An Implementation of Binomial Method of
Option Pricing using Parallel Computing

Sai K. Popuri’, Andrew M. Raim, Nagaraj K. Neerchal, Matthias K. Gobbert

Department of Mathematics and Statistics, High Performance Computing Facility (HPCF) and Center for

Interdisciplinary Research and Consulting (CIRC), University of Maryland, Baltimore County
*Contact author: saikul @umbc.edu

Keywords: Option, Call, Put, Binomial Model, Bernoulli Path, Parallel Computing

Abstract

The Binomial method of option pricing is based on iterating over discounted option payoffs
in a recursive fashion to calculate the present value of an option. Implementing the Binomial
method to exploit the resources of a parallel computing cluster is non-trivial as the method is
not easily parallelizable. We propose a procedure to transform the method into an “embarrass-
ingly parallel” problem by mapping Binomial probabilities to Bernoulli paths. We have used
the parallel computing capabilities in R with the Rmpi package to implement the methodology
on the cluster tara in the UMBC High Performance Computing Facility, which has 82 compute
nodes with two quad-core Intel Nehalem processors and 24 GB of memory on a quad-data
rate InfiniBand interconnect. With high-performance clusters and multi-core desktops becom-
ing increasingly accessible, we believe that our method will have practical appeal to financial
trading firms.

1 Introduction

Options are a class of popular financial contracts that fall under the category of financial derivatives,
which derive their value from a less complicated, often elementary asset called underlying, in
addition to other factors. For this paper, it will suffice to think of a stock (e.g. Google trading on
NASDAQ) as an asset. Financial derivatives are traded between two parties: a buyer and a seller.
A buyer is the one who buys the financial derivative and a seller sells the contract.

An option is the right (but not an obligation) to buy or sell a certain number of shares at a
prespecified fixed price within a prespecified time period. In other words, an option allows one to
bet on the future movement of a stock. There are two types of options: call and put. A call (put)
gives the buyer the right to buy (sell) a certain number of shares at a fixed price within a fixed
time period. We denote the prespecified fixed price, called strike price, as K, and the time limit
as T', which is also called time to maturity or expiration time. If the buyer of a call (put) decides
to buy (sell) the shares at time ¢ < I', we say that the buyer has chosen to exercise the option.
At time t < T’ the buyer can also decide to sell the option itself. The buyer may also choose to
not do anything until 7", thereby letting the option expire. After 7', an option is worthless. An
option is called either an American or European depending on the time period during which it can
be exercised. An American option can be exercised anytime before 7'. A European option, on the

other hand, can be exercised only at time 7. Since an American option gives more flexibility to
the buyer, it typically tends to be more expensive than its European counterpart.

The value of an option is the amount a seller (buyer) is willing to receive (pay) when the option
is sold (bought). Valuation of an option is not a trivial problem to solve as the future movements
of a stock are stochastic. Intuitively, for a call, the closer the current stock price is to &, the higher
is the chance that it might exceed K at 7', and therefore one would be willing to pay a higher
value now to buy the call. Intuition also tells us that the call’s value must also depend on the
time remaining before it expires as more time to maturity means higher probability of the stock
exceeding K at 7. Similar arguments can be made for a put. Therefore, the value of an option
depends on two factors (in addition to others, which will be mentioned later): current stock price
and time to maturity. There are several popular approaches that practitioners use to calculate the
value, which is also called premium, of an option. We denote this value as V' (.S;,t), where S, is
the price of a stock at time .

Although V (S, t) for t < T is not known, V' (Sz, T'), called payoff, is known with certainty at
T, where St is the future price of the stock at the time of maturity. The value V (Sr,T') of a call
option at the time of maturity 7" is given by

0 it Sy < K

— max{Sy — K.V 11
S K ifgy > g max{sr = K0} (D

V(S T) = {

For a put option, the value at the time of maturity 7" is given by

K—ST ifST<K

— max{K — Sy.0%. 12
0 it > i e 7,0} (1.2

V(STv T) - {

Going back to the two factors mentioned earlier, stock price and time to maturity, the value of
an option at ¢t < 7' therefore has two components: value associated with the stock price and value
associated with the time to maturity. The first of these components is called intrinsic value and the
second component is called time value. Clearly, as we get closer to 7', much of the option’s value
comes from its intrinsic value. This phenomenon is called the time decay of an option.

In addition to the strike price K and time remaining to maturity 7' — ¢, the value of an option
V' (St,t) also depends on the risk-free interest rate r and the volatility (standard derivation) o of
the stock price. For simplicity, we assume that both r and o stay constant during the life of the
option 7' — t. We also assume that the stock does not pay dividends during the life of the option.
Dependence on r is motivated by the riskfree-hedging concept, which is related to building a
portfolio of assets in such a way that its value grows at the rate offered by US Treasury bonds
(since it is common practice to assume that US Treasury does not default on the bonds it issues,
we consider the rate of return as riskfree). In this paper we will not go into the details of riskfree-
hedging. We will also not discuss how o of a stock is computed. Both the quantities are assumed
to be given. Both r and o are measured per year (time ¢ is also measured in years). We assume
that time starts at ¢ = 0, the time the option is to be bought or sold. Therefore, the range of time is
0 <t < T'. To summarize, the value of a European option depends on the following five factors:
expiration time (7"), risk-free rate (r), volatility (o), current stock price (S;), and strike price (K).

2

In this paper we are concerned with a popular approach called Binomial method [2] or [5]. We
will restrict our discussion to European options for simplicity.

Path-dependent options are a class of options whose payoff depends on the path the underlying
takes until maturity. For example, the payoff of an Asian option depends on the average underlying
price over the option’s lifetime. Our method could be attractive to value such path-dependent
options, especially when the value is a complicated function of the paths.

The rest of the paper is organized as follows. Section 2 introduces the Binomial model and
presents an algorithm to implement the method. In Section 3, we introduce the procedure to
map Binomial probabilities to Bernoulli paths and present the formulation to value a European
option using Bernoulli paths. Section 4 briefly discusses the implementation details on a parallel
computing cluster. Section 5 presents results from the new procedure and finally, Section 6 gives
some concluding remarks.

2 The Binomial Method

The Binomial method is based on simulating an evolution of the future stock price between ¢ = 0
and t = T on a grid of possible stock prices. An option’s value is calculated starting at 7', using
(1.1) for calls or (1.2) for puts, and stepping back in time by applying appropriate rules at each
time step. Interested readers may refer to [2] or [5] for details.

Our goal is to calculate the value of an option at ¢t = 0, i.e. V(S;,t = 0). We first discretize
0 <t < T into equidistant time steps of size dt. Let N be the number of time steps and t = T'/N.
Let us denote points in time between 0 and T’ as t;. Therefore, t; = 10t fori = 0, ..., N. Imagine
a two-dimensional grid with ¢ on the X-axis and stock price S; on the Y-axis; by discretizing time,
we slice the X-axis into equidistant time steps. As we describe below, we next discretize S; at each
t = t, resulting in discrete values Sy, ;, where j is the index on Y-axis. For notational convenience,
we will write Sy,; as \S;;. The Binomial method makes the following assumptions:

A1 The stock price S;, at ¢; over time step ¢¢ can only take two possible values: either go up to
Sy, u or go down to S;,d at ¢;41 with 0 < d < w where u is the factor of upward movement
and d is the factor of downward movement.

A2 The probability of moving up between time ¢; and ¢, is p (and therefore the probability of
moving down is 1 — p).

A3 E<Sti+1 | Stz) = Stierét

The probability p does not reflect the true probability of a stock moving up. It is an artificial
probability reflecting the assumption A3. From assumptions Al and A2, we have E(Sy,,, | S;,) =
pSt,u + (1 — p)St,d. Equating this to £(S;41 | St,) in assumption A3 we get,

¢ = pu+ (1 —p)d, 2.1)

and solving for p,
p= (" = d)/(u—d). (2.2)

3

Algorithm 1 Build the grid of stock prices and calculate option payoffs for Binomial method.
fori:=1,2,...,Ndo
Sij = Sould'= for j =0,1,....,1
end for
for j =0,...,Ndo
VNj — maX{SNj - K, 0}
end for

Since p is a probability, 0 < p < 1implies that d < e < . Equating variances of the stock price
process in the above discrete model and the continuous model (where stock price is assumed to be
lognormally distributed), we get

p2rot+o?st _ pu2 +(1— p)d2. (2.3)
To enforce symmetry in the simulated stock price structure, we assume
ud = 1. (2.4)

Solving (2.1), (2.3) and (2.4) we get

u=[F+V A+,

d=1/u,
p= ("= d)/(u—d),

1, _, :
where 3 = 5(6—7& 4 6(7—0—02)&).

Starting with the current stock price in the market Sy, a grid of possible future stock prices S;;
is built using u, d and p. The procedure is shown as Algorithm 1. For a call option, the value
V(Sr,T) is given using (1.1) at each Sy; at T. Therefore, Viy; = max{Sy; — K,0},5 =0,.., N,
where V;; represents V'(.5;;, ;). Figure 2.1 shows a two step Binomial tree which starts with a
stock price .S, and where the value for the last time step has been computed.

Now, to calculate the current value Voo = V/(Sp, 0) of the option, a backward induction phase
recursively computes V;; for time steps t; = ty_1, tn—2,...,to. The recursion is based on the
equation

Vij = e " (pVierj1 + (1= p)Vigry), (2.5)

which represents the expectation of the option value at step ¢ + 1. The procedure to compute Vg
is summarized as Algorithm 2.

3 Valuation using Bernoulli Paths

A careful look at Algorithm 2 reveals the difficulty in implementing the Binomial method in par-
allel on a cluster. The method of backward induction uses option values computed in subsequent

4

Algorithm 2 Compute option value using Binomial method.

ot — T/N
fori =N —1,...,0do

forj =0,...,ido

Vij = e (pVigriim + (1= p)Visry)

end for
end for
return Vg

Su?; Vag=max (Su?-K, 0)

x

S
1 _
S Sdu; Vo1=max (Sdu-K, 0)
S (1

Sd?; Vap=max (Sd%-K, 0)

Figure 2.1: A Two Step Binomial Tree

time steps, and implies that data be shared and communicated among the parallel tasks at each
time step. If one were to parallelize the computation at each time step ¢; by grouping the cal-
culations into parallel tasks, it is clear that the results from the iteration for ¢;,.; must be shared
across the tasks. This sharing of intermediary results at each iteration complicates the algorithm.
Also, inter-task communication is generally orders of magnitude slower than calculation within a
task, so the overall performance of a parallel implementation depends on making efficient use of
the interconnect between compute nodes. The implementation can be greatly simplified and the
communication cost can be removed if the problem is transformed into an “embarrassingly paral-
lel problem”, which is defined as a problem in parallel computing that requires no communication
among parallel tasks.

Several parallel implementation methods were proposed in recent years. Multi-threaded paral-
lel implementations to price several options simultaneously on GPUs using the CUDA program-
maing language were proposed by Kolb & Pharr [3]. Ganesan et al. [1] proposed another parallel
implementation by concurrently processing multiple time steps using a symbolic dependence struc-
ture. To the best of our knowledge, none of these procedures have taken the approach of making the
Binomial method embarrassingly parallel. We propose a method to price European style options
by mapping Binomial probabilities to Bernoulli asset paths, thereby transforming the Binomial

method into an embarrassingly parallel problem readily amenable for implementation on a parallel
computing cluster.
Consider the backward induction step (2.5) in the Binomial method

Vij e_T&(pVi—l—l,j—i-l + (1 —=p)Vig1j)

for the two step tree shown in Figure 2.1. V5, V51, and V5 are payoffs at 7' = 2. AtT = 1, option
values are computed as

Vio = e " (pVay + (1 — p)Vap) 3.1
and

Vir = e " (pVag + (1 — p)Vay) (3.2)
AtT' = 0, the option value is computed as

Voo = e " (pVi1 + (1 — p)Vio) (3.3)

Substituting (3.1) and (3.2) in (3.3) yields
Voo = Vor = e (p*Vaz + 2p(1 — p) Va1 + (1 — p)*Vao)

Note that p* = (})p% 2p(1 —p) = (})p(1 — p), and (1 — p)?> = (3)(1 — p)>. Generalizing to N

time steps, the option value Vyy can be calculated as

Lo (N N—i
Voo =€ E ; p (1 —p) Vi
1=0

In vector form, Vj, can be represented as
Voo =e¢ TPV, (3.4)

where P is an (N + 1) dimensional vector of probabilities and V' is an (N + 1) dimensional vector
of payoffs at time ¢ = T'. All vectors are assumed to be column vectors. Each element P; in the
vector P represents the probability of reaching the i** node at time ¢ = 7', which can be reached
in (le) ways through sequences of ups and downs, where ¢ is from 0 to N with ¢ = 0 representing
the leaf node reached after all down moves. We represent each such path by an N dimensional
vector whose elements take either 1 (up) or 0 (down) as values. For example, x = (1,1,...,1)
represents a path of N up moves reaching the top most node at time ¢ = 7. Figure 3.1 shows
the two step Binomial tree from Figure 2.1 with Bernoulli paths to terminal leaf nodes shown as
vectors.
The probability of reaching a leaf node via the path x is given by

P(X =x) =p(1 —p)N = (3.5)
where 1 is a vector N ones. Since there are (]:[) ways of reaching the leaf node ¢,

N i N—i x'1 o \N-Z1
(Z,>p(1—p) =). p1-p (3.6)

xeBN x'1=i

6

P

su?; Vo=max (Su’-K, 0)

(1,1)
S ?2
P & 2y
Sdu; Vos=max (Sdu-K, 0)

S (1,0)
(0,1)

Sd?; Vas=max (Sd?-K, 0)
(0,0)

Figure 3.1: Two Step Binomial Tree with Bernoulli Paths

where B = {0, 1}. Using (3.6) in (3.4) and after expanding the inner product, we obtain that

N
Vio=e""> Ve > pTra-pht (3.7)
=0

zeBV :x'1=

Observe that by transforming the backward induction procedure into an expected option value at
time 7" as a summation over payoffs from each Bernoulli path, the problem becomes embarrass-
ingly parallel.

4 Parallel Bernoulli Path Algorithm

Since the components of the summation in (3.7) are independent of each other, the calculation of
the summation can be easily delegated to a set of processors (i.e. cores for multi-core CPUs) on
a cluster. Let M be the number of parallel tasks, which is equal to the number of processors we
intend to use on a cluster. A compute node for our discussion contains either single or a multiple
processors. It is assumed that compute nodes may communicate by an interconnect. We use a
master-worker paradigm for our implementation. The master first builds the lattice and calculates
the option payoff Vi, (although workers can compute their own payoffs once paths are delegated
to them), where 5 = 0, .., N, at time 7'. Note that if NV is the number of time steps used to build a
lattice, the total number of paths leading to terminal payoffs is 2%V. It then divides these 2%V paths
into M sets with each set containing |2V /M | number of paths. Paths remaining, if any, after
grouping are added to the last set. Let B,, be the m" set of |2 /M | paths leading to K, distinct
payoffs. Let P, be a vector of dimension K, with each element P/, representing the probability
of reaching the i*" terminal payoff, i = 1, ..., K,,. Recall the vector of probabilities P mentioned

7

4. Send [Recv Work to Processors

s Worker 1

i 5. option 1
Value

‘| Worker 3
3. Allocate Load 2. Build Lattice

Path Generator - C Function

Worker 2

Worker M

Figure 4.1: Program Structure

in 3. Assuming no payoff is assigned to more than one parallel task, note that P’ can be partitioned
as [/| Pyl - - PM] . The master then sends each such set B,,, along with their payoffs V", P,,,

interest rate r, and time to maturity 7" to the m'" worker compute node. V;?* represents a vector of
payoffs from the paths in 5,,.

The m!" parallel task evaluates the expected value of the option as e~"7 P/ V* and returns it
to the master. Once the computed components of the option value are received from all workers,
the final option value is computed by summing the individual components. A schematic depiction
of the algorithm is presented in Figure 4.1. All the parameters needed to build the lattice and to
evaluate the value of the option are provided to the master as input. The master then builds the
lattice, allocates the load by calculating all the Bernoulli paths (generation of all such paths is not
discussed in this paper) to the payoffs and grouping these paths into M sets. It then distributes
these sets to M workers, which calculate and return the discounted expected values of the payoffs
assigned to them. The master then calculates the option value by summing the values returned.
Note that the workers do not need to communicate with each other once the master delegates the
computation. The ease and simplicity in the implementation is a result of making the problem
embarrassingly parallel. Figures 4.2 and 4.3 show code snippets in R for master and worker tasks
respectively.

5 Results

We have tested the implementation on the cluster tara in the UMBC High Performance Computing
Facility, which has 82 computing nodes with two quad-core Intel Nehalem processors (therefore 8
cores per compute node) and 24 GB of memory on a quad-data rate InfiniBand interconnect, and
have used R [4, 6] as the programming environment.

We take a European put as an example to illustrate our results. The put has a strike price of
K = 10. Current price and volatility of the asset is S = 5 and 30% respectively. Risk-free interest

mpi.spawn.Rslaves (nslaves=M, needlog=FALSE)
mpi.bcast.cmd (source ("Worker.R"))
mpi.bcast.cmd(slave())

mpi.bcast (as.integer (N), type=1, rank=0)

for(i in l:length(W)) {
mpi.send.Robj(W[[i]],dest=1,tag=88, comm=1)

}

atag <- mpi.any.tag()

asource <- mpi.any.source ()

for(nm in l:length(W)) {
retsl <- mpi.recv.Robj(source=asource,tag=atag,comm=1)
optval <- optval + retsl[2]

Figure 4.2: Rmpi code for master

N <- mpi.bcast (integer(1l), type=1, rank=0, comm=1)
P <- mpi.bcast.Robj(rank=0, comm=1)
V <— mpi.recv.Robj(tag=88, source=0, comm=1)

myrank <- mpi.comm.rank ()
retwkr <- c(myrank, sumtotal)
mpi.send.Robj (retwkr,dest=0,tag=2)

Figure 4.3: Rmpi code for worker

rate is 6% and time to maturity is one year.

Table 5.1 shows the runtime for number of time steps N = 22, N =24, N = 26, and N = 28.
Although the runtime drastically decreases as the number of parallel tasks increase for a given
number of time steps, the scale of runtime itself also increases sharply as the number of time steps
increase. This behavior suggests that the Bernoulli path procedure might be more suitable to price
a certain class of complicated exotic options, possibly illiquid, that do not require large number of
time steps in a lattice setting.

Figure 5.1 (a) shows the convergence rate of our method to the analytical solution (as the
number of time steps /V increases), which is available for European options. Figure 5.1 (b) shows
speedup rates as the number of parallel processes increase. If 7,(N) denotes the wall clock time
for a problem of a fixed size parametrized by N using p processes, then the quantity S,(N) =
T1(N)/T,(N) measures the speedup of the code from 1 to p processes, whose optimal value is
S, = p. Note that for a fixed problem size, there is a reduced advantage in the speedup beyond a
certain number of tasks. This is because the overhead of coordinating tasks begins to dominate the

Table 5.1: Runtime for different number of time steps

(a) N = 22 Wall clock time in HH:MM:SS on tara (b) N = 24 Wall clock time in HH:MM:SS on tara

of Processors

of Processors

2
4
6
8
16
32

00:05:27
00:03:01
00:01:57
00:01:25
00:00:44
00:00:40

2
4
6
8
16
32

00:22:51
00:12:46
00:07:57
00:06:03
00:03:04

00:1:40

(c) N = 26 Wall clock time in HH:MM:SS on tara (d) N = 28 Wall clock time in HH:MM:SS on tara

of Processors

of Processors

2 01:38:24 2 06:26:41
4 00:49:51 4 03:49:10
6 00:34:22 6 02:16:52
8 00:25:21 8 01:45:38
16 00:12:52 16 00:55:17
32 00:08:15 32 00:32:06
European Put K=10; S=5; r=6%, vol=30%, T=1 year I I I
309N -= 22
4.430 o N= 24
N o 251 o
4428 + o | g N = 2b
8 ool M-N - 28
4426 o
£ — Analjical %) BN = 30
o — Binomia - .
424 - o 15/ ---optimal value _ :
5 S | Wa
g B AQf ’ P e
4420 O
5 s
el : : ! :
0 10 20 30 40 50 60 70 5 10 15 20 25 30
of Steps Number of processes
(a) (b)

Figure 5.1: (a) Convergence to analytical solution and (b) Speedup rate

time spent doing useful calculations. This issue is commonly encountered in parallel computing,
and further discussion is beyond the scope of this paper.

10

6 Concluding Remarks

We have discussed a novel procedure to implement the Binomial method of option pricing in a
parallel computing framework by mapping the Binomial probabilities of stock price evolution to
Bernoulli paths, thereby transforming the problem into an embarrassingly parallel problem. The
valuation based on our method is consistent with the value calculated by the traditional Binomial
method. We have provided the outline of an R based implementation using the Rmpi package on
a cluster, which can be as small as a multi-core laptop with necessary parallel computing infras-
tructure installed. In the future, we plan to evaluate our method in comparison with some of the
known numerical methods to value path-dependent options.

Acknowledgments

The hardware used in the computational studies is part of the UMBC High Performance Computing
Facility (HPCF). The facility is supported by the U.S. National Science Foundation through the
MRI program (grant no. CNS—-0821258) and the SCREMS program (grant no. DMS-0821311),
with additional substantial support from the University of Maryland, Baltimore County (UMBC).
See www . umbc.edu/hpcf for more information on HPCF and the projects using its resources.
Financial support for this project is from HPCF and Department of Mathematics and Statistics at
UMBC.

References

[1] Narayan Ganesan, Roger D. Chamberlain, and Jeremy Buhler. Acceleration of binomial op-
tions pricing via parallelizing along time-axis on a GPU. Proc. of Symp. on Application Accel-
erators in High Performance Computing, 2009.

[2] John C. Hull. Options, Futures, And Other Derivatives. Prentice Hall, 2000.
[3] C. Kolb and M. Pharr. Option pricing on the GPU in GPU Gems 2. Addison-Wesley, 2005.

[4] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-07-0.

[5] Riidiger Seydel. Tools for Computational Finance. Springer, 2003.

[6] Hao Yu. Rmpi documentation. http://cran.r-project.org/web/packages/
Rmpi.

11

