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A recently developed high-order accurate flux reconstruction/correction procedure 

via reconstruction (FR/CPR) method equipped with localized Laplacian artificial 

viscosity (LLAV) shock-capturing capability is used to simulate both two dimensional 

(2D) and three dimensional (3D) shock-boundary layer interaction (SBLI) at different 

Reynolds numbers with and without wall roughness. It is found that the method can 

effectively and sharply resolve both shock and boundary-layer separation features. 

From the SBLI simulation results, it is observed that surface roughness can change 

the interaction between the shock waves and the boundary layers. As a result, the 

surface heat transfer process can be substantially modified. 

 

I. Introduction 

 During the past half-century, remarkable progress has been achieved in both experimental and 

numerical research on hypersonic flow, as seen in the recent comprehensive reviews on shock-boundary 

layer interaction (SBLI) and shock-turbulence interaction [1, 2, 3, 4]. However, many physical problems 

have yet to be explored more fully due to the multi-disciplinary nature of hypersonic flow. One example 

is the shock-induced separation in boundary layers. Shock-induced separation can dramatically affect the 

aerodynamic performance of flying vehicles, causing increased drag and loss of lift. It can also generate 

low-frequency separation bubbles, which may induce fatigue of structures. The intermittent feature of the 

separation bubbles can substantially change the surface heat transfer process, e.g., facilitating extremely 

high temperature spots on the structure surface, thus posing great challenge on thermal protection. 

Therefore, it is of great importance to have clear understanding on the underlying physics behind the 

shock-induced boundary layer separation. 

 Numerical simulation provides a cost-effective way to study these hypersonic flow phenomena. But 

as has been realized by many researchers [5, 6], the surface heat flux prediction can be completely wrong 

due to the insufficient resolution of flow near strong shock waves. As a result, there exists practical need 

in high-fidelity numerical tools for accurately predicting the physical processes involved. Since the key 

flow features in shock-induced separation include both flow discontinuity and vortices, the numerical 

methods should have the following capabilities simultaneously. First, the method needs to be capable of 

robustly and efficiently stabilize flow discontinuity without contaminating smooth flow structures 

elsewhere. Secondly, the method needs to be capable of accurately predicting the boundary layer 

separation at the existence of shock waves, including separation point, fluctuation frequency, and 

impinging shock position and deflective angle.  
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 The flux reconstruction/correction procedure via reconstruction (FR/CPR) method [7] equipped with 

shock-capturing capability [8, 9, 10], is used in current study to numerically investigate shock-induced 

separation. It is noted that the FR/CPR method unifies many existing high-order CFD methods such as 

discontinuous Galerkin (DG) [11, 12], spectral volume (SV) [13] and spectral difference (SD) [14]. From 

the work in [15], it is also demonstrated that comparing with quadrature-based DG (QDG), nodal DG 

(NDG), and SD, the FR/CPR formulation is the most cost-effective scheme on quadrilateral mesh due to 

its 1D features. As reported by Candler et al. [4], the DG type methods have the potential to conquer the 

challenges posed by hypersonic simulation, and can take full advantage of the rocketing computation 

powers nowadays. Therefore, a recently developed high-order FR/CPR-DG method for hypersonic flow 

simulation [16, 10, 17] will be further improved for the current study. 

 The reminder of the paper is organized as follows. In Section II, the numerical methods, including the 

FR/CPR algorithm and the localized Laplacian artificial viscosity methods, are introduced. The numerical 

results and discussion are then presented in Section III. Specifically, the numerical results of shock-

boundary layer interaction at different Reynolds numbers with and without wall roughness will be 

discussed there. Section IV concludes the paper. 

 

II. Numerical Methods 

 Consider the unsteady compressible Navier-Stokes (N-S) equations in conservation form, 

 
𝜕𝑄

𝜕𝑡
+ ∇ ∙ 𝑭(𝑄) = 0, (1)  

defined on 𝛺 × [0, 𝑇]  with spatial domain 𝛺  bounded by 𝜕𝛺 , where 𝑄  is the vector of conserved 

variables, and 𝑭 = (𝑓, 𝑔, ℎ) is the flux vector including both the inviscid and viscous components.  

 To achieve an efficient implementation, the conservation law is usually transformed from the physical 

domain (𝑥, 𝑦, 𝑧) into the computational domain (𝜉, 𝜂, 𝜁) = [−1, 1]3. Define the area vectors 

 

𝒂1 = (|
𝑦𝜂 𝑦𝜁

𝑧𝜂 𝑧𝜁
| , − |

𝑥𝜂 𝑥𝜁

𝑧𝜂 𝑧𝜁
| , |

𝑥𝜂 𝑥𝜁

𝑦𝜂 𝑦𝜁
|),  

𝒂2 = (− |
𝑦𝜉 𝑦𝜁

𝑧𝜉 𝑧𝜁
| , |

𝑥𝜉 𝑥𝜁

𝑧𝜉 𝑧𝜁
| , − |

𝑥𝜉 𝑥𝜁

𝑦𝜉 𝑦𝜁
|), 

𝒂3 = (|
𝑦𝜉 𝑦𝜂

𝑧𝜉 𝑧𝜂
| , − |

𝑥𝜉 𝑥𝜂

𝑧𝜉 𝑧𝜂
| , |

𝑥𝜉 𝑥𝜂

𝑦𝜉 𝑦𝜂
|), 

(2)  

and the volume 

 𝜏 = |

𝑥𝜉 𝑥𝜂 𝑥𝜁

𝑦𝜉 𝑦𝜂 𝑦𝜁

𝑧𝜉 𝑧𝜂 𝑧𝜁

|, (3)  

where 𝑥𝜉 , 𝑥𝜂 , 𝑥𝜁 , 𝑦𝜉 , 𝑦𝜂 , 𝑦𝜁 , 𝑧𝜉 , 𝑧𝜂 and 𝑧𝜁 are metrics of the coordinate transformation. Then the 

transformed equation of Eq. (1) takes the following form 

 
𝜕𝑄̃

𝜕𝑡
+

𝜕𝑓

𝜕𝜉
+

𝜕𝑔̃

𝜕𝜂
+

𝜕ℎ̃

𝜕𝜁
= 0, (4)  

where 

 𝑄̃ = 𝜏𝑄, (𝑓, 𝑔̃, ℎ̃) = (𝒂1 ∙ 𝑭, 𝒂2 ∙ 𝑭, 𝒂3 ∙ 𝑭). (5)  

 It is assumed that the physical domain 𝛺 is partitioned into N non-overlapping elements 𝛺𝑖. Note that 

Eq. (1) holds on each 𝛺𝑖. When  𝛺𝑖 is transformed into the corresponding standard element 𝛺𝑠, Eq. (4) 

holds on 𝛺𝑠. 
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II.1. Flux Reconstruction/Correction Procedure via Reconstruction (FR/CPR) Method 

 In FR/CPR, the flux terms in Eq. (4), i.e., 𝑓, 𝑔̃ and ℎ̃, are treated as a combination of local fluxes, 

namely, 𝑓𝐿𝑜𝑐, 𝑔̃𝐿𝑜𝑐  and ℎ̃𝐿𝑜𝑐 , and correction fluxes, namely, 𝑓𝐶𝑜𝑟 , 𝑔̃𝐶𝑜𝑟  and ℎ̃𝐶𝑜𝑟. Mathematically, this 

can be written as 

 {

𝑓(𝜉, 𝜂, 𝜁) = 𝑓𝐿𝑜𝑐(𝜉, 𝜂, 𝜁) + 𝑓𝐶𝑜𝑟(𝜉, 𝜂, 𝜁)

𝑔̃(𝜉, 𝜂, 𝜁) = 𝑔̃𝐿𝑜𝑐(𝜉, 𝜂, 𝜁) + 𝑔̃𝐶𝑜𝑟(𝜉, 𝜂, 𝜁)

ℎ̃(𝜉, 𝜂, 𝜁) = ℎ̃𝐿𝑜𝑐(𝜉, 𝜂, 𝜁) + ℎ̃𝐶𝑜𝑟(𝜉, 𝜂, 𝜁)

. (6)  

Local fluxes are constructed using only flow information within a specific element. Therefore, local 

fluxes are element-wise continuous, and have jumps on element boundaries. To ensure conservation and 

numerical stability, common or numerical fluxes, i.e., 𝑓𝑁𝑢𝑚 , 𝑔̃𝑁𝑢𝑚  and ℎ̃𝑁𝑢𝑚  in current context, are 

reconstructed on element boundaries using local flow information via Riemann solvers [18] for the 

inviscid fluxes or via the second Bassi-Rebay (BR2) approach [19] for the viscous fluxes. The numerical 

fluxes are then used to correct the local fluxes, and forms the correction fluxes 𝑓𝐶𝑜𝑟, 𝑔̃𝐶𝑜𝑟 and ℎ̃𝐶𝑜𝑟. This 

procedure for a quadrilateral element can be expressed as  

 

𝑓𝐶𝑜𝑟(𝜉, 𝜂, 𝜁) = (𝑓𝐿
𝑁𝑢𝑚(𝜂, 𝜁) − 𝑓𝐿𝑜𝑐(−1, 𝜂, 𝜁)) 𝐺𝐿(𝜉) + (𝑓𝑅

𝑁𝑢𝑚(𝜂, 𝜁) − 𝑓𝐿𝑜𝑐(1, 𝜂, 𝜁)) 𝐺𝑅(𝜉), 

𝑔̃𝐶𝑜𝑟(𝜉, 𝜂, 𝜁) = (𝑔̃𝐿
𝑁𝑢𝑚(𝜉, 𝜁) − 𝑔̃𝐿𝑜𝑐(𝜉, −1, 𝜁))𝐺𝐿(𝜂) + (𝑔̃𝑅

𝑁𝑢𝑚(𝜉, 𝜁) − 𝑔̃𝐿𝑜𝑐(𝜉, 1, 𝜁))𝐺𝑅(𝜂), 

ℎ̃𝐶𝑜𝑟(𝜉, 𝜂, 𝜁) = (ℎ̃𝐿
𝑁𝑢𝑚(𝜉, 𝜂) − ℎ̃𝐿𝑜𝑐(𝜉, 𝜂, −1))𝐺𝐿(𝜁) + (ℎ̃𝑅

𝑁𝑢𝑚(𝜉, 𝜂) − ℎ̃𝐿𝑜𝑐(𝜉, 𝜂, 1))𝐺𝑅(𝜁). 

(7)  

Herein, the subscripts ‘L’ and ‘R’ stand for the left and right boundaries of an element in a dimension-by-

dimension sense. 𝐺𝐿  and 𝐺𝑅  are correction functions, which map the differences between numerical 

fluxes and local fluxes on the boundaries into the entire element. Different choices of the correction 

functions 𝐺𝐿 and 𝐺𝑅 result in different numerical schemes, see Refs. [20, 21]. In the present study, 𝐺𝐿 and 

𝐺𝑅 are chosen as right and left Radau polynomials, which recovers the standard DG scheme. 

 On substituting Eq. (6) into Eq. (4), the governing equations on each element 𝛺𝑠 then read 

 

𝜕𝑄̃

𝜕𝑡
+ (

𝜕𝑓𝐿𝑜𝑐

𝜕𝜉
+

𝜕𝑔̃𝐿𝑜𝑐

𝜕𝜂
+

𝜕ℎ̃𝐿𝑜𝑐

𝜕𝜁
) + (

𝜕𝑓𝐶𝑜𝑟

𝜕𝜉
+

𝜕𝑔̃𝐶𝑜𝑟

𝜕𝜂
+

𝜕ℎ̃𝐶𝑜𝑟

𝜕𝜁
) 

=
𝜕𝑄̃

𝜕𝑡
+

𝜕𝑓𝐿𝑜𝑐

𝜕𝜉
+

𝜕𝑔̃𝐿𝑜𝑐

𝜕𝜂
+

𝜕ℎ̃𝐿𝑜𝑐

𝜕𝜁
+ 𝛿𝐶𝑜𝑟 = 0. 

(8)  

Herein, 𝛿𝐶𝑜𝑟 = 𝜏𝛿𝐶𝑜𝑟 = 𝜕𝑓𝐶𝑜𝑟 𝜕𝜉⁄ + 𝜕𝑔̃𝐶𝑜𝑟 𝜕𝜂⁄ + 𝜕ℎ̃𝐶𝑜𝑟 𝜕𝜁⁄  is named as the correction field. 

 In FR/CPR, the differential form of the conservation law, i.e., Eq. (8), is solved numerically on the 

standard element with interior solution points and interface (element boundary) flux points. Two sets of 

allocation of solution points and interface flux points for quadrilateral elements are displayed in Fig. 1. In 

Figure 1(a), Lobatto points are selected as solution points, and the flux points coincide with the solution 

points on element boundaries. In Figure 1(b), Gauss points are selected as solution points, and the 

corresponding flux points are marked on the element boundaries. 
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                                                                             (a)                                                     (b)                                                                    

Figure 1. Two types of collocation of the solution points (red dots) and interface flux points (blue squares) on 

quadrilateral elements. (a) Solution points: Legendre-Gauss-Lobatto points; Interface flux points (coincided with 

solution points): Legendre-Gauss-Lobatto points; (b) Solution points: Gauss-Legendre points; Interface flux points: 

Gauss -Legendre points. 

 

 First of all, we approximate the exact solution of the conservation law using an element-wise 

continuous polynomial 𝑄̃ℎ = 𝜏𝑄ℎ ∈ ℚ𝑘(𝛺𝑠), where ℚ𝑘(𝛺𝑠) is the space of tensor product of polynomials 

of degree at most k in each variable defined on Ωs. The local fluxes 𝑓𝐿𝑜𝑐, 𝑔̃𝐿𝑜𝑐 and ℎ̃𝐿𝑜𝑐 are assumed to 

sit in the same space as 𝑄̃ℎ , expressing as 𝑓𝐿𝑜𝑐 ∈ ℚ𝑘(𝛺𝑠) , 𝑔̃𝐿𝑜𝑐 ∈ ℚ𝑘(𝛺𝑠) and ℎ̃𝐿𝑜𝑐 ∈ ℚ𝑘(𝛺𝑠). The 

derivative of the local fluxes can be calculated using the Lagrange polynomial (LP) approach. 

Specifically, 𝑓𝐿𝑜𝑐 , 𝑔̃𝐿𝑜𝑐  and ℎ̃𝐿𝑜𝑐  can be expanded with the linearly independent basis consisting of 

Lagrange polynomials. The derivatives of the local fluxes are then expressed as 

 

𝜕𝑓𝐿𝑜𝑐

𝜕𝜉
= ∑

𝜕

𝜕𝜉
𝐿𝑗(𝜉, 𝜂, 𝜁)𝑓𝑗

𝐿𝑜𝑐

𝑗∈𝑆𝑃

, 

𝜕𝑔̃𝐿𝑜𝑐

𝜕𝜂
= ∑

𝜕

𝜕𝜂
𝐿𝑗(𝜉, 𝜂, 𝜁)𝑔̃𝑗

𝐿𝑜𝑐

𝑗∈𝑆𝑃

, 

𝜕ℎ̃𝐿𝑜𝑐

𝜕𝜁
= ∑

𝜕

𝜕𝜁
𝐿𝑗(𝜉, 𝜂, 𝜁)ℎ̃𝑗

𝐿𝑜𝑐

𝑗∈𝑆𝑃

. 

(9)  

where ‘SP’ stands for the set of solution points. Note that for a quadrilateral element, 𝐿𝑗  is a tensor 

product of two 1D Lagrange polynomials, 𝑙𝑗(𝜉), 𝑙𝑗(𝜂) and 𝑙𝑗(𝜁), associated with the solution point ‘j’. 

 To ensure the order of accuracy, 𝛿𝐶𝑜𝑟 needs to be approximated by the same space as 𝑄̃ℎ, which states 

𝛿𝐶𝑜𝑟 ∈ ℚ𝑘(𝛺𝑠). According to Eq. (7), the correction functions 𝐺𝐿 and 𝐺𝑅 must belong to the polynomial 

space 𝑃𝑘+1(𝜕Ωs). To recover the DG scheme, 𝐺𝐿 and 𝐺𝑅 are right and left Radau polynomials written as 

 𝐺𝐿,𝑘+1 = 𝑅𝑅,𝑘+1 =
(−1)𝑘+1

2
(𝐿𝑘+1 − 𝐿𝑘), 𝐺𝑅,𝑘+1 = 𝑅𝐿,𝑘+1 =

1

2
(𝐿𝑘+1 + 𝐿𝑘), (10)  

where 𝑅𝑅,𝑘+1 and 𝑅𝐿,𝑘+1indicate the right and left Radau polynomials of degree 𝑘 + 1 respectively, and  

𝐿𝑘+1 and 𝐿𝑘 are Legendre polynomials of degree 𝑘 + 1 and 𝑘 respectively. 

 On regular linear elements, the metrics 𝑥𝜉, 𝑥𝜂, 𝑥𝜁, 𝑦𝜉, 𝑦𝜂, 𝑦𝜁 , 𝑧𝜉, 𝑧𝜂and 𝑧𝜁 are constant. As reported in 

Ref. [15], the approximation 𝑄̃ℎ ∈ ℚ𝑘(𝛺𝑠) is equivalent to 𝑄ℎ ∈ ℚ𝑘(𝛺𝑠). Similar arguments work for 

𝑓𝐿𝑜𝑐, 𝑔𝐿𝑜𝑐, ℎ𝐿𝑜𝑐, 𝛿𝐶𝑜𝑟, 𝑓𝐿𝑜𝑐, 𝑔̃𝐿𝑜𝑐, ℎ̃𝐿𝑜𝑐 and 𝛿𝐶𝑜𝑟. However, this does not hold on curved elements. In 

order to enhance the accuracy of the FR/CPR method on curved elements, an effective way, as proposed 
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5 

 

in Ref. [15], is to assume that 𝑄ℎ, 𝑓𝐿𝑜𝑐, 𝑔𝐿𝑜𝑐, ℎ𝐿𝑜𝑐 and 𝛿𝐿𝑜𝑐 ∈ ℚ𝑘(𝛺𝑠). Under this assumption, Eq. (8) 

can reformulated as 

 
𝜕𝑄

𝜕𝑡
+

𝜕𝑓𝐿𝑜𝑐

𝜕𝑥
+

𝜕𝑔𝐿𝑜𝑐

𝜕𝑦
+

𝜕ℎ𝐿𝑜𝑐

𝜕𝑧
+

𝛿𝐶𝑜𝑟

𝜏
=

𝜕𝑄

𝜕𝑡
+

𝜕𝑓𝐿𝑜𝑐

𝜕𝑥
+

𝜕𝑔𝐿𝑜𝑐

𝜕𝑦
+

𝜕ℎ𝐿𝑜𝑐

𝜕𝑧
+ 𝛿𝐶𝑜𝑟 = 0. (11)  

with 

 𝛿𝐶𝑜𝑟 =
1

𝜏
(

𝜕𝑓𝐶𝑜𝑟

𝜕𝜉
+

𝜕𝑔̃𝐶𝑜𝑟

𝜕𝜂
). (12)  

Note that the chain rule is used to calculate the derivative of local fluxes in Eq. (11), which is expressed 

as 

 

𝜕𝑓𝐿𝑜𝑐

𝜕𝑥
=

𝜕𝑓𝐿𝑜𝑐

𝜕𝜉
𝜉𝑥 +

𝜕𝑓𝐿𝑜𝑐

𝜕𝜂
𝜂𝑥 +

𝜕𝑓𝐿𝑜𝑐

𝜕𝜁
𝜁𝑥, 

𝜕𝑔𝐿𝑜𝑐

𝜕𝑦
=

𝜕𝑔𝐿𝑜𝑐

𝜕𝜉
𝜉𝑦 +

𝜕𝑔𝐿𝑜𝑐

𝜕𝜂
𝜂𝑦 +

𝜕𝑔𝐿𝑜𝑐

𝜕𝜁
𝜁𝑦, 

𝜕ℎ𝐿𝑜𝑐

𝜕𝑧
=

𝜕ℎ𝐿𝑜𝑐

𝜕𝜉
𝜉𝑧 +

𝜕ℎ𝐿𝑜𝑐

𝜕𝜂
𝜂𝑧 +

𝜕ℎ𝐿𝑜𝑐

𝜕𝜁
𝜁𝑧. 

(13)  

 This completes the setup of the FR/CPR method on general quadrilateral elements. Readers are 

referred to Refs. [20, 22, 23, 24, 21] for more information on this method. 

 

II.2. Localized Laplacian Artificial Viscosity (LLAV) 

 As concluded from the 1
st
 to 3

rd
 high-order CFD workshop [25], robust and accuracy preserving 

shock capturing is still one of the challenges in the development of high-order CFD methods. Herein, we 

introduce a Laplacian localized artificial viscosity method, which can suppress the spurious oscillation in 

the vicinity of flow discontinuity but not contaminate the smooth flow features elsewhere. In this context, 

the Navier-Stokes equations are augmented with Laplacian diffusion terms. Generally, for 3D problems, 

the Laplacian diffusion terms in each element can be written as 

 ∇ ∙ 𝑭𝑎𝑣(∇𝑄) =
𝜕

𝜕𝑥
(𝜀𝑒,𝑥

𝜕𝑄

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜀𝑒,𝑦

𝜕𝑄

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜀𝑒,𝑧

𝜕𝑄

𝜕𝑧
), (14)  

where 𝜀𝑒,𝑥 , 𝜀𝑒,𝑦  and 𝜀𝑒,𝑧  are artificial viscosity in 𝑥, 𝑦 and 𝑧 directions. A resolution-based smoothness 

indicator, which can distinguish flow discontinuity, is used to localize the artificial viscosity near shocks 

in the flow field. 

 Generally, a smooth variation of the element-wise artificial viscosity 𝜀𝑒 can reconstructed as follows, 

 𝜀𝑒 = {

0 
𝜀0

2
(1 + 𝑠𝑖𝑛

𝜋(𝑆𝑒 − 𝑆0)

2𝜅
) 

𝜀0

  

𝑖𝑓 𝑆𝑒 < 𝑆0 − 𝜅                  
𝑖𝑓 𝑆0 − 𝜅 ≤ 𝑆𝑒 ≤ 𝑆0 + 𝜅
𝑖𝑓 𝑆𝑒 > 𝑆0 + 𝜅.                  

 (15)  

Herein, 𝑆0  is the estimated value of the smoothness indicator 𝑆𝑒  of the flow field, 𝜅  is a dissipation 

spectra control parameter, and 𝜀0 is the maximum value of artificial viscosity. Based on the Refs. [10, 

16], 𝜀0 can be modelled as 

𝜀0 = (−
∆𝜉𝑚𝑎𝑥

𝑃𝑒
+

2

𝑃𝑒
) ∙ |∆𝑥⃗ ∙

∇𝜌

|∇𝜌|
| ∙ 𝑈𝑟𝑒𝑓 , (16)  
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6 

 

where 𝑃𝑒 is the diffusion 𝑃𝑒́𝑐𝑙𝑒𝑡 number; ∆𝜉𝑚𝑎𝑥, scaled in [0,1], is the maximum distance between two 

adjacent quadrature points in a standard 1D element; ∆𝑥⃗ is the grid size vector; ∇𝜌 is the density gradient; 

and 𝑈𝑟𝑒𝑓 is the reference velocity. 

 In order to eliminate the undesirable artificial viscosity on expansion waves, a dilatation condition 

proposed in Ref. [26], is added to the smoothness criteria, which states “if the velocity divergence 𝛻 ∙ 𝑢⃗⃗ is 

larger than zero, then the flow field is treated as smooth.” For implementation, the artificial viscosity  𝜀𝑒 

is limited as follows: 

 𝜀𝑒
𝑙𝑖𝑚  = {

0          𝑖𝑓 𝛻 ∙ 𝑢 > 0 
𝜀𝑒        𝑖𝑓 𝛻 ∙ 𝑢 ≤ 0

. (17)  

More modeling details regarding the Laplacian localized artificial viscosity can be found in Refs. [10, 16]. 

 

III. Numerical Results & Discussions 

 In this section, we first present results for 2D shock-boundary layer interaction (SBLI) at two 

Reynolds numbers, namely, 200 and 1000 over both smooth and rough walls. Numerical simulation of 3D 

SBLI is then conducted. The interaction between shocks and 3D vortical structures are quantified. The 

numerical setup is stated as follows. 

 For 2D simulation, the computational domain is chosen as [0, 1] × [0, 0.5]. Two sets of meshes with 

uniform mesh sizes, namely, 0.004 and 0.002, are adopted in 2D simulation.  For 3D simulation, the 

computational domain is chosen as [0, 1] × [0, 0.5] × [0, 0.1]. To save computational cost, a non-uniform 

250 × 125 × 12 mesh with element clustering near the walls is used, as shown in Figure 2(a). The 

minimum element size in the normal direction of the wall is 0.002. Boundary conditions for the 3D 

simulation are presented in Figure 2(b). The two boundaries in x direction are set as walls, and the bottom 

boundary in y direction is also set as wall. The top boundary in y direction is set as symmetry. The two 

boundaries in z direction are periodic. The boundary conditions for 2D simulation are exactly the same as 

those for 3D simulation, except that there is no need to enforce boundary conditions in z direction. 

  
                                                         (a)                                                                  (b) 

Figure 2. (a) An enlarged view of the non-uniform 250 × 125 × 12 mesh near the bottom and side walls; (b) setup 

of boundary conditions for the 3D simulation. 

 The initial states for the 3D shock-boundary layer interaction are specified as follows: 

 
{
(𝜌𝐿 , 𝑢𝐿 , 𝑣𝐿 , 𝑤𝐿, 𝑝𝐿) = (120, 0, 0, 0,120/𝛾)                   𝑖𝑓 𝑥 ≤ 0.5
(𝜌𝑅 , 𝑢𝑅 , 𝑣𝑅 , 𝑤𝑅 , 𝑝𝑅) = (1.2, 0, 0, 0, 1.2/𝛾)                   𝑖𝑓 𝑥 > 0.5

 

 

(18)  
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7 

 

The initial states for 2D simulation are the same as those for 3D simulation, except that no velocity 𝑤𝐿 or 

𝑤𝑅 needs to be given. Similar to the 1D Sod shock tube problem, in this viscous shock tube problem, a 

shock wave of Mach number 2.37, followed by a contact discontinuity, moves towards the low-pressure 

region; at the same time, a rarefaction wave moves towards the high-pressure region. After the shock is 

reflected by the end wall, it will interact with the boundary layer developed when the flow passed over the 

bottom wall. 

 

III.1. 2D Shock-Boundary Layer Interaction 

III.1.1. Shock-Boundary Layer Interaction over the Smooth Wall at Re=200 

 Contours of density and temperature of the 2D shock-boundary layer interaction at 𝑅𝑒 = 200 are 

presented in Figure 3. A coarse mesh (i.e., 500 × 250 elements) is used in the FR/CPR simulation, 

whereas a 4000 × 2000 mesh is used in the reference finite difference results [27]. Here note that the 

degrees of freedom (DOFs) for the 3
rd

-order simulation are 1,125,000, about 14% of that of the reference 

results. Reasonable agreement has been achieved between the current 3
rd

-order simulation and the 

reference.  

 

 

 
Figure 3. Contours of density (left) and temperature (right) at 𝑡 = 1 for 𝑅𝑒 = 200. (a) Simulation results using the 

FR/CPR solver on a 500 × 250 mesh with 3
rd

 order of accuracy; (b) Reference results from a 7
th

 order finite 

difference method on a 4000 × 2000 mesh. Note that |∇𝜌| is used in the reference results. The same contour level 

for the temperature distribution is used in this figure. 

 

III.1.2. Shock-Boundary Layer Interaction over the Smooth Wall at Re=1,000 

 Simulation results of the 2D shock-boundary layer interaction at 𝑅𝑒 = 1,000 are presented in Figure 

4, and compared with reference results from literatures. It should be noted that a very coarse mesh (i.e., 

250 × 125 elements) is used in the FR/CPR simulation, whereas a 4000 × 2000 mesh is used in the 

reference finite difference results [27]. The DOFs for the 3
rd

-order simulation are 281,250, about 3.5% of 

that of the reference results; the DOFs for the 4
th
-order simulation are 500,000, about 6% of that of the 

reference results; the DOFs for the 5
th
-order simulation are 781,250, about 10% of that of the reference 

results; and the DOFs for the 6
th
-order simulation are 1,125,000, about 14% of that of the reference 

a 

 3
rd

 order 

b 

 
Reference 
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8 

 

results. It is found that even with much less degrees of freedoms, the results from the 6
th
-order simulation 

are quite similar to the reference solution. 

 

 

 

 

    

Figure 4. Contours of density (left) and temperature (right) at 𝑡 = 1 for 𝑅𝑒 = 1,000. (a) ~ (d) are simulated using 

the FR/CPR solver on a 250 × 125 mesh with 3
rd

, 4
th

, 5
th

 and 6
th

 order of accuracy, respectively; (e) is the reference 

results from a 7
th

 order finite difference method on a 4000 × 2000 mesh. The same contour level is used in this 

figure. 

 

III.1.3. Shock-Boundary Layer Interaction over the Rough Wall at Re=1,000 

 Hypersonic boundary layer flow can be very sensitive to surface roughness near shock-boundary 

layer interaction region. Three types of the roughness, namely, triangular roughness elements, rectangular 

5
th

 order 

6
th

 order 

Reference 

c 

 

d

  b 

e

  b 

a 

 3
rd

 order 

4
th

 order 
b 
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9 

 

roughness elements, and rectangular dimple, are studied in this section, as shown in Figure 5. The sizes of 

these elements are characterized by the height H and width D. In all cases, the width D is fixed at 0.032. 

Several values of the height H are tested, including 0.001, 0.002. 0.004, 0.008 and 0.016. To distinguish 

these cases, there are labeled as ‘H1’, ‘H2’, ‘H3’, ‘H4’ and ‘H5’, respectively. In this section, all 

simulations for the 2D SBLI are performed using the 𝑃5 (i.e., 6
th
 order) reconstruction. 

 

 
                              (a)                                                        (b)                                                        (c) 

Figure 5. Configuration of different roughness elements. (a) Triangular roughness elements; (b) rectangular 

roughness elements; (c) rectangular dimples. 

 

III.1.3.1. Triangular Roughness Elements 

 In this test, an array of triangular wall roughness is placed in the boundary layer. These roughness 

elements can emanate both compression and expansion waves into the flow when shock waves pass over 

them. As a result, the structures of both shock waves and vortices generated due to shock-boundary layer 

interaction are changed. Comparing the results in Figure 6 with those in Figure 4, we note that when the 

height of roughness elements gets larger, the structures of near-wall shocklets and vortices are gradually 

modified. This can substantially affect the surface heat transfer process.  

 

 

 
 

 

a 

 

b 

 

c 
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Figure 6. Contours of density (left) and temperature (right) at 𝑡 = 1  for 𝑅𝑒 = 1,000 with triangular roughness 

elements of different heights. (a) 𝐻 = 0.001; (b) 𝐻 = 0.002; (c) 𝐻 = 0.004; and (d) 𝐻 = 0.008. All cases are 

simulated using the FR/CPR solver on a 250 × 125 mesh with 6
th

 order of accuracy.  

 

 The distribution of temperature on the bottom wall with or without triangular roughness elements at 

𝑡 = 1 is presented in Figure 7. The overall view of wall temperature distribution is displayed in Figure 

7(a) and a detailed view near the region with wall roughness of different sizes (i.e., 𝑥 ∈ [0.68, 0.824]) is 

shown in Figure 7(b). It is observed that wall temperature in the roughness region becomes more uniform 

as the height of the triangular roughness element becomes larger. By checking the temperature contours 

shown in Figure 6, it is found that when the height of the roughness element is large enough (e.g., 

H=0.004 and 0.008), the roughness element can substantially affect the evolution of the vortex generated 

due to the interaction between the shock and the boundary layer. In this case, relatively high triangular 

elements can enhance the mixing process in the boundary layer. As a result, wall temperature becomes 

more uniform. 

 It is also observed that in the region around 𝑥 = 0.5 next to the region with high roughness elements, 

the temperature is lower than that on the smooth wall. This can be explained as follows. Due to the 

enhanced mixing process in the region with wall roughness, more fluid from the main stream can be 

dragged down towards the wall in the nearby regions. As presented in the temperature contour from 

Figure 6, the fluid in the main stream of the region around 𝑥 = 0.5 is colder than that near the wall 

boundary. It can mix with the fluid near the wall, and reduce the wall temperature. 

 
                                                (a)                                                                                  (b) 

Figure 7. Temperature distribution on the bottom wall with and without triangular roughness elements at 𝑡 = 1 for 

𝑅𝑒 = 1,000. (a) A complete view; (b) an enlarged view near the region with wall roughness. 
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III.1.3.2. Rectangular Roughness Elements 

 In this test, an array of rectangular wall roughness is placed in the boundary layer. The height of the 

wall roughness is fixed at 0.008 (i.e., H4). The density and temperature fields at 𝑡 = 1 are presented in 

Figure 8. The corresponding surface temperature distribution is presented in Figure 9. Similar to the 

triangular roughness element, the presence of rectangular roughness elements can also enhance the 

mixing process in the boundary layer. In the region around 𝑥 = 0.5 next to the region with roughness 

elements, the wall temperature also decreases comparing with that over the smooth wall as in the 

triangular roughness element case. It is also observed that although the vortex structures over rectangular 

roughness elements are very different from that over triangular roughness elements, the shock structures 

in the main stream for both cases are very similar. 

 
Figure 8. Contours of density (left) and temperature (right) at 𝑡 = 1 for 𝑅𝑒 = 1,000 with rectangular roughness 

elements of height 𝐻 = 0.008. This case is simulated using the FR/CPR solver on a 250 × 125 mesh with 6
th

 order 

of accuracy.  

  

 
                                                (a)                                                                                  (b) 

Figure 9. Temperature distribution on the bottom wall with and without rectangular roughness elements at 𝑡 = 1 for 

𝑅𝑒 = 1,000. (a) A complete view; (b) an enlarged view near the region with wall roughness. 

 

III.1.3.3. Rectangular Dimples 

 In this test, an array of rectangular dimples is placed in the boundary layer. Dimple arrays with two 

different depths, namely, 0.008 and 0.016, are tested. The density and temperature fields at 𝑡 = 1 are 

presented in Figure 10. The corresponding surface temperature distribution is presented in Figure 11. 

Comparing with the triangular and rectangular roughness elements, the rectangular dimple does not 
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substantially enhance the mixing in the boundary layer. As observed from the temperature contour in 

Figure 10, the temperature field in the region around 𝑥 = 0.5 is similar to that in the smooth wall case. 

This indicates that mixing in this region is not greatly affected by the wall dimples. Different from the 

triangular or rectangular elements, the array of rectangular dimples can impede the movement of the 

vortex behind the shock waves, as observed from Figure 10. The flow physics behind this phenomenon is 

still under investigation. 

 

 

 
Figure 10. Contours of density (left) and temperature (right) at 𝑡 = 1 for 𝑅𝑒 = 1,000 with rectangular dimples of 

different depths. (a) 𝐻 = 0.008 and (b) 𝐻 = 0.016. All cases are simulated using the FR/CPR solver on a 250 ×
125 mesh with 6

th
 order of accuracy.  

 

 
                                                (a)                                                                                  (b) 

Figure 11. Temperature distribution on the bottom wall with and without rectangular dimples at 𝑡 = 1 for 𝑅𝑒 =
1,000. (a) A complete view; (b) an enlarged view near the region with wall roughness. 

 

 

 

a 

 

b 
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III.1.3.4. Summary 

 To summarize SBLI over the rough wall discussed in this section, the wall temperature distribution 

with and without wall roughness at 𝑡 = 1 is plotted in Figure 12. The roughness size used in this figure is 

0.008. In current study, it is found that the triangular roughness element can effectively enhance the 

mixing process in the boundary layer. The rectangular roughness element functions similarly as the 

triangular one, although the wall temperature is not as uniform as that of the triangular roughness element 

after mixing. The rectangular dimple does not greatly enhance the mixing in the boundary layer. From the 

simulation results, it is also observed that all types of wall roughness can substantially modify the 

evolution of the vortices originated from SBLI. The temperature fields associated with streamlines near 

the region with wall roughness are displayed in Figure 13. It is clearly seen from these figures that the 

vortex structure and thus the wall temperature distribution is very sensitive to the roughness height and 

shape due to the interaction between the fluid near the boundary and the wall roughness.  

 
                                                (a)                                                                                  (b) 

Figure 12. Temperature distribution on the bottom wall with and without wall roughness at 𝑡 = 1 for 𝑅𝑒 = 1,000. 

The element height/depth is set as 𝐻 = 0.008. (a) A complete view; (b) an enlarged view near the region with wall 

roughness. 

 

III.2. 3D Shock-Boundary Layer Interaction 

 In this section, the 3D SBLI is simulated at Re = 200 and Re = 1,000. For the Reynolds number 

200, both case with the smooth wall and that with triangular prism roughness elements are studied. The 

height of the wall roughness is fixed at 0.008. For the Reynolds number 1,000, only the case with the 

smooth wall is simulated in current study. All simulations are performed using the 𝑃2 (i.e., 3
rd

 order) 

reconstruction. 

 The temperature fields for both cases with and without wall roughness are displayed in Figure 14. 

Temperature on three surfaces is shown, namely, the bottom wall parallel to the XZ plane, the side wall 

parallel to the YZ plane, and the periodic boundary parallel to the XY plane. It is found that the 

temperature distribution on the periodic boundary for the case with the smooth wall is very similar to that 

shown in Figure 3 from the 2D SBLI simulation. In the current case, some turbulent features have shown 

up in the boundary layer near the bottom wall, which will increase the mixing near this region. This 

results in more uniform temperature distribution near the bottom wall compared with the 2D simulation. 
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(a) 

 
                              (b)                                                        (c)                                                        (d) 

 
                              (e)                                                        (f)                                                        (g) 

Figure 13. Streamlines and temperature fields near the region with wall roughness at 𝑡 = 1 for 𝑅𝑒 = 1,000. (a) 

Smooth wall; (b) triangular roughness element, 𝐻 = 0.001 ; (c) triangular roughness element, 𝐻 = 0.002 ; (d) 

triangular roughness element, 𝐻 = 0.004; (e) triangular roughness element, 𝐻 = 0.008; (f) rectangular roughness 

element, 𝐻 = 0.008; and (g) rectangular dimple, 𝐻 = 0.008. 

 

 Similar to the conclusion from Section III.1.3., wall roughness can substantially modify the vortex 

structure originated from SBLI, and thus the wall temperature distribution. Wall roughness has limited 

effect on the shock structure in the main stream. The vorticity field for the case with wall roughness is 

displayed in Figure 15. In this figure, the vortex structure is indicated by the Q-criterion, and the density 

flow on the periodic boundary is also displayed to locate the position of the shock. It is clear that the 

vortical flow behind shock has started to become turbulent in this case. 
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Figure 14. Temperature contours on the bottom wall, side wall and periodic boundary at 𝑡 = 1 for 𝑅𝑒 = 200 for 3D 

SBLI. (a) smooth wall and (b) wall with triangular prism roughness elements of height H = 0.008. All cases are 

simulated using the FR/CPR solver on a non-uniform 250 × 125 × 12 mesh with 3
rd

 order of accuracy.  

 

 
Figure 15. Vorticity field of 3D SBLI over a wall with triangular prism roughness elements of height H = 0.008 at 

𝑡 = 1 for 𝑅𝑒 = 200. The vortex structure is indicated by the Q-criterion colored by the streamwise velocity. The 

background is the density contour on the periodic boundary.  

 

 When the Reynolds number increases to 1,000, the flow behind shock can be fully turbulent with a 

very short laminar-turbulent transition region. This is clearly seen from the vorticity field as shown in 

Figure 16(a). The corresponding temperature distribution on the bottom wall, side wall and periodic 

boundary is displayed in Figure 16(b). It is observed that turbulence can significantly enhance the fluid 

mixing near wall boundaries. 
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Figure 16. (a) Vorticity field and (b) temperature contours on the bottom wall, side wall and periodic boundary at 

𝑡 = 1 for 𝑅𝑒 = 1,000 for 3D SBLI over a smooth wall. The vortex structure is indicated by the Q-criterion colored 

by the streamwise velocity. The background in (a) is the density contour on the periodic boundary. 

 

IV. Conclusions 

 A high-order accurate FR/CPR method equipped with localized Laplacian artificial viscosity (LLAV) 

shock-capturing capability is used to simulate shock-boundary layer interaction (SBLI) at different 

Reynolds numbers with and without wall roughness. It is found that the method can effectively and 

sharply resolve both shock and boundary-layer separation features.  

 From the 2D simulation results, it is observed that surface roughness can greatly affect the interaction 

between the shock waves and the boundary layer. Specifically, all types of wall roughness can change the 

evolution process of the vortex originated from SBLI. As a result, the surface heat transfer process can be 

substantially modified. It is also found that the protruding roughness elements (e.g., triangular and 

rectangular roughness elements in this study) can enhance the mixing in the boundary layer, whereas the 

dimple-type roughness elements do not show prominent fluid mixing enhancement features. 

 From the 3D SBLI simulation results, it is observed that the flow can quickly transit from its laminar 

state to turbulent state in a very short laminar-turbulent transition region behind shock. This will 

significantly enhance the fluid mixing in the boundary layer, and modify the surface heat transfer. In the 

future work, more research will be conducted to fully unveil the flow physics in 3D SBLI with wall 

roughness.  
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