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Abstract 

 

A Study on Textual Contents in Online Communities and Social Media using Text 

Mining Approaches 

 

Beomseok Hong 

 

With the advent of Web 2.0, users have become more interactive, and the population 

of user-generated contents (UGC) has also increased drastically on the web. Among 

various Web 2.0 applications, we focus on textual contents in social media and online 

question answering communities. 

Twitter has become one of the fastest growing social media sites, and is serving as an 

electronic word-of-mouth (eWOM) that affects customers’ buying decisions by sharing 

opinions and information about brands. However, lexical ambiguity is an obstacle to 

analyzing the data in social media for online reputation management. The enormous 

amount of tweets makes it impossible for a human to manually disambiguate them. 

Therefore, we propose an automated company name discrimination using topic signatures. 

From the experiment, we found that news articles can be used to extract topic signatures, 

and these topic signatures improved the company name discrimination result as compared 

to the baseline. 
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Community Question Answering (CQA) sites are knowledge sharing platforms that 

allow users to post questions and answer questions asked by other users. There is a time 

lag between questions and answers. Askers need to wait for answers, and some of the 

questions are never answered. To solve this problem, we propose a weighted question 

retrieval method using the relationship between titles and descriptions. From the 

experiment, we found that exploiting the question descriptions increased the ranks of the 

relevant questions while reducing the recalls of them. 

Software information sites such as Stack Overflow, Super User, and Ask Ubuntu are 

specific CQA sites that allow software-related questions and tagging systems. Tagging 

systems help to organize, search, and explore their questions for future use. However, the 

tag explosion and tag synonym are common problems in tagging systems, because tags are 

added and created by non-expert users. To mitigate these problems, we propose a tag 

recommendation method using the highest topic filtering. From the experiment, we 

observed that our tag recommendation method considerably improved rank-related results 

and that recommended tags can improve the quality of their questions. 
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Chapter 1  

Introduction 

1.1 Background 

Web 2.0 has quickly become popularized and has changed the way people behave 

online [1]. As the change of user behavior is a vital factor of Web 2.0, many applications 

provide users with the place to generate, disseminate, share, edit, and refine informational 

content. Users have become more interactive accordingly, and the population of user-

generated content (UGC) has also increased drastically in social media [2]. Web 2.0 

applications allow users to post content without requirements and qualifications, and 

encourage them to interact with each other. Examples of Web 2.0 applications include 

Facebook, YouTube, Twitter, Instagram, Stack Exchange, CiteULike, Flickr, and so on. 

Among various Web 2.0 applications, we focus on social media and online communities 

for question answering. 

Social media has significantly impacted our lives and has changed the way people 

communicate with one another, largely due to the explosion of social media and 

technologies. With the rapid growth of smartphone ownership, the increasing popularity 

of social media has accelerated. Diverse social media platforms, such as Facebook, 

YouTube, and Twitter, have rapidly grown in size and influence. Marketers therefore pay 

attention to social media for advertising their products, and social media has become an 

influential viral marketing tool [3]. They also want to delve into immense amount of 
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social media data to examine the popularity, reputation, and people’s opinions of their 

products and brands [4]. Twitter has become one of the fastest growing social media 

sites, and is serving as an electronic word-of-mouth (eWOM) that affects customer’s 

buying decisions by sharing opinions and information about brands [5]. Since its 

inception in 2006, the average number of tweets that people exchanged per day has 

increased from 300,000 in 2008 to 200 million in 2011 and to 500 million by August 

2013 [6]. Due to the enormous amount of tweets, it is impossible for a human to 

manually analyze them. An automated analysis system is necessary to deal with the huge 

amount of tweets. In addition, the shortness and informality of tweets, including 

grammatical errors, misspellings, and unreliable capitalizations increase the difficulty of 

understanding tweets. 

Community Question Answering (CQA) sites are knowledge sharing platforms that 

allow users to post questions and answer questions asked by other users. CQA sites such 

as Yahoo! Answers1, Stack Overflow2, and Quora3 have evolved as huge knowledge 

sharing platforms by their community users [7]. CQA services are derived from Question 

Answering (QA) systems that automatically retrieve succinct answers to factoid questions 

posed by human in a natural language (e.g. “Who is the US President now?”) [8]. 

However, there are striking differences between QA systems and CQA services, which 

                                                 
1 https://answers.yahoo.com/ 
2 https://stackoverflow.com/ 
3 https://www.quora.com/ 
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cannot be dealt with the techniques used in QA systems. Blooma & Kurian [8] stated the 

five differences between QA systems and CQA services: The first difference is a type of 

a question. CQA questions tend to be longer, more specific and more complex than QA 

questions because users usually ask questions with additional information. For example, 

“Is Mac or PC better? I'm looking to get a new computer, which do you think is better for 

my purposes? Schoolwork, and a bit of gaming as well”. Conventional QA systems are 

not applicable to multiple-sentence questions [9]. The second difference is a source of 

answers. While QA answers are facts from reliable sources such as news articles or 

encyclopedia articles, CQA answers may be personal experiences, advices, or 

recommendations by expert users. A diversity of CQA users can result in the inconsistent 

quality of the answers. The third difference is the quality of answers. For evaluating 

quality of answers, QA systems determine only if answers are right or wrong. In CQA 

sites, however, any users are allowed to answer a question and each question can have 

many different answers depending on who is answering. Since every answer differs in the 

quality, there has been some research on investigating the factors that have an impact on 

the quality of answers [7, 10, 11, 12]. The fourth difference is the availability of 

metadata. CQA services have rich metadata such as comments, voting scores from users, 

best answers selected by askers, user’s profile and interests, etc. The final difference is a 

time lag between questions and answers. While QA systems immediately respond to 

factoid questions, CQA services need to wait for users to answer the questions. Various 

approaches such as question retrieval, question routing, and expert recommendation have 
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been suggested to reduce the time lag between questions and answers [13, 14, 15, 16]. 

These differences imply that an approach to CQA should be different from that of QA. 

CQA services heavily rely on participation of users and expect users to obey 

community rules so that they can develop and maintain the usefulness of the community 

[17]. There are three main roles of users in CQA services: askers, answerers, and 

evaluators. Askers post questions and those questions are answered by answerers. Askers 

can express their satisfactions of the answers by choosing them as the best answers. 

There are no best answers if the askers are not satisfied with any of the answers or if they 

forget to choose. In this case, the answers which get the most votes by evaluators are 

selected as the best answers. Yahoo! Answers and Stack Overflow are typical 

Community Question Answering (CQA) sites. They have common characteristics such as 

a reward system and best answers chosen by askers. A reward system encourages users to 

ask and answer questions by rewarding them with reputations. On the other hand, there 

are individual characteristics in Yahoo! Answers and Stack Overflow. Yahoo! Answers is 

an open-domain CQA site. There is no restriction on the question topic, question quality, 

and answer quality. Unlike Yahoo! Answers, Stack Overflow is limited to topics in 

computer programming and has rules and regulations users should follow. Duplicate and 

off-topic questions are restricted and will be closed. Users can upvote and downvote 

questions and answers depending on their quality. These make and keep Stack Overflow 

useful and of high quality. 



5 

 

 

 

 

 

1.2 Problem Statement 

Firstly, as social media have become more popular, the demand for online reputation 

management (ORM) has increased. ORM involves monitoring and analyzing user 

opinions on social media to evaluate a reputation of a company and its products. The first 

step of ORM is to collect what people mention about the organization on social media. 

However, lexical ambiguity is a pervasive problem inhibiting researchers’ abilities to 

retrieve desired data [18]. Many words can be interpreted in multiple ways. Unlike 

humans, machines need a process to understand the underlying meaning of the words. 

Word Sense Disambiguation (WSD) is a way for machines to understand the meaning of 

words, and different possible solutions have been suggested over decades [19]. Most of 

the solutions rely on knowledge-based approaches such as thesauri, ontologies, or sense-

annotated corpora. Unfortunately, it is expensive and time-consuming to create the 

knowledge base system manually, and this problem is called the knowledge acquisition 

bottleneck [20]. A topic signature is a family of words related to a given topic, and can be 

used to solve the knowledge acquisition bottleneck though it is used for summarizing a 

document in the early stages. Manually-annotated knowledge base systems such as 

WordNet have insufficient lexical and semantic information with regard to the 

knowledge acquisition. Topic signatures from large-scale resources can perform better 

than manually-annotated knowledge base systems in WSD [21]. Newspapers are used in 

the field of WSD as external knowledge resources. Since collections of newspapers are 

unstructured resources, they need to be annotated with senses [22], or used as raw 
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corpora. Recently, The New York Times, an American daily newspaper, has provided 

public access to their newspaper repository using application programming interfaces 

(APIs). Newspapers can be retrieved by sending a query term, and the search engine 

retrieves news articles relevant to the query term. Consequently, only relevant 

newspapers can be retrieved from a large-scale repository. Together with other 

information retrieval techniques, we can collect the corpus related to a target sense 

without manual annotations. Moreover, new words that reflect certain topics will arise 

over time. The new words can be discovered as topic signatures by accessing up-to-date 

newspapers in the repository using The New York Times APIs. It is crucial to apply 

WSD prior to the analysis of user opinions in social media so that the reputations of 

companies or products can be analyzed accurately and reliably. Furthermore, their 

reputations could be properly managed. 

Secondly, one of the characteristics of CQA is a time lag between questions and 

answers. Askers need to wait for answers to be posted after posting questions, and even 

some of the questions are never answered. In Stack Overflow, the question response time 

is different for each question and is affected by various factors such as tags and 

subscribers [23]. For the time lag between questions and answers, various solutions have 

been suggested such as question retrieval, and question routing. Question retrieval aims at 

finding similar questions from large CQA archives [13]. Question routing is a technique 

that identifies potential answerers and experts, and routes relevant questions to them [24]. 
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In the early stage of CQA, each of the questions and answers is unique due to the fact that 

questions are specific and require informative and detailed answers. Currently, hundreds 

of millions of questions have been posted in Yahoo! Answers, and Stack Overflow hits 

10 million questions. As questions are piling up, a new question may be no longer unique 

and other users have probably asked the same questions. It is expected that the time lag 

problem can be mitigated by finding the most similar question and its best answer if there 

is an accumulative large-scale question and best answer collection. Most of the research 

takes advantage of only question titles or combines titles and descriptions as questions. 

Lastly, software information sites such as Stack Overflow, Super User, and Ask 

Ubuntu are knowledge sharing platforms that allow users to post software-related 

questions, answer the questions asked by other users, and add tags to their questions. 

Software information sites are subordinate to CQA in terms of categorization. Tags are 

referred to as freely determined keywords by non-expert users, which help to organize, 

search, and explore their posts for future use [25]. Tagging is a popular system across 

web communities because allowing users to classify their contents is less costly than 

employing an expert to categorize them [25, 26]. In software information sites (e.g. Stack 

Overflow), when posting a question, tagging is mandatory from a minimum of one tag to 

a maximum of five tags per question. Users may choose existing tags or create a new tag 

if a particular tag does not exist in the list of tags. Although uncontrolled vocabularies 

(i.e. tags) have potential advantages with regard to cost and specificity [27], there are 
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some known issues. As shown in Figure 1-1, a small subset of popular tags is used to 

annotate a majority of items in a collection and the rest of the tags are not frequently 

used, which is called a tag explosion [28, 29, 30]. Another well-known issue in software 

information sites is a tag synonym. Since a choice of tags depends on user preferences 

and some users are not educated to create new tags in a proper way, the words used for 

tags can be arbitrary [31]. Even for the tags that represent the same meaning, the words 

can be expressed differently depending on who is writing. For example, ‘javascript’ can 

be expressed as an acronym ‘js’, ‘algorithm’ can be written as a plural form ‘algorithms’, 

and ‘httprequest’ can be written with a hyphen ‘http-request’ depending on the user 

preferences. As the number of different tags grows, the list of tags becomes filled with 

synonyms and this makes it difficult for users to search for existing tags. It also 

negatively affects the speed and accuracy of queries [31]. Stack Overflow, one of the 

software information sites, is aware of the problem of tag synonym and is currently trying 

to resolve it by manually finding and merging the tag synonyms. Figure 1-2 is a tag 

synonym project in Stack Overflow. Only high reputation users can suggest the tag 

synonyms. The suggested tag synonyms is merged when taking a certain number of 

upvotes by other users. In this dissertation, in order to overcome three problems 

mentioned above, we propose three methods: company name discrimination using topic 

signatures in social media, answer recommendation based on question retrieval in CQA, 

and tag recommendation in CQA. 
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Figure 1-1. Tag popularity curve in Stack Overflow 
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Figure 1-2. Tag synonym project in Stack Overflow 
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Chapter 2  

Literature Review 

2.1 Text Mining Methods 

In this section, we introduce three text mining methods: term frequency-inverse 

document frequency (TF-IDF), Okapi BM25, and latent Dirichlet allocation (LDA). First 

of all, the term frequency-inverse document frequency (TF-IDF) is a term weighting 

method to discover the importance of a word in a text document from corpus using 

statistical methods [32]. TF-IDF is a combination of term frequency (TF) and inverse 

document frequency (IDF). Term frequency (TF) is the number of times that term 𝑡 

occurs in document 𝑑, and can be normalized by dividing the total frequency of terms in 

the document, which is defined as  

tf(t, d)normalized =
𝑡𝑓(𝑡, 𝑑)

∑ 𝑡𝑓(𝑡′, 𝑑)𝑡′∈𝑑
 

Inverse document frequency (IDF) is used to examine whether the term is common 

or rare across all documents, and is defined as 

idf(t) = log
𝑁

1 + 𝑑𝑓(𝑡)
 

where 𝑁 is the total number of documents, and 𝑑𝑓(𝑡) is the number of documents with 

term 𝑡 in it. 
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The term frequency-inverse document frequency (TF-IDF) is a multiplication of 

term frequency (TF) by inverse document frequency (IDF) so that a term that are frequent 

in a document earns a high weight but is offset by the IDF if the term is also frequently 

used in other documents. A TF-IDF weight of a term 𝑡 in a document 𝑑 is calculated as 

TF-IDF(t,d) = tf(t, d) ∙ idf(t) 

The Okapi BM25 (BM25) is a ranking model to calculate the similarity between a 

document and a query [33]. With the bag-of-words representation of a query 𝑄 =

{𝑞1, 𝑞2, … , 𝑞𝑛} and a document 𝐷 = {𝑤1, 𝑤2, … , 𝑤𝑛}, the Okapi BM25 is defined as 

BM25(Q, D) = ∑ log (
𝑁 − 𝑑𝑓(𝑞𝑖) + 0.5

𝑑𝑓(𝑞𝑖) + 0.5
)

𝑛

𝑖=1

∙
𝑡𝑓(𝑞𝑖) ∙ (𝑘1 + 1)

𝑡𝑓(𝑞𝑖) + 𝑘1 ∙ (1 − 𝑏 + 𝑏 ∙
|𝐷|

𝑎𝑣𝑔𝑑𝑙
)
 

where N is the total number of documents in the corpus, 𝑑𝑓(𝑞𝑖) is the number of 

documents containing a query term 𝑞𝑖 in the corpus, 𝑡𝑓(𝑞𝑖) is the term frequency of 𝑞𝑖 in 

the document D, |𝐷| is the total number of words in the document D, and 𝑎𝑣𝑔𝑑𝑙 is the 

average document length in the corpus. 𝑘1 and 𝑏 are free parameters.  

The concept of BM25 is similar to TF-IDF but BM25 is less sensitive to term 

frequency because free parameters make it reach a saturation point. This has fascinated 

search engine systems such as Lucene, Solr, and Elasticsearch. 
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Latent Dirichlet allocation (LDA) is a generative probabilistic model which finds 

topic probabilities over documents given that documents are represented as random 

mixtures over latent topics where each topic is characterized by a distribution over words 

[34]. Given a corpus D containing M documents where each document contains N words 

{𝑤1, 𝑤2, … , 𝑤𝑛} over K topics, the generative process of LDA is as follows: 

1. Choose θi ~ Dirichlet(α) 

2. Choose φk ~ Dirichlet(β) 

3. For each of the N words wn: 

a. Choose a topic zi,j ~ Multinomial(θi) 

b. Choose a word wi,j ~ Multinomial (φzi,j
) 

where 𝑖 ∈ {1, … , 𝑀}, 𝑗 ∈ {1, … 𝑁}, 𝑘 ∈ {1, … 𝐾}, and 𝛼 and 𝛽 are hyperparameters for the 

topic distribution per document 𝜃 and the word distribution per topic 𝜑 respectively.  

With the plate notation as shown in Figure 2-1, LDA can be described as follows: 𝛼 

is the parameter of the Dirichlet prior on the document-topic distributions, 𝛽 is the 

parameter of the Dirichlet prior on the topic-word distribution, 𝜃𝑚 is the topic distribution 

for the document 𝑚, 𝜑𝑘 is the word distribution for the topic 𝑘, 𝑧𝑚𝑛 is the topic for the 𝑛-

th word in the document 𝑚, and 𝑤𝑚𝑛 is the specific word that is the only observable 

variable. 
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In order to learn LDA with various distributions, many approximation methods have 

been suggested such as variational inference, Gibbs sampling, and online inference [34, 

35, 36]. 

 

Figure 2-1. Latent Dirichlet Allocation (LDA) Plate Notation 

 

2.2 Word Sense Disambiguation in Social Media 

Word Sense Disambiguation (WSD) is the activity of identifying the senses of a 

word and has been one of the research areas in Natural Language Processing (NLP) for 

several decades. For example, the word ‘apple’ has multiple meanings such as a fruit and 

a company, and the meaning of the word depends on context. WSD is generally divided 

into two approaches: supervised approaches and unsupervised approaches. Supervised 

approaches use various machine learning methods with manually annotated resources for 
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identifying word senses. Various supervised methods have been adopted such as Nave 

Bayes, Neural Network, an instance-based learning, Support Vector Machine, and 

Ensemble methods [37, 38]. Building manually annotated resources is an expensive and 

time-consuming work as documents and contents on the Web grow continuously. In an 

effort to resolve the knowledge acquisition bottleneck, a bootstrapping method and a 

topic signature have been adopted to the word sense disambiguation [39, 40]. In 

SemEval-2007, an international word sense disambiguation competition, the best system 

achieved an 88.70% accuracy whereas the first sense baseline achieved 78% [41]. A gold 

standard data constructed by the manually tagged Wall Street Journal corpus was used for 

the evaluation. The accuracy of the disambiguation is relatively high because a 

newspaper corpus is a long document and contains enough clue words to be used for the 

disambiguation. 

Recently, many studies have tried to discriminate word senses in Twitter. Due to the 

fact that tweets are usually short and informal, it is much more difficult for machines to 

understand the word senses of tweets. The third Web People Search (WePS-3) task-2 

evaluation campaign was held to address the ambiguity of named entities in Twitter and 

to encourage research groups to resolve the problem by providing the information of 

companies and collections of tweets for each company. Several groups participated in the 

competition [42]. The best system was LSIR-EPFL which built six profiles of each 

company from external sources such as the home page, the metadata of the website, the 
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category profile using WordNet, GoogleSet, and the manually user-defined terms for 

both positive and negative aspects [43]. The second best system ITC-UT made use of six 

rules to categorize a company bias on tweets into 3 or 4 classes. For each bias, a 

procedure of the tweet classification was differently specified [44]. The middle-ranked 

system SINAI directly recognized the named entity using Wikipedia, DBpedia, and the 

company’s home page [45]. The UVA system tried to build a general organization 

classifier by examining the characteristics of Twitter despite the low accuracy [46]. The 

KALMAR system used an initial bootstrapping model from the company’s home page 

[47]. After the third WePS campaign, many studies have been done to disambiguate a 

named entity on tweets. Most of the researches tried to resolve the named entity 

ambiguity using the external sources such as Wikipedia, Google search, DBpedia, the 

company’s home page, etc. [48, 49, 50, 51, 52]. Another approach was to build the 

named entity recognizer for the Twitter stream [53]. However, none of the research has 

exploited the news corpus for the tweet discrimination. 

2.3 Question Retrieval in CQA 

Question retrieval is one of the challenging tasks in community question answering 

(CQA). Question retrieval aims at finding similar questions from large CQA archives. 

There have been many studies on question retrieval with various approaches. A word-

based translation model bridges the lexical gap between question titles [13] and the 

translation model outperforms the traditional retrieval methods such as the cosine 
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similarity and the language model. As an extension of the word-based translation model, 

a phrase-based translation model is proposed [54] and outperforms the word-based 

translation model. A knowledge-based approach is also able to reduce the lexical gap for 

question retrieval [55]. On the other hand, a syntactic tree matching approach shows that 

syntactic information is applicable to address the question retrieval problem [56]. Topic 

models are applied to discover latent topics and similar questions are retrieved based on 

the topic distribution [57, 58] and topic models also improve the retrieval performance. 

However, most of the research takes advantage of only question titles. Recently, some 

studies have utilized question descriptions for the query expansion by adding descriptions 

[59]. 

2.4 Tag Recommendation in CQA 

Tag recommendation is another challenging task in community question answering 

(CQA). Tagging is a popular means of annotation for online users to freely attach 

additional information to their contents. With the advent of Web 2.0, many online social 

services such as Flickr, Delicious, and CiteULike have introduced tagging systems, and 

they have attracted great attention of researchers to tag recommendation [60, 61, 62]. In 

online social services, the goal of the tag recommendation is to recommend additional 

tags to user-defined tags using various approaches; Based on tag co-occurrence between 

two tags, candidate tags are selected, aggregated, and promoted to recommend tags for 

images [60], Latent Dirichlet Allocation (LDA) is applied for a resource-tag matrix 
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instead of a document-term matrix to find most relevant latent topics and to recommend 

the tags in the relevant topics [61], or documents are treated as triplets of (words, 

documents, tags) to estimate the document distribution using a two-way Poisson Mixture 

Model [62].  

Software information sites such as Stack Overflow, Super User, and Ask Ubuntu are 

community question answering (CQA) sites and have characteristics of online social 

services with regard to tagging. While most CQA sites use controlled vocabularies to 

categorize questions, software information sites make use of uncontrolled vocabularies 

(i.e. folksonomies), called tags. Many studies have been focusing on improving the 

quality of tags and solving the problem of the tag synonym and the tag explosion in 

software information sites by recommending appropriate tags. Wang et al. proposed a tag 

recommendation method called EnTagRec [63]. EnTagRec consists of two components 

called Bayesian inference component (BIC) and Frequentist inference component (FIC). 

The BIC uses Labeled LDA (LLDA) to learn a probability distribution of tags and the 

FIC employs the co-occurrence of a tag and a term to compute term-tag probabilities. 

Tags are recommended based on the score of both the BIC and the FIC. Wang el al. 

proposed TagCombine, a tag recommendation method that combines three approaches of 

tag recommendation: a multi-label classification ranking approach, a similarity-based 

ranking approach, and a tag-term affinity ranking approach [64]. Tags are recommended 

based on the score of these three ranking functions. Wu et al. proposed a content-based 
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tag recommendation model called Tag2Word [65]. Tag2Word calculates the tag-word 

distribution using LLDA and makes use of the tag appearance in the content to improve 

the accuracy. Zhou et al. proposed TagMulRec that is scalable for large-scale information 

sites [31]. TagMulRec finds candidate software objects by calculating the similarity 

between software objects using word co-occurrence and normalizing the similarity score, 

and ranks tags by the similarity scores of the candidate software objects and their tag 

frequencies. To speed up the computation, TagMulRec uses indexing techniques. 

Joorabchi et al. proposed a novel approach in order to resolve the problem of the tag 

explosion by mapping Stack Overflow tags into Wikipedia concepts using machine 

learning techniques [28]. Many researchers have applied LDA to the tag recommendation 

and showed the improvement in accuracy [61, 63, 65, 66, 67]. However, there is limited 

research on considering the relevance of topics in calculating the document similarity. 
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Chapter 3  

Company Name Discrimination in Social Media 

Company name discrimination is considered a binary classification task that checks 

whether the classification result would be related or non-related to a target company. In 

this chapter, we propose a company name discrimination method in social media using 

topic signatures from news articles. Figure 3-1 depicts the overall process of the proposed 

approach for the company name discrimination in tweets. Firstly, the New York Times 

(NYT) articles related to a target company are collected from the NYT repository using 

APIs. Various features are available in the articles such as abstracts, headlines, lead 

paragraphs, snippets and article bodies. Before extracting topic signatures, news articles 

are converted into the bag-of-words representation. In the bag-of-words model, a 

document is represented as a bag of words and the word order is ignored. Texts are 

segmented for the bag-of-words representation and tagged with their parts-of-speech. 

Only nouns are extracted for the company name discrimination because most nouns are 

concrete terms and they are used for the subject and object of the sentence. After NLP 

processing, topic signatures are extracted from the collected news articles by the 

document frequency. A straightforward classification method is used to classify the 

tweets based on the topic signatures. The classification method determines whether a 

tweet is relevant or irrelevant to a given company. 
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Figure 3-1. A system architecture of the company name classifier 

 

 

3.1 Methodology 

In this section we explain how to collect news articles from the NYT repository, the 

process of the topic signature extraction, the classification method in detail. 

3.1.1 Collecting News Articles 

The New York Times provides a public access to their news articles using The New 

York Times APIs4. Thus, searching a company’s name can automatically retrieve related 

articles from The New York Times repository. News articles can be collected by a search 

                                                 
4 http://developer.nytimes.com/ 
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keyword using the NYT APIs up to 1,010 articles per search keyword. The search 

keyword should be carefully decided to retrieve relevant articles. Searching for a full 

name of the company mitigates the ambiguity in the collected articles by retrieving more 

related articles so that the articles can be used as an external knowledge resource without 

manual annotations. Although we rely on the NYT APIs to collect relevant articles, the 

verification of the collected articles is necessary.  

 

 

Table 3-1 shows the result of the relatedness of collecting news article using 

different search keywords. With the search keyword ‘apple’, we collected 1,002 news 

articles. Out of 1,002 articles, 621 articles were related to the company Apple Inc., 184 

articles were not related, and 197 articles did not have contents enough to recognize the 

relatedness. With the search keyword ‘apple inc’, we collected 1,010 news articles. Out 

of 1,010 articles, 925 articles were related to the company, no articles were unrelated, and 

85 articles were not determined. After examining the collected articles, we observed that 

the full name of the company (e.g. Apple Inc.) retrieves related articles much more than 

the part of the company name (e.g. apple), and the collected articles can be used as an 

external knowledge resource.  
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Table 3-1. Relatedness of collecting news article using different search keywords 

Search Keyword Related Unrelated Undetermined Total 

apple 621 184 197 1002 

apple inc 925 0 85 1010 

 

3.1.2 Topic Signature Extraction 

A topic signature is a family of terms that are highly correlated with a target concept 

and is defined as follows: 

Topic Signature =  {topic, signature} 

=  {topic, < (t1, w1), . . . , (tn, wn) >} 

where topic is the target concept and signature is a vector of related terms [68]. Each 𝑡𝑖 is 

a term highly correlated to topic with a weight 𝑤𝑖. A topic signature is a statistical 

approach that exploits the natural tendency of the semantically related words which co-

occur more often than by chance in the same context [69]. Topic signatures are typically 

extracted from a pre-classified corpus because the relatedness of topic signatures is 

generally measured by tf-idf, the chi-squared test, or mutual information. 

Topic signatures are extracted from news articles. Various features are available in 

each collected article, and the four features associated with contents are considered to be 
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suitable for extracting topic signatures: bodies, abstracts, lead paragraphs, and snippets. 

The body feature is a full text of the news article and the other features are the short 

summaries of the news article. However, detailed explanations of the features are not 

specified in the NYT API document. Although various features are available in the news 

articles, it is necessary to examine which feature is more useful for the company name 

discrimination. Some of data are empty and null data can be retrieved from the NYT 

repository. Retrieval rate is used to determine how much data in the feature is available in 

the collected articles, and it is defined as:  

Retrieval rate =
Non-empty data in the feature

Total collected articles
 

A higher retrieval rate implies that the feature has less missing data and more 

available data in the collected articles. Therefore, the feature with the higher retrieval rate 

is more likely to be useful for extracting topic signatures. 

Topic signatures are extracted from the high retrieval rate features based on the 

document frequency. The document frequency of a term is defined as the number of 

articles that contain the term in the collected articles, and the term’s specificity is related 

with the document frequency [70]. Since a news article usually covers a specific topic, 

the document frequency is used as a main criterion to discover the topic signatures. The 

document frequency is also useful to mitigate a bias towards longer documents. Since the 

topic signature is the key to discriminate word senses, it is important to extract 
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meaningful topic signatures from news articles. Typically, topic signatures are extracted 

by comparing the occurrence in related articles and unrelated articles to a target word 

sense. While related articles can be collected by the search engine, it is nearly impossible 

to construct unrelated articles without human annotations. For this reason topic signatures 

are extracted from only related articles. 

Vocabulary is a list of unique words in the collected articles, and topic signatures are 

the terms, extracted from the vocabulary, whose document frequency is greater than the 

threshold which is heuristically determined. It is important to find the reasonable 

threshold to exclude insignificant terms from the topic signature. If the threshold is too 

low, superfluous terms would be included. On the contrary, the immoderately high 

threshold leads to a false bias and most of the results are labelled as ‘non-related’ since 

too few words would be included in the topic signature.  

3.1.3 Classification 

The classification method exploits the occurrence of topic signatures in tweets 

because tweets are short messages within 140 characters and each word of a tweet has a 

strong meaning. Algorithm 1 explains the algorithm of the tweet classification. Topic 

signatures are extracted from news articles, and tweets and topic signatures are prepared 

in the form of the bag-of-words model. In the classification, the tweet is classified to a 

related tweet to a target company if any topic signatures occur in the tweet. If no topic 
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signatures occur in the tweet, the tweet is classified to a non-related tweet to a target 

company. 

Algorithm 1 Tweet Classification 

tweet ← (t1, t2, t3, … , tn) 

topic signature ← (w1, w2, w3, … , wn) 

 

1: procedure RELATEDNESS (tweet, topic signature) 

2:     if (tweet ∩ topic signature) ≠ ∅ then 

3:         set tweet  related 

4:     else 

5:         set tweet non-related 

6:     end if 

7: end procedure 

 

3.2 Experimental Setup and Results 

3.2.1 Data Sets and Preprocessing 

In WePS-3 task 2 Online Reputation Management, 47 named entities and around 500 

tweets corresponding to each named entity are provided as a test set. The test set is 

labelled by 5 human annotators using Amazon Mechanical Turk. We categorized the 47 

named entities into subcategories, and decided to use 27 company-related entities for the 

experiment since companies are occasionally main topics of newspapers and company 

names are frequently mentioned in newspapers. The experiment was carried out with the 

27 companies listed in Table 3-2. The total number of tweets provided by WePS-3 for 27 

companies is 11,526 tweets. In this experiment the URL addresses and username tags 

(@) were ignored and the hash tags (#) were regarded as normal words. 
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The total number of news articles we collected for 27 companies is 20,492 articles. 

We collected the body, the abstract, the lead paragraph, and the snippet from each article. 

All the raw texts were converted to a bag-of-words representation using word 

segmentation and the part-of-speech tagger in the Stanford Natural Language Processing 

(NLP) module5. Only nouns are extracted for the company name discrimination because 

most nouns are concrete and used for the subject and object of the sentence. In the 

preliminary experiment with a narrow data set, the result showed that the noun case was 

most accurate in tweet classification compared to other cases such as noun & verb, noun 

& verb & adjective, and all parts of speeches. 

Stop word removal was applied to the all the raw texts. Stop words are the words that 

should not be used as topic signatures. There are two types of stop words. The first type 

of the stop words is the tweet search keywords for collecting a test set. All tweets 

retrieved by the search keywords include the same keywords in the contents themselves. 

If the tweet search keywords are not excluded, the result will be under a bias that most of 

the tweets are related to a company. The second type of the stop words is the news words. 

A news article is commonly written in a fixed format. The words that are not related to a 

company may frequently appear in the news articles such as the date published, the 

location, the appellation, the name of a newspaper, etc. The news words should be 

                                                 
5 http://nlp.stanford.edu/index.shtml 
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excluded from the classifier due to the fact that these words decrease the quality of the 

topic signature. 

Table 3-2. A list of 27 companies used in the evaluation 

27 companies (full names used in news search) 

Amazon.com, Apache Software Foundation, Apple Inc., Blizzard Entertainment, 

Canon Inc., Cisco Systems, CVS/pharmacy, Ford Motor Company, T.G.I. Friday’s, 

General Motors, Gibson Guitar, Jaguar Cars Ltd., Lexus, McDonald's, Metro 

Supermarket, Oracle Corporation, Orange S.A., Paramount Group, Seat S.A., Sharp 

Corporation, Sonic.net, Sony, Starbucks, Subway, Tesla Motors, US Airways, Virgin 

Media 

 

3.2.2 Evaluation Metrics 

For the performance evaluation, we estimated the accuracy, precision, recall and f-

measure for each company. The measures are defined as: 

Accuracy =
TP + TN

N
 

Precision (related) =
TP

TP + FP
  

Recall (related) =
TP

TP + FN
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Precision (non-related) =
TN

TN + FN
  

Recall (non-related) =
TN

TN + FP
 

F-measure = 2 ∗
Precision ∗ Recall

Precision + Recall
 

where N is the number of tweets, TP is true positive, TN is true negative, FP is false 

positive, and FN is false negative. 

3.2.3 Feature Selection 

Figure 3-2 illustrates the retrieval rate of the four different features of news articles. 

The snippet feature obtained the 0.98 retrieval rate on average, which is the highest 

retrieval rate in the four features. A feature with a higher retrieval rate is more likely to be 

useful for extracting topic signatures. For example, when we collect 1,000 news articles, 

980 news articles contain the snippets whereas 20 news articles do not have the snippets. 

The average retrieval rate of the lead paragraph feature is 0.91, and that of the body 

feature is 0.90. The abstract feature obtained a 0.54 retrieval rate, which is relatively low. 

Despite the high retrieval rate, the lead paragraph feature is excluded from the 

experiment. The contents of the lead paragraph feature are almost identical to those of the 

snippet feature but the retrieval rate of the lead paragraph is lower than that of the snippet 

feature. According to the average retrieval rate, we selected the snippet feature and the 

body feature as candidate features for extracting topic signatures. The main difference 
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between the snippet feature and the body feature is their respective lengths. The snippet 

consists of at most two sentences whereas the body contains several paragraphs. 

 

Figure 3-2. The retrieval rate of news article features 

 

3.2.4 Threshold for Extracting Topic Signatures 

Topic signatures are extracted based on a threshold of the document frequency. It is 

important to find the reasonable threshold to exclude insignificant words from the topic 

signature. If the threshold is too low, superfluous words would be included. On the other 

hand, if the threshold is too high, it leads to a false bias and most of the results are 

labelled as non-related since too few words would be included in the topic signature. 

Because the number of the collected news articles is different for each company, we set 

the threshold by the ratio of collected documents. For example, if the threshold is set to 
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15%, the words whose document frequency is greater than 0.15𝑁 are chosen as a topic 

signature where N is the total number of the news articles for the given company.  

The threshold for the body feature is determined at 15% of the total number of the 

news articles in the previous research [71]. As the threshold increases, the f-measure has 

fallen off steadily. The 2% threshold achieved the highest f-measure. We compared the 

number of extracted words in topic signatures to figure out what threshold value can be a 

reasonable threshold. As shown in Table 3 4, on average, the 2% threshold extracted 

75.81 words as topic signatures; the 3% threshold extracted 44.11 words, and 12% 

threshold extracted 6.07 words. As a result, the 2% threshold has the most topic 

signatures without decreasing the performance in both accuracy and f-measure. 

Therefore, the threshold for the snippet feature is determined as 2% of the total number of 

news articles. 

Table 3-3 is a topic signature for the company ‘Lexus’ when applying 15% as a 

threshold, and 44 terms were extracted as a topic signature. In the same manner, we 

compared various thresholds for the snippet feature to determine the best threshold. As 

shown in Figure 3-3 and Figure 3-4, various thresholds from 1% to 20% were tested. In 

Figure 3-3, the accuracy is fluctuating and unpredictable as the threshold changes. The 

12% threshold achieved the highest accuracy. Figure 3-4 shows the sum of the f-measure 

of the related class and the non-related class. As the threshold increases, the f-measure 

has fallen off steadily. The 2% threshold achieved the highest f-measure. We compared 
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the number of extracted words in topic signatures to figure out what threshold value can 

be a reasonable threshold. As shown in Table 3-4, on average, the 2% threshold extracted 

75.81 words as topic signatures; the 3% threshold extracted 44.11 words, and 12% 

threshold extracted 6.07 words. As a result, the 2% threshold has the most topic 

signatures without decreasing the performance in both accuracy and f-measure. 

Therefore, the threshold for the snippet feature is determined as 2% of the total number of 

news articles. 

 

Table 3-3. A topic signature for 'Lexus' 

Topic signature (44 terms) 

model, luxury, sedan, sale, auto, automaker, motor, brand, ford, sport, driver, bmw, 

engine, honda, consumer, detroit, highway, version, hybrid, safety, mercedes-benz, 

industry, buyer, motors, road, mile, general, customer, division, truck, cadillac, acura, 

design, test, dealer, report, traffic, nissan, product, feature, utility 
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Figure 3-3. The accuracy of the classification result on various thresholds 

 

 

Figure 3-4. The f-measure of the classification result on various thresholds 
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Table 3-4. The average number of words in topic signatures for each threshold 

Threshold (%) Average topic signatures (words) 

2 75.81 

3 44.11 

12 6.07 

 

3.2.5 Results 

The performance of the classification is measured by accuracy, precision, recall, and 

the f-measure. A random baseline is a result of randomly labeled tweets, and is used to 

evaluate the improvement of the company name classification in tweets. Figure 3-5 

shows an evaluation of the result compared to the baseline. The result shows that the 

topic signatures extracted from the article body increased the accuracy by 10.4% and 

those of the snippet feature increased the accuracy by 12.5% as compared with the 

random baseline. The precisions, recalls, and f-measures for both the snippet feature and 

the body feature are also increased as compared with the random baseline. The company 

name discrimination result was more accurate when using the snippet feature compared 

to the body of the article. Whereas f-measure of the body feature in the related class is 

higher than that of the snippet feature, the f-measure of the body feature in the non-

related class is lower than that of the snippet feature. We investigated the reason for the 

difference of the f-measures between the related class and non-related class, and the 
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reason is that the body feature has more topic signatures (140.44 words on average) than 

the snippet feature (75.81 words on average). 

Table 3-5 and Table 3-6 illustrate the company name discrimination results of the top 

five companies out of the twenty-seven companies in order of the sum of the related f-

measure and the non-related f-measure for the body feature and the snippet feature 

respectively. Companies with high scores on f-measures indicate that they are well 

discriminated in our approach for both related and non-related tweets. We observed that 

Apple Inc., General Motors, Tesla Motors, and Jaguar Cars Ltd. are highly ranked in 

terms of accuracy and f-measure for both using the body feature and the snippet feature 

because product-related words are extracted well from news articles as topic signatures. 

For example, topic signatures of automobile manufacturers include car-related words 

such as vehicle, car, and model. Topic signatures of Apple Inc. include names of their 

products such as iPhone, iPod, etc. 



36 

 

 

 

 

 

 

Figure 3-5. A comparison of the evaluation result 

 

Table 3-5. The top 5 companies using the body feature by f-measure 

Entity Accuracy 

Related Non-related 

Precision Recall F-measure Precision Recall F-measure 

Apple Inc. 0.835 0.942 0.856 0.897 0.495 0.729 0.590 

General Motors 0.742 0.659 0.872 0.751 0.861 0.638 0.733 

Apache Software 0.710 0.677 0.751 0.712 0.748 0.674 0.709 

Tesla Motors 0.693 0.497 0.858 0.630 0.909 0.621 0.738 

Jaguar Cars Ltd. 0.663 0.683 0.728 0.705 0.635 0.583 0.608 

 



37 

 

 

 

 

 

Table 3-6. The top 5 companies using the snippet feature by f-measure 

Entity Accuracy 

Related Non-related 

Precision Recall F-measure Precision Recall F-measure 

Apple Inc. 0.835 0.942 0.856 0.897 0.495 0.729 0.590 

General Motors 0.742 0.659 0.872 0.751 0.861 0.638 0.733 

Apache Software 0.710 0.677 0.751 0.712 0.748 0.674 0.709 

Tesla Motors 0.693 0.497 0.858 0.630 0.909 0.621 0.738 

Jaguar Cars Ltd. 0.663 0.683 0.728 0.705 0.635 0.583 0.608 

 

Despite of the improvement of the results, there exist some limitations in this 

experiment. First, Natural Language Processing (NLP) is useful but not perfectly 

accurate. For natural language processing, we exploited the Stanford Natural Language 

Processing (NLP) module. The Stanford NLP performs well on the news article. 

However, the informality of tweets such as grammatical errors, misspellings, and 

unreliable capitalizations may depreciate the quality of the NLP module in tweets. For 

example, a tweet ‘This Is Apples Next iPhone(http://bit.ly/cEJuUq)’ is segmented into 

‘be’, ‘apple’, ‘next’, ‘bit.ly’, and ‘cejuuq’ through the Stanford NLP because of the lack 

of the blank space in between the words. The word ‘iPhone’, a topic signature of Apple 

Inc., is not extracted from the tweet due to both the limitation of the NLP module and the 

informality of the tweet. Second, there is a time gap between the collected news articles 

and the tweets used in the experiment. When we collected news articles, the latest articles 
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were retrieved by the New York Times APIs. For example, out of 1,010 news articles 

about Apple Inc., 299 news articles were generated after January 2015. As privacy 

became a controversial issue for Apple Inc. in recent years, the word ‘privacy’ is selected 

as a topic signature as shown in Table 3-7. On the other hand, the evaluation data was 

released in 2010. This time gap may affect the evaluation result. 

 

Table 3-7. A topic signature for ‘Apple Inc’. 

Topic signature (36 terms) 

watch, tech, computer, company, executive, tablet, mac, government, steve, operating, 

smartphone, ios, music, version, system, share, application, app, case, phone, market, 

iPad, user, customer, steven, jobs, iPod, device, privacy, technology, 

software, problem, iPhone, feature, cook, security 
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Chapter 4  

Recommendations in CQA 

Community Question Answering (CQA) mainly consists of questions and answers. 

Questions in CQA archives are divided into question titles, question descriptions, and 

tags. Question titles are usually short but contain the keywords describing the askers’ 

interests while question descriptions are rather long and include detailed information. 

Tags are used to help to organize, search, and explore the questions for future use. In this 

chapter, we propose two recommendation methods in CQA: a question retrieval method 

for the answer recommendation and a tag recommendation method. 

4.1 Question Retrieval in CQA  

In CQA, answers are categorized into best answers and non-best answers. Best 

answers are the selected answers by askers to express their satisfaction of the answers. If 

we find similar questions of the new question, their best answers can also be the answers 

for the new question and satisfy the asker’s curiosity. We present a weighted question 

retrieval model that finds similar questions and recommends their best answers in large-

scale CQA archives. Figure 4-1 describes an overview of the weighted question retrieval 

model. When a new question comes, the proposed model calculates the question 

similarity between existing questions and the new question, and finds similar questions 
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based on the question similarity scores. Subsequently, their best answers are 

recommended as an answer of the new question. 

 

Figure 4-1. An architecture of a weighted question retrieval model 
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4.1.1 Okapi BM25 

The Okapi BM25 is a ranking model to calculate the similarity between a document 

and a query [34]. We used the Okapi BM25 to measure the question similarity. For the 

Okapi BM25, we consider a new question as a query and an existing question in the CQA 

archives as a document. With the bag-of-words representation of a query 𝑄 =

{𝑞1, 𝑞2, … , 𝑞𝑛} and a document 𝐷 = {𝑤1, 𝑤2, … , 𝑤𝑛}, the Okapi BM25 score is defined as 

follows: 

BM25(Q, D) = ∑ log (
𝑁 − 𝑑𝑓(𝑞𝑖) + 0.5

𝑑𝑓(𝑞𝑖) + 0.5
)

𝑛

𝑖=1

∙
𝑡𝑓(𝑞𝑖) ∙ (𝑘1 + 1)

𝑡𝑓(𝑞𝑖) + 𝑘1 ∙ (1 − 𝑏 + 𝑏 ∙
|𝐷|

𝑎𝑣𝑔𝑑𝑙
)
 

where N is the total number of documents in the CQA collection, 𝑑𝑓(𝑞𝑖) is the number of 

documents containing 𝑞𝑖 in the CQA collection, 𝑡𝑓(𝑞𝑖) is the term frequency of 𝑞𝑖 in the 

document D, |𝐷| is the length of the document D in words, and 𝑎𝑣𝑔𝑑𝑙 is the average 

document length in the CQA collection. 𝑘1 and 𝑏 are free parameters, and they are 

chosen as 𝑘1 = 1.2 and 𝑏 = 0.75. Documents with higher BM25 scores are more likely 

to be related questions. 

4.1.2 Weighted Question Similarity 

Figure 4-2 describes a weighted question similarity model. To exploit both question 

titles and question descriptions in question similarity, it is necessary to identify the 

relationship between titles and descriptions. We developed four baseline scores to 
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understand the relationship between them: Title-Title’, Title-Description’, Description-

Title’, and Description-Description’. In this section, a new question is referred to as a 

query, and a question in the CQA collection is referred to as a document. 

• Title-Title’ (TT’): A similarity score between a query’s title and a 

document’s title using the Okapi BM25. 

• Title-Description’ (TD’): A similarity score between a query’s title and a 

document’s description using the Okapi BM25. 

• Description-Title’ (DT’): A similarity score between a query’s description 

and a document’s title using the Okapi BM25. 

• Description-Description’ (DD’): A similarity score between a query’s 

description and a document’s description using the Okapi BM25. 

With these four scores, the question similarity score is calculated as follows: 

𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝛼
𝑠𝑐𝑜𝑟𝑒(𝑇𝑇′)

𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒(𝑇𝑇′))
+ 𝛽

𝑠𝑐𝑜𝑟𝑒(𝑇𝐷′)

𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒(𝑇𝐷′))
 

+𝛾
𝑠𝑐𝑜𝑟𝑒(𝐷𝑇′)

𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒(𝐷𝑇′))
+ 𝛿

𝑠𝑐𝑜𝑟𝑒(𝐷𝐷′)

𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒(𝐷𝐷′))
 

where 𝛼, 𝛽, 𝛾, 𝑎𝑛𝑑 𝛿 are free parameters for weighting scores and they are experimentally 

determined. All the scores are normalized ranging from 0 to 1 by dividing their maximum 

scores. 
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Figure 4-2. A weighted question similarity model 

 

4.2 Experimental Setup and Results 

In this section, we describe experimental setup and results including the details of the 

data sets, data preprocessing, and evaluation results for the question retrieval. 
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4.2.1 Data Sets and Preprocessing 

In the experiment we used data sets from Yahoo! Answers and Stack Overflow. The 

Yahoo! Answers data set6 includes 4 million questions posted from July 2005 to Dec 

2006, and the Stack Overflow data set7 includes 11 million questions posted from April 

2010 to January 2016. Table 4-1 illustrates the details of the data sets used in the 

experiment. There is a difference between the number of question titles and question 

descriptions in the Yahoo! Answers collection since some of the question descriptions are 

empty. 

Table 4-1. The details of data sets 

 Yahoo! Answers Stack Overflow 

Period July 2005 – Dec 2006 April 2010 – January 2016 

Number of Titles 4,483,032 11,203,031 

Number of Descriptions 2,559,603 11,203,031 

Number of Answers 4,408,264 18,218,676 

 

All raw texts are lemmatized and part-of-speech tagged by the Stanford NLP 

module. Only nouns, verbs, and adjectives are used in calculating the question similarity 

since it is found in the initial experiment that these parts of speeches are meaningful 

                                                 
6 http://webscope.sandbox.yahoo.com/ 
7 https://archive.org/details/stackexchange 
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while the others disturb the similarity accuracy. Stop word removal is applied to the all 

the raw texts. 

For the evaluation, twenty questions are sampled from Yahoo! Answers collection 

and Stack Overflow collection respectively as queries and they are excluded from the 

CQA collections. We separately conducted an experiment for the Yahoo! Answers 

collection and Stack Overflow collection. In the evaluation three measures are used: 

Mean Average Precision (MAP), Precision at 10, and Mean Reciprocal Rank (MRR). 

MAP is an average precision across queries, which determines a precision at each point 

when a new relevant document gets retrieved. Precision at 10 computes how many 

relevant documents are retrieved in top 10 results. MRR considers an average rank of the 

first relevant document across queries. Human annotators cannot look at more than 

million documents in the collection. For this reason, top 20 results are annotated and the 

other results are automatically assumed to be irrelevant, which is called a pooling 

method. 

4.2.2 Results 

In this experiment, we used two different data sets: Yahoo! Answers and Stack 

Overflow. Each data set has different characteristics with regard to contents. For 

example, the Yahoo! Answers data include empty descriptions because descriptions are 

not a requirement of questions. On the contrary, the Stack Overflow data must include 

descriptions by its community rules. For this reason, free parameters for the weighted 
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score were determined independently. Free parameters for Yahoo! Answers were 

experimentally determined as α=1, β=0, γ=0.8, and δ=0. Table 4-2 shows the result of the 

Yahoo! Answers collection with 20 sample queries. The Title-Title’ was the best score, 

and the Description-Title’ was the second highest score among the four baselines. Based 

on this observation, the parameters were adjusted. As a result, the weighted score, a 

combined weighted score of the best two relationships of titles and descriptions, 

outperformed the Title-Title’ and other baselines in both MAP and MRR while precision 

at 10 was decreased. 

Table 4-2. The question retrieval result in Yahoo! Answers 

Yahoo! Answers MAP Precision@10 MRR 

Title-Title’ 0.505 0.320* 0.600 

Title-Description’ 0.229 0.155 0.283 

Description-Title’ 0.397 0.180 0.483 

Description-Description’ 0.176 0.120 0.210 

Proposed Model 0.523* 0.285 0.653* 

*best result 

For the Stack Overflow data set, we also used a combined weighted score of the best 

two relationships of titles and descriptions. Free parameters for Stack Overflow were also 

experimentally determined as α=1, β=0.8, γ=0, and δ=0. Table 4-3 shows the result of the 

Stack Overflow collection with 20 sample queries. The Title-Title’ was also the best 
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score, and the Title-Description’ was the second highest score in the four baseline scores. 

The weighted score slightly outperformed the Title-Title’ score in both MAP and MRR 

while precision at 10 were decreased.  

Table 4-3. The question retrieval result in Stack Overflow 

Stack Overflow MAP Precision@10 MRR 

Title-Title’ 0.499 0.295* 0.572 

Title-Description’ 0.331 0.125 0.372 

Description-Title’ 0.103 0.070 0.086 

Description-Description’ 0.235 0.045 0.271 

Proposed Model 0.508* 0.270 0.585* 

*best result 

From the results, we observed that the Title-Title’ was the best among the baselines 

in both data sets. However, the second highest combination was different for each data 

set. The Description-Title’ was the second highest baseline in Yahoo! Answers data 

whereas the Title-Description’ was the second highest baseline in Stack Overflow data. 

From this observation, we found that exploiting the question descriptions increased the 

ranks of the relevant questions while reducing the recalls of them as compared with Title-

Title’. For example, in the Stack Overflow collection, the ranks of the 5 queries were 

increased and those of 3 queries were decreased. 12 fewer relevant questions were 

retrieved by the weighted model than by Titie-Title’. In the Yahoo! Answers collection, 
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the ranks of the 3 queries were increased and 5 fewer relevant questions were retrieved 

by the weighted model than by Titie-Title’.   
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Table 4-4 shows an example of the rank rises of the relevant questions by the 

weighted model in the Yahoo! Answers collection. The question 1 and the question 2 are 

retrieved by the similarity with the query. The question 1 is ranked seventy-fifth based on 

the Title-Title’ and is ranked thirteenth based on the Description-Title’. The question 2 is 

ranked eighth based on the Title-Title’ and is ranked six hundred seventy-fourth based on 

the Description-Title’. With the weighted model, their ranks can rise to the first and the 

second respectively. Without combining the Title-Title’ and Description-Title’, either the 

question 1 or the question 2 cannot be retrieved as a similar question. 
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Table 4-4. Examples of the rank rises of the relevant questions by the weighted model in 

the Yahoo! Answers collection 

Query 

Title: In the san francisco bay area, does it 

make sense to rent or buy? 

Description: the prices of rent and the price 

of buying does not make sense to me, 

mostly the rent will not cover the mortgage. 

Is it better to rent a house or to buy? 

Rank 

(TT’) 

Rank 

(DT’) 

Rank 

(Weighted) 

Question 

1 

Title: Why is it better to rent a house than 

buy? If in Bay Area, California? 

Description: None 

Best Answer: One, the prices are insane. 

Two, your house payments will be higher 

than rent. Three, you have to spend more on 

your own repairs Four, property taxes Five, 

homeowners insurance   Much cheaper to 

rent than own right now.  Save your money 

until the market evens out and see where 

you are. 

75 13 1 

Question 

2 

Title: Should I buy or rent in San Francisco? 

Description: None 

Best Answer: BUY BUY BUY!!!!!!!!!!!! 

8 674 2 

  



51 

 

 

 

 

 

4.3 Tag Recommendation in CQA 

Tag Recommendation is one of the solutions to the tag synonym and the tag 

explosion in Community Question Answering (CQA) services that employ tagging 

systems. The tag recommendation reduces the chance of creating new tags from users and 

can help to choose appropriate tags to their questions by recommending proper tags. The 

strategy of the tag recommendation for a target document (i.e. an unseen document) is to 

find similar documents to the target document and then to recommend the tags used in 

the similar documents (i.e. candidate documents) based on the ranking score. The 

following sections describe methodology and experiment results of the tag 

recommendation. 

4.3.1 Topic Models 

A topic model is a statistical model for discovering latent topics in a collection of 

documents based on the idea that words with similar meaning will occur in similar 

documents [34, 72, 73]. Latent Dirichlet Allocation (LDA), one of the topic models, is a 

generative probabilistic model which finds topic probabilities over documents given that 

documents are represented as random mixtures over latent topics where each topic is 

characterized by a distribution over words [34]. In this chapter we assume that a 

document is a bag of words and consists of a title and a description of a question. 

Question titles are usually short but contain the keywords describing the askers' interests 

whereas question descriptions are rather long and include detailed information. We 
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combine the words in the title and the description for the document representation. Given 

a corpus D containing M documents where each document contains N words 

{𝑤1, 𝑤2, … , 𝑤𝑛} over K topics, the generative process of LDA is described as follows: 

1. Choose θi ~ Dirichlet(α) 

2. Choose φk ~ Dirichlet(β) 

3. For each of the N words wn: 

a. Choose a topic zi,j ~ Multinomial(θi) 

b. Choose a word wi,j ~ Multinomial (φzi,j
) 

where 𝑖 ∈ {1, … , 𝑀}, 𝑗 ∈ {1, … 𝑁}, 𝑘 ∈ {1, … 𝐾}, and 𝛼 and 𝛽 are hyperparameters for the 

topic distribution per document 𝜃 and the word distribution per topic 𝜑 respectively. In 

LDA, we used the variational inference to learn the hidden topics 𝑧 from the corpus. The 

hidden topics z consists of document-topic distributions and topic-word distributions. 

From the hidden topics 𝑧, we can predict the topic distributions for unseen documents. 

This prediction results in a vector of topic distributions of the documents and the words. 

Table 4-5 shows an example of document-topic distribution from the hidden topics 𝑧 in 

LDA. Each document is a distribution on topics and the sum of the probabilities of topics 

in each document is equal to 1. 
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Table 4-5. An example of document-topic distribution in LDA 

 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 …  

Document 1 0.0015 0.0276 0.0021 0.0034 0.0043 … ∑ 𝑃(𝑥) = 1 

Document 2 0.0042 0.0002 0.0660 0.0192 0.0002 … ∑ 𝑃(𝑥) = 1 

… … … … … … …  

 

4.3.2 A Ranking Function using Highest Topic Filtering (HTF) 

The Latent Dirichlet Allocation (LDA) results in a vector of topic distributions for 

existing documents. The topic distributions for the target document can be inferred using 

the trained LDA model. The similarity scores between existing documents and the target 

document are calculated based on the similarity between their document-topic 

distributions. We used Jensen–Shannon divergence (JSD) to calculate the similarity 

between document-topic distributions. JSD is a well-known method for measuring the 

similarity between two probability distributions, which is a symmetrized and smoothed 

version of Kullback-Leibler divergence. JSD is defined as 

JSD(P || Q) =
1

2
∑ P(i) log

P(i)

M(i)
i

+
1

2
∑ Q(i) log

Q(i)

M(i)
i

 

M(i) =
1

2
(P(i) + Q(i)) 
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where 𝑃 and 𝑄 are topic distributions of documents and 𝑀 is the average of the two 

distributions. The measure is 0 only for identical distributions and approaches infinity as 

the two differ more and more.  

However, equally comparing every topic distribution may lose the relevance of the 

topic. Table 4-6 describes am example of document similarity between the target 

document and existing documents. Based on the JSD, the document 1 is most similar to 

the target document. While the document 2 and the document 3 are less similar than the 

document 1, their first highest topic distributions are the same with the target document. 

Document 2’s second highest topic distribution is also the same with the target document. 

Even though the highest topic distributions are the same, the scores may indicate less 

similar. To emphasize the most relevant topics and exploit the highest topic distributions, 

we proposed a method that filters the highest topic distributions, named Highest Topic 

Filtering (HTF). The HTF method filters the highest topic distributions in advance of 

calculating document similarity scores using the JSD. For HTF with the first highest topic 

distribution, candidate documents are filtered to have the same first highest topic 

distribution with the target document. For HTF with the second highest topic distribution, 

candidate documents are filtered to have the same first and second highest topic 

distribution with the target document. Therefore, it confines the candidate documents by 

filtering the documents that have the same highest topic distributions with the target 

document.  



55 

 

 

 

 

 

Table 4-6. Document similarity between the target document and existing documents 

 Topic 1 Topic 2 Topic 3 Topic 4 … Similarity 

Document 1 0.0276* 0.0021 0.0034 0.0043** … 0.0791 

Document 2 0.0002 0.0660* 0.0192** 0.0002 … 0.3026 

Document 3 0.0100 0.2747* 0.0001 0.0557** … 0.4423 

 

Target Document 0.0054 0.0276* 0.0157** 0.0145 … 0 (identical) 

(*First highest topic distribution, **Second highest topic distribution) 

After the Highest Topic Filtering, we calculate the document similarity between 

existing documents and the target document using the JSD. Candidate documents are 

selected based on the similarity scores to calculate tag scores. In calculating tag scores, 

we consider both the document similarity and the tag occurrence in the candidate 

documents. The score of each tag 𝑡 is calculated as 

TagScore(t) = ∑
1

JSDi
∙ occurrence(t, i)

n

i=1
 

where 𝑛 is the number of candidate documents, 𝐽𝑆𝐷𝑖 is the similarity between the 

document 𝑖 and the target document, and 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒(𝑡, 𝑖) is an indicator function that is 

equal to 1 if the tag 𝑡 occurs in a document 𝑖 and 0 otherwise. The value of JSD is taken 

as a multiplicative inverse to give weight to similar documents. Therefore, the more 

frequently tags occur in more similar documents, the higher tag scores become. As a 

result, the higher tag score is more likely to be relevant to the target document. By 
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ranking the tags in descending order of their tag scores, the top ranked tags are selected 

for recommendation. We called this ranking function 𝑇𝑎𝑔𝑆𝑐𝑜𝑟𝑒𝐻𝑇. Algorithm 2 

describes the procedure of 𝑇𝑎𝑔𝑆𝑐𝑜𝑟𝑒𝐻𝑇. A function 𝑎𝑟𝑔𝑚𝑎𝑥𝑌 returns the indices of 𝑌 

number of highest topic distributions of a document. 

Algorithm 2 A ranking function 𝑇𝑎𝑔𝑆𝑐𝑜𝑟𝑒𝐻𝑇 

 tagt: a score of a tag 𝑡 

 tdk: Distribution of k-th topic 

 an existing document 𝑃𝑖 ← (td1, td2, … , tdk) 

 a target document 𝑄 ← (td1, td2, … , tdk) 

 Initialize the score of each tag t tagt ← 0 

 

2: procedure TagScoreHT (P, Q) 

3:     for i = 1, 2, …, n do 

4:         if argmaxY(𝑃𝑖)  ==  argmaxY(𝑄) then 

5:             for each tag 𝑡 do 

6:                 tagt += occurrence(t, i) ∙
1

JSDi
 

7:             end for 
8:         end if 

9:     end for 

10: end procedure 

 

4.4 Experimental Setup and Results 

In this section, we describe experimental setup and results including the details of the 

data sets, data preprocessing, LDA parameters, evaluation metrics and results for the tag 

recommendation. 
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4.4.1 Data sets and Preprocessing 

In this experiment we used mutually exclusive training and test sets. For a training 

set, we used data sets from Stack Overflow. The Stack Overflow data is publicly released 

and includes about 13 million questions posted from July 2008 to December 2016. For a 

test set, we manually collect 100 questions with the most views, answers, and votes in a 

month in the Stack Overflow website posted from April 2017 to May 2017.  

All the data is preprocessed before training the LDA model. The raw data is stored in 

the eXtensible Markup Language (XML) format, and texts are wrapped with HTML tags 

such as <code>, <pre>, <div>, etc. First, we parse HTML tags to extract only normal 

texts, and discard any code snippets that are wrapped with the tag <code>. Code snippets 

are noisy when they are handled as normal texts since most programming languages have 

similar syntax and keywords. After extracting normal texts, all the texts are lemmatized 

by the Stanford NLP module. Stop words such as ‘a’, ‘the’, and ‘of’ are also removed 

from the texts. 

The time complexity of LDA is O(NKM) where N is the number of unique words, K 

is the number of topics, and M is the number of documents. For the Stack Overflow data 

used in this experiment, the number of unique words is 6 million and the number of 

documents is 13 million. The number of topics may vary from tens to hundreds 

depending on the data. It may take a huge amount of time to train the LDA model and it 

is intractable to compute with all the Stack Overflow data. Inevitably, we reduced the 
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dimensions of words and documents. We found that a small subset of tags appeared in 

most of the documents. As shown in Figure 4-3, a small number of the most frequently 

used tags can cover most of the documents. Therefore, we selected the most frequently 

used 300 tags that can cover 11,790,316 (91.25%) documents of the Stack Overflow data, 

and randomly sampled 1,000 documents for each tag. The number of training documents 

was reduced to 300,000 and the number of unique words was also reduced to 212,144 in 

order of frequency to train the LDA model. 

We also developed a validation set in order to validate the Highest Topic Filtering 

(HTF) method for the tag recommendation. The validation set consists of 2,028 questions 

whose voting scores are greater than 400. The voting score is the sum of upvotes and 

downvotes, and a question can be upvoted or downvoted by users. We assume that voting 

scores indicate the quality of both questions and their tags. Therefore, the validation set is 

assumed to have more relevant tags to their question and is used to find what number of 

highest topic distributions would achieve the best performance in the tag 

recommendation. The details of the data sets used in the experiment are described in 

Table 4-7. 
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Figure 4-3. Document coverage by the most frequent tags 

 

 

 

Table 4-7. The details of the data sets 

Dataset # of Documents # of Tags Period 

Raw data 12,921,385 47,391 07/31/08 – 12/11/16 

Training 300,000 23,659 04/13/09 – 12/11/16 

Validation 2,028 1,702 07/31/08 – 11/01/16 

Test 100 184 04/13/17 – 05/19/17 
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4.4.2 Evaluation Metrics 

We assumed that all tags appeared in the training set and the test set are relevant and 

those tags were considered the answer tags to evaluate our tag recommendation method. 

We evaluate the performance of our tag recommendation method using the validation set 

and the test set. First of all, we discovered similar documents of a target document in the 

test set using the LDA model trained with the sample data of the raw data set. Then, we 

calculated scores of tags based on the document similarity and the frequency of tags 

appeared in the candidate documents. We finally recommended the top 10 tags in order 

of the ranking score. 

To evaluate our tag recommendation method, we used the following ranking 

evaluation metrics. 

P@k: Precision at cut-off k measures the percentage of answer tags that are matched 

with the recommended tags in the top k positions of the predicted rank. We evaluate the 

average of precision at cut-off k over the test set for k = 5. 

R@k: Recall at cut-off k measures the percentage of answer tags that are selected 

out of the recommended tags in top k positions. We evaluate the average of recall at cut-

off k over the test set for k = {5, 10}. 

MAP: Mean average precision measures an average precision across queries, and is 

defined as 
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MAP =
∑ 𝐴𝑣𝑒𝑃(𝑞)𝑄

𝑞=1

𝑄
 

where Q is the number of queries and AveP(q) denotes the average precision for query q, 

computed as 

AveP(q) =
∑ 𝑃@𝑘 ∙ 𝑟𝑒𝑙(𝑘)𝑛

𝑘=1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑠𝑤𝑒𝑟 𝑡𝑎𝑔𝑠
 

where 𝑟𝑒𝑙(𝑘) is an indicator function that is equal to 1 if the tag at rank k is an answer tag 

and 0 otherwise. 

MRR: Mean reciprocal rank measures the average of the reciprocal rank across 

queries. It is defined as 

MRR =
1

Q
∑

1

𝑟𝑎𝑛𝑘𝑞

𝑄

𝑞=1

 

where 𝑟𝑎𝑛𝑘𝑞 denotes the rank position of the first relevant tag for the query q. 

nDCG: Discounted cumulative gain (DCG) measures the ranking quality based on 

its position by discounting the gain at lower ranks. It is defined as 

DCG = ∑
2𝑟𝑒𝑙𝑘 − 1

log2(𝑘 + 1)

𝑛

𝑘=1

 

where 𝑟𝑒𝑙𝑘 is the graded relevance of the tag at position k. The relevance scores of tags 

are binary in this experiment. The normalized DCG (nDCG) normalizes this score across 

queries by Ideal DCG (IDCG), which are defined as 
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nDCG =
DCG

IDCG
 

IDCG = ∑
2𝑟𝑒𝑙𝑘 − 1

log2(𝑘 + 1)

|𝑅𝐸𝐿|

𝑘=1

 

where |REL| represents the list of answer tags. 

The cut-off level n is set to 10 for MAP, MRR, and nDCG in this experiment. 

4.4.3 Training Topic Models 

To determine the proper number of topics K, we examined the log likelihood of the 

LDA for different K topics. We eventually chose the number of topics K = 160 since the 

log likelihood of the LDA was highest at the point of K = 160 as shown in Figure 4-4. 

 

Figure 4-4. A log likelihood of LDA for a different topic K 
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After determining K = 160, we run the LDA with 100 iterations. As a result, 

distributions of the 160 topics for each document were learned. We observed that the 

LDA discovered latent topics well.   
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Table 4-8 lists the topic number, the category we named, and the top 10 words of the 

topic discovered by the LDA. For example, Topic 0 includes the top 10 words ‘library’, 

‘include’, ‘c++’, ‘compile’, ‘static’, ‘standard’, ‘compiler’, ‘boost’, ‘definition’, and 

‘callback’. We named this topic ‘C++’. Topic 3 includes the top 10 words ‘run’, ‘apply’, 

‘job’, ‘apache’, ‘dataframe’, ‘execution’, ‘spark’, ‘driver’, ‘scala’, and ‘cluster’. We 

called this topic ‘Apache Spark’. Other topics are also categorized well by looking top 10 

words for each topic. 
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Table 4-8. Top 10 words for different topics discovered by LDA (K = 160) 

Topic 0 Topic 3 Topic 28 Topic 49 Topic 51 Topic 58 Topic 82 

C++ 
Apache  

Spark 
C# Java Image Email iOS 

library 

include 

c++ 

compile 

static 

standard 

compiler 

boost 

definition 

callback 

run 

apply 

job 

apache 

dataframe 

execution 

spark 

driver 

scala 

cluster 

api 

c# 

allow 

rest 

net 

dll 

token 

register 

assembly 

twitter 

application 

java 

spring 

configuration 

eclipse 

context 

container 

tomcat 

deploy 

maven 

image 

picture 

description 

pixel 

processing 

opencv 

photo 

png 

bitmap 

blob 

send 

address 

email 

contact 

mail 

verify 

attachment 

outlook 

receiver 

gmail 

reference 

ios 

target 

force 

iphone 

xcode 

layer 

swift 

ipad 

unity 

 

4.4.4 Results 

In this section, we present the results of the tag recommendation. We tested four 

different ranking functions: TagScore (without filtering highest topics), TagScoreHTF=1 

(by filtering the first highest topic), TagScoreHTF=2 (by filtering the two highest topics), 

and TagScoreHTF=3 (by filtering the three highest topics). 100 candidate documents were 
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selected based on document similarity. From the candidate documents, the tag scores 

were calculated based on the tag occurrences and the document similarity where the tags 

occur. We evaluated the proposed method for the most frequently used 300 tags and for 

all tags. 

Table 4-9 shows the tag recommendation result of the top 300 tags for the validation 

set. In this result, we did not consider the rest of the tags other than the top 300 tags in the 

evaluation. TagScoreHT=1 improved the tag recommendation in all evaluation metrics as 

compared to TagScore (without filtering highest topics). TagScoreHT=2 also achieved the 

better performance in all evaluation metrics than TagScore did. On the contrary, 

TagScoreHT=3 decreased the performance and achieved the lowest result. 

 

 

Table 4-10 shows the tag recommendation result of the top 300 tags for the test set. 

TagScoreHT=1 outperformed TagScore in all the evaluation metrics. However, 

TagScoreHT=2 decreased R@5 and R@10 while increasing P@5, MAP, MRR, and 

nDCG as compared to TagScore. TagScoreHT=2 was also slightly higher than 

TagScoreHT=1 in MAP, MRR, and nDCG but was lower than TagScoreHT=1 in R@5 and 

R@10. For the test set, we observed that TagScoreHT=1 recommended correct tags more 
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often than the other ranking functions did, and that TagScoreHT=2 ranked correct tags 

more highly than the others did. TagScoreHT=3 decreased the evaluation result.  

 

Table 4-9. Tag recommendation result for the validation set with regard to top 300 tags 

Ranking Function P@5 R@5 R@10 MAP MRR nDCG 

TagScore 0.112 0.328 0.415 0.177 0.274 0.268 

TagScoreHT=1 0.168 0.490 0.628 0.386 0.495 0.471 

TagScoreHT=2 0.182 0.518 0.630 0.429 0.530 0.505 

TagScoreHT=3 0.066 0.183 0.208 0.139 0.188 0.176 

 

 

Table 4-10. Tag recommendation result for the test set with regard to the top 300 tags 

Ranking Function P@5 R@5 R@10 MAP MRR nDCG 

TagScore 0.181 0.559 0.622 0.283 0.420 0.389 

TagScoreHT=1 0.204 0.564 0.668 0.399 0.544 0.508 

TagScoreHT=2 0.204 0.536 0.618 0.417 0.549 0.519 

TagScoreHT=3 0.083 0.224 0.233 0.186 0.240 0.214 

 

In addition to the result of the top 300 tags, we tested our tag recommendation 

method for all tags to evaluate how effective it is. Table 4-11 shows the result of the tag 
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recommendation for all tags. The result for all tags showed the similar improvement in 

the result for the top 300 tags. TagScoreHT=1 achieved the best performance in R@5 and 

R@10. TagScoreHT=2 achieved the best performance in P@5, MAP, MRR, and nDCG. 

TagScoreHT=3 achieved very low results in both tests because there were less than 100 

candidate documents that have the three same highest topic distributions. Evaluation 

results described that TagScoreHT=2 achieved the best result in the experiment, and that 

our method slightly improved the result in the recall-related metrics which are R@5 and 

R@10, and significantly improved the result in the rank-related metrics which are MAP, 

MRR, and nDCG. 

Table 4-11. Tag recommendation result for the test set with regard to all tags 

Ranking Function P@5 R@5 R@10 MAP MRR nDCG 

TagScore 0.176 0.314 0.358 0.170 0.404 0.262 

TagScoreHT,Y=1 0.194 0.343 0.405 0.237 0.521 0.342 

TagScoreHT,Y=2 0.198 0.323 0.372 0.247 0.525 0.345 

TagScoreHT,Y=3 0.076 0.128 0.138 0.101 0.222 0.137 

 

Furthermore, we deeply examined each question of the test set to find whether our 

recommendation could potentially help users choose relevant tags.   
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Table 4-12 describes an example of the test set with its tag recommendation result. 

This post was asking how to preserve the current local time data in AngularJS. The actual 

tags attached to the post were ‘javascript’, ‘angularjs’, ‘internationalization’, and 

‘timezone’. Using our method, we recommended ‘javascript’, ‘angularjs’, ‘date’, 

‘datetime’, ‘angular2’, and so on. From these recommended tags, the asker of this post 

could add an additional tag ‘date’, ‘datetime’, or ‘angular2’. The asker may not even 

know if ‘date’ and ‘datetime’ exist in a list of user-defined tags and may also not think to 

provide a version number of the AngularJS such as ‘angluar2’. The tag recommendation 

has potential advantages in choosing relevant tags without searching for the list of tags 

and letting users provide more detailed and additional information in their posts. These 

results imply that our proposed method, a ranking function that filters the highest topic 

distributions, can improve the tag recommendation result and help users improve the 

quality of their posts. 
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Table 4-12. An example of the test set with the recommendation result of 𝑇𝑎𝑔𝑆𝑐𝑜𝑟𝑒𝐻𝑇=2 

Title angular $http.post changing date to UTC date 

Description 

I was trying to post some data to my REST api which has date. Now 

while I debug, my date parameter is a JS Date object with correct 

date in my timezone: Tue Apr 04 2017 00:00:00 GMT+0530 

after it leaves my code, and I see the same in network tab, it is 

converted to UTC date: "2017-04-03T18:30:00.000Z" 

I searched for the solution according to which I need to include 

locale file of angular in my index.html which I did: but it doesn't 

help. I've seen solutions like adding date format to filter or 

something, but I want a global solution. Any help? Thanks :) 

Actual tags javascript, angularjs, internationalization, timezone 

Recommended 

tags 

javascript, angularjs, date, datetime, angular2, jquery, google-

chrome, firefox, internet-explorer, node.js 
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Chapter 5  

Conclusion 

In this dissertation, we conduct an analysis on textual contents in social media and 

online communities and have proposed three methods: a company name discrimination 

method, a question retrieval method, and a tag recommendation method. 

Firstly, we propose a semi-supervised system for a company name discrimination on 

tweets based on topic signatures extracted from news articles. The proposed system is a 

fully automated system that requires only a search keyword when a new company is 

added so that no human coder is necessary. From the experiment we found that news 

articles could be used to disambiguate word senses of tweets as an external source. In 

addition, we have conducted an experiment for measuring the effectiveness of various 

features in news articles for the company name discrimination. The snippet, lead 

paragraph, and body feature obtain high retrieval rates, which means that they can be 

useful features for extracting topic signatures. In the experiment, only the snippet and 

body feature were selected as candidate features because almost every lead paragraph has 

the same contents as the snippet does. The best threshold for extracting the topic 

signature was determined as 2% for the snippet feature and as 15% for the body feature. 

The classification result for each feature was 63.2% accuracy for the snippet feature and 

was 61.1% for the body feature. As compared with the random baseline, the accuracy 

was increased by 10.4% with the body feature and by 12.5% with the snippet feature. 
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Although the body feature extracted topic signature words twice as much as those of the 

snippet feature, the snippet feature achieved 2.1% higher accuracy than that of the body 

feature. This study observed that topic signatures extracted from news articles improve 

the accuracy of the company name discrimination in Twitter. 

Secondly, we propose a weighted question retrieval model to find similar questions 

and recommend their best answers in large-scale CQA archives. The proposed model 

exploits question titles, descriptions, and the relationship between them while most 

research uses only question titles or combines titles and descriptions as questions. The 

experiment results showed that our weighted question retrieval model outperformed the 

baseline that uses only question titles in MAP and MRR. From the experiment result we 

found that exploiting the question descriptions increased the ranks of the relevant 

questions while reducing the recalls of them as compared with the baseline using only 

titles. CQA services have their own characteristics of descriptions. This makes different 

weights to each CQA service. The weighted question retrieval model fits when ranks are 

more important than recalls. 

Lastly, we propose a tag recommendation method in software information sites using 

topic models. To recommend relevant tags, we used our ranking function that filters the 

highest topic distributions based on the document similarity and occurrence of the tags. 

We evaluated the performance of our tag recommendation method using various ranking 

evaluation metrics. The experiment results showed that the proposed method slightly 
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improved the recall-related metrics and considerably improved the rank-related metrics. 

It has potential advantages in choosing relevant tags without searching for the list of tags 

letting users provide more detailed and additional information in their posts. Therefore, 

our proposed method, a ranking function that filters highest topic distributions, can 

improve the tag recommendation and help users improve the quality of their posts. 
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