
APPROVAL SHEET

Title of Thesis: SCAP compliant android vulnerability scanner

Name of Candidate: Rujuta S. Palande
Masters of Science, 2017

Thesis and Abstract Approved:
Dr. Charles Nicholas
Professor
Department of Computer Science and
Electrical Engineering

Date Approved:

ABSTRACT

Title of Thesis: SCAP compliant android vulnerability scanner

Rujuta Palande, Masters of Science, 2017

Thesis directed by: Dr. Charles Nicholas, Professor
Department of Computer Science and
Electrical Engineering

This thesis attempts to explain the SCAP compliance of a preliminary vulnerability

scanner which is in the form of an OVAL interpreter (and thus, SCAP compliant) , which

scans for vulnerabilities reported because of the telephony feature in android, in the year

2016 as reported in the national vulnerability database (NVD). The implementation of the

scanner is achieved by attempting to write an OVAL definition file, which when evaluated

against a system characteristics file , produces an OVAL results file. The result file thus

generated is in a standard form , which can be understood and interpreted by other SCAP

compliant scanners as well, thus ensuring interoperability and standardization.

SCAP compliant android vulnerability scanner

by

Rujuta S. Palande

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Masters of Science

2017

c© Copyright Rujuta S.Palande 2017

I dedicate my work to aai, baba, aaji, aaba, mama, mami, pranav and tejas

ii

ACKNOWLEDGMENTS

I would like to first express my deepest gratitude to my thesis advisor, Dr. Charles

Nicholas for supporting me through my master’s study and research. I am gratefully in-

debted to his invaluable guidance, understanding, patience and motivation for this thesis.

I would also like to thank my parents Shrinivas Palande and Yogini Palande, my broth-

ers,Pranav and Tejas, my uncle and aunt- Nishikant Joshi and Dhanashree Joshi and my

grandparents Pratibha Palande, Rohini Joshi, Vinayak Joshi and late Mr. Anant Palande

for being my strength. This accomplishment would not have been possible without them.

Thank you!

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . vii

Chapter 1 INTRODUCTION . 1

1.1 What is a vulnerability? . 1

1.1.1 Consequences of vulnerabilities 2

1.1.2 The concept of vulnerability scanners 2

1.2 Need for standardization . 3

1.2.1 SCAP to the rescue . 3

1.2.2 SCAP Validation program . 6

1.3 What is OVAL? . 6

1.3.1 The OVAL Interpreter . 7

1.4 Vulnerabilities in android . 8

1.5 The thesis idea . 9

Chapter 2 RELATED WORK . 10

2.0.1 Vulnerability scanners in android 10

iv

2.0.2 Other SCAP compliant tools . 14

2.0.3 Attempt to detect vulnerabilities in android by using SCAP com-

pliant tools . 15

Chapter 3 THEORY BEHIND EXECUTION 17

3.1 Components of OVAL . 17

3.1.1 OVAL language . 17

3.1.2 OVAL Repository . 19

3.1.3 OVAL Interpreter . 20

3.2 Working of OVAL . 20

3.3 How to write an OVAL definition file . 22

3.4 The OVAL system characteristics file . 29

3.5 The OVAL result file . 31

3.6 The vulnerabilities . 34

Chapter 4 EXECUTION OF THE INTERPRETER 37

4.1 The execution . 37

4.1.1 Writing the OVAL definition for the vulnerabilities 37

4.1.2 Scanning by using the OVAL interpretor 37

4.2 A sample use case . 40

4.2.1 Writing the OVAL definition file 40

4.2.2 Running the scanner . 40

Chapter 5 EVALUATION OF THE RESULTS 43

5.1 Case 1 . 43

5.2 Case 2 . 43

v

5.3 Case 3 . 43

5.4 Case 4 . 44

5.5 Case 5 . 44

Chapter 6 CONCLUSION AND FUTURE WORK 50

6.1 Conclusion . 50

6.2 Future work . 51

REFERENCES . 52

vi

LIST OF FIGURES

3.1 Working of OVAL . 20

3.2 Creating a file with OVAL definition . 22

3.3 Generator . 23

3.4 Adding definitions . 24

3.5 Adding metadata . 25

3.6 Adding notes . 26

3.7 Adding criteria . 27

3.8 Adding tests . 28

3.9 Adding objects . 29

3.10 Adding states . 29

3.11 System info section . 30

3.12 collected objects section . 31

3.13 system data section . 32

3.14 Thin result file . 33

3.15 Full result file . 34

3.16 Directives . 35

vii

4.1 Criteria for the vulnerability CVE-3831 40

4.2 Starting the server . 41

4.3 The system characteristics file . 42

4.4 The result file . 42

5.1 Case 1: The system characteristics file . 45

5.2 Case 1: The result file . 45

5.3 Case 2: The system characteristics file . 46

5.4 Case 2: The result file . 46

5.5 Case 3: The system characteristics file . 47

5.6 Case 3: The result file . 47

5.7 Case 4: The system characteristics file . 48

5.8 Case 4: The result file . 48

5.9 Case 5: The system characteristics file . 49

5.10 Case 5: The result file . 49

viii

Chapter 1

INTRODUCTION

1.1 What is a vulnerability?

According to IETF RFC 2828 as mentioned in (Xi-Salvador 2008) a vulnerability is

a flaw or a weakness which can be found in a particular system’s design, implementation,

or operation and management that could be exploited by a threat, to violate the system’s

security policy. Some common types of software flaws that lead to vulnerabilities are buffer

overflows, dangling pointers, SQL injections, race conditions, etc.

If a computer system is imagined to be an amalgamation of states describing the cur-

rent configuration of that system, all states reachable from a given initial state using a set of

authorized state transitions fall into the class of either authorized or unauthorized states as

defined by a security policy for that system. A vulnerable state is an authorized state from

which an unauthorized state can be reached by using a series of authorized state transitions.

This results in the system reaching to a compromised state or a vulnerable state. An attack

is a sequence of authorized state transitions which end in this compromised state. We come

across many other terms in Computer Security like malware, trojan, virus, etc. with which,

a software vulnerability is often confused. But all the above terms have a different meaning

and significance in the domain of computer security.

- A Malware is a software which is specifically written with the intent to harm a system.

1

2

- A virus is a specific type of malware that spreads itself once it is initially run.

- A worm is a virus that is self-contained. It does not attach itself like a parasite. Instead, it

goes around searching out other machines to infect.

- A Trojan is a type of malware that is often disguised as legitimate software. Trojans can

be employed by cyber-thieves and hackers trying to gain access to users’ systems.

1.1.1 Consequences of vulnerabilities

Computing systems today have substantial number of security configuration settings

that are designed to offer flexible and robust services. However, incorrect configuration

increases the potential of vulnerability and attacks. The range of threats that can result be-

cause of the exploitation of these vulnerabilities is enormous, and may result into possible

terrorist activities, sabotage,copycat crimes, mechanical malfunctions, and human error.

Attacks may involve Trojan-horse insertion and physical tampering, including destructive

acts by unhappy and dissatisfied employees or former employees. Denial of service attacks

are particularly dangerous, because they are so difficult to defend against and because their

effects can be devastating. Systems connected to the Internet or available by dial-up lines

are potential victims of external penetrations. Even systems that appear to be completely

isolated are subjected to internal misuse. So basically, vulnerabilities can have devastating

consequences and they need to be detected and acted upon.

1.1.2 The concept of vulnerability scanners

Vulnerability scanning is the process of inspection of the potential points of exploit

on a computer or network to identify security holes which are an entry point to any pos-

sible threats. A vulnerability scan detects and classifies system weaknesses or the entry

points for threats in computers, networks and communications equipment and predicts the

effectiveness of their remedies.

3

1.2 Need for standardization

Misconfigurations and vulnerabilities can be identified and globally categorized only

if global checking that includes network and desktop configuration is performed, as many

of these configurations are dependent on each other. This induces the need of a collective

understanding of WHAT as correctly stated by (Schmidt)

- Are we talking about the same software vulnerability or a misconfiguration?

- Do we agree on what a policy recommendation means and how to meet it?

These are really tough questions without the existence of standards. Content authors strive

to provide a solution to identify vulnerabilities and misconfigurations on a particular sys-

tem. But if the content is not universal, they might end up writing for each assessment tool.

With the standardization, content authors dont need to write for each assessment tool . They

can establish a shared content repository everyone can use,with a consistent understanding.

1.2.1 SCAP to the rescue

The Security Content Automation Protocol (SCAP), provides a standard approach

to maintain the security of enterprise systems by automatically verifying the presence of

patches, checking system security configuration settings, examining systems for any vul-

nerabilities, etc. SCAP was defined and started by the National Institute of Standards and

Technology (NIST) and its partners in industry. It is basically a super-standard consisting

of many individually maintained standards.The SCAP suite of specifications standardize

the nomenclature and formats used by the automated vulnerability management and policy

compliance products. Applications which conduct security monitoring, use these standards

when considering systems to find vulnerabilities, and offer methods to score those findings

according to the severity of the vulnerability in order to evaluate the possible impact. A

vendor of a computer system configuration scanner can get his product validated against

4

SCAP, demonstrating that it will interoperate with other scanners, and express the scan re-

sults in a standardized way.

The latest version of SCAP: SCAP 1.3 has around 12 different specifications as follows:

1. Languages

• XCCDF: According to (Worrell) XCCDF (The Extensible Configuration

Checklist Description Format) is a test definition language for writing secu-

rity checklists, benchmarks, etc. An XCCDF document represents a structured

collection of security configuration rules for some set of target systems.

• OVAL: The Open Vulnerability and Assessment Language (OVAL) standard-

izes the three main steps of the assessment process: representing configuration

information of systems for testing, analyzing the system for the presence of

the specified machine state (vulnerability, configuration, patch state, etc.) and

reporting the results of this assessment.

• OCIL: The Open Checklist Interactive Language (OCIL) defines a framework

for expressing a set of questions to be presented to a user and corresponding

procedures to interpret responses to these questions.

• Asset Identification: The Asset Identifier is used to uniquely identify assets

based on known identifiers or known information about the assets. It plays an

important role in an organization’s ability to quickly correlate different sets of

information about assets.

• ARF: The Asset Reporting Format (ARF) is a data model to express the trans-

port format of information about assets, and the relationships between assets

and reports. The standardized data model facilitates the reporting, correlating,

and fusing of asset information throughout and between organizations.

5

2. Identification schemes:

• CCE: Common Configuration Enumeration (CCE) provides unique identifiers

for configuration issues to facilitate correlation of configuration data across

multiple information sources and tools.

• CPE: Common Platform Enumeration (CPE) is a standardized method of de-

scribing and identifying classes of applications, operating systems, and hard-

ware devices present among an enterprise’s computing assets. It is used for

mapping platforms to vulnerabilities or policy statements.

• CVE: Common Vulnerabilities and Exposures (CVE) is a dictionary of com-

mon names or identifiers for publicly known information security vulnerabili-

ties. If a CVE identifier is found in any of the reports of security tools, then the

remedy for it can be searched in the CVE compatible databases.

• SWID: Software identification (SWID) tags define a structured metadata for-

mat that identify the software product, characterize the product’s version, the

organizations and individuals that had a role in the production and distribution

of the product etc.

3. Metrics

• CVSS: The Common Vulnerability Scoring System (CVSS) algorithm scores a

given vulnerability based on its likely danger on a scale of 0 to 10. It is mainly

used for prioritizing responses to the detected vulnerabilities and weighing the

cost of remedies for that vulnerability against allowing a vulnerability to persist.

• CCSS: Similar to CVSS, The Common Configuration Scoring System (CCSS)

is a set of measures of the severity of software security configuration issues.

4. Integrity

6

• TMSAD: The Trust Model for Security Automation Data (TMSAD) describes

a common trust model which is composed of recommendations on how to use

existing specifications to represent signatures, hashes, key information, and

identity information in the context of an XML document within the security

automation domain.

1.2.2 SCAP Validation program

The SCAP Validation Program tests whether the products comply to SCAP standards.

The NIST National Voluntary Laboratory Accreditation Program (NVLAP) gives accred-

ition to independent laboratories under the program to perform SCAP validations on dif-

ferent products by commercial vendors.A vendor seeking validation of his security product

can contact an NVLAP accredited SCAP validation laboratory for assistance in the valida-

tion process or can get his product SCAP validated.

1.3 What is OVAL?

Determining the existence of software vulnerabilities, configuration issues, programs,

and patches in local systems had no structured means because of which system adminis-

trators and other end users faced problems. They were restricted to analyzing text-based

descriptions which was a labor-intensive and error-prone process to determine if any issue

existed on the local system. OVAL came to the rescue to solve these problems. As men-

tioned previously, The Open Vulnerability and Assessment Language (OVAL) standardizes

the three main steps of the assessment process: representing configuration information of

systems for testing, analyzing the system for the presence of the specified machine state

(vulnerability, configuration, patch state, etc.) and reporting the results of this assessment.

The widespread availability of OVAL promotes standardized vulnerability and configura-

7

tion assessment and will provide consistent and reproducible information. OVAL helps

you to determine which vulnerabilities or configuration issues exist on your system. You

may then use this information to obtain appropriate software patches and fix information

for remediation. Hence, OVAL acts as a preventive measure. As an addition, you can

use a vulnerability database which includes information about vulnerabilities that OVAL

does not, such as the severity of the problem, whether it is locally or remotely exploitable,

remediation information, and so on. OVAL has been used to determine the vulnerabili-

ties on various platforms like Windows, RHEL, Solaris, etc. The OVAL community has

developed three schemas written in Extensible Markup Language (XML) to serve as the

framework and vocabulary of the OVAL Language. These schemas correspond to the three

steps of the assessment process: an OVAL System Characteristics schema for representing

system information, an OVAL Definition schema for expressing a specific machine state,

and an OVAL Results schema for reporting the results of an assessment. Content written

in the OVAL Language is located in one of the many repositories found within the com-

munity. One such repository, known as the OVAL Repository, is hosted by The MITRE

Corporation. It is the central meeting place for the OVAL Community to discuss, analyze,

store, and disseminate OVAL Definitions. Each definition in the OVAL Repository deter-

mines whether a specified software vulnerability, configuration issue, program, or patch is

present on a system.

1.3.1 The OVAL Interpreter

This is a basic reference implementation created to show how data can be collected

from a computer for testing based on a set of OVAL Definitions and then evaluated to

determine the results of each definition. It is not a fully functional scanning tool and has a

simple user interface, but running the OVAL Interpreter provides with a list of result values

for each evaluated definition, in a standard format which can be understood and processed

8

by other SCAP compliant scanners.

1.4 Vulnerabilities in android

Android is a truly open OS, and that makes it risky. Google Play (formerly called the

Android Market), the digital distribution platform for applications for Android devices, is

itself a source of potential security risks. When users download apps from Google Play,

they often don’t pay attention to the extent of permissions an app can have on their device.

The security vulnerabilities affecting Android devices (Android vulnerabilities by Google

) can cause actual performance issues and data loss and not just minor inconveniences.

Inability of the Android operating system to cope with the vulnerabilities and malicious

exploits has been spoken of and backed by research, many a times. According to a research

conducted by the UK’s University of Cambridge, in 2015 (Thomas, Beresford, & Rice

2015), nearly 90 percent of Android devices are exposed to at least one critical vulnerabil-

ity. Some of the dangerous vulnerabilities include

- Dirty Cow vulnerability (Gurfinkel 2016) which exploits a mechanism called copy-on-

write, allowing an attacker to gain privilege escalation on the Linux kernel.

- StageFright vulnerability (Also known as the mother of all android vulnerabilities) which

allows an attacker to perform arbitrary operations on the victim’s device through remote

code execution and privilege escalation

- ”Fake ID which allows malicious apps to associate themselves with certificates from le-

gitimate apps, thus gaining access to stuff they shouldn’t have access to.

Some of these vulnerabilities result into hazardous consequences. For eg., A malicious

hacker could take advantage of it by sending to an Android device a straightforward text

message that, once received by the smartphone, would give him complete control over the

handset and allow him to steal anything on it, such as credit card numbers or personal

9

information.

1.5 The thesis idea

As can be concluded from the above discussion, android vulnerabilities are dangerous

and can cause hazardous effects if exploited. So this made me explore the different android

vulnerability scanners available in google play store and after some preliminary research,

I concluded that none of the vulnerability scanners are SCAP compliant. I then went on

to research every SCAP compliant product which was mentioned on the official website of

SCAP and skimmed through the supported platforms for each product and found that none

of them support the android OS. So I decided to work on writing a basic SCAP compliant

preliminary android vulnerability scanner wherein I used OVAL to write definitions for

a subset of vulnerabilities mentioned in the NVD (national vulnerability database) and

construct a basic OVAL interpreter which will scan the android operating system for these

specific vulnerabilities. The results are produced in the format mentioned on the mitre.org

site which is an open community for OVAL. Thus this scanner aims at being an SCAP

compliant scanner as it adheres to the OVAL standards and uses the standard CVE and

CCE annotations. The thesis further describes the research carried out, the implementation

of the scanner, the evaluation tests conducted and their comparison to the ground truth.

Chapter 2

RELATED WORK

Though not much work has been done in the area of developing an OVAL interpreter

specifically for android (though schemas for android have been provided by mitre.org in

December 2014) and attempting to make an android vulnerability scanner which is SCAP

compliant, much work has been done in the domain of vulnerability reporting and scanning

for android. Also, many vendors have developed their implementation of the OVAL inter-

preter but for operating systems other than android. This section discusses about the work

done in the above-mentioned areas.

2.0.1 Vulnerability scanners in android

Android has been susceptible to many vulnerabilities. Some occur at the system level

while some, at the application level.As mentioned earlier, just under nine in ten Android de-

vices (87.7 percent) are exposed to at least one of the eleven critical vulnerabilities, which

is an alarming number indeed. The study considered, concerned itself with vulnerabilities

that gave an attacker significant permissions such as root level access without having phys-

ical access to the device. These could be through an installed application, dynamic code,

or code injection. Attempts have been made to detect these vulnerabilities well in advance

before any malicious software or attacker can use the knowledge of that vulnerability and

10

11

penetrate a mobile phone. Below are some of the vulnerability scanners and the different

areas in which they predominantly operate :

1. Checkpoint quadrooter scanner

Quadrooter is a group of four system level vulnerabilities affecting those android de-

vices which have QUALCOMM chipset and associated driver code (point research

team). The four vulnerabilities defined as quadrooter are :

- CVE-2016-2503

- CVE-2016-2504

- CVE-2016-2509

- CVE-2016-5340

The details of these vulnerabilities are mentioned in the national vulnerability

database (NVD). These vulnerabilities reside in the embedded software running the

graphics driver. The graphics driver has privileged access to other processes on the

android device which makes it possible for any ill-intended hacker to attack. So basi-

cally the attacker can gain privileges through a crafted application and take complete

control of android devices, potentially exposing your sensitive data to cyber crime.

Googles android security bulletin for July and August 2016 mentions about this vul-

nerability while also stating that until now, they do not have any reports of active

customer exploitation of abuse of these reported issues.

The checkpoint quadrooter scanner analyses the android smartphones or tablets to

discover if its vulnerable to the quadrooter vulnerabilities. The scanner app is de-

signed to give a clear indication of the threat risk to the android device and provides

more information about QuadRooter, including which vulnerabilities affect the spe-

cific device and how they work.

2. Stagefright detector by Zimperium (Stagefright)

12

The stagefright vulnerability , also known as Worst android bug in the history and

mother of all android vulnerabilities, has the potential of affecting a billion phones

as this vulnerability exists in the operating system itself. It allows cyber-criminals to

hack an android phone in less than 10 seconds. The newest version of Stagefright,

also referred to as Metaphor, tricks a user into visiting a hacker’s web page, contain-

ing a malicious multimedia file that when received, infects a phone. Once a malicious

message is downloaded, it resets a phone and forces it to send a unique video file to

the device. Using this data, a hacker can take control of a device to gain access to

personal information, as well as being able to copy data and use the microphone and

camera.

This exploit was announced by mobile security firm : Zipmerium, as a part of an

announcement for its annual party at the BlackHat conference. Zimperium zLabs

(Zlabs) created a Detector app to validate that you are running a version that is not

vulnerable to the discovered Stagefright vulnerabilities. Some phone vendors have

released partial patches to the vulnerabilities disclosed and this app can help you to

understand if your device is vulnerable or not. This application tells you three major

things :

- Whether your device is vulnerable

- Which CVEs your device is vulnerable to

- Whether you need to update your mobile operating system

The above two scanners are basically operating system level vulnerability scanners.

A few scanners have also been developed which are application vulnerabilities scan-

ners.

3. AppVigil

This application vulnerability scanner helps identification of security and privacy

13

vulnerabilities during application development lifecycle. It detects vulnerabilities

at a production level when an application is being developed, and also gives patch

recommendations. This comes as an add-on to android studio as well as eclipse

development environment. Appvigil is a completely automated Mobile Reputation

Protection Suite for Mobile Apps. Powered by patent pending technology, Appvigil

employs intensive static analysis and dynamic analysis along with stringent network

analysis on the apps. It discovers security vulnerabilities in mobile apps, delivering

thorough and comprehensive reports in just few hours.The report points to the exact

location of the security threat, along its descriptions and recommendations. It helps

you make effective modifications and plugging loopholes in your apps, thus ensuring

high grade application security.

4. Quixxi

Quixxi is another such vulnerability scanner which scans for vulnerabilities in appli-

cations . It provides a platform for mobile application development that has all tools

to keep mobile applications secure and run smoothly. It checks for vulnerabilities

in applications which are either already developed or are in the process of develop-

ment. With Quixxi you are free to work the way you want to, without being locked

into a specific framework. You can add Quixxi to any IoT or mobile app which is

finished or in development and within minutes you can protect data, monitor perfor-

mance, identify and fix issues, manage licenses, aggregate information from multi-

ple platforms, gather usage insights, connect with users, accelerate development and

maximize revenue.

5. Ostorlab

This is a cloud based application vulnerability scanner which works by uploading

mobile application file. It aims at helping developers create Secure Mobile Apps.

14

Ostorlab’s Security Scanner searches for security weaknesses and extracts critical

information about the application behavior.

However, all these scanners generally use private knowledge sources as well as their own

assessment techniques, and they do not provide any standardized and open means for de-

scribing and exchanging vulnerability descriptions within the community. Much of the

work done in vulnerability analysis has defined the assessment infrastructure using its

own vulnerability specification language arising compatibility and interoperability prob-

lems since the scanners so developed, cannot operate with other scanners, the output gen-

erated by them cannot be universally understood and also, the vulnerabilities which they

detect cannot be traced at a universal or a standard level. Because of this, they fail to

utilize the recorded information about a particular vulnerability and the patches or safety

recommendations associated with them.

2.0.2 Other SCAP compliant tools

As discussed in the above chapter, SCAP was a solution to this problem, which stan-

dardized the vulnerability, compliance detection process and generating a standard output

which can be universally understood by every other SCAP compliant product. The SCAP

Validation Program tests the ability of products to employ SCAP standards. The NIST Na-

tional Voluntary Laboratory Accreditation Program (NVLAP) accredits independent labo-

ratories under the program to perform SCAP validations. A vendor seeking validation of

a product can contact an NVLAP accredited SCAP validation laboratory for assistance in

the validation process.

SCAP compliant products were developed by many commercial vendors for different

operating systems- predominantly for the Microsoft windows family and red hat enterprise

Linux family (RHEL). Below are a few examples of SCAP compliant products as men-

15

tioned on the official NIST website (NIST) for different platforms which harness some of

the sub standards which come under the umbrella of SCAP standards :

1. OpenSCAP by RedHat : Platforms supported :

- Red Hat Enterprise Linux 6.8 Client, 32 bit (x86)

- Red Hat Enterprise Linux 6.8 Client, 32 bit (x64)

- Red Hat Enterprise Linux 7.2 Client, 64 bit (x64))

OpenSCAP is an auditing tool that utilizes the Extensible

2. SCAP Extensions for Microsoft System Center Configuration Manager 3.0 by Mi-

crosoft Platforms specified :

- Microsoft Windows 7, 64 bit

- Microsoft Windows 7, 32 bit

The SCAP Extensions for Microsoft System Center

3. Policy Auditor 6.2 by Intel security : Platforms supported :

- Microsoft Windows 7, 64 bit

- Microsoft Windows 7, 32 bit

- Microsoft Windows Vista, SP2

- Microsoft Windows XP Pro, SP3

- Red Hat Enterprise Linux 5.9 Desktop, 64 bit (x86 64)

- Red Hat Enterprise Linux 5.9 Desktop, 32 bit (x86)

2.0.3 Attempt to detect vulnerabilities in android by using SCAP compliant

tools

In a research paper Increasing Android Security using a Lightweight OVAL-based

Vulnerability Assessment Framework (Festor et al.) by Martn Barrere, Gaetan Hurel,

Remi Badonnel and Olivier Festor,the authors have instrumented their approach with an

16

experimental OVAL extension for Android . Their execution helps to specify known vul-

nerabilities for Android in a machine-readable manner and at the same time, with the view

of standardizing the entire vulnerability detection and report generation process. They have

tried to articulate the available android vulnerabilities description into an OVAL definition

format and have provided a sample implementation of the entire process Ovaldroid (Ere

et al.). Ovaldroid, the reference implementation of the Android Vulnerability Assessment

tool, is an Android application completely written in Java. By means of a web service,

Ovaldroid agents running on the Android platform connect to a remote database server in

order to get new OVAL vulnerability definitions, perform local self-assessment activities,

and report the obtained results. This experiment of ovaldroid was done in the year 2012.

However, the official android schemas were released by mitre.org (by mitre.org) in the

year 2014. So, the experiment was not carried out by using the android schemas as given

by the mitre.org. Also, there has been no scanner which is SCAP compliant and scans for

vulnerabilities which have been reported in the national vulnerability database in the recent

years. I have attempted to build a preliminary vulnerability scanner which is in the form of

an OVAL interpreter (and thus, SCAP compliant) , which scans for vulnerabilities reported

because of the telephony features in android, in the years 2016 as given in the national vul-

nerability database (NVD). Since the scanner is SCAP compliant, extending it to include

scanning for other vulnerabilities will be extremely simple since that would mean, adding

on other definitions in the OVAL schema and the scanning report thus generated will be

such that it can be understood by any other SCAP compliant tool. Thus this scanner is

interoperable with all other SCAP compliant tools

Chapter 3

THEORY BEHIND EXECUTION

As discussed previously, OVAL (Open vulnerability and assessment language) pro-

motes standardized vulnerability and configuration assessment and provides consistent and

reproducible information assurance metrics. OVAL helps you to determine which vulner-

abilities or configuration issues exist on your system. You may then use this information

to obtain appropriate software patches and fix information for remediation. Hence, OVAL

acts as a preventive measure. As an addition, you can use a vulnerability database like

NVD (National vulnerability database),which includes information about vulnerabilities

that OVAL does not, such as the severity of the problem, whether it is locally or remotely

exploitable, remediation information, etc.

3.1 Components of OVAL

3.1.1 OVAL language

OVAL uses Extensible Markup Language (XML) because of its data centric approach

which makes it easier to extract data and is machine readable. The main purpose of the

OVAL Language is to standardize the three key steps of the assessment process,

- Representing configuration information of systems for testing

- Analyzing the system for the presence of the specified machine state

17

18

- Reporting the results of this assessment

The OVAL community has developed schemas approved by the OVAL Board written in Ex-

tensible Markup Language (XML) to serve as the framework and vocabulary of the OVAL

Language. An OVAL System Characteristics schema represents system information; an

OVAL Definition schema expresses an ideal specific machine state, and an OVAL Results

schema reports the results of the assessment performed.

1. OVAL definition:

OVAL Definitions are machine readable files written in XML to highlight any system

vulnerability, configuration issue, programs and patches present on the system. For

these assessments, we have different definition files which give us a roadmap.

- OVAL Vulnerability Definitions - Tests that determine the presence of vulnerabili-

ties on systems.

- OVAL Compliance Definitions - Tests that determine whether the configuration set-

tings of a system meet a security policy.

- OVAL Inventory Definitions - Tests that determine whether a specific piece of soft-

ware is installed on the system.

- OVAL Patch Definitions - Tests that determine whether a particular patch is appro-

priate for a system.

- OVAL Miscellaneous Definitions - Tests that do not fall into any of the four main

classes.

2. OVAL System Characteristics:

This file is generated by the OVAL Interpreter. It contains general information about

the system from which data was collected, including the information that can be used

to identify the system. All the objects that have been collected for assessment and

their status are mentioned in this. After the system and object is mapped, the current

19

state of that object is specified for analysis.

3. OVAL results schema:

OVAL Results schema stores the results of the evaluations performed on the system

against the standard definitions. The current state of the machine is compared to

the OVAL Definitions to check for vulnerabilities or issues. The data generated can

be interpreted to take the necessary actions to mitigate the vulnerabilities. OVAL

Results file can be of two types - full and thin. A ’thin’ file means only a minimal

amount of information is provided about the assessment of objects whereas a full

file means that very detailed information is provided allowing in-depth reports to be

generated from the results.

3.1.2 OVAL Repository

The OVAL Repository is the central meeting place for the OVAL Community to dis-

cuss, analyze, store, and disseminate OVAL definitions. The OVAL Language and any

resulting OVAL content based upon the language that is stored in the OVAL Repository

is free to use by any organization or individual for any research, development, and com-

mercial purposes. The OVAL Repository Moderator evaluates and reviews definitions for

publication in the OVAL Repository. Once new definitions are published in the OVAL

Repository, they are subjected to community review. The OVAL Repository uses the pub-

licly known vulnerabilities which describe a list of vulnerabilities and exposures. Hence,

the OVAL Repository plays a very important role in maintaining OVAL as an international,

information security, community effort.

20

3.1.3 OVAL Interpreter

The OVAL Interpreter evaluates OVAL Definitions. Based on a set of XML Defi-

nitions the Interpreter collects system information, evaluates it, and generates a detailed

OVAL Results file. When we run the Interpreter, it will provide a list of OVAL Definition

IDs and their results on the system. The working of an OVAL interpreter is shown in figure

3.1.

3.2 Working of OVAL

FIG. 3.1. Working of OVAL

1. Step 1

- Configuration policies: Certain government agencies such as NSA (national se-

curity agency) and NIST (National institute of standards and technologies) develop

Best Practices policy. Following these policies ensures system security.

- Security advisories: CERT-CC (computer emergency response team co-ordination

center), US-CERT (United States computer emergency readiness team), and other

21

organizations publish security advisories. These advisories warn of current threats

and system vulnerabilities.

These best practices and advisories are used to create an OVAL definition file for a

particular system.

2. Step 2

Specific machine configuration details from the security advisories and configuration

policy documents are extracted and encoded as an OVAL Definition. The OVAL

Definition schema is used to define the XML framework for writing

3. Step 3

The OVAL system characteristics file basically encodes the details of the system to be

evaluated. The OVAL System Characteristics schema defines a standard XML format

for representing system configuration information, which includes operating system

parameters, installed software application settings, and other security relevant con-

figuration values. The schema provides a list of system characteristics against which

OVAL definitions can be compared in order to analyze a system for the presence of

a particular machine state. By utilizing the provided OVAL System Characteristics

file, other applications would not need to perform data collection, but rather can use

the provided information to perform analysis.

4. Step 4

The OVAL Definitions from Step 2 and the System Characteristics from Step 3 are

compared to determine if the current system state is vulnerable or not vulnerable, by

using an OVAL interpreter.

5. Step 5

As mentioned in the Step 4, based on the set of definitions, the interpreter collects

22

system information, evaluates it, compares it with the OVAL definition and generates

detailed OVAL Results file. Results of analysis are formatted as an OVAL Results

document.

3.3 How to write an OVAL definition file

To take advantage of the interoperability enabled by using a standard language like

OVAL (Open Vulnerability and Assessment Language), someone has to generate the initial

definitions to be used. An OVAL Definition is a bunch of expected system details arranged

in a standard, pre-defined way, such that the tool consuming this data knows how to use it.

An OVAL Definition can be written to describe a computer vulnerability, a policy that one

must comply with, a system patch, or any other specific machine state. How to write an

OVAL definition file from scratch has been mentioned in the document (Oval.mitre.org)

1. Step 1: A New OVAL Definition XML File :

Before a new OVAL Definition can be written, an XML file must be set up which will

contain the OVAL definitions. This is shown in Figure 3.2. This XML file can be

used to hold multiple new OVAL Definitions. The root element (the first XML tag,

located at the top of the file) should be- ”oval definitions”. The root element is also

where each needed namespace is declared. Each component schema (independent,

Windows, UNIX, Solairs, etc) used by the OVAL Definition being written, must have

its corresponding namespace declared in the root element.

FIG. 3.2. Creating a file with OVAL definition

23

Each XML file must also have a ”generator” element (as shown in Figure 3.3), that

holds information about when the file was compiled and what version of the OVAL

Schema was used. The optional ”product name” and ”product version” child ele-

ments describe the name and version of the application used to generate the file. The

required ”schema version” child element holds the version of the OVAL Schema

that the definition XML file has been written in and that should be used for vali-

dation. The required ”timestamp” child element holds information about when the

particular OVAL document was compiled. The format for the timestamp is yyyy-

mm-ddThh:mm:ss.The information contained in the ”generator” element does not

specify when a definition (or set of definitions) was created or modified but rather

when the actual XML file that contains the definition(s) was created. For example,

the document might have pulled a bunch of existing OVAL Definitions together, each

of the definitions having been created at some point in the past. The information in

this case would be about when the combined document was created.

FIG. 3.3. Generator

2. Step 2 – Adding A Definition

Once the XML file has been set up, we now must add an OVAL Definition to it. Each

definition should coincide with a complete statement about the state of a machine.

Individual definitions are grouped together as children of the ”definitions” element.

Each individual definition has three required attributes: id, version, and class. These

24

are described in more detail below. A definition is separated into three sections: a

metadata section, a notes section, and a criteria section. An example of definition is

shown in Figure 3.4.

FIG. 3.4. Adding definitions

Assigning an ID :

For OVAL Definitions submitted to the OVAL repository, they should use the

org.mitre.oval id namespace. New ids are assigned randomly from a pool that is

managed by the OVAL Repository. When submitting new content to the OVAL

repository, all new items (definitions, test, objects, states, and variables) should be

assigned temporary ids. Once a new submission is reviewed and imported into the

OVAL Repository official ids will be assigned. Temporary ids should be created in a

namespace other than the org.mitre.oval id namespace.

The Version of a Definition:

The required version attribute holds the current version of the definition. Versions

are integers, starting at 1 and incrementing every time a definition is modified.

25

What class does an OVAL Definition fall into?:

Each definition must be assigned a class to help group the definition by the type of

system state it is describing. This helps find and sort definitions when the need arises.

As mentioned earlier, there are five different classes to choose from: compliance, in-

ventory, patch, vulnerability, and miscellaneous.

3. Step 3 – Filling In The Metadata : Each OVAL Definition should have some meta-

data associated with it to help identify it amongst an enormous collection of defini-

tions.This is shown in Figure 3.5.

FIG. 3.5. Adding metadata

The Definition Title :

The required ”title” child element holds a short string that is used to quickly identify

the definition.

The ”affected” element:

The affected metadata item contains information about the system(s) for which the

definition has been written. This is just metadata and not part of the criteria.

References:

References can be added to the metadata section of an OVAL Definition to link it

to a definitive external name. For example, a vulnerability definition can include a

reference to the CVE Identifier that represents the vulnerability being defined. Each

26

reference element found in an OVAL Definition can include an external ID (for ex-

ample the CVE ID) and a URL for finding information about the external ID.

The Definition Description:

The description of the OVAL definition will contain the description of the vulner-

ability contained in the CVE entry. In the case of vulnerability definitions without

a CVE identifier, compliance or patch definitions the description should adequately

convey the purpose of the definition. It should either describe the vulnerability in

question, the patch and its function or what constitutes compliance. This section is

for human consumption so it is left to the definition writers discretion to determine

relevant content.

4. Step 4 – Notes

Each definition can have optional notes associated with it. Each note contains some

information about the definition or about the tests that the definition references. A

note may record an unresolved question about the definition or test or present the

reason as to why a particular approach was taken. To add a note, simply add a ”note”

element as a child of the ”notes” element.An example of this section is shown in

Figure 3.6.

FIG. 3.6. Adding notes

5. Step 5 – Creating the Criteria

Once the metadata and any notes have been added to the definition, it is time to start

building the criteria. The criteria portion of an OVAL Definition is the crux of what

27

is being described. It joins individual tests together with a logical operator to specify

the specific system state.To get started, a ”criteria” element is added as a child of

the ”definition” element. Inside each ”criteria” element can be found other ”criteria”

elements, ”criterion” elements, and ”extended definition” elements. Each ”criteria”

element has an operator attribute who’s value is either AND, OR, XOR, or ONE.

This value determines how the result of the criteria statement will be determined. If

the operator is AND, then every test referenced by the criteria must be true for the

entire criteria to return true. If the operator is OR, then at least one test referenced by

the criteria must be true for the entire criteria to return true. The criteria is a recursive

element. That means you can have new ”criteria” elements inside existing ”criteria”

elements. The reason for this is to enable nesting of logical statements. The ability

to nest these criteria statements allows complex logic to be executed. An example of

this is shown in Figure 3.7.

FIG. 3.7. Adding criteria

6. Step 6 – Adding A Test

Once the criteria of the OVAL Definition has been created, the next step is to add the

associated tests. You first need to assign an ID to the test which will uniquely identify

the test. The optional check existence attribute determines how many objects in the

specified set must exists for the test to be true. For example, if a value of ’all exist’ is

28

given, every object defined by the OVAL Object must exist on the system for the test

to return true. If the OVAL Object uses a variable reference, then every value of that

variable must exist. Note that a pattern match defines a set of matching objects found

on a system. So when check existence = ’all exist’ and a regex matches anything

on a system the test will evaluate to true. (since all matching objects on the system

were found on the system). When check existence = ’all exist’ and a regex does not

match anything on a system the test will evaluate to false.The required check attribute

determines how many of the existing objects must satisfy the state requirements. (For

example: Should the test check that all files match a specified version or that at least

one file matches the specified version?)

FIG. 3.8. Adding tests

7. Step 7 – Adding Necessary Objects

This is shown in Figure 3.9.

8. Step 8 – Adding Necessary States

This is shown in Figure 3.10.

9. Step 9 – Submitting The OVAL Definition

29

FIG. 3.9. Adding objects

FIG. 3.10. Adding states

If desired, submissions of OVAL vulnerability, compliance, inventory, and patch def-

initions may be emailed to MITRE in the proper format by members of the security

community who have registered for the Community Forum, or by OVAL Board mem-

bers. All submissions will be reviewed by the OVAL content team and the OVAL

Editor prior to being posted on the OVAL Web site for comment and public debate.

3.4 The OVAL system characteristics file

This is an XML encoding of the details of a system file - versions running, processes

and patches installed etc. It provides a snapshot of the system which can be saved for

auditing purposes and can be used for analysis of the system. This file drives the OVAL

30

evaluation and should be generated by the OVAL interpreter. It gives the state of the system

which can then be evaluated against the expected system state mentioned in the definition

file. The criteria in the definition file can thus be evaluated to be true or false , using this

information encoded in the system characteristics file. The system characteristics file con-

sists of the following section :

- Generator :

This consists of the information about how the OVAL Document was created and informa-

tion about product name, product version, schema version, timestamp. It is not about the

content, but about the document

- System info section :

Identifies the system from which the set of data was collected. It includes information

about primary host name, Operating System name and version Interfaces. See Figure 3.11.

FIG. 3.11. System info section

- Collected objects section :

This section provides a mapping from the objects specified by an OVAL Definition to the

set of items collected on a host. This is an optional section . If the collected objects section

31

is missing in the system characteristics file, then the entire file has to be searched for the

valid information to be used for evaluation of a particular criteria for a particular definition

in the OVAL definition file. See Figure 3.12.

FIG. 3.12. collected objects section

- System data section :

This section enlists set of items found on the host system. This includes the actual data like

reg keys, file attrs, permissions, etc. See Figure 3.13.

3.5 The OVAL result file

The XML encoding of the results of an analysis include the information about which

systems are vulnerable, which systems are non-compliant, and which patches should be in-

stalled and also include the details - why are they vulnerable, why are they non-compliant,

why should a patch be installed. There are two types of result files full and thin.

- A value of ’thin’ means only a minimal amount of information is provided as shown in

Figure 3.14.

- A value of ’full’ means that very detailed information is provided allowing in-depth re-

ports to be generated from the results as shown in Figure 3.15.

32

FIG. 3.13. system data section

(Nvd.nist.gov) has been referred for the format of the OVAL results file. An OVAL result

file consists of the following sections :

Generator:

It contains information about how a document was created. It includes information about

the product name, product version, schema version, timestamp.

Directives (optional) :

This section reports about the contents of the results document. It mentions whether the

results thus produced are in the full format or thin format, for every case. This has been

shown in Figure 3.13.

OVAL definitions (optional) :

This provides us with an exact copy of the definitions evaluated. This is an optional field.

When used along with full results, it allows for a complete snapshot of the evaluation re-

sults in one document.

Results

33

FIG. 3.14. Thin result file

This section depends upon whether the result to be generated is in the full or the thin for-

mat. Possible result attribute values are :

- True

- False

- Unknown

- Error

- Not evaluated

- Not applicable

The above information was used to write an OVAL definition file and then generate the

results file in the appropriate format. This experiment was carried out for a certain set of

vulnerabilities which were reported in the national vulnerability database during the years

of 2016 , specifically for the feature telephony present in the android operating system.

34

FIG. 3.15. Full result file

3.6 The vulnerabilities

1. CVE-2016-3831 :

The telephony component in Android 4.x before 4.4.4, 5.0.x before 5.0.2, 5.1.x be-

fore 5.1.1, and 6.x before 2016-08-01 allows remote attackers to cause a denial of

service (device crash) via a NITZ time value of 2038-01-19 or later that is mishan-

dled by the system clock. This is related to a famous problem known as Year 2038

problem.

(The Year 2038 problem : The Year 2038 problem is an issue for computing and data

storage situations in which time values are stored or calculated as a signed 32-bit

integer, and this number is interpreted as the number of seconds since 00:00:00 UTC

on 1 January 1970 (the epoch). Such implementations cannot encode times after

35

FIG. 3.16. Directives

03:14:07 UTC on 19 January 2038.)

2. CVE-2016-6771:

An elevation of privilege vulnerability in Telephony could enable a local malicious

application to access system functions beyond its access level. This issue is rated

as Moderate because it is a local bypass of restrictions on a constrained process.

Android versions affected by this vulnerability are 6.0, 6.0.1, 7.0.

3. CVE-2016-6763:

An elevation of privilege vulnerability in Telephony could enable a local malicious

application to access system functions beyond its access level. This issue is rated

as Moderate because it is a local bypass of restrictions on a constrained process.

Android versions affected by this vulnerability are 6.0, 6.0.1, 7.0.

4. CVE-2016-3922:

libril/RilSapSocket.cpp in Telephony in Android 6.x before 2016-10-01 and 7.0 be-

fore 2016-10-01 relies on variable-length arrays, which allows attackers to gain priv-

ileges via a crafted application, as known as internal bug 30202619.

5. CVE-2016-3914:

36

Race condition in providers/telephony/MmsProvider.java in Telephony in Android

versions 4.x before 4.4.4, 5.0.x before 5.0.2, 5.1.x before 5.1.1, 6.x before 2016-

10-01, and 7.0 before 2016-10-01 allows attackers to gain privileges via a crafted

application that modifies a database between two open operations, aka internal bug

30481342.

Chapter 4

EXECUTION OF THE INTERPRETER

4.1 The execution

4.1.1 Writing the OVAL definition for the vulnerabilities

As a first step towards writing the OVAL interpreter, as mentioned in the previous

chapter and by following the guidelines given by the mitre.org official documentation, I

encoded an OVAL definition.xml file. The first task was to shortlist the vulnerabilities

recorded and reported in the National Vulnerability Database(NVD) because of the tele-

phony feature present in the android operating system which were reported in the year

2016. I studied the five vulnerabilities and traced the remediations and patches suggested

for some of them as documented in the google bulletins. The conditions responsible for

each of the vulnerabilities to exist on the android operating system were then enlisted and

were used to write the appropriate criteria and the Boolean conditions in the definition xml

file.

4.1.2 Scanning by using the OVAL interpretor

We now need the information of the system whose safety from the vulnerabilities

has to be detected. We have the definition file which describes the tests to be carried out

37

38

by using the system information to determine whether the system is vulnerable to attacks

from those particular vulnerabilities. So now, the acquired information has to be evaluated

against the tests prescribed and appropriate standardized results have to be generated. To

do so, at the implementation level, the following steps have been carried out :

1. Unmarshalling of the definition file

The implementation has been done in JAVA by using the JAXB library. Java Archi-

tecture for XML Binding (JAXB) is a software framework that allows Java develop-

ers to map Java classes to XML representations and vice versa. JAXB provides two

main features: the ability to marshal Java objects into XML and the inverse, i.e. to

unmarshal XML back into Java objects. In other words, JAXB allows storing and

retrieving data in memory in any XML format, without the need to implement a spe-

cific set of XML loading and saving routines for the program’s class structure. In

the first case, I have the XML definition file which has to be unmarshalled into the

appropriate JAVA classes. This has been achieved by writing the appropriate JAVA

classes in accordance with the XML elements and attributes used in the definition

file. Unmarshalling results in the conversion of XML elements and attributes in the

form of classes and objects and this eases the execution of the mentioned tests in the

criteria.

2. Executing a restful webservice

The decision of executing a webservice was taken so as to avoid the entire XML

parsing module to work on the android device since the dependent jars would in-

crease the total size of the apk and also, some XML parsing tools do not work in the

android development environment. Tomcat server has been used to deploy the restful

webservice which executes the entire scanning process. This webservice can be hit

from any android device by passing the following three parameters :

39

- OS type

- Telephony type

- The android OS details (for the generation of the system characteristics file)

These parameters are then used to generate a system characteristic file, compare and

evaluate the results by using the oval definition file and then generate a results.xml

file which shows the results for the evaluation in a standard format.

3. Generation of the system characteristics file

The system characteristics file provides a snapshot of the operating system in consid-

eration, which, in this case, is the particular android device which is to be scanned for

the specified vulnerabilities. This file is responsible for driving the OVAL evaluation.

The system data section in the system characteristics file is the one which involves

all the necessary details about the operating system . It is the set of items and their

values actually found on the host system.

In the case of android operating system, a system characteristics file is generated in

accordance with the oval characteristics schema.xsd which has been provided by the

OVAL community, for android, and the system information received as a parameter to

the webservice. The inbuilt packages in android, like TelephonyManager and Build

are used to extract the required values in this case. The JAXB libraries have been

used to encode this information and convert it into an xml file having appropriate

elements and attributes , by marshalling the gathered system information.

4. Marshalling to generate the results.xml file

The information from the systems characteristics file about the specific android de-

vice is used to evaluate the specific tests in the oval definition file, which results in a

Boolean value for every set of tests carried for each of the vulnerabilities and the re-

sults thus generated are encoded back into xml to generate the vulnerability scanning

40

result in the standardized form. To generate the results.xml for the scanning results,

JAXB jar is used for the marshalling mechanism.

4.2 A sample use case

This use case scenario takes us through the steps to check for one of the vulnerabilities

considered : CVE-3831 .

4.2.1 Writing the OVAL definition file

The image describes the criteria for the vulnerability CVE-3831 to exist on the android

device. So for the vulnerability to exist on the system: Evaluate(Oval.org.mitre.oval:tst:101)

AND (Evaluate(Oval.org.mitre.oval:tst:102) OR Evaluate(Oval.org.mitre.oval:tst:103) OR

Evaluate(Oval.org.mitre.oval:tst:104) OR Evaluate(Oval.org.mitre.oval:tst:105)) = true.

Which translates to : If telephony exists on the system and the operating system version is

either 4.0,4.1,4.2,4.3,5.x or 6.x, then this vulnerability exists.

FIG. 4.1. Criteria for the vulnerability CVE-3831

4.2.2 Running the scanner

The first step to run the scanner is running the webservice (as shown in Figure 4.2),

which , when hit through a device, will execute the scanner. The second step involves

41

FIG. 4.2. Starting the server

hitting this web service by an android device for which the scanning must be carried out.The

third step involves generating the system characteristics file by the vulnerability scanner.As

the Figure 4.3 shows, the OS version of this particular device is 7.0 and telephony does

exist on the system since the network type() is LTE and not unknown. Therefore, the

vulnerability SHOULD NOT EXIST (as the OS version in 7.0 while this vulnerability

exists for 4.x,5.x,6.x).The fourth step which is internally carried out by the scanner is the

evaluation of the two criteria as mentioned in the definition file by taking the appropriate

values from the generated system characteristics file and when done , then generating the

scanning results in the form of standard OVAL results file. The highlighted part in the

Figure 4.4 shows the evaluation of the test for CVE-3831 which results to false which

means the vulnerability does not exist.

42

FIG. 4.3. The system characteristics file

FIG. 4.4. The result file

43

Chapter 5

EVALUATION OF THE RESULTS

5.1 Case 1

Operating system : Gingerbread (v2.3) and telephony : exists.

Observation : The result evaluates to false as none of the vulnerabilities exist if the

OS version is 2.3. (Refer Figure 5.1 and 5.2)

5.2 Case 2

Operating system : Lollipop (v5.0) and telephony : exists.

Observation : Only those test results evaluate to false whose criteria for the tests to

pass does not include the OS version 5.0. The other tests evaluate to true. (Refer Figure

5.3 and 5.4)

5.3 Case 3

Operating system : Marshmallow (v6.0) and telephony : exists.

Observation : All test results evaluates to true as all the vulnerabilities exist if the OS

version is 6.0. (Refer Figure 5.5 and 5.6)

44

5.4 Case 4

Operating system : Nougat (v7.0) and telephony : exists.

Observation : The last four test results evaluates to true as those vulnerabilities exist

if the OS version is 7.0, whereas the first vulnerability evaluates to false. (Refer Figure 5.7

and 5.8)

5.5 Case 5

Operating system : Nougat (v7.0) and telephony : does not exist.

Observation : As telephony does not exists, all tests evaluate to false. (Refer Figure

5.9 and 5.10)

45

FIG. 5.1. Case 1: The system characteristics file

FIG. 5.2. Case 1: The result file

46

FIG. 5.3. Case 2: The system characteristics file

FIG. 5.4. Case 2: The result file

47

FIG. 5.5. Case 3: The system characteristics file

FIG. 5.6. Case 3: The result file

48

FIG. 5.7. Case 4: The system characteristics file

FIG. 5.8. Case 4: The result file

49

FIG. 5.9. Case 5: The system characteristics file

FIG. 5.10. Case 5: The result file

50

Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Thus,this research explored the possibility and the authenticity of building an SCAP

compliant android vulnerability scanner for detecting the vulnerabilities reported because

of the telephony feature , in the National Vulnerability Database (NVD). The android

OVAL definition schema as provided by mitre.org was used to write the OVAL definition

file which served as a guideline for the tests to be executed in order to determine whether

the particular android operating system is vulnerable to these specific vulnerabilities. The

scanning was carried out on a server to make the scanner apk lightweight by avoiding over-

head caused by the bundling of jars like JAXB. The processing was thus carried out on the

server , which involved the unmarshalling and marshalling of the XMLs. The system char-

acteristics file which participates in the evaluation process was also generated and stored

on the server , while the operating system details needed to encode this file were passed to

the server as a parameter by the android device in consideration, while hitting request to

the scanning service. The result of the vulnerability scanning, thus produced, was encoded

back to results.xml file by the server and was stored on the server itself. The definition

file, system characteristics file and the results file have been constructed in accordance with

the OVAL schema for android as provided by the mitre.org. The scanner thus claims to be

51

SCAP compliant as it follows the OVAL standard which is a sub-standard of SCAP.

6.2 Future work

There is a lot of scope for future work in this domain as not much work has been done

on making an SCAP compliant android vulnerability scanner. Since the scanner proposed

, only detects telephony related vulnerabilities, it can be extended to include vulnerabili-

ties because of other features in android like the Bluetooth, camera, mediaserver, etc. This

would mean adding the appropriate definitions to the existing OVAL definition file pro-

posed in this thesis and constructing the appropriate system characteristics file which will

include system data for these features as well. The appropriate result file will be generated

if these inclusions are made.

Another area in which which this thesis can take a direction is along with detection

of vulnerabilities, carrying out the specified remediations as well. Several google bulletins

have mentioned appropriate patches for many of the vulnerabilities, the details for which

have been mentioned in the National Vulnerability Database (NVD) . If the scanner can be

extended to detecting the vulnerabilities as well as applying the appropriate patches, then

it would be a very useful feature to include.

REFERENCES

[1] Android vulnerabilities by Google. Google Android : List of security vulnerabilities.

[2] by mitre.org, S. OVAL Android Definition Schema Element Dictionary.

[3] Ere, M.; Hurel, G.; Badonnel, R.; and Festor, O. Increasing Android Security using a

Lightweight OVAL-based Vulnerability Assessment Framework.

[4] Festor, O.; Ere, M.; Hurel, G.; and Badonnel, R. Increasing Android Security using a

Lightweight OVAL-based Vulnerability Assessment Framework.

[5] Gurfinkel, D. 2016. Dirty Cow -Unauthorized Access.

[6] NIST. NVD - SCAP Validated Tools.

[7] Nvd.nist.gov. Agenda Process Model OVAL Results Tutorial The Basics.

[8] Oval.mitre.org. Writing an OVAL Definition.

[9] point research team, C. QUADROOTER.

[10] Schmidt, C. Technical Introduction to SCAP.

[11] Stagefright. Stagefright malware is back! ’Worst Android bug in history’ returns for

a third time — Daily Mail Online.

[12] Thomas, D. R.; Beresford, A. R.; and Rice, A. 2015. Security Metrics for the Android

Ecosystem.

[13] Worrell, B. An Introduction to XCCDF.

52

53

[14] Xi-Salvador, L. 2008. A Survey on Languages, Enumerations and Other Tools used

for Security Information Communication and Sharing.

[15] Zlabs. What is Quadrooter? Zimperium Mobile Security Blog.

