
APPROVAL SHEET

Title of Thesis: Reclustering for Large Plasticity in Clustered Shape Matching

Name of Candidate: Michael Falkenstein
Computer Science, 2017

Thesis and Abstract Approved:
Adam W. Bargteil
Assistant Professor
Department of Computer Science and
Electrical Engineering

Date Approved:

ABSTRACT

Title of Thesis: Reclustering for Large Plasticity in Clustered Shape Matching

Michael Falkenstein, Computer Science, 2017

Thesis directed by: Adam W. Bargteil, Assistant Professor
Department of Computer Science and
Electrical Engineering

In this thesis, we present a novel contribution to the clustered shape matching frame-

work. Clustered shape matching describes an algorithm introduced a decade ago by Müller

and colleagues (Müller et al. 2005a), which was designed to allow for deformable bod-

ies to behave in a physically plausible way when it comes to collisions, deformations, or

fractures. This is accomplished by sampling the given deformable object with particles

and clustering the particles together in such a way that they can accurately reflect plastic

and elastic deformations in the object. These sampled particles determine the degrees of

freedom present within the object. At each timestep, a best-fit rigid transformation of the

rest of the shape of the object to the current configuration of particles is computed, and

Hookean springs are used to pull the particles towards the transformed shape. Clustered

shape matching algorithms of this nature have proven to be robust enough to offer realistic

physical simulations, while also being efficient enough to run in real-time, offering a level

of interactivity for the user. One limitation of clustered shape matching becomes apparent

during large plastic deformations. Recently, there was a piece of research work published

that extended basic clustered shape matching in an attempt to address this limitation by

dynamically adding and removing clusters and particles. In this thesis, we re-visit this lim-

itation and propose a more careful, principle-driven solution to the problem of reclustering.

Additionally, we show through experimentation that our proposed solution does not change

the behavior of the material of the sampled object. Furthermore, we demonstrate that the

particle reclustering is sufficient in our framework to handle extremely large plastic defor-

mations, allowing us to easily conserve the mass of the object. Lastly, we present a concrete

example, highlighting an error in estimating rotations in the original shape matching work

of Müller and colleagues (Müller et al. 2005a) that has persisted for over a decade through

other followup work in shape matching.

Reclustering for Large Plasticity in Clustered Shape

Matching

by

Michael Falkenstein

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Computer Science

2017

c© Copyright Michael Falkenstein, 2017

To The Call, and to Nubby

ii

ACKNOWLEDGMENTS

I would like to thank my thesis adviser, Adam Bargteil, whose door was alwats open

whenever I ran into trouble in my research. He allowed my paper to be my own work,

but provided guidance whenever necessary. I would also like to thank Caroline, for the

constant support through my time at UMBC, and above all, I’d like to thank my parents for

giving me this amazing education.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

Chapter 1 INTRODUCTION . 1

Chapter 2 BACKGROUND . 3

2.1 Related Work . 3

2.1.1 Clustered Shape Matching . 6

2.1.2 Shape Matching . 6

2.1.3 Clustered Shape Matching . 8

2.1.4 Clustering . 9

2.1.5 Clustered Shape Matching . 12

2.1.6 Shape Matching . 12

Chapter 3 METHODS . 19

3.0.1 The Best Rotation . 19

iv

3.0.2 Reclustering . 21

Chapter 4 RESULTS . 26

Chapter 5 CONCLUSION . 30

REFERENCES . 32

v

LIST OF TABLES

4.1 Timing results in ms per frame taken on a Macbook Pro with a 2.5 Ghz

Intel i7 processor. 27

vi

LIST OF FIGURES

1.1 Shape Matching Overview: (a) An object (here, a square) is sampled with

particles, pi, to get rest positions, ri. (b) As particles are subjected to exter-

nal forces and constraints, their positions, xi, are updated in world space.

(c) The best-fitting rigid transformation of the particles’ rest positions, ri,

to their world positions, xi, is computed. The dotted red circles are the goal

positions, gi. (d) Hookean springs pull the world positions toward the goal

positions. 2

2.1 A cube is stretched between two planes. The planes slowly rotate away

from each other, but the cube stretches, adding more particles into under-

sampled areas, maintaining stability without fracturing. 4

2.2 Top: The particles in one of our scenes color-coded by the closest cluster.

Bottom: The collision geometry for the same scene. 18

4.1 A beam is compressed. Left: A highly plastic beam. Right: More elastic

deformation. Colors indicate the closest cluster center. Grey particles are

in their original clusters. 27

4.2 Decreasing number of clusters from left to right. As the number of clusters

decreases the apparent stiffness increases. The leftmost bars are visually

almost indistinguishable. 28

4.3 A twisted plastic beam. Colors indicate the closest cluster center. Grey

particles are in their original clusters. 28

vii

1

Chapter 1

INTRODUCTION

Shape matching is a geometrically motivated technique for animating deformable bod-

ies introduced a decade ago by Müller and colleagues (Müller et al. 2005b). 1.1 summa-

rizes the approach. The basic approach samples a deformable object with particles, which

determine the degrees of freedom in the object. Each timestep, a best-fit rigid transforma-

tion of the rest shape of the object to the current configuration of particles is computed and

Hookean springs are used to pull the particles toward the rigidly transformed shape. A pow-

erful extension to this basic approach, also introduced by Müller and colleagues (Müller

et al. 2005b), is to break the object into several overlapping clusters. We refer to this ap-

proach as clustered shape matching. Having more than one cluster imbues the object with

a richer space of deformation, while overlap keeps the object from falling apart. While this

approach lacks a well-developed mathematical underpinning, it has a number of advan-

tages that make it especially well-suited to interactive graphics applications, such as video

games.

Recently, Chentanez and colleagues (Chentanez, Müller, & Macklin 2016a) extended

basic clustered shape matching with the ability to dynamically add and remove clusters and

particles. These extensions allow them to handle extremely large plastic deformations that

otherwise cause previous approaches (Jones et al. 2016a) to fail. In this paper, we revisit

2

FIG. 1.1. Shape Matching Overview: (a) An object (here, a square) is sampled with par-
ticles, pi, to get rest positions, ri. (b) As particles are subjected to external forces and
constraints, their positions, xi, are updated in world space. (c) The best-fitting rigid trans-
formation of the particles’ rest positions, ri, to their world positions, xi, is computed. The
dotted red circles are the goal positions, gi. (d) Hookean springs pull the world positions
toward the goal positions.

this problem and propose an alternative approach to reclustering that is more robust in the

presence of elastic deformation. We also experimentally verify that our approach converges

as the number of clusters increases, suggesting that our reclustering approach does not

change the underlying material properties. Further, we demonstrate that particle resampling

is not strictly necessary in our framework allowing us to trivially conserve volume. Finally,

we highlight an error in estimating rotations in the original shape-matching work (Müller

et al. 2005b) that has been repeated in much of the follow up work.

Chapter 2

BACKGROUND

In this section, we will first review the relevant related work and provide a brief

overview of the clustered shape matching technique before detailing my reclustering ap-

proach in later sections.

2.1 Related Work

The technique known as shape matching is a geometrically motivated approach to sim-

ulating plastic and elastic deformations in objects that was first proposed by (Müller et al.

2005a). Through the use of the shape matching approach, Müller and colleagues were able

to achieve impressive final results, describing the key advantages of using shape match-

ing: efficiency, stability, and controllability. Their examples demonstrated that the shape

matching simulation could be interactively run in real-time, allowing the user to provide

input to the simulation while it was running. Even during simulations with many particles,

clusters, and forces, the shape matching system was able to remain stable, consistently pro-

ducing physically viable results. Given these advantages, shape matching was especially

appealing to those interested in interactive animation contexts such as video games or other

interactive 3D graphics, as it could create a deformable, manipulatable physical body that

could be accurately simulated without impacting performance. Müller and colleagues also

3

4

introduced several useful extensions to the simple shape matching system, including lin-

ear and quadratic deformation solvers, rigid deformations, cluster-based deformation, and

plastic deformations. These extensions further improved the flexibility and stability of the

original shape matching solver.

Two years later, Rivers and James (Rivers & James 2007a) introduced a lattice-based

shape matching technique, which used a set of hierarchical 3D lattices to define the shape

matching clusters. In their work, they described taking advantage of the regular structure of

the lattices in order to achieve extremely high performance, being able to run in real time

even on very large, complicated objects. The following year, Steinemann (Steinemann,

Otaduy, & Gross 2008a) adopted the lattice-based approach proposed by Rivers and James

and altered it slightly such that it could support octrees, enabling spatial adaptivity. This

technique relied upon hierarchical sampling and interval-based region definition in order

to obtain an accurate, stable definition of the 3D model. Even more recently, Bargteil and

Jones (Bargteil & Jones 2014a) further extended the shape matching paradigm by incor-

porating strain limiting. In their work, they describe how, by limiting the strain of each

particle to a pre-determined ceiling, their approach could reduce to explicit integration un-

der small particle strains, while still remaining stable even in the presence of nonlinearities.

In a follow-up work published the next year, Jones (Jones et al. 2015a) implemented im-

FIG. 2.1. A cube is stretched between two planes. The planes slowly rotate away from each
other, but the cube stretches, adding more particles into undersampled areas, maintaining
stability without fracturing.

proved particle clustering strategies, including “fuzzy” clustering, in which particles are

not strictly limited to belonging to one cluster, but instead could belong to many clusters

simultaneously, offering a portion of their physical properties to each. This new technique

allowed for greater stability, as well as introduced simple collision proxies for the particle

clusters, further increasing efficiency. Jones and colleagues (Jones et al. 2016b) again later

revisited the clustered shape matching system in order to implement ductile fracturing, such

that sampled objects could be deformed significantly before breaking, creating a visually

appealing and physically viable stretch, followed by a break.

In order to improve stability for non-volumetric objects, such as seashells or narrow

strands of cloth, as well as to simplify sampling, Müller and Chentanez (Müller & Chen-

tanez 2011a) extended the basic shape matching system in order track particle orientation

in addition to other physical characteristics. This allowed for particle sampling to remain

stable when animating extremely thin objects, such as clothing or hair that is attached to an

animated character. The improved particle orientation tracking maintained the efficiency

of previous solutions, while extending its applications to these non-volumetric 3D objects.

Most recently, Chentanez and colleagues (Chentanez, Müller, & Macklin 2016b) intro-

duced a method of re-sampling objects as they become too extremely deformed. The goal

of this work was to address the issue of under-sampling of areas as they become heavily

warped. For example, if a an object stretches too far beyond its rest position, the area in

which it is stretched could have too few particles to accurately simulate the object’s prop-

erties. Chentanez and colleagues offered a technique for re-sampling of the object as well

as re-clustering in order to address this issue at runtime. The result was a stable, effi-

cient shape matching extension that could simulate heavily deformed bodies, but made no

attempt to conserve mass within these deformed regions of the object.

5

6

2.1.1 Clustered Shape Matching

In the interest of keeping this thesis as self-contained as possible, this section will

provide a brief overview of the shape matching approach that was originally proposed by

Müller and colleagues (Müller et al. 2005a), as well as the relevant extensions created

by Bargteil, Jones, and colleagues (Bargteil & Jones 2014a; Jones et al. 2015a; 2016b)

before introducing the new plasticity and fracture models. Finally, we will briefly discuss

our approaches to sampling and clustering in the context of the shape matching algorithm.

2.1.2 Shape Matching

In the shape matching framework, continuous, physical objects must first be dis-

cretized into a finite set of particles, pi ∈ P , with masses, mi, and rest positions, ri,

that follow a path, xi(t). This path is defined in real-world space as a function of time.

Shape matching takes its name from the idea that, on each computational step, we match

the original rest shape to the current, deformed shape by finding the least-squares best-fit

rigid transformation from the rest pose the the deformed pose. This is accomplished by

solving for the rotation matrix R and translation vector x̄− r̄ that minimizes the equation

∑
i

mi‖R (ri − r̄)− (xi − x̄) ‖2. (2.1)

The best translation is therefore simply given by the difference of the center-of-mass in rest

(r̄) and world (x̄ space. This translation is simple, fast, and straightforward to compute.

However, computing the rotation matrix R is considerably more complex and involved.

Firstly, the least-squares best-fit linear deformation gradient F must be computed. More

7

specifically, we seek the F that minimizes the equation

∑
i

mi‖F (ri − r̄)− (xi − x̄) ‖2. (2.2)

Setting the derivative of this equation with respect to F to 0 and re-arranging the terms, the

equation can be rewritten as

F =

(∑
i

miO(xi, ri)

)(∑
i

miO(ri, ri)

)−1
= AxrA

−1
rr , (2.3)

where O(·, ·) is the outer product matrix

O(ai,bi) = (ai − ā)
(
bi − b̄

)T
. (2.4)

For this thesis, we will use A∗∗ is a convenient shorthand. From here, we can compute R

using the polar decomposition

F = RS =
(
UVT

) (
VΣVT

)
(2.5)

where S = VΣVT is a symmetric matrix and UΣVT is the singular value decomposition

(SVD) of F, our least-squares best-fit linear deformation gradient. While several other

research works (e.g. (Rivers & James 2007a)) have noted that such a polar decomposition

can be computed more efficiently than the single value decomposition, especially when

warm started, we opt for the SVD for its robustness. It also will be used later in our

plasticity model.

Now, given R and x̄− r̄, we define goal positions, gi, as

gi = R (ri − r̄) + x̄. (2.6)

8

Hookean springs are then simulated to create forces that pull the particles towards

their goal positions.

2.1.3 Clustered Shape Matching

The motivation behind discretizing a continuous object into particles, and then break-

ing those particles into clusters is that it allows for rich, physically accurate, localized

deformations of the object. Fortunately, working with a large number of clusters of parti-

cles is relatively straightforward, despite the complication that we allow a single particle

to belong to more than one cluster. When computing a particle’s contribution to any given

cluster property, the particle’s mass is divided amongst the clusters of which it is a member.

More specifically, for any given particle pi in a cluster c ∈ C, we introduce a weight wic

that describes for much of pi’s mass contributes to the cluster c. From here, mi is replaced

with wicmi in equations (2.16) - (2.18) when computing mass and center-of-mass for a

cluster. So, if a particle pi belongs to ni clusters, then the center-of-mass of a cluster c, x̄c,

isFp = 0.

x̄c =

∑
pi∈Pc

(wicmi) xi∑
pi∈Pc

(wicmi)
, (2.7)

where Pc is the set of all particles that belong to cluster c. Furthermore, when computing

the goal position of particle pi, denoted as gi, we perform a weighted average of the goal

position given by each cluster to which is belongs. This weighted average is computer as

gi =
∑
c

wic gic, (2.8)

where gic is the goal position for particle pi in cluster c.

9

2.1.4 Clustering

For this thesis work, we use the clustering method originally proposed by Jones and

colleagues (Jones et al. 2015a). The proposed method is a slight variation of the fuzzy

c-means clustering algorithm, whose goal is to produce overlapping clusters where each

member particle may belong to several clusters simultaneously, to varying degrees. Sim-

ilar to the well-known k-means clustering technique, fuzzy c-means alternates between

updating the particle-cluster membership relationship and updating each cluster’s center-

of-mass. In this scenario, updating cluster membership involves also updating the weights,

wic, as well as the cluster centers-of-mass, which are computed using the weighted center-

of-mass of each member particle. In their work, Jones and colleagues discuss several dif-

ferent weighting functions, the affect of cluster size, the degree of overlap, as well as other

factors to consider. In their work, the authors settle on the fuzzy c-means weighting func-

tion defined by (Dunn 1973)

fcm(xi,xc, h) =
1∑

d∈C

(
‖xi−xc‖
‖xi−xd‖

) 2
m−1

(2.9)

Additionally, the authors experimented on a range of cluster sizes, ranging from 10 to 50

particles. Lastly, the degree of overlap was also explored. The conclusion of this work was

that all three have significant impact on the end behavior of the material, and each must be

chosen manually in order to find the optimal fit for each simulation.

Strain Limiting To maintain stability during the simulation’s runtime, we in-

clude the strain limiting approach proposed and advocated by Bargteil and Jones (Bargteil

& Jones 2014a). However, in this implementation we also include large plastic deforma-

tions. In the presence of extreme plastic warping, as proposed in their work, typically the

maximum allowed stretch (γ in their work) is increased. This was found experimentally

10

to improve stability of the simulation when two adjacent clusters create opposing forces as

they disagree about the current rest shape.

Collision Handling Again, we leverage the collision handling approach pro-

posed by Jones and colleagues (Jones et al. 2015a) for fast, accurate collision solving.

As discussed in their work, collision proxies are created using spheres intersected with

half-spaces for each cluster. This approach is very appropriate to this application, as the

fracture approach we use functions by dividing the clusters in an object along 3D planes.

This approach works because we include the distance constraint during clustering. That is,

a cluster is defined by user input as particles within a certain distance of the cluster’s center.

This means a cluster’s shape can be generally well approximated by spheres. This approach

works well in volumetric objects, but can produce poor results in the case of thin sheets or

narrow strands of clothing. The solution proposed by Jones and colleagues was to supple-

ment the sphere approximation with plane approximation for sufficiently thin objects. We

also use this technique to create a robust but easily simulated collision geometry.

Sampling Geometry Since the shape matching technique begins by discretiz-

ing a single object into many particles, the approach to the particle sampling has a consid-

erable impact on the the resulting simulation. Typically, geometry sampling can either be

done on a regular grid, or randomly, usually following a noise scheme. The regular grid

heuristic has the advantage of being very fast and stable for geometric objects, with few

faces and sharp angles, such as cubes, pyramids, and other euclidean solids. Using blue

noise to generate particle locations has the advantage of being much more flexible, as it

can more easily capture curves or small angles of an object. Through experimentation, we

found a blue noise sampling technique produced the best results. The blue noise sampler

that we implemented is based on Bridson’s fast Poisson disk sampling (Bridson 2007a).

11

For objects whose boundaries are defined by an arbitrary manifold, we simply sample par-

ticles withing the bounding box of the object, and discard particles that are found to be

outside the object’s surface.

Plasticity The approach to plastic deformation used in this thesis adapts the

model proposed by Bargteil and colleagues (Bargteil et al. 2007) to fit into the clustered

shape matching framework. To accomodate plastic deformation, we store and update an

addition matrix for each cluster c, denoted as Fp
c . In the interest of readability, we drop the

subscript, but the following equation is computer for each cluster in the system

Fe = F (Fp)−1 , (2.10)

where F is given by(2.18). we then decompose Fe in (2.20). Fp is initialized as the identity

matrix I, then each computational timestep we compute the volume preserving part of the

diagonalized Fe as

F∗ = det(Σe)−1/3Σe. (2.11)

From here, we compare

‖F∗ − I‖F (2.12)

to a pre-determined plastic yield threshold, denoted λ, where ‖ · ‖F is the Frobenius norm.

If this threshold is not exceeded, then Fp remains unchanged on this step. However, if this

threshold is exceeded, then Fp is updated using the equation

Fp
new = (F∗)γ VFp

old, (2.13)

12

where V is the matrix of right singular vectors in (2.20) and γ is computer as

γ = min

(
ν ∗ ‖F∗ − I‖F − λ−Kα

‖F∗ − I‖F
, 1

)
, (2.14)

where ν and K are user-determined flow rate and work hardening/softening constants,

respectively. Also here, α is a measure of cumulative stress that is initialized to zero, and

then updated using the equation

α̇ = ‖Fe − I‖F . (2.15)

Typically, additional left-hand rotations would be applied during these calculations. How-

ever, since we perform a polar decomposition in (2.20), these rotations would be discarded,

and so there is no need to compute them here.

2.1.5 Clustered Shape Matching

For completeness and readability, we first briefly review the shape matching approach

of Müller and colleagues (Müller et al. 2005b) and the extensions of Bargteil, Jones, and

colleagues (Bargteil & Jones 2014b; Jones et al. 2015b; 2016a) before introducing our

plasticity and fracture models. Finally we briefly discuss our approaches to sampling and

clustering.

2.1.6 Shape Matching

In the shape matching framework objects are discretized into a set of particles, pi ∈ P ,

with masses, mi, and rest positions, ri, that follow a path, xi(t), in world-space through

time. Shape matching takes its name from the fact that, each frame, we match the rest shape

to the deformed shape by finding the least-squares best-fit rigid transformation from the rest

pose to the current deformed pose by solving for the rotation matrix, R, and translation

13

vector, x̄− r̄, that minimizes

∑
i

mi‖R (ri − r̄)− (xi − x̄) ‖2. (2.16)

The best translation is given by the center-of-mass in the rest (r̄) and world (x̄) space.

Computing the rotation, R, is more involved. We first compute the least-squares best-fit

linear deformation gradient, F. Specifically, we seek the F that minimizes

∑
i

mi‖F (ri − r̄)− (xi − x̄) ‖2. (2.17)

Setting the derivative with respect to F to 0 and re-arranging terms we arrive at

F =

(∑
i

miO(xi, ri)

)(∑
i

miO(ri, ri)

)−1
= AxrA

−1
rr , (2.18)

where O(·, ·) is the outer product matrix

O(ai,bi) = (ai − ā)
(
bi − b̄

)T
, (2.19)

and A∗∗ is a convenient shorthand.

We then compute R using the polar decomposition,

F = RS =
(
UVT

) (
VΣVT

)
(2.20)

where S = VΣVT is a symmetric matrix and UΣVT is the singular value decomposition

(SVD) of F. While several researchers (e.g. (Rivers & James 2007b)) have pointed out that

polar decompositions can be computed faster than the SVD, especially when warm started,

we use the SVD for its robustness and for our plasticity model (see 2.1.6).

14

Given R and x̄− r̄, we define goal positions, gi, as

gi = R (ri − r̄) + x̄. (2.21)

Hookean springs are then used to define forces that move the particles toward the goal

positions.

Clustered Shape Matching Breaking an object into multiple overlapping clusters

allows for richer and more localized deformations. Fortunately, handling multiple clusters

is straightforward. When computing a particle’s contribution to cluster quantities, we di-

vide the particle’s mass among the clusters to which it belongs. For a particle pi in cluster

c ∈ C we introduce a weight wic that describes how much of pi’s mass is contributed to

cluster c and replace mi with wicmi in equations (2.16)-(2.18) and when computing clus-

ter mass and center-of-mass. Specifically, if particle pi belongs to ni clusters, then the

center-of-mass of cluster c, x̄c, is

x̄c =

∑
pi∈Pc

(wicmi) xi∑
pi∈Pc

(wicmi)
, (2.22)

wherePc is the set of particles in cluster c. Furthermore, when computing the goal position,

gi, for a particle we perform a weighted average of the goal positions given by each cluster

to which it belongs. That is,

gi =
∑
c

wic gic, (2.23)

where gic is the goal position for particle pi in cluster c.

Clustering We use the clustering method of Jones and colleagues (Jones et al.

2015b). This method is a variation of the fuzzy c-means algorithm and produces overlap-

ping clusters where each particle may belong to several clusters to varying degrees. As

15

in the popular k-means clustering algorithm, this algorithm alternates between updating

cluster membership and updating cluster centers. However, updating membership involves

updating weights, wic, and cluster centers are the weighted center-of-mass of members.

Please see Jones and colleagues (Jones et al. 2015b) for more details including analysis of

different weighting functions, varying cluster size, degree of overlap, etc.

Strain Limiting To maintain stability we adopt the strain limiting approach

advocated by Bargteil and Jones (Bargteil & Jones 2014b). However, in the presence of

plastic deformation (see 2.1.6) we typically increase the maximum allowed stretch (γ in

their paper) to avoid instabilities when clusters disagree about the current rest shape.

Collision Handling We use the approach of Jones and colleagues (Jones et al.

2015b) for handling collisions. Their approach uses spheres intersected with half-spaces as

collision proxies for clusters, which is very well-suited to our fracture approach that divides

clusters with planes.

Sampling Geometry The distribution of particles that model an object affects

the resulting simulation. We experimented with both grid-based and blue noise sampling

and preferred the results from blue noise over the highly structured grid-based sampling.

Our blue noise sampler is based on Bridson’s fast Poisson disk sampling (Bridson 2007b).

In both cases, for an object whose boundary is an arbitrary manifold, we simply sample

particles within the bounding box of the object and discard particles outside the surface.

Plasticity Our approach to plastic deformation adapts the model of Bargteil and

colleagues (Bargteil et al. 2007) to the clustered shape matching framework. To accom-

modate plastic deformation we store and update an additional matrix, Fp
c , for each cluster,

c. For readability we drop the subscript, but the following is computed for each cluster. We

16

then compute the elastic part of the deformation gradient

Fe = F (Fp)−1 , (2.24)

where F is given by 2.18. We then decompose Fe as in 2.20.

Fp is initialized to the identity, I. Then each timestep we compute the volume pre-

serving part of the diagonalized Fe,

F∗ = det(Σe)−1/3Σe. (2.25)

We then compare

‖F∗ − I‖F (2.26)

to a plastic yield threshold, λ, where ‖ · ‖F is the Frobenius norm. If the threshold is not

exceeded, Fp remains unchanged. Otherwise, we update Fp by

Fp
new = (F∗)γ VFp

old, (2.27)

where V is the matrix of right singular vectors in 2.20 and γ is given by

γ = min

(
ν ∗ ‖F∗ − I‖F − λ−Kα

‖F∗ − I‖F
, 1

)
, (2.28)

where ν and K are user-given flow rate and work hardening/softening constants, respec-

tively, and α is a measure of cumulative stress that is initialized to zero and then updated

by

α̇ = ‖Fe − I‖F . (2.29)

We do not apply additional left-hand rotations when computing Fp
new as these would be

17

discarded during the decomposition in 2.20.

We note that, in the presence of plasticity, the optimal rotation R should be found by

taking the polar decomposition of the elastic part of the deformation gradient,

Fe = AxrA
−1
rr (Fp)−1 (2.30)

and that when computing goal positions we must account for the plastic deformation

gi = RFp (ri − r̄) + x̄. (2.31)

Regrettably, these details were omitted by Jones and colleagues (Jones et al. 2016a).

18

FIG. 2.2. Top: The particles in one of our scenes color-coded by the closest cluster.
Bottom: The collision geometry for the same scene.

19

Chapter 3

METHODS

3.0.1 The Best Rotation

We begin by explicitly highlighting an error in early shape matching work. Mueller

and colleagues (Müller et al. 2005b) mistakenly stated that because Arr is symmetric

it does not affect the rotation, R, which leads them to compute the rotation from Axr,

ignoring Arr. This produces the same rotation as the polar decomposition of F if Arr is

diagonal or F has a condition number of 1. However, if Arr is not diagonal and F includes

a non-uniform scale, the polar decompositions of Axr and F result in different rotations.

To make this clear we consider a concrete example. For Arr to be non-diagonal, we

have to have some asymmetry of our shape with respect to the reference coordinate system.

So we consider a two-dimensional rectangle aligned with the x = y axis. Specifically we

sample the four corners: (1, 3), (3, 1), (−1,−3), and (−3,−1). The basis matrix is then

Arr =

20 12

12 20

−1 =
1

64

 5 −3

−3 5

 . (3.1)

20

If we stretch our rectangle by a factor of 2 in the x dimension, then

Axr =

40 24

12 20

 , (3.2)

which is not symmetric. The polar decomposition of Axr yields

R =

 .9806 −.19611

.19611 .9806

−1 , (3.3)

when in fact the transformation contained no rotation.

F = AxrArr =

2 0

0 1

 , (3.4)

recovers the transformation. This error has persisted in the shape matching litera-

ture (Rivers & James 2007b; Steinemann, Otaduy, & Gross 2008b; Müller & Chentanez

2011b; Choi 2014). In practice, the error is probably not very significant. After all artists

generally align symmetries of their models with the coordinate axes resulting in Arr ma-

trices that are nearly diagonal and the object in our example is going to begin rotating as

it undoes the deformation anyway. Indeed, in our experiments we were unable to pro-

duce an example where the incorrect rotation produced visually implausible results. More

significantly, the assumption that the polar decomposition of Axr yields the optimal rigid

rotation is the motivation for the elaborate plasticity model developed by Choi (Choi 2014)

and adopted by Chentanez and colleagues (Chentanez, Müller, & Macklin 2016a). Conse-

quently we adopt the simpler plasticity model of Jones and colleagues (Jones et al. 2016a),

which is based on the correct rotation. As noted above, in the presence of plasticity, the

optimal rotation is computed from the polar decomposition of Fe.

21

3.0.2 Reclustering

When an object undergoes plastic deformation its rest state will in general no longer

be embeddable in three-dimensional space. While for modest plastic deformations this fact

can be encoded by storing per-cluster plastic offsets (Fp), under large plastic deformations

it no longer makes sense to store rest positions of particles. Instead, for each cluster we store

the relative position of each member particle to the cluster center, that is pic replaces ri− r̄

throughout. This modification saves computation time but does require additional storage.

Another view is that the rest center-of-mass of each cluster is at the origin. Chentanez and

colleagues (Chentanez, Müller, & Macklin 2016a) adopted the same storage.

Cluster Removal We remove clusters when the condition number of their Fp ma-

trix reaches a threshold indicating that the rest state of the cluster has become significantly

distorted. This trigger is similar to the approach of Bargteil and colleagues (Bargteil et

al. 2007) who globally remeshed whenever an individual tetrahedron’s condition number

exceeded a threshold, but diverges from the approach of Chentanez and colleagues (Chen-

tanez, Müller, & Macklin 2016a) who used the Frobenius norm of Fp or particle mem-

bership statistics to trigger cluster removal. The Frobenius norm measures the absolute

magnitude of Fp, which is quite limited because, to preserve volume, det Fp = 1. In con-

trast, the condition number measures the relative squash and stretch induced on the rest

space by Fp, making it a more appropriate measure of the cluster’s condition. Moreover,

because we must invert Fp, numerical problems will arise as Fp becomes singular. By

removing clusters when the condition number of Fp is large, we avoid singular matrices.

Once a cluster is marked for removal it gradually fades out over a user-specified num-

ber of timesteps by gradually reducing the weights wic. The mass of particles that were

members of the cluster is gradually redistributed to other clusters as the denominator in 2.17

gradually decreases. Changing weights shifts cluster centers, which requires updating rel-

22

ative positions of cluster members to keep the center of mass at the origin.

Cluster Addition When adding clusters, we iterate over the particles. Any particle

that soon will not be a member of any cluster (i.e. all its clusters are marked for removal)

is chosen as a seed location for a new cluster. We then perform a local embedding of

the rest space into an embedded space and then optimize the position of the cluster in this

embedded space. We first describe the optimization we use to compute embedded locations,

then how we determine which clusters and particles are embedded, and finally the cluster

optimization.

Embedding Optimization There are a number of viable spaces in which to

add new clusters. Chentanez and colleagues (Chentanez, Müller, & Macklin 2016a) add

new clusters in world space, including as members any particles that fall within a specified

radius. This approach is analogous to the world space remeshing performed by Bargteil

and colleagues (Bargteil et al. 2007). As pointed out by Wicke and colleagues (Wicke et

al. 2010) this approach is problematic if there are large elastic deformations and world

space differs greatly from the minimum-stress configuration of the object. Consequently,

they perform a non-linear optimization to achieve a minimum-stress configuration and per-

form remeshing in this configuration. Notably, they used a local remeshing algorithm that

avoided the smoothing caused by the global wholesale remeshing employed by Bargteil and

colleagues (Bargteil et al. 2007). More recently, Jones and colleagues (Jones et al. 2014)

proposed linearizing the optimization problem, finding the best least-squares embedding

into three-dimensional space and performing nearest neighbor queries in this embedded

space. In our case, we seek embedded positions ei and ec for particles and clusters, respec-

23

tively that minimize the elastic energy. Specifically,

arg min
ei,ec

∑
i,c

wic‖RFp
cpic − (ei − ec) ‖2. (3.5)

To optimize 3.5 we use the strain limiting approach of Bargteil and colleagues (Bargteil &

Jones 2014b) with the maximum allowed stretch (γ) set to zero. This approach is also very

similar to most position-based dynamics implementations (Müller et al. 2007). Twenty

Jacobi iterations seems to be more than sufficient to find a good embedding. We consider

the optimization converged when the sum of the squared change in particle positions is

10−8 times that in the first iteration. We did not experiment with alternative solvers or

convergence criteria.

We initially experimented with linearizing 3.5 as Jones and colleagues (Jones et al.

2014) did, which amounts to ignoring the rotation, R and results in three decoupled n× n

linear systems (where n is the sum of the number of particles and the number of clusters).

However, we found that this approach yielded poor embeddings—the magnitude of the sum

in 3.5 was roughly two orders of magnitude larger than our nonlinear optimization.

Local Embedding Jones and colleagues (Jones et al. 2014) performed a global

embedding because all particles in their simulation needed to update their neighbor lists.

In our case we seek to add a single cluster at a time. Consequently we compute a local

embedding that is likely to contain all the particles in the system that would be inside the

cluster in embedded space. Intuitively, we find the set of all the clusters that contain the

candidate particle and their neighboring clusters, where “neighbors” is defined as sharing a

particle, and all the particles in these clusters. Specifically, if Pc is the set of particles that

are members of cluster c, and Cp is the set of clusters of which our candidate particle, p, is

24

a member then the set of clusters to embed, Ce, is

Ce = Cp ∪ {c ∈ C | (∃d ∈ Cp) (∃q ∈ c) [q ∈ d]} (3.6)

and the set of particles to embed, Pe, is

Pe = {q ∈ P | (∃c ∈ Ce) [q ∈ c]}. (3.7)

Cluster Optimization Once we have computed embedded positions, we ini-

tialize a new cluster center at the candidate particle’s position in embedded space and run

the same clustering optimization (see 2.1.6) as during initialization holding all other cluster

centers and weights fixed. In a small number of iterations the cluster center settles into a

locally optimal position. It is critical that the weights reflect the eventual state of clusters

being removed or added, not the current state; if a cluster has been marked for removal, its

weights should be treated as zero during the optimization and if a cluster is being added,

its weights should be treated as though the cluster had fully faded in.

Like Chentanez and colleagues (Chentanez, Müller, & Macklin 2016a) we initialize

Fp = 0. Because our embedding optimization results in small embedding error, residual

plastic deformation is low, making zero a reasonable approximation. We do not need to

estimate Fe because the elastic deformation is already, and more accurately, defined by the

mapping from embedded space to world space. As with removing clusters, we gradually

increase the weight of the new cluster over several timesteps. Once a cluster is added we

continue iterating through the particles looking for additional candidate clusters. A particle

may be a candidate at the beginning of this loop and be added to another cluster before

becoming a candidate initialization point. Particles could be periodically shuffled to avoid

this bias. Also note that a particle being selected as a seed location for a cluster does not

25

ensure the particle ends up inside the cluster. However, in our experiments, particles are

added to clusters after a few timesteps. Because of this fact, removed clusters fade out over

more timesteps than added clusters fade in.

26

Chapter 4

RESULTS

We begin with two didactic examples to demonstrate the robustness of our approach.

In these examples a compression force is applied to a beam for 4 seconds and released.

Specifically at position (x, y, z) the force is a f(x, y, z) = s · (−x, 0.0, 0.0) for some scale

factor, s. In our first example the plastic yield threshold, λ, is set to zero, so that all volume

preserving deformation is plastic. In the video results we can observe that without recluster-

ing the simulation becomes unstable. In the second example we increased the scale factor,

s, and set λ = 0.1 to allow for some elastic deformation. In the accompanying video we

compare our approach to an approach that reclusters in world space and selects new cluster

centers from among the particles that are not in the minimum number of clusters. This

second approach is similar to, but not identical to Chentanez and colleagues (Chentanez,

Müller, & Macklin 2016a), because we do not compute an estimate for Fe from neigh-

boring clusters. The final frame from these examples using our approach are shown in

figure 4.1. Without optimization the embedding space or the cluster location the simulation

again goes unstable. Quantitative results using our unoptimized research code are given

in 4.1. Compared to no reclustering the highly plastic example our reclustering algorithm

roughly doubles the cost of the simulation. This cost could probably be reduced by tuning

optimization convergence thresholds, which we left at conservative values. Our approach

27

FIG. 4.1. A beam is compressed. Left: A highly plastic beam. Right: More elastic de-
formation. Colors indicate the closest cluster center. Grey particles are in their original
clusters.

Table 4.1. Timing results in ms per frame taken on a Macbook Pro with a 2.5 Ghz Intel i7
processor.

Example # Particles # Clusters Dynamics Plasticity Reclustering Total
Beam (no reclustering) 5317 200 2.07 0.07 0 16.17
Beam (our algorithm) 5317 200 2.13 0.07 19.12 38.21
Beam (no optimization) 5317 200 0.65 0.09 19.64 37.61
Beam (our algorithm) 5317 200 0.49 0.04 3.65 14.17

is faster when there is less plastic deformation and, thus, less need for reclustering, when

we increased the plastic yield threshold, the cost of reclustering was reduced by more than

a factor of 5.

In 4.3 we demonstrate the effect of increasing the number of clusters. As the num-

ber of clusters increases the simulation “converges” in the sense that it approaches some

behavior. Our final example is of a twisted plastic beam.

28

FIG. 4.2. Decreasing number of clusters from left to right. As the number of clusters
decreases the apparent stiffness increases. The leftmost bars are visually almost indistin-
guishable.

FIG. 4.3. A twisted plastic beam. Colors indicate the closest cluster center. Grey particles
are in their original clusters.

29

Limitations and Future Work A limitation of our approach when compared

to Chentanez and colleagues (Chentanez, Müller, & Macklin 2016a) is that we do not add or

remove particles. While this choice trivially preserves volume it does not allow us to adap-

tively sample our objects, focusing more computational resources on visually interesting

areas of the scene. We also do not have a surface tracking module and render our particles

directly. We could employ the method of Bhattacharya and colleagues (Bhattacharya, Gao,

& Bargteil 2011; 2015) to skin the particles. We could also use moving least square to

embed a surface mesh, though in this case the mesh may tangle under very large plastic

deformations.

30

Chapter 5

CONCLUSION

One of the primary advantages of using the clustered shape matching framework is

that the number of degrees of freedom far exceeds the number of “integration units” –

clusters in this case. The opposite is true of the finite element methods with unstructured

meshes where the number of tetrahedra is often considerably larger than the number of ver-

tices in the simulation. For graphical applications, visual detail, which correlates with the

number of degrees of freedom, is one of principal importance, and computation, which cor-

relates with the number of clusters, is often times limited. For these reasons, the clustered

shape matching framework is extremely appealing in the field of computer animation and

interactive 3D graphics. The utility and versatility of this framework is greatly improved

upon by our extensions to clustering, reclustering, and object resampling.

In this thesis, we have extended the clustered shape matching framework for animating

deformable boding by introducing a novel method of reclustering and resampling of the

original object geometry. This extension has been shown to be highly flexible and versatile,

producing results that accurately simulate the physical properties of the object, even under

extreme deformations, where an object might be nearly completely flattened, or stretched

beyond all recognition. This implementation remains stable and efficient even in these

more extreme tests. This new implementation improves both the power and versatility of

31

the existing clustered shape matching framework. We have also highlighted a mathematical

error that has persisted for over a decade through many follow-up works on the original

clustered shape matching publication.

REFERENCES

[1] Bargteil, A. W., and Jones, B. 2014a. Strain limiting for clustered shape matching.

In Proceedings of the Seventh International Conference on Motion in Games, 177–179.

ACM.

[2] Bargteil, A. W., and Jones, B. 2014b. Strain limiting for clustered shape matching. In

Proceedings of the Seventh International Conference on Motion in Games, 177–179.

[3] Bargteil, A. W.; Wojtan, C.; Hodgins, J. K.; and Turk, G. 2007. A finite element

method for animating large viscoplastic flow. ACM Trans. Graph. 26(3):16.

[4] Bhattacharya, H.; Gao, Y.; and Bargteil, A. W. 2011. A level-set method for skinning

animated particle data. In Proceedings of the ACM SIGGRAPH/Eurographics Sympo-

sium on Computer Animation.

[5] Bhattacharya, H.; Gao, Y.; and Bargteil, A. W. 2015. A level-set method for skinning

animated particle data. IEEE Trans. Vis. Comput. Graph. 21:315–327.

[6] Bridson, R. 2007a. Fast poisson disk sampling in arbitrary dimensions. In SIGGRAPH

sketches, 22.

[7] Bridson, R. 2007b. Fast poisson disk sampling in arbitrary dimensions. In ACM

SIGGRAPH 2007 Sketches.

[8] Chentanez, N.; Müller, M.; and Macklin, M. 2016a. Real-time simulation of large

elasto-plastic deformation with shape matching. In Proceedings of the ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, 159–167.

32

33

[9] Chentanez, N.; Müller, M.; and Macklin, M. 2016b. Real-time simulation of large

elasto-plastic deformation with shape matching.

[10] Choi, M. G. 2014. Real-time simulation of ductile fracture with oriented particles.

Computer Animation and Virtual Worlds 25(3-4):455–463.

[11] Dunn, J. C. 1973. A fuzzy relative of the isodata process and its use in detecting

compact well-separated clusters. Journal of Cybernetics 3(3):32–57.

[12] Jones, B.; Ward, S.; Jallepalli, A.; Perenia, J.; and Bargteil, A. W. 2014. Deformation

embedding for point-based elastoplastic simulation. ACM Trans. Graph. 33(2):21:1–

21:9.

[13] Jones, B.; Martin, A.; Levine, J. A.; Shinar, T.; and Bargteil, A. W. 2015a. Clustering

and collision detection for clustered shape matching. In Proceedings of the 8th ACM

SIGGRAPH Conference on Motion in Games, 199–204. ACM.

[14] Jones, B.; Martin, A.; Levine, J. A.; Shinar, T.; and Bargteil, A. W. 2015b. Clustering

and collision detection for clustered shape matching. In Proceedings of ACM Motion in

Games.

[15] Jones, B.; Martin, A.; Levine, J. A.; Shinar, T.; and Bargteil, A. W. 2016a. Ductile

fracture for clustered shape matching. In Proceedings of the ACM SIGGRAPH sympo-

sium on Interactive 3D graphics and games.

[16] Jones, B.; Martin, A.; Levine, J. A.; Shinar, T.; and Bargteil, A. W. 2016b. Ductile

fracture for clustered shape matching. In Proceedings of the 20th ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games, 65–70. ACM.

[17] Müller, M., and Chentanez, N. 2011a. Solid simulation with oriented particles. In

ACM transactions on graphics (TOG), volume 30, 92. ACM.

34

[18] Müller, M., and Chentanez, N. 2011b. Solid simulation with oriented particles. ACM

Trans. Graph. 30(4):92:1–92:10.

[19] Müller, M.; Heidelberger, B.; Teschner, M.; and Gross, M. 2005a. Meshless deforma-

tions based on shape matching. ACM transactions on graphics (TOG) 24(3):471–478.

[20] Müller, M.; Heidelberger, B.; Teschner, M.; and Gross, M. 2005b. Meshless defor-

mations based on shape matching. ACM Trans. Graph. 24(3):471–478.

[21] Müller, M.; Heidelberger, B.; Hennix, M.; and Ratcliff, J. 2007. Position based

dynamics. J. Vis. Comun. Image Represent. 18(2):109–118.

[22] Rivers, A. R., and James, D. L. 2007a. FastLSM: fast lattice shape matching for

robust real-time deformation. ACM Transactions on Graphics (TOG) 26(3):82.

[23] Rivers, A. R., and James, D. L. 2007b. Fastlsm: Fast lattice shape matching for robust

real-time deformation. ACM Trans. Graph. 26(3).

[24] Steinemann, D.; Otaduy, M. A.; and Gross, M. 2008a. Fast adaptive shape matching

deformations. In Proceedings of the 2008 ACM SIGGRAPH/eurographics symposium

on computer animation, 87–94. Eurographics Association.

[25] Steinemann, D.; Otaduy, M. A.; and Gross, M. 2008b. Fast adaptive shape matching

deformations. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium

on Computer Animation, 87–94.

[26] Wicke, M.; Ritchie, D.; Klingner, B. M.; Burke, S.; Shewchuk, J. R.; and O’Brien,

J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Transactions on

Graphics 29(4):49:1–11.

