ̂
√
x′∆x Solution on χR

20.8
−33x1−3511

10000
± (2.6551)(1.1259)

√
6x21−646x1+19615

5000
x1+ = φ

x1− = φ

30.5
−66x1−20971

20000
± (2.6551)(1.1259)

√
24x21−2532x1+72727

20000
x1+ = φ

x1− = φ

44.3
−330x1−252929

100000
± (2.6551)(1.1259)

√
600x21−60540x1+2046151

500000
x1+ = φ

x1− = φ

Table 5.14: Confidence Bands for Subgroup 4 under fixed x2

For Subgroup 5, no real solution for the hyperbolic bands is calculated, as

shown in Table 5.15. This means that dulaglutide and liraglutide are not significantly

different in increasing hemoglobin levels. Figure 5.26 shows this behavior as well.

For this subgroup, the band is widest for a fixed minimum value of x2 while the

fixed mean is narrowest. All three hyperbolic bands are narrowest at the middle

values of x1. However, in all cases, superiority of one drug is not established.

x2 Confidence Band: x′β̂T − x′β̂C ± cσ̂
√
x′∆x Solution on χR

24.5
−1554x1+79677

20000
± (3.2799)(1.2179)

√
416x21−44792x1+1300293

40000
x1+ = φ

x1− = φ

30.2
−777x1+35250

10000
± (3.2799)(1.2179)

√
2600x21−281660x1+7671387

250000
x1+ = φ

x1− = φ

34.5
−1554x1+63577

20000
± (3.2799)(1.2179)

√
416x21−45272x1+1271693

40000
x1+ = φ

x1− = φ

Table 5.15: Confidence Bands for Subgroup 5 under fixed x2
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Figure 5.25: Simultaneous Confidence Band of Y , ATE, for Subgroup 4 on fixed
minimum, mean and maximum values of x2. The red, blue and green confidence
bands indicate the behavior of ATE as a function of x1 given a fixed value of x2 at
the minimum, mean and maximum, respectively.
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Figure 5.26: Simultaneous Confidence Band of Y , ATE, for Subgroup 5 on fixed
minimum, mean and maximum values of x2. The red, blue and green confidence
bands indicate the behavior of ATE as a function of x1 given a fixed value of x2 at
the minimum, mean and maximum, respectively.
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Table 5.16 and Figure 5.27 show the result for Subgroup 7, comprising of

female, non-hispanic subjects from North America. With the non-real solutions of

the hyperbolic bands and their corresponding behavior reflected in Figure ??, it is

observed that the two drugs considered have a non-inferior effect for this type of

subject profile. Like the previous subgroups, the bands are narrowest at the extreme

ends of the observed values of x1 and tend to have narrower effect towards the center,

given any of the fixed effect of x2.

x2 Confidence Band: x′β̂T − x′β̂C ± cσ̂
√
x′∆x Solution on χR

24.6
−415x1+15546

50000
± (2.6176)(0.7585)

√
250x21−28181x1+867449

250000
x1+ = φ

x1− = φ

33.8
−415x1+32658

50000
± (2.6176)(0.7585)

√
250x21−28043x1+806821

250000
x1+ = φ

x1− = φ

47.2
−415x1+57582

50000
± (2.6176)(0.7585)

√
250x21−27842x1+915361

250000
x1+ = φ

x1− = φ

Table 5.16: Confidence Bands for Subgroup 7 under fixed x2

Also, dulaglutide and liraglutide are shown to be non-inferior for female, non-

hispanic Europeans as shown in Table 5.17 and Figure 5.28. However, a closer

look at the hyperbolic bands show that for a fixed value of x2 at the minimum,

majority of the band lies on the negative treatment effect. Meanwhile, when x2 is

fixed at the maximum, this band tends to move upward, causing majority of the

difference in the treatment groups to be positive. This suggests that under this

subject profile, patients with lower BMI will have increased hemoglobin levels when

taking liraglutide while those who have higher BMI will have higher hemoglobin
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Figure 5.27: Simultaneous Confidence Band of Y , ATE, for Subgroup 7 on fixed
minimum, mean and maximum values of x2. The red, blue and green confidence
bands indicate the behavior of ATE as a function of x1 given a fixed value of x2 at
the minimum, mean and maximum, respectively.
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levels when taking dulaglutide. At the mean value of x2, the hyperbolic band does

not tend to favor the positive nor the negative direction.

x2 Confidence Band: x′β̂T − x′β̂C ± cσ̂
√
x′∆x Solution on χR

21.8
−26x1−6141

10000
± (2.5760)(0.7112)

√
125x21−14919x1+512988

250000
x1+ = φ

x1− = φ

32.8
−26x1+129

10000
± (2.5760)(0.7112)

√
125x21−14424x1+451883

250000
x1+ = φ

x1− = φ

44.8
−26x1+6969

10000
± (2.5760)(0.7112)

√
125x21−13884x1+474923

250000
x1+ = φ

x1− = φ

Table 5.17: Confidence Bands for Subgroup 9 under fixed x2

Table 5.18 and Figure 5.29 show the results derived for subgroup 10. This

subgroup is comprised of male, non-hispanic respondents from North America. The

superiority of one drug is still not established for this group. However, it is inter-

esting to note that x1 is undefined for a fixed minimum x2. Therefore, for subjects

with this profile and has BMI = 24.1, we are not able to provide any observation

of the behavior of Y in terms of x1. On the available hyperbolic bands, the mean

continues to produce narrower bands than the maximum.
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Figure 5.28: Simultaneous Confidence Band of Y , ATE, for Subgroup 9 on fixed
minimum, mean and maximum values of x2. The red, blue and green confidence
bands indicate the behavior of ATE as a function of x1 given a fixed value of x2 at
the minimum, mean and maximum, respectively.
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x2 Confidence Band: x′β̂T − x′β̂C ± cσ̂
√
x′∆x Solution on χR

24.1
−720x1+52579

25000
± (2.6416)(0.7334)

√
700x21−77865x1+1830141

500000
x1+ = 77.58

x1− = 27.13

32.7
−720x1+42173

25000
± (2.6416)(0.7334)

√
1400x21−161940x1+4815169

1000000
x1+ = φ

x1− = φ

43.6
−90x1+3623

3125
± (2.6416)(0.7334)

√
350x21−35580x1+1115039

250000
x1+ = φ

x1− = φ

Table 5.18: Confidence Bands for Subgroup 10 under fixed x2

For the last subgroup, the same observation is made about the non-inferiority

of the two drugs being studied. Results are shown in Table 5.19 and Figure 5.30.

While no treatment effect is realized on all three bands, we note that majority of

the band generated under fixed minimum and mean values of x2 tend towards the

negative direction. Thus, it can be observed that for male, non-hispanic Europeans

with low to moderate BMI, the drug liraglutide may be a more effective treatment

in increasing hemoglobin levels among diabetic patients.

x2 Confidence Band: x′β̂T − x′β̂C ± cσ̂
√
x′∆x Solution on χR

21.4
460x1−65301

50000
± (2.5840)(0.7386)

√
25x21−2918x1+102006

50000
x1+ = φ

x1− = φ

32.6
460x1−39709

50000
± (2.5840)(0.7386)

√
25x21−2582x1+72438

50000
x1+ = φ

x1− = φ

45.7
920x1−19551

100000
± (2.5840)(0.7386)

√
100x21−8756x1+246915

200000
x1+ = φ

x1− = φ

Table 5.19: Confidence Bands for Subgroup 12 under fixed x2
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Figure 5.29: Simultaneous Confidence Band of Y , ATE, for Subgroup 10 on fixed
minimum, mean and maximum values of x2. The red, blue and green confidence
bands indicate the behavior of ATE as a function of x1 given a fixed value of x2 at
the minimum, mean and maximum, respectively.
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Figure 5.30: Simultaneous Confidence Band of Y , ATE, for Subgroup 12 on fixed
minimum, mean and maximum values of x2. The red, blue and green confidence
bands indicate the behavior of ATE as a function of x1 given a fixed value of x2 at
the minimum, mean and maximum, respectively.
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In general, as illustrated in Figure 5.23 to Figure 5.30, there is an insignificant

treatment effect given the range of x1 of the different subgroups under a fixed x2.

This supports the surfaces generated as confidence bands over the entire space of

interest of x1 and x2.

As a summary, the results of the exploratory analysis of the Lilly data set sug-

gest that there is no significant treatment effect between the two drugs. This means

that the drug dulaglutide is non-inferior to liraglutide in stabilizing the hemoglobin

A1C levels of type II diabetes patients. However, with this analysis, we are able to

identify the treatment effect behavior given some information on a subject’s region

of origin, civil status, gender, ethnicity, BMI and age.
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Chapter 6

Conclusion

In this dissertation, an alternative method for estimation of average treatment

effect (ATE) is exploited. The proposed method first requires balancing among

the categorical variables resulting in several homogeneous subgroups and then per-

forming a detailed statistical analysis within each subgroup for drawing valid in-

ference about ATE. A new method designated as the “swapping” method is intro-

duced for this purpose and used for subsequent inference. A homogeneous test for

the ATEs across the homogeneous subgroups is performed and appropriate meta-

analysis methods (fixed or random) is used for the eventual estimation of the overall

ATE.

The novel method of simultaneous inference in regression is also used to explain

analysis of ATE based on subject covariate profile. Two real data sets are utilized

as illustrations of our proposed methods.
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Appendix A

Proof of the distributional properties of the proposed estimator

The distributional properties of δ˜ for a fixed class i of the treatment group is

given by

δ˜ =


δ1

...

δni

 ∼ Nni

(
α1˜,Ψ) (A.1)

with

α = E(δj) =
[
β
′

0,T + β1(vj1 − v̄1) + . . .+ βp(vjp − v̄p)
]
−[

β
′

0,C + β1(vj1 − w̄1) + . . .+ βp(vjp − w̄p)
]

= (β
′

0,T − β
′

0,C) + β1(w̄1 − v̄1) + . . .+ βp(w̄p − v̄p)

= (β0,T + β1v̄1 + . . .+ βpv̄p − β0,C − β1w̄1 − . . .− βpw̄p) +

β1(w̄1 − v̄1) + . . .+ βp(w̄p − v̄p)

= β0,T − β0,C + β1(v̄1 − w̄1) + . . .+ βp(v̄p − w̄p) +

β1(w̄1 − v̄1) + . . .+ βp(w̄p − v̄p)

= β0,T − β0,C . (A.2)

For the elements of the Ψ matrix, consider unit j of the ith subgroup where
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the observed and estimated values are

Uj = β
′

0,T + β1(vj1 − v̄1) + . . .+ βp(vjp − v̄p)

Ũj = β̂
′

0,C + β̂1(vj1 − w̄1) + . . .+ β̂p(vjp − w̄p)

= Z̄ +
1

σ2
T

(vj1 − w̄1)d˜T1U˜ +
1

σ2
C

(vj1 − w̄1)d˜C1Z˜ +

. . .+
1

σ2
T

(vjp − w̄p)d˜TpU˜ +
1

σ2
C

(vjp − w̄p)d˜CpZ˜ , (A.3)

respectively. Note that, the quantity Cov(Uj, Ũj) can be calculated, while picking

only those terms in the sum that involves Uj, as

Cov(Uj, Ũj) = Cov

(
Uj,

(vj1 − w̄1)

σ2
T

dTj1Uj + . . .+
(vjp − w̄p)

σ2
T

dTjpUj

)
=

(vj1 − w̄1)

σ2
T

dTj1V ar(Uj) + . . .+
(vjp − w̄p)

σ2
T

dTj1V ar(Up)

= (vj1 − w̄1)dTj1 + . . .+ (vjp − w̄p)dTjp

=

p∑
l=1

(vjl − w̄l)dTjl

= v˜′jd˜∗Tj (A.4)

where v˜j =


(vj1 − w̄1)

...

(vjp − w̄p)

 and d˜∗Tj =


dTj1

...

dTjp

. Therefore, the variance of the

effect size is given by

V ar(δj) = V ar(Uj − Ũj) = V ar(Uj) + V ar(Ũj)− 2Cov(Uj, Ũj)

= σ2
T + v˜∗′j Λcv˜∗j − 2v˜′jd˜∗Tj (A.5)

where ΛC is the (p + 1)× (p + 1) dispersion matrix of Ũj and v∗j , vj and d˜∗Tj are as

in the main text.
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Following the same rationale as above for the calculation of the off-diagonal

elements of Ψ and considering only the terms of Ũj that involves Uj′ for j 6= j
′
, the

Cov(Uj′ , Ũj) can be calculated as

Cov(Uj′ , Ũj) = Cov

(
Uj′ ,

(vj1 − w̄1)

σ2
T

dTj′1Uj′ + . . .+
(vjp − w̄p)

σ2
T

dTj′pUj′

)
=

(vj1 − w̄1)

σ2
T

dTj′1V ar(Uj′ ) + . . .+
(vjp − w̄p)

σ2
T

dTj′pV ar(Uj′ )

= (vj1 − w̄1)dTj′1 + . . .+ (vjp − w̄p)dTj′p

=

p∑
l=1

(vjl − w̄l)dTj′ l

= v˜′jd˜∗Tj′ (A.6)

where v˜j is as previously defined and d˜∗Tj′ =


dTj′1

...

dTj′p

. It can also be shown that

the Cov(Uj, Ũj′ ) can be calculated as

Cov(Uj, Ũj′ ) = Cov

(
Uj,

(vj′1 − w̄1)

σ2
T

dTj1Uj + . . .+
(vj′p − w̄p)

σ2
T

dTjpUj

)
=

(vj′1 − w̄1)

σ2
T

dTj1V ar(Uj) + . . .+
(vj′p − w̄p)

σ2
T

dTjpV ar(Uj)

= (vj′1 − w̄1)dTj1 + . . .+ (vj′p − w̄p)dTjp

=

p∑
l=1

(vj′ l − w̄l)dTjl

= v˜′j′d˜∗Tj. (A.7)

For the Cov(Ũj, Ũj′ ), recall that Ũj and Ũj′ can be written as

Ũj = Z̄ +

(
(vj1 − w̄1) (vj2 − w̄2) . . . (vjp − w̄p)

)
β̂˜∗ (A.8)

Ũj′ = Z̄ +

(
(vj′1 − w̄1) (vj′2 − w̄2) . . . (vj′p − w̄p)

)
β̂˜∗ (A.9)
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so that the covariance of Ũj and Ũj′ can be computed as

Cov(Ũj, Ũj′ ) = Cov(Z̄ +

(
(vj1 − w̄1) . . . (vjp − w̄p)

)
β̂˜∗,

Z̄ +

(
(vj′1 − w̄1) . . . (vj′p − w̄p)

)
β̂˜∗)

= Cov(Z̄, Z̄) + Cov(Z̄,

(
(vj1 − w̄1) . . . (vjp − w̄p)

)
β̂˜∗) +

Cov(Z̄,

(
(vj′1 − w̄1) . . . (vj′p − w̄p)

)
β̂˜∗) +

Cov(

(
(vj1 − w̄1) . . . (vjp − w̄p)

)
β̂˜∗,
(

(vj′1 − w̄1) . . . (vj′p − w̄p)
)
β̂˜∗).

(A.10)

Looking into the components of the covariance computation, it is easily estab-

lished that

Cov(Z̄, Z̄) =
σ2
C

mi

(A.11)

and

Cov(

(
(vj1 − w̄1) . . . (vjp − w̄p)

)
β̂˜∗,
(

(vj′1 − w̄1) . . . (vj′p − w̄p)
)
β̂˜∗)

=

(
(vj1 − w̄1) . . . (vjp − w̄p)

)
V ar(β̂˜∗)


(vj′1 − w̄1)

...

(vj′p − w̄p)



=

(
(vj1 − w̄1) . . . (vjp − w̄p)

)(∑
i=T,C

Σ−1i

)−1


(vj′1 − w̄1)

...

(vj′p − w̄p)

 . (A.12)
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The two quantities can be combined and simplified as

Cov

(
Z̄, Z̄) + Cov(

(
(vj1 − w̄1) . . . (vjp − w̄p)

)
β̂˜∗,
(

(vj′1 − w̄1) . . . (vj′p − w̄p)
)
β̂˜∗
)

=
σ2
C

mi

+

(
(vj1 − w̄1) . . . (vjp − w̄p)

)(∑
i=T,C

Σ−1i

)−1


(vj′1 − w̄1)

...

(vj′p − w̄p)


= v˜∗′j Λ∗Cv˜∗j′ , (A.13)

where Λ∗C =



σ2
C

mi

0 0 . . . 0

0

...

(∑
i=T,C

Σ−1i

)−1
0


. Furthermore, it is computed

that

Cov(Z̄,

(
(vj1 − w̄1) . . . (vjp − w̄p)

)
β̂˜∗)

= Cov


Z1 + . . .+ Zmi

mi

,

(
(vj1 − w̄1) . . . (vjp − w̄p)

)


1

σ2
T

d˜T1U˜ +
1

σ2
C

d˜C1Z˜
...

1

σ2
T

d˜TpU˜ +
1

σ2
C

d˜CpZ˜





= Cov


Z1 + . . .+ Zmi

mi

,

(
(vj1 − w̄1) . . . (vjp − w̄p)

)


1

σ2
C

dC11Z1 + . . .+
1

σ2
C

dCmi1Zmi

...

1

σ2
C

dC1pZ1 + . . .+
1

σ2
C

dCmipZmi
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=
1

mi

Cov(Z1 + . . .+ Zmi
, (vj1 − w̄1)

[
1

σ2
C

dC11Z1 + . . .+
1

σ2
C

dCmi1Zmi

]
+

+ . . .+ (vjp − w̄p)
[

1

σ2
C

dC1pZ1 +
1

σ2
C

dC2pZ2 + . . .+
1

σ2
C

dCmipZmi

]
)

=
1

mi

[Cov(Z1, (vj1 − w̄1)
1

σ2
C

dC11Z1) + . . .+ Cov(Z1, (vjp − w̄p)
1

σ2
C

dC1pZ1) +

. . .+ Cov(Zmi
, (vj1 − w̄1)

1

σ2
C

dCmi1Zmi
) + . . .+ Cov(Zmi

, (vjp − w̄p)
1

σ2
C

dCmipZmi
)]

=
1

mi

[(vj1 − w̄1)dC11 + . . .+ (vjp − w̄p)dC1p + . . .+ (vjp − w̄p)dCmip]

=
1

mi

mi∑
q=1

v˜′jd˜∗Cq (A.14)

Under the same formulations as above, the

Cov(Z̄,

(
(vj′1 − w̄1) (vj′2 − w̄2) . . . (vj′p − w̄p)

)
β̂˜∗) =

1

mi

mi∑
q=1

v˜′j′d˜∗Cq. (A.15)

These quantities result to the calculation of Cov(Ũj, Ũj′ ) as

Cov(Ũj, Ũj′ ) = v˜∗′j Λcv˜∗j′ +
1

mi

mi∑
q=1

v˜′jd˜∗Cq +
1

mi

mi∑
q=1

v˜′j′d˜∗Cq. (A.16)

Hence, the covariance of the effect sizes δj and δj′ can be derived as

Cov(δj, δj′ ) = Cov(Uj − Ũj, Uj′ − Ũj′ )

= Cov(Uj, Uj′ )− Cov(Uj, Ũj′ )− Cov(Uj′ , Ũj) + Cov(Ũj, Ũj′ )

= −v˜′j′d˜∗Tj − v˜′jd˜∗Tj′ + v˜∗′j Λ∗cv˜∗j′ +
1

mi

mi∑
q=1

v˜′jd˜∗Cq +
1

mi

mi∑
q=1

v˜′j′d˜∗Cq.(A.17)

As a summary, it is established that

δ˜ =



δ1

δ2

...

δni


∼ Nni

(
α1˜,Ψ)
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with

α = β0,T − β0,C

V ar(δj) = σ2
T + v˜∗′j Λcv˜∗j − 2v˜′jd˜∗Tj

Cov(δj, δj′ ) = −v˜′j′d˜∗Tj − v˜′jd˜∗Tj′ + v˜∗′j Λ∗cv˜∗j′ +
1

mi

mi∑
q=1

v˜′jd∗Cq +
1

mi

mi∑
q=1

v˜′j′d∗Cq.
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