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Reaction networks are systems consisting of several species interacting with

each other through a set of predefined reaction channels. Models of real world

reaction systems often contain several parameters which play a significant role in

determining the system’s dynamics. Therefore, parametric sensitivity analysis is an

essential tool for the modeling and parameter estimation process. Due to the com-

plex and random nature of the reaction systems, among all approaches for sensitivity

analysis, Monte Carlo simulation is the most suitable for the parametric sensitivity

analysis because its complexity does not grow dramatically as the problem dimen-

sion grows. Most Monte Carlo methods for sensitivity analysis can be classified into

three categories, the pathwise derivative (PD), the finite difference (FD) and the

Girsanov transformation (GT). Comparisons of these methods for specific examples

have been done by many researchers, which showed that when applicable, the PD

method and FD method tend to outperform the GT method. However, to the best

of our knowledge, no existing literature studies these observations from a theoretical

point of view. In this thesis, we provide a theoretical justification for these obser-



vations in terms of system size asymptotic analysis. We also examine our result

by testing several numerical examples. Other than the analysis for the efficiency

of these Monte Carlo estimators, we also provide some sufficient conditions which

guarantee the validity of the GT method. Finally, for an ergodic system, there exists

a steady state distribution and hence it is reasonable for us to consider the steady

state sensitivity estimation problem. We establish an asymptotic correlation result

and use this result to justify the ensemble-averaged correlation function method

introduced in the literature.
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Chapter 1: Introduction

1.1 Stochastic Reaction Networks

Reactions networks are an important modeling tool in areas such as systems

biology, epidemiology and chemical engineering. Traditionally, these have been mod-

eled as a deterministic system whose variables are assumed to evolve continuously.

That is, the time evolution of the number of molecules X is governed by the following

ordinary differential equations

dX(t)

dt
=

m∑
j=1

νj āj(X(t)), (1.1)

where āj are known as the deterministic reaction rate function and νj are the stoi-

chiometirc vectors (we will introduce it later). The above equation is known as the

reaction rate equation (RRE). This deterministic model works reasonably well

when the molecular copy number of all reactants in the network is large. However,

if the system is so small that one can not ignore the discrete nature of the inter-

actions, the RRE fails to describe the true dynamics of the system. To circumvent

this issue, a continuous time Markov chain (CTMC) is often used to model a system

with small populations.

Let us formally describe stochastic reaction networks. Consider a chemical re-
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action system consisting of m reaction channels and n chemical species {S1, · · · , Sn}.

The n-dimensional vector X(t) with the state space being a subset of Zn+ charac-

terizes the state of the system where each entry Xi(t) represents the number of

molecules of the species Si at time t. We assume X(t) is a CTMC with state space

Zn+.

The firing of a reaction channel j ∈ {1, · · · ,m} at time t causes the state to

be incremented by the stoichiometric vector νj such that X(t) = X(t−) + νj. Thus

we assume that X is càdlàg, i.e., paths of X are right continuous with left-hand

limits. The process X is assumed to be a continuous time Markov chain (CTMC)

with infinitesimal generator A given by

(Af)(x) =
m∑
j=1

aj(x)(f(x+ νj)− f(x)) (1.2)

for any bounded f : Rn → R.

Associated with each reaction channel is an intensity function also known as

propensity function in the chemical kinetics literature aj(x), j = 1, · · · ,m, which

is such that for any small time increment ∆t we have

P(X(t+ ∆t) = x+ νj|X(t) = x) = aj(x)∆t+ o(∆t)

P(X(t+ ∆t) = x|X(t) = x) = 1−
m∑
j=1

aj(x)∆t+ o(∆t).
(1.3)

For j = 1, · · · ,m we denote by Rj(t) the number of firings of the j-th reaction

channel during (0, t]. Thus X(t) = X(0) + νR(t) for t ≥ 0, where ν is the stoichio-

metric matrix whose j column is νj and R(t) = (R1(t), · · · , Rm(t))T . We note

that R(0) = 0 and Rj(t)−Rj(t−) is either 0 or 1. Following the terminology of [8]

we note that Rj(t) are counting processes which admit the Ft-predictable inten-
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sity process aj(X(t−)) where Ft is the filtration generated by X and R. In the

description of these processes X(t) and R(t), there are parameters c = (c1, . . . , cp)

involved. Therefore, it is more accurate to write X(t, c) and R(t, c). We assume

that these parameters enter only via the intensity functions and not via the stoichio-

metric vectors νj. Thus aj = aj(x, c) for j = 1, . . . ,m while the νj for j = 1, . . . ,m

do not depend on c.

To familiarize the readers with all the above definitions involving the stochastic

reaction networks, we give the following example

S1 + S2
c1−→ S3, S3

c2−→ S1 + S2.

The state (or population) and reaction count of this system are characterized byX(t)

and R(t), respectively. The stoichiometric vectors for the system are ν1 = [−1,−1, 1]

for the forward reaction and ν2 = [1, 1,−1] for the backward reaction. For the

forward reaction, we have x1 ways to choose one S1 and x2 ways to choose S2, hence

its intensity function is a1(x, c) = c1x1x2. Similarly, the intensity function for the

second reaction is a2(x) = c2x3.

1.2 Random Time Change Representation

Recall that the CTMC X(t) can be written as

X(t, c) = X(0, c) +
m∑
j=1

νjRj(t, c)

3



where the species count Rj(t, c) is a counting process. It turns out that the Rj(t, c)

can be characterized in terms of independent unit rate Poisson processes Yj as

Rj(t, c) = Yj

(∫ t

0

aj(X(s, c), c)ds

)
.

We define

Sj(t, c) =

∫ t

0

aj(X(s, c), c)ds (1.4)

and refer to Sj(t, c) as the internal times, which are in fact dimensionless quanti-

ties. Hence X(t, c) can be written as

X(t, c) = X(0, c) +
m∑
j=1

νjYj(Sj(t, c)) (1.5)

where Yj are independent unit rate Poisson processes. The above representation is

known as the random time change representation (RTC). Also, for any bounded

function f : Zn+ → R. Let X(t, c) be a solution of (1.5), we have

f(X(t, c))− f(X(0, c))−
∫ t

0

Af(X(s, c))ds (1.6)

is a zero mean martingale, which is known as the Dynkin’s martingale (see [10]).

We refer the interested reader to [10] for a rigorous derivation of this representation.

Since X(t, c) is a stepwise function in t, we have the following representation

for the internal times

Sj(t, c) = Sj(Ti−1, c) + aj(X(Ti−1, c), c)(t− Ti) (1.7)

for j = 1, · · · ,m and Ti−1 ≤ t < Ti, where Ti is the time at which a reaction of any

type fires. This form is crucial in the derivation of the RTC simulation algorithm

described in Chapter 1 and the RPD sensitivity algorithm in Chapter 3.
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1.3 Chemical Master Equation

The distribution of the state vector X is governed by a set of differential

equations. Denoting p(x, t) = P(X(t) = x), one can show that

dp(x, t)

dt
=

m∑
j=1

(p(x− νj, t)aj(x− νj)− p(x, t)aj(x)) x ∈ Zn+. (1.8)

This equation is known as the chemical master equation (CME) or Kol-

mogorov’s forward equation in most probabilistic literature [14]. One may attempt

to solve the CME to obtain the distribution of state vector X at a particular time t.

However, for most reaction networks, the corresponding CME is an infinite dimen-

sional system and hence difficult or impossible to solve analytically. Some numerical

methods such as the finite state projection (FSP) [21] algorithm truncates the state

space and solve the truncated system to approximate the solution of the CME. It is

even capable of telling us how closely the truncated space approximation matches

the true solution. However, it is still computationally prohibitive for FSP to handle

a network with large species count. Therefore, a more realistic approach is using

Monte Carlo methods to simulate the exact sample paths and use them to approx-

imate the distribution. We will talk about these simulation methods for CTMC in

the next section.

1.4 Stochastic Simulation Algorithms

To simulate the time evolution of the stochastic reaction system, one needs

to keep track of the holding time (or inter-arrival time) and the index of the cor-
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responding reaction Ji (i = 1, 2, · · · ). Let ∆Tx denote the holding time of the

CTMC X after entering the state x. One can easily show that ∆Tx has exponential

distribution with rate a0(x), where a0(x) =
∑m

j=1 aj(x).

Hence, we can generate ∆Tx easily from a uniformly distributed random num-

ber r1 in (0, 1] using

∆Tx =
1

a0(x)
ln

(
1

r1

)
. (1.9)

The probability that it is the j∗th reaction channel fires at this moment is simply

P(Ji = j∗) =
aj∗(x)

a0(x)

and one can generate Ji by

j∗−1∑
j=1

aj(x) < r2a0(x) ≤
j∗∑
j=1

aj(x) (1.10)

Given the distribution of the holding time and the index of the corresponding re-

action, one can easily simulate the CTMC X(t) using the following stochastic

simulation algorithm (SSA) [12]. The above algorithm is also known as the

Gillespie’s direct SSA. Figure 1.1 is a plot of one exact sample path for the reaction

network

S1
c1−→ S2, S2

c2−→ S1

using the direct SSA.

There are other versions of SSA such as Gibson and Bruck’s next reaction

method in [11]. In this section, we present another SSA, i.e., the random time

change (RTC) simulation algorithm from [26], which is also known as the modified

next reaction method in [3]. We will use this version of SSA when we describe the
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Algorithm 1 Stochastic simulation algorithm

Require: Ntr, terminal time T , initial state x0

for k = 1 : Ntr do

Initialized the time t = 0 and x = x0

while t < T do

Evaluate the intensity aj(x) and their sum a0(x)

Generate random number r1 and r2 from uniform distribution U [0, 1]

Generate the holding time ∆Tx from (1.9) and the index of reaction j∗ from

(1.10)

Update t← t+ ∆Tx and x← x+ νj∗

end while

end for

Time t
0 5 10 15 20
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Figure 1.1: Realization of one path up to t = 20 using SSA. The initial population

X(0) = [10, 10], parameters are set to be c1 = 0.05 and c2 = 0.05.
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common reaction path method [26] in Chapter 3. Recall that the RTC representation

uses m independent Poisson processes to characterize the CTMC X. Let us denote

the internal jump times of the Poisson process Yj by Iji , where j = 1, · · · ,m and

i = 1, 2, · · · . Note that {Iji } is an increasing sequence, i.e.,

Ij1 < Ij2 < Ij3 · · ·

for each j. Also recall the internal time Sj we define in 1.2, we define Ij+(t, c) to be

the internal time of the next firing of reaction channel j at time t, that is,

Ij+(t) = min{I il |I il > Sj(t), l = 1, 2, · · · }. (1.11)

Given Ti is the physical time of the ith firing of any reaction channel, one can use

the collection Ij+(Ti) and Ji+1 to determine the next firing time and its type, and

Ji+1 ∈ {1, 2, · · · ,m} is the index of the reaction channel that fires at time Ti+1.

Using these notations defined above and assuming that we know T1, · · · , Ti and

J1, · · · , Ji for some i, (1.4) implies

Ti+1 = Ti + min

{
Ij+(Ti)− Sj(Ti)
aj(X(Ti))

∣∣∣∣∣ j = 1, · · · ,m

}
. (1.12)

We comment that the minimum is unique with probability 1 because Ij+(Ti) has con-

tinuous joint distribution given a constant Ti. To implement the RTC simulation

algorithm, we need to generate m streams of unit exponential random numbers Ej
i

such that Iji+1−I
j
i = Ej

i . Also we use kj to denote the index of the jth stream of ex-

ponential random numbers. The RTC simulation algorithm is outlined in algorithm

2.
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Algorithm 2 RTC simulation algorithm

Require: Ntr, terminal time T , initial state x0

for k = 1 : Ntr do

Generate m independent exponential random numbers Ej
1 for j = 1, · · · ,m

Initialize i = 0, Ti = 0, t = 0, x = x0, kj = 1, Sj = 0 and Ij+ = Ej
1

while t < T do

Evaluate the intensity aj(x)

Compute Ti+1 from (1.12) and let j∗ be the index of the minimum

Update Sj ← Sj + aj(x)(Ti+1 − Ti) for j = 1, · · · ,m

Update kj∗ ← kj∗ + 1

Generate a unit exponential random number Ej∗

kj∗
and update Ij

∗

+ ← Ij
∗

+ +Ej∗

kj∗

Update t = Ti+1, x← x+ νj∗ , i← i+ 1

end while

end for
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1.5 Contribution of this Thesis

In this thesis, we are concerned with the determination of parametric sensitiv-

ities of the form

∂

∂ck
E(f(X(t, c))),

for k = 1, · · · , p, where t > 0 and f : Rn → R. We will provide some preliminaries

(or tools) in Chapter 2 for our analysis in this thesis.

Generally, there is no analytical way to solve the sensitivity problem (unless

the intensities are affine and f is a polynomial). Therefore, Monte Carlo simulation

based methods are often used to estimate the sensitivity. These methods can be

roughly divided into two categories - finite perturbation and infinitesimal perturba-

tion methods. Within the finite perturbation category, there are several methods

in current use based on different ways for coupling. Similarly, in the infinitesimal

perturbation category, one can deal with the sensitivity problem using Girsanov

transformation (Girsanov transformation method) or pathwise derivative (regular-

ized pathwise derivative method). We will describe these methods in Chapter 3.

The major contribution of this thesis are in Chapter 4. It has been widely

observed by researchers that when applicable, the finite difference and pathwise

derivative methods tend to have lower variance and hence more efficient than the

Girsanov transformation method in most cases. However, to the best of our knowl-

edge, there is no existing literature that explains the larger variance of the Girsanov

transformation method. In Chapter 4, we provide theoretical explanation for the

observation in terms of the system size N , which is roughly the total molecular copy
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number in the system. The approach we will take for this analysis is to construct a

family of processes in terms of the system size N . We will eventually show that the

estimator variance for these estimators are of different orders of N as N →∞.

The next contribution of this thesis is the rigorous derivation of the Girsanov

transformation method. The development of the Girsanov transformation method

is described in [22] is based on certain assumptions which need to be verified. In

Chapter 5, we study the validity of these assumptions. Theorem 5.2.1 and Theorem

5.3.1 together provide some sufficient conditions for the validity of the Girsanov

transformation method for sensitivity.

Finally, in Chapter 6, we extend the sensitivity estimation problem at a fi-

nite time horizon to that at an infinite time horizon, i.e., the sensitivity at the

steady state. One often uses the time average to approximate the steady state

mean (t→∞). Problems of this approach is that one has to take a large relaxation

time to guarantee the accuracy. Moreover, the estimator variance normally grows

dramatically in terms of time t. Therefore, variance reduction techniques are impor-

tant for estimation problems at the steady state. We present a result concerning the

asymptotic behavior of E[f(X(t))Z(t0)] as t→∞ and apply this result to rigorously

justify a variance reduction technique for steady state sensitivity problem.
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Chapter 2: Preliminaries

In this chapter, we mainly describe some mathematical tools for our analysis

in later chapters. Since the population process X(t) is a jump process, much of the

analysis in this thesis uses the Skorohod space D[0, T ] and we briefly describe the

Skorohod metric in Section 2.1 for readers who are not familiar with this topic. In

Section 2.2, we review the law of stochastic mass action and introduce the system

size N into the intensity functions, which leads to the so-called density dependent

processes. The functional law of large numbers and the functional central limit

theorem will be discussed in Section 2.3 to relate the stochastic model and the

deterministic model. These two theorems are crucial tools for our analysis in Chapter

5. Finally we cite the martingale functional central limit theorem in Section 2.4

which will also be used in Chapter 4.

2.1 Skorohod Space Dn[0, T ]

Most stochastic processes arising in applications do not have continuous paths,

which makes the continuous function space C[0, T ] (or C[0,∞)) not sufficient to

model these processes. For example, the population process X(t) we consider in

this thesis is a right continuous process with left limits, that is, X(t) : [0, T ] → Rn

12



satisfies

lim
s→t+

X(s) = X(t) and lim
s→t−

X(s) = X(t−) exists

Such a process is called a càdlàg process and we denote the space of càdlàg functions

by Dn[0, T ].

To define the topology on the Skorohod space, we need a metric on Dn[0, T ].

Let λ be a strictly increasing, continuous mapping from [0, T ] onto [0, T ]. Note that

this implies λ(0) = 0 and λ(T ) = T . We denote Λ to be the class of such functions.

For any x, y ∈ Dn[0, T ], we define the distance between x and y as

d(x, y) = inf
λ∈Λ
{‖λ− I‖ ∨ ‖x− yλ‖},

where I is the identity map on [0, T ] and ‖ · ‖ is the supremum norm. Here the

mapping λ serves as a time deformation function. The distance d can be shown to

be a metric and is known as the Skorohod metric [7]. Now with the Skorohod metric,

we can define the Borel σ-field of Dn[0, T ] by D. We denote a sequence of σ-fields

generated by the process X(t) by Dt, t ≤ T , i.e., the natural filtration generated by

X.

2.2 Law of Stochastic Mass Action

We describe the stochastic form of the law of mass action that commonly arises

in stochastic chemical kinetics. If we divide the stoichiometric vector νj into two

parts, such that νj = ν ′j − ν ′′j , where

ν ′j : the vector number of molecules of each species that are created in the jth

reaction,

13



ν ′′j : the vector number of molecules of each species that are consumed in the jth

reaction,

then the intensity of jth reaction is

aNj (x, c) =
cj

N |ν
′′
j |−1

n∏
i

(
xi
ν ′′ij

)
(2.1)

where |ν ′′j | =
∑n

i=1 ν
′′
ij and N is the volume of the system times Avogadro’s number

(see [13] for derivation from first principles). We make the following remarks:

• here
∏n

i

(
xi
ν′′ij

)
is the number of ways to choose ν ′′ij reactant molecules out of the

xi number of total molecules from reactant species i for i = 1, · · · , n.

• 1

N |ν
′′
ij |−1

accounts for the effect of system volume on the probability.

• cj is a constant of proportionality, we call it the deterministic parameter, which

is not the same as the stochastic parameter we defined in the introduction (it

is cNj =
cj

N
|ν′′
j
|−1

indeed). Since they only differ by a scaling factor N |ν
′′
j |−1, we

abuse notation by using the same cj for them. The sensitivity problem we

defined before is with respect to the stochastic parameter cNj (though we also

use cj there). For our analysis in Chapter 4, we actually take derivative with

respect to the deterministic parameter cj.

We give an example to illustrate the relationship between the intensity aNj and the

deterministic reaction rate āj. Let us consider the reaction

2S → 3S

14



with parameter c. Suppose the population of S is Nx, where x is the concentration.

Then by the law of stochastic mass action, the intensity for this reaction is

aN(Nx, c) =
c

2N
Nx(Nx− 1).

In this case, the deterministic parameter is c and the stochastic parameter cN = c/N .

To obtain the deterministic reaction rate, we normalize the above form of intensity

by the volume N and take the limit as N →∞

lim
N

aN(Nx, c)

N
=
c

2
x2.

We note that the right hand side is exactly the deterministic reaction rate ā(x, c).

More explicitly, the above two quantities differ by cx/2N , which is of order N−1.

In general, the intensity function aNj depend on N and x in a specific manner as

follows.

aNj (Nx, c)

N
= āj(x, c) +O

(
1

N

)
where āj is the deterministic reaction rate as is in (1.1). The coefficient for the

term O(N−1) depends on the concentration x and parameter c. Moreover, this

coefficient is continuous in x. We can summarize the relationship between the

stochastic intensity and deterministic reaction rate as follows. Suppose K is a

compact set for x, for each c > 0, there exists a constant BK such that∣∣∣∣∣aNj (Nx, c)

N
− āj(x, c)

∣∣∣∣∣ ≤ BK(c)

N
. (2.2)

We refer to this form of intensity as density dependence and thus call the family

of processes XN indexed by N ≥ 1 corresponding to the family of intensity functions
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aNj density dependent processes (see [10]). This density dependence leads to a

deterministic limiting behavior in the large system size (N →∞). As a result it is

instructive to study the family of processes XN . Following (1.5) one can represent

all these processes on the same sample space via the stochastic equation

XN(t, c) = XN(0, c) +
m∑
j=1

Yj

(∫ t

0

aNj (XN(s, c), c) ds

)
νj, N ≥ 1, (2.3)

where Yj are independent unit rate Poisson processes. We also define the corre-

sponding family of vector reaction count processes RN(t, c) whose jth component

RN
j (t, c) counts the number of reaction events of type j that occurred during (0, t].

Thus

RN
j (t, c) = Yj

(∫ t

0

aNj (XN(s, c), c) ds

)
, N ≥ 1, j = 1, . . . ,m.

We also define the centered processes MN(t, c) = (MN
1 (t, c), . . . ,MN

m (t, c)) by

MN
j (t, c) = RN

j (t, c)−
∫ t

0

aNj (XN(s, c), c)ds, N ≥ 1, j = 1, . . . ,m. (2.4)

It can be shown that for each N , MN
j (t, c) is a zero mean local martingale and it

becomes a martingale when
∫ t

0
E[aNj (XN(s, c), c)]ds <∞ (see [8]).

2.3 Functional Law of Large Numbers and Functional Central Limit

Theorem

In this section, we study the limiting behavior of XN(t, c) when N approaches

infinity (see [10] for details). Our analysis for estimator efficiency will rely on the

following two theorems. For brevity, we will omit the parameter c when we write
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various quantities since the following analysis is for a fixed c. Let us define the

density

XN(t) =
XN(t)

N
.

We note that XN can be interpreted as the concentration of molecules at time t for

system size N . First we state the law of large numbers (or fluid limit theorem) for

density dependent processes.

Theorem 2.3.1. (Law of large numbers [10]) Suppose for each compact K ⊂ Rn,

F (x) =
∑m

j=1 νj āj(x) is Lipschitz on K, that is, for each x, y ∈ K, there exists some

constant MK such that

|F (x)− F (y)| ≤MK |x− y|. (2.5)

Suppose XN(0) = x0 ∈ Rn
+ for all N . Let X be the solution for the equation

X(t) = x0 +

∫ t

0

F (X(s))ds, (2.6)

where we assume the solution exists on [0, t]. Then

lim
N

sup
s≤t
|XN(s)−X(s)| = 0 a.s..

The proof of this theorem given in [10] is rather brief. We present a more

detailed proof here. First we state the following two lemmas. The proof of the first

lemma can be found in many real analysis textbooks.

Lemma 2.3.1. Let fn : [0, T ]→ R be a sequence of increasing functions (increasing

in t) which converges pointwise to f : [0, T ] → R which is continuous. Then fn

converges to f uniformly on [0, T ].
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Lemma 2.3.2. (LLN for Poisson process) If Y is a unit rate Poisson process, then

for each t > 0,

lim
N→∞

sup
t≤T

∣∣∣∣Y (Nt)

N
− t
∣∣∣∣ = 0 a.s.

Proof. For each t, the independent increment property of Poisson process implies

the law of large number,

Y (Nt)

N
=

N∑
n=1

Y (nt)− Y ((n− 1)t)

N
→ t a.s..

Now by Lemma 2.3.1, the monotone property of Y (Nt) implies the uniformity.

Now we are ready to prove the law of large numbers. For convenience, we

define the centered Poisson process Ỹ (t) = Y (t)− t.

Proof. (of Theorem 2.3.1) Denote the state space of the Markov process XN by

EN = {N−1k : k ∈ Zn}. Choose η > 0 and for each N , define

ΓN = EN ∩ {y ∈ Rn : inf
s≤t
|y −X(s)| < η} 6= ∅.

Let K be the closure of {y ∈ Rn : infs≤t |y − X(s)| < η}. Note that ΓN ⊂ K for

each N . Define the first exit time for the set ΓN ,

τN = inf{t ≥ 0 : XN(t) ∈ ΓcN}.

Now let us consider the truncated Markov processes XN(t ∧ τN), where

XN(t ∧ τN) =x0 +
m∑
j=1

νjN
−1Ỹj(

∫ t∧τN

0

aNj (XN(s))ds)

+
m∑
j=1

νjN
−1

∫ t∧τN

0

aNj (XN(s))ds.

(2.7)
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Define Aj = supx∈K āj(x) and let

εN(t) = sup
s≤t

∣∣∣∣∣XN(s ∧ τN)− x0 −
m∑
j=1

νj

∫ s∧τN

0

āj(XN(u))du

∣∣∣∣∣ .
From (2.7),

εN(t) ≤ sup
s≤t

∣∣∣∣∣
m∑
j=1

νjN
−1Ỹj(

∫ s∧τN

0

aNj (XN(u))du)

∣∣∣∣∣
+ sup

s≤t

∣∣∣∣∣
m∑
j=1

νjN
−1

∫ s∧τN

0

aNj (XN(u))du−
m∑
j=1

νj

∫ s∧τN

0

āj(XN(u))du

∣∣∣∣∣
≤

m∑
j=1

|νj|N−1 sup
s≤t

∣∣∣∣Ỹj(∫ s∧τN

0

aNj (XN(u))du)

∣∣∣∣
+

m∑
j=1

|νj|
∫ t∧τN

0

∣∣N−1aNj (XN(u))− āj(XN(u))
∣∣ du

≤
m∑
j=1

|νj|N−1 sup
s≤t

∣∣∣Ỹj(NAjs+BKs)
∣∣∣+

BK

N
t

m∑
j=1

|νj|

(2.8)

where the last inequality is by (2.2). Taking N →∞, by Lemma 2.3.2,

lim
N→∞

sup
s≤t

∣∣∣N−1Ỹj(NAjs+BKs)
∣∣∣ = 0 a.s., (2.9)

which shows that limN εN(t)→ 0 for each fixed t.

Now, for each s ≤ t,∣∣∣∣∣XN(s ∧ τN)− x0 −
m∑
j=1

νj

∫ s∧τN

0

āj(XN(u))du

∣∣∣∣∣ < εN(t).

This and the Lipschitz condition (2.5) imply

|XN(s ∧ τN)−X(s ∧ τN)| ≤ εN(t) +

∫ s∧τN

0

MK |XN(u)−X(u)|du.

By Gronwall’s lemma,

sup
s≤t
|XN(s ∧ τN)−X(s ∧ τN)|

≤ εN(t)eMKt

< η,

(2.10)
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for sufficiently large N and hence sufficiently small εN(t).

Now for these sufficiently large N ,

|XN(s ∧ τN)| −X(s ∧ τN)| < η, s ≤ t,

we have XN(s ∧ τN) ∈ ΓN and τN > s. Therefore, (2.10) becomes

sup
s≤t
|XN(s)−X(s)| < η,

hence the fluid limit theorem.

Recall that F (x) =
∑m

j=1 νj āj(x) and X is the solution to

X(t) = x0 +

∫ t

0

F (X(s))ds.

Define VN(t) =
√
N(XN(t)−X(t)),

VN(t) =
m∑
j=1

νjN
−1/2Ỹj(

∫ t

0

aNj (XN(s))ds)

+
m∑
j=1

νjN
−1/2

∫ t

0

aNj (XN(s))−Nāj(X(s))ds

=
m∑
j=1

νjN
−1/2Ỹj(

∫ t

0

aNj (XN(s))ds) +
√
N

∫ t

0

F (XN(s))− F (X(s))ds

+
m∑
j=1

νj
√
N

∫ t

0

aNj (XN(s))/N − āj(XN(s))ds.

The above equation suggests a weak limit for VN ,

V (t) =
m∑
j=1

νjWj(

∫ t

0

āj(X(s))ds) +

∫ t

0

∂F (X(s))V (s)ds (2.11)

where Wj are independent standard Brownian motions and ∂F is the Jocobian of

F . The rigorous proof can be found in [10]. We state this functional central limit

theorem as follows.
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Theorem 2.3.2. Suppose that the āj and ∂F are continuous. Then VN ⇒ V in

Dn[0, T ], where V is the solution to (2.11).

2.4 Martingale Functional Central Limit Theorem

We state an important result which will be used in Chapter 5 (See [32]).

Theorem 2.4.1. Let MN be a sequence of Rm-valued local martingales. Suppose

the expectation of the maximum jump in MN is asymptotically negligible, that is,

for each t > 0

lim
N

E{sup
s≤t
|MN(s)−MN(s−)|} = 0,

and, for each pair 1 ≤ i, j ≤ m and each t > 0,

[MN
i ,M

N
j ](t)→ di,j(t),

where the convergence is in probability and D(t) = {di,j(t)} is deterministic and con-

tinuous matrix-valued function. Then MN ⇒M in Dm[0, T ], where M is Gaussian

with independent increments having mean vector and covariance matrix

EM(t) = 0 and E[M(t)M(t)T ] = D(t).
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Chapter 3: Parametric Sensitivity Methodologies

Monte Carlo simulation methods for sensitivity analysis can be roughly divided

into two categories : the finite perturbation and the infinitesimal perturbation. In

Section 3.2, we will describe various finite difference methods based on difference

coupling schemes. For the methods from the infinitesimal perturbation category,

we will review the Girsanov transformation method in Section 3.3 and the pathwise

derivative method in Section 3.4.

3.1 Parametric Sensitivity

Recall that we denote the Markov process by {X(t, c) : t ≥ 0} and its as-

sociated intensity functions by aj(x, c) for j = 1, · · · ,m. In general, a stochastic

reaction network has several parameters. We shall focus on one scalar parameter c.

Given a function f : Zn → R and a final time T ≥ 0, the parametric sensitivity

is defined as

sj(c) =
∂

∂cj
E[f(X(T, c))].

This partial derivative evaluates how the expected value of output f(X(T, c)) changes

with respect to the perturbation of parameter c. To simplify notations, without loss

of generality, we assume that the derivative is always taken with respect to c1. In
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the rest of this paper, we abuse of notation by writing the parametric sensitivity as

s =
∂

∂c
E[f(X(T, c))] (3.1)

Readers should keep in mind that s is the parametric sensitivity with c1. Since we

can use SSA to simulate the path of X(t, c) easily, finite difference scheme (FD) can

be used to approximate the sensitivity s as

s =
1

h
E[f(X(T, c+ h))− f(X(T, c))] (3.2)

and its associated crude Monte Carlo estimator is

SFD =
1

hNtr

Ntr∑
i=1

(f(X(i)(T, c+ h))− f(X(i)(T, c))) (3.3)

where X(i)(T, c), i = 1, · · · ,Ntr as well as X(i)(T, c+ h), i = 1, · · · ,Ntr are an i.i.d.

sample of X(T, c) and X(T, c+h) respectively. Ntr is the sample size. Finite differ-

ence is easy to implement, however, it has several drawbacks. The most significant

one is that finite difference schemes always introduce a bias into the sensitivity and

this bias cannot be eliminated even by taking infinitely many samples. There is a

bias-variance trade-off issue for finite difference methods. One can take small per-

turbation h to reduce bias, however, the associate estimator variance will blow up

as h→ 0 which requires us to generate much larger number of samples to maintain

the estimated sensitivity within a desired confidence interval.

Instead of approximating the sensitivity via finite perturbation, another cate-

gory of methods for sensitivity analysis estimate the sensitivity directly and we refer

it as the infinitesimal perturbation scheme. Within the infinitesimal perturbation
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category, there are two different points of view to model the system’s dependence

on parameters:

• Process X is fixed at c0 while the underlying probability measure P is varied

with c (i.e.,P = P (c), X = {X(t, c0, ω); t ≤ T});

• Probability measure P is fixed while process X is varied with c (i.e.,P =

P,X = {X(t, c, ω); t ≤ T}).

The above two points of view are equivalent but lead to two completely different

infinitesimal perturbation methods. With the first point of view, we obtain the

method known as the Girsanov transformation (GT) or likelihood ratio method [22].

In the GT approach, the derivative operator in (3.1) can be “absorbed” into the final

formula

s = Ec0 [f(X(T ))Z(T )] (3.4)

and its crude Monte Carlo estimator is

SGT =
1

Ntr

Ntr∑
i=1

f(X(i)(T )Z(i)(T )) (3.5)

where {Z(t) : t ≤ T} is the weight process and the subscript c0 is used to emphasize

that the underlying probability measure is P (c0). Unlike the FD method, GT has the

advantage of being an unbiased estimator and achieving the sensitivity with respect

to several parameters in a single run. However, it has been observed by several

researchers that the GT estimator has larger variance than the other estimators

[22,29,31]. Therefore, we suggest a modified version of GT by centering f(X(t)) at

Ef(X(t)) and we refer to it as the centered Girsanov transformation algorithm.
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A method very similar to this was proposed by Warren and Allen in [30]. The Monte

Carlo estimator for CGT is

SCGT =
1

Ntr

Ntr∑
i=1

(f(X(i)(T ))− f(X(T )))Z(i)(T ), (3.6)

where f(X(T )) is the sample mean N−1
∑Ntr

i=1 f(X(i)(T )). We will explore the GT

method and CGT method in greater detail later in this chapter.

Under the second point of view, another approach in the infinitesimal per-

turbation category estimates the sensitivity using pathwise differentiation ( [29]).

However, a direct pathwise differentiation is not applicable for sensitivity analysis

in the context of stochastic reaction networks. Therefore, the original sensitivity

problem was modified to the following regularized pathwise derivative (RPD)

s =
∂

∂c
E
[∫ T+w

T−w

1

2w
f(X(t, c)) dt

]
,

where w is the half regularization window size. It has been observed that RPD is

an efficient method. However, this method also produces a bias and its efficiency

depends crucially on the selection of parameter w. On the other hand, RPD is not

applicable to certain type of problems. For example, in the reaction system

S1 → ∅, 2S1 → ∅

with initial population X1(0) = 2, if the first reaction fires first, it will prevent

the occurrence of the second reaction. In this case, RPD is not applicable for

sensitivity estimation any more. Unfortunately, this type of situation is common

for the stochastic reaction networks, making RPD only applicable to a small set of
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problems. A recent hybrid pathwise sensitivity method proposed by David Anderson

[1] extends the applicability of RPD by using multilevel Monte Carlo approach.

3.2 Finite Difference

3.2.1 Independent Random Number Method

The simplest way to estimate the sensitivity s is to simulate the processes

X(t, c+h) and X(t, c) independently, which is often referred as independent ran-

dom number (IRN) method in stochastic simulation literature. We briefly de-

scribe the implementation of IRN as follows.

Algorithm 3 Independent random number algorithm

Require: c0, h,Ntr, T

for k = 1 : Ntr do

Initialized the U [0, 1] random number generator with random seed

Set c = c0 and run SSA to compute X(T, c0)

Re-initialize the U [0, 1] random number generator with a different seed

Set c = c0 + h and run SSA to compute X(T, c0 + h)

Compute the sensitivity (f(X(T, c0 +h))−f(X(T, c0)))/h for the ith trajectory

end for

IRN is easy to implement, however, it often leads to large variance of the

estimator of SFD. This fact can be seen from the following analysis. Let us denote

S1 = f(X(T, c + h)), S2 = f(X(T, c)). Since SFD = (S1 − S2)/h, the variance of
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SFD can be written as follows

1

h2
(Var(S1) + Var(S2)− 2Cov(S1, S2)). (3.7)

Observing that in the IRN method, the covariance part vanishes since S1 and S2

are independent. One can couple processes f(X(t, c)) and f(X(t, c + h)) in some

intelligent ways to increase the covariance and hence reduce the estimator variance.

Different coupling schemes between f(X(t, c)) and f(X(t, c + h)) lead to different

FD estimators.

3.2.2 Common Random Number Method

The idea behind common random number (CRN) method is simple. By

using the same sequence of random numbers, one introduces positive covariance

between f(X(t, c)) and f(X(t, c+ h)) provided that h is sufficiently small.

Algorithm 4 Common random number algorithm

Require: c0, h,Ntr, T

for k = 1 : Ntr do

Initialized the U [0, 1] random number generator with seed ω;

Set c = c0 and run SSA to compute X(T, c0);

Re-seed the U [0, 1] random number generator with the same seed ω;

Set c = c0 +h and use the same random seed run SSA to compute X(T, c0 +h);

Compute the sensitivity (f(X(T, c0+h))−f(X(T, c0)))/h for the ith trajectory.

end for
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3.2.3 Common Reaction Path Method

The CRN can be implemented with any variants of SSA like Gillespie’s direct

method, Gibson and Bruck’s next reaction method or Anderson’s modified next

reaction method. In this section, we describe a special form of CRN, i.e., the

implementation of CRN in the context of RTC simulation algorithm proposed by

Rathinam et al ( [26]), which is known as the common reaction path (CRP)

method. Recall that the RTC simulation algorithm simulates trajectories by keeping

track of the collection (Ij+(Ti), Ji+1) for i = 1, 2, · · · , where Ti is the random times

at which the ith reaction event of any type occurs, Ji+1 is the index of the reaction

channel which fires immediately after Ti and Ij+(Ti) is the internal firing time after

Ti for the jth reaction channel . The basic idea for CRN method is to use the same

underlying random numbers to reduce the variance. While in CRP, one utilizes the

structure of random time change representation and use the same driving Poisson

processes, i.e., the same paths of the Poisson processes are used to simulate the

perturbed and nominal trajectories. The coupling can be seen from the equation

(3.8).

X(t, c+ h) = X(0, c+ h) +
m∑
j=1

νjYj

(∫ t

0

aj(X(s, c+ h), c+ h)ds

)

X(t, c) = X(0, c) +
m∑
j=1

νjYj

(∫ t

0

aj(X(s, c), c)ds

) (3.8)

where Yj are independent unit-rate processes. Heuristically, one can expect that

X(t, c + h) and X(t, c) will be highly correlated since they are driven by the same

Poisson processes. We outline the CRP algorithm before we discuss more details.
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Algorithm 5 Common reaction path algorithm

Require: c0, h,Ntr, T

Need m parallel streams of independent random number to generate Ej
1, E

j
2, · · · ,

j = 1, · · · ,m

for k = 1 : Ntr do

Set c = c0 and run RTC simulation algorithm to compute X(T, c0)

Reseed the streams to generate the same Ej
1, E

j
2, · · · for j = 1, · · · ,m

Set c = c0 +h and run RTC simulation algorithm to compute X(T, c0 +h) using

Ej
1, E

j
2, · · · for j = 1, · · · ,m

Compute the sensitivity (f(X(T, c0 +h))−f(X(T, c0)))/h for the ith trajectory

end for

Recall that in the RTC simulation algorithm, we assume the existence of m

streams of unit exponential random numbers Ej
i for i = 1, 2, · · · and j = 1, · · · ,m.

These random numbers represent the inter-arrival times of the unit rate Poisson

processes Yj and relate the internal firing times Iji by Iji+1 − I
j
i = Ej

i . We use these

random numbers Ej
i to implement the RTC simulation algorithm. Therefore, the

implementation of CRP is slightly harder than that of CRN. Instead of using a single

stream of unit rate exponentials, CRP requires m parallel streams of exponentially

distributed random numbers for implementation. The reason is that by using M

parallel streams of random numbers, one can ensure that each of the reaction paths

will be identical between the perturbed process the nominal process, that is, they

will share the same internal firing times Iji . Therefore, the two processes will be

tightly coupled, see [26] for a detailed discussion on this point. On the other hand,
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CRP tends to be more efficient than CRN with other simulation algorithms because

the jump times for CRP algorithm are continuous with respect to the parameters c

while this is not true for general CRN. We will not explore this property in details

here, readers who are interested in the proof are referred to the appendix B in [26].

3.2.4 Coupled Finite Difference Method

The coupled finite difference (CFD) methods proposed by Anderson [2]

also takes advantages of the coupling property between the perturbed and nominal

processes. We use the same example from [2] to motivate the CFD method. Let

Y1 and Y2 be independent unit-rate Poisson processes and construct another two

processes

Z1(t) = Y1(13t) + Y2(0.1t)

Z2(t) = Y1(13t)

By the additivity property of Poisson processes, Z1(t) and Z2(t) are Poisson pro-

cesses with rate 13 and 13.1. Note that both Z1 and Z2 have the same source of

jumps from Y1(13t) but Z1 has an extra source of jumps from Y2(0.1t). Since Y1(13t)

has much larger rate than Y2(0.1t), we expect Z1 and Z2 will jump together for most

of the time and hence be tightly coupled. Motivated by this simple example, CFD
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uses the following coupling scheme

X(t, c+ h) =X(0, c+ h) +
m∑
j=1

Yj,1

(∫ t

0

bj(s)ds

)

+
m∑
j=1

Yj,2

(∫ t

0

aj(X(s, c+ h), c+ h)− bj(s)ds
)

X(t, c) =X(0, c) +
m∑
j=1

Yj,1

(∫ t

0

bj(s)ds

)

+
m∑
j=1

Yj,3

(∫ t

0

aj(X(s, c), c)− bj(s)ds
)

(3.9)

where bj(s) = aj(X(s, c+h), c+h)∧aj(X(s, c), c) and Yj,1, Yj,2, Yj,3 are independent

unit-rate Poisson processes. The processes Yj,1

(∫ t
0
bj(s)ds

)
have the same contri-

bution to X(t, c + h) and X(t, c), but each of which have some extra source of

jump from Yj,2 and Yj,3 respectively. On the other hand, the marginal processes of

(X(t, c + h), X(t, c)) generated by (3.9) have the same distribution as the respec-

tive processes generated from (3.8), this fact guarantees the correctness of the CFD

algorithm.

The implementation of CFD has the advantage that it does not require m

parallel streams of exponentially distributed random numbers as CRP. More im-

portantly, numerical examples shows that CFD is more efficient than CRP in most

cases and it is more analytically tractable. In fact, under some mild assumptions,

one can derive an explicit upper bound for the estimator variance of CFD (see [2]).

Interested readers can refer to [2] for more details.
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3.3 Girsanov Transformation Method

In this section, we briefly review the GT method in a heuristic manner. The

validity of using Girsanov’s change of measure theory for sensitivity analysis will be

discussed in Chapter 5. Let us consider the general probability space (Ω,F ,P) and

the space of càdlàg functions (D[0, T ],D, P (c)) for each c, where the P (c) is the law

induced by the process X(t, c), i.e.,

P (c, A) = P(ω|X(. . . , c, ω) ∈ A)

for all A ∈ D. Suppose we are interested in the sensitivity at c = c0, i.e.,

s =
∂

∂c

∣∣∣∣
c=c0

E[f(X(T, c))].

We can rewrite the above formula as

∂

∂c

∣∣∣∣
c=c0

∫
Ω

f(X(T, c))P(dω) =
∂

∂c

∣∣∣∣
c=c0

∫
D[0,T ]

f(x(T ))P (c, dx)

If P (c) is absolutely continuous with respect to P (c0), then the Radon-Nikodym

derivative (or likelihood ratio) is

l(t, x, c) =
dP (c)

dP (c0)

∣∣∣∣
Dt

and therefore

∂

∂c

∣∣∣∣
c=c0

∫
D[0,T ]

f(x(T ))P (c, dx) =
∂

∂c

∣∣∣∣
c=c0

∫
D[0,T ]

f(x(T ))l(T, x, c)P (c0, dx).

Now suppose that we can interchange the derivative with integral, then

s =

∫
D[0,T ]

f(x(T ))z(T, x, c0)P (c0, dx)
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where z(t, x, c0) =
∂

∂c

∣∣∣∣
c=c0

l(t, x, c). Now, we switch back to the space (Ω,F ,P) and

write the sensitivity as

s =

∫
Ω

f(X(T, c0))Z(T, ω, c0)P(dω),

where Z(t, ω, c0) = z(t,X(ω, c0), c0). Since c0 is fixed, we denote Z(t, ω, c0) = Z(t)

for simplicity. Therefore, the final formula for sensitivity is

s = E[f(X(T, c0))Z(T )]. (3.10)

The weight process can be explicitly written as [26,29]

Z(t) =
∑
j

∫
(0,t]

∂

∂c
aj(X(s−), c)

aj(X(s−), c)
dRj(s)−

∑
j

∫ t

0

∂

∂c
aj(X(s−), c)ds.

In general, Z(t) is a zero-mean local martingale. We summarize the implementation

of the GT in Algorithm 6.

From this algorithm, we can see that the implementation of GT is no harder

than that of SSA. Also, unlike the FD method, GT can estimate the sensitivity

with respect to several parameters simultaneously and it is an unbiased method.

However, for most numerical examples we have tested, GT tends to be inefficient in

the sense that it often leads to large estimator variance. Therefore, modifications

to GT which reduce the variance would be desirable. For this purpose, we suggest

a modified version of GT by centering the GT estimator at Ef(X(T )), we refer to

it as the CGT method (a very similar method is proposed by Allen and Warren

in [30]). This modification is reasonable because for each c, Z(t) is a zero mean

local martingale, therefore

E[f(X(t))Z(t)] = E[(f(X(t))− Ef(X(t)))Z(t)].
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Algorithm 6 Girsanov transformation sensitivity algorithm

Require: c0, Ntr, T

for i = 1 : Ntr do

Initialize t = 0, X(t) = x0 and Zj = 0 for j = 1, · · · ,M

while t < T do

Calculate aj(X(t), c0) and
∂aj
∂c

for j = 1, · · · ,M

Set a0 =
∑M

j=1 aj

Generate r1 and r2 from U [0, 1]

Set the inter-arrival time τ = − log(r1)/a0

Find the reaction type j∗ ∈ [1, . . . ,M ] which satisfies

j∗−1∑
j=1

aj < r2a0 ≤
j∗∑
j=1

aj

Set ∆Zj∗ =
∂aj∗

∂c

1

aj∗
− τ ∂aj

∗

∂c
and ∆Zj = −τ ∂aj

∂c
for j 6= j∗

Update Z ← Z +
∑M

j=1 ∆Zj, t← t+ τ and X(t)← X(t) + νj∗

end while

Compute the sensitivity f(X)Z for the ith trajectory

end for
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For most numerical examples we tested, the CGT method is more efficient than the

GT method. However, it is not necessarily the case when we choose small initial

population x0. We provide a theoretical justification for this observation in Chapter

4, which is also the main contribution of this paper.

Finally, we would like to point out that the above derivation for GT method

is not rigorous. The first place which needs some justifications is the change of

measure step. Given the two probability measures P (c) and P (c0), it is not clear if

they are equivalent to each other, not to mention finding the formula for the Radon-

Nikodym derivative L(t, c) and then obtaining a formula for the weight process

Z(t, c). In fact, this relates to the Novikov type condition problem in stochastic

analysis, which is crucial for the validity of changing measure. On the other hand,

we have not provided any conditions for differentiating inside the integral. We will

give a set of conditions in Chapter 5 that validate these two steps.

3.4 Regularized Pathwise Derivative Method

In this section, we will review the regularized pathwise derivative (RPD)

method from [29]. To derive RPD method, we work in the abstract probability

space (Ω,F ,P), which carries the m independent Poisson processes Yj. Recall that

in Chapter 2 we denote the internal time of reaction channel j

Sj(t, c) =

∫ t

0

aj(X(s, c), c)ds
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and we express the RTC representation as

X(t, c) = X(0, c) +
M∑
j=1

νjYj(Sj(t, c)),

where Yj, j = 1, · · · ,M are independent unit-rate Poisson random variable associ-

ated with each reaction channel. Also recall that we denote the random jump times

of the Poisson process Yj by Iji where j = 1, · · · ,M, i = 1, 2, · · · . We can use the

collection (Ti, Ji) to keep track of the time evolution of the reaction system (see Sec-

tion 1.4 for definition). We remind the reader that Ti, Ji and Sj all depend on the

parameter c, but we suppress it for notation convenience. Ti follows the following

recursive formula

Ti+1 = Ti + min

{
Ij+ − Sj(Ti)
aj(X(Ti))

∣∣∣∣∣ j = 1, · · · ,m

}

where Ij+(t) is the internal time for the next potential firing of reaction channel j at

physical time t, i.e.,

Ij+(t) = min{I il |I il > Sj(t), l = 1, 2, · · · }

for j = 1, · · · ,m.

Under the assumption that aj(x, c) are smooth functions of c, one can show

that Ti is piecewise differentiable with respect to c. Moreover, X(Ti) and Ij+(Ti)

are locally constant in c. Hence we can differentiate (1.12) and obtain the recursive

formula:

∂Ti+1

∂c
=
∂Ti
∂c
− Ij

∗

+ (Ti)− Sj∗(Ti)
(aj∗(X(Ti, c), c))2

∂aj∗(X(Ti, c), c)

∂c
−

dSj∗(Ti)

dc
aj∗(X(Ti, c), c)

(3.11)
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where j∗ is the index of minimum in (1.12). The derivative dSj∗(Ti)/dc can be found

by differentiating the recursive formula (1.7),

dSj(Ti+1)

dc
=
dSj(Ti)

dc
+
∂aj(X(Ti, c), c)

∂c
(Ti+1− Ti) + aj(X(Ti, c), c)

(
∂Ti+1

∂c
− ∂Ti

∂c

)
.

(3.12)

With the initial conditions

∂T0

∂c
= 0,

dSj(T0)

dc
= 0, j = 1, · · · ,m. (3.13)

we can solve for ∂Ti/∂c, i = 0, 1, · · · recursively.

Next we shall derive a formula for the sensitivity estimator in term of ∂Ti/∂c.

The pathwise derivative approach requires us to compute

E
[
∂f(X(T, c))

∂c

]
.

Unfortunately, in the context of stochastic reaction networks, it is with probability

one that X(T ) is locally a constant in c and hence the pathwise derivative would be

zero in a neighborhood of this c. To resolve this issue, Rathinam et al [29] modify

this problem by introducing a regularization window 2w

∂

∂c
E
[∫ T+w

T−w

1

2w
f(X(t))dt

]
.

With this modification, we introduce some bias into the estimator but we expect

that this bias is negligible when w is small enough.

Following [29], we define

∆i(c) = f(X(Ti(c), c))− f(X(Ti−1(c)), c).
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To derive the final sensitivity estimator, we rewrite the process f(X(t, c)) as follows

f(X(t, c)) = f(x0) +
∞∑
i=1

∆i(c)I[Ti,∞)(t).

Observe that for each t, there are only finitely many terms in the above formula are

nonzero. Therefore,

∂

∂c

∣∣∣∣
c=c0

∫ T+w

T−w
f(X(t, c))dt =

∞∑
i=1

∂

∂c

∣∣∣∣
c=c0

∆i(c)

∫ T+w

T−w
I[Ti,∞)(t)dt.

Note that ∂∆i(c)/∂c = 0 since X(Ti−1) and X(Ti) are locally a constant in c. Hence

∂

∂c

∣∣∣∣
c=c0

∫ T+w

T−w
f(X(t, c))dt =

∞∑
i=1

∆i(c0)
∂

∂c

∣∣∣∣
c=c0

∫ T+w

T−w
I[Ti,∞)(t)dt.

Finally, one can show that

∂

∂c

∣∣∣∣
c=c0

∫ T+w

T−w
I[Ti,∞)(t)dt = −∂Ti(c0)

∂c

for Ti(c0) ∈ (T−w, T+w) and zero if Ti(c0) < T−w or Ti(c0) > T+w. Let us define

il and iu to be the lowest and highest indices such that Ti(c0) ∈ (T − w, T + w),

then the regularized pathwise sensitivity is given by

1

2w

∂

∂c

∣∣∣∣
c=c0

∫ T+w

T−w
f(X(t, c))dt = − 1

2w

iu∑
i=il

∆i(c0)
∂Ti(c0)

∂c
. (3.14)

We skip the implementation of RPD algorithm here. Readers who are interested in

it can refer to [29] for details.
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Chapter 4: Estimator Efficiency Analysis

This chapter contains the main results we established regarding the efficiency

of various Monte Carlo based sensitivity estimators. It has been observed that when

applicable, the PD or FD methods tend to be more efficient than GT methods in

most cases [22, 26, 29]. However, to our knowledge, no existing literature provides

theoretical justifications for these observations. Moreover, the CGT method we

mentioned in Chapter 3 outperforms the GT method in many examples we tested.

We will provide theoretical explanations for these observations in terms of the system

size N . First, we motivate our analysis in Section 4.1. In Section 4.2, we make

some assumptions to facilitate our analysis. We establish some important results

regarding the weight process ZN(t) in Section 4.3 and these results will be used to

show the efficiency of various estimators in terms of the system size N . Since our

analysis is for fixed parameter c, we will omit the c for convenience in this chapter

except when it appears explicitly outside X(t), XN(t), RN(t) or R(t).
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4.1 Motivating Example

To motivate our analysis in this chapter, we consider the following pure death

model

S
c−→ ∅

with intensity function a(x, c) = cx. We want to understand the sensitivity of the

expected number of molecules S with respect to the parameter c. The population

process X(t) and the weight process Z(t) associated with the GT method in this

example are

X(t) = x0 −
∫

(0,t]

dR(s)

Z(t) =

∫
(0,t]

1

c
dR(s)−

∫ t

0

X(s)ds.

(4.1)

One can use the Ito formula for processes driven by finite variation processes (see

[28]) to write down the equation for X(t)Z(t),

X(t)Z(t) =

∫
(0,t]

(
X(s−)

c
− Z(s−)− 1

c

)
dR(s)−

∫ t

0

X(s)2 ds.

Taking expected value of both sides leads to (after simplification)

E(X(t)Z(t)) =

∫ t

0

E
((

X(s−)

c
− Z(s−)− 1

c

)
cX(s)

)
ds−

∫ t

0

E(X(s)2)ds

= −c
∫ t

0

E(X(s)Z(s)) ds−
∫ t

0

EX(s) ds.

(4.2)

Also note that

EX(t) = x0 −
∫ t

0

EX(s) ds. (4.3)

The last equation and (4.2) form a system of linear ODEs. For the initial condition,

we assume that the initial population is deterministic, i.e., X(0) = x0, then EX(0) =
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x0 and E[X(0)Z(0)] = 0. One can easily solve this ODE system to obtain

E(X(t)Z(t)) =
x0

1− c
(e−t − e−ct).

Similarly, to find an analytical formula for E(X(t)2Z(t)2), one can derive a

linear system of ODEs involving variables of the form E(X(t)αZ(t)β), where α and

β are integers satisfying α ≤ 2, β ≤ 2. The variances of GT and CGT estimators

can be shown to be

V ar(X(t)Z(t)) =
1

c2
(e−2ctx3

0 − 4e−2ctx2
0 + 3e−2ctx0 + 3e−2ctx2

0t
2c2

− 2e−3ctx0 + 3e−3ctx2
0 + e−ctx2

0 − e−ctx0

+ e−ctx0t
2c2 − 4e−2ctt2c2x0 − e−3ctx3

0),

(4.4)

and

V ar((X(t)− E[X(t)])Z(t)) =
1

c2
(−2e−2ctx2

0 + 3e−2ctx0 + e−2ctx2
0t

2c2

− 2e−3ctx0 + e−3ctx2
0 + e−ctx2

0

− e−ctx0 + e−ctx0t
2c2 − 4e−2ctx0t

2c2).

(4.5)

Depending on the values of c, t and x0 the variance of the GT method may be

more or less than that of CGT. However it is instructive to focus on the dependence

on the initial state x0. The variance of GT estimator contains x3
0 while that of CGT

estimator only has x2
0 involved in the formula. If x0 is modestly large (say 100), a

significant amount of variance reduction can be expected using CGT. On the other

hand, if we consider the variance of the FD estimator, we can bound the variance

as

1

h2
Var(X(t, c+ h)−X(t, c)) ≤ 2

h2
(Var(X(t, c+ h)) + Var(X(t, c))) .
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To derive a formula for the right hand side, we need the first and second moment of

X(t, c) and X(t, c + h). Without loss of generality, we can only derive formula for

the moments of X(t, c). EX(t, c) can be derived by taking expectation for X(t) in

(4.1) and it turns out to be

EX(t, c) = x0e
−ct.

Now for the second moment, we apply the Ito formula to obtain

X(t, c)2 = x2
0 +

∫ t

0

(1− 2X(s−))dR(s).

After taking expectation and plugging in EX(t, c), we have

d

dt
EX(t, c)2 = −2cEX(t, c)2 + cx0e

−ct

with initial condition X(0)2 = x2
0. Solving this differential equation, we have

EX(t, c)2 = (x0e
ct + x2

0 − x0)e−2ct

and hence

Var(X(t, c)) = x0(e−ct − e−2ct).

Since Var(X(t, c)) depends on x0 linearly, we expect the variance of the FD estimator

to be even smaller than that of the CGT.

These observations motivate the analysis in the rest of this paper. We note

that x0 can be thought of as a measure of system size. We will show that when

the system size grows the variance of the FD methods grow the smallest in terms of

system size, while the variance of the CGT method grows modestly and the variance

of the GT method grows the fastest for more general chemical reaction systems.
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4.2 Running Assumptions

To facilitate the analysis in this chapter, we shall make some explicit assump-

tions which shall hold throughout the rest of this thesis.

Assumption 1. We assume the following form of parameter dependence on the

intensity function. For each j = 1, · · · ,m and N ,

aNj (x, c) = cjb
N
j (x), (4.6)

where bNj : Rn → R are such that bNj restricted to ZN+ are nonnegative. This also

implies that there are precisely m parameters, one for each reaction j.

For the analysis in this thesis we need not to assume the stochastic mass action

form, but merely the density dependence we described in Chapter 2. We restated it

as our Assumption 2 here.

Assumption 2. We suppose that for each j = 1, · · · ,m, there exists a function

(deterministic reaction rate) āj(x) such that for each compact K ⊂ Rn
+, the collection

of functions aNj (Nx)−Nāj(x) is uniformly bounded for x ∈ K and N ≥ 1.

We note that this implies that for each compact set K ⊂ Rn
+ there exists

BK > 0 such that∣∣∣∣∣aNj (Nx)

N
− aj(x)

∣∣∣∣∣ ≤ BK

N
, N ≥ 1, x ∈ K, j = 1, . . . ,m. (4.7)

Here the constant BK depends implicitly on c.

In order to satisfy the conditions stated in Theorem 2.3.1 we shall assume the

following.

43



Assumption 3. For each j = 1, . . . ,m, the functions āj : Rn → R are continuously

differentiable. This automatically implies the Lipschitz condition in Theorem 2.3.1.

The following assumption is used to facilitate the analysis in this thesis. Sev-

eral, but not all examples in applications satisfy this assumption.

Assumption 4. We take XN(0) = x0 (deterministic) for all N . We assume that

the sequence of concentration processes XN is uniformly bounded, that is, there exists

a constant Γ such that for all t ≥ 0,

|XN(t)| ≤ Γ a.s. (4.8)

for all N ≥ 1.

We note that if there exists a strictly positive vector α ∈ Rm
+ so that αTνj ≤ 0

for each j then this assumption is satisfied. We note that a form of converse of this

statement is also true [27].

Now we turn our attention to the sensitivity. Given f : Rn → R, we are

interested in computing the sensitivity

∂

∂c
E(f(XN(t, c))),

where c ∈ (0,∞) is a parameter. In view of Assumption 1, without loss of gen-

erality, we shall take c = c1. Then we note that the GT sensitivity estimator is

f(XN(t))ZN(t) and the CGT estimator is [f(XN(t)) − E(f(XN(t))]ZN(t), where

we note that ZN(t) = MN
1 (t)/c1 in this case.

As we are concerned with families of processes indexed by N , it makes sense
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to consider a corresponding family of functions fN : Rn → R instead of one function

f and make reasonable assumptions on fN and f .

To motivate the assumption we make on fN and f we note that we shall be

concerned with fN(XN(t)) = fN(NXN(t)) which we wish to compare with f(X(t)).

When fN(x) = xi, one of the components of x, we have

fN(NXN(t))/N = XNi(t)→ Xi(t) = f(X(t)),

with f(x) = xi. Alternatively, if fN(x) = xαi for some α > 0 we have

fN(NXN(t))/Nα = (XNi(t))
α → (Xi(t))

α = f(X(t)),

with f(x) = xαi . If however fN(x) = x2
i + xi then we have

fN(NXN(t))/N2 = (XNi(t))
2 +XNi(t)/N → (Xi(t))

2 = f(X(t)),

where f(x) = x2
i . In this case we note that fN(Nx)/N2− f(x) = xi/N which tends

to 0 as 1/N , uniformly for x in a compact set. Motivated by this we impose the

following assumption.

Assumption 5. We assume that there exist a function f and a constant α > 0

such that for each compact set K ⊂ Rn
+,

∣∣fN(Nx)/Nα − f(x)
∣∣ ≤ LK√

N
, x ∈ K, N ≥ 1 (4.9)

for some constant LK > 0.

We remark that the O(1/
√
N) behavior is adequate for our proofs.
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4.3 Strong and Weak Limit for the Weight Process ZN

In this section we derive results concerning the N → ∞ limit for the various

relevant processes. Throughout the rest of the paper X(t) will denote the solution

to the equation

X(t) = x0 +
m∑
j=1

νj

∫ t

0

aj(X(s))ds, (4.10)

where x0 ∈ Rn
+ is fixed (given the solution exists).

Lemma 4.3.1. We have for each j = 1, · · · ,m, there exists Aj > 0 such that for

all t > 0

aNj (NXN(t))

N
≤ Aj a.s..

Proof. By (4.8) in Assumption 4, the processes XN are contained in a compact set

of Rn, say K, therefore for each j we have the estimation

sup
t≥0

aNj (NXN(t))

N
≤ sup

x∈K

aNj (Nx)

N

Since N−1aNj (Nx) converges uniformly to aj(x) for x in K by (4.7), it is apparent

that supx∈K N
−1aNj (Nx) is bounded by continuity of aj. Hence supt≥0N

−1aNj (NXN(t))

is bounded by a constant Aj.

Lemma 4.3.2. For j = 1, · · · ,m, and t > 0, we have

sup
s≤t

∣∣∣∣∣aNj (NXN(s))

N
− aj(X(s))

∣∣∣∣∣→ 0, a.s.

Proof. Write ∣∣∣∣∣aNj (NXN(s))

N
− aj(X(s))

∣∣∣∣∣
≤

∣∣∣∣∣aNj (NXN(s))

N
− aj(XN(s))

∣∣∣∣∣+ |aj(XN(s))− aj(X(s))| .
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The first part on the right hand side converges to zero uniformly for s in [0, t]

because of Assumptions 2 and 4. To see the second part on the right hand side

converges uniformly to 0 on [0, t], note that by Assumption 3 and Assumption 4, aj

is Lipschitz continuous on the compact set K (which contains XN and X), hence

the result follows by Theorem 2.3.1.

We define the sequence of scaled processes RN(t) by RN(t) = RN(t)/N .

Lemma 4.3.3. For each j = 1, 2, · · · ,m and t > 0

sup
s≤t

∣∣∣∣RNj(s)−
∫ s

0

aj(X(u))du

∣∣∣∣→ 0 a.s.

Proof. Recall that RN
j (t) = Yj

(∫ t
0
aNj (NXN(s))ds

)
. For each j = 1, · · · ,m,

sup
s≤t

∣∣∣∣ 1

N
Yj

(∫ s

0

aNj (NXN(u))du

)
−
∫ s

0

aj(X(u))du

∣∣∣∣
≤ sup

s≤t

∣∣∣∣ 1

N
Yj

(∫ s

0

aNj (NXN(u))du

)
− 1

N

∫ s

0

aNj (NXN(u))du

∣∣∣∣
+

∫ t

0

∣∣∣∣ 1

N
aNj (NXN(u))− aj(X(u))

∣∣∣∣ du.
The second term on the right hand side converges to zero by Lemma 4.3.2. Setting

Ỹ (t) = Y (t)− t, the first term on the right can be written and then bounded as

sup
s≤t

∣∣∣∣ 1

N
Ỹj

(∫ s

0

aNj (NXN(u))du

)∣∣∣∣ ≤ sup
s≤t

∣∣∣∣ 1

N
Ỹj (NAjs)

∣∣∣∣ a.s.

where the last term converges to zero by the law of large numbers for Poisson

process.

Lemma 4.3.4. For a given t > 0, suppose that f is continuous at X(t). Then

lim
N→∞

|fN(NXN(t))/Nα − f(X(t))| = 0, a.s. (4.11)
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Proof. Write

∣∣fN(NXN(t))/Nα − f(X(t))
∣∣ ≤ ∣∣fN(NXN(t))/Nα − f(XN(t))

∣∣
+ |f(XN(t))− f(X(t))| .

The first term converges to zero almost surely by Assumption 4 and (4.9) in As-

sumption 5. The second term converges to zero by the continuity assumption on f

since XN(t) converges to X(t) almost surely.

Recall the definition of MN ,

MN(t) = RN(t)−
∫ t

0

aN(NXN(s))ds.

Note that in general MN(t) is an m-dimensional local martingale for each N , but

by Lemma 4.3.1 it follows that E[RN
j (t)] ≤ NAjt for all t > 0 which makes MN(t) a

martingale. We define the scaled processes MN = N−1MN and ZN = N−1ZN . We

note that ZN(t) = MN
1 (t)/c1 and ZN(t) = MN 1(t)/c1.

Let us denote by Dm[0,∞) the space of càdlàg functions mapping from [0,∞)

to Rm endowed with the Skorohod topology. We provide a lemma on the weak

convergence of MN .

Theorem 4.3.1. Let D(t) = (dij(t)) be a m×m matrix of functions, where

dij(t) =


∫ t

0
āj(X(s))ds i = j

0 i 6= j

(4.12)

Then
√
NMN ⇒ M̄ on Dm[0,∞), where M̄(t) is an m-dimensional Gaussian pro-

cess with independent increments having mean vector and covariance matrix

E[M̄(t)] = (0, · · · , 0), E[M̄(t)M̄(t)T ] = D(t). (4.13)
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Furthermore, the scaled Girsanov sensitivity (or weight) process
√
NZN ⇒ U on

D[0,∞), where

U(t) =
1

c1

M̄1(t). (4.14)

Also since U has continuous sample paths, for each t > 0 we have

√
NZN(t)⇒ U(t).

Proof. The proof relies on Theorem 2.4.1 the martingale FCLT. Note that each

jump of
√
NMN has size 1/

√
N , therefore,

lim
N→∞

E
[
sup
s≤t

∣∣∣√NMN(s)−
√
NMN(s−)

∣∣∣] = 0.

Also, for each pair (i, j) with i, j = 1, · · · ,m, and each t, since the jump size for

MNj is always N−1 and there are no simultaneous jumps, we have the following

quadratic covariation

[√
NMNi,

√
NMNj

]
(t) =


RNj i = j

0 i 6= j

(4.15)

By Lemma 4.3.3, RNj(t) converges almost surely to djj(t) =
∫ t

0
aj(X(s))ds. Then,

for each pair (i, j), [√
NMNi,

√
NMNj

]
(t)→ dij(t)

almost surely and hence in probability. Thus, the weak convergence of MN follows

from the martingale FCLT.

Lemma 4.3.5. For each p ≥ 1, there exists a constant β(p) such that for all t > 0

lim sup
N

E
(

sup
s≤t

∣∣∣√NMN(s)
∣∣∣)p ≤ β(p)tp/2. (4.16)
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Proof. Observe that the quadratic variation of
√
NMN is

[√
NMN ,

√
NMN

]
(t) = N−1

m∑
j=1

Yj

(∫ t

0

aNj (NXN(s))ds

)
.

By the Burkholder-Davis-Gundy inequality (see [23]), there exists a constant

C(p) such that

E
(

sup
s≤t

∣∣∣√NMN(s)
∣∣∣)p ≤C(p)E

(
1

N

m∑
j=1

Yj

(∫ t

0

aNj (NXN(s))ds

))p/2

≤C(p)E

(
1

N

m∑
j=1

Yj (NAjt)

)p/2

≤C(p)N−p/2

(
E

(
m∑
j=1

Yj(NAjt)

)p)1/2

,

where we have used Lemma 4.3.1.

Hence,

lim sup
N

E
(

sup
s≤t

∣∣∣√NMN(s)
∣∣∣)p ≤ lim sup

N
C(p)N−p/2

(
E

(
m∑
j=1

Yj(NAjt)

)p)1/2

.

First we observe that for j = 1, · · · ,m, the pth moment of the Poisson random

variable Yj(NAjt) is a polynomial of degree p in NAjt. Also, noting that Yj are

independent, we obtain that the right hand side is bounded by a term β(p)tp/2,

where β(p) is a constant.

Since ZN(t) = c1
−1MN

1 (t), we immediately have the following property re-

garding process ZN .

Lemma 4.3.6. For each p ≥ 1, there exists a constant γ(p) such that for all t > 0,

lim sup
N

E
(

sup
s≤t

√
N |ZN(s)|

)p
≤ γ(p)tp/2. (4.17)
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Define the process VN(t) =
√
N(XN(t) −X(t)). Let us consider the moment

of this process on a compact time interval.

Lemma 4.3.7. For each p ≥ 1, there exist constants β̄(p), K(p) such that for all

t > 0

lim sup
N

sup
s≤t

E (|VN(s)|p) ≤ β̄(p)tp/2eK(p)tp .

Proof. Recall that

XN(s) = x0 + νRN(s)

and

X(s) = x0 +

∫ s

0

νa(X(u))du,

where ν is the n by m dimensional stoichiometric matrix. One can write VN as

follows,

VN(s) =
√
NνRN(s)−

√
N

∫ s

0

νa(X(u))du

=
√
Nν

(
RN(s)−

∫ s

0

aN(NXN(u))

N
du

)
+
√
Nν

(∫ s

0

aN(NXN(u))

N
− a(X(u))du

)
.

Note that we denote MN(s) = RN(s)−
∫ s

0
N−1aN(NXN(u))du, hence

|VN(s)| ≤‖ν‖
∣∣∣√NMN(s)

∣∣∣+ ‖ν‖
∫ s

0

√
N

∣∣∣∣aN(NXN(u))

N
− a(X(u))

∣∣∣∣ du.
We note that

√
N

∣∣∣∣aN(NXN(u))

N
− a(X(u))

∣∣∣∣ ≤√N ∣∣∣∣aN(NXN(u))

N
− a(XN(u))

∣∣∣∣
+
√
N |a(XN(u))− a(X(u))| .
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Since XN lies in a compact set K according to Assumption 4, we have for all

u > 0, ∣∣∣∣aN(NXN(u))

N
− a(XN(u))

∣∣∣∣ ≤ BK

N

where we have used Assumption 2 and abuse of notation using BK from (4.7).

On the other hand, for each j = 1, · · · ,m, by Assumption 3, aj is continuously

differentiable and hence it is Lipschitz continuous on the compact set K. Hence,

there exists a Lipschitz constant Cj such that for all u > 0,

|aj(XN(u))− aj(X(u))| ≤ Cj |XN(u)−X(u)| .

It follows that there exists a constant C such that

|a(XN(u))− a(X(u))| ≤ C |XN(u)−X(u)| .

Therefore,

|VN(s)| ≤‖ν‖
(∣∣∣√NMN(s)

∣∣∣+N−1/2BKs+ C

∫ s

0

√
N |XN(u)−X(u)| du

)
=‖ν‖

(∣∣∣√NMN(s)
∣∣∣+N−1/2BKs+ C

∫ s

0

|VN(u)| du
)
,

Applying the inequality (a+b+c)p ≤ 3p(ap+bp+cp) and the Holder’s inequality,

we obtain

|VN(s)|p ≤(3‖ν‖)p
(∣∣∣√NMN(s)

∣∣∣p +N−p/2(BKs)
p + Cpsp−1

∫ s

0

|VN(u)|pdu
)
.

Taking expected value of both sides, for s ∈ [0, t]

E|VN(s)|p ≤(3‖ν‖)p
(
E
∣∣∣√NMN(s)

∣∣∣p +N−p/2(BKt)
p
)

+ (3‖ν‖)pCpsp−1

(∫ s

0

E|VN(u)|pdu
)
.
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To estimate the first term of the right hand side, recall that in the proof of

Lemma 4.3.5,

E
(

sup
s≤t

∣∣∣√NMN(s)
∣∣∣)p ≤ C(p)N−p/2

(
E

(
m∑
j=1

Yj(NAjt)

)p)1/2

.

For convenience, let us denote

ΦN(t) = C(p)N−p/2

(
E

(
m∑
j=1

Yj(NAjt)

)p)1/2

.

Therefore,

E|VN(s)|p ≤(3‖ν‖)p
(

ΦN(t) +N−p/2(BKt)
p + Cpsp−1

(∫ s

0

E|VN(u)|pdu
))

.

We note that E|VN(s)|p is continuous in s and applying the Gronwall inequality, we

obtain for s ≤ t,

E|VN(s)|p ≤ (3‖ν‖)p
(
ΦN(t) +N−p/2(BKt)

p
)
e(3‖ν‖)pCpsp .

Taking supremum over s ∈ [0, t] and then taking lim supN , the result follows from

same considerations as in the proof of Lemma 4.3.5.

4.4 Estimator Efficiency

Now we are in a good position to use the results we established in the last

section to analyze the efficiency of various estimator. A measure of accuracy of a

Monte Carlo estimator S is the ratio of its standard deviation to the absolute value

of its expected value, i.e., √
Var(S)

|E(S)|
.
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We refer to this quantity as the relative standard error (RSE).

In this section, we study the system size dependence of the sensitivity

∂

∂c
E(fN(XN(t))),

and the variances and RSEs of the GT, CGT and FD estimators. In the context

of stochastic mass action form of intensities given by (2.1), we note that c = cj is

the deterministic parameter while c′N = cj/N
|ν′′j |−1 is the stochastic parameter. In

practice, one would compute sensitivity with respect to the stochastic parameter

c′N . The difference between the sensitivity with respect to the stochastic parameter

and with respect to the deterministic parameter is merely a scaling factor N |ν
′′
j |−1.

Therefore, the RSE is unchanged regardless of whether one considers the sensitivity

with respect to the stochastic parameter or the deterministic parameter. From an

analytical point of view, it is convenient to study the sensitivity with respect to the

deterministic parameter.

Recall that the sensitivity estimator of Girsanov transformation method is

fN(XN(t, c))ZN(t, c)

where fN : Rn → R.

Theorem 4.4.1. (Scaling of the sensitivity) In addition to our running as-

sumptions, we assume that f in (4.9) is continuously differentiable. Then for each

t ≥ 0

sup
s≤t

E(fN(XN(s))ZN(s)) = O(Nα).

That is, the sensitivity is asymptotically O(Nα) uniformly on [0, t].

54



Proof. It is sufficient to show that sups≤t E(fN(XN(s))ZN(s))/Nα is bounded in N .

Instead of working with E(fN(XN(s))ZN(s))/Nα, we use

E
(
fN(XN(s))

Nα
ZN(s)− f(X(s))ZN(s)

)
because they are equal but the latter is easier to work with.

Note that f is continuously differentiable hence Lipschitz on the compact set

K corresponding to Assumption 4. Denote by CK the Lipschitz constant for f .

Using the assumptions on fN and f and writing XN in terms of VN as before as

XN(s) = NX(s) +
√
NVN(s),

leads to ∣∣∣∣∣fN(NX(s) +
√
NVN(s))

Nα
− f(X(s))

∣∣∣∣∣ |ZN(s)|

≤

∣∣∣∣∣fN(NX(s) +
√
NVN(s))

Nα
− f

(
X(s) +

VN(s)√
N

)

)∣∣∣∣∣ |ZN(s)|

+

∣∣∣∣f (X(s) +
VN(s)√
N

)
− f(X(s))

∣∣∣∣ |ZN(s)|

≤ LK√
N
|ZN(s)|+ CK |VN(s)| |Z

N(s)|√
N

≤LK
√
N |ZN(s)|+ 1

2
CK
(
|VN(s)|2 +N |ZN(s)|2

)
.

The result follows from Lemmas 4.3.6 and 4.3.7.

Remark: We believe that under the Nα scaling, the sensitivity of the stochas-

tic process should limit to the sensitivity of the fluid limit ODE as N → ∞. The

above result is weaker than that.

Theorem 4.4.2. (Second moment of GT estimator) In addition to our running

assumptions, we assume that f in (4.9) is bounded on every compact set and for a
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given t > 0, f is continuous at X(t). Then we have as N →∞,

N−1−2αE
{

(fN(XN(t)))2(ZN(t))2
}
→ (f(X(t)))2 1

c1

∫ t

0

a1(X(s))ds. (4.18)

Furthermore, for each t > 0,

sup
s≤t

E
(
(fN(XN(s)))ZN(s)

)2
= O(N2α+1).

Proof. Lemma 4.3.6 implies the uniformly integrability of N−1(ZN(t))2. By As-

sumption 4 and (4.9) we have that (fN(XN(t)))2/N2α is a uniformly bounded se-

quence. Thus N−1−2α(fN(XN(t)))2(ZN(t))2 is uniformly integrable.

By Lemma 4.3.4 we have that N−2α(fN(XN(t)))2 converges to (f(X(t)))2

almost surely. We also have that N−1ZN(t) converge weakly to U(t). Thus by

Theorem A.1.1 in appendix and the continuous mapping theorem we have that

N−1−2α(fN(XN(t)))2(ZN(t))2 ⇒ (f(X(t)))2U2(t).

By Theorem 3.5 from [7], we note that if a uniformly integrable sequence converges

weakly then it converges in the mean, hence the result (4.18) follows.

Also, recall that (fN(XN(t)))2/N2α is uniformly bounded, hence

N−2α−1 sup
s≤t

E
(
(fN(XN(s)))ZN(s)

)2 ≤ C̃E(sup
s≤t

√
N |ZN(s)|)2.

Taking lim supN and applying Lemma 4.3.6 yields the seconds result.

Note that the above theorem does not assume f is continuously differentiable.

However, to state the result regarding the estimator variance for GT method, we

still need to assume continuous differentiability on f so that we can use Theorem

4.4.1.
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Corollary 4.4.1. (Variance of GT estimator) Suppose f in (4.9) is continu-

ous differentiable, then for given t > 0, the estimator variance of GT method is

asymptotically O(N2α+1) uniformly on [0, t].

Next, we will explore the variance of the centered Girsanov transformation

approach.

Theorem 4.4.3. (Second Moment of CGT estimator) In addition to our run-

ning assumptions, we assume that f in (4.9) is continuously differentiable. Then

for each t > 0,

sup
s≤t

E
(
(fN(XN(s))− EfN(XN(s)))ZN(s)

)2
= O(N2α).

Proof. Write

E

(∣∣∣∣fN(XN(s))

Nα
− E

(
fN(XN(s))

Nα

)∣∣∣∣2 (ZN(s))2

)

≤2E

(∣∣∣∣fN(XN(s))

Nα
− f(X(s))

∣∣∣∣2 (ZN(s))2

)

+ 2E

(∣∣∣∣f(X(s))− E
(
fN(XN(s))

Nα

)∣∣∣∣2 (ZN(s))2

)

≤2E

(∣∣∣∣fN(XN(s))

Nα
− f(X(s))

∣∣∣∣2 (ZN(s))2

)

+ 2E

(∣∣∣∣fN(XN(s))

Nα
− f(X(s))

∣∣∣∣2
)
E(ZN(s))2,

where the last inequality is true due to the fact that f(X(t)) is deterministic. Using

similar argument as in the proof of Theorem 4.4.1, the first term on the right-hand

side can be bounded by

4L2
KE
(
|
√
NZN(s)|

)2

+ 4C2
KE
(
|VN(s)|

√
N |ZN(s)|

)2

.
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Similarly, the second term on the right-hand side can be bounded by

4L2
KE
(√

N |ZN(s)|
)2

+ 4C2
KE|VN(s)|2E

(√
N |ZN(s)|

)2

.

Both of the above terms are bounded in N uniformly on [0, t] by Lemma 4.3.6 and

4.3.7.

Combining this result with Theorem 4.4.1, the following corollary is immediate.

Corollary 4.4.2. (Variance of CGT estimator) For any given t > 0, the esti-

mator variance of CGT method is asymptotically O(N2α) uniformly on [0, t].

Theorem 4.4.4. (Variance of FD estimator) Suppose fN satisfies (4.9) and f

is continuously differentiable. Then for each t > 0 and h > 0,

sup
s≤t

Var
(
XN(s, c+ h)−XN(s, c)

)
= O(N2α−1).

That is, the estimator variance of FD method is asymptotically O(N2α−1).

Proof. Note that

Var
(
XN(s, c+ h)−XN(s, c)

)
≤ 2Var

(
XN(s, c+ h)

)
+ 2Var

(
XN(s, c)

)
,

hence it is sufficient to show that Var
(
XN(t, c)

)
= O(N2α−1). We write

1

N2α−1
Var

(
XN(s, c)

)
= NE

(∣∣∣∣fN(XN(s, c))

Nα
− E

(
fN(XN(t, c))

Nα

)∣∣∣∣2
)
.

One can estimate the right hand side by using the same argument as is in Theorem

4.4.3 to get an upper bound 8L2
K+8C2

KE (|VN(s)|)2, which is bounded inN uniformly

on [0, t] by Lemma 4.3.7.

58



Remark: Based on Theorem 4.4.1, Corollary 4.4.1, Corollary 4.4.2 and The-

orem 4.4.4, we may expect the RSEs of the GT, CGT and FD methods to scale

as O(N1/2), O(1) and O(N−1/2), respectively. Since in Theorem 4.4.1, we do not

have an exact limit for the sensitivity itself, this conclusion is not rigorously proven.

Nevertheless, our numerical results in the next section support this expectation.

4.5 Numerical Examples

We illustrate the dependence of RSE of various sensitivity estimators on the

system size N via numerical examples. When comparing the GT or CGT methods

with FD or RPD methods, we must bear in mind that while GT and CGT do not

have method parameters, the FD method has a perturbation parameter h and the

RPD method has a window size parameter w, making the comparison not straight-

forward. A proper practical comparison involves choosing parameters h and w to

obtain an acceptable bias. We do not pursue such a detailed comparison here as we

are focused solely on the dependence on system size N .

We note that in the very large system size limit, the stochastic system behaves

nearly deterministically and hence none of these stochastic sensitivity methods are

needed; traditional ODE sensitivity methods would do. However, when the system

size N is modestly large, say N = 100, the system may not be approximated by the

ODE and our asymptotic analysis will be relevant in this regime. Our numerical

results below show this.
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4.5.1 Reversible Isomerization Network

The reversible isomerization model consists of two species S1 and S2 and in-

volves the following two reactions:

S1
c1−→ S2, S2

c2−→ S1. (4.19)

In the model with system size N , the intensity functions for processes RN
1 and

RN
2 are

aN1 (XN(t), c) = c1X
N
1 (t),

aN2 (XN(t), c) = c2X
N
2 (t),

respectively. The stoichiometric vectors are ν1 = [−1, 1]T and ν2 = [1,−1]T .

In this example, the expectation of the population of species at a fixed time t

can be computed analytically:

E[XN
1 (t)] = XN

1 (0) +
1− e−(c1+c2)t

c1 + c2

(c2X
N
2 (0)− c1X

N
1 (0)), (4.20)

E[XN
2 (t)] = XN

2 (0) +
1− e−(c1+c2)t

c1 + c2

(c2X
N
2 (0)− c1X

N
1 (0)), (4.21)

where XN
1 (0) and XN

2 (0) are assumed to be deterministic. One can compute the

exact sensitivities by differentiating (4.20) and (4.21) with respect to parameters.

In the numerical tests considered here, we choose parameters c1 = 0.3 and c2 = 0.2

and the initial population XN
1 (0) = N and XN

2 (0) = N , where N is the system size

parameter. We set the terminal time T = 10 and compute the sensitivity for various

system size parameterN = 1, 2, 5, 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000.

We use four different methods here, namely GT, CGT, CRN and RPD. We note
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that by CRN we mean the common random number (one-sided) finite difference

method in conjunction with Gillespie’s SSA ( [26]). The perturbation parameter for

CRN method is h = 0.01 for parameter c1 = 0.3 and the window size parameter

w = 1.0 for terminal time T = 10. The number of trajectories for simulation is

Ntr = 106 for each system size N .

The first output function we consider here is fN(x) = x1 for all N , that is,

we compute the sensitivity of E(XN
1 (T )) with respect to parameter c1. Obviously,

conditions in Assumption 5 are satisfied with α = 1 and f(x) = x1. We examine

the growth of sensitivity of E(XN
1 (T )) with respect to c1 in terms of N using 106

independent trajectories. The computed sensitivity is shown in Fig 4.1(a) and Fig

4.1(b) shows the loglog plot of RSE of all four methods.
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Figure 4.1: Sensitivity of E(XN
1 (T )) with respect to c1 at final time T = 10 for

reversible isomerization model.

The second output function we use for testing is fN(x) = x2
1 for all N . By

(4.9), f(x) = x2
1 and α = 2 in Assumption 5. See Figure 4.2 for sensitivity and
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Figure 4.2: Sensitivity of E(XN
1 (T ))2 with respect to c1 at final time T = 10 for

reversible isomerization model.
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Figure 4.3: Sensitivity of E(sin(XN
1 (T )/N)) with respect to c1 at final time T = 10

for reversible isomerization model.

RSE. The third output function is fN(x) = sin(x1/N) and so f(x) = sinx1. It can

be seen that for this case, α = 0 in Assumption 5. Plot for the numerical result in

shown in Figure 4.3.

The last output function we consider here is the indicator function fN(x) =
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1{x1≤x2}, which does not satisfy the conditions in our theorems since f = 1{x1≤x2} is

not continuously differentiable. However, numerical tests still show similar behav-

ior as indicated by our theorems. Note that the sensitivity approaches zero as N

increases to ∞ and hence RSE is not well defined for large N . Instead, we plot the

estimator variance against N in Figure 4.4(b).
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Figure 4.4: Sensitivity of P(XN
1 (T ) ≤ XN

2 (T )) with respect to c1 at final time T = 10

for reversible isomerization model.

Finally, the Table 4.1 summarizes the rate of growth (as a power of N) of

the numerically estimated RSE for the different estimators considered above. The

numerical results are in agreement with the theory.

4.5.2 Decaying-Dimerizing Network

As a second numerical example, let us consider the decaying-dimerizing model

described in (4.22).

S1
c1−→ ∅, 2S1

c2−→ S2, S2
c3−→ 2S1, S2

c4−→ S3, (4.22)
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Table 4.1: Observed slopes (via regression for large N) for the loglog plots of RSE

for reversible isomerization model, that is, R1, R2 and R3 are the observed asymp-

totic order of the estimator RSE (as a power of N) for E(XN
1 (T )), E(XN

1 (T ))2 and

E(sin(XN
1 (T )/N)), respectively. R is the theoretical slope.

R R1 R2 R3

GT 0.5 0.4992 0.4895 0.5724

CGT 0 −0.0004 −0.0008 0.0009

CRN −0.5 −0.5156 −0.5160 −0.5162

RPD −0.5 −0.5005 −0.5000 −0.5000

The stoichiometric vectors are ν1 = [−1, 0, 0]T , ν2 = [−2, 1, 0]T , ν3 = [2,−1, 0]T

and ν4 = [0,−1, 1]T . We set the initial population to be XN
1 (0) = 10N,XN

2 (0) =

0, XN
3 (0) = 0. Using the stochastic mass action form (2.1), the intensity for processes

RN
1 , RN

2 , RN
3 and RN

4 are

aN1 (XN(t), c) = c1X
N
1 (t),

aN2 (XN(t), c) =
c2

2N
XN

1 (t)(XN
1 (t)− 1),

aN3 (XN(t), c) = c3X
N
2 (t),

aN4 (XN(t), c) = c4X
N
2 (t).

We set the parameters as follows, c1 = 1.0, c2 = 0.002, c3 = 0.5 and c4 = 0.04.

Note that the intensity for the second reaction is not linear, hence an analytical

formula for the sensitivity is not attainable. We examine the sensitivity and RSE
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for E[fN(XN
1 )] with respect to c1. For the CRN method, we use one-sided finite

difference scheme and perturb the parameter c1 by h = 0.01. Note that RPD is

not applicable for this example since the firing of the first reaction will prevent

the second reaction to happen when the population of S1 is 1 (see [29]), therefore

we only examine the efficiency of GT, CGT and CRN here. For each system size

N , the number of trajectories we use for simulation is Ntr = 106. Plots of the

sensitivity and RSE are shown in Figure 4.5, 4.6 and 4.7 for E(XN
1 (T )), E(XN

1 (T ))2

and E(sin(XN
1 (T )/N)), respectively. The rate of growth (as a power of N) of the

numerically estimated RSE are summarized in Table 4.2.
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Figure 4.5: Sensitivity of E[XN
1 (T )] with respect to c1 at final time T = 5 for

decaying-dimerizing model.
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Figure 4.6: Sensitivity of E(XN
1 (T ))2 with respect to c1 at final time T = 5 for

decaying-dimerizing model.
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Figure 4.7: Sensitivity of E(sin(XN
1 (T )/N)) with respect to c1 at final time T = 5

for decaying-dimerizing model.
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Table 4.2: Observed slopes (via regression) for the loglog plots for RSE for decaying-

dimerizing model, that is, R1, R2 and R3 are the observed asymptotic order of the

estimator RSE (as a power of N) for E(XN
1 (T )), E(XN

1 (T ))2 and E(sin(XN
1 (T )/N)),

respectively. R is the theoretical slope.

R R1 R2 R2

GT 0.5 0.4689 0.4100 0.4737

CGT 0 −0.0040 −0.0257 −0.0008

CRN −0.5 −0.6022 −0.6068 −0.6009
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Chapter 5: Validity of Girsanov Transformation Method

In this chapter, we provide sufficient conditions for the validity of applying

GT method for sensitivity analysis. We reviewed the GT method in Chapter 3,

where we assumed that it was valid to apply Girsanov’s change of measure theory

and take the derivative inside the integral. However, these two steps need to be

justified carefully in order to guarantee that the GT method is valid. In Section

5.1, we present some important results regarding the change of measure from [8]. In

Section 5.2, we provide a Novikov type condition under which the Radon-Nikodym

derivative becomes a martingale instead of a local martingale. Finally, we give a

sufficient condition for differentiating inside the integral. Throughout this chapter,

we use an aabstract probability space (Ω,F ,P) and the process X(t, c) maps from

this space to the Skorohod space (Dn[0, T ],D, P ).

5.1 Change of Measure

The first step we shall verify for GT method is changing the measure from P to

some other measure P(c), where P(c) is suppose to be the measure associated with

parameter c after we apply Girsanov transformation. Let us construct P(c) from P.
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Suppose we are interested in the sensitivity at c = c0, i.e.,

∂

∂c

∣∣∣∣
c=c0

Ef(X(t, c)).

For this fixed c0 > 0, we call it the reference parameter and denote a neighbor-

hood of it by Ic0 , where

Ic0 = (c0 − ε, c0 + ε)

and c0 > ε (so that the lower bound for Ic0 is positive). Recall that by defini-

tion R(t, c0) has the (P,Ft) predictable intensity aj(X(t−, c0), c0). Our goal in this

section is to use the change of intensity theorem from [8] (VI. T3 theorem) to

construct a measure P(c) for any c ∈ Ic0 and conclude that R(t, c0) has the (P(c),Ft)

predictable intensity aj(X(t−, c0), c).

For this purpose, first we define an auxiliary (multidimensional) process µ as

follows. Given c ∈ Ic0 , suppose for all x ∈ Zn+,

aj(x, c0) = 0 if and only if aj(x, c) = 0 (5.1)

for all j = 1, 2, · · · ,m. Note that this is true when the intensities are of the form

aj(x, c) = cjbj(x) which holds in the stochastic mass action form. Now for each

j = 1, · · · ,m, based on the above assumptions, the following process is well-defined

(c0 is fixed), for c ∈ Ic0

µj(t, c) =
aj(X(t−, c0), c)

aj(X(t−, c0), c0)
. (5.2)

In the case that aj(X(t−, c0), c0) = 0, by assumption we have aj(X(t−, c0), c) = 0

as well, so we can simply define µj(t, c) to be any positive constant. Thus for each

c ∈ Ic0 , µj(t, c) is Ft-predictable by left continuity and for each t > 0, we have

0 < µj(t, c) <∞ almost surely.
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Next, we define the stochastic process L(t, c) as follows

L(t, c) =
m∏
j=1

Rj(t,c0)∏
n=1

µj(T
n
j , c)

 exp

(∫ t

0

(1− µj(s, c0))aj(X(s, c0), c0) ds

) ,

where T nj is the nth jump time of reaction j and µj are nonnegative, Ft predictable

processes as we defined previously. By convention, we take the product
∏Rj(t,c0)

n=1 to

be 1 if Rj(t, c0) = 0. It can be shown that this L can be written as the solution of

the following SDE,

L(t, c) = 1 +
m∑
j=1

∫
(0,t]

L(s−, c)(µj(s, c)− 1)dMj(s, c0),

where M(t, c0) = R(t, c0) −
∫ t

0
a(X(s, c0), c0)ds as we defined before. For all t ≥ 0

and all j = 1, · · · ,m, if

∫ t

0

aj(X(s, c0), c0) ds <∞, P-a.s., (5.3)

then M is a local martingale. Hence it is reasonable for us to define

Y (t, c) =
m∑
j=1

∫
(0,t]

(µj(s, c)− 1) dMj(s, c0), (5.4)

where Y is also a local martingale because the integrand above is left continuous

( [23]). We note that L is known as the stochastic exponential of Y (see [24]),

L(t, c) = 1 +

∫
(0,t]

L(s−, c) dY (s, c).

L(t, c) is a local martingale with respect to (P,Ft) by the following theorem.

Theorem 5.1.1. ( [8], VI. T2 Theorem) For the counting process

R(t, c0) = (R1(t, c0), · · · , Rm(t, c0))
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adapted to Ft, let aj(X(t−, c0), c0) be the predictable (P,Ft) predictable intensity of

Rj(t, c0), 1 ≤ j ≤ m. For any c ∈ Ic0, let µj(t, c), 1 ≤ j ≤ m be nonnegative, Ft

predictable processes such that for all t > 0, P almost surely we have

∫ t

0

µj(s, c)aj(X(s−, c0), c0)ds <∞.

Then L(t, c) is a (P,Ft)-nonnegative local martingale.

Next theorem shows that if L(t, c) is a martingale, then the desired probability

measure P(c) is well defined and L(t, c) is the Radon-Nikodym derivative between

P(c) and P.

Theorem 5.1.2. ( [8], VI. T3 Theorem) Under the same conditions as in Theorem

5.1.1, suppose moreover that EL(T ) = 1. Define the probability measure P(c) such

that

P(c, A) =

∫
A

L(T, c)P(dω)

for A ∈ FT . Then for each 1 ≤ j ≤ m, Rj(t, c0) has the (P(c),Ft)-intensity

aj(X(t−, c0), c) = µj(t, c)aj(X(t−, c0), c0).

We shall use the above facts to show that

EP[f(X(T, c))] = EP(c)[f(X(T, c0)], (5.5)

where EP represents the expectation is taken with respect to the measure P. It is

equivalent to show that the probability law of X(c) under the measure P is same

as the probability law of X(c0) under the measure P(c). In fact, this can be seen

from the Kolmogorov’s forward equation (1.8) which governs the distribution of the
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process X. We recall the equation here for reader’s convenience

dp(x, t)

dt
=

m∑
j=1

(p(x− νj, t)aj(x− νj)− p(x, t)aj(x)) x ∈ Zn+,

where p(x, t) = P(X(t) = x). Since R(t, c0) has (P(c),Ft) predictable inten-

sity aj(X(t−, c0), c) by Theorem 5.1.2 and R(t, c) has (P,Ft) predictable intensity

aj(X(t−, c), c) by definition, they have the same Kolmogorov’s forward equation

and thus we obtain

P(X(t, c) = x) = P(c)(X(t, c0) = x),

which implies (5.5). Therefore, to justify the change of intensity step for GT method,

it is adequate to provide a sufficient condition for L(t, c) to be a martingale on [0, T ].

This leads to the so-called Novikov type condition problem. We will explore this

problem in the next section.

5.2 Novikov Type Condition

In this section, we provide a Novikov type condition for the validity of applying

GT method for sensitivity estimation. The result is based on the theorem from

[24] (restated as A.2.1 in appendix) which discusses the Novikov type condition for

martingales with jumps. Recall that we defined the process Y in terms of processes

M and µj as

Y (t, c) =
m∑
j=1

∫
(0,t]

(µj(s, c)− 1) dMj(s, c0)

and its stochastic exponential L(t, c) satisfies

L(t, c) = 1 +
m∑
j=1

∫
(0,t]

L(s−, c)(µj(s, c)− 1)dMj(s, c0).
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Next theorem shows that under suitable conditions on the intensity functions, L(t, c)

turns out to be a zero mean martingale and hence we can define a new probability

measure in terms of L(t, c).

Theorem 5.2.1. Let aj(X(t−, c0), c0) be the (P,Ft)-intensity of Rj(t, c0). Suppose

the following hold:

1. For all c ∈ Ic0, and for all t ≥ 0 and all j = 1, · · · ,m

∫ t

0

aj(X(s, c0), c) ds <∞ P-a.s.

2. For all c ∈ Ic0, all x ∈ Zn+ and j = 1, · · · ,m

aj(x, c0) = 0 if and only if aj(x, c) = 0.

3. For all c ∈ Ic0,

E

[
exp

(
m∑
j=1

∫ T

0

(µj(s, c)− 1)2aj(X(s, c0), c0) ds

)]
<∞.

Then for each j = 1, · · · ,m, aj(X(t−, c0), c) is the (P(c),Ft)-intensity of Rj(t, c0)

over [0, T ], where

dP(c)

dP
= L(T, c).

Proof. First note that under the first condition, M(t, c0) is a local martingale (under

P) for any c > 0 hence Y (t, c) is also a local martingale (under P) since the integrand

µj are left continuous (see for example [23]). Secondly, the jump of Y (t, c) is locally

bounded since we can stop the processes µj by its left continuity. Therefore, by

Lemma A.2.1 in the appendix, Y (t, c) is a locally square integrable martingale.
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Next, we need to decompose Y (t, c) into its continuous part Y c and purely

discontinuous part Y d and then check the condition (A.1) from Theorem A.2.1.

Generally, it is hard to obtain these two parts for an arbitrary local martingale.

However, since Y (t, c) is a process of finite variation, Y (t, c) itself is a purely dis-

continuous martingale (see [18, 23]), that is, we have Y d = Y, Y c = 0 and

〈Y d, Y d〉 = 〈Y, Y 〉,

where 〈Y, Y 〉 is the predictable quadratic variation process of Y (the compensator

of [Y, Y ]). By Theorem A.2.1, it remains to show that

E [exp (〈Y, Y 〉(T ))] <∞,

then the process L(t, c) is a (P,Ft) martingale. We note that

[Y, Y ](t) =
m∑
j=1

∫
[0,t]

(µj(s, c)− 1)2 dRj(s, c0)

=
m∑
j=1

∫
[0,t]

(µj(s, c)− 1)2 dMj(s, c0)

+
m∑
j=1

∫ t

0

(µj(s, c)− 1)2aj(X(s, c0), c0) ds.

Here we used the property [Rj, Rk] = Rj if j = k and [Rj, Rk] = 0 if j 6= k.

Observe that the process defined by the first term on the right hand side is a local

martingale and the process defined by second term is increasing and predictable.

Hence, by Doob-Meyer decompostion (see [23]), the second term on the right hand

side is the compensator of [Y, Y ], that is,

〈Y, Y 〉(t) =
m∑
j=1

∫ t

0

(µj(s, c)− 1)2aj(X(s, c0), c0) ds.
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Therefore, under the third condition, we conclude that L(t, c) is a martingale for

any c ∈ Ic0 .

Using the above change of measure criterion, the sensitivity is

∂

∂c

∣∣∣∣
c=c0

Ef(X(T, c)) =
∂

∂c

∣∣∣∣
c=c0

∫
Ω

f(X(T, c0))L(T, c) dP (c),

hence we validate the change-of-measure step for GT method. We will give condi-

tions under which one can take derivative inside the integral in the next section.

5.3 A Sufficient Condition for GT

In this section, we provide a sufficient condition for differentiating inside the

integral. We restrict the intensity function to be of the form

aj(x, c) = cjbj(x)

for j = 1, 2, · · · ,m. Since c0 is fixed, we will simply write X(t) for X(t, c0) and

similarly R(t) for R(t, c0) and so on. Without loss of generality, we assume that we

are interested in the sensitivity of f(X(T )) with respect to parameter c1. Using the

explicit form of L(T, c) from [8],

L(T, c) =
m∏
j=1

Rj(T )∏
n=1

µj(T
n
j , c)

 exp

(∫ T

0

(1− µj(s, c))aj(X(s), c0) ds

) ,

where T nj is the nth jump time of reaction j and we take the product
∏Rj(T )

n=1 to be

1 if Rj(T ) = 0. Under the previous assumption on intensity, the above formula is
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simplified to

L(T, c) =

(
c1

c01

)R1(T )

exp

(∫ T

0

(c01 − c0)(b1(X(s))− b1(X(s))) ds

)
. (5.6)

Note that

∂

∂c1

lnL(T, c) =
1

c1

R1(T )−
∫ T

0

b1(X(s)) ds

hence,

∂

∂c1

L(T, c) = L(T, c)

(
1

c1

R1(T )−
∫ T

0

b1(X(s), c) ds

)
.

Recall that c1 ∈ Ic01 = (c01 − ε, c01 + ε). If c1 ≤ c01,

L(T, c) ≤ exp

(∫ T

0

(c01 − c1)(b1(X(s))− b1(X(s))) ds

)
,

and if c1 ≥ c01,

L(T, c) ≤
(
c1

c01

)R1(T )

.

Hence

L(T, c) ≤ exp

(∫ T

0

(c01 − c0)(b1(X(s))− b1(X(s))) ds

)
+

(
c1

c01

)R1(T )

≤ exp

(
ε

∫ T

0

b1(X(s)) ds

)
+

(
1 +

ε

c01

)R1(T )

.

(5.7)

In the context of Theorem A.3.1, we take G to be

G(c, ω) = f(X(T ))L(T, c),

keep in mind c = c1 a scalar. Then a Lipschitz constant K(ω) for G on the interval

Ic01 is

f(X(T ))

(
R1(T )

c01 − ε
+

∫ T

0

b1(X(s)) ds

)(
exp

(
ε

∫ T

0

b1(X(s)) ds

)
+

(
1 +

ε

c01

)R1(T )
)
.
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We need the above Lipschitz constant to be integrable, so we need integrability on

the following four terms,

f(X(T ))R1(T ) exp

(
ε

∫ T

0

b1(X(s)) ds

)
,

f(X(T ))R1(T )

(
1 +

ε

c01

)R1(T )

,

f(X(T ))

(∫ T

0

b1(X(s)) ds

)
exp

(
ε

∫ T

0

b1(X(s)) ds

)
,

f(X(T ))

(∫ T

0

b1(X(s)) ds

)(
1 +

ε

c01

)R1(T )

.

Using the inequality 3abc ≤ a3 + b3 + c3, it is suffice to impose that

E(|f(X(T ))|)3 <∞, (5.8)

E
(

exp

(
3ε

∫ T

0

b1(X(s)) ds

))
<∞, (5.9)

E
(

1 +
ε

c01

)3R1(T )

<∞, (5.10)

then we have the Lipschitz constant K(ω) is integrable. Also note that under

the above integrability conditions, condition 4 of Theorem A.3.1 from appendix

is immediate. This discussion leads to the following theorem.

Theorem 5.3.1. Assume that the intensity is of the form aj(x, c) = cjbj(x) for

j = 1, · · · ,m and (5.8) (5.9) (5.10) hold true. Then

∂

∂c

∣∣∣∣
c=c01

∫
Ω

f(X(T ))L(T, c) dP (c0) =

∫
Ω

f(X(T ))Z(T ) dP (c0),

where

Z(T ) =
m∑
j=1

∫ T

0

∂aj
∂c

(X(s−, c0), c0)

aj(X(s− c0), c0)
dRj(s)−

m∑
j=1

∫ T

0

∂aj
∂c

(X(s−, c0), c0)ds. (5.11)
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Chapter 6: Sensitivity at the Steady State

In this chapter, we briefly discuss the sensitivity estimation problem at the

steady state. It is a well known result that if the CTMC X(t, c) is irreducible,

aperiodic and positive recurrent, then it has a unique steady state (or stationary)

distribution πc (see [20]). That is, there exists a unique measure on the positive

integer lattice Zn+ such that ∑
x∈Zn+

πc(x) = 1

and

πc(x) = lim
t→∞

P(X(t, c) = x).

Given that a unique steady state of a CTMC X(t, c) exists, the steady state para-

metric sensitivity can be formulated as follows,

∂

∂c

∣∣∣∣
c=c0

πc(f) =
∂

∂c

∣∣∣∣
c=c0

∑
x∈Zn+

f(x)πc(x). (6.1)

6.1 Drift-Diffusivity Condition

In this section, we cite the drift-diffusivity (DD) condition and some results

regarding the long time behavior of the distribution of X(t, c) from [5]. First we

make some special requirement for the state space S: S is the smallest non-empty
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subset of Zn+ satisfying that if x ∈ S and aj(x) > 0 for some j = 1, · · · ,m, then

x+ νk ∈ S. That is, S contains all the points to which the CTMC X(t) can reach.

DD condition: For a strictly positive vector v ∈ Rm, there exist positive constants

c1, c2, c3, c4 and c5 such that for all x ∈ S,

m∑
j=1

aj(x)〈v, νj〉 ≤ c1 − c2〈v, x〉

m∑
j=1

aj(x)〈v, νj〉2 ≤ c3 + c4〈v, x〉+ c5〈v, x〉2.

For this vector v ∈ Rm, define the v-norm

‖x‖v =
m∑
j=1

vj|xj|,

which will be used throughout this chapter. We also define rmax = 1 + 2c2
c5

if c5 > 0

or ∞ if c5 = 0. Under the DD condition, one can show that the rth moment of

X(t, c) is uniformly bounded (in t) and the upper bound is function of initial value

x0 (Theorem 2 in [5]). If we further assume that r < rmax− 1, then the rth moment

of X(t, c) converges to the rth moments of the stationary distribution πc (Theorem 5

in [5]). These results are crucial for establishing the long time behavior of stochastic

reaction networks. For our purpose, we cite the ergodicity result from [5] here.

Theorem 6.1.1. Suppose the DD condition holds and there exists some positive

integer r < rmax such that

f(x) ≤ C(1 + ‖x‖rv)

for all x ∈ Zn+. Then
∑

x∈Zn+
|f(x)|πc(x) < ∞ . Moreover, for any x0 ∈ Zn+, if

X(0, c) = x0, then

lim
t→∞

Ef(X(t, c)) =
∑
x∈Zn+

f(x)πc(x).
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6.2 Asymptotic Correlation

We give the pure death and birth example to motivate our analysis in this

section. The pure death and birth system consists of two reaction channels

S
c1−→ ∅ ∅ c2−→ S

with intensities a1(x) = c1x and a2(x) = c2. For any fixed t0 > 0, we want to see

how the quantity E[X(t)Z(t0)] grows as t → ∞, where Z is the weight process for

the sensitivity of E[X(t)] with respect to c1. Similar to the argument we applied for

the example in Chapter 3, first we write the processes X and Z as

X(t) = X(0)−
∫ t

0

dR1(s) +

∫ t

0

dR2(s)

Z(t) =

∫ t

0

1

c1

dR1(s)−
∫ t

0

X(s)ds.

(6.2)

We define Z ′(t) as follows

Z ′(t) =

∫ t

0

1

c1

I[0,t0]dR1(s)−
∫ t

0

X(s)I[0,t0]ds

Since eventually we will take t→∞, we assume t ≥ t0 and hence by Ito’s formula

X(t)Z ′(t) =

∫ t

0

(X(s−)− 1)(Z ′(s−) +
1

c1

I[0,t0])−X(s−)Z ′(s−)dR1(s)

+

∫ t

0

(X(s−) + 1)Z ′(s−)−X(s−)Z ′(s−)dR2(s)

−
∫ t

0

X2(s−)I[0,t0]ds.

(6.3)

Taking expectation of both sides leads to

E[X(t)Z ′(t)] =−
∫ t

0

c1E[X(s)Z ′(s)]ds−
∫ t0

0

E[X(s)]ds+

∫ t0

0

E[X(s)2]ds

+ c2

∫ t

0

E[Z ′(s)]ds−
∫ t0

0

E[X(s)2]ds

(6.4)
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which can be simplified to

E[X(t)Z ′(t)] = −
∫ t

0

c1E[X(s)Z ′(s)]ds−
∫ t0

0

E[X(s)]ds. (6.5)

The associated ode is

d

dt
E[X(t)Z ′(t)] = −c1E[X(t)Z ′(t)] (6.6)

with initial condition at t = t0 (note Z(t0) = Z ′(t0))

E[X(t0)Z(t0)] = −
∫ t0

0

c1E[X(s)Z(s)]ds−
∫ t0

0

E[X(s)]ds. (6.7)

Hence the solution of (6.5) is

E[X(t)Z ′(t)] = E[X(t0)Z(t0)]e−c1(t−t0). (6.8)

Taking t→∞, we have

E[X(t)Z(t0)]→ 0.

Motivated by the above example, we prove the following result regarding the

asymptotic correlation between X(t) and Z(t0) for a fixed t0 as t→∞.

Theorem 6.2.1. Assume the DD condition and suppose f : S → R is a function

such that for some positive integer r < rmax − 1, there exists a constant C > 0

satisfying |f(x)| ≤ C(1 + ‖x‖rv) for all x ∈ S. For any t0 > 0, the process f(X(t))

is asymptotically uncorrelated with the Z(t0), that is,

lim
t→∞

E[f(X(t))Z(t0)] = 0.

Proof. First we condition the left hand side at Ft0 . By the property of conditional

expectation, we have

E[f(X(t))Z(t0)] = E[Z(t0)E[f(X(t))|Ft0 ]].
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Since X is a Markov process, we can further rewrite the above equation as

E[f(X(t))Z(t0)] = E[Z(t0)E[f(X(t))|X(t0)]].

Now note that Z(t) always have zero mean, hence we can subtract EZ(t0)π(f) from

both sides of the above equation and write

E[f(X(t))Z(t0)] = E[Z(t0)(E[f(X(t))|X(t0)]− π(f))],

where π(f) =
∑

y∈S f(y)π(y). Applying the Cauchy-Schwarz inequality, we have

E[f(X(t))Z(t0)] ≤
√
E[Z(t0)2]

√
E[K(t− t0, X(t0))2], (6.9)

where K(s, x) = E[f(X(s + t0))|X(t0) = x] − π(f). By the proposition S2 in [5],

for a function f which satisfies the above assumption, we have

lim
t→∞

E[f(X(t))|X(0) = x0] = π(f) <∞

for any x0 ∈ S. For any x ∈ S, conditioning on X(t0) = x,

lim
t→∞

K(t− t0, x) = lim
t→∞

E[f(X(t))|X(t0) = x]− π(f) = 0.

That is, limt→∞K(t− t0, X(t0)) = 0 almost surely. On the other hand,

E[f(X(t))|X(t0) = x] ≤ CE[‖X(t)‖rv|X(t0) = x] + C.

By theorem S2 from [5], E[‖X(t)‖rv|X(t0) = x] is bounded uniformly (in t) by a

constant Cr(x). Hence, for any t ≥ 0,

K(t− t0, X(t0)) ≤ C + CCr(X(t0)) + π(f). (6.10)
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It can be shown that Cr(X(t0)) is a polynomial of ‖X(t0)‖v and hence integrable by

theorem S2 from [5]. Applying dominate convergence theorem to K(t − t0, X(t0))

leads to the result.

We will show in next section that this result can be applied to reduce variance

for sensitivity analysis.

6.3 Ensemble-Averaged Correlation Function Method

In this section, we use Theorem 6.1.1 to extend the GT method for steady

state sensitivity estimation, which turns out to be the ensemble-averaged correlation

function method in [30]. Recall that by 6.1.1, under suitable conditions, one can use

the sensitivity at a finite time horizon to approximate the steady state sensitivity,

that is,

lim
t→∞

E(f(X(t, c))) = lim
t→∞

∑
x∈S

f(x)pcx0(t, x) =
∑
x∈S

f(x)πc(x)

where pcx0(x, t) = P(X(t, c) = x|X(0) = x0). For a bounded system (i.e., X(t, c) is

uniformly bounded for any fixed c), we can show that

∂

∂c

∣∣∣∣
c=c0

lim
t→∞

E(f(X(c, t))) = lim
t→∞

∂

∂c

∣∣∣∣
c=c0

E(f(X(c, t))).

Therefore,

∂

∂c

∣∣∣∣
c=c0

πc(f) = lim
t→∞

E(f(X(t, c0))Z(t, c0)). (6.11)

For t large, we expect that E(f(X(t, c0))Z(t, c0)) approximates the steady state

sensitivity. CGT estimator can be used to reduce variance,

∂

∂c

∣∣∣∣
c=c0

πc(f) = lim
t→∞

E((f(X(t, c0))− Ef(X(t, c0)))Z(t, c0)). (6.12)
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To achieve desired accuracy, one has to either simulate longer trajectory (t large) or

run a large amount of trajectories (Ntr). However, the variance of CGT estimator

grows dramatically in terms of the final time t, which makes this approximation not

efficient. To reduce the variance further, note that

∂

∂c

∣∣∣∣
c=c0

πc(f) = lim
t→∞

Ec0 [(f(X(t))− Ef(X(t)))Z(t)]

= lim
t→∞

Ec0 [(f(X(t))− Ef(X(t)))(Z(t)− Z(t0))]

+ lim
t→∞

Ec0 [f(X(t))Z(t0)]

and we can drop the last term because of Theorem 6.2.1. Therefore, for large t,

∂

∂c

∣∣∣∣
c=c0

πc(f) ≈ Ec0 [(f(X(t))− Ef(X(t)))(Z(t)− Z(t0))].

To see why this estimator is better than the original one, note that Z(t) is a mar-

tingale and hence

E(Z(t)− Z(t0))2 = EZ(t)2 + EZ(t0)2 − 2E[Z(t)Z(t0)]

= EZ(t)2 − EZ(t0)2

≤ EZ(t)2

The last equality can be shown by conditioning.

Let us revisit the pure death birth system

S
c1−→ ∅ ∅ c2−→ S

and apply the ensemble-averaged correlation function method to estimate the steady

state sensitivity. It can be shown that the steady state sensitivity of X with respect

to the parameters c1 and c2 are

s1 = −c2

c2
1
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and

s2 =
1

c1

respectively. We set the initial population to be X(0) = 0 and parameters c1 = 0.1,

c2 = 0.05. We fix the terminal time T = 100 and use the sensitivity at T to

approximate the steady state sensitivity. The relaxation time t0 for this network

changes from 0 to 98.

The following Figure 6.1 shows the approximated steady state sensitivity with

respect to c1 and c2. Figure 6.2 compares the variance of the GT, the CGT and

the ensemble-averaged correlation function method. One can easily observe that the

variance of the ensemble-averaged correlation function estimator decays linearly as

the relaxation time t0 increase. However, if we take large t0 to reduce the variance,

we actually increase the bias. This facts can be seen from (6.8), which tells us that

the bias is E[X(t0)Z(t0)]e−c1(t−t0). Therefore, the ensemble-averaged correlation

function suffers a bias-variance trade-off issue. We will not study the optimal choice

of the relaxation time here, we encourage the interested reader to explore this aspect.
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Figure 6.1: Steady state sensitivity of the pure death and birth network. The horizon-

tal axis represents the relaxation time t0 and vertical axis represents the estimated

steady state sensitivity. The blue line shows the true sensitivity when c1 = 0.1,

c2 = 0.05.
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Figure 6.2: Variance of the ensemble-averaged correlation function estimator. The

horizontal axis represents the relaxation time t0 and vertical axis represents the

variance of the estimator.
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Chapter A: Appendix

A.1 Weak Convergence for joint Distribution

We give a theorem regarding the weak convergence of joint distribution.

Lemma A.1.1. Suppose that αn and βn are random variables taking values on a

metric space (S, ρ). If αn ⇒ α and ρ(αn, βn)⇒ 0, then βn ⇒ α.

Proof. See Theorem 3.1 in [7].

Theorem A.1.1. Let Xn and Yn be Rm valued and Rk valued sequences of random

variables on the same sample space. Suppose Xn converges to X in probability where

X is deterministic and Yn ⇒ Y . Then (Xn, Yn)⇒ (X, Y ) in Rm+k.

Proof. Let x ∈ Rm be such that X = x almost surely. First we show that (X, Yn)⇒

(X, Y ). If f : Rm+k → R is bounded and continuous then so is g : Rk → R defined

by g(y) = f(x, y). Since Yn ⇒ Y we have that

E(g(Yn)) = E(f(X, Yn))→ E(g(Y )) = E(f(X, Y )).

Now ‖(Xn, Yn)−(X, Yn)‖ = ‖Xn−X‖ and sinceXn → X in probability, ‖Xn−X‖ →

0 in probability (implies convergence in distribution). Thus by Lemma A.1.1 we have

that (Xn, Yn)⇒ (X, Y ).
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A.2 Novikov Type Criterion

Lemma A.2.1. Let Y be a local martingale such that Y (0) is square integrable and

such that the process ∆Y (t) = Y (t) − Y (t−) is locally bounded, then Y is a locally

square integrable martingale. That is, there exists a localizing sequence τn satisfying

lim τn =∞ such that for each n, Y (t ∧ τn) is a martingale and

sup
t≥0

E(Y 2(t ∧ τn)) <∞.

Proof. Without loss of generality, we assume Y is a martingale. For each t > 0,

write Y (t) = Y (t−) + ∆Y (t). Since ∆Y is locally bounded, there is a localizing

sequence Sn such that ∆Y (t ∧ Sn) is uniformly bounded. Similarly, since Y (t−) is

left continuous, we can use the sequence of stopping time

Tn = inf{t > 0 : X(t−) ≥ n}

to localize it so that it is uniformly bounded. Now for each n, take τn = Tn ∧ Sn, it

is clear that Y (t ∧ τn) is a martingale and supt≥0 E(Y 2(t ∧ τn)) <∞.

Now we state a Novikov type criterion for cadlag martingales from [24]. Also

see [23] and [18] for background.

Theorem A.2.1. (Theorem 9 in [24]) Let Y be a locally square integrable martingale

such that its jump ∆Y > 1. If

E
(
e

1
2
〈Y c,Y c〉(T )+〈Y d,Y d〉(T )

)
<∞, (A.1)
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where Y c and Y d are the continuous and the purely discontinuous parts of Y , 〈·, ·〉

is the predictable quadratic variation process. Then the stochastic exponential of Y ,

denoted by L(t) defined by

L(t) = 1 +

∫
[0,t]

L(s−) dY (s)

is a martingale on [0, T ], where T can be infinity.

A.3 Differentiating Inside an Integral

Theorem A.3.1. (See [4]) Suppose G(c, ω) is a random variable for each c in some

interval of the real line. Let c0 be a specific value of c. Suppose the following hold:

1. For a set of ω with probability one, G(c, ω) is differentiable with respect to c

at c = c0.

2. There exists an interval (cl, cu) containing c0 (independent of ω) on which

G(c, ω) is Lipschitz (in c) for a set of omega with probability one, with constant

K which may depend on ω. That is, for any c1, c2 in the interval (cl, cu), the

following holds:

|G(c1, ω)−G(c2, ω)| ≤ K(ω)|c1 − c2|.

3. E(K) is finite.

4. E(|G(c, ω)|) is finite for all c in (cl, cu).

Then the following holds:

d

dc

∣∣∣∣
c=c0

E(G(c)) = E

(
d

dc

∣∣∣∣
c=c0

G(c)

)
.
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