

TOWSON UNIVERSITY

OFFICE OF GRADUATE STUDIES

A STUDY ON TEXTUAL CONTENTS IN ONLINE COMMUNITIES AND

SOCIAL MEDIA USING TEXT MINING APPROACHES

by

Beomseok Hong

A Dissertation

Presented to the faculty of

Towson University

in partial fulfillment

of the requirements for the degree

Doctor of Science

Department of Computer and Information Sciences

Towson University

Towson, Maryland 21252

(December, 2017)

ii

© 2017 By Beomseok Hong

All Rights Reserved

iii

iv

Acknowledgments

This dissertation would not have been possible without the help, support, and guidance

of many people.

I would like to express the deepest gratitude to my advisor Dr. Yanggon Kim. He has

generously guided me through the research and writing of dissertation. His patience,

training, and guidance are greatly appreciated and will not be forgotten. I also would like

to thank my committee members, Dr. Sungchul Hong, Dr. Nam Nguyen, and Dr. Ziying

Tang for all the suggestions and constructive advice.

I would like to thank Dr. Kwangmi Kim for her assistance and guidance of the research.

I have enjoyed doing research with her in that the techniques in my research could be

applied in a different field of research. I would like to thank my colleagues, Dr. Youngsub

Han and Seongik Park, for constructive discussions and the help during this dissertation.

Lastly, I would like to thank my parents, Gihong Hong and Yusun Park, and my sister,

Miji Hong. They have always supported and thoughtfully encouraged me to continue to

research during my graduate studies.

v

Abstract

A Study on Textual Contents in Online Communities and Social Media using Text

Mining Approaches

Beomseok Hong

With the advent of Web 2.0, users have become more interactive, and the population

of user-generated contents (UGC) has also increased drastically on the web. Among

various Web 2.0 applications, we focus on textual contents in social media and online

question answering communities.

Twitter has become one of the fastest growing social media sites, and is serving as an

electronic word-of-mouth (eWOM) that affects customers’ buying decisions by sharing

opinions and information about brands. However, lexical ambiguity is an obstacle to

analyzing the data in social media for online reputation management. The enormous

amount of tweets makes it impossible for a human to manually disambiguate them.

Therefore, we propose an automated company name discrimination using topic signatures.

From the experiment, we found that news articles can be used to extract topic signatures,

and these topic signatures improved the company name discrimination result as compared

to the baseline.

vi

Community Question Answering (CQA) sites are knowledge sharing platforms that

allow users to post questions and answer questions asked by other users. There is a time

lag between questions and answers. Askers need to wait for answers, and some of the

questions are never answered. To solve this problem, we propose a weighted question

retrieval method using the relationship between titles and descriptions. From the

experiment, we found that exploiting the question descriptions increased the ranks of the

relevant questions while reducing the recalls of them.

Software information sites such as Stack Overflow, Super User, and Ask Ubuntu are

specific CQA sites that allow software-related questions and tagging systems. Tagging

systems help to organize, search, and explore their questions for future use. However, the

tag explosion and tag synonym are common problems in tagging systems, because tags are

added and created by non-expert users. To mitigate these problems, we propose a tag

recommendation method using the highest topic filtering. From the experiment, we

observed that our tag recommendation method considerably improved rank-related results

and that recommended tags can improve the quality of their questions.

vii

Table of Contents

LIST OF TABLES .. IX

LIST OF FIGURES ... X

ACRONYMS ... XI

CHAPTER 1 INTRODUCTION ... 1

1.1 BACKGROUND ... 1

1.2 PROBLEM STATEMENT .. 5

CHAPTER 2 LITERATURE REVIEW ... 11

2.1 TEXT MINING METHODS ... 11

2.2 WORD SENSE DISAMBIGUATION IN SOCIAL MEDIA... 14

2.3 QUESTION RETRIEVAL IN CQA ... 16

2.4 TAG RECOMMENDATION IN CQA .. 17

CHAPTER 3 COMPANY NAME DISCRIMINATION IN SOCIAL MEDIA 20

3.1 METHODOLOGY .. 21

3.1.1 Collecting News Articles .. 21

3.1.2 Topic Signature Extraction ... 23

3.1.3 Classification .. 25

3.2 EXPERIMENTAL SETUP AND RESULTS ... 26

3.2.1 Data Sets and Preprocessing .. 26

3.2.2 Evaluation Metrics ... 28

3.2.3 Feature Selection .. 29

viii

3.2.4 Threshold for Extracting Topic Signatures .. 30

3.2.5 Results ... 34

CHAPTER 4 RECOMMENDATIONS IN CQA ... 39

4.1 QUESTION RETRIEVAL IN CQA ... 39

4.1.1 Okapi BM25 .. 41

4.1.2 Weighted Question Similarity ... 41

4.2 EXPERIMENTAL SETUP AND RESULTS ... 43

4.2.1 Data Sets and Preprocessing .. 44

4.2.2 Results ... 45

4.3 TAG RECOMMENDATION IN CQA .. 50

4.3.1 Topic Models .. 50

4.3.2 A Ranking Function using Highest Topic Filtering (HTF) 52

4.4 EXPERIMENTAL SETUP AND RESULTS ... 55

4.4.1 Data sets and Preprocessing .. 56

4.4.2 Evaluation Metrics ... 59

4.4.3 Training Topic Models ... 61

4.4.4 Results ... 63

CHAPTER 5 CONCLUSION .. 69

REFERENCES .. 72

CURRICULUM VITAE ... 85

ix

List of Tables

Table 3-1. Relatedness of collecting news article using different search keywords 23

Table 3-2. A list of 27 companies used in the evaluation ... 28

Table 3-3. A topic signature for 'Lexus' .. 32

Table 3-4. The average number of words in topic signatures for each threshold 34

Table 3-5. The top 5 companies using the body feature by f-measure 36

Table 3-6. The top 5 companies using the snippet feature by f-measure 37

Table 3-7. A topic signature for ‘Apple Inc’. ... 38

Table 4-1. The details of data sets .. 44

Table 4-2. The question retrieval result in Yahoo! Answers .. 46

Table 4-3. The question retrieval result in Stack Overflow .. 47

Table 4-4. Examples of the rank rises of the relevant questions by the weighted model in

the Yahoo! Answers collection ... 49

Table 4-5. An example of document-topic distribution in LDA 52

Table 4-6. Document similarity between the target document and existing documents .. 54

Table 4-7. The details of the data sets... 58

Table 4-8. Top 10 words for different topics discovered by LDA (K = 160) 63

Table 4-9. Tag recommendation result for the validation set with regard to top 300 tags 65

Table 4-10. Tag recommendation result for the test set with regard to the top 300 tags .. 65

Table 4-11. Tag recommendation result for the test set with regard to all tags 66

Table 4-12. An example of the test set with the recommendation result of

𝑇𝑎𝑔𝑆𝑐𝑜𝑟𝑒𝐻𝑇 = 2 ... 68

x

List of Figures

Figure 1-1. Tag popularity curve in Stack Overflow .. 9

Figure 1-2. Tag synonym project in Stack Overflow ... 10

Figure 2-1. Latent Dirichlet Allocation (LDA) Plate Notation ... 14

Figure 3-1. A system architecture of the company name classifier 21

Figure 3-2. The retrieval rate of news article features .. 30

Figure 3-3. The accuracy of the classification result on various thresholds 33

Figure 3-4. The f-measure of the classification result on various thresholds 33

Figure 3-5. A comparison of the evaluation result ... 36

Figure 4-1. An architecture of a weighted question retrieval model 40

Figure 4-2. A weighted question similarity model ... 43

Figure 4-3. Document coverage by the most frequent tags .. 58

Figure 4-4. A log likelihood of LDA for a different topic K .. 61

xi

Acronyms

API Application Programming Interface

CQA Community Question Answering

eWOM Electronic Word-of-Mouth

HTML Hypertext Markup Language

JSD Jensen Shannon Divergence

LDA Latent Dirichlet Allocation

MAP Mean Average Precision

MRR Mean Reciprocal Rank

nDCG Normalized Discounted Cumulative Gain

NLP Natural Language Processing

ORM Online Reputation Management

QA Question Answering

TF-IDF Term Frequency-Inverse Document Frequency

UGC User-Generated Content

WSD Word Sense Disambiguation

XML Extensible Markup Language

1

Chapter 1

Introduction

1.1 Background

Web 2.0 has quickly become popularized and has changed the way people behave

online [1]. As the change of user behavior is a vital factor of Web 2.0, many applications

provide users with the place to generate, disseminate, share, edit, and refine informational

content. Users have become more interactive accordingly, and the population of user-

generated content (UGC) has also increased drastically in social media [2]. Web 2.0

applications allow users to post content without requirements and qualifications, and

encourage them to interact with each other. Examples of Web 2.0 applications include

Facebook, YouTube, Twitter, Instagram, Stack Exchange, CiteULike, Flickr, and so on.

Among various Web 2.0 applications, we focus on social media and online communities

for question answering.

Social media has significantly impacted our lives and has changed the way people

communicate with one another, largely due to the explosion of social media and

technologies. With the rapid growth of smartphone ownership, the increasing popularity

of social media has accelerated. Diverse social media platforms, such as Facebook,

YouTube, and Twitter, have rapidly grown in size and influence. Marketers therefore pay

attention to social media for advertising their products, and social media has become an

influential viral marketing tool [3]. They also want to delve into immense amount of

2

social media data to examine the popularity, reputation, and people’s opinions of their

products and brands [4]. Twitter has become one of the fastest growing social media

sites, and is serving as an electronic word-of-mouth (eWOM) that affects customer’s

buying decisions by sharing opinions and information about brands [5]. Since its

inception in 2006, the average number of tweets that people exchanged per day has

increased from 300,000 in 2008 to 200 million in 2011 and to 500 million by August

2013 [6]. Due to the enormous amount of tweets, it is impossible for a human to

manually analyze them. An automated analysis system is necessary to deal with the huge

amount of tweets. In addition, the shortness and informality of tweets, including

grammatical errors, misspellings, and unreliable capitalizations increase the difficulty of

understanding tweets.

Community Question Answering (CQA) sites are knowledge sharing platforms that

allow users to post questions and answer questions asked by other users. CQA sites such

as Yahoo! Answers1, Stack Overflow2, and Quora3 have evolved as huge knowledge

sharing platforms by their community users [7]. CQA services are derived from Question

Answering (QA) systems that automatically retrieve succinct answers to factoid questions

posed by human in a natural language (e.g. “Who is the US President now?”) [8].

However, there are striking differences between QA systems and CQA services, which

1 https://answers.yahoo.com/
2 https://stackoverflow.com/
3 https://www.quora.com/

3

cannot be dealt with the techniques used in QA systems. Blooma & Kurian [8] stated the

five differences between QA systems and CQA services: The first difference is a type of

a question. CQA questions tend to be longer, more specific and more complex than QA

questions because users usually ask questions with additional information. For example,

“Is Mac or PC better? I'm looking to get a new computer, which do you think is better for

my purposes? Schoolwork, and a bit of gaming as well”. Conventional QA systems are

not applicable to multiple-sentence questions [9]. The second difference is a source of

answers. While QA answers are facts from reliable sources such as news articles or

encyclopedia articles, CQA answers may be personal experiences, advices, or

recommendations by expert users. A diversity of CQA users can result in the inconsistent

quality of the answers. The third difference is the quality of answers. For evaluating

quality of answers, QA systems determine only if answers are right or wrong. In CQA

sites, however, any users are allowed to answer a question and each question can have

many different answers depending on who is answering. Since every answer differs in the

quality, there has been some research on investigating the factors that have an impact on

the quality of answers [7, 10, 11, 12]. The fourth difference is the availability of

metadata. CQA services have rich metadata such as comments, voting scores from users,

best answers selected by askers, user’s profile and interests, etc. The final difference is a

time lag between questions and answers. While QA systems immediately respond to

factoid questions, CQA services need to wait for users to answer the questions. Various

approaches such as question retrieval, question routing, and expert recommendation have

4

been suggested to reduce the time lag between questions and answers [13, 14, 15, 16].

These differences imply that an approach to CQA should be different from that of QA.

CQA services heavily rely on participation of users and expect users to obey

community rules so that they can develop and maintain the usefulness of the community

[17]. There are three main roles of users in CQA services: askers, answerers, and

evaluators. Askers post questions and those questions are answered by answerers. Askers

can express their satisfactions of the answers by choosing them as the best answers.

There are no best answers if the askers are not satisfied with any of the answers or if they

forget to choose. In this case, the answers which get the most votes by evaluators are

selected as the best answers. Yahoo! Answers and Stack Overflow are typical

Community Question Answering (CQA) sites. They have common characteristics such as

a reward system and best answers chosen by askers. A reward system encourages users to

ask and answer questions by rewarding them with reputations. On the other hand, there

are individual characteristics in Yahoo! Answers and Stack Overflow. Yahoo! Answers is

an open-domain CQA site. There is no restriction on the question topic, question quality,

and answer quality. Unlike Yahoo! Answers, Stack Overflow is limited to topics in

computer programming and has rules and regulations users should follow. Duplicate and

off-topic questions are restricted and will be closed. Users can upvote and downvote

questions and answers depending on their quality. These make and keep Stack Overflow

useful and of high quality.

5

1.2 Problem Statement

Firstly, as social media have become more popular, the demand for online reputation

management (ORM) has increased. ORM involves monitoring and analyzing user

opinions on social media to evaluate a reputation of a company and its products. The first

step of ORM is to collect what people mention about the organization on social media.

However, lexical ambiguity is a pervasive problem inhibiting researchers’ abilities to

retrieve desired data [18]. Many words can be interpreted in multiple ways. Unlike

humans, machines need a process to understand the underlying meaning of the words.

Word Sense Disambiguation (WSD) is a way for machines to understand the meaning of

words, and different possible solutions have been suggested over decades [19]. Most of

the solutions rely on knowledge-based approaches such as thesauri, ontologies, or sense-

annotated corpora. Unfortunately, it is expensive and time-consuming to create the

knowledge base system manually, and this problem is called the knowledge acquisition

bottleneck [20]. A topic signature is a family of words related to a given topic, and can be

used to solve the knowledge acquisition bottleneck though it is used for summarizing a

document in the early stages. Manually-annotated knowledge base systems such as

WordNet have insufficient lexical and semantic information with regard to the

knowledge acquisition. Topic signatures from large-scale resources can perform better

than manually-annotated knowledge base systems in WSD [21]. Newspapers are used in

the field of WSD as external knowledge resources. Since collections of newspapers are

unstructured resources, they need to be annotated with senses [22], or used as raw

6

corpora. Recently, The New York Times, an American daily newspaper, has provided

public access to their newspaper repository using application programming interfaces

(APIs). Newspapers can be retrieved by sending a query term, and the search engine

retrieves news articles relevant to the query term. Consequently, only relevant

newspapers can be retrieved from a large-scale repository. Together with other

information retrieval techniques, we can collect the corpus related to a target sense

without manual annotations. Moreover, new words that reflect certain topics will arise

over time. The new words can be discovered as topic signatures by accessing up-to-date

newspapers in the repository using The New York Times APIs. It is crucial to apply

WSD prior to the analysis of user opinions in social media so that the reputations of

companies or products can be analyzed accurately and reliably. Furthermore, their

reputations could be properly managed.

Secondly, one of the characteristics of CQA is a time lag between questions and

answers. Askers need to wait for answers to be posted after posting questions, and even

some of the questions are never answered. In Stack Overflow, the question response time

is different for each question and is affected by various factors such as tags and

subscribers [23]. For the time lag between questions and answers, various solutions have

been suggested such as question retrieval, and question routing. Question retrieval aims at

finding similar questions from large CQA archives [13]. Question routing is a technique

that identifies potential answerers and experts, and routes relevant questions to them [24].

7

In the early stage of CQA, each of the questions and answers is unique due to the fact that

questions are specific and require informative and detailed answers. Currently, hundreds

of millions of questions have been posted in Yahoo! Answers, and Stack Overflow hits

10 million questions. As questions are piling up, a new question may be no longer unique

and other users have probably asked the same questions. It is expected that the time lag

problem can be mitigated by finding the most similar question and its best answer if there

is an accumulative large-scale question and best answer collection. Most of the research

takes advantage of only question titles or combines titles and descriptions as questions.

Lastly, software information sites such as Stack Overflow, Super User, and Ask

Ubuntu are knowledge sharing platforms that allow users to post software-related

questions, answer the questions asked by other users, and add tags to their questions.

Software information sites are subordinate to CQA in terms of categorization. Tags are

referred to as freely determined keywords by non-expert users, which help to organize,

search, and explore their posts for future use [25]. Tagging is a popular system across

web communities because allowing users to classify their contents is less costly than

employing an expert to categorize them [25, 26]. In software information sites (e.g. Stack

Overflow), when posting a question, tagging is mandatory from a minimum of one tag to

a maximum of five tags per question. Users may choose existing tags or create a new tag

if a particular tag does not exist in the list of tags. Although uncontrolled vocabularies

(i.e. tags) have potential advantages with regard to cost and specificity [27], there are

8

some known issues. As shown in Figure 1-1, a small subset of popular tags is used to

annotate a majority of items in a collection and the rest of the tags are not frequently

used, which is called a tag explosion [28, 29, 30]. Another well-known issue in software

information sites is a tag synonym. Since a choice of tags depends on user preferences

and some users are not educated to create new tags in a proper way, the words used for

tags can be arbitrary [31]. Even for the tags that represent the same meaning, the words

can be expressed differently depending on who is writing. For example, ‘javascript’ can

be expressed as an acronym ‘js’, ‘algorithm’ can be written as a plural form ‘algorithms’,

and ‘httprequest’ can be written with a hyphen ‘http-request’ depending on the user

preferences. As the number of different tags grows, the list of tags becomes filled with

synonyms and this makes it difficult for users to search for existing tags. It also

negatively affects the speed and accuracy of queries [31]. Stack Overflow, one of the

software information sites, is aware of the problem of tag synonym and is currently trying

to resolve it by manually finding and merging the tag synonyms. Figure 1-2 is a tag

synonym project in Stack Overflow. Only high reputation users can suggest the tag

synonyms. The suggested tag synonyms is merged when taking a certain number of

upvotes by other users. In this dissertation, in order to overcome three problems

mentioned above, we propose three methods: company name discrimination using topic

signatures in social media, answer recommendation based on question retrieval in CQA,

and tag recommendation in CQA.

9

Figure 1-1. Tag popularity curve in Stack Overflow

10

Figure 1-2. Tag synonym project in Stack Overflow

11

Chapter 2

Literature Review

2.1 Text Mining Methods

In this section, we introduce three text mining methods: term frequency-inverse

document frequency (TF-IDF), Okapi BM25, and latent Dirichlet allocation (LDA). First

of all, the term frequency-inverse document frequency (TF-IDF) is a term weighting

method to discover the importance of a word in a text document from corpus using

statistical methods [32]. TF-IDF is a combination of term frequency (TF) and inverse

document frequency (IDF). Term frequency (TF) is the number of times that term 𝑡

occurs in document 𝑑, and can be normalized by dividing the total frequency of terms in

the document, which is defined as

tf(t, d)normalized =
𝑡𝑓(𝑡, 𝑑)

∑ 𝑡𝑓(𝑡′, 𝑑)𝑡′∈𝑑

Inverse document frequency (IDF) is used to examine whether the term is common

or rare across all documents, and is defined as

idf(t) = log
𝑁

1 + 𝑑𝑓(𝑡)

where 𝑁 is the total number of documents, and 𝑑𝑓(𝑡) is the number of documents with

term 𝑡 in it.

12

The term frequency-inverse document frequency (TF-IDF) is a multiplication of

term frequency (TF) by inverse document frequency (IDF) so that a term that are frequent

in a document earns a high weight but is offset by the IDF if the term is also frequently

used in other documents. A TF-IDF weight of a term 𝑡 in a document 𝑑 is calculated as

TF-IDF(t,d) = tf(t, d) ∙ idf(t)

The Okapi BM25 (BM25) is a ranking model to calculate the similarity between a

document and a query [33]. With the bag-of-words representation of a query 𝑄 =

{𝑞1, 𝑞2, … , 𝑞𝑛} and a document 𝐷 = {𝑤1, 𝑤2, … , 𝑤𝑛}, the Okapi BM25 is defined as

BM25(Q, D) = ∑ log (
𝑁 − 𝑑𝑓(𝑞𝑖) + 0.5

𝑑𝑓(𝑞𝑖) + 0.5
)

𝑛

𝑖=1

∙
𝑡𝑓(𝑞𝑖) ∙ (𝑘1 + 1)

𝑡𝑓(𝑞𝑖) + 𝑘1 ∙ (1 − 𝑏 + 𝑏 ∙
|𝐷|

𝑎𝑣𝑔𝑑𝑙
)

where N is the total number of documents in the corpus, 𝑑𝑓(𝑞𝑖) is the number of

documents containing a query term 𝑞𝑖 in the corpus, 𝑡𝑓(𝑞𝑖) is the term frequency of 𝑞𝑖 in

the document D, |𝐷| is the total number of words in the document D, and 𝑎𝑣𝑔𝑑𝑙 is the

average document length in the corpus. 𝑘1 and 𝑏 are free parameters.

The concept of BM25 is similar to TF-IDF but BM25 is less sensitive to term

frequency because free parameters make it reach a saturation point. This has fascinated

search engine systems such as Lucene, Solr, and Elasticsearch.

13

Latent Dirichlet allocation (LDA) is a generative probabilistic model which finds

topic probabilities over documents given that documents are represented as random

mixtures over latent topics where each topic is characterized by a distribution over words

[34]. Given a corpus D containing M documents where each document contains N words

{𝑤1, 𝑤2, … , 𝑤𝑛} over K topics, the generative process of LDA is as follows:

1. Choose θi ~ Dirichlet(α)

2. Choose φk ~ Dirichlet(β)

3. For each of the N words wn:

a. Choose a topic zi,j ~ Multinomial(θi)

b. Choose a word wi,j ~ Multinomial (φzi,j
)

where 𝑖 ∈ {1, … , 𝑀}, 𝑗 ∈ {1, … 𝑁}, 𝑘 ∈ {1, … 𝐾}, and 𝛼 and 𝛽 are hyperparameters for the

topic distribution per document 𝜃 and the word distribution per topic 𝜑 respectively.

With the plate notation as shown in Figure 2-1, LDA can be described as follows: 𝛼

is the parameter of the Dirichlet prior on the document-topic distributions, 𝛽 is the

parameter of the Dirichlet prior on the topic-word distribution, 𝜃𝑚 is the topic distribution

for the document 𝑚, 𝜑𝑘 is the word distribution for the topic 𝑘, 𝑧𝑚𝑛 is the topic for the 𝑛-

th word in the document 𝑚, and 𝑤𝑚𝑛 is the specific word that is the only observable

variable.

14

In order to learn LDA with various distributions, many approximation methods have

been suggested such as variational inference, Gibbs sampling, and online inference [34,

35, 36].

Figure 2-1. Latent Dirichlet Allocation (LDA) Plate Notation

2.2 Word Sense Disambiguation in Social Media

Word Sense Disambiguation (WSD) is the activity of identifying the senses of a

word and has been one of the research areas in Natural Language Processing (NLP) for

several decades. For example, the word ‘apple’ has multiple meanings such as a fruit and

a company, and the meaning of the word depends on context. WSD is generally divided

into two approaches: supervised approaches and unsupervised approaches. Supervised

approaches use various machine learning methods with manually annotated resources for

15

identifying word senses. Various supervised methods have been adopted such as Nave

Bayes, Neural Network, an instance-based learning, Support Vector Machine, and

Ensemble methods [37, 38]. Building manually annotated resources is an expensive and

time-consuming work as documents and contents on the Web grow continuously. In an

effort to resolve the knowledge acquisition bottleneck, a bootstrapping method and a

topic signature have been adopted to the word sense disambiguation [39, 40]. In

SemEval-2007, an international word sense disambiguation competition, the best system

achieved an 88.70% accuracy whereas the first sense baseline achieved 78% [41]. A gold

standard data constructed by the manually tagged Wall Street Journal corpus was used for

the evaluation. The accuracy of the disambiguation is relatively high because a

newspaper corpus is a long document and contains enough clue words to be used for the

disambiguation.

Recently, many studies have tried to discriminate word senses in Twitter. Due to the

fact that tweets are usually short and informal, it is much more difficult for machines to

understand the word senses of tweets. The third Web People Search (WePS-3) task-2

evaluation campaign was held to address the ambiguity of named entities in Twitter and

to encourage research groups to resolve the problem by providing the information of

companies and collections of tweets for each company. Several groups participated in the

competition [42]. The best system was LSIR-EPFL which built six profiles of each

company from external sources such as the home page, the metadata of the website, the

16

category profile using WordNet, GoogleSet, and the manually user-defined terms for

both positive and negative aspects [43]. The second best system ITC-UT made use of six

rules to categorize a company bias on tweets into 3 or 4 classes. For each bias, a

procedure of the tweet classification was differently specified [44]. The middle-ranked

system SINAI directly recognized the named entity using Wikipedia, DBpedia, and the

company’s home page [45]. The UVA system tried to build a general organization

classifier by examining the characteristics of Twitter despite the low accuracy [46]. The

KALMAR system used an initial bootstrapping model from the company’s home page

[47]. After the third WePS campaign, many studies have been done to disambiguate a

named entity on tweets. Most of the researches tried to resolve the named entity

ambiguity using the external sources such as Wikipedia, Google search, DBpedia, the

company’s home page, etc. [48, 49, 50, 51, 52]. Another approach was to build the

named entity recognizer for the Twitter stream [53]. However, none of the research has

exploited the news corpus for the tweet discrimination.

2.3 Question Retrieval in CQA

Question retrieval is one of the challenging tasks in community question answering

(CQA). Question retrieval aims at finding similar questions from large CQA archives.

There have been many studies on question retrieval with various approaches. A word-

based translation model bridges the lexical gap between question titles [13] and the

translation model outperforms the traditional retrieval methods such as the cosine

17

similarity and the language model. As an extension of the word-based translation model,

a phrase-based translation model is proposed [54] and outperforms the word-based

translation model. A knowledge-based approach is also able to reduce the lexical gap for

question retrieval [55]. On the other hand, a syntactic tree matching approach shows that

syntactic information is applicable to address the question retrieval problem [56]. Topic

models are applied to discover latent topics and similar questions are retrieved based on

the topic distribution [57, 58] and topic models also improve the retrieval performance.

However, most of the research takes advantage of only question titles. Recently, some

studies have utilized question descriptions for the query expansion by adding descriptions

[59].

2.4 Tag Recommendation in CQA

Tag recommendation is another challenging task in community question answering

(CQA). Tagging is a popular means of annotation for online users to freely attach

additional information to their contents. With the advent of Web 2.0, many online social

services such as Flickr, Delicious, and CiteULike have introduced tagging systems, and

they have attracted great attention of researchers to tag recommendation [60, 61, 62]. In

online social services, the goal of the tag recommendation is to recommend additional

tags to user-defined tags using various approaches; Based on tag co-occurrence between

two tags, candidate tags are selected, aggregated, and promoted to recommend tags for

images [60], Latent Dirichlet Allocation (LDA) is applied for a resource-tag matrix

18

instead of a document-term matrix to find most relevant latent topics and to recommend

the tags in the relevant topics [61], or documents are treated as triplets of (words,

documents, tags) to estimate the document distribution using a two-way Poisson Mixture

Model [62].

Software information sites such as Stack Overflow, Super User, and Ask Ubuntu are

community question answering (CQA) sites and have characteristics of online social

services with regard to tagging. While most CQA sites use controlled vocabularies to

categorize questions, software information sites make use of uncontrolled vocabularies

(i.e. folksonomies), called tags. Many studies have been focusing on improving the

quality of tags and solving the problem of the tag synonym and the tag explosion in

software information sites by recommending appropriate tags. Wang et al. proposed a tag

recommendation method called EnTagRec [63]. EnTagRec consists of two components

called Bayesian inference component (BIC) and Frequentist inference component (FIC).

The BIC uses Labeled LDA (LLDA) to learn a probability distribution of tags and the

FIC employs the co-occurrence of a tag and a term to compute term-tag probabilities.

Tags are recommended based on the score of both the BIC and the FIC. Wang el al.

proposed TagCombine, a tag recommendation method that combines three approaches of

tag recommendation: a multi-label classification ranking approach, a similarity-based

ranking approach, and a tag-term affinity ranking approach [64]. Tags are recommended

based on the score of these three ranking functions. Wu et al. proposed a content-based

19

tag recommendation model called Tag2Word [65]. Tag2Word calculates the tag-word

distribution using LLDA and makes use of the tag appearance in the content to improve

the accuracy. Zhou et al. proposed TagMulRec that is scalable for large-scale information

sites [31]. TagMulRec finds candidate software objects by calculating the similarity

between software objects using word co-occurrence and normalizing the similarity score,

and ranks tags by the similarity scores of the candidate software objects and their tag

frequencies. To speed up the computation, TagMulRec uses indexing techniques.

Joorabchi et al. proposed a novel approach in order to resolve the problem of the tag

explosion by mapping Stack Overflow tags into Wikipedia concepts using machine

learning techniques [28]. Many researchers have applied LDA to the tag recommendation

and showed the improvement in accuracy [61, 63, 65, 66, 67]. However, there is limited

research on considering the relevance of topics in calculating the document similarity.

20

Chapter 3

Company Name Discrimination in Social Media

Company name discrimination is considered a binary classification task that checks

whether the classification result would be related or non-related to a target company. In

this chapter, we propose a company name discrimination method in social media using

topic signatures from news articles. Figure 3-1 depicts the overall process of the proposed

approach for the company name discrimination in tweets. Firstly, the New York Times

(NYT) articles related to a target company are collected from the NYT repository using

APIs. Various features are available in the articles such as abstracts, headlines, lead

paragraphs, snippets and article bodies. Before extracting topic signatures, news articles

are converted into the bag-of-words representation. In the bag-of-words model, a

document is represented as a bag of words and the word order is ignored. Texts are

segmented for the bag-of-words representation and tagged with their parts-of-speech.

Only nouns are extracted for the company name discrimination because most nouns are

concrete terms and they are used for the subject and object of the sentence. After NLP

processing, topic signatures are extracted from the collected news articles by the

document frequency. A straightforward classification method is used to classify the

tweets based on the topic signatures. The classification method determines whether a

tweet is relevant or irrelevant to a given company.

21

Figure 3-1. A system architecture of the company name classifier

3.1 Methodology

In this section we explain how to collect news articles from the NYT repository, the

process of the topic signature extraction, the classification method in detail.

3.1.1 Collecting News Articles

The New York Times provides a public access to their news articles using The New

York Times APIs4. Thus, searching a company’s name can automatically retrieve related

articles from The New York Times repository. News articles can be collected by a search

4 http://developer.nytimes.com/

22

keyword using the NYT APIs up to 1,010 articles per search keyword. The search

keyword should be carefully decided to retrieve relevant articles. Searching for a full

name of the company mitigates the ambiguity in the collected articles by retrieving more

related articles so that the articles can be used as an external knowledge resource without

manual annotations. Although we rely on the NYT APIs to collect relevant articles, the

verification of the collected articles is necessary.

Table 3-1 shows the result of the relatedness of collecting news article using

different search keywords. With the search keyword ‘apple’, we collected 1,002 news

articles. Out of 1,002 articles, 621 articles were related to the company Apple Inc., 184

articles were not related, and 197 articles did not have contents enough to recognize the

relatedness. With the search keyword ‘apple inc’, we collected 1,010 news articles. Out

of 1,010 articles, 925 articles were related to the company, no articles were unrelated, and

85 articles were not determined. After examining the collected articles, we observed that

the full name of the company (e.g. Apple Inc.) retrieves related articles much more than

the part of the company name (e.g. apple), and the collected articles can be used as an

external knowledge resource.

23

Table 3-1. Relatedness of collecting news article using different search keywords

Search Keyword Related Unrelated Undetermined Total

apple 621 184 197 1002

apple inc 925 0 85 1010

3.1.2 Topic Signature Extraction

A topic signature is a family of terms that are highly correlated with a target concept

and is defined as follows:

Topic Signature = {topic, signature}

= {topic, < (t1, w1), . . . , (tn, wn) >}

where topic is the target concept and signature is a vector of related terms [68]. Each 𝑡𝑖 is

a term highly correlated to topic with a weight 𝑤𝑖. A topic signature is a statistical

approach that exploits the natural tendency of the semantically related words which co-

occur more often than by chance in the same context [69]. Topic signatures are typically

extracted from a pre-classified corpus because the relatedness of topic signatures is

generally measured by tf-idf, the chi-squared test, or mutual information.

Topic signatures are extracted from news articles. Various features are available in

each collected article, and the four features associated with contents are considered to be

24

suitable for extracting topic signatures: bodies, abstracts, lead paragraphs, and snippets.

The body feature is a full text of the news article and the other features are the short

summaries of the news article. However, detailed explanations of the features are not

specified in the NYT API document. Although various features are available in the news

articles, it is necessary to examine which feature is more useful for the company name

discrimination. Some of data are empty and null data can be retrieved from the NYT

repository. Retrieval rate is used to determine how much data in the feature is available in

the collected articles, and it is defined as:

Retrieval rate =
Non-empty data in the feature

Total collected articles

A higher retrieval rate implies that the feature has less missing data and more

available data in the collected articles. Therefore, the feature with the higher retrieval rate

is more likely to be useful for extracting topic signatures.

Topic signatures are extracted from the high retrieval rate features based on the

document frequency. The document frequency of a term is defined as the number of

articles that contain the term in the collected articles, and the term’s specificity is related

with the document frequency [70]. Since a news article usually covers a specific topic,

the document frequency is used as a main criterion to discover the topic signatures. The

document frequency is also useful to mitigate a bias towards longer documents. Since the

topic signature is the key to discriminate word senses, it is important to extract

25

meaningful topic signatures from news articles. Typically, topic signatures are extracted

by comparing the occurrence in related articles and unrelated articles to a target word

sense. While related articles can be collected by the search engine, it is nearly impossible

to construct unrelated articles without human annotations. For this reason topic signatures

are extracted from only related articles.

Vocabulary is a list of unique words in the collected articles, and topic signatures are

the terms, extracted from the vocabulary, whose document frequency is greater than the

threshold which is heuristically determined. It is important to find the reasonable

threshold to exclude insignificant terms from the topic signature. If the threshold is too

low, superfluous terms would be included. On the contrary, the immoderately high

threshold leads to a false bias and most of the results are labelled as ‘non-related’ since

too few words would be included in the topic signature.

3.1.3 Classification

The classification method exploits the occurrence of topic signatures in tweets

because tweets are short messages within 140 characters and each word of a tweet has a

strong meaning. Algorithm 1 explains the algorithm of the tweet classification. Topic

signatures are extracted from news articles, and tweets and topic signatures are prepared

in the form of the bag-of-words model. In the classification, the tweet is classified to a

related tweet to a target company if any topic signatures occur in the tweet. If no topic

26

signatures occur in the tweet, the tweet is classified to a non-related tweet to a target

company.

Algorithm 1 Tweet Classification

tweet ← (t1, t2, t3, … , tn)

topic signature ← (w1, w2, w3, … , wn)

1: procedure RELATEDNESS (tweet, topic signature)

2: if (tweet ∩ topic signature) ≠ ∅ then

3: set tweet related

4: else

5: set tweet non-related

6: end if

7: end procedure

3.2 Experimental Setup and Results

3.2.1 Data Sets and Preprocessing

In WePS-3 task 2 Online Reputation Management, 47 named entities and around 500

tweets corresponding to each named entity are provided as a test set. The test set is

labelled by 5 human annotators using Amazon Mechanical Turk. We categorized the 47

named entities into subcategories, and decided to use 27 company-related entities for the

experiment since companies are occasionally main topics of newspapers and company

names are frequently mentioned in newspapers. The experiment was carried out with the

27 companies listed in Table 3-2. The total number of tweets provided by WePS-3 for 27

companies is 11,526 tweets. In this experiment the URL addresses and username tags

(@) were ignored and the hash tags (#) were regarded as normal words.

27

The total number of news articles we collected for 27 companies is 20,492 articles.

We collected the body, the abstract, the lead paragraph, and the snippet from each article.

All the raw texts were converted to a bag-of-words representation using word

segmentation and the part-of-speech tagger in the Stanford Natural Language Processing

(NLP) module5. Only nouns are extracted for the company name discrimination because

most nouns are concrete and used for the subject and object of the sentence. In the

preliminary experiment with a narrow data set, the result showed that the noun case was

most accurate in tweet classification compared to other cases such as noun & verb, noun

& verb & adjective, and all parts of speeches.

Stop word removal was applied to the all the raw texts. Stop words are the words that

should not be used as topic signatures. There are two types of stop words. The first type

of the stop words is the tweet search keywords for collecting a test set. All tweets

retrieved by the search keywords include the same keywords in the contents themselves.

If the tweet search keywords are not excluded, the result will be under a bias that most of

the tweets are related to a company. The second type of the stop words is the news words.

A news article is commonly written in a fixed format. The words that are not related to a

company may frequently appear in the news articles such as the date published, the

location, the appellation, the name of a newspaper, etc. The news words should be

5 http://nlp.stanford.edu/index.shtml

28

excluded from the classifier due to the fact that these words decrease the quality of the

topic signature.

Table 3-2. A list of 27 companies used in the evaluation

27 companies (full names used in news search)

Amazon.com, Apache Software Foundation, Apple Inc., Blizzard Entertainment,

Canon Inc., Cisco Systems, CVS/pharmacy, Ford Motor Company, T.G.I. Friday’s,

General Motors, Gibson Guitar, Jaguar Cars Ltd., Lexus, McDonald's, Metro

Supermarket, Oracle Corporation, Orange S.A., Paramount Group, Seat S.A., Sharp

Corporation, Sonic.net, Sony, Starbucks, Subway, Tesla Motors, US Airways, Virgin

Media

3.2.2 Evaluation Metrics

For the performance evaluation, we estimated the accuracy, precision, recall and f-

measure for each company. The measures are defined as:

Accuracy =
TP + TN

N

Precision (related) =
TP

TP + FP

Recall (related) =
TP

TP + FN

29

Precision (non-related) =
TN

TN + FN

Recall (non-related) =
TN

TN + FP

F-measure = 2 ∗
Precision ∗ Recall

Precision + Recall

where N is the number of tweets, TP is true positive, TN is true negative, FP is false

positive, and FN is false negative.

3.2.3 Feature Selection

Figure 3-2 illustrates the retrieval rate of the four different features of news articles.

The snippet feature obtained the 0.98 retrieval rate on average, which is the highest

retrieval rate in the four features. A feature with a higher retrieval rate is more likely to be

useful for extracting topic signatures. For example, when we collect 1,000 news articles,

980 news articles contain the snippets whereas 20 news articles do not have the snippets.

The average retrieval rate of the lead paragraph feature is 0.91, and that of the body

feature is 0.90. The abstract feature obtained a 0.54 retrieval rate, which is relatively low.

Despite the high retrieval rate, the lead paragraph feature is excluded from the

experiment. The contents of the lead paragraph feature are almost identical to those of the

snippet feature but the retrieval rate of the lead paragraph is lower than that of the snippet

feature. According to the average retrieval rate, we selected the snippet feature and the

body feature as candidate features for extracting topic signatures. The main difference

30

between the snippet feature and the body feature is their respective lengths. The snippet

consists of at most two sentences whereas the body contains several paragraphs.

Figure 3-2. The retrieval rate of news article features

3.2.4 Threshold for Extracting Topic Signatures

Topic signatures are extracted based on a threshold of the document frequency. It is

important to find the reasonable threshold to exclude insignificant words from the topic

signature. If the threshold is too low, superfluous words would be included. On the other

hand, if the threshold is too high, it leads to a false bias and most of the results are

labelled as non-related since too few words would be included in the topic signature.

Because the number of the collected news articles is different for each company, we set

the threshold by the ratio of collected documents. For example, if the threshold is set to

31

15%, the words whose document frequency is greater than 0.15𝑁 are chosen as a topic

signature where N is the total number of the news articles for the given company.

The threshold for the body feature is determined at 15% of the total number of the

news articles in the previous research [71]. As the threshold increases, the f-measure has

fallen off steadily. The 2% threshold achieved the highest f-measure. We compared the

number of extracted words in topic signatures to figure out what threshold value can be a

reasonable threshold. As shown in Table 3 4, on average, the 2% threshold extracted

75.81 words as topic signatures; the 3% threshold extracted 44.11 words, and 12%

threshold extracted 6.07 words. As a result, the 2% threshold has the most topic

signatures without decreasing the performance in both accuracy and f-measure.

Therefore, the threshold for the snippet feature is determined as 2% of the total number of

news articles.

Table 3-3 is a topic signature for the company ‘Lexus’ when applying 15% as a

threshold, and 44 terms were extracted as a topic signature. In the same manner, we

compared various thresholds for the snippet feature to determine the best threshold. As

shown in Figure 3-3 and Figure 3-4, various thresholds from 1% to 20% were tested. In

Figure 3-3, the accuracy is fluctuating and unpredictable as the threshold changes. The

12% threshold achieved the highest accuracy. Figure 3-4 shows the sum of the f-measure

of the related class and the non-related class. As the threshold increases, the f-measure

has fallen off steadily. The 2% threshold achieved the highest f-measure. We compared

32

the number of extracted words in topic signatures to figure out what threshold value can

be a reasonable threshold. As shown in Table 3-4, on average, the 2% threshold extracted

75.81 words as topic signatures; the 3% threshold extracted 44.11 words, and 12%

threshold extracted 6.07 words. As a result, the 2% threshold has the most topic

signatures without decreasing the performance in both accuracy and f-measure.

Therefore, the threshold for the snippet feature is determined as 2% of the total number of

news articles.

Table 3-3. A topic signature for 'Lexus'

Topic signature (44 terms)

model, luxury, sedan, sale, auto, automaker, motor, brand, ford, sport, driver, bmw,

engine, honda, consumer, detroit, highway, version, hybrid, safety, mercedes-benz,

industry, buyer, motors, road, mile, general, customer, division, truck, cadillac, acura,

design, test, dealer, report, traffic, nissan, product, feature, utility

33

Figure 3-3. The accuracy of the classification result on various thresholds

Figure 3-4. The f-measure of the classification result on various thresholds

34

Table 3-4. The average number of words in topic signatures for each threshold

Threshold (%) Average topic signatures (words)

2 75.81

3 44.11

12 6.07

3.2.5 Results

The performance of the classification is measured by accuracy, precision, recall, and

the f-measure. A random baseline is a result of randomly labeled tweets, and is used to

evaluate the improvement of the company name classification in tweets. Figure 3-5

shows an evaluation of the result compared to the baseline. The result shows that the

topic signatures extracted from the article body increased the accuracy by 10.4% and

those of the snippet feature increased the accuracy by 12.5% as compared with the

random baseline. The precisions, recalls, and f-measures for both the snippet feature and

the body feature are also increased as compared with the random baseline. The company

name discrimination result was more accurate when using the snippet feature compared

to the body of the article. Whereas f-measure of the body feature in the related class is

higher than that of the snippet feature, the f-measure of the body feature in the non-

related class is lower than that of the snippet feature. We investigated the reason for the

difference of the f-measures between the related class and non-related class, and the

35

reason is that the body feature has more topic signatures (140.44 words on average) than

the snippet feature (75.81 words on average).

Table 3-5 and Table 3-6 illustrate the company name discrimination results of the top

five companies out of the twenty-seven companies in order of the sum of the related f-

measure and the non-related f-measure for the body feature and the snippet feature

respectively. Companies with high scores on f-measures indicate that they are well

discriminated in our approach for both related and non-related tweets. We observed that

Apple Inc., General Motors, Tesla Motors, and Jaguar Cars Ltd. are highly ranked in

terms of accuracy and f-measure for both using the body feature and the snippet feature

because product-related words are extracted well from news articles as topic signatures.

For example, topic signatures of automobile manufacturers include car-related words

such as vehicle, car, and model. Topic signatures of Apple Inc. include names of their

products such as iPhone, iPod, etc.

36

Figure 3-5. A comparison of the evaluation result

Table 3-5. The top 5 companies using the body feature by f-measure

Entity Accuracy

Related Non-related

Precision Recall F-measure Precision Recall F-measure

Apple Inc. 0.835 0.942 0.856 0.897 0.495 0.729 0.590

General Motors 0.742 0.659 0.872 0.751 0.861 0.638 0.733

Apache Software 0.710 0.677 0.751 0.712 0.748 0.674 0.709

Tesla Motors 0.693 0.497 0.858 0.630 0.909 0.621 0.738

Jaguar Cars Ltd. 0.663 0.683 0.728 0.705 0.635 0.583 0.608

37

Table 3-6. The top 5 companies using the snippet feature by f-measure

Entity Accuracy

Related Non-related

Precision Recall F-measure Precision Recall F-measure

Apple Inc. 0.835 0.942 0.856 0.897 0.495 0.729 0.590

General Motors 0.742 0.659 0.872 0.751 0.861 0.638 0.733

Apache Software 0.710 0.677 0.751 0.712 0.748 0.674 0.709

Tesla Motors 0.693 0.497 0.858 0.630 0.909 0.621 0.738

Jaguar Cars Ltd. 0.663 0.683 0.728 0.705 0.635 0.583 0.608

Despite of the improvement of the results, there exist some limitations in this

experiment. First, Natural Language Processing (NLP) is useful but not perfectly

accurate. For natural language processing, we exploited the Stanford Natural Language

Processing (NLP) module. The Stanford NLP performs well on the news article.

However, the informality of tweets such as grammatical errors, misspellings, and

unreliable capitalizations may depreciate the quality of the NLP module in tweets. For

example, a tweet ‘This Is Apples Next iPhone(http://bit.ly/cEJuUq)’ is segmented into

‘be’, ‘apple’, ‘next’, ‘bit.ly’, and ‘cejuuq’ through the Stanford NLP because of the lack

of the blank space in between the words. The word ‘iPhone’, a topic signature of Apple

Inc., is not extracted from the tweet due to both the limitation of the NLP module and the

informality of the tweet. Second, there is a time gap between the collected news articles

and the tweets used in the experiment. When we collected news articles, the latest articles

38

were retrieved by the New York Times APIs. For example, out of 1,010 news articles

about Apple Inc., 299 news articles were generated after January 2015. As privacy

became a controversial issue for Apple Inc. in recent years, the word ‘privacy’ is selected

as a topic signature as shown in Table 3-7. On the other hand, the evaluation data was

released in 2010. This time gap may affect the evaluation result.

Table 3-7. A topic signature for ‘Apple Inc’.

Topic signature (36 terms)

watch, tech, computer, company, executive, tablet, mac, government, steve, operating,

smartphone, ios, music, version, system, share, application, app, case, phone, market,

iPad, user, customer, steven, jobs, iPod, device, privacy, technology,

software, problem, iPhone, feature, cook, security

39

Chapter 4

Recommendations in CQA

Community Question Answering (CQA) mainly consists of questions and answers.

Questions in CQA archives are divided into question titles, question descriptions, and

tags. Question titles are usually short but contain the keywords describing the askers’

interests while question descriptions are rather long and include detailed information.

Tags are used to help to organize, search, and explore the questions for future use. In this

chapter, we propose two recommendation methods in CQA: a question retrieval method

for the answer recommendation and a tag recommendation method.

4.1 Question Retrieval in CQA

In CQA, answers are categorized into best answers and non-best answers. Best

answers are the selected answers by askers to express their satisfaction of the answers. If

we find similar questions of the new question, their best answers can also be the answers

for the new question and satisfy the asker’s curiosity. We present a weighted question

retrieval model that finds similar questions and recommends their best answers in large-

scale CQA archives. Figure 4-1 describes an overview of the weighted question retrieval

model. When a new question comes, the proposed model calculates the question

similarity between existing questions and the new question, and finds similar questions

40

based on the question similarity scores. Subsequently, their best answers are

recommended as an answer of the new question.

Figure 4-1. An architecture of a weighted question retrieval model

41

4.1.1 Okapi BM25

The Okapi BM25 is a ranking model to calculate the similarity between a document

and a query [34]. We used the Okapi BM25 to measure the question similarity. For the

Okapi BM25, we consider a new question as a query and an existing question in the CQA

archives as a document. With the bag-of-words representation of a query 𝑄 =

{𝑞1, 𝑞2, … , 𝑞𝑛} and a document 𝐷 = {𝑤1, 𝑤2, … , 𝑤𝑛}, the Okapi BM25 score is defined as

follows:

BM25(Q, D) = ∑ log (
𝑁 − 𝑑𝑓(𝑞𝑖) + 0.5

𝑑𝑓(𝑞𝑖) + 0.5
)

𝑛

𝑖=1

∙
𝑡𝑓(𝑞𝑖) ∙ (𝑘1 + 1)

𝑡𝑓(𝑞𝑖) + 𝑘1 ∙ (1 − 𝑏 + 𝑏 ∙
|𝐷|

𝑎𝑣𝑔𝑑𝑙
)

where N is the total number of documents in the CQA collection, 𝑑𝑓(𝑞𝑖) is the number of

documents containing 𝑞𝑖 in the CQA collection, 𝑡𝑓(𝑞𝑖) is the term frequency of 𝑞𝑖 in the

document D, |𝐷| is the length of the document D in words, and 𝑎𝑣𝑔𝑑𝑙 is the average

document length in the CQA collection. 𝑘1 and 𝑏 are free parameters, and they are

chosen as 𝑘1 = 1.2 and 𝑏 = 0.75. Documents with higher BM25 scores are more likely

to be related questions.

4.1.2 Weighted Question Similarity

Figure 4-2 describes a weighted question similarity model. To exploit both question

titles and question descriptions in question similarity, it is necessary to identify the

relationship between titles and descriptions. We developed four baseline scores to

42

understand the relationship between them: Title-Title’, Title-Description’, Description-

Title’, and Description-Description’. In this section, a new question is referred to as a

query, and a question in the CQA collection is referred to as a document.

• Title-Title’ (TT’): A similarity score between a query’s title and a

document’s title using the Okapi BM25.

• Title-Description’ (TD’): A similarity score between a query’s title and a

document’s description using the Okapi BM25.

• Description-Title’ (DT’): A similarity score between a query’s description

and a document’s title using the Okapi BM25.

• Description-Description’ (DD’): A similarity score between a query’s

description and a document’s description using the Okapi BM25.

With these four scores, the question similarity score is calculated as follows:

𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝛼
𝑠𝑐𝑜𝑟𝑒(𝑇𝑇′)

𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒(𝑇𝑇′))
+ 𝛽

𝑠𝑐𝑜𝑟𝑒(𝑇𝐷′)

𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒(𝑇𝐷′))

+𝛾
𝑠𝑐𝑜𝑟𝑒(𝐷𝑇′)

𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒(𝐷𝑇′))
+ 𝛿

𝑠𝑐𝑜𝑟𝑒(𝐷𝐷′)

𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒(𝐷𝐷′))

where 𝛼, 𝛽, 𝛾, 𝑎𝑛𝑑 𝛿 are free parameters for weighting scores and they are experimentally

determined. All the scores are normalized ranging from 0 to 1 by dividing their maximum

scores.

43

Figure 4-2. A weighted question similarity model

4.2 Experimental Setup and Results

In this section, we describe experimental setup and results including the details of the

data sets, data preprocessing, and evaluation results for the question retrieval.

44

4.2.1 Data Sets and Preprocessing

In the experiment we used data sets from Yahoo! Answers and Stack Overflow. The

Yahoo! Answers data set6 includes 4 million questions posted from July 2005 to Dec

2006, and the Stack Overflow data set7 includes 11 million questions posted from April

2010 to January 2016. Table 4-1 illustrates the details of the data sets used in the

experiment. There is a difference between the number of question titles and question

descriptions in the Yahoo! Answers collection since some of the question descriptions are

empty.

Table 4-1. The details of data sets

 Yahoo! Answers Stack Overflow

Period July 2005 – Dec 2006 April 2010 – January 2016

Number of Titles 4,483,032 11,203,031

Number of Descriptions 2,559,603 11,203,031

Number of Answers 4,408,264 18,218,676

All raw texts are lemmatized and part-of-speech tagged by the Stanford NLP

module. Only nouns, verbs, and adjectives are used in calculating the question similarity

since it is found in the initial experiment that these parts of speeches are meaningful

6 http://webscope.sandbox.yahoo.com/
7 https://archive.org/details/stackexchange

45

while the others disturb the similarity accuracy. Stop word removal is applied to the all

the raw texts.

For the evaluation, twenty questions are sampled from Yahoo! Answers collection

and Stack Overflow collection respectively as queries and they are excluded from the

CQA collections. We separately conducted an experiment for the Yahoo! Answers

collection and Stack Overflow collection. In the evaluation three measures are used:

Mean Average Precision (MAP), Precision at 10, and Mean Reciprocal Rank (MRR).

MAP is an average precision across queries, which determines a precision at each point

when a new relevant document gets retrieved. Precision at 10 computes how many

relevant documents are retrieved in top 10 results. MRR considers an average rank of the

first relevant document across queries. Human annotators cannot look at more than

million documents in the collection. For this reason, top 20 results are annotated and the

other results are automatically assumed to be irrelevant, which is called a pooling

method.

4.2.2 Results

In this experiment, we used two different data sets: Yahoo! Answers and Stack

Overflow. Each data set has different characteristics with regard to contents. For

example, the Yahoo! Answers data include empty descriptions because descriptions are

not a requirement of questions. On the contrary, the Stack Overflow data must include

descriptions by its community rules. For this reason, free parameters for the weighted

46

score were determined independently. Free parameters for Yahoo! Answers were

experimentally determined as α=1, β=0, γ=0.8, and δ=0. Table 4-2 shows the result of the

Yahoo! Answers collection with 20 sample queries. The Title-Title’ was the best score,

and the Description-Title’ was the second highest score among the four baselines. Based

on this observation, the parameters were adjusted. As a result, the weighted score, a

combined weighted score of the best two relationships of titles and descriptions,

outperformed the Title-Title’ and other baselines in both MAP and MRR while precision

at 10 was decreased.

Table 4-2. The question retrieval result in Yahoo! Answers

Yahoo! Answers MAP Precision@10 MRR

Title-Title’ 0.505 0.320* 0.600

Title-Description’ 0.229 0.155 0.283

Description-Title’ 0.397 0.180 0.483

Description-Description’ 0.176 0.120 0.210

Proposed Model 0.523* 0.285 0.653*

*best result

For the Stack Overflow data set, we also used a combined weighted score of the best

two relationships of titles and descriptions. Free parameters for Stack Overflow were also

experimentally determined as α=1, β=0.8, γ=0, and δ=0. Table 4-3 shows the result of the

Stack Overflow collection with 20 sample queries. The Title-Title’ was also the best

47

score, and the Title-Description’ was the second highest score in the four baseline scores.

The weighted score slightly outperformed the Title-Title’ score in both MAP and MRR

while precision at 10 were decreased.

Table 4-3. The question retrieval result in Stack Overflow

Stack Overflow MAP Precision@10 MRR

Title-Title’ 0.499 0.295* 0.572

Title-Description’ 0.331 0.125 0.372

Description-Title’ 0.103 0.070 0.086

Description-Description’ 0.235 0.045 0.271

Proposed Model 0.508* 0.270 0.585*

*best result

From the results, we observed that the Title-Title’ was the best among the baselines

in both data sets. However, the second highest combination was different for each data

set. The Description-Title’ was the second highest baseline in Yahoo! Answers data

whereas the Title-Description’ was the second highest baseline in Stack Overflow data.

From this observation, we found that exploiting the question descriptions increased the

ranks of the relevant questions while reducing the recalls of them as compared with Title-

Title’. For example, in the Stack Overflow collection, the ranks of the 5 queries were

increased and those of 3 queries were decreased. 12 fewer relevant questions were

retrieved by the weighted model than by Titie-Title’. In the Yahoo! Answers collection,

48

the ranks of the 3 queries were increased and 5 fewer relevant questions were retrieved

by the weighted model than by Titie-Title’.

49

Table 4-4 shows an example of the rank rises of the relevant questions by the

weighted model in the Yahoo! Answers collection. The question 1 and the question 2 are

retrieved by the similarity with the query. The question 1 is ranked seventy-fifth based on

the Title-Title’ and is ranked thirteenth based on the Description-Title’. The question 2 is

ranked eighth based on the Title-Title’ and is ranked six hundred seventy-fourth based on

the Description-Title’. With the weighted model, their ranks can rise to the first and the

second respectively. Without combining the Title-Title’ and Description-Title’, either the

question 1 or the question 2 cannot be retrieved as a similar question.

50

Table 4-4. Examples of the rank rises of the relevant questions by the weighted model in

the Yahoo! Answers collection

Query

Title: In the san francisco bay area, does it

make sense to rent or buy?

Description: the prices of rent and the price

of buying does not make sense to me,

mostly the rent will not cover the mortgage.

Is it better to rent a house or to buy?

Rank

(TT’)

Rank

(DT’)

Rank

(Weighted)

Question

1

Title: Why is it better to rent a house than

buy? If in Bay Area, California?

Description: None

Best Answer: One, the prices are insane.

Two, your house payments will be higher

than rent. Three, you have to spend more on

your own repairs Four, property taxes Five,

homeowners insurance Much cheaper to

rent than own right now. Save your money

until the market evens out and see where

you are.

75 13 1

Question

2

Title: Should I buy or rent in San Francisco?

Description: None

Best Answer: BUY BUY BUY!!!!!!!!!!!!

8 674 2

51

4.3 Tag Recommendation in CQA

Tag Recommendation is one of the solutions to the tag synonym and the tag

explosion in Community Question Answering (CQA) services that employ tagging

systems. The tag recommendation reduces the chance of creating new tags from users and

can help to choose appropriate tags to their questions by recommending proper tags. The

strategy of the tag recommendation for a target document (i.e. an unseen document) is to

find similar documents to the target document and then to recommend the tags used in

the similar documents (i.e. candidate documents) based on the ranking score. The

following sections describe methodology and experiment results of the tag

recommendation.

4.3.1 Topic Models

A topic model is a statistical model for discovering latent topics in a collection of

documents based on the idea that words with similar meaning will occur in similar

documents [34, 72, 73]. Latent Dirichlet Allocation (LDA), one of the topic models, is a

generative probabilistic model which finds topic probabilities over documents given that

documents are represented as random mixtures over latent topics where each topic is

characterized by a distribution over words [34]. In this chapter we assume that a

document is a bag of words and consists of a title and a description of a question.

Question titles are usually short but contain the keywords describing the askers' interests

whereas question descriptions are rather long and include detailed information. We

52

combine the words in the title and the description for the document representation. Given

a corpus D containing M documents where each document contains N words

{𝑤1, 𝑤2, … , 𝑤𝑛} over K topics, the generative process of LDA is described as follows:

1. Choose θi ~ Dirichlet(α)

2. Choose φk ~ Dirichlet(β)

3. For each of the N words wn:

a. Choose a topic zi,j ~ Multinomial(θi)

b. Choose a word wi,j ~ Multinomial (φzi,j
)

where 𝑖 ∈ {1, … , 𝑀}, 𝑗 ∈ {1, … 𝑁}, 𝑘 ∈ {1, … 𝐾}, and 𝛼 and 𝛽 are hyperparameters for the

topic distribution per document 𝜃 and the word distribution per topic 𝜑 respectively. In

LDA, we used the variational inference to learn the hidden topics 𝑧 from the corpus. The

hidden topics z consists of document-topic distributions and topic-word distributions.

From the hidden topics 𝑧, we can predict the topic distributions for unseen documents.

This prediction results in a vector of topic distributions of the documents and the words.

Table 4-5 shows an example of document-topic distribution from the hidden topics 𝑧 in

LDA. Each document is a distribution on topics and the sum of the probabilities of topics

in each document is equal to 1.

53

Table 4-5. An example of document-topic distribution in LDA

 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 …

Document 1 0.0015 0.0276 0.0021 0.0034 0.0043 … ∑ 𝑃(𝑥) = 1

Document 2 0.0042 0.0002 0.0660 0.0192 0.0002 … ∑ 𝑃(𝑥) = 1

… … … … … … …

4.3.2 A Ranking Function using Highest Topic Filtering (HTF)

The Latent Dirichlet Allocation (LDA) results in a vector of topic distributions for

existing documents. The topic distributions for the target document can be inferred using

the trained LDA model. The similarity scores between existing documents and the target

document are calculated based on the similarity between their document-topic

distributions. We used Jensen–Shannon divergence (JSD) to calculate the similarity

between document-topic distributions. JSD is a well-known method for measuring the

similarity between two probability distributions, which is a symmetrized and smoothed

version of Kullback-Leibler divergence. JSD is defined as

JSD(P || Q) =
1

2
∑ P(i) log

P(i)

M(i)
i

+
1

2
∑ Q(i) log

Q(i)

M(i)
i

M(i) =
1

2
(P(i) + Q(i))

54

where 𝑃 and 𝑄 are topic distributions of documents and 𝑀 is the average of the two

distributions. The measure is 0 only for identical distributions and approaches infinity as

the two differ more and more.

However, equally comparing every topic distribution may lose the relevance of the

topic. Table 4-6 describes am example of document similarity between the target

document and existing documents. Based on the JSD, the document 1 is most similar to

the target document. While the document 2 and the document 3 are less similar than the

document 1, their first highest topic distributions are the same with the target document.

Document 2’s second highest topic distribution is also the same with the target document.

Even though the highest topic distributions are the same, the scores may indicate less

similar. To emphasize the most relevant topics and exploit the highest topic distributions,

we proposed a method that filters the highest topic distributions, named Highest Topic

Filtering (HTF). The HTF method filters the highest topic distributions in advance of

calculating document similarity scores using the JSD. For HTF with the first highest topic

distribution, candidate documents are filtered to have the same first highest topic

distribution with the target document. For HTF with the second highest topic distribution,

candidate documents are filtered to have the same first and second highest topic

distribution with the target document. Therefore, it confines the candidate documents by

filtering the documents that have the same highest topic distributions with the target

document.

55

Table 4-6. Document similarity between the target document and existing documents

 Topic 1 Topic 2 Topic 3 Topic 4 … Similarity

Document 1 0.0276* 0.0021 0.0034 0.0043** … 0.0791

Document 2 0.0002 0.0660* 0.0192** 0.0002 … 0.3026

Document 3 0.0100 0.2747* 0.0001 0.0557** … 0.4423

Target Document 0.0054 0.0276* 0.0157** 0.0145 … 0 (identical)

(*First highest topic distribution, **Second highest topic distribution)

After the Highest Topic Filtering, we calculate the document similarity between

existing documents and the target document using the JSD. Candidate documents are

selected based on the similarity scores to calculate tag scores. In calculating tag scores,

we consider both the document similarity and the tag occurrence in the candidate

documents. The score of each tag 𝑡 is calculated as

TagScore(t) = ∑
1

JSDi
∙ occurrence(t, i)

n

i=1

where 𝑛 is the number of candidate documents, 𝐽𝑆𝐷𝑖 is the similarity between the

document 𝑖 and the target document, and 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒(𝑡, 𝑖) is an indicator function that is

equal to 1 if the tag 𝑡 occurs in a document 𝑖 and 0 otherwise. The value of JSD is taken

as a multiplicative inverse to give weight to similar documents. Therefore, the more

frequently tags occur in more similar documents, the higher tag scores become. As a

result, the higher tag score is more likely to be relevant to the target document. By

56

ranking the tags in descending order of their tag scores, the top ranked tags are selected

for recommendation. We called this ranking function 𝑇𝑎𝑔𝑆𝑐𝑜𝑟𝑒𝐻𝑇. Algorithm 2

describes the procedure of 𝑇𝑎𝑔𝑆𝑐𝑜𝑟𝑒𝐻𝑇. A function 𝑎𝑟𝑔𝑚𝑎𝑥𝑌 returns the indices of 𝑌

number of highest topic distributions of a document.

Algorithm 2 A ranking function 𝑇𝑎𝑔𝑆𝑐𝑜𝑟𝑒𝐻𝑇

 tagt: a score of a tag 𝑡

 tdk: Distribution of k-th topic

 an existing document 𝑃𝑖 ← (td1, td2, … , tdk)

 a target document 𝑄 ← (td1, td2, … , tdk)

 Initialize the score of each tag t tagt ← 0

2: procedure TagScoreHT (P, Q)

3: for i = 1, 2, …, n do

4: if argmaxY(𝑃𝑖) == argmaxY(𝑄) then

5: for each tag 𝑡 do

6: tagt += occurrence(t, i) ∙
1

JSDi

7: end for
8: end if

9: end for

10: end procedure

4.4 Experimental Setup and Results

In this section, we describe experimental setup and results including the details of the

data sets, data preprocessing, LDA parameters, evaluation metrics and results for the tag

recommendation.

57

4.4.1 Data sets and Preprocessing

In this experiment we used mutually exclusive training and test sets. For a training

set, we used data sets from Stack Overflow. The Stack Overflow data is publicly released

and includes about 13 million questions posted from July 2008 to December 2016. For a

test set, we manually collect 100 questions with the most views, answers, and votes in a

month in the Stack Overflow website posted from April 2017 to May 2017.

All the data is preprocessed before training the LDA model. The raw data is stored in

the eXtensible Markup Language (XML) format, and texts are wrapped with HTML tags

such as <code>, <pre>, <div>, etc. First, we parse HTML tags to extract only normal

texts, and discard any code snippets that are wrapped with the tag <code>. Code snippets

are noisy when they are handled as normal texts since most programming languages have

similar syntax and keywords. After extracting normal texts, all the texts are lemmatized

by the Stanford NLP module. Stop words such as ‘a’, ‘the’, and ‘of’ are also removed

from the texts.

The time complexity of LDA is O(NKM) where N is the number of unique words, K

is the number of topics, and M is the number of documents. For the Stack Overflow data

used in this experiment, the number of unique words is 6 million and the number of

documents is 13 million. The number of topics may vary from tens to hundreds

depending on the data. It may take a huge amount of time to train the LDA model and it

is intractable to compute with all the Stack Overflow data. Inevitably, we reduced the

58

dimensions of words and documents. We found that a small subset of tags appeared in

most of the documents. As shown in Figure 4-3, a small number of the most frequently

used tags can cover most of the documents. Therefore, we selected the most frequently

used 300 tags that can cover 11,790,316 (91.25%) documents of the Stack Overflow data,

and randomly sampled 1,000 documents for each tag. The number of training documents

was reduced to 300,000 and the number of unique words was also reduced to 212,144 in

order of frequency to train the LDA model.

We also developed a validation set in order to validate the Highest Topic Filtering

(HTF) method for the tag recommendation. The validation set consists of 2,028 questions

whose voting scores are greater than 400. The voting score is the sum of upvotes and

downvotes, and a question can be upvoted or downvoted by users. We assume that voting

scores indicate the quality of both questions and their tags. Therefore, the validation set is

assumed to have more relevant tags to their question and is used to find what number of

highest topic distributions would achieve the best performance in the tag

recommendation. The details of the data sets used in the experiment are described in

Table 4-7.

59

Figure 4-3. Document coverage by the most frequent tags

Table 4-7. The details of the data sets

Dataset # of Documents # of Tags Period

Raw data 12,921,385 47,391 07/31/08 – 12/11/16

Training 300,000 23,659 04/13/09 – 12/11/16

Validation 2,028 1,702 07/31/08 – 11/01/16

Test 100 184 04/13/17 – 05/19/17

60

4.4.2 Evaluation Metrics

We assumed that all tags appeared in the training set and the test set are relevant and

those tags were considered the answer tags to evaluate our tag recommendation method.

We evaluate the performance of our tag recommendation method using the validation set

and the test set. First of all, we discovered similar documents of a target document in the

test set using the LDA model trained with the sample data of the raw data set. Then, we

calculated scores of tags based on the document similarity and the frequency of tags

appeared in the candidate documents. We finally recommended the top 10 tags in order

of the ranking score.

To evaluate our tag recommendation method, we used the following ranking

evaluation metrics.

P@k: Precision at cut-off k measures the percentage of answer tags that are matched

with the recommended tags in the top k positions of the predicted rank. We evaluate the

average of precision at cut-off k over the test set for k = 5.

R@k: Recall at cut-off k measures the percentage of answer tags that are selected

out of the recommended tags in top k positions. We evaluate the average of recall at cut-

off k over the test set for k = {5, 10}.

MAP: Mean average precision measures an average precision across queries, and is

defined as

61

MAP =
∑ 𝐴𝑣𝑒𝑃(𝑞)𝑄

𝑞=1

𝑄

where Q is the number of queries and AveP(q) denotes the average precision for query q,

computed as

AveP(q) =
∑ 𝑃@𝑘 ∙ 𝑟𝑒𝑙(𝑘)𝑛

𝑘=1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑠𝑤𝑒𝑟 𝑡𝑎𝑔𝑠

where 𝑟𝑒𝑙(𝑘) is an indicator function that is equal to 1 if the tag at rank k is an answer tag

and 0 otherwise.

MRR: Mean reciprocal rank measures the average of the reciprocal rank across

queries. It is defined as

MRR =
1

Q
∑

1

𝑟𝑎𝑛𝑘𝑞

𝑄

𝑞=1

where 𝑟𝑎𝑛𝑘𝑞 denotes the rank position of the first relevant tag for the query q.

nDCG: Discounted cumulative gain (DCG) measures the ranking quality based on

its position by discounting the gain at lower ranks. It is defined as

DCG = ∑
2𝑟𝑒𝑙𝑘 − 1

log2(𝑘 + 1)

𝑛

𝑘=1

where 𝑟𝑒𝑙𝑘 is the graded relevance of the tag at position k. The relevance scores of tags

are binary in this experiment. The normalized DCG (nDCG) normalizes this score across

queries by Ideal DCG (IDCG), which are defined as

62

nDCG =
DCG

IDCG

IDCG = ∑
2𝑟𝑒𝑙𝑘 − 1

log2(𝑘 + 1)

|𝑅𝐸𝐿|

𝑘=1

where |REL| represents the list of answer tags.

The cut-off level n is set to 10 for MAP, MRR, and nDCG in this experiment.

4.4.3 Training Topic Models

To determine the proper number of topics K, we examined the log likelihood of the

LDA for different K topics. We eventually chose the number of topics K = 160 since the

log likelihood of the LDA was highest at the point of K = 160 as shown in Figure 4-4.

Figure 4-4. A log likelihood of LDA for a different topic K

63

After determining K = 160, we run the LDA with 100 iterations. As a result,

distributions of the 160 topics for each document were learned. We observed that the

LDA discovered latent topics well.

64

Table 4-8 lists the topic number, the category we named, and the top 10 words of the

topic discovered by the LDA. For example, Topic 0 includes the top 10 words ‘library’,

‘include’, ‘c++’, ‘compile’, ‘static’, ‘standard’, ‘compiler’, ‘boost’, ‘definition’, and

‘callback’. We named this topic ‘C++’. Topic 3 includes the top 10 words ‘run’, ‘apply’,

‘job’, ‘apache’, ‘dataframe’, ‘execution’, ‘spark’, ‘driver’, ‘scala’, and ‘cluster’. We

called this topic ‘Apache Spark’. Other topics are also categorized well by looking top 10

words for each topic.

65

Table 4-8. Top 10 words for different topics discovered by LDA (K = 160)

Topic 0 Topic 3 Topic 28 Topic 49 Topic 51 Topic 58 Topic 82

C++
Apache

Spark
C# Java Image Email iOS

library

include

c++

compile

static

standard

compiler

boost

definition

callback

run

apply

job

apache

dataframe

execution

spark

driver

scala

cluster

api

c#

allow

rest

net

dll

token

register

assembly

twitter

application

java

spring

configuration

eclipse

context

container

tomcat

deploy

maven

image

picture

description

pixel

processing

opencv

photo

png

bitmap

blob

send

address

email

contact

mail

verify

attachment

outlook

receiver

gmail

reference

ios

target

force

iphone

xcode

layer

swift

ipad

unity

4.4.4 Results

In this section, we present the results of the tag recommendation. We tested four

different ranking functions: TagScore (without filtering highest topics), TagScoreHTF=1

(by filtering the first highest topic), TagScoreHTF=2 (by filtering the two highest topics),

and TagScoreHTF=3 (by filtering the three highest topics). 100 candidate documents were

66

selected based on document similarity. From the candidate documents, the tag scores

were calculated based on the tag occurrences and the document similarity where the tags

occur. We evaluated the proposed method for the most frequently used 300 tags and for

all tags.

Table 4-9 shows the tag recommendation result of the top 300 tags for the validation

set. In this result, we did not consider the rest of the tags other than the top 300 tags in the

evaluation. TagScoreHT=1 improved the tag recommendation in all evaluation metrics as

compared to TagScore (without filtering highest topics). TagScoreHT=2 also achieved the

better performance in all evaluation metrics than TagScore did. On the contrary,

TagScoreHT=3 decreased the performance and achieved the lowest result.

Table 4-10 shows the tag recommendation result of the top 300 tags for the test set.

TagScoreHT=1 outperformed TagScore in all the evaluation metrics. However,

TagScoreHT=2 decreased R@5 and R@10 while increasing P@5, MAP, MRR, and

nDCG as compared to TagScore. TagScoreHT=2 was also slightly higher than

TagScoreHT=1 in MAP, MRR, and nDCG but was lower than TagScoreHT=1 in R@5 and

R@10. For the test set, we observed that TagScoreHT=1 recommended correct tags more

67

often than the other ranking functions did, and that TagScoreHT=2 ranked correct tags

more highly than the others did. TagScoreHT=3 decreased the evaluation result.

Table 4-9. Tag recommendation result for the validation set with regard to top 300 tags

Ranking Function P@5 R@5 R@10 MAP MRR nDCG

TagScore 0.112 0.328 0.415 0.177 0.274 0.268

TagScoreHT=1 0.168 0.490 0.628 0.386 0.495 0.471

TagScoreHT=2 0.182 0.518 0.630 0.429 0.530 0.505

TagScoreHT=3 0.066 0.183 0.208 0.139 0.188 0.176

Table 4-10. Tag recommendation result for the test set with regard to the top 300 tags

Ranking Function P@5 R@5 R@10 MAP MRR nDCG

TagScore 0.181 0.559 0.622 0.283 0.420 0.389

TagScoreHT=1 0.204 0.564 0.668 0.399 0.544 0.508

TagScoreHT=2 0.204 0.536 0.618 0.417 0.549 0.519

TagScoreHT=3 0.083 0.224 0.233 0.186 0.240 0.214

In addition to the result of the top 300 tags, we tested our tag recommendation

method for all tags to evaluate how effective it is. Table 4-11 shows the result of the tag

68

recommendation for all tags. The result for all tags showed the similar improvement in

the result for the top 300 tags. TagScoreHT=1 achieved the best performance in R@5 and

R@10. TagScoreHT=2 achieved the best performance in P@5, MAP, MRR, and nDCG.

TagScoreHT=3 achieved very low results in both tests because there were less than 100

candidate documents that have the three same highest topic distributions. Evaluation

results described that TagScoreHT=2 achieved the best result in the experiment, and that

our method slightly improved the result in the recall-related metrics which are R@5 and

R@10, and significantly improved the result in the rank-related metrics which are MAP,

MRR, and nDCG.

Table 4-11. Tag recommendation result for the test set with regard to all tags

Ranking Function P@5 R@5 R@10 MAP MRR nDCG

TagScore 0.176 0.314 0.358 0.170 0.404 0.262

TagScoreHT,Y=1 0.194 0.343 0.405 0.237 0.521 0.342

TagScoreHT,Y=2 0.198 0.323 0.372 0.247 0.525 0.345

TagScoreHT,Y=3 0.076 0.128 0.138 0.101 0.222 0.137

Furthermore, we deeply examined each question of the test set to find whether our

recommendation could potentially help users choose relevant tags.

69

Table 4-12 describes an example of the test set with its tag recommendation result.

This post was asking how to preserve the current local time data in AngularJS. The actual

tags attached to the post were ‘javascript’, ‘angularjs’, ‘internationalization’, and

‘timezone’. Using our method, we recommended ‘javascript’, ‘angularjs’, ‘date’,

‘datetime’, ‘angular2’, and so on. From these recommended tags, the asker of this post

could add an additional tag ‘date’, ‘datetime’, or ‘angular2’. The asker may not even

know if ‘date’ and ‘datetime’ exist in a list of user-defined tags and may also not think to

provide a version number of the AngularJS such as ‘angluar2’. The tag recommendation

has potential advantages in choosing relevant tags without searching for the list of tags

and letting users provide more detailed and additional information in their posts. These

results imply that our proposed method, a ranking function that filters the highest topic

distributions, can improve the tag recommendation result and help users improve the

quality of their posts.

70

Table 4-12. An example of the test set with the recommendation result of 𝑇𝑎𝑔𝑆𝑐𝑜𝑟𝑒𝐻𝑇=2

Title angular $http.post changing date to UTC date

Description

I was trying to post some data to my REST api which has date. Now

while I debug, my date parameter is a JS Date object with correct

date in my timezone: Tue Apr 04 2017 00:00:00 GMT+0530

after it leaves my code, and I see the same in network tab, it is

converted to UTC date: "2017-04-03T18:30:00.000Z"

I searched for the solution according to which I need to include

locale file of angular in my index.html which I did: but it doesn't

help. I've seen solutions like adding date format to filter or

something, but I want a global solution. Any help? Thanks :)

Actual tags javascript, angularjs, internationalization, timezone

Recommended

tags

javascript, angularjs, date, datetime, angular2, jquery, google-

chrome, firefox, internet-explorer, node.js

71

Chapter 5

Conclusion

In this dissertation, we conduct an analysis on textual contents in social media and

online communities and have proposed three methods: a company name discrimination

method, a question retrieval method, and a tag recommendation method.

Firstly, we propose a semi-supervised system for a company name discrimination on

tweets based on topic signatures extracted from news articles. The proposed system is a

fully automated system that requires only a search keyword when a new company is

added so that no human coder is necessary. From the experiment we found that news

articles could be used to disambiguate word senses of tweets as an external source. In

addition, we have conducted an experiment for measuring the effectiveness of various

features in news articles for the company name discrimination. The snippet, lead

paragraph, and body feature obtain high retrieval rates, which means that they can be

useful features for extracting topic signatures. In the experiment, only the snippet and

body feature were selected as candidate features because almost every lead paragraph has

the same contents as the snippet does. The best threshold for extracting the topic

signature was determined as 2% for the snippet feature and as 15% for the body feature.

The classification result for each feature was 63.2% accuracy for the snippet feature and

was 61.1% for the body feature. As compared with the random baseline, the accuracy

was increased by 10.4% with the body feature and by 12.5% with the snippet feature.

72

Although the body feature extracted topic signature words twice as much as those of the

snippet feature, the snippet feature achieved 2.1% higher accuracy than that of the body

feature. This study observed that topic signatures extracted from news articles improve

the accuracy of the company name discrimination in Twitter.

Secondly, we propose a weighted question retrieval model to find similar questions

and recommend their best answers in large-scale CQA archives. The proposed model

exploits question titles, descriptions, and the relationship between them while most

research uses only question titles or combines titles and descriptions as questions. The

experiment results showed that our weighted question retrieval model outperformed the

baseline that uses only question titles in MAP and MRR. From the experiment result we

found that exploiting the question descriptions increased the ranks of the relevant

questions while reducing the recalls of them as compared with the baseline using only

titles. CQA services have their own characteristics of descriptions. This makes different

weights to each CQA service. The weighted question retrieval model fits when ranks are

more important than recalls.

Lastly, we propose a tag recommendation method in software information sites using

topic models. To recommend relevant tags, we used our ranking function that filters the

highest topic distributions based on the document similarity and occurrence of the tags.

We evaluated the performance of our tag recommendation method using various ranking

evaluation metrics. The experiment results showed that the proposed method slightly

73

improved the recall-related metrics and considerably improved the rank-related metrics.

It has potential advantages in choosing relevant tags without searching for the list of tags

letting users provide more detailed and additional information in their posts. Therefore,

our proposed method, a ranking function that filters highest topic distributions, can

improve the tag recommendation and help users improve the quality of their posts.

74

References

[1] Tim O’Reilly. 2005. What Is Web 2.0? Design Patterns and Business Models for

the Next Generation of Software. (September 2005). Retrieved November 5, 2017

from http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-

20.html

[2] Graham Vickery, and Sacha Wunsch-Vincent. 2007. Participative web and user-

created content: Web 2.0 wikis and social networking. Organization for Economic

Cooperation and Development (OECD), Paris, France.

[3] Kelli D. Washington, and Richard K. Miller. 2013. The 2013 Entertainment,

Media & Advertising Market Research Handbook (13th. ed.). Richard K Miller &

Associates, Loganville, GA.

[4] Wu He, Shenghua Zha, and Ling Li. 2013. Social media competitive analysis and

text mining: a case study in the pizza industry. International Journal of

Information Management, 33, 3 (June 2013), 464-472.

[5] Bernard J. Jansen, Mimi Zhang, Kate Sobel, and Abdur Chowdury. 2009. Twitter

power: tweets as electronic word of mouth. Journal of the American Society for

Information Science and Technology, 60, 11 (July 2009), 2169-2188.

[6] Twitter Usage Statistics. 2014. Internet Live Stats Site. Retrieved from

http://www.internetlivestats.com/

http://www.internetlivestats.com/

75

[7] Yandong Liu, Jiang Bian, and Eugene Agichtein. 2008. Predicting information

seeker satisfaction in community question answering. In Proceedings of the 31st.

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR’08). 483-490.

[8] Mohan John Blooma, and Jayan Chirayath Kurian. 2011. Research Issues In

Community Based Question Answering. In Pacific Asia Conference on

Information Systems (PACIS2011) Proceedings. 29.

[9] Akihiro Tamura, Hiroya Takamura, and Manabu Okumura. 2005. Classification

of multiple-sentence questions. In Proceedings of International Joint Conference

on Natural Language Processing (IJCNLP). 426-437.

[10] F. Maxwell Harper, Daphne Raban, Sheizaf Rafaeli, and Joseph A. Konstan. 2008.

Predictors of answer quality in online Q&A sites. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (CHI’08). 865-874.

[11] Alton Y.K. Chua, and Snehasish Banerjee. 2013. So fast so good: An analysis of

answer quality and answer speed in community Question-answering sites. Journal

of the Association for Information Science and Technology. 64, 10 (July 2013),

2058-2068.

[12] Jiwoon Jeon, W. Bruce Croft, Joon Ho Lee, and Soyeon Park. 2006. A framework

to predict the quality of answers with non-textual features. In Proceedings of the

29th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR’06). 228-235.

76

[13] Jiwoon Jeon, W. Bruce Croft, and Joon Ho Lee. 2005. Finding similar questions

in large question and answer archives. In Proceedings of the 14th ACM

International Conference on Information and Knowledge Management (CIKM’05).

84-90.

[14] Baichuan Li, and Irwin King. 2010. Routing questions to appropriate answerers in

community question answering services. In Proceedings of the 19th ACM

International Conference on Information and Knowledge Management (CIKM’10).

1585-1588.

[15] Liu Yang, Minghui Qiu, Swapna Gottipati, Feida Zhu, Jing Jiang, Huiping Sun,

and Zhong Chen. 2013. CQArank: jointly model topics and expertise in

community question answering. In Proceedings of the 22nd ACM International

Conference on Information and Knowledge Management (CIKM’13). 99-108.

[16] Xiaoyong Liu, W. Bruce Croft, and Matthew Koll. 2005. Finding experts in

community-based question-answering services. In Proceedings of the 14th ACM

International Conference on Information and Knowledge Management (CIKM’05).

315-316.

[17] Imrul Kayes, Nicolas Kourtellis, Daniele Quercia, Adriana Iamnitchi, and

Francesco Bonchi. 2015. The social world of content abusers in community

question answering. In Proceedings of the 24th International Conference on World

Wide Web (WWW’15). 570-580.

77

[18] Robert Krovetz, and W. Bruce Croft. 1992. Lexical ambiguity and information

retrieval. ACM Transactions on Information Systems. 10, 2 (April 1992), 115-141.

[19] Roberto Navigli. 2009. Word sense disambiguation: a survey. ACM Computing

Surveys. 41, 2 (February 2009), 1-69.

[20] William A. Gale, Kenneth W. Church, and David Yarowsky. 1992. A method for

disambiguating word senses in a large corpus. Computers and the Humanities. 26,

5/6 (December 1992), 415-439.

[21] Montse Cuadros, and German Rigau. 2006. Quality assessment of large scale

knowledge resources. In Proceedings of the 2006 Conference on Empirical

Methods in Natural Language Processing (EMNLP’06). 534-541.

[22] Shari Landes, Claudia Leacock, and Randee I. Tengi. 1998. Building semantic

concordances. WordNet: An Electronic Lexical Database. MIT Press, Cambridge,

MA. 199-216.

[23] Vasudev Bhat, Adheesh Gokhale, Ravi Jadhav, Jagat Pudipeddi, and Leman

Akoglu. 2014. Min(e)d your tags: Analysis of question response time in

StackOverflow. In Proceedings of 2014 IEEE/ACM International Conference on

Advances in Social Networks Analysis and Mining (ASONAM’14). 328-335.

[24] Baichuan Li and Irwin King. 2010. Routing questions to appropriate answerers in

community question answering services. In Proceedings of the 19th ACM

International Conference on Information and Knowledge Management (CIKM’10).

1585-1588.

78

[25] James Sinclair, and Michael Cardew-Hall. 2008. The folksonomy tag cloud: when

is it useful?. Journal of Information Science. 34, 1 (February 2008), 15-29.

[26] Sanjay C. Sood, Sara H. Owsley, Kristian J. Hammond, and Larry Birnbaum. 2007.

TagAssist: Automatic Tag Suggestion for Blog Posts. In Proceedings of the

International Conference on Weblogs and Social Media (ICWSM’07).

[27] William B. Frakes, and Thomas P. Pole. 1994. An empirical study of

representation methods for reusable software components. IEEE Transactions on

Software Engineering. 20, 8 (August 1994), 617-630.

[28] Arash Joorabchi, Michael English, and Abdulhussain E. Mahdi. 2015. Automatic

mapping of user tags to Wikipedia concepts: The case of a Q&A website –

StackOverflow. Journal of Information Science. 41, 5 (October 2015), 570-583.

[29] Marieke Guy, and Emma Tonkin. 2006. Folksonomies: Tidying up tags. D-Lib

Magazine. 12, 1 (January 2006).

[30] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. 2014. What are

developers talking about? an analysis of topics and trends in stack overflow.

Empirical Software Engineering. 19, 3 (June 2014), 619-654.

[31] Pingyi Zhou, Jin Liu, Zijiang Yang, and Guangyou Zhou. 2017. Scalable tag

recommendation for software information sites. In Proceedings of 2017 IEEE 24th

International Conference on Software Analysis, Evolution and Reengineering

(SANER’17). 272-282.

79

[32] Jiaul H. Paik. 2013. A novel TF-IDF weighting scheme for effective ranking. In

Proceedings of the 36th International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR’13). 343-352.

[33] S. E. Robertson, and S. Walker. 1994. Some Simple Effective Approximations to

the 2-Poisson Model for Probabilistic Weighted Retrieval. In Proceedings of the

17th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR’94). 232-241.

[34] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet

Allocation. Journal of Machine Learning Research. 3 (January 2003), 993-1022.

[35] Ian Porteous, David Newman, Alexander Ihler, Arthur Asuncion, Padhraic Smyth,

and Max Welling. 2008. Fast collapsed gibbs sampling for latent dirichlet

allocation. In Proceedings of the 14th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD’08). 569-577.

[36] Matthew D. Hoffman, David M. Blei, Francis Bach. 2010. Online learning for

latent dirichlet allocation. In Proceedings of Advances in Neural Information

Processing Systems (NIPS’10). 856-864.

[37] Raymond J. Mooney. 1996. Comparative experiments on disambiguating word

senses: An illustration of the role of bias in machine learning. In Proceedings of

the 1996 Conference on Empirical Methods in Natural Language Processing

(EMNLP’96). 82–91.

80

[38] Roberto Navigli, and Simone Paolo Ponzetto. 2012. Joining forces pays off:

Multilingual joint word sense disambiguation. In Proceedings of the 2012 Joint

Conference on Empirical Methods in Natural Language Processing and

Computational Natural Language Learning (EMNLP-CoNLL’12). 1399-1410.

[39] Rada Mihalcea. 2004. Co-training and self-training for word sense disambiguation.

In Proceedings of the 8th Conference on Natural Language Learning (CoNLL’04).

33-40.

[40] Eneko Agirre, Olatz Ansa, David Martinez, and Eduard Hovy. 2001. Enriching

WordNet concepts with topic signatures. In Proceedings of the NAACL Workshop

on WordNet and Other Lexical Resources. 23-28.

[41] Eneko Agirre, and Aitor Soroa. 2007. SemEval-2007 task 02: evaluating word

sense induction and discrimination systems. In Proceedings of the 4th

International Workshop on Semantic Evaluations. 7-12.

[42] Enrique Amigo, Javier Artiles, Julio Gonzalo, Damiano Spina, Bing Liu, and

Adolfo Corujo. 2010. WePS-3 evaluation campaign: overview of the online

reputation management task. In Proceedings of International Conference on

Cross-Language Evaluation Forum (CLEF2010).

[43] Surender Reddy Yerva, Zoltan Miklos, and Karl Aberer. 2010. It was easy, when

apples and blackberries were only fruits. In Proceedings of International

Conference on Cross-Language Evaluation Forum (CLEF2010).

81

[44] Minoru Yoshida, Shin Matsushima, Shingo Ono, Issei Sato, and Hiroshi

Nakagawa. 2010. ITC-UT: tweet categorization by query categorization for on-

line reputation management. In Proceedings of International Conference on

Cross-Language Evaluation Forum (CLEF2010).

[45] M. A. García-Cumbreras, M. García-Vega, F. Martínez-Santiago, and J. M. Peréa-

Ortega. 2010. SINAI at weps-3: Online reputation management. In Proceedings of

International Conference on Cross-Language Evaluation Forum (CLEF2010).

[46] Manos Tsagkias, Krisztian Balog. 2010. The University of Amsterdam at WePS3.

In Proceedings of International Conference on Cross-Language Evaluation

Forum (CLEF2010).

[47] Paul Kalmar. 2010. Bootstrapping websites for classification of organization

names on twitter. In Proceedings of International Conference on Cross-Language

Evaluation Forum (CLEF2010).

[48] Sandhya Sachidanandan, Prathyush Sambaturu, and Kamalakar Karlapalem. 2013.

NERTUW: Named Entity Recognition on Tweets using Wikipedia. In

Proceedings of Concept Extraction Challenge at the 3rd Workshop on Making

Sense of Microposts (#MSM2013). 67-70.

[49] Yegin Genc, Winter Mason, and Jeffrey V. Nickerson. 2013. Classifying Short

Messages using Collaborative Knowledge Bases: Reading Wikipedia to

Understand Twitter. In Proceedings of Concept Extraction Challenge at the 3rd

Workshop on Making Sense of Microposts (#MSM2013). 50-53.

82

[50] Mena B. Habib and Maurice van Keulen. 2013. A generic open world named entity

disambiguation approach for tweets. In Proceedings of the 5th International

Conference on Knowledge Discovery and Information Retrieval (KDIR’13). 267–

276.

[51] Agustin D. Delgado Munoz, Raquel Martinez Unanue, Alberto Perez Garcıa-Plaza,

and Victor Fresno. 2012. Unsupervised real-time company name disambiguation

in twitter. In ICWSM Workshop on Real-Time Analysis and Mining of Social

Streams (RAMSS). 25-28.

[52] Kamel Nebhi. 2012. Ontology-based information extraction from twitter. In

Proceedings of the Workshop on Information Extraction and Entity Analytics on

Social Media Data – COLING 2012. 17–22.

[53] Chenliang Li, Jianshu Weng, Qi He, Yuxia Yao, Anwitaman Datta, Aixin Sun, and

Bu-Sung Lee. 2012. Twiner: named entity recognition in targeted twitter stream.

In Proceedings of the 35th International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR’12). 721-730.

[54] Guangyou Zhou, Li Cai, Jun Zhao, and Kang Liu. 2011. Phrase-based translation

model for question retrieval in community question answer archives. In

Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies (HLT’11). 653-662.

83

[55] Guangyou Zhou, Yang Liu, Fang Liu, Daojian Zeng, and Jun Zhao. 2013.

Improving question retrieval in community question answering using world

knowledge. In Proceedings of the 23rd International Joint Conference on

Artificial Intelligence (IJCAI’13). 2239-2245.

[56] Kai Wang, Zhaoyan Ming, and Tat-Seng Chua. 2009. A syntactic tree matching

approach to finding similar questions in community-based QA services. In

Proceedings of the 32nd International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR’09). 187-194.

[57] Li Cai, Guangyou Zhou, Kang Liu, and Jun Zhao. 2011. Learning the latent topics

for question retrieval in community QA. In Proceedings of the 5th International

Joint Conference on Natural Language Processing (IJCNLP’11). 273-281.

[58] Zongcheng Ji, Fei Xu, Bin Wang, and Ben He. 2012. Question-answer topic model

for question retrieval in community question answering. In Proceedings of the 21st

ACM International Conference on Information and Knowledge Management

(CIKM’12). 2471-2474.

[59] Shuguang Li and Suresh Manandhar. 2011. Improving question recommendation

by exploiting information need. In Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human Language Technologies

(HLT’11). 1425-1434.

84

[60] Börkur Sigurbjörnsson, and Roelof Van Zwol. 2008. Flickr tag recommendation

based on collective knowledge. In Proceedings of the 17th International

Conference on World Wide Web (WWW’08). 327-336.

[61] Ralf Krestel, Peter Fankhauser, and Wolfgang Nejdl. 2009. Latent dirichlet

allocation for tag recommendation. In Proceedings of the third ACM Conference

on Recommender Systems (RecSys’09). 61-68.

[62] Yang Song, Ziming Zhuang, Huajing Li, Qiankun Zhao, Jia Li, Wang-Chien Lee,

and C. Lee Giles. 2008. Real-time automatic tag recommendation. In Proceedings

of the 31st Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR’08). 515-522.

[63] Shaowei Wang, David Lo, Bogdan Vasilescu, and Alexander Serebrenik. 2014.

EnTagRec: An enhanced tag recommendation system for software information

sites. In Proceedings of 2014 IEEE International Conference on Software

Maintenance and Evolution (ICSME’14). 291-300.

[64] Xin-Yu Wang, Xin Xia, and David Lo. 2015. TagCombine: Recommending tags

to contents in software information sites. Journal of Computer Science and

Technology. 30, 5 (September 2015), 1017-1035.

[65] Yong Wu, Yuan Yao, Feng Xu, Hanghang Tong, and Jian Lu. 2016. Tag2Word:

Using tags to generate words for content based tag recommendation. In

Proceedings of the 25th ACM International on Conference on Information and

Knowledge Management (CIKM’16). 2287-2292.

85

[66] Ralf Krestel, and Peter Fankhauser. 2010. Language models and topic models for

personalizing tag recommendation. In Proceedings of the 2010 IEEE/WIC/ACM

International Conference on Web Intelligence and Intelligent Agent Technology

(WI-IAT’10). 82-89.

[67] Suppawong Tuarob, Line C. Pouchard, and C. Lee Giles. 2013. Automatic tag

recommendation for metadata annotation using probabilistic topic modeling. In

Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries

(JCDL '13). 239-248.

[68] Chin-Yew Lin, and Eduard Hovy. 2000. The automated acquisition of topic

signatures for text summarization. In Proceedings of the 18th Conference on

Computational Linguistics (COLING’00). 495-501.

[69] Maria Biryukov, Roxana Angheluta, and Marie-Francine Moens. 2005.

Multidocument question answering text summarization using topic signatures.

Journal of Digital Information Management. 3, 1 (March 2005), 27-33.

[70] Hideo Joho, and Mark Sanderson. 2007. Document frequency and term specificity.

In Proceedings of the Recherche d'Information Assistée par Ordinateur

Conference (RIAO’07). 350-359

[71] Beomseok Hong, Youngsub Han, and Yanggon Kim. 2015. A semi-supervised

tweet classification method using news articles. In Proceedings of the 2015

Conference on Research in Adaptive and Convergent Systems (RACS’15). 62-67.

86

[72] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and

Richard Harshman. 1990. Indexing By Latent Semantic Analysis. Journal of the

American Society for Information Science. 41, 6 (September 1990), 391-407.

[73] Thomas Hofmann. 1999. Probabilistic latent semantic indexing. In Proceedings of

the 22nd Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR’99). 50-57.

87

Curriculum Vitae

Name: Beomseok Hong

Program of Study: Information Technology

Degree and Date to be Conferred: Doctoral of Science (D. Sc.), 2017

Collegiate Institutions Attended:

Towson University Towson, Maryland

Doctor of Science Aug. 2013 – Dec. 2017

Towson University Towson, Maryland

Master of Science Feb. 2011 – May. 2013

National Institute for Lifelong Education South Korea

Bachelor of Engineering Mar. 2010 – Feb. 2011

Myongji College South Korea

Associate Degree of Engineering Feb. 2007 – Feb. 2010

Professional Publications

- Yun, Je-kuk, Beomseok Hong, Yanggon Kim. "The BGP Monitoring and

Alarming System to Detect and Prevent Anomaly IP Prefix Advertisement",

Research in Applied Computation Symposium (RACS 2013), Montreal, QC,

Canada, 1-4 October 2013.

88

- Yun, Je-kuk, Beomseok Hong, Yanggon Kim. "The Implementation of BGP

Monitoring, Alarming, and Protecting System by a BGP-UPDATE-Based Method

using ECOMMUNITY in Real Time", THE 2014 INTERNATIONAL

CONFERENCE ON SECURITY & MANAGEMENT (SAM 2014), Las Vegas

Nevada, USA, 21-24, July 2014.

- Yun, Je-kuk, Beomseok Hong, Yanggon Kim. "The Policy-Based AS_PATH

Verification to Monitor AS Path Hijacking", The Eighth International Conference

on Emerging Security Information, Systems and Technologies (SECURWARE

2014), Lisbon, Portugal, 16-20, November, 2014. (Best Paper Award)

- Yun, Je-kuk, Beomseok Hong, Yanggon Kim. "The Policy-Based AS_PATH

Verification to Prevent 1-Hop AS Path Hijacking by Monitoring BGP Live

Streams", International Journal on Advances in Security, Vol.8, 2015.

- Hong, Beomseok, Youngsub Han, and Yanggon Kim. "A semi-supervised tweet

classification method using news articles." In Proceedings of the International

Conference on Research in Adaptive and Convergent Systems, pp. 62-67. ACM,

2015.

- Lee, Hyeoncheol, Beomseok Hong, and Kwangmi Ko Kim. "Documents topic

classification model in social networks using classifiers voting system." In

Proceedings of the 2015 Conference on research in adaptive and convergent

systems, pp. 68-73. ACM, 2015.

- Hong, Beomseok, and Yanggon Kim. "A Weighted Question Retrieval Model

using Descriptive Information in Community Question Answering." In Proceedings

of the International Conference on Research in Adaptive and Convergent Systems,

pp. 35-39. ACM, 2016.

- Hong, Beomseok, Yanggon Kim, and Sang Ho Lee. "Company Name

Discrimination in Tweets using Topic Signatures Extracted from News Corpus."

Journal of Computing Science and Engineering 10, no. 4 (2016): 128-136.

- Hong, Beomseok, and Yanggon Kim. "An Efficient Tag Recommendation Method

using Topic Modeling Approaches." In Proceedings of the International

Conference on Research in Adaptive and Convergent Systems, pp. 56-61. ACM,

2017.

- Han, Youngsub, Beomseok Hong, Hyeoncheol Lee, and Kwangmi Kim. "How do

we Tweet? The Comparative Analysis of Twitter Usage by Message Types,

Devices, and Sources." The Journal of Social Media in Society 6, no. 1 (2017): 189-

219.

- Hong, Beomseok, and Yanggon Kim. "An Efficient Tag Recommendation Method

using Topic Modeling Approaches." In Proceedings of the International

Conference on Research in Adaptive and Convergent Systems, pp. 56-61. ACM,

2017.

Blank White Page

