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[ABSTRACT]

Title of dissertation: Analysis of Sensory Feedback in the Lamprey Central Pattern
Generator for Locomotion

Nicole S. Massarelli, Doctor of Philosophy, 2016

Dissertation directed by: Dr. Kathleen Hoffman
Department of Mathematics & Statistics
University of Maryland, Baltimore County

Sensory feedback is an integral part of the complex closed-loop system of locomotion.

Lampreys are model organisms for vertebrate locomotion. Lamprey locomotion is driven

by a central pattern generator (CPG), a circuit of neurons located in the spinal cord

that produces a traveling wave of neural activity that innervates muscles for swimming.

The CPG is capable of producing this activity independently of descending control or

sensory feedback, however, sensory feedback is essential in responding to perturbations

and adjusting the CPG output. Our goal is to model sensory feedback from edge cells,

proprioceptor organs on the margin of the spinal cord, to the lamprey CPG in order to

complete a closed-loop model of lamprey swimming.

Entrainment is a property of the CPG where the rhythmic output of the CPG will

tend to approach the same frequency as a periodic stimulus. The lamprey CPG is modeled

using a chain of coupled oscillators, where each oscillator corresponds to an anatomical

segment of the spinal cord. We model entrainment experiments in two CPG models:

a neural model where unit oscillators are represented by several classes of cells and a

derived phase model where unit oscillators are represented by a single variable, its phase.

In both models we included the effects of bending by including input from edge cells at the



location of the forced oscillator. Both models required asymmetry in the ascending and

descending connection strengths in order to qualitatively match experimental entrainment

data. Additionally, we showed that the model agreed with experimental results that the

CPG is highly robust in response to large levels of noise added to the bending signal.

From a different perspective, we experimentally record edge cell activity, and an-

alytically characterized edge cells responses to ramp bending experiments. While some

cells respond to static stretch, the strongest responses are seen during the active periods

of stretch when movement was occurring. We further used frequency domain techniques,

for both the experimental data and model simulations, to compute a map, called the har-

monic transfer function, from perturbations of the input signal to changes in the output

signal. Results reveal that an under-damped harmonic oscillator with phase dependent

forcing that depends on the sinusoidal bending captures key features of the experimental

data, and thus, represents the mapping from bending to edge cell output.
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Chapter 1: Introduction

In vertebrates, the neural activity for rhythmic movements like walking and swim-

ming is generated by a group of neurons in the spinal cord which make up a central pattern

generator (CPG) [11]. CPGs have been found in both legged and non-legged vertebrates

(see for example [75, 19, 68, 3]) but for legged locomotion less is known about the internal

structure of the CPG. It has been shown that CPGs are capable of producing periodic

neural activity without sensory input or descending control from the brain [19, 68, 3]. The

study of the primitive vertebrate CPG is a first step to understanding the central nervous

system and its role in locomotion.

CPGs have been found in almost every animal studied including those that walk

[5, 35, 56], fly [75] or swim [11, 19, 52, 60, 71]. We focus on swimming and study lamprey

locomotion. Lamprey have long been model organisms for vertebrate locomotion because

they are primitive vertebrates with the same classes of neurons found in higher vertebrates,

but orders of magnitude fewer neurons. Lamprey swimming consists of a simple undulation

which produces a sine curve shape along the body and propels the animal forward [10]. The

lamprey CPG consists of repeated subunits, each of which are oscillatory, and these units

maintain a constant phase offset in order to produce a traveling wave of neural activity.

This wave of neural activity travels from head to tail with a phase lag of 1% per cycle

between adjacent segments [19, 70]. In the lamprey, several classes of neurons within the

CPG have been identified based on morphology, size, and physiological properties (see[64]
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for review of lamprey CPG). In other vertebrate models, such as zebrafish and mice, the

organization of these neurons is not yet known. Additionally, the excised spinal cord can

be preserved in a physiological saline for up to a week [63]. Moreover, neural activity in

the excised spinal cord can be generated by excitatory neurotransmitters and the activity

recorded from the ventral roots in vitro shows the same temporal characteristics as muscles

in the intact swimming lamprey [11].

Rhythmic movements are driven by the CPG but locomotion is a complex system

of interactions between sensory information, neural activity, and body kinematics. A per-

turbation or sudden change in the environment can cause a change in the body, which

then activates mechanosensitive neurons. These sensory neurons send information to the

central pattern generator (CPG). A CPG is a neural circuit that produces neural activity

for locomotion and this activity can be altered by sensory information [20]. Thus, the

sensory information from a perturbation will activate the neurons within the CPG which

then send signals to muscles to produce movement. Although these systems are intercon-

nected, in principle it is hard to study swimming in a complete, closed-loop system. As

an alternative, open-loop experiments are used to investigate the properties of subsystems

within the locomotion loop [61, 13]. This approach has been used to study blowflies [15]

and electric fish [14, 45]. Studying the complex systems involved in locomotion requires

an interdisciplinary approach which combines experiments and mathematical modeling.

We now review the relevant contributions from lamprey experimental preparations and

mathematical models of CPGs.
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1.1 Properties of the Lamprey CPG

To investigate the properties of the lamprey CPG, biologists remove the spinal cord

along with the notochord, a flexible rod under the spinal cord similar to cartilage, from the

body and innervate the CPG with a bath of excitatory neurotransmitter, D-glutatmate.

Glass suction electrodes are placed along the side of the notochord and record activity

from the ventral roots. A schematic of the lamprey spinal cord and the position of the

ventral roots is shown in Figure 1.1. The electrodes record activity produced by the CPG

which would innervate muscles for swimming in intact lamprey. From these recordings it

has been shown that the duration of the ventral root bursting activity is proportional to

the period of the cycle of activity (about 40%) [10]. Additionally, the activity from two

ventral roots (left and right) in a single segment strictly alternates and the ventral root

activity in two adjacent segments has a phase lag proportional to the period [10]. These

phase lags account for the traveling wave of activity which activates muscles for undulatory

swimming. The ventral root recordings for a CPG activated with neurotransmitters are

referred to as “fictive swimming” because the neural activity is very similar to that seen

in swimming fish [10]. Additionally, in the presence of a rhythmic stimulus the CPG tends

to adjust the frequency of its output to match the stimulus frequency. This phenomena

is known as entrainment. The ability of the CPG to adjust its frequency along the entire

length of the spinal cord in response to a local stimulus indicates that the segments that

comprise the CPG are interconnected. Anatomical investigation reveals there are several

different tracts of fibers in the spinal cord [10]. The location of these tracts is illustrated

in Figure 1.1. Note these regions are repeated across the midline so each half of the

spinal cord is often referred to as a hemisegment. Lesions applied to different tracts
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Figure 1.1: Schematic of the different tracts seen in the excised lamprey spinal cord. Note

ventral roots occur periodically on the left and right sides of the notochord right under

the spinal cord.

within the spinal cord are used to investigate the properties of intersegmental coupling

and determine mechanisms by which the neural activity remains coordinated along the

length of the cord. Cohen et al. [10] described the effects of different sized transverse

lesions in various locations along the spinal cord. Recordings made above and below the

lesion site were compared and often little change was seen until the lesions extended across

the midline. Recordings suggest that there are many fibers in each tract that contribute

to intersegmental coordination but the strength and direction of these fibers differ in the

different regions [10]. Since it is quite difficult to measure the connection strengths between

different pairs of segments along the spinal cord, we use mathematical models of the CPG

to test various types of intersegmental coupling.
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1.2 Mathematical Models of CPGs

While experiments have identified many aspects of the lamprey CPG, much is still

unknown about the exact connections within each segment and between segments along

the spinal cord. Experimentalists have hypothesized that there exists asymmetry in as-

cending and descending coupling due to experimental recordings with legions along the

spinal cord. However, it is not known the exact length and strength of these connections.

Thus, mathematical modeling is needed to inform what types of intersegmental coupling

properties can produce stable solutions with the desired biological properties seen in the

experimental CPG recordings.

One of the first models of the lamprey locomotor CPG was studied by Cohen et al.

[10] before the internal structure of CPG segments had been investigated. Thus, the first

step in modeling was to assume that a chain of coupled oscillatory units could produce a

periodic output similar to the rhythmic output of the CPG. Since the individual neural

make-up of each segment was not known, Cohen et al. [10] modeled each segment with a

single variable θ which represented the phase of the oscillation. This seminal work made

two assumptions about the properties of oscillators in the chain: 1) a single oscillator is

associated with each segment of the spinal cord, 2) each oscillator is coupled to its imme-

diate neighbors and possibly to distant oscillators. Using these simplified models, Cohen

et al. [10] analytically studied possible mechanisms in a chain of coupled oscillators which

could produce a constant phase lag between oscillators as seen in experimental recordings

from the lamprey CPG. In the phase model each segment i = 1, ...n is represented by

θ̇i = ωi +
∑n

j=1 αijh(θj − θi), where ωi = 2π/Ti is the uncoupled frequency of each oscilla-

tor. The oscillators are connected to one another through h, which is a bounded periodic
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function. With the simple choice h(θ) = sin(θ), the phase model captures many experi-

mental observations and indeed the slowly varying intracellular potentials of motoneurons

are quasi-sinusoidal [11]. Uni-directional nearest neighbor coupling, bi-directional nearest

neighbor coupling, and nearest neighbor with long distance coupling were used to connect

the chain of oscillators. All models considered were able to produce a stable traveling

wave with bi-directional coupling as long as oscillators are tuned [10]. Tuning oscillators

here means that the intrinsic frequencies of the oscillators are graded so that the rostral

oscillators have larger frequencies than the caudal oscillators. This produces a forward

traveling wave of activity. If the oscillators are identical, ie. ωi = Ω for all i, then the

oscillators are in synchrony and there is no traveling wave solution. Thus, for coupled

oscillators there must be a difference in the intrinsic frequency of each oscillator in order

to get a traveling wave as seen in experimental recordings. However, solutions with con-

stant phase lags do not correspond to constant speed wave solutions which are seen during

steady state swimming [10]. Thus, the lamprey CPG must use a different mechanism to

produce traveling waves of neural activity.

The seminal work of Cohen et al. [10] was followed by the work of Kopell and

Ermentrout [38, 39, 41] who also studied chains of coupled oscillators, but with a more

general coupling function H(θi − θi+1). Kopell and Ermentrout studied conditions on

coupling that would produce stable phase lags between oscillators and also investigated

possible mechanisms for adjusting the frequency of each oscillator in the chain [38, 39]. For

chains of weakly coupled chains of oscillators with nearest neighbor coupling, with unspec-

ified coupling functions H, it was shown that coupling symmetry affects the qualitative

form of phase locked solutions (ie. solutions with constant phase lags between oscillators)

[38]. Further phase lags are determined by the intrinsic frequency of each oscillator and

6



coupling strength. If the coupling function is such that H(0) 6= 0, which implies that os-

cillators at the same phase still influence one another, then identical oscillators with equal

coupling can have nonzero phase lags [39]. Moreover, the phase lags produced are almost

constant, except for a boundary layer, which corresponds to a constant wave speed. Note

this was not seen in the case where frequency gradients produced uniform phase lags [10].

Kopell and Ermentrout also showed mathematically that the chain of oscillators must have

uniform intrinsic frequencies and coupling strengths to achieve uniform phase lags [39].

They also conjectured that long-distance coupling may be responsible for adjusting phase

lags along with input from sensory feedback [39]. These results are shown analytically,

with unspecified coupling functions H, which are assumed to have certain properties but

do not have a closed form. Both analytically and numerically, that there is a large class

of coupling functions that will produce solutions with stable, nonzero phase coupling be-

tween the oscillators. In summary, the results of Kopell and Ermentrout show that a chain

of coupled oscillators with uniform intrinsic frequencies and long distance, asymmetrical

coupling produces a traveling wave of activity with uniform phase lags. Guan et al. [25]

estimated the total intersegmental coupling strengths from experiments where the spinal

cord was bent at one end. To determine the ascending and descending coupling strengths,

a stochastic two oscillator model was fit to the burst frequencies of the rostral and caudal

parts of the spinal cord [36]. In all preparations, ascending coupling (towards the head)

was stronger than descending coupling [25]. This evidence, along with the phase model

analysis of Kopell and Ermentrout [17, 38, 39, 41] support the use of coupling asymmetry

in lamprey CPG models.

As more was discovered about the neurons within the lamprey CPG, more detailed

biological models were developed to capture the known properties of the CPG output
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signal. Experimentally several classes of neurons in the lamprey CPG have been identi-

fied that make up the CPG circuit (see [64] for a review of the neuronal components of

the lamprey CPG). Models based on cellular properties (Hodgkin-Huxley type models)

have been used to simulate the oscillatory potentials recorded from lamprey CPG neurons.

Wallen et al. [69] simulated a neural network where individual neurons were modeled with

various physiological properties. Neurons were modeled to include the specific membrane

and synaptic connection properties[69]. Buchanan and Grillner [9] proposed a model for

the CPG based on the synaptic connection of three, then newly discovered, interneurons

in the lamprey spinal cord. Each unit oscillator consisted of excitatory neurons, crossed

inhibitory neurons, and lateral inhibitory neurons. Buchanan [8] investigated different

intersegmental coupling schemes by connecting different pairs of cells in two coupled oscil-

lators with the neural structure from [9]. All combinations could produce a phase-locked

solution between the two oscillators for a certain range of synaptic connection strengths.

Similarly, Williams [72] studied several connectionist neural models where each segmental

oscillator consisted of two sets of interconnected neurons. Each unit oscillator consisted

of two sets of E, L and C neurons connected as in [9, 8]. She hypothesized that intraseg-

mental connections between cells are repeated between adjacent segments but with re-

duced strength. With asymmetrical coupling (differences in rostral and caudal connection

strengths) traveling waves of neural activity are produced. This hypothesis is supported

by experimental recordings where lesions are applied to various locations along the spinal

cord. Varkonyi et al. [67] used phase reduction and averaging to compute intersegemental

coupling functions for a network-based and a cell-based model of the lamprey CPG. The

coupling functions they derive are qualitatively similar to sinusoidal coupling functions

but differ in behavior as swimming frequency varies. Additionally, in the network-based
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model ascending and descending coupling strengths can be tuned to achieve approximately

constant phase lags between segments over a range of frequencies while the phase lags in

the cell-based model are less robust [67]. The addition of long distance coupling increases

the stability of the phase lags. Thus, when investigating the addition of sensory feedback

we use the network-based model first proposed by Buchanan [8] and Williams [72] with

long distance coupling as a starting point.

1.3 Sensory Feedback and Entrainment

Entrainment is the ability of the CPG to adjust the frequency of its output to

match the frequency of a bending stimulus when the bending frequency is close to the

natural frequency of the CPG output [19]. Previously entrainment results showed a dif-

ferent phase relationship between the bending signal and CPG activity for entrainment

during rostral versus caudal bending [65]. Bending experiments have shown entrainment

via mechanosensory feedback occurs locally at the point of bending and intersegmental

coupling is responsible for the entrainment of the rest of the spinal cord [48]. The fact

that the spinal cord can be entrained by both rostral and caudal bending provides evi-

dence for the existence of ascending and descending connections [48]. To further examine

the phase relationship between bending and CPG output, Tytell and Cohen [66] exper-

imentally measured entrainment ranges as a function of bending position. In addition

to bending the rostral and caudal ends of the spinal cord, they bent the spinal cord at

various segments between the two ends. Tytell and Cohen [66] found that entrainment

ranges are largest when bending is applied near the middle of the spinal cord. They gave

two hypotheses for the differences in entrainment for rostral and caudal bending: 1) the

ascending and descending connections are asymmetric, either as a result of dissection or
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biological structure or 2) some aspect of the CPG or edge cells varies along the length

of the spinal cord. In the first case, any excised piece of spinal cord should show a gra-

dient in entrainment range for any length section of spinal cord because segments at the

rostral end will receive more ascending input and segments at the caudal end will receive

more descending inputs. In the second case, different sections of spinal cord (rostral or

caudal) should entrain to different phases of bending no matter what length of segment is

dissected. To distinguish between these two mechanisms, Tytell and Cohen [66] studied

progressively shorter segments of the spinal cord and compared the resulting burst phases

of the CPG relative to the bending signal. This data revealed that shorter sections of

spinal cord entrained with the same burst phases, supporting the second hypothesis that

the rostral and caudal ends of the spinal cord differ intrinsically. Entrainment ranges as a

function of bending location revealed that the middle of the segment is easier to entrain

than either end [66]. These results indicate an asymmetry between the rostral and caudal

ends of the spinal cord but do not indicate what that difference is. Thus, mathematical

modeling is needed to further test possible coupling asymmetries along the spinal cord.

The CPG can produce rhythmic output without sensory feedback or descending

control from the brain, however sensory information, especially proprioception influences

the signal. It is known that sensory feedback and entrainment are important for responding

to perturbations during swimming [51]. Guan et al. [25] also showed the importance of

sensory feedback in maintaining the correct phase relationship between muscle activation

and the body kinematics during swimming. To study the effects of feedback, Guan et al.

[25] performed bending experiments on two lamprey spinal cord preparations, one with

muscles intact and one without muscles. Electrophysiological recordings during fictive

swimming showed that preparations with muscle had higher frequency CPG output and
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shorter phase lags between neural activity in different segments. Additionally, preparations

with two staggered hemisections were used to measure differences in coupling strengths.

During fictive swimming, the spinal cord with two hemisections showed that ascending

coupling was stronger than descending [25]. Coupling strengths were also larger when

muscle was left intact, indicating that movement and movement related feedback affects

the coupling between segments. Again bending experiments show a difference in ascending

and descending coupling in the lamprey CPG, but still do not measure the exact connection

lengths and strengths between anatomical segments.

1.4 Forced Chains of Coupled Oscillators

Forcing or bending the spinal cord experimentally activates sensory feedback which

is known to help adjust the frequency and phase relationships within the CPG output.

As described earlier, bending experiments have been performed and entrainment ranges

computed for excised spinal cord sections. Forced chains of coupled oscillators are used to

model these bending experiments. We assume that forcing occurs at only one oscillator

in the chain and that forcing is sinusoidal with some forcing frequency ωf . An advantage

of studying a mathematical model of the CPG is that we can compare the entrainment

results for different choices of intersegmental coupling. We now review how modeling these

experiments can inform how segments of the lamprey CPG are connected along the length

of the spinal cord.

To force a chain of coupled oscillators, we introduce an additional variable to rep-

resent the phase of forcing, namely θf . The forcing signal represents the bending of the

spinal cord in the experimental set-up. Typically, θf is defined to be the solution of θ̇f = ωf

where ωf denotes the angular frequency of the forcing signal. Williams [73] predicted from
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lesion experiments that ascending coupling is more important than descending for setting

the phase difference between oscillators and descending coupling plays a role in changing

the frequency of the oscillators. She tested this hypothesis on a phase model with generic

coupling functions H+ (ascending) and H− (descending) and applied forcing to both the

rostral and caudal ends of the chain. Both model analysis and experimental data showed

that there are a range of frequencies that can entrain the CPG [73]. However, at one

end the frequencies in the entrainment range are above and below rest but at the other

end they will only be above. Mathematical analysis of the model indicates that ascend-

ing connections control the phase lag and descending connections adjust the frequency

of oscillations. It also suggests that there are differences in ascending and descending

coupling other than strength [73]. Thus, phase models can inform us of the importance

of coupling strength and coupling asymmetry but do not provide insight into the biology

of the connection types within the CPG. Kopell and Ermentrout suggested that since

forcing the chain of oscillators from the rostral and caudal ends has different effects on

phase lags [48], there is an asymmetry in ascending and descending coupling. Kopell et al.

[40] expanded on the forcing simulations in [73] and showed entrainment ranges depended

on how the oscillators are coupled, the length of the chain, and which end receives the

forcing. When ascending coupling was stronger than descending and forcing at the rostral

end, entrainment only occurred for frequencies above the unforced frequency of the chain

[40].

To further test the possible coupling schematics for chains of coupled phase oscil-

lators, Previte et al. investigated the qualitative properties of entrainment ranges [57].

Motivated by experimental entrainment ranges of Tytell and Cohen [66], they considered

several types of coupling and computed the resulting entrainment range for each model.
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The basic model is described by

θ̇i = ω0 +
n∑
j=1

αi−j sin (θj − θi − ψi−j) i 6= m (1.1)

θ̇m = ω0 +

n∑
j=1

αm−j sin (θj − θm − ψm−j) + αf sin (θf − θm) (1.2)

θ̇f = ωf (1.3)

where θi represents the absolute phase mod 2π of the ith segment in the chain. Each

segment, uncoupled, has a periodic orbit with frequency ω0. However, each segment in

the chain is connected to other segments, which alters the frequency of each oscillator.

Previte et al. considered two types of coupling within the chain: nearest neighbor and

all to all. For nearest neighbor coupling, each segment is only connected to adjacent

segments. In all to all coupling, each segment is connected to every other segment within

the chain. The summation term in (1.1) represents the intersegmental connections in the

chain. Oscillators are coupled through sine functions which depend on phase differences

between oscillators. To create the oscillatory rhythm produced by the CPG for swimming,

there must be a phase lag between segments. This has been measured experimentally as

approximately 1% of the cycle per segment [19, 70]. This lag is prescribed in (1.1) by

ψi−j and is set to (i − j)2π(0.01). The strength of the connection between oscillator

i and j is denoted by αi−j and only depends on the relative distance between the two

oscillators. That is, the strength of the connections depends on k = i − j where positive

values of k denote ascending connections (connections from the tail/caudal end towards

the head/rostral end) and negative values of k denote descending connections (connections

form the head/rostral end towards the tail/caudal end). If the connection strengths αi−j

are chosen correctly, we can assume without loss of generality that the preferred phase

ψi−j = 0 for all oscillators and still maintain the desired phase lag.
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To model the bending experiments of Tytell and Cohen, Previte et al.[57] add a

forcing connection to the phase model which represents the affects of bending at a single

point along the spinal cord. Bending is assumed to activate mechanoreceptors on only

one segment in the chain, which is denoted by m. This input is represented in (1.2)

by the term αf sin (θf − θm) where αf denotes the strength of the forcing and θf repre-

sents the phase of the forcer. The forcer obeys the differential equation θ̇f = ωf where

ωf is the forcing frequency, representative of the bending frequency in the bending ex-

periments. Experimental evidence supports the hypothesis that coupling in the lamprey

CPG is asymmetric. Thus, Previte et al. [57] compare two types of coupling asymme-

try: uniform and nonuniform. Uniform coupling asymmetry means that αk > α−k for all

connection lengths k. Thus, ascending coupling is stronger than descending coupling for

all connection lengths. Nonuniform coupling asymmetry means that for some connection

lengths ascending strengths are greater than descending strengths but for other connec-

tion lengths the opposite is true. Entrainment ranges as a function of forcing position

were computed for all-to-all coupling with both types of coupling asymmetry. For uniform

coupling asymmetry, entrainment ranges monotonically increased as the forcing position

moved towards the end of the chain of oscillators [57]. For nonuniform coupling asymmetry,

entrainment ranges were non-monotonic as a function of forcing position and the largest

entrainment range occurred for forcing near the middle of chain [57]. This supports the

experimental evidence for coupling asymmetry because experimental entrainment ranges

are non-monotonic [66].
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1.5 Edge Cells

It has been shown experimentally that sensory feedback is essential to entrainment.

Mechanosensory intraspinal neurons were discovered in the lateral tracts of the lamprey

spinal cord [21]. These neurons are commonly refered to as edge cells. Through bending

experiments with an inactive CPG, it was shown that these mechanosensory neurons

respond to stretch and rate of stretch of the spinal cord [23, 58]. Further, it was shown that

edge cells can affect the CPG through excitatory and inhibitory connections [58]. These

effects represent two classes of edge cells: edge cells with contralateral projections and edge

cells with ipsilateral projections. Edge cells with contralateral projections inhibit groups

of CPG neurons on the opposite side of the body. Edge cells with ipsilateral projections

excite groups of CPG neurons on the same side of the body [58]. It is not known the

exact direction or length of these projections or exactly how edge cells affect the CPG

rhythm but bending experiments similar to CPG bending experiments have been used to

characterize the response of the stretch receptive neurons.

It has been has been shown that entrainment ranges vary based on the location

of bending along the spinal cord [48, 73, 66]. Hsu et al. [33] hypothesized that since

sensory information aid in entrainment the differences in entrainment ranges imply sensory

response should also differ along the spinal cord. To investigate the response properties of

lamprey stretch receptive neurons they performed bending experiments where the excised

lamprey spinal cord was bent in the horizontal plane (yaw) and in the sagittal plane

(pitch). Their bending signals consisted of bending and holding to one side of the body

then bending towards the opposite side and holding. For the intact spinal cord, recordings

from the right lateral tract showed responses to both bending to the left and right in the
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horizontal plane. This implies that responses from both ipsi- and and contralaterally

projecting edge cells were recorded. However, the majority of stretch receptive neurons

responded to ventral and contralateral bending [33]. They were able to record responses up

to 15 segments away from the bending site, which gives an approximate length for edge cell

axons. Along with calcium free recordings of stretch receptive neurons, Hsu et al. [33] also

recorded motor neuron activity from the dorsal and ventral branches of the ventral roots

and characterized how the response depended on the location and direction of bending. A

larger proportion of motor neurons responded to bending in the yaw direction than in the

pitch direction while the opposite is true for sensory neurons [33]. They hypothesize that

ventral bending activates both classes of edge cells which then inhibit one another through

crossed inhibitory connections, which is supported by experiments with split spinal cords

[33]. For yaw bending, sensory neurons are activated in anti-phase so there is a larger

affect on motorneuron activity.

1.6 Outline of Work

Our goal is to understand and model the role of sensory feedback for entrainment

in the lamprey CPG. We first expanded upon the work of Previte et al. [57] and modeled

the open loop bending experiments of Tytell and Cohen [66] with two models: the neural

model with sensory feedback and the derived phase model. The neural model we used

is an extension of the model studied by Buchanan [8] and Williams [72] and we included

connections from edge cells to represent the effects of bending. The derived phase model is

a linearization of the neural model around a periodic orbit. We assume the neural model

has weak intersegmental coupling and exploit the theory of weakly coupled oscillators

[55, 67] to reduce the neural model to a phase model. To compare these models to the
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experimental results of Tytell and Cohen [66], we computed entrainment ranges using

continuation methods. We varied intersegmental coupling strengths and compare the

resulting entrainment ranges. This is an instance where modeling can inform the biology

since it is difficult to measure connection strengths within the lamprey spinal cord.

To further understand how the lamprey CPG responds to sensory information,

namely mechanosensory information from edge cells, we added a noisy signal to the usual

sinusoidal forcing signal. The additive noise can represent perturbations that might occur

during swimming like currents, rocks, or other lamprey swimming nearby. We perform

noisy bending both experimentally and in our derived phase model. To characterize noisy

entrainment we quantified the variability in each oscillator and if the signal is mostly phase-

locked with the underlying sinusoidal bending frequency we call the CPG entrained. We

compare the entrainment results from noisy bending to the entrainment results from deter-

ministic sinusoidal bending. This is a first step in understanding how the CPG responds

to perturbations and interprets variable input from sensory neurons. In the experiments

we see that the CPG still entrains to the bending frequency for large levels of noise. The

variability in the sensory feedback is greatly reduced in the sense that the CPG bursts

still burst at approximately the same phases. The derived phase model responds similarly

to the addition of noise and the variability filters out in the adjacent oscillators.

We also investigated the encoding properties of edge cells. It is known that the

edge cells respond to stretch and rate of stretch [22, 33], but it is not known how this

information is encoded and sent to the CPG. We performed extracellular recordings from

the lateral axon tracts in the excised lamprey spinal cord and analyze the edge cell response

to various bending stimuli. First we bent the spinal cord with varying bending angles

and bending velocities to determine the relationship between edge cell firing rate and
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bending. For most units, we found a significant linear relationship between spike rate and

bending angle or spike rate and bending velocity. We also found several units that fired

constantly in response to bending, that is the spike rate remained constant as bending

velocity increased. Next, we applied sinusoidal bending to the spinal cord and saw that

edge cells fire consistently during one phase of bending. The phase of firing depends on

the amplitude and frequency of the bending signal. To completely characterize the edge

cell response across a range of frequencies, we added band-limited Gaussian white noise

to the sinusoidal bending signal. The additive noise allows us to use frequency domain

techniques to predict the response of the system to perturbations [34]. The map from

input to to output in the frequency domain is called a harmonic transfer function (HTF),

which is the periodic extension of a frequency response function (FRF). The time domain

analogue of the HTF is called a phase-dependent impulse response function (IRF). The

phase-dependent IRF tells us how the system responds to brief pulse perturbation at a

given phase. These tools give us a non-parametric map from bending to edge cell output.

We then matched the response characteristics of the IRF to model IRFs to determine an

appropriate model of edge cell response. This model can then be added to closed-loop

swimming models as feedback from edge cells to the CPG.
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Chapter 2: CPG Models and Entrainment

2.1 Overview

Previous work focused on modeling experimental entrainment of the lamprey CPG

in a phase model. Experimental entrainment provides evidence of intersegmental coupling

between segments in the spinal cord because the influence of bending at one end of the

spinal cord is transmitted throughout the cord. Intersegmental strengths are hard to mea-

sure directly and hence entrainment provides a means to indirectly study intersegmental

connections. Motivated by the experimental entrainment ranges of Tytell and Cohen [66]

and the analytic entrainment results of Previte et al [57], we compute entrainment ranges

for two CPG models. We first add sensory feedback to the neural model developed by

Buchanan [8] and Williams [72]. Next we derive a phase model by linearizing the neural

model around a periodic orbit using methods described by Varkonyi et al [67]. In the

limit of weak coupling, the derived phase model provides a good approximation of the

neural model. For both models, we compute entrainment ranges as a function of forcing

strength and forcing position for two types of intersegmental coupling. Non-uniform cou-

pling asymmetry (coupling where some connection strengths are stronger in the ascending

direction and other coupling strengths are stronger in the descending direction) yields

non-monotonic entrainment ranges as a function of forcing position, which more qualita-

tively mimics the experimental results of Tytell and Cohen [66]. Furthermore, the derived
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phase model captures the way entrainment is lost in the neural model. This is something

that cannot be seen in the sinusoidal phase model analyzed by Previte et al. [57]. This

supports the use of the derived phase model to extend the analysis of [57] and examine a

wider range of coupling and forcing functions. Entrainment ranges of both the neural and

derived phase models support the hypothesis that nonuniform coupling asymmetry exists

in the lamprey CPG.

2.2 Neural Model

Biologists have discovered several classes of neurons within the lamprey CPG and

these neurons together produce the rhythmic neural activity for swimming (see [64] for a

review of the neuronal components of the lamprey CPG). CPG models based on several

of these classes of neurons have been studied by Buchanan [8] and Williams [72]. In their

model, each segment is represented with a number of variables proportional to the number

of classes of neurons. Buchanan [8] and Williams [72] consider three classes of neurons:

excitatory interneurons (E), crossed inhibitory interneurons (C), and lateral inhibitory in-

terneurons (L). These neurons are connected to one another within a segment and Figure

2.1 depicts these intrasegmental connections. Note that in each segment the connections

exhibits left-right symmetry, that is, the connections on one side of the segment are re-

peated on the other. This yields a total of 12 connections, two sets of 6, within a single

segment. Along with the three classes of interneurons within a spinal cord segment, there

are two edge cells (left and right) located in the lateral tract of the spinal cord. These in-

terneurons are mechanoreceptors that detect bending of the body during swimming. Edge

cells have been recorded and found to respond to stretch and rate of stretch of the body

[23, 58]. A fluorescent stain is used to identify the morphology of these edge cells and an
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example of one such image is shown in Figure 2.2. Edge cells, activated by stretch caused

by the bending of the spinal cord, act as sensory feedback for the CPG. We incorporate

this sensory information into the existing neural models [7, 72]. It is known that two

classes of edge cells exists: edge cells that excite ispsilaterally and edge cells that inhibit

contralaterally. In our model we include a single edge cell on either side of the segment

with two ipsilateral connections and two contralateral connections. These connections are

illustrated in Figure 2.1. The resulting neural model is given by

v̇ij = −GRvij +GjT (1− vij) +

n∑
k=1

6∑
l=1

αlji−kG
lj
0 h̄(vkl)(V

l
syn − vij) (2.1a)

+ δimαf

2∑
s=1

Gsjf h̄(vsec(θf))(V
sj

syn,ec − vij) for i = 1, . . . , n; j = 1, . . . , 6,

θ̇f = ωf (2.1b)

where

h̄(x) = σ log
(

1 + e
x
σ

)
(2.1c)

is a smooth threshold function and

vsec(θf) = (−1)s sin(2πθf) (2.1d)

is edge cell voltage with s denoting the left or the right side as illustrated in Figure 2.1.

Unlike phase models in which each segment corresponds to one variable, the phase, each

segment is now represented by 6 variables which represent the three classes of neurons

on either side of the segment. Our state variables vij denote the “voltage” of cell j in

segment i. Note that voltage is scaled to be unitless and lie between -1 and 1. When

vij < 0 the cell does not fire action potentials and vij represents the membrane voltage

of the cell body. When vij > 0 the cell fires action potentials and vij can be thought of

as the normalized firing rate. Note j ranges from 1 to 6 and the cell indices are labeled
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in Figure 2.1. The constants GR and GT denote the resting and tonic drives that drive

the voltage towards 0 and 1 respectively. The double summation from in (2.1) denotes

the intrasegmental and intersegmental connections between neurons where αlji−k is the

connection strength between cell j in segment i and cell l in segment k. The maximal

synaptic conductance, Glj0 , represents the flow of current between the two cells. Thus, the

value of αlji−k represents the fraction of conductance between cells j and l for connections

of length i − k. When i = k, we have the intrasegmental connections depicted in Figure

2.1. These same 6 connections are repeated along the chain from one segment to all other

segments. For example, within each segment, the left L cell is connected to the left C cell.

The left L cell is also connected to the left C cell in every other segment in the chain. The

maximal synaptic conductance, Glj0 , represents the flow of current between the two cells.

The function h̄ represents the effect of the presynaptic cell on the postsynaptic cell. Note

in the neural model studied by Buchanan [8] and Williams [72] the threshold function h̄

is a piecewise-linear function where below a certain threshold h̄ = 0. This represents the

threshold for depolarization needed to activate the neurons. We choose a smooth version

of this threshold function to facilitate our bifurcation analysis in Section 2.4. Finally, V l
syn

represents the reversal potential of cell l and the difference between the current voltage

of cell i and the reversal potential is what drives the oscillations of the system. Note for

excitatory connections V l
syn = 1 and for inhibitory connections V l

syn = −1. The final

summation term represents the input from edge cells during bending. We assume that

bending activates the edge cells only at the segment where bending occurs, designated by

m. We assume that all four of the edge cell connections have connection strength αf . Table

2.1 summarizes the parameters of (2.1) and their values. Note that although the model

is connectionist, its form is similar to conductance-based models as the Hodgkin-Huxley
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Figure 2.1: Connectivity of one segmental oscillator. Cell classes are excitatory interneu-
rons (E), lateral inhibitory interneurons (L), crossed inhibitory interneurons (C), and edge
cells (EC). Bars and circles indicate excitatory and inhibitory connections, respectively.
We assume edge cells are only active in the segment at which bending occurs.

Figure 2.2: Stain of an edge cell showing the dendrites synapsing onto the side of the

spinal cord and the axon extending down the lateral tract. Image courtesy of Tytell and

Buchanan (2015).

model [31] with the time derivative of voltage proportional to the sum of “current”, each

with its own reversal potential. The reversal potentials are in the range from -1 to 1, so

that voltage remains in this same range.

2.3 Derived Phase Model

To test the hypothesis of how coupling asymmetry (differences between ascending

and descending coupling strengths) affects the shape of entrainment ranges as a function

of forcing position, we study another phase model which is derived from the neural model
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Table 2.1: Neural model parameters used for simulations and to compute the derived
phase model.

Parameter Description Value Restrictions

n number of segmental oscillators 10

m index of forced oscillator varies 1 ≤ m ≤ n
GR resting conductance 3.5 s−1

GjT tonic excitatory conductance 0.875 s−1 E cells

0.350 s−1 L cells

3.500 s−1 C cells

Gkl0 maximal synaptic conductance of 15 s−1 L to C connection

intersegmental connection 35 s−1 all other connections

V l
syn synaptic reversal potential for 1 excitatory connections

intersegmental connection -1 inhibitory connections

σ smoothing parameter of threshold function 0.05

αljr intersegmental connection strength see Fig. 2.6

Ad amplitude of descending coupling varies

Aa amplitude of ascending coupling varies

λd length constant of descending coupling varies

λa length constant of ascending coupling varies

αf forcing strength varies

ωf forcing frequency varies

V sj
syn,ec synaptic reversal potential for 1 excitatory connections

EC connection -1 inhibitory connections

Gsjf maximal synaptic conductance of EC connections 1
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Figure 2.3: Steady state solution of the cell voltages in the first segment of a chain of
coupled oscillators defined by (2.1) for two cycles without forcing. For this simulation
weak intersegmental coupling, defined by Aa = 0.0004, Ad = 0.0002, and λa = λd = 4,
was used to connect oscillators. Since weak coupling was used, the simulation provides
a good approximation of the voltages within a single segment of an uncoupled oscillator.
Note the spatiotemporal symmetry between left and right cells. The voltage of the left
cells is the same as the voltage of the right cells except for a phase shift of half a period.

given by (2.1). A phase model is a linearization around the limit cycle of the neural model

and represents each anatomical segment of the CPG with a single variable. Previte et al.

[57] studied a phase model with sinusoidal coupling functions. However, instead of using

sine functions to couple the oscillators, we use the neuron-to-neuron connections in the

neural model to compute intersegmental connections between oscillators. We exploit the

theory of weakly coupled oscillators [10, 55, 54] to approximate the neural model given by

(2.1) by a phase model of the form:

θ̇i = ω0 +
n∑
k=1
k 6=i

6∑
j=1

6∑
l=1

αlji−kH
lj(θk − θi) + δimαf

2∑
s=1

6∑
j=1

Hsj
f (θf − θi), for i = 1, . . . , n,

(2.2a)

θ̇f = ωf (2.2b)

under the assumptions that intersegmental connection strengths αlji−k (i − k 6= 0) and

forcing strength αf are small and ωf is close to ω. The function H lj describes the coupling
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provided by a single intersegmental connection of unit strength from cell l in one segment

to cell j in another segment. The double summation term represents input from the edge

cells and is multiplied by δim which denotes the Kronecker-delta function, defined by

δim =

{
1 if i = m

0 otherwise,
(2.3)

so that edge cells only contribute to cell voltages in the segment where forcing is applied.

The Hsj
f function describes the coupling provided by a connection of unit strength from

the edge cell on side s of segment m to cell j in the same segment. Note we no longer

consider intrasegmental coupling since each segment is represented by a single variable.

Recall that intersegmental connections have the same connectivity as the intraseg-

mental connections shown in Figure 2.1. For example, given coupling length r = i − k,

there are 12 nonzero αljr corresponding to the left and right connections for each of 6

connection types: E to C, E to L, L to C, C to E, C to L, and C to C. Note a neg-

ative connection length (k > i) represents an ascending connection, towards the head,

and a positive connection length (i < k) represents a descending connection, towards the

tail. Due to the right-left symmetry of the neural model and the left-right spatiotemporal

symmetry of the segmental oscillator’s limit cycle, two connections of the same type have

the same connection strength and same coupling function. Note these symmetries can be

seen in Figure 2.3 which depicts the steady state of a single oscillator in the neural model

simulated with no forcing. The left and right cells have the same voltage with a phase

shift of half a period. Therefore, we can write

6∑
j=1

6∑
l=1

αljr H
lj =

∑
c∈C

αrcHc, where C = {EL,EC,LC,CE,CL,CC} (2.4)

and where, for example, αr,EL = α12
r = α45

r and HEL = H12
r +H45

r = 2H12
r . Let αr be the
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mean of αrc for c ∈ C. We define Hr, the coupling function of length r = i− k, as

Hr =
1

αr

6∑
j=1

6∑
l=1

αljr H
lj =

∑
c∈C

αrc
αr

Hc. (2.5)

Similarly, the 8 edge cell connections of Figure 2.1 consist of two connections for

each of the four connection types: EC to Li, EC to Ci, EC to Lc, and EC to Cc, where ‘i’

and ‘c’ indicate ipsilateral and contralateral connections, respectively. Therefore, we can

define the forcing coupling function Hf as

Hf =

2∑
s=1

6∑
j=1

Hsj
f = Hf,Li +Hf,Ci +Hf,Lc +Hf,Cc, (2.6)

where, for example, Hf,Li = H11
f +H25

f = 2H11
f . Now, using (2.5) and (2.6), we can write

the phase model (2.2) as

θ̇i = ω0 +

n∑
k=1
k 6=i

αi−kHi−k(θk − θi) + δimαfHf(θf − θi), for i = 1, . . . , n, (2.7a)

θ̇f = ωf . (2.7b)

Model (2.7) has the standard form of a chain of coupled phase oscillators forced at one

location. To specify this model, two choices remain. First, for each connection length r we

must specify the connection strength ratios αrc/αr in (2.5) that determine the coupling

function Hr. We defer this specification until we have computed the coupling function Hc

for each connection type c (see Figure 2.5 below). Second, we must specify how coupling

strength αr depends on r. Experimental evidence does not provide the exact form of

this dependence but does indicate an asymmetry in ascending and descending coupling

strengths [73, 37, 49]. Among the possible modeling choices in the literature (e.g. [53, 16]),

we will follow Varkonyi et al. [67] and assume that coupling strength decays exponentially

with coupling length:
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αr =


Ade

−|r|/λd for r > 0 (descending connections),

Aae
−|r|/λa for r < 0 (ascending connections),

1 for r = 0 (intrasegmental connections),

(2.8)

where Ad, λd and Aa, λa are the amplitudes and length constants for descending and

ascending coupling, respectively. Representative parameter values can be found in the

caption of Figure 2.9.

2.3.1 Coupling Functions

To define the functions Hr and Hf in (2.7) we use the methods of phase reduction

and averaging (see [26, 42, 32]) as applied to weakly coupled oscillators [67]. Under the

assumption of weak coupling in (2.1), we can describe the intrasegmental connections in

the neural model as a phase dependent coupling function for each connection type, Hc.

The coupling functions Hc are computed as in [67]. The first step of this process is to

compute phase response curves (PRCs) for the six intrasegmental connection types in the

neural model. A PRC describes the effect of a perturbation applied to a single cell inside

the oscillator on the resulting phase of the oscillator after several periods. To numerically

compute the PRC for a cell in the neural model, we first simulate a single segment with no

forcing until steady state voltages are reached. At steady state all cell voltages have the

same period although they do not have the same trajectories. Note these are the voltages

shown in Figure 2.3. To define a cycle, we define the starting point to be the positive

going zero crossing for the left E cell. This zero crossing now represents phase 0 for all

the cells. We can normalize the period so that the phases go from 0 to 1 where phase

0 corresponds to the first zero crossing and phase 1 represents the return to this point.

We then divide the cycle into 100 equally spaced phases. To determine the PRC for the

left E cell, we add a perturbation to the cell voltage at a given phase, say θk. We then

28



simulate for several more cycles and measuring the resulting phase shift in the left E cell.

This phase shift is the value of the PRC for the left E cell at phase θk. We repeat this

process for all 100 phases and store the resulting phase shifts. This vector of phase shifts

describes how the left E cell responds to perturbations at each phase in the cycle. Figure

2.4 illustrates the PRCs for the left E, L, and C cells in the neural model (2.1). Note the

PRCs for the right cells would be the same as their left side counterparts except for a

phase shift of 0.5.

Here we review the theory of weakly coupled oscillators and how to apply phase

reduction and averaging to reduce the chain of oscillators to a phase model. For a complete

description of phase reduction applied to weakly coupled oscillators see, for example, [26].

Consider a system of n weakly coupled oscillators of the form

ẋi = f(xi) + εg(xi, xj , ...) (2.9)

where xi ∈ Rn and each xi has a periodic limit cycle Γi with period T0 = 2π/ω0. The

function g represents the coupling between oscillators and the assumption of weak coupling

means that ε is sufficiently small. Then, we can write (2.9) as an ordinary differential

equation for the phase of the oscillator:

φ̇i = ω0 + εz(φi) · g(xi(φi), xi(φj), ...)|Γ0(φi) (2.10)

where each component of z(φi) is a PRC. To further simplify the system and apply the

averaging technique, we substitute the slow phase ψi = φi − ω0t into (2.10) to get

ψ̇i = εhi(ψi − ψj), (2.11)

where hi is a function of phase differences. The functions hi are computed by averaging:

hi(ψi − ψj) =
1

T0

∫ T0

0
z(φi) · g(xi(φi), xi(φj), ...)dt. (2.12)
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Figure 2.4: The PRCs are plotted for the left E, L, and C cells. Each PRC describes the
resulting phase shift that occurs when that cell’s voltage is perturbed by 10−6, at various
initial phases. PRCs for right E, L and C cells are the same except for a phase shift of 0.5
due to the right-left symmetry within each oscillator.

It has been shown ([10, 55, 54]) that for a system of the form (2.9) with weak coupling, we

can reduce the system to phase equations that depend only on relative phases of oscillators

and not individual cell voltages.

Recall, intersegmental coupling functions defined by (2.5) are computed from a

linear combination of the 6 neuron-to-neuron connections Hc, computed using (2.12). In

(2.5), αrc determines how much each neuron-to-neuron connection of length r contributes

to the intersegmental connection for oscillators i and k where r = i− k. The choice of αrc

determines the phase lag between oscillators. Experimentally, a phase lag of approximately

1% of the cycle per segment has been observed [11, 74]. This means that as neural activity

travels down the CPG, the phase difference between consecutive segments is 0.01. We use

the tuning methods in [37] to determine the appropriate {αrc}. Tuning is a method which

moves the zeros of the coupling functions and the zeros in our case correspond to the

phase lag in the chain of oscillators. To tune the intersegmental connections we vary αEC

and αLC until Hr has a zero at 0.01r. After tuning, for a chain of ten oscillators, we have

18 intersegmental connection functions Hr for r = −9, ...,−1, 1, ..., 9 representing both
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Figure 2.5: For each type of neural connection between E, L, and C cells, an Hc function
is computed to represent the effects of neurons on the voltage of the neuron within the
oscillator. The six Hc functions are computed for connections from L to E cells, C to E
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Figure 2.6: Relative strengths αrc/αr of different connection types as a function of con-
nection length r and connection type c.

ascending and descending connections. Each Hr is then multiplied by αr, the average of

the intrasegmental connection strengths of length r. The fraction of connection strength

αrc/αr is depicted in Figure 2.6 for the different cell-to-cell connections.

This involves varying αrc and computing the resulting zeros of Hr. Increasing or

decreasing the αrc values will shift the zeros of Hr to the right or left. The zeros of the

intersegmental connection functions determine the phase lag. Thus, we want the zero of

Hr to occur at 0.01r to model the 1% per segment phase lag seen in the experiments.
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that describes the strength of that connection as a function of relative phase between the
edge cell and the oscillator where forcing is applied.

2.3.2 Forcing Connections

A method similar to the method used to compute intersegmental coupling functions

Hr is used to compute Hf , where cell i is replaced by an edge cell. Hence, θi will represent

the phase of the forcer, which has period Tf = 1/ωf . Again, we compute PRCs for these

connections where G1j
1i is replaced by G1js

f and V i
syn is replaced by V is

syn,ec for forcing

connections. There are left and right edge cells in each oscillator and each edge cell is

connected to right and left L and C cells. Edge cells excite neurons on the same side and

inhibit neurons on the opposite side. Since the oscillator is symmetric, we compute the

four Hf,c connection functions for a single edge cell where c denotes a right or left L or C

cell. These connections are repeated for the edge cell on the other side of the oscillator, so

we end up with two of each type of connection. The four functions representing the neural

model’s edge cell connections are computed using (2.10) where the coupling function g is

replaced by the appropriate edge cell connection from the neural model. These edge cell

connection functions are depicted in Figure 2.7 for the left edge cell. As described by (2.6),

the forcing function Hf in (2.7) is defined as the sum of all of the edge cell connections.

Here we assume that each edge cell connection contributes equally to the overall forcing
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connection (each function has coefficient 1).

At this point, we have computed all components of the phase model: intersegmental

connections, Hr, and forcing connection, Hf . However, rather than use the phase model

directly, we instead consider the relative phase model by looking at the phase difference

between each oscillator and the phase of the forcer. This is characterized by the change

of variable φi = θf − θi which transforms (2.7) to

φ̇i = δ −
n∑
k=1
k 6=i

αi−kHi−k(φi − φk)− δimαfHf(φi), for i = 1, . . . , n, (2.13)

where δ = ωf −ω0. In the phase model, entrainment corresponds to stable periodic orbits,

whereas in the relative phase model, entrainment corresponds to stable fixed points of

(2.13). When the CPG is entrained to the forcing frequency, the phase difference between

a given oscillator in the chain and the forcing oscillator remains constant. Using the

relative phase model allows us to use continuation and fixed point stability analysis, which

we can exploit to find entrainment ranges.

2.4 Entrainment Ranges

In this section, entrainment ranges are computed as a function of forcing position

and forcing strength with several different choices of intersegmental coupling. For the

neural model (2.1) a periodic solution entrained to a given forcing frequency corresponds

to a fixed point of the Poincaré map. For the relative phase model, the CPG is entrained

when the relative phases, that is the difference in phase between an oscillator in the chain

and the forcing oscillator, θf − θi, are constant. This implies that all of the oscillators

in the chain have the same frequency as the forcer, namely ωf . Constant relative phases

correspond to stable fixed points of (2.13). In either case, entrainment ranges can be
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computed by identifying stable fixed points.

Standard parameter continuation methods (see for example, [1]) are used to track

fixed points in dynamical systems. For robustness of computation, we use a sequence of one

parameter continuations along ellipses instead of straight lines. We used a series of one-

parameter continuations instead of two-parameter continuation, because two-parameter

continuation can become inaccurate near degenerate bifurcations [44]. Instead of looking

at vertical slices of parameter space, we move through parameter space along ellipses.

The larger dotted ellipses represent the path of the continuation steps in the parameter

space. These ellipses indicate how the parameters δ = ωf − ω and αf are updated at each

continuation step. We choose the size of these ellipses that is large enough to cover a

relatively large area in parameter space and also small enough to capture sharp corners of

the entrainment range. The small red circles indicate the center of continuation ellipses.

To choose the next center, we take a step in the same direction as the previous entrainment

point. The points on the entrainment range are indicated by blue plus signs. To better

explain this process, consider entrainment points 2 and 3 in Figure 2.8. We start with

entrainment point 2, which is a known point on the entrainment rage. To get the next

center, indicated by the small red circle between points 2 and 3, we step in the same

direction as the vector from point 1 to point 2. We then move around the large ellipse,

plotted in magenta, and find new fixed points with slightly different values of αf and δ.

To determine points on the boundary of the entrainment range, we look at the stability

of the fixed points in each model. Stability is assessed by computing the eigenvalues of

the Jacobian evaluated at the fixed point. Entrainment is lost when we reach an unstable

fixed point, and we record the values αf and δ values correspond to the loss of stability

and hence, the boundary of the entrainment range.
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Figure 2.8: Illustration of our elliptical two-parameter continuation method used to find
entrainment ranges as a function of forcing strength. The dotted circles denote how the
values of δ = ωf −ω0 and αf are updated at each continuation step. The plus signs denote
points on the entrainment range that are detected by the continuation circles. This allows
us to detect sharp corners that may be missed with standard one-parameter continuation.

2.4.1 Entrainment Ranges as a Function of Forcing Strength

Using our continuation algorithm, entrainment ranges are computed for both the

neural model and the derived phase model as a function of forcing strength. Figure 2.9

illustrates 1:1 entrainment ranges for a chain of ten oscillators forced at the last oscilla-

tor as a function of forcing strength αf . The entrainment range, as a function of forcing

strength, is plotted relative to the unforced, average frequency of the chain that is, the

vertical axis represents the difference between the forcing frequency, ωf and the natural

chain frequency ω. Figure 2.9A, illustrates entrainment ranges for both the neural model

(indicated by the blue line) and the derived phase model (indicated by the red line) for

weak intersegmental coupling strength corresponding to Ad = 0.0004, Aa = 0.0002, and

λd = λa = 4 in equation (2.8). Figure 2.9B illustrates entrainment ranges with interseg-

mental coupling strength 100 times stronger than in Figure 2.9A (Ad = 0.04, Aa = 0.02).

Together Figures 2.9A and 2.9B illustrate the approximate scaling of entrainment ranges
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Figure 2.9: Entrainment ranges for the neural and derived phase models as a function of
forcing strength. Figure 2.9A on the left illustrates entrainment ranges as a function of
forcing strength for weak intersegmental coupling corresponding to Aa = 0.0004, Ad =
0.0002, and λa = λd = 4. Figure 2.9B on the right illustrates entrainment ranges for 100
times stronger intersegmental coupling with Aa = 0.04 and Ad = 0.02. Note that the size of
the entrainment range scales with the coupling strength, that is, the entrainment ranges
in B are 100 times larger than the entrainment ranges shown in A. For weak coupling
the entrainment ranges for the neural and derived phase models match closely while for
strong coupling the entrainment ranges start to differ as forcing strength increases. The
dashed line on both plots represents Hopf bifurcations that occur when entrainment is lost.
Smooth lines denote saddle-node bifurcations. The arrows in Figure 2.9B correspond to
the forcing strength values αf where loss of entrainment is depicted in Figures 2.12.
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Figure 2.10: Entrainment ranges as a function of forcing position for varying interseg-
mental connections. Uniform coupling asymmetry is illustrated in A with Aa = 0.0004,
Ad = 0.0002, and λa = λd = 4. All of the ascending coupling strengths are stronger than
descending for all connection lengths. This coupling scheme is used to produce mono-
tonic entrainment ranges as a function of forcing position, seen in C. Nonuniform coupling
asymmetry is depicted in B with Aa = 0.006, Ad = 0.0004, λa = 0.75, and λd = 4.
For our choice of parameters, ascending connections become stronger at connections of
length 3. Nonuniform coupling is used to compute the entrainment range in D, where see
non-monotonic entrainment ranges.

with intersegmental coupling strength. For stronger coupling, the derived phase model

captures the general properties of the neural entrainment range but not the details as seen

in Figure 2.9B. In the limit of weak coupling, as in Figure 2.9A, both the neural model and

the derived phase model agree almost exactly, including the type of bifurcation that occurs

when entrainment is lost. The smooth lines correspond to saddle-node bifurcations and

the dashed lines represent Hopf bifurcations. For strong coupling, the phase model is not

as good of a quantitative approximation of the neural model, but does capture the same

qualitative features of the entrainment range of the neural model, including bifurcation

type.
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2.4.2 Entrainment Ranges as a Function of Forcing Position

Figure 2.10 illustrates the effect of different types of intersegmental coupling on en-

trainment ranges plotted as a function of forcing position. Figure 2.10A shows the strength

of connections plotted as a function of connection length for both ascending and descend-

ing coupling and corresponds to equation (2.8) with parameters Aa = 0.0004, Ad = 0.0002,

and λa = λd = 4. Strength of the ascending connections are uniformly stronger than de-

scending connection strengths, hence we refer to this intersegmental coupling scheme as

uniform coupling asymmetry. Similarly, Figure 2.10B shows connection strengths, again

as a function of connection length, for both ascending and descending connections where

Aa = 0.006, Ad = 0.0004, λa = 0.75, and λd = 4. Note in this case, for connections

of length 1 and 2, ascending strengths are stronger than descending strengths, but the

curves cross transversely (at approximately coupling length 3), and descending strengths

are now stronger than ascending. We refer to this coupling scheme as nonuniform coupling

asymmetry.

We consider entrainment ranges as a function of forcing position to test the hy-

pothesis that nonuniform coupling asymmetry produces larger entrainment ranges when

forcing the middle of the chain of oscillators than when forcing at either end. We com-

pute entrainment ranges as a function of forcing position m for the examples of uniform

and nonuniform asymmetric coupling illustrated in Figure 2.10C and D. For each pair of

coupling strength functions, entrainment range is plotted as a function of forcing position

m. Figure 2.10C and 2.10D depict entrainment ranges for both the neural (blue line) and

derived phase (stars) models. When the chain has uniform intersegmental coupling asym-

metry (Figure 2.10A), entrainment range is a monotonically increasing function of forcing
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Figure 2.11: Entrainment ranges as a function of forcing position for varying intersegmen-
tal connections in the neural model. Figure 2.11a shows the entrainment range for strong
uniform coupling asymmetry with Aa = 0.04, Ad = 0.02, and λa = λd = 4. Figure 2.11b
shows the entrainment range for strong nonuniform coupling asymmetry with Aa = 0.6,
Ad = 0.04, λa = 0.75, and λd = 4. Note that even with strong intersegmental coupling
the neural model requires nonuniform couping asymmetry to produce non-monotonic en-
trainment ranges.
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position, as seen in Figure 2.10C for both the neural and derived phase model. When the

chain has non-uniform intersegmental coupling asymmetry (Figure 2.10B), entrainment

range is a non-monotonic function of forcing position, since the largest entrainment range

occurs at m = 3, as seen in Figure 2.10D. Nonuniform coupling asymmetry produces

qualitatively the same entrainment ranges as a function of forcing position as the experi-

mental data and supports the hypothesis of Previte et al. [57] that monotonic entrainment

ranges as a function of forcing position are not a generic property of coupled oscillators

but rather depends on intersegmental coupling properties. Further, note that since cou-

pling strength is relatively weak, the phase model acts as a very good approximation of

the neural model. To test the effect of intersegmental coupling strengths, we also compute

entrainment ranges as a function of forcing position for strong intersegmental coupling.

These entrainment ranges are shown in Figure 2.11. Note we only plot the entrainment

ranges for the neural model because the phase model closely approximates the neural

model only in the limit of weak intersegmental coupling. For stronger intersegemental

connections we see the same qualitative entrainment ranges as in Figure 2.10. Thus, the

strength of the connections does not affect the shape of the entrainment range and this

further supports the hypothesis that the nonuniform coupling asymmetry is responsible

for non-monotonic entrainment ranges.

2.5 Loss of Entrainment

Previous analytic results only considered internal loss of entrainment in a phase

model [40]. Previte et al. [57] characterized loss of entrainment for the sinusoidal phase

model, as either internal or external. Internal loss of entrainment occurs when part of

the chain follows ω∗i = ωf but for the rest of the chain ω∗i 6= ωf . This split can occur
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above or below the oscillator where forcing is applied, corresponding to rostral or caudal

internal loss of entrainment. External loss of entrainment occurs when ω∗i are equal for all

oscillators in the chain but are not equal to the forcing frequency ωf . Previte et al. [57] also

showed that internal loss of entrainment is more likely when forcing strength αf is strong

relative to coupling strengths αr. Our simulations of loss of entrainment in Figure 2.12

support this conclusion. For relatively weak forcing strength, αf = 0.5, entrainment is lost

externally for both the neural and derived phase models. Alternatively, for stronger forcing

strength, αf = 2, entrainment is lost internally where oscillator 9 has a different frequency

than oscillator 10. These results support the claim that experimental entrainment needs to

be re-examined to determine how entrainment is lost at the middle and ends of the chain

[57]. Experimental procedures make it difficult to classify exactly how entrainment is lost.

Moreover, experimental entrainment ranges plot the average frequency of the oscillators

in the chain, which obscures more subtle differences [57].

To compare with the analytic loss of entrainment results described in [57], we char-

acterize how entrainment is lost outside of the entrainment ranges for the neural and

derived phase model. In the sinusoidal phase model, entrainment is lost solely through

saddle-node bifurcations. However, in both the neural and derived phase models, entrain-

ment is lost either via a saddle-node bifurcation or a Hopf bifurcation (also known as a

Neimark-Sacker bifurcation) of the Poincaré map [27]. Lines of saddle-node and Hopf bi-

furcations meet at a codimension-two Bogdanov-Takens bifurcation of the Poincaré map

[6]. The type of bifurcation varies along the lower branches of the entrainment ranges

as seen in Figure 2.9. Unlike the entrainment ranges of the sinusoidal phase model of

Previte et al. [57], the entrainment ranges of the derived phase model capture the types

of bifurcations seen in the entrainment ranges of the neural model.
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Following the definitions of loss of entrainment in [57], we investigate internal ver-

sus external loss of entrainment in the CPG models. Figures 2.12A-D illustrate loss of

entrainment for the neural model and Figures 2.12E-H illustrate loss of entrainment for

the derived phase model for two values of forcing strength as indicated by the arrows in

Figure 2.9B. For small values of the forcing strength αf , the size of the entrainment range

increases approximately linearly with αf as illustrated in Figure 2.9 and entrainment at

both the lower and upper limits of the entrainment range is lost via saddle-node bifur-

cations. For forcing strength sufficiently large, the entrainment range is approximately

constant as seen in Figure 2.9.

Figure 2.12A corresponds to simulating the model described by (2.1) with ωf chosen

so that ωf − ω is just above (+0.0002) the entrainment range illustrated in Figure 2.9B

for αf = 0.5. Figure 2.12A illustrates that segmental oscillators 9 and 10 are losing one

cycle with the forcer. Figure 2.12B shows a corresponding spike in the cycle period at

each step in the relative phase. Simulating with αf = 0.5 just below the entrainment

range would produce a similar result to Figure 2.12A, except the segmental oscillator will

gain one cycle with the forcer. The loss of entrainment illustrated in Figure 2.12A and B

corresponds to external loss of entrainment because segments nine and ten (representative

of the entire chain) are oscillating together and losing a cycle with the forcer at each step.

Figure 2.12C also demonstrates loss of entrainment but in this case αf = 2 and

ωf chosen so that ωf − ω is just above (+0.0002) the entrainment range illustrated in

Figure 2.9B. Forcing is still on the tenth oscillator, but instead of both oscillators nine

and ten losing or gaining a cycle with the forcer at the same time, Figure 2.12C shows that

oscillator nine is losing a cycle with the forcer, whereas oscillator ten is still oscillating with

the forcer. Figure 2.12D shows a spike in the cycle period as was seen in Figure 2.12C
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Figure 2.12: Comparison of loss of entrainment for the neural (A-D) and derived phase
(E-H) models. Figures 2.12A and E show phase relative to the forcer for external loss
of entrainment with αf = 0.5 and ωf − ω is +0.0002 above the entrainment range as
indicated by arrow 1 in Figure 2.9B, where A is a simulation of the neural model and E
is a simulation of the derived phase model. Figures 2.12C and F show relative phase for
internal loss of entrainment with αf = 2 and ωf − ω is +0.0002 above the entrainment
range indicated by arrow 2 in 2.9B. Figures 2.12B and F and 2.12D and H show cycle
period for external and internal loss of entrainment respectively.
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at each step in relative phase. This loss of entrainment corresponds to internal loss of

entrainment because part of the chain is oscillating at the same frequency with the forcer

and another part is not. Internal loss of entrainment can be characterized further as rostral

or caudal. Rostral loss of entrainment means that segmental oscillators above the forced

oscillator have a different average frequency than the forcer, but the oscillators below the

forced oscillator have the same average frequency as the forcer. On the other hand, caudal

loss of entrainment means that the loss of entrainment takes place for oscillators below the

forced oscillator. Since we consider the case where forcing is applied to the last oscillator in

the chain, we can only see rostral loss of entrainment where oscillators 1 through 9 have a

different frequency ω∗i . The neural model described by (2.1) exhibits both external loss of

entrainment for the entrainment ranges that grow linearly as a function of αf , and internal

loss of entrainment where the entrainment ranges are a relatively constant function of αf

(see Figure 2.9). The loss of entrainment near the Hopf bifurcation in Figure 2.9 is more

complex and does not clearly fall into either of these two categories.

Both internal and external loss of entrainment is also seen in the derived phase

model. In Figure 2.12E, entrainment is lost externally for forcing frequency above the

entrainment range for αf = 0.5. Figure 2.12G shows internal loss of entrainment for

αf = 2. As in the neural model, Figures 2.12E and F illustrate how the the oscillators

gain a cycle with the forcer. In Figure 2.12E, all 10 oscillators have the same frequency

ω∗i 6= ωf while in Figure 2.12F, ω∗10 = ωf but oscillators 1 through 9 have a different

frequency. Figures 2.12G and H illustrate the jump in cycle period where the relative

phases gain a cycle with relation to the forcing frequency.

For the upper bound on the entrainment range, entrainment is lost externally for

small values of αf when the entrainment range is growing linearly as a function of αf ,
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whereas entrainment is lost internally in the range of αf where the entrainment range is

relatively constant as a function of αf . In both these ranges, entrainment is lost through

a saddle-node bifurcation of the return map in the Poincaré section. Hence, the type of

loss of entrainment does not necessarily correspond to the type of bifurcation. Loss of

entrainment just below the entrainment range exhibits more complicated behavior which,

for some αf values, cannot be easily classified as internal or external. Finally, the derived

phase model agrees with the neural model on how entrainment is lost at different loca-

tions along the entrainment range. This further illustrates that the derived phase model

preserves entrainment information about the more biologically detailed neural model.

2.6 Discussion

Motivated by the experimental results of Tytell and Cohen [66] and the modeling

results of Previte et al. [57], we investigated the entrainment properties of both a neural

and derived phase model. As expected based on the theory of phase reduction for weakly

coupled oscillators, we saw the entrainment characteristics of the neural model were closely

approximated by the derived phase model in the limit of weak coupling. This included

entrainment ranges as a function of forcing strength, entrainment ranges as a function

of position, and also loss of entrainment. Additionally, we computed entrainment ranges

as a function of forcing position with different coupling schemes. For both the neural

and derived phase model we saw monotonic and non-monotonic entrainment ranges as a

function of forcing position for uniform and nonuniform coupling asymmetry respectively.

Entrainment is also lost in the same way in both models as illustrated by Figure 2.12.

Comparing the entrainment results for the neural and derived phase models indicates that

the derived phase model is able to capture all of the essential entrainment properties we
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analyzed. Thus, with sufficiently weak coupling, entrainment can be studied in the simpler

derived phase model. We can compare the coupling functions in the derived phase model

to the coupling functions of other phase models (see [10, 57] for example). The simplicity

of the phase model allows for future analysis, similar to the analysis done for the sinusoidal

phase model [57].

Although both chains of coupled oscillators, the neural and derived phase models

contain different levels of biological detail in comparison to the simpler sinusoidal phase

model. Despite these differences, entrainment results are qualitatively similar across all

three models. Entrainment ranges as a function of forcing position are plotted in Figure

2.10 for both the neural and derived phase models. We see similarly shaped entrainment

ranges as a function of forcing position in our two models as well as the sinusoidal phase

model studied by Previte et al [57]. This supports the hypothesis that non-monotonic en-

trainment ranges are not an intrinsic property of chains of coupled oscillators but rather

a characteristic of a specific type of intersegmental coupling. Specifically, nonuniform

coupling asymmetry, in each model, produces entrainment ranges that do not increase

monotonically as forcing position increases. Additionally, computational and experimen-

tal results have indicated coupling asymmetry exists in the lamprey CPG, but the strength

and direction of connections is still unknown [37, 28]. More recently, experiments have

been conducted that examine the distribution and connections of commissural interneu-

rons. These experiments show differences in the rostrocaudal distribution of commissural

interneurons [46] and differences in the synaptic organization of ipsi- and contralaterally

projecting interneurons [4]. Ayali et al. experimentally showed differences in CPG out-

put between blocking short ascending and descending connections, which further supports

the idea of coupling asymmetry in the lamprey CPG [2]. From these results and our
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simulations, we hypothesize that intersegmental connections in the lamprey CPG exhibit

nonuniform coupling asymmetry. This is an important insight into the CPG since individ-

ual intersegmental connection strengths are extremely difficult to measure experimentally.

While the sinusoidal phase model agrees with the neural model for entrainment

ranges as a function of forcing position for both uniform and nonuniform coupling asym-

metry, it does not capture all of the properties of entrainment ranges as a function of

forcing strength. In the sinusoidal phase model, entrainment ranges as a function of forc-

ing strength, αf , are linear with slope depending on forcing position m and αk/α−k [57]. As

seen in Figure 2.9, the derived phase model, even for stronger coupling, exhibits a nonlin-

ear relationship between entrainment and forcing strength. This is especially evident along

the lower bound of the entrainment range in Figure 2.9A. Although the sinusoidal phase

model captures the qualitative entrainment information, it does not capture the types of

bifurcations seen in the neural model. In the derived phase model, we see saddle-node

bifurcations and Hopf bifurcations in the middle of the lower bound, which is consistent

with the entrainment ranges for the neural model. The sinusoidal phase model only loses

entrainment through saddle-node bifurcations [57]. Thus, our work justifies using the cou-

pling functions in the derived phase model to approximate the neural model in further

entrainment studies, particularly the effects of perturbations.

In both the neural and derived phase models, we chose parameter sets based on

previous work [67, 57]. However, the entrainment results of both models approximately

scale with the order of magnitude of coupling parameters. This is evident in Figure 2.9.

The two panels compare entrainment ranges as a function of forcing position for two

parameter sets which differ by a scale of 100. For the derived phase model, plotted in

blue, the entrainment range on the right is exactly 100 times the entrainment range on
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the left. For the neural model, the entrainment ranges differ slightly in shape but the

same change in magnitude is evident. This scaling also occurs in entrainment ranges as

a function of forcing position for both models. Thus, our results could be generalized to

other models and parameter choices depending on the locomotion system being modeled.
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Chapter 3: Stochastic Entrainment

3.1 Overview

Proprioception provides information about the position of the body to the CPG,

which can then adjust its signal to maintain steady swimming. To better understand

the feedback loop for lamprey swimming, we investigate how sensory perturbations affect

the entrainment of the CPG. Since sensory feedback is part of a closed-loop system, it is

difficult to see causal relationships between edge cell activity and CPG output. In practice,

we perform open-loop experiments where a smaller part of the system is isolated and we

can control the input and measure the resulting output. To study the effects of sensory

perturbations we perform noisy bending experiments where we control the bending of the

spinal cord (activating the edge cells) and record the output from the CPG. Perturbations

are added to the bending signal, in the form of Gaussian white noise. Thus, through noisy

bending we examine how perturbations to sensory feedback affect the entrainment of the

lamprey CPG.

Experimental entrainment ranges for deterministic bending signals have been com-

puted while varying the location of the forcing position [66]. Using the same experimental

conditions, described in Section 1.1, we compute entrainment ranges while applying noisy

sinusoidal bending signals to the excised lamprey spinal cord. The noisy bending signal

serves as a perturbation to the edge cells, which then send signals to the CPG. We record
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the output from CPG and determine if the CPG is entrained or not. We develop a new

measure of entrainment since the noisy bending signal introduces more variability to the

system and we can no longer expect to have constant frequency for the CPG. Experimen-

tal entrainment ranges are computed for caudal bending at the end of the spinal cord for

various levels of noise.

We then model these experiments using the derived phase model defined in Section

2.3, which in the limit of weak coupling captures the same entrainment information as the

neural model for deterministic bending. We now add stochastic bending to the derived

phase model and compute the entrainment range for forcing at the end of the chain. We

quantify the effects of the noisy bending on entrainment by calculating the variability in

the phase relationships between oscillators and also in the frequency of oscillations.

3.2 Noisy Bending Experiments

To determine how the CPG responds to perturbations we perform noisy bending

experiments and record the CPG output. As in the deterministic entrainment experiments,

described in Section 1.1, the spinal cord is removed from the lamprey and placed in a bath

of excitatory neurotransmitter, D-glutamate, to activate the CPG. The spinal cord is

pinned down, with only a few caudal segments free to bend. The most caudal segment

is attached to a plastic arm which is controlled by a motor. Glass suction electrodes

are placed along the side of the spinal cord and record the output from the ventral root.

This is the electrical signal produced by the CPG which would then innervate the muscles

for swimming if the lamprey was intact. Figure 3.1A illustrates this experimental set-

up where the large arrows indicate the placement of electrodes. Figure 3.1B shows the

recordings from the three electrodes shown in Figure 3.1A for a stationary spinal cord

50



Figure 3.1: Experimental recordings from ventral roots along the excised lamprey spinal
cord in a bath of neurotransmitter. Figure A shows the experimental recording configura-
tion. Glass suction electrodes are used to record from ventral roots along the notochord
while bending the spinal cord back and forth. The three large arrows indicate three suc-
tion electrodes placed at different locations along the spinal cord. The smaller triangles
indicate where the spinal cord was pinned down in the bath. The double set of pins to the
right of arrows 2 and 3 denote the point of bending. Figure B shows a sample recording
of the ventral root signals from segments along the spinal cord at positions indicated by
the arrows in A for a stationary spinal cord without bending.
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without bending. Thus, the recordings show the intrinsic firing frequency of the CPG.

To compute the firing frequency, we determine the time between the center of two bursts,

which is the period of signal. We denote this period by T0 and the intrinsic frequency of

the CPG by ω0 = 1/T0. Note there is a phase lag between the bursts in recordings one

and two which corresponds to the traveling wave of electrical activity along the spinal

cord. Additionally, the bursts in recordings 2 and 3, electrodes on opposite sides of the

spinal cord, occur in antiphase, illustrating the alternation of activation on the left and

right sides.

Using sinusoidal bending signals with various frequencies we compute a deterministic

entrainment range, the range of frequencies for which the CPG is entrained. In Figure

3.4B the black line illustrates the deterministic entrainment range for sinusoidal bending

(no noise) with amplitude 20 degrees and various frequencies close to the CPG’s intrinsic

frequency, f0 Hz. Entrainment is determined by the burst frequency, corresponding to

action potentials in the recordings. When the CPG is entrained, these bursts occur with

the same frequency as the sinusoidal bending signal. An example of this deterministic

bending data is shown in Figures 3.2A-C. The deterministic bending signal is shown in

Figure 3.2A and is overlaid with the raw recording from electrode 3. Figure 3.2B plots the

burst frequency for each recording as a function of bending cycle number. The frequency

of each burst is close to the frequency of the sinusoidal bending signal, indicating that the

CPG is entrained. Another way to visualize entrainment is to look at the phase of the

bending signal where spikes (action potentials) in the recording occur. This is computed

by multiplying the frequency of the bending signal by the spike times. If the CPG is

entrained, then spike times should be clustered around a single phase. This indicates

that the CPG is firing at an approximately constant phase relative to the bending signal.
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Figure 3.2: Comparison of experimental data from one section of the spinal cord with a
deterministic sinusoidal forcing signal (A-C) and noisy sinusoidal forcing (D-F) applied
to the last segment. Figures A, D show the relationship of the sinusoidal bending to the
ventral root recording. Figures B, E show that the oscillators have entrained to the 1.6
Hz forcing frequency. Figures C, F show the phase of the spikes relative to the forcing
frequency. The noisy bending produces figures very similar to deterministic bending,
indicating the lamprey CPG is robust to noise.
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Thus, the CPG and the bending signal have the same frequency, which is entrainment.

Figure 3.2C shows the spike phases for the three different ventral root recordings where

each color denotes a different electrode. Spikes recorded in electrode 1 occur around 240◦

and spikes recorded by electrodes 2 and 3 occur around 120◦ and 300◦ respectively where

the degrees measure the phase in the sinusoidal bending signal. Note that even when the

CPG is entrained to the sinusoidal bending frequency there is still variability in the spike

phases. This is due to intrinsic variability in neuron firing and also likely due to noise

from the extracellular recording.

We now have a baseline entrainment measure for deterministic sinusoidal bending.

However, smooth sinusoidal bending is not realistic sensory input to the lamprey CPG.

Lampreys experience perturbations during swimming which can be internal: variability in

neuron firing; or external: changes in the environment such as wakes, obstacles or other

lamprey. Proprioception plays a large role in the lampreys’ ability to adjust its behavior

in response to these perturbations. To test how the CPG responds to perturbations,

we add Gaussian low-pass filtered white noise to a sinusoidal bending signal, which would

typically entrain the CPG. To quantify the level of noise added to the sinusoidal signal, we

compute the signal to noise ratio (SNR). SNR is equal to the amplitude of the sinusoidal

bending signal divided by the amplitude or standard deviation of the noise signal. For

example, for a bending signal consisting of a sinusoid with amplitude 20 degrees and filtered

Gaussian white noise with standard deviation 4 degrees the resulting SNR is 20/4 = 5.

An example of one such noisy bending signal is shown in Figure 3.2D along with a single

electrode recording from the CPG. Figures 3.2D-F summarize the CPG output for noisy

sinusoidal bending with the same frequency of bending as in Figures 3.2A-C. Note that the

burst frequencies shown in Figure 3.2E are still clustered around the underlying bending
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frequency of 1.6 Hz. This implies that the CPG is still bursting at the same frequency

as the bending signal which means the CPG is still entrained in the presence of noise.

In Figure 3.2F we see the relative phases of spike times in each recording. Note that the

spike phases for electrodes 2 (red) and 3 (yellow) are more loosely distributed than the

spike phases for electrode 1 (blue). This is likely because electrodes 2 and 3 are located

closer to the point of bending than electrode 1, as seen in Figure 3.1A. Thus, the effects

of bending are seen more strongly in segments closer to the point of bending. This implies

that the short ascending connections are stronger than the long ascending connections.

Despite the increased variability in the spike phases the average spike phase still agrees

with the average spike phase for deterministic bending show in Figure 3.2C. Thus, the

phase relationship between segments is maintained and the CPG is entrained with noisy

bending. This suggests that small perturbations to the sensory feedback received by the

CPG during swimming do not disrupt the neural activity for steady swimming.

3.3 Modeling Noisy Bending Experiments

To investigate the experimental entrainment ranges for deterministic sinusoidal

bending [66], several CPG models have been analyzed [57, 47]. These models, with certain

types of coupling, were able to capture the qualitative properties of entrainment seen in

the experimental lamprey data. We now model the noisy bending experiments with the

derived phase model presented in Section 2.3. To model the noisy sinusoidal bending, we

add filtered Gaussian white noise to the forcing connection in (2.7). The equation of the

forced oscillator, θm, becomes

θ̇m = 2πf0 +
n∑
k=1
k 6=m

6∑
j=1

6∑
l=1

αljm−kH
lj(θk − θm) + αf

2∑
s=1

6∑
j=1

Hsj
f (θf − θm) + σξ (3.1)
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where ξ is the filtered Gaussian noise and σ denotes the standard deviation of the noise.

For simplicity, we refer to σ as the level or amplitude of noise in the SNR calculation. For

a complete description of the derived phase model and its parameters see Section 2.3. For

the simulations in this chapter we use strong nonuniform coupling asymmetry for inter-

segmental connections. Recall that these parameters yielded non-monotonic entrainment

ranges a function of forcing position, which more closely matched experimental entrain-

ment ranges. The specific parameters we use here are Aa = 0.6, Ad = 0.04, λa = 0.75,

and λd = 4, which define coupling strength based on length in (2.8).

To model the noisy bending experiments, a chain of coupled phase oscillators was

simulated under the same conditions as the biological experiments. Mathematically, the

relative phase of the oscillators is computed by θf − θi. With smooth sinusoidal forcing,

constant relative phases indicate the CPG is entrained. That is, the oscillators in the

chain all have the same frequency as the forcer θf . For sinusoidal forcing with low-pass

filtered Gaussian white noise, represented in our model by the last term in (3.1), the

relative phases will not be constant because of the noise added to the forcing. Figure 3.3

compares the simulations with deterministic and stochastic sinusoidal bending. Figure

3.3A illustrates the deterministic sinusoidal forcing signal. For a set range of frequencies,

this signal will entrain the computational CPG with αf = 3. Figures 3.3B and 3.3C

illustrate the entrainment of the CPG. In Figure 3.3B, the frequency is plotted for the

entire length of the simulation for oscillators 9 and 10. Since the CPG is entrained, the

frequency of both oscillators is the same as the forcing frequency (and is the same for all

oscillators in the chain). When all the oscillators have the same frequency, the phases of

the oscillators relative to the forcing signal will be constant as seen in Figure 3.3C.

We use the same types of plots for the stochastic sinusoidal forcing to determine the
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effects of perturbations on entrainment. Figure 3.3E shows the noisy sinusoidal bending

signal for our simulation, Figure 3.3G plots the frequency of oscillators 9 and 10, and

Figure 3.3F shows the relative phase of oscillators 4, 8, 9 and 10 in the chain as a function

of time. The computational CPG still appears entrained to the forcing frequency f despite

the addition of noise. Figure 3.3G shows that the cycle frequency for oscillator 9 matches

almost exactly with the forcer while the frequency of oscillator 10 varies around f. Thus,

the noisy forcing signal has a noticeable impact on the tenth oscillator where the forcing

is applied but not on the rest of the chain. Figure 3.3F shows the relative phases appear

mostly constant with small oscillations around the relative phase that would have been seen

without noisy forcing, depicted in Figure 3.3B. The relative phases also illustrate that the

phase lag between segments is maintained throughout the simulation. More importantly,

the simulations show that the noisy forcing on the tenth oscillator is reflected in the

plot of its relative phase, but the noise drastically decreases in even the ninth oscillator.

This is also seen in Figure 3.3H where forcing is applied to the 5th oscillator. Note the

relative phases for oscillators above 5 (i < 5) appear more variable than oscillators below 5

(i > 5). Despite the addition of noise, the relative phases still approach the same average

relative phase seen in Figure 3.3D. Thus, the perturbations added to the model have added

variability to the CPG output but not disrupted the signal enough to prevent entrainment.

3.4 Stochastic Entrainment Ranges

So far we have described experimental results for noisy sinusoidal bending in Section

3.2 and computational modeling of noisy sinusoidal bending in Section 3.3. However, these

are only two illustrative examples of the CPG remaining entrained to the underlying

sinusoidal bending signal in the presence of noise. To summarize the effects of noise across
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Figure 3.3: Simulation of the derived phase model with sinusoidal (A-D) and noisy sinu-
soidal (E-H) forcing. Figure A shows the sinusoidal forcing signal applied to the tenth
oscillator. Figure B shows the relative phases of several oscillators with sinusoidal forcing
for m = 10 where f − f0 = 0.0005 and Figure D shows the relative phases for oscillators
3 through 7 when m = 5. Figure C plots the frequency for oscillators 9 and 10 during
the entire bending signal. Figure E illustrates the noisy sinusoidal forcing signal applied
to the mth oscillator. Figure F shows the relative phases of oscillators 4, 8, 9, and 10
with f − f0 = 0.0005, forcing strength αf = 3 and noise level σ = 0.15. Figure G plots the
frequency for oscillators 9 and 10 throughout the entire bending signal for m = 10. Note
that the noise is clearly visible in oscillator 10, where forcing is applied, but the amplitude
of the noise is dramatically decreased in oscillator 9. Figure H plots the relative phases of
oscillators 3 through 7 when m = 5.
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a range of bending frequencies, we compute entrainment ranges for both the experimental

bending data and the computational CPG model. For deterministic sinusoidal bending,

entrainment corresponds to constant relative phases. For the stochastically forced CPG,

both the experimental and computational CPG signal will be more variable due to the

noisy signal. Thus, to characterize entrainment for noisy sinusoidal bending, we calculate

the mean and variance for the spike phase. Since our data is periodic and variable, we

need to use circular statistics [18]. For spike phases, xi, the circular mean is computed by

the following

x̄ =
1

n

n∑
i=1

 sin(2πxi)

cos(2πxi)

 (3.2)

θ̄ = arctan(x̄) (3.3)

where x̄ is the resultant vector and θ̄ denotes the average phase of the data. To measure

the variability we take

R = ||x̄|| (3.4)

S = 1−R (3.5)

where S denotes the circular variance of the data. An R value closer to 1 means that there

is a tight distribution of spike phases (S close to 0) and indicates that the spinal cord is

entrained. A smaller value of R indicates there is more variability in the phases when the

spikes occur, which implies the CPG is not entrained.

Figure 3.4 shows the R-statistic plotted as a function of the entrainment range f− f0

for different values of the signal to noise ratio (SNR). SNR is calculated by dividing the

amplitude of the sinusoidal bending signal by the standard deviation of the Gaussian band-

limited white noise which is added to the signal. Figure 3.4A plots a sample recording
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with noisy sinusoidal bending with SNR 10. Figure 3.4B shows values of the R-statistic

as a function of forcing frequency obtained experimentally. Figure 3.4C shows the same

plot using simulation of the derived phase model of the CPG with noisy sinusoidal forcing.

In Figure 3.4B, the R values are close to 1 for several SNRs when the forcing frequency

is close to CPG’s base frequency. However, as |f − f0| gets larger, the noise has more

affect on the CPG signal and the R value decreases. For the computational model, the

R-statistic is high for all levels of noise when f − f0 lies in the deterministic entrainment

range, but outside of this range the R-statistic decreases. This is illustrated in Figure

3.4C. Thus, when the computational CPG is entrained, it is highly robust to noise added

to the forcing signal. Figure 3.4 illustrates that the lamprey CPG is highly resistant to

noise, with no effect observed until the signal to noise ratio is close to 1. The effects of

noise are more subtle in the computational model in the sense that the noise is mostly

seen in the oscillator where the noisy bending occurs, seen in Figure 3.3F in oscillator

10. Also, the entrainment range for the derived phase model is much smaller (an order of

magnitude less) than the experimental entrainment range. This is due to the assumptions

of our model and our choice of coupling strength. In the derived phase model, entrainment

ranges scale with the coupling strength. For example, if the intersegmental coupling was

ten times stronger, the entrainment range would be ten times larger. Thus, the derived

phase model closely agrees with the entrainment results of noisy bending experiments and

can then be used to explore other properties of sensory feedback.

3.5 Discussion

In our deterministic bending simulations for lamprey CPG models, entrainment is

measured by comparing the frequency of each oscillator in the chain, ω∗i , to the angular
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Figure 3.4: Experimental and computational results indicate that the CPG is highly robust
to noise. Figure A shows a sample recording showing entrainment of the CPG activity
(black) to a noisy bending signal (blue) with SNR of 10. Figures B and C show the
experimental (B) and computational (C) entrainment results for signals with a range of
SNR values. R is the resultant vector length; R > 0.8 indicates entrainment.
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forcing frequency ωf = 2πf where f is the frequency in Hz. If the frequency of each

oscillator is the same as ωf then we say the chain is entrained. However, for stochastic

bending simulations, we are introducing noise to the system. Thus, we do not expect the

oscillators to maintain a constant frequency but rather a variable frequency close to ωf .

This then implies the relative phase of each oscillator, θf−θi will not longer be constant but

instead will vary around the constant phase seen for deterministic bending. To visualize

the effect of the added noise on the entrainment of the CPG we plotted burst frequencies

and relative spike phases. Figures 3.2 and 3.3 compare the burst frequency and relative

phases for experimental data and model simulations. From these comparisons, it appears

the CPG is robust to noise during entrainment. In both the computational model and

the experimental data, the burst frequency remains close to the forcing frequency f. To

further quantify these results, we computed entrainment ranges as the signal to noise ratio

increased. We define entrainment for noisy sinusoidal bending with the R-statistic, where

values above 0.8 indicate entrainment. Entrainment ranges for both experimental data

and the derived phase model show that entrainment is mostly unaffected across a range

of SNRs when the forcing frequency is in the deterministic entrainment range. The R-

statistic only begins to drop below 0.8 when the forcing frequency is much different than

the base frequency (ie. |f−f0| is large) and the SNR gets close to 1. Both our experimental

data and our computational model indicate the CPG is highly robust to noisy sinusoidal

bending in terms of maintaining entrainment.

For this model, we chose a specific type of intersegmental coupling, namely nonuni-

form coupling asymmetry. This means that we choose ascending and descending coupling

strengths so that for some connection lengths, ascending connections are stronger than

descending ones, but for other lengths, ascending connections are weaker than descending.

62



Previously, we [47] computed deterministic entrainment ranges for both the neural model

(2.1) and the derived phase model (2.7). The models best captured the qualitative prop-

erties of entrainment from experimental data when nonuniform coupling asymmetry was

used [47]. The derived phase model, with relatively strong nonuniform coupling asym-

metry, also captures the stochastic bending results presented here. This further validates

our model and supports our claim that the lamprey CPG exhibits nonuniform coupling

asymmetry for intersegmental connection strengths. One limitation of our model is that

we assume edge cell inputs only affect a single segment. Anatomically, we know that edge

cell axons may extend over multiple segments, with their axons going primarily rostrally

(towards the head) [62]. Functionally, however, we do not know how strong or the exact

length of these long connections are. We further examine the role of edge cells in Chapter

4.

The differences between the deterministic and stochastic output illuminate how

the edge cells affect the CPG signal and how entrainment is achieved. For forcing at

the end of the chain, we saw our model closely resembled the experimental entrainment

results for stochastic bending (Figure 3.4). In the derived phase model, we can easily vary

where the forcing is applied in the chain. An interesting result from the noisy bending

simulations arose from forcing the chain at the middle oscillator θ5. We saw the noise

from the forcing signal had a larger effect on oscillators above θ5 and a smaller effect on

the oscillators below. This result is especially interesting because we choose nonuniform

coupling strengths, defined in (2.8), which means that short ascending connections are

stronger than short descending connections but for longer connections the descending

strengths are larger. Thus, the short connections may determine how much influence the

sensory information from the edge cells has on the other oscillators in the chain. This
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result is supported by the relative phases from the experimental recordings plotted in

Figures 3.2C and 3.2F where the relative spike phases are compared for deterministic and

noisy bending. Electrode 1 is farther away from the point of bending than electrodes 2 and

3 and the distribution of spikes in Figure 3.2F for electrode 1 appear less variable. Note all

of the recordings are above the point of bending so we cannot compare the effects of noisy

bending on oscillators above and below the segment where forcing is applied. Thus, our

model gives insight into how differences could arise based on differences intersegmental

connection strengths. These modeling results are important because it is difficult to

measure individual connection strengths experimentally. We also see that when noisy

bending is applied to the 10th oscillator in the chain, the noise is greatly reduced in the

rest of the oscillators as seen in the relative phase of oscillator 9 in Figure 3.3F. These

results illustrate how noisy input into the CPG is filtered before it propagates to other

segments in the spinal cord.

Our stochastic entrainment analysis characterizes the effects of noisy sinusoidal

bending on the phase and frequency of CPG output but does not describe how sensory

perturbations change the CPG output. An alternative approach uses a harmonic transfer

function (HTF), which fully characterizes the effects of small perturbations of a stable

periodic system in the frequency domain. In our case, the periodic system corresponds to

sinusoidal bending that entrains the CPG’s rhythm and the perturbations are the noise

added to bending. An HTF is an extension of the frequency response function (FRF),

which fully characterizes small perturbations around a stable fixed point in the frequency

domain. The FRF describes how sinusoidal input at any frequency f produces sinusoidal

output at the same frequency, specifically it describes how gain (the ratio of output am-

plitude divided by input amplitude) and phase (the phase shift of the output relative to

64



the input) vary across frequency. We compute FRFs and HTFs for noisy bending and

edge cell output in Chapter 5.
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Chapter 4: Role of Edge Cells During Entrainment

4.1 Overview

Edge cells are mechanosensory neurons located in the margin of the spinal cord

that respond to the stretch of the spinal cord [23, 58, 33]. As lamprey swim, an S-

shaped wave propagates down the body resulting in propulsion of the animal through the

water. Edge cells facilitate this wave by detecting stretch and rate of stretch and sending

electrical signals to the CPG. Thus, edge cells are studied as one of the primary forms

of sensory feedback in the lamprey. Sensory feedback plays a large role in adjusting the

phase lag between segments and thus contributes to the entrainment of the CPG. We

wish to identify the role of edge cells during entrainment and describe the input-output

relationship between edge cell activation and CPG output. To model this relationship

we investigate what type of information is encoded in edge cell firing. We compute firing

rates for periods of static and dynamic stretch through bending experiments similar to

the CPG bending experiments described in Section 1.1. From these bending experiments

we identify different types of edge cells which tend to respond to different bending stimuli

and show how firing rate relates to different bending characteristics like amplitude and

velocity.
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4.2 Mechanosensory Neurons

Edge cells are mechanosesnory interneurons in the lateral tract of the lamprey spinal

cord which are known to detect stretch during swimming [23]. A florescent stain can be

used to image edge cells in the spinal cord, illustrated in Figure 2.2. Image was taken in Jim

Buchanan’s lab by Eric Tytell. In the bottom of the figure, the edge cell dendrites synapse

on to the edge of the spinal cord. These synapses are activated when the body bends and

the spinal cord is stretched. This means that edge cells along the left side of the spinal

cord will respond when the body is bent to the right (with respect to the animal) because

the left side of the body will be stretched while the right side is compressed. Information

about how the body is bent is sent through the edge cell body, down the edge cell axon,

and finally to the CPG. Edge cell axons project along the lateral tract of the spinal cord

but the exact lengths of the projections is not known. It is known that some edge cell axons

run ipsilaterally, while some project contralaterally. These two classes of edge cells act

differently on certain classes of neurons in the CPG. Edge cells with ipsilateral projections

excite CPG neurons while edge cells with contralateral projections inhibit CPG neurons

[58]. Thus, edge cells act as proprioceptors for lamprey and contribute to adjusting the

frequency of CPG output in response to perturbations. These perturbations could come

from the environment in the form of rocks, currents, or other fish, or internally from the

variability of neural firing or muscle force. Sensory feedback allows the CPG to adjust its

rhythm and maintain the desired periodic neural activation of muscles used for swimming.

Previous studies have shown that edge cells respond to lateral stretch [23, 58, 33]

and dorsal stretch [33]. Hsu et al. [33] also showed that the distribution of edge cells that

respond to each bending direction, contralateral or ipsilateral in the yaw plane and dorsal
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or ventral in the pitch plane, varies along the length of the spinal cord. Most neurons

responded to ventral bending and about 40% responded to contralateral bending. The

proportion of edge cells with responses to different bending directions was about the same

for the rostral (segments 10 to 30) and middle (segments 35 to 50) regions of the spinal

cord. However, there were twice as many neurons that responded to ipsilateral bending in

the middle region of the spinal cord. This difference could contribute to the non-monotonic

entrainment range seen by Tytell and Cohen [66] where entrainment ranges were largest

for bending applied to the middle segments of the spinal cord.

Edge cells are part of a complex, closed-loop locomotion system which involves

interactions between many different biological systems. The CPG produces the neural

activity which innervates muscles for swimming, which then bends the body and activates

edge cells and provide feedback to the CPG. In an effort to understand how edge cells

respond during swimming, we perform open-loop experiments where a mechanical stimuli

bends the excised spinal cord and activates edge cells. This allows us to provide a known

(controlled) input to the edge cells and record the resulting output. Using different bend

and hold bending signals, we identify several types of edge cell response which differ based

on the amplitude and velocity of bending.

4.3 Experimental Methods

Previous experiments have focused on the CPG response to mechanical bending and

recordings were from the ventral roots on the notochord. These are the signals that would

be sent to activate muscles to produce a swimming motion. To record edge cell responses

the initial preparation is very similar to the standard CPG preparation. The spinal cord is

excised using the same methods and again pinned in a bath. For edge cell recordings, we
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do not want any neurons of the spinal cord to be activated by neurotransmitters because

we are looking for responses to mechanical stimuli. Thus, the spinal cord is placed in a

bath of calcium-free saline which leaves the neurons in the CPG inactive and also blocks

synaptic transmission. For a single experiment, we use a section of spinal cord between

15 and 25 segments long. See Section 1.1 for a complete description of the experimental

preparation for the CPG bending experiments. As in the CPG bending experiments, the

spinal cord is pinned down and the caudal end is attached to an arm controlled by a motor.

We prescribe different types of bending signals which bend the end of the spinal cord and

as a result the edge cells are activated. To record the response to bending, as many as

three glass suction electrodes are placed in the lateral tract of the spinal cord. Figure 1.1

illustrates the different tracts in the spinal cord. Note these recordings differ from the

CPG recordings because the electrodes are placed in the spinal cord as opposed to along

the side of the spinal cord where the motor output is recorded. In these experiments,

the electrodes record extracellularly in the lateral tract where the edge cell axons run

along the length of the spinal cord. Figure 4.1 shows a sample of such recordings in blue.

Specifically, the electrodes record changes in membrane potential (mV). Large changes

in voltage, positive or negative, can be thought of as action potentials. These action

potentials, moving down the edge cell axons, carry information about bending back to the

CPG.

4.4 Spike Sorting

Extracellular recordings detect all responses in the immediate area surrounding the

tip of the electrode. This implies that we could record several different edge cell axons

within a single electrode. Identifying individual axons or responses, known as units, is
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Figure 4.1: Normalized ramp bending and raw edge cell recording. Note there are different
units that respond during different portions of bending. Large spikes occur during active
periods of bending and smaller spikes occur during hold times with positive bending angle.

difficult in some cases. However, from visual observation of the data, it is clear that there

are different sized spikes that respond consistently during different portions of the bending

signal. An example of this can be seen in Figure 4.1 where larger spikes occur during

active periods of bending to the left or the right and smaller spikes occur during times of

static stretch with positive bending angle. While in this example we can see the differences

between the two types of spikes, we cannot see the difference between the spikes that occur

during positive bending velocity or negative bending velocity. We know that edge cells can

either respond to contralateral stretch or ispilateral stretch but not both. Thus, we need

a method to determine the different units within these responses to bending velocity. The

standard spike sorting procedure uses principal component analysis (PCA) to determine

key features of spike shapes and group similar spikes (see [43] for a review of spike sorting

and PCA). To perform this sorting we use software called DataView developed by W.

J. Heitler [30]. After identifying spike times based on a selected threshold, spikes are

clustered together based on features such as spike width, spike height, spike maximum,

and spike minimum. These features are each represented in orthogonal basis vectors and

the components of interest are those with the most variability. The variability in spike

features can then be used to group spikes into units with similar features. Contrarily, if a
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feature has small variability among the data then it can be omitted from the description of

the data set without a loss of information. The three components with the most variability

(ie. the most information about the spike shapes) then can be used to sort the spike shapes.

An example of these clusters plotted in the three principal component basis from DataView

is shown in Figure 4.4. In Figure 4.4A all of the spike waveforms that were sorted into

the same category and the red line denotes the average waveform of all of the spikes. The

dashed line indicates where the spikes were aligned at the peak of their waveform. The

two blue vertical lines denote the start and stop time for the waveform. The duration of

the spike is typically between 1 and 2 ms. Figure 4.4B illustrates the clusters of different

units found in a single recording based on PCA. Each color represents a possible unit. The

three dimensions in the plot represent the first three principal components that were used

to sort spikes. Note the blue, red, and cyan clusters are tightly distributed which means

spikes in those categories had very similar waveform features and belong to the same unit.

However, the green and pink clusters are not tightly grouped and could be due to noise

in the recordings or overlapping spikes that were misidentified.

4.5 Response to Bending Angle and Bending Velocity

Once spikes are sorted into units with different waveform features, we quantify each

unit’s response to bending by computing firing rates for different portions of the bending

signal. To compare responses to bending angle and bending velocity on each side of the

body we split the bending signal into six different phases, illustrated in Figure 4.4. We

use the convention that bending to the right has positive bending angle since this will

cause an increase of stretch on the left side of the body where the recording site is. Thus,

bending with positive bending angle and positive velocity should excite edge cells with
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Figure 4.2: Example of DataView spike sorting. A) All spike waveforms for a single unit
are shown in gray. The red line denotes the average waveform over all the spikes classified
into that unit. B) Clusters used to identify separate units within the recording. Different
colors represent different types of units with similar spike shapes. The three dimensions
of the plot represent three of the principal components used to determine different types
of spikes based on features of their waveform.

RR
RCCR

CL

LL

LC

Figure 4.3: For preliminary analysis, the ramps were broken up into six phases where spike
rate was computed. This figure illustrates the three different phases: the swing outwards,
the hold, and the return swing. Note that ramps can be applied to both sides of the body
so in total there are 6 distinct phases to compare.
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ipsilateral projections (ie. axons on the same side as the recording site). The ramp phases

are named for the beginning and ending position of the spinal cord during that particular

phase of bending. In Figure 4.4 the spinal cord starts at center and bends to the right so

we name the first phase CR which represents bending with positive velocity and increasing

bending angle. The spinal cord then remains bend out to the right for the second phase,

named RR. The spinal cord then returns to center, bending with negative velocity, and we

name this phase RC. These three phases are then repeated for bending to the left side of

the body, towards the recording site. Bending from center to the left represents negative

bending velocity and we name this phase CL. The spinal cord is then held to the left for

phase LL. Finally, the spinal cord returns to center, now bending with positive velocity,

for phase LC. These six phases represent the different combinations of signed bending

angle and bending velocity.

To quantify the response of each unit we compute the spike rate for each ramp

phase. Spike rates are computed by dividing the number of spikes by the amount of time

between the beginning of the ramp phase and the time of the last spike in that phase.

This allows us to compare spike rates for ramp phases with different durations. Once we

have computed spike rates for each ramp in the recordings we plot spike rate as a function

of bending angle for phases LL and RR and as a function of bending velocity for phases

CL, LC, CR, and RC. Linear regression is used to fit the spike rates for each ramp phase.

Figure 4.4 illustrates spike rates computed for six units, one for each phase of bending.

From these plots we see there is variability in spike rate for each bending angle and bending

velocity. This is because we repeat different combinations of angles and velocities for each

preparation. However, for these responses we see a clear linear increase in spike rate as

the ramps get larger in amplitude, Figure 4.4(a), or faster in velocity, Figures 4.4(b) and
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(c). Note that spike rates are typically larger in response to bending velocity, Figures

4.4(b) and (c), than bending angle, Figure 4.4(a). This indicates that edge cells fire more

in response to changes in position as opposed to measuring the amount of bending that

occurs. In addition to units that respond linearly to bending angle and velocity, we also

found units that simply detect bending velocity. That is, the unit fires the same number

of spikes regardless of the ramp angle or bending velocity. An example of such a unit can

be seen in Figure 4.4(b) for phase CR. The majority of the spike rates for this unit range

from 0 to 50 spikes/sec for the entire range of bending velocities. Thus, velocity detector

units signal to the CPG that bending has occurred but does not convey any information

about how much or how fast the body has bent.

In addition to computing spike rates for each ramp repetition, we also compute the

average spike rate for each phase. To determine if the unit has a significant average spike

rate, we use permutation testing to randomly compute average spike rates for all of the

data for that particular unit. If the true average spike rate is greater than the random

averages, we say the unit has a significant average response for that particular phase.

This means that the unit fires more in response to a particular phase of bending than

the others. We perform similar tests to determine if the slope of the linear regression

trend line is significant. A summary of all the significant responses for each unit is shown

in Figure 4.5. Gray blocks indicate that the unit did not have a significant firing rate,

or did not fire significantly more during that particular phase than at any other time.

Black blocks indicate that the unit had a significant average spike rate for the phase of

bending. Blue blocks indicate that in addition to a significant average spike rate, there

was also a significant linear increase in the spike rate during that phase of bending. Units

that responded with significant average firing rate but did not have a significant linear
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Figure 4.4: Examples of units with significant spike rates for the six phases of ramp
bending. Each data point represents a spike rate for a single ramp. The trend line was
found using linear regression. Figure 4.4(a) shows spike rate as a function of bending angle
for spikes that occurred while the spinal cord was held to one side. Figures 4.4(b) and (c)
show spike rate as a function of bending velocity for ramps to the right and left side of
the body respectively.
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Figure 4.5: Significant responses for each unit. Gray blocks indicate the units that had no
significant responses to bending. Black blocks indicate the unit has a significant average
spike rate for that particular phase. Blue blocks indicate that the unit had a significant
average spike rate and a trend line with significant slope. A count of both types of
significant responses for each ramp phase is shown in the histogram on the right.

relationship (black blocks) for phases CR, RC, CL or LC represent velocity detector units.

Note these units tended to respond to bending with positive bending velocity (phases CR

and LC). From Figure 4.5 we see that most units respond to ipsilateral stretch (bending

to the right), which is consistent with previous findings [33].

From Figure 4.5 we see four different types of units: units that respond to bending

angle, units that respond to bending velocity, units that respond to both, and units that

detect velocity. From visual observation of recordings we also see differences in adaptation.

Adaptation refers to a decrease in response during a continually applied stimulus. Thus,

for edge cell recordings, we consider adaptation during ramp phases RR and LL where

the spinal cord is held to one side. Adaptation is typically classified as fast or slow. Fast

adaptation refers to neurons that fire during the beginning of the stimulus but then fire
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Figure 4.6: Rate of adaptation. Figure 4.6(a) shows the ramp bending signal and a raster
of spike times for a fast adapting unit. Spikes only occur at the beginning of the phase.
Figure 4.6(b) shows the ramp bending signal and a raster of spike times for a slowly
adapting unit. Spike occur at approximately the same rate for the entire phase.

more slowly or stop firing for the remaining duration of the stimulus. An example of

fast adapting unit is shown in Figure 4.6(a). The unit fires only a few times at the very

beginning of the RR phase for each of three ramps to the right. Slow adaptation refers

to neurons that fire continually during the entire length of the stimulus at approximately

the same rate. As example of a slowly adapting unit is shown in Figure 4.6(b). The unit

fires almost regularly during the entire RR phase for each of the three ramps to the right.

To investigate the adaptation properties of the various units found by spike sorting,

we approximate firing rates during the RR and LL ramp phases by computing the recipro-
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Figure 4.7: Example of a single fit of firing rate as a function of duration of static bending.
Firing rates for a unit with significant bending angle response plotted by red circles. Firing
rate fit to an exponential curve of the form a1e

−b1t with a1 = 327.6, and b1 = 136.4.

cal of interspike times between spikes that occur during the phase and take the reciprocal.

This gives us an approximation to the instantaneous firing rate at different times during

the ramp phase. We combine the firing rates for all ramps with the same bending angle

and fit an exponential curve, a1e
−b1t, where a1 represents the initial firing rate and b1 rep-

resents the adaptation rate constant. An example of fitted adaptation is shown in Figure

4.7 for a single unit for a single bending angle. Firing frequencies are plotted by red circle

and the fit is plotted in blue. To describe the fast and slow adapting units we summarize

all of the fits for each unit in histograms. Figure 4.8 shows the distribution of each of

the four fitted parameters. Note the units were separated into three categories based on

their significant response phases. Dark blue denotes units that had significant responses

to only bending angle (RR or LL), teal denotes units that had significant responses to

bending velocity (CR, RC, CL or LC), and yellow denotes units that significant responses

to some combination of bending angle and bending velocity. We expect that units that

respond to bending velocity will adapt more quickly than those units that respond to

position. In Figure 4.8B we see that position responders tend to have smaller adaptation
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Figure 4.8: Distribution of fitted parameters for 3 types of units with significant position
response, significant velocity response, or significant response to both. Firing rate as a
function of duration of static bending is fit to a1e

−b1t. Only significant fits (R2 > 0.5)
were included. On average position responders have the slowest adaptation and units that
respond to both position and velocity have the fastest adaptation.
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rate constants than units that respond to bending velocity. The average rate constants

for position, velocity, and combined responders are 81.9s−1, 99.5s−1, and 110.1s−1 respec-

tively. Thus, units that respond to bending position have the smallest rate constant and

adapt more slowly while units that respond to both the position and velocity of bending

have the largest rate constant and adapt the most quickly.

While ramp bending signals help us determine the encoding properties of bending

angle and velocity, it is not the kind of bending stimulus seen by edge cells during swim-

ming. A more realistic activation of edge cells is to apply a sinusoidal bending signal. We

have seen that the lamprey CPG can be entrained to bending stimuli at frequencies close

to its intrinsic frequency. Entrainment is facilitated by edge cells. By applying sinusoidal

bending signals we can determine how edge cells fire during periodic bending of the body

as seen in swimming and determine what information is sent to the CPG.
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Chapter 5: Frequency Domain Analysis

5.1 Overview

It is known that sensory feedback facilitates the entrainment of the lamprey CPG

and provides local information about bending (stretch) in the spinal cord during swimming

[21, 58, 50]. This feedback is part of the closed-loop locomotion system. Since sensory

feedback is part of a closed-loop system it is difficult to determine the causal relationship

between sensory feedback and CPG output. One approach is to study components of the

closed-loop system with open-loop experimental conditions [61]. Concepts from control

theory, system identification and parametric and non-parametric modeling can then be

used to relate the open-loop response to the behavior in the closed-loop system [61, 13].

These techniques have been used to study vision and motor control in blowflies [15] and

electric fish [14, 45].

To better understand the information encoded by edge cells we perform open-loop

bending experiments where we input the bending signal and record the edge cell activity.

In Chapter 4 we used ramp bending signals to determine how properties of bending are

encoded by edge cell firing. This technique allowed us to determine different types of

edge cell responses but does not describe how edge cells respond to perturbation during

swimming. Perturbations can move the body which activates mechanosensitive neurons.

These neurons, namely edge cells, then synapse onto the CPG and cause a change in
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the neural signal which drives locomotion. Thus, after a perturbation is detected the

information is processed through several systems before the body movement changes. To

completely characterize the edge cell response to bending across a range of frequencies

we use a recently developed technique that uses white noise perturbations [34]. This

technique gives us a mapping called a phase dependent impulse response function (IRF)

which describes how perturbations at each phase affect the output of the system. For edge

cell bending experiments, we compute the phase-dependent IRF from bending to edge cell

activity. This mapping will help inform the functional form of the feedback from edge

cells to the CPG and close the loop in the model for lamprey swimming.

5.2 Frequency Response Functions

Since CPG output and edge cell output are part of a closed-loop system, it is difficult

to determine how one part of the system affects another. For this reason, perturbations

are used to determine how the various parts of the system react to changes to their typical

input. Responses to perturbations can then be used to characterize the properties of

the input-output map for each stage. For lamprey locomotion, we are interested in how

bending affects edge cell output. Edge cells provide mechanosensory input to the CPG as

they are activated by the stretching of the spinal cord. Experimentally, we can activate

the edge cells with mechanical bending and record the edge cell output. Similarly we can

bend the spinal cord and record the CPG output from the ventral roots. On the other

hand, it is difficult to measure the effects of the edge cells on the CPG. However, if we can

describe the mapping between bending and edge cell output and the mapping between

bending and CPG output, then we can separate out the map from edge cell output to the

CPG signal. This calculation can be performed in the frequency domain using frequency
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system
input u(t) output x(t)

Figure 5.1: Schematic of LTI system with input u(t) and output x(t).

response functions (FRFs) and harmonic transfer functions (HTFs). We now review these

maps in the frequency domain and their time domain analogues, and in order to calculate

the mappings between bending and edge cell output.

First we consider the input-output relationship for linear time-invariant (LTI) sys-

tems. A schematic of the system is illustrated in Figure 5.1. Time invariant means that the

output in response to an input at time t or time t+T will be the same except for a delay of

T seconds. That is, if the output due to an input u(t) is x(t) then the output in response

to input u(t+T ) is x(t+T ). Thus, the response to an input does not depend on when the

the input signal is given. An example of an LTI system would be ẋ(t) = −ax(t) + cu(t)

where a and c are constant. Another important property of LTI systems is the input

u(t) = sin(2πft) with frequency f in Hz only gives output x(t) = A sin(2πft + θ) with

possible changes to amplitude, A, and phase shift θ. These effects can differ depending

on the input frequency f . Thus, to completely characterize the responses to each input

we need to compute a map that describes the amplitude and phase effects for a range

of frequencies. This frequency domain map is known as a frequency response function

(FRF).

Consider an LTI system with input signal u(t) and output signal x(t) as shown in

Figure 5.1 with an analytic mapping x(t) = u(t)∗h(t). To compute the FRF of the analytic

system, we first compute the Fourier transform of both the input and output signals, which

we denote by U(f) and X(f) respectively. Then the output in the frequency domain can

be computed by X(f) = H(f)U(f) where H(f) is the FRF of the system. Rearranging we
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get H(f) = X(f)/U(f) where the FRF is the component-wise ratio of the output signal

and the input signal in the frequency domain. Note H(f) is a complex-valued function

of frequency. To describe the amplitude and phase effects of our system, we compute

the gain and phase of the FRF H(f). The gain is computed by |H(f)| = |X(f)|/|U(f)|

where the gain measures the ratio of the amplitude of the output and the amplitude of the

input. Thus, the gain of H tells us the resulting change in the output amplitude relative

to a given input. We are also interested in phase effects, which we compute by taking the

argument of H(f) so that arg(H(f)) = arg(X(f)) − arg(U(f)). Thus, the argument of

H(f) tells us the phase difference between the output and input signals in the frequency

domain. A positive phase indicates the output is phase advanced relative to the input and

a negative phase indicates the output is delayed or phase lagged relative to the input. The

plot of the gain and phase of H(f) as a function of frequency is called a Bode plot. Note

typically gain is plotted in decibels (dB) in a Bode plot but we simply plot the magnitude.

From this plot we can predict the change in output from a perturbation at frequency f .

To illustrate the concepts of gain and phase we compute the FRF for the LTI system

ẋ(t) = −x(t)+u(t). First we take the Laplace transform of the differential equation which

gives us sX(s) = −X(s) + U(s) where U(s) and X(s) denote the Laplace transforms of

the input and output signals respectively. Then we can rearrange the equation to solve

for X(s) which yields

X(s) =
1

s+ 1
U(s)

and we call H(s) = 1/(s + 1) the transfer function of the system. Note if we make the

substitution s = 2πif where f is frequency in Hz then H(f) is the FRF of the system.

The gain and phase of H(f) are shown in Figure 5.2. Note the gain is largest at 0 Hz

and then decreases as frequency increases. This means that the output will have smaller
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Figure 5.2: Bode plot for the LTI system given by ẋ(t) = −x(t)+u(t). The gain of the FRF
shows that the output will have a smaller amplitude than the input for all frequencies and
for large frequencies the output will be almost negligible. The phase of the FRF shows that
as the input frequency increases the phase difference between the input and the output
approaches 90◦.

amplitude than the input signal, with the difference in amplitude increasing for faster

input signals. The phase also decreases as frequency increases, indicating that the output

signal is behind the input signal and this phase difference limits to a phase lag of 90◦. An

example of these effects is shown in Figure 5.3 for input frequency 1 Hz. In Figure 5.2 at

1 Hz we see the gain is around 0.15 and the phase is approximately −80◦. In Figure 5.3,

after the transient behavior, we see the output x(t) has amplitude 0.15 and the peak of

each cycle occurs approximately 80◦ after the peak in the input signal u(t).

Figures 5.2 and 5.3 illustrate the FRF properties for a simple analytic example. To

approximate the FRF for two experimental (or random) signals, we compute the ratio of

the power spectral density (PSD), denoted by puu, and the cross spectral density (CSD),

denoted by pux, between the two signals. The two-sided PSD is defined as

puu(f) = lim
T→∞

1

T
E
[
|UT (f)|2

]
(5.1)

where E stands for the expected value of the signal (the true mean) and

UT (f) =
1

T

∫ T

0
x(t)exp(−2πift)dt
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Figure 5.3: Example of the input and output for the LTI system given by ẋ(t) = −x(t) +
u(t) for input u(t) = sin(2πt). Note the output has the same frequency as the input. The
output y(t) has amplitude around 0.15 and is ahead of the input signal by approximately
80◦ which is what is predicted by the Bode plot in Figure 5.2.

is the Fourier transform of the signal at frequency f . Note the frequency step size is

determined by ∆f = 1/T where T is the duration of the signal. Since the two-sided

PSD is symmetric across negative and positive frequencies, to get the one-sided PSD we

multiply (5.1) by 2 and only consider frequencies greater than or equal to 0. We can also

compute the cross spectral density (CSD) between two random signals. The two-sided

CSD between two signals u(t) and x(t) is defined as

pux(f) = lim
T→∞

1

T
E
[
ŪT (f)XT (f)

]
. (5.2)

The CSD is the Fourier transform of the cross-correlation of the signals u(t) and x(t) and

we can use the CSD to describe the phase relationship between the two signals as a function

of frequency f . In signal processing, it is typical to subtract the mean of the signal before

computing the power spectrum. Then, the PSD can be thought of as the distribution of

variance in the signal across a range of frequencies. The range of frequencies is determined

by the sampling rate (or time step) of the signal. The power spectrum is computed up to

the Nyquist frequency, which is half of the sampling rate. Thus, if we sample the signal

at 100 Hz, then the Nyquist frequency is 50 Hz and the two-sided PSD is computed for
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frequencies ranging from -50 to 50 Hz. In practice, one should sample the signal at a high

enough frequency so that all the power in the signal occurs below the Nyquist frequency to

ensure no information is lost. For two random signals u(t), input signal, and x(t), output

signal, the frequency response of the map between them at frequency f is be computed

by

H(f) =
pux(f)

puu(f)
. (5.3)

Thus, if we consider the range of frequencies from 0 Hz to the Nyquist frequency, then we

have H(f) as a function of frequency which maps the input U(f) to the output X(f) in

the frequency domain.

Since we only have finite length recordings of each signal, the spectral densities are

approximated without taking the limit in (5.1) and (5.2). However, since our Fourier

transform depends on the signal length T this estimate can lead to significant errors at

larger frequencies. In practice, we split long signals into multiple shorter signals called

“windows.” We then compute the spectral density for each window and take the average.

This procedure reduces the variability of the estimates. However, the choice of these

windows is important. To illustrate this we consider another example with an analytic

transfer function. Consider the random signal, x(t), whose transfer function from white

noise input to output is given by H(s) = ω0/(s
2 + 0.5ω0s+ω2

0) and has duration T = 100

s, sampled at 100 Hz. Since the transfer function has a closed form we can compute the

theoretical PSD of the random signal x(t) which is plotted by the black dashed line in

Figure 5.6. Now consider the case where we split the 100 s signal into 10 windows of length

10 s each. Since we consider each point in the window equally we call this a rectangular

window whose weights are shown in Figure 5.4a. Using 10 second long rectangular windows

we estimate the PSD of the random signal x(t), shown in blue in Figure 5.6. Note the
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Figure 5.4: Comparison of window weights. a) Rectangular window weights used for
computing the power spectral density. All points are weighted evenly. b) Hanning window
weights used for computing the power spectral density. Points towards the middle of the
window are weighted more than points on either end. c) Fourier transform of window
weights for a 20 second long signal sampled at 100 Hz with spectral window length 1
second. The Fourier transform of the rectangular window is plotted in blue and the
coefficients are nontrivial for larger frequencies. These are called side-lobes. The Fourier
transform of the Hanning window is plotted in red and the coefficients approach zero much
faster. Thus, the Hanning windows give a more accurate approximation of the power in
the signal.
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estimated PSD matches the theoretical PSD well for small frequencies but overestimates

the PSD as frequency increases. This is because of the sharp transition in the rectangular

window weights. When we “window” the data we are weighting the data points in the

time domain, ie. x1(t) = w1(t)x(t) for t = 0 to 10 seconds is the first rectangular window

of data. Multiplication in the time domain corresponds to convolution in the frequency

domain. Thus, when we take the Fourier transform of the weighted signal it is the same as

convolving the Fourier transform of the window weights with the Fourier transform of the

unweighted signal. That is F [x1(t)] = F [w1(t)] ∗F [x(t)]. Thus, the Fourier transform of

the window weights will alter our computation of the PSD. The Fourier transform of the

rectangular window weights is shown in Figure 5.4c in blue. Note the magnitude of the

Fourier coefficients remain large as frequency increases. These bumps are known as “side

lobes” and contribute to the overestimate of the PSD for higher frequencies. To reduce

the effects of “side lobes” we choose different window weights and split the signal into

overlapping Hanning windows. The window weights for Hanning windows are defined by

w(t) =
1

2

(
1− cos

(
2πt

T

))
(5.4)

where T is the length of the window in seconds. Figure 5.4b shows the window weights

for a 20 second wide Hanning window. Figure 5.5 illustrates a signal split into 3 Hanning

windows of length 20 seconds with 10 seconds overlap between windows. The advantage

of using Hanning windows can be seen in Figure 5.4c where the Fourier transform of

both rectangular and Hanning windows are shown. For Hanning windows the power

dies out much more rapidly as frequency increases. Thus, Hanning windows give a more

accurate approximation of the PSD for random signals because there is less power at larger

frequencies. Figure 5.6 shows the PSD approximation for 10 second long Hanning windows

with 50% overlap plotted in red. The Hanning windows give a much better approximation
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Figure 5.5: Example of a random signal split into three Hanning windows of length 20
seconds with 50% (10 seconds) overlap between windows.

to the true PSD for higher frequencies while the rectangular window estimate is too high

for larger frequencies. The same windowing strategies are used to compute the CSD of two

random signals. Once we have computed the PSD of the input signal puu and the CSD

of the input and output signals pux we divide the two and compute the FRF as shown in

equation (5.3).

We have now shown how to compute the FRF for two random signals. The gain and

phase of the FRF describes the change in output for a perturbation to the input signal at
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a particular frequency. However, interpreting the gain and phase is not always intuitive in

the frequency domain. To more easily interpret the change in output, we convert the FRF

to its time domain analogue, the impulse-response function (IRF), via the inverse-Fourier

transform. If H(f) is the FRF for the system and h(t) is the IRF of the system then

we have h(t) = F−1[H(f)]. The IRF predicts the change in output from a short pulse

perturbation. This can be written as x(t) =
∫∞

0 h(τ)u(t − τ)dτ where h(t) defines the

IRF. Thus, the output x(t) is the weighted integral of the input u(t) at all previous times.

Note the output will be affected by a perturbation in the same way no matter what time

the perturbation is applied since the system is LTI.

91



5.3 FRF and IRF for Edge Cell Activity

To compute the FRF for the edge cell bending experiments we let u(t) be the band-

limited Gaussian white noise bending signal with frequency band 0 to 10 Hz. This bending

signal is plotted in Figure 5.7. We wish to compute the FRF from noisy bending to edge cell

activity, but we do not use the raw recording as the output signal. Since we are recording

extracellularly, we are recording changes in membrane potential of the region nearby the

electrode tip. Thus, we record from potentially multiple neurons and the magnitude of the

voltage change depends on the proximity of the neuron to the electrode. Also, the sign of

the voltage change could be positive or negative since we are not recording from the cell

membrane of an individual neuron. Thus, we choose a threshold above the inherent noise

in the recording and find the times where the recording exceeds this threshold. Voltage

changes above the chosen threshold represent action potentials. Since the amplitude of

the recording does not provide meaningful information about the edge cell response we

construct an output signal based only on the timing of the spikes in the recording. This

signal is computed as follows. First, we choose a threshold above the inherent noise in the

signal and identify spike times where the signal crosses the selected threshold. To eliminate

the significance of the amplitude of the recordings, we create a new output signal consisting

of Delta functions, placed at the spike times, convolved with a Gaussian. We choose the

width of the Gaussian based on the range of frequencies we wish to examine. That is,

convolution with a Gaussian of width sw defined by gs(t) = exp(−t2/(2s2
w)/(

√
2πs2

w) is an

acausal filter which can be used to remove some power above a cutoff frequency fc, which

is defined as the frequency where the gain drops to 1/
√
e. Note this is not the standard

definition of cutoff frequency which uses the drop off value of 1/
√

2. The FRF of this

92



time (s)
0 2 4 6 8 10 12 14 16 18 20

no
rm

al
iz

ed
 s

ig
na

l

bending signal

EC signal

Figure 5.7: Normalized noisy bending signal (red) and experimental edge cell recording
(blue).

low-pass filter has phase 0 and gain exp(−f2/(2f2
c )) where the cutoff frequency is given

by fc = 1/(2πsw). We now have an input signal u(t) which describes the bending applied

to the spinal cord and an output signal x(t) which contains information about spike times

in response to bending. Using 10 second long Hanning windows with 50% overlap we

compute the FRF for the edge cell data. An example of one such FRF is shown in Figure

5.8 in blue. Note the gain is largest for small frequencies and then drops significantly

before slowly rising as frequency increases. The phase of the edge cell FRF shows a phase

advance that gradually decreases as frequency increases. Note the gradual rise in the gain

of the FRF indicates that we did not include a wide enough range of frequencies in our

white noise bending signal. If we had completely characterized the edge cell response we

should see the gain start to decrease at some frequency where there is no longer a response.

More data needs to be collected to fully characterize the edge cell response across a wider

range of frequencies. However, we proceed with our analysis in order to approximate the

edge cell response and find a model that captures these response properties.
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5.4 Fitting Frequency Response Function

We know that edge cells respond to both stretch and rate of stretch, but we do not

know exactly how this information is relayed from the edge cells back into the CPG. In

preliminary simulations we use a linear feedback model of the form a0κ + a1κ̇ where κ

denotes the curvature of the segment in the CPG. However, from the frequency response

function computed from edge cell recordings, we can get more insight into the important

response properties of the edge cells and moreover determine the structure of a model

for sensory feedback. The FRF describes the mapping from bending (degrees) to edge

cell output (V) in the frequency domain. This means that we can describe the effects,

in term of gain and phase, of a perturbation at a given frequency. If we take the inverse

Fourier transform of the FRF H(s), we get an impulse response function which describes

the effects of perturbations in the time domain. This equation will be a non-homogeneous

delayed differential equation. This equation can be used in a closed-loop swimming model

and will connect the edge cell output to the CPG model.

Using the optimization toolbox in Matlab, we fit an analytic FRF, Ha, to the FRF

of the edge cell data, Hec using a least squares minimization routine. Thus, our goal is to

minimize the following objective function

e =
∑
s

|Ha(s)−Hec(s)|2

where s = 2πf is the Laplace variable and f is a vector of input frequencies in Hz.

Since we are assuming the mapping is linear time periodic (LTI) the input and output

frequencies are the same. That is, a perturbation at frequency f has affect only on the

output at frequency f . Figure 5.8 illustrates the Bode plot for the fitted transfer function
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Figure 5.8: Bode plot for edge cell response data and best fit with model transfer function
Ha(s) = (a1s + a0)/(b2s

2 + b1s + 1)e−τs. Analytic transfer function fit to experimental
FRF for edge cell response. Parameter values are a1 = −0.0012Vs/deg, a0 = 0.0015V/deg,
b2 = 2.7x10−7s2, b1 = −193.8s, and τ = 0.029s.

Ha defined by

Ha(s) =
a1s+ a0

b2s2 + b1s+ 1
e−τs (5.5)

and the FRF for the edge cell response. In (5.5) the numerator corresponds to the velocity

and position dependence of the output. The denominator represents the the Laplace

transform of the ODE which is satisfied by the output signal. The exponential term

represents the time delay between the input and output signals where τ is the length

of the delay in seconds. Note in the time domain Ha(s) corresponds to the differential

equation

b2ẍ(t) + b1ẋ(t) + x(t) = (a1u̇(t− τ) + a0u(t− τ)) (5.6)

where u(t) is the input signal and x(t) is the output signal. Thus, from the fitted pa-

rameters we now have a non-homogeneous ODE that describes how the edge cell output

x(t) depends on the input bending signal u(t). However, we can see in Figure 5.8 that

the gain of Ha does not capture the gain of the edge cell response for larger frequencies.
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We could use higher order terms in Ha to improve this fit but then the corresponding

ODE contains higher order derivatives and is more computationally expensive to solve.

Additionally, the experimental gain does not decrease as frequency increases to 10 Hz.

This indicates that in order to completely characterize the edge cell response we need to

use a larger frequency band. That is, we should increase the upper bound of frequencies in

our white noise bending signal until the gain of the experimental FRF begins to decrease.

However, there are limitations on the bandwidth of the experimental bending signal and

more experiments are necessary to determine how large the bandwidth should be.

We have performed noisy bending experiments and recorded edge cell activity where

the spinal cord is bent around the center position. However, we were not able to completely

characterize the edge cell response for bandwidth 0 to 10 Hz. Additionally, only some

units seem to respond linearly to stretch in the spinal cord. Instead of computing the

FRF for edge cell activity, we can assume the system if linear time periodic (LTP). This

assumption is reasonable since we know both the CPG output and body kinematics during

lamprey swimming are periodic. We now consider noisy sinusoidal bending experiments

and compute harmonic transfer functions (HTFs) from bending to edge cell activity.

5.5 Harmonic Transfer Functions

In the previous section we describe the computation of FRFs, which define a map

from an input signal to an output signal in an LTI system. These ideas can be extended

to linear time-periodic (LTP) systems where the unperturbed system has a periodic orbit

with period T0 (frequency 1/T0 = f0). Recall that for LTI systems, an input with frequency

f has output only at frequency f . In LTP systems, the same input can have output at

any frequency f + kf0 where k is any integer. Thus, we can no longer compute a FRF to
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characterize the map from input to output in the frequency domain. Instead of having a

single map for each input frequency, we will have an infinite number of maps which describe

the output at each frequency. For the LTP case the mapping from input to output in the

frequency domain is defined by X(f) =
∑∞

k=−∞Hk(i2πf − ik2πf0)U(i2πf − ik2πf0)

where Hk is called the kth mode of the HTF. We now need a map that describes each

different output frequency f + kf0. These modes grouped together can be thought of as

a complex-valued matrix where rows represent input frequencies and columns represent

output frequencies. The 0th mode of the HTF corresponds to the FRF where the output

has the same frequency as the input.

To compute the HTF of an LTP system we use techniques similar to the FRF

computation. First, we reorganize the signal into cycles with length T . We then average

the signal across the cycles and this is the mean of our signal. We then use the same

approximation as in the linear case to compute the PSD and CSD for the signals. That

is, the signal is split into Hanning windows with 50% overlap. The approximation of

the PSD for the input signal, puu is a complex-valued vector of the power associated

with each frequency from 0 to the Nyquist frequency with frequency step size 1/T . The

approximation of the CSD, pux(f), is a complex-valued matrix of size nfu×nfx where nfu

are the number of input frequencies stored and nfx is the number of output frequencies

stored. Entries in this matrix, pkjux(f), should be interpreted as the CSD between input

frequency f + kf0 and output frequency f + jf0. To compute the harmonic transfer

function (HTF) between input u(t) and output x(t) we divide the CSD of the two signals

by the PSD of the input signal. That is

H(k)
ux (f) = pux(f, f + kf0)/puu(f) (5.7)

where H
(k)
ux is a complex-valued vector which describes the input-output map from input
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frequency f to output frequency f + kf0. If we write the HTF from u(t) to x(t) as a

doubly infinite matrix Hux(f), where the (j, k)-th entry is H(kj)ux(f + kf0), then all the

usual algebraic manipulations of FRFs for LTI systems can be applied to HTFs for LTP

systems.

Again we can convert our frequency domain map, Hux, to the time domain using

the inverse Fourier transform. We denote this time domain map as hux(tr, ts) where ts is

the time the stimulus is applied and tr is the time the response is measured. This map

describes changes in output based on short pulse perturbations similar to the LTI case.

However, the response to the pulse now depends on the timing of the pulse relative the the

periodic input signal and also when the response is measured. Thus, we call hux(tr, tst)

the phase-dependent impulse response function. We now have a matrix of values where

each column represents the change in output to a perturbation applied at a particular

phase.

To understand how edge cells fire during swimming, we repeat the bending exper-

iments using a sinusoidal bending signal. This bending signal is more realistic to the

activation the edge cells receive during swimming. We see that edge cells fire at specific

phases of bending depending on the frequency of the stimulus. An example of the record-

ing from deterministic sinusoidal bending is shown in Figure 5.9a. This response serves

as our baseline periodic activity. To compute the HTF for edge cell response, we must

perturb the periodic system with band-limited Gaussian white noise. This noise signal is

added to the sinusoidal bending signal and the resulting edge cell response is recorded.

The recording from one noisy bending trial is illustrated in Figure 5.9b. Note the edge

cell response still seems to occur at about the same phase of bending despite the added

noise. Before computing the HTF, we again analyze the raw edge cell recordings to find
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Figure 5.9: Sinusoidal bending and edge cell recordings. a) Normalized sinusoidal bending
signal at 1 Hz and the normalized edge cell response recorded from the left lateral tract.
b) Normalized noisy sinusoidal bending at 1 Hz and the normalized edge cell recording
from the left lateral tract. Note in both recordings the edge cell response occurs towards
the peak in bending to the right.

spike times and convolve these times with a Gaussian of width sw = 15 ms. We then

compute the PSD and CSD as described above for 200 second long signals with 20 second

long Hanning windows with 50% overlap.

The phase-dependent IRF for one noisy sinusoidal bending experiment is shown in

Figure 5.11. Figure 5.11a shows the normalized mean input and output signals. The mean

input signal is the mean noisy sinusoidal bending signal which is approximately sinusoidal

with bending frequency 1 Hz. The actual bending signal applied the spinal cord had

amplitude 20◦ and the noise had standard deviation of 5◦. The mean edge cell activity is
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Figure 5.10: a) Recording from left lateral tract in response to noisy sinusoidal bending.
b) Output signal used for FRF computation. Spike times found when edge cell recording
crossed threshold of 0.4 mV. Spike times then convolved with normalized Gaussians of
width 15 ms. Note the larger peaks in the output signal arise from two spikes that occur
close together.

the mean of the output signal we compute from the spike times in the recording, shown in

Figure 5.10. The darker red regions in Figure 5.11 indicate an increase in response in the

same direction as the perturbation. That is, if the spinal cord is bent to the right, we are

stretching the left side, and would expect to see the edge cells on the left side activated.

Thus, if we perturb while bending is to the right (give extra bending), then we should

see an increase in edge cell activity because stretch has been increased on the ipsilateral

side. Similarly, the darker blue regions indicate an increase in response in the opposite

direction of the perturbation. This means that if we bend to the right side of the body,

which would normally excite the edge cells on the left side of the spinal cord, we see a

decrease in activity. The green regions indicate there was no change in response. For this

recording, we see that the majority of edge cell response occurs at between bending phases

0 and 0.25. This is the only phase where the perturbation alters the edge cell activity and
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Figure 5.11: Experimental phase-dependent IRF from bending to edge cell activity. a)
Normalized mean bending signal and edge cell activity signal. Note bending to the right
is positive. b) Phase-dependent IRF from bending to edge cell activity. We only see
response to perturbations applied during phases where edge cells are normally active,
between phases 0 and 0.25. We see an increase in edge cell activity (red) followed by a
decrease in activity (blue).
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the effect has very short latency. Note the response to the perturbation appears to come

before the perturbation is even applied. This is an artifact of the Gaussian filter we applied

to the output signal before computing the HTF. The most interesting response is that a

perturbation to the right first increases edge cell activity and which is followed shortly by

a decrease in activity. One hypothesis is that this decrease is due to the refractory period

of the edge cells which refers to the period after the cells fire where they are not able to

be excited again. More experiments will need to be performed to further investigate this

activity in response to perturbations.

5.6 Modeling the Phase-Dependent Impulse Response

The goal of computing the phase dependent IRF from bending to edge cell activity is

to describe the feedback from edge cells to the CPG. From the contour plot in Figure 5.11b

we determine the significant edge cell response properties during bending. Specifically, we

only see a response to perturbations during bending with positive velocity moving from

left to right and we see a short latency increase in activity followed by a decrease in activ-

ity. However, the IRF does not give an analytic function that describes the relationship

between bending and edge cell response. To model this input-output mapping we compute

phase dependent IRFs for various LTP systems. Specifically, we look at LTP systems of

the form

ÿ + aẏ + ky = b(t)u(t− τ) (5.8)

where y(t) represents the change in the output signal and u(t) represents the change in

the input signal. Again τ represents the time delay between the input and output signals.

We consider the case where a and k are constant and b(t) is periodic. The time delay

between the input and the output is denoted by τ . Note (5.8) is an LTI system when b(t) is
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Figure 5.12: Impulse response for ÿ + aẏ + ky = b(t)u(t − τ) with a = 40, k = 4000,
b(t) = −30((1 + cos(2πt− π/4))/2)16, and τ = 0.15.
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constant. Figure 5.12 shows the phase-dependent IRF for input u(t) = sin(2πt) and output

x(t) which satisfies (5.8) where a = 40, k = 4000, b(t) = −30((1 + cos(2πt − π/4))/2)16,

and τ = 0.15. Note the response to perturbations for this function form qualitatively

agrees with the experimental IRF for the edge cell data shown in Figure 5.11. Thus, we

can use (5.8) to model sensory feedback for the lamprey CPG and qualitatively match the

experimental response.
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Chapter 6: Conclusions and Future Work

Sensory feedback is an integral part of the locomotor neural network. The CPG can

produce periodic neural activity for locomotion without sensory feedback or descending

control [19, 68, 3]. However, sensory feedback aids in maintaining steady swimming behav-

ior, especially in the presence of perturbations. We examined the role of sensory feedback,

via edge cells, in three contexts: CPG models and entrainment, stochastic entrainment,

and edge cell bending experiments.

6.1 Modeling Entrainment

CPGs are most commonly represented as chains of coupled oscillators and for the

lamprey CPG each oscillator corresponds to an anatomical segment. Each oscillator can

be represented with varying degree of biological detail. Motivated by the entrainment

analysis of the sinusoidal phase model in which oscillators are connected through sinusoidal

coupling functions, we study entrainment ranges in a neural model and a derived phase

model. We showed that nonuniform coupling asymmetry in the intersegmental coupling

strengths resulted in non-monotonic entrainment ranges as a function of forcing position.

This agrees qualitatively with the experimental entrainment ranges measured by Tytell

and Cohen [66]. Moreover, since the derived phase model closely approximates the neural

model with weak coupling, we also showed that entrainment is lost in the same way in

both models. Not only was entrainment lost in the same way, but the derived phase
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model preserved the type of bifurcation that occurred where entrainment was lost. Thus,

the derived phase model provides a simpler alternative to the neural model yet contains

similar entrainment properties. We also can perform similar analytic studies on the effects

of intersegmental coupling on analytic bounds of entrainment and how entrainment is lost

as done by Previte et al. [57]. Additionally, the derived phase model can be used as the

CPG model in the full model of lamprey swimming. This is important because simulations

of the full model consisting of the body, muscles, and fluid dynamics take a long time and

the phase model contains less state variables than the neural model.

In these models, we represent the effects of bending via edge cells only in a single

oscillator in the chain. That is, we assume that edge cells are active only at the segment

where forcing is applied. However, during swimming the edge cells along the entire length

of the spinal cord are activated periodically as the body bends. Thus, when we apply

forcing to a single segment, intersegmental coupling is responsible for entraining the re-

maining oscillators in the chain. However, there is experimental evidence that edge cell

axons project as far as 15 segments away from the point of bending [33]. Despite our as-

sumption, our models still qualitatively capture the shape of the experimental entrainment

range.

6.2 Modeling Entrainment with Sensory Perturbations

To better understand the role of sensory feedback during entrainment, we studied

the effects of sensory perturbations. Sensory perturbations were incorporated into the

entrainment experiments and in the forcing signal for the derived phase model. To create

sensory perturbations we added Gaussian white noise to the deterministic sinusoidal bend-

ing signal. Experimentally we characterized entrainment by quantifying the variability of
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the spike phases in response to noisy bending. In the derived phase model we computed

the variability in the relative phases of the oscillators. Recall that when the phase model

is entrained, each oscillator has a constant relative phase θf − θi. The addition of noise

to the model will create variation in the relative phase of each oscillator. We see that the

noise most strongly affects the oscillator where forcing is applied but drastically decreases

in adjacent oscillators. This is due to the relative strengths of the forcing connection and

the intersegmental connections. For our simulations we chose the forcing strength αf = 3

and strong nonuniform coupling asymmetry where ascending connections of length 1 have

strength α1 = 0.15 and descending connections of length 1 have strength α−1 = 0.03.

Longer connections have strengths which decay exponentially and follow (2.8). Thus, the

noise propagates slightly more to oscillators above the forcing location. However, in both

directions the coupling strengths are relatively weak compared the the forcing strength.

This assumption agrees with the propagation of noise in the experimental recordings. The

variability in spike phases is larger for recordings close to the point of bending and for

recordings farther away from the point of bending the variability is not significantly dif-

ferent than the variability seen during deterministic bending. This supports the idea that

edge cells deliver information about bending locally and thus, short connections may de-

termine how much influence the sensory information from the edge cells has on the other

oscillators in the chain. This result is supported by the relative phases from the experi-

mental recordings. Additionally, noisy bending did not disrupt the CPG signal enough to

prevent entrainment when the forcing frequency was close to the intrinsic CPG frequency.

Previous models of entrainment did not take into account variability in the forcing signal.

We show that both the experimental and computational stochastic entrainment ranges

closely agreed with deterministic entrainment ranges for even large levels of noise in the
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bending signal. This indicates that the CPG is capable of filtering out noisy sensory input

and maintaining a steady rhythmic output despite internal or external perturbations.

6.3 Edge Cell Response During Swimming

Entrainment experiments and simulations provided a way to measure the effects

of sensory perturbations on CPG output. We know that edge cells are one method of

proprioception that detects how the body is stretched during swimming. However, we

wish to model how the sensory feedback adjusts the CPG frequency. Thus, we performed

several kinds of bending experiments to determine what bending properties are encoded by

edge cells. Ramp bending experiments illustrated that particular units within extracellular

recordings responded more often to a specific direction of bending. We found units that

responded more strongly to bending angle, where the spinal cord was held out to one side,

and units that responded more strongly to bending velocity, most often bending away from

the recording site. Around half of these units had a significant linear increase in firing

rate as bending angle or velocity increased. In addition to bending angle and bending

velocity responders, we found units which fired at constant rates across a range of bending

velocities. These units are called velocity detectors. Our ramp bending experiments

suggest that most units encode either the magnitude of the stretch or the rate of the

stretch of the body while some units simply detect that a stretch has occurred. While Hsu

et al. [33] showed the distribution of units along the spinal cord that responded to pitch

and yaw bending, we classify units based on firing rates during different types of bending.

Our results suggest that there could be more than two types of edge cells in the lamprey

CPG and that all units do not respond in the same way to stretch.

Since lamprey are anguilliform swimmers, edge cells will be subjected to periodic

108



stretch and compression during steady swimming. Thus, we perform sinusoidal bending

experiments and record edge cell response. While the ramp bending experiments showed

that individual units responded to different types of bending, edge cell activity during

sinusoidal bending is most often phase locked. That is, the edge cell activity is centered

around one particular phase of bending. This activity occurs between the peak of ipsilat-

eral stretch and the maximum rate of stretch. To characterize the mapping from bending

to edge cell activity we use a frequency domain technique developed by Jeka and Kiemel

[34]. This technique extends the theory of FRF for LTI systems to LTP systems. By

adding band-limited Gaussian white noise to the sinusoidal bending signals in our experi-

ments we can compute a phase-dependent IRF. This phase-dependent IRF describes how

short pulse perturbations to the bending signals affect the edge cell activity. The edge

cell response to perturbations is highly phase-dependent as seen in Figure 5.11. The edge

cell activity changes only in response to perturbations that occur during phases where the

edge cells are normally activated by bending. Perturbations during these phases cause a

rapid increase in edge cell activity shortly followed by a decrease in activity. This decrease

in activity could be due to the refractory period of the edge cells or possibly to the in-

hibition by edge cells with contralateral projections. More data needs to be collected in

order to determine the possible mechanisms underlying the increase and decrease in edge

cell activity.

The phase-dependent IRF for edge cell experiments is a non-parametric map from

bending to edge cell activity that describes how edge cells respond to perturbations dur-

ing regular sinusoidal bending. From our noisy bending experiments, we saw that only

perturbations applied during phases where edge cells are typically active had significant

effects on the edge cell activity. For our example recording, this phase occurred between
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bending with positive velocity and the peak in bending to the right. Since we record

from the left side of the spinal cord, this implies that the total edge cell response during

sinusoidal bending is dominated by edge cells with ipsilateral projections that are excited

when the spinal cord is bent to the right and the left side is stretched. If a perturbation

occurs during this normal edge cell activity then the change in response is characterized

by an increase in edge cell firing followed by a decrease. The increase in activity agrees

with the experimental results from our ramp bending experiments where an increase in

bending velocity or bending amplitude typically caused an increase in edge cell firing rate.

The decrease in edge cell activity that follows could occur for several reasons. One hy-

pothesis is that the decrease in response is due to the refractory period of the edge cells.

The refractory period refers to the time after a cell fires where it cannot fire again even

if it is stimulated. Another hypothesis is that the increase in response is then followed by

a decrease because of some inhibitory connections. During swimming, we know that the

lamprey CPG units on opposite sides fire in anti-phase. If the increase in edge cell activity

then causes an increase in CPG output at the segment, the CPG would want to quickly

decrease the output at that segment in order to maintain the correct pattern of activity.

Edge cell responses have been studied in terms of bending to the left and right and

bending up and down, but we study the edge cell response during sinusoidal bending. We

show that during sinusoidal bending, which mimics the movement seen during lamprey

swimming, edge cells respond differently than during periods of linearly increasing stretch.

The edge cell response occurs during a single phase of bending, which occurs between the

peak bending velocity and peak bending angle when bending away from the recording site.

This agrees with previous experiments where edge cells were found to mostly respond to

ipsilateral stretch (contralateral bending). Further, we model this response by matching
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the phase-dependent IRF with an analytic IRF. This analytic IRF corresponds to an

under-damped harmonic oscillator with phase dependent forcing which represents the

stretch dependence of the edge cell activity. Moreover, this map can be combined with

other open-loop maps in the lamprey swimming system to predict how the closed-loop

model would respond to perturbations.

6.4 Future work

Our main goal in studying sensory feedback in lamprey swimming was to find a

biologically inspired model which could be used as feedback in a closed-loop model. Cur-

rently, Hamlet et al. [29] included a CPG model for activation into a model of swimming

which connects a model of muscle and force production, a model of the body kinematics,

and a model of the fluid interaction and wake structure. Additionally, they include sen-

sory feedback as a function of curvature and rate of curvature. However, there are many

choices for the functional form of the feedback which depends on curvature. Our model

of the phase-dependent IRF gives a second order differential equation that can be used to

model feedback based on the sinusoidal kinematics of the body during swimming. This

functional form provides a starting point for investigating more complicated functions of

curvature and its derivative in fully coupled models.

Our edge cell bending experiments are preliminary in the sense that we need to col-

lect more data and average the response across several individuals. We can also compare

the response at different bending locations along the spinal cord. We know that entrain-

ment ranges vary non-monotonically as a function of forcing position [66]. This result

suggests that sensory feedback acts differently at different locations along the spinal cord.

Additionally, Hsu et al. [33] showed that there were differences in edge cell response in
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the middle region of the spinal cord. Thus, we predict that the phase-dependent IRF for

edge cell activity will differ depending on the location of the bending stimulus. Future

edge cell experiments where the bending location varies can inform how sensory feedback

differs along the length of the spinal cord. Specifically, how perturbations will affect the

strength and sign of the sensory feedback during swimming.
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