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Abstract
Leading up to the Convention on Biological Diversity Conference of the Parties 15, 
there is momentum around setting bold conservation targets. Yet, it remains unclear 
how much of Earth's land area remains without significant human influence and where 
this land is located. We compare four recent global maps of human influences across 
Earth's land, Anthromes, Global Human Modification, Human Footprint and Low 
Impact Areas, to answer these questions. Despite using various methodologies and 
data, these different spatial assessments independently estimate similar percentages 
of the Earth's terrestrial surface as having very low (20%–34%) and low (48%–56%) 
human influence. Three out of four spatial assessments agree on 46% of the non-
permanent ice- or snow-covered land as having low human influence. However, much 
of the very low and low influence portions of the planet are comprised of cold (e.g., 
boreal forests, montane grasslands and tundra) or arid (e.g., deserts) landscapes. Only 
four biomes (boreal forests, deserts, temperate coniferous forests and tundra) have a 
majority of datasets agreeing that at least half of their area has very low human influ-
ence. More concerning, <1% of temperate grasslands, tropical coniferous forests and 
tropical dry forests have very low human influence across most datasets, and tropi-
cal grasslands, mangroves and montane grasslands also have <1% of land identified 
as very low influence across all datasets. These findings suggest that about half of 
Earth's terrestrial surface has relatively low human influence and offers opportuni-
ties for proactive conservation actions to retain the last intact ecosystems on the 
planet. However, though the relative abundance of ecosystem areas with low human 
influence varies widely by biome, conserving these last intact areas should be a high 
priority before they are completely lost.
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1  | INTRODUC TION

Ecosystems that have low human influence are vital contributors to 
human well-being (Díaz et al., 2018), including providing ecosystem 
services (e.g., clean water and flood control, carbon storage and 
pollination; Watson, Venter, et al., 2018), buffering against climate 
change (Martin & Watson, 2016) and housing biodiversity (Di Marco, 
Ferrier, Harwood, Hoskins, & Watson, 2019). These so-called ‘wild’ 
or ‘wilderness’ areas are also important as places of spiritual and 
mental renewal, exploration and wonder (Ewert, Overholt, Voight, & 
Wang, 2011) and serve many local communities by sustaining long-
term cultural connections with these places (Garnett et al., 2018; 
Watson, Evans, et al., 2018). However, as human populations and 
economies have expanded, so too have human influences on nat-
ural environments (Venter et al., 2016). These human-influenced 
environments, such as agricultural, forestry and urban areas, can 
still retain or be managed to support some elements of biodiver-
sity and be important areas in providing ecosystem services or 
recreation (Ellis, 2019; Locke et al., 2019). Indeed, land sharing or 
wildlife-friendly agriculture can help protect biodiversity (Green, 
Cornell, Scharlemann, & Balmford, 2005; Kremen & Merenlender, 
2018), selectively logged forests can retain many, but not all, of their 
ecosystem services (Edwards, Tobias, Sheil, Meijaard, & Laurance, 
2014), and urban areas can be hotpots for pollinators (Baldock et al., 
2019). Nevertheless, human societies now consume a quarter of net 
primary productivity (Krausmann et al., 2013), and while the impor-
tance of intact, natural systems is increasingly recognized, they are 
being rapidly eroded (Oakleaf et al., 2015; Watson, Venter, et al., 
2018). These losses persist even as countries have committed in the 
Convention on Biological Diversity (CBD) to dramatically decrease 
the rate of loss of natural habitats and to significantly reduce their 
degradation and fragmentation by 2020 (e.g., Aichi Target 5; CBD & 
UNEP, 2010).

Although nearly 20% of the terrestrial surface of the planet is 
classified as built-up or cropland (Defourny et al., 2017), only 15% 
of Earth's land surface is formally under protection (UNEP-WCMC, 
IUCN, & NGS, 2019). In addition, Earth's remaining intact ecosys-
tems outside the protected area estate (and even within them, Jones 
et al., 2018) are being rapidly eroded (Kennedy, Oakleaf, Theobald, 
Baruch-Mordo, & Kiesecker, 2019; Watson, Shanahan, et al., 2016). 
Nations will set new conservation targets at the CBD Conference 
of the Parties 15. Leading up to the convention, there is momentum 
behind setting ambitious targets of conserving at least 50% of the 
Earth's surface by 2050 (e.g., Baillie & Zhang, 2018; Dinerstein et al., 
2017, 2019; Locke, 2013; Wilson, 2016). To make these targets ef-
fective, evidence-based ecological assessments (Pimm, Jenkins, & Li, 
2018; Watson & Venter, 2017) are needed to answer a key question: 
how much of Earth's terrestrial surface remains without intensive 
human use is currently left to conserve?

Initial efforts to map human influence globally started in the 
1980s with a focus on identifying wilderness (i.e., areas free from 
human alteration; e.g., McCloskey & Spalding, 1989) and pro-
gressed through the 1990s (e.g., Hannah, Lohse, Hutchinson, Carr, 

& Lankerani, 1994; Lesslie, 1998) and 2000s (e.g., Mittermeier et al., 
2002). These first maps, while revolutionary, were crude due to both 
data and computing limitations (Watson & Venter, 2019). The Human 
Footprint index was a significant step forward in mapping human 
pressures across the world's terrestrial lands (Sanderson et al., 2002). 
Human Footprint combined globally consistent digital data of known 
pressures on biodiversity (e.g., human population and cropland) in a 
geographic information system to generate a score that enabled a 
high-resolution map (1 km) of human pressure, and consequently, a 
‘last of the wild’ map. An important conceptual step in the mapping 
progression was the recognition that human and biological systems 
are intertwined and should be analyzed together, hence the delin-
eation and categorization of Anthropogenic Biomes, or Anthromes 
(Ellis, Goldewijk, Siebert, Lightman, & Ramankutty, 2010; Ellis & 
Ramankutty, 2008). Human populations and land use land cover data 
were combined with vegetation data to identify more than 15 cate-
gories of various mixes of human uses with ecosystems (e.g., Urban, 
Residential Irrigated Cropland and Residential Rangelands). Both of 
these datasets have been updated and improved since their initial re-
lease (Goldewijk, Beusen, Doelman, & Stehfest, 2017; Venter et al., 
2016), with the Human Footprint having been applied to assessments 
of global wilderness loss (Watson, Shanahan, et al., 2016), determin-
ing and predicting mammal species extinction risk (Di Marco, Venter, 
Possingham, & Watson, 2018), change in animal movement and be-
havior (Kühl et al., 2019; Tucker et al., 2018), global protected area 
effectiveness (Jones et al., 2018) and nations progress towards CBD 
targets (Watson, Jones, et al., 2016).

More recently, two new global human influence datasets have 
been developed. The Global Human Modification map (Kennedy, 
Oakleaf, Theobald, Baruch-Mordo, & Kiesecker, 2018) that measures 
the spatial extent of 13 anthropogenic stressors and their estimated 
intensities of influence and produces a continuous 0–1 metric of the 
ecological condition of land. While it is mapped at a resolution of 1 km, 
much of the input data is at finer resolution and reflect recent land 
condition (median date 2016). It accounts for the proportion of each 
grid cell covered by the stressor and multiplies it by an intensity value 
based on ‘emergy’ measures of human-induced impacts on biological, 
chemical and physical processes of lands (Kennedy et al., 2019). In ad-
dition, a new map of Low Impact Areas identifies landscapes with low 
human densities and impacts and not primarily managed for human 
needs (Jacobson, Riggio, Tait, & Baillie, 2019). These areas are cate-
gorized at two thresholds as either Very Low Impact or Low Impact 
Areas. They result from a categorical process that starts with the en-
tire globe as low impact and then excises areas that are primarily man-
aged or modified for human use at a 1 km resolution. If a cell has any 
urban or cropland extent, night-time lights, or anthropogenic forest 
cover change, then it was no longer considered low impact. Impacts 
based on human population and livestock density are scaled by aridity 
such that higher densities are required to move a cell from low impact 
to non-low impact in more humid environments (Jacobson et al., 2019).

In this paper, we compare four key global human influence data-
sets: Anthromes, Global Human Modification, Human Footprint and 
Low Impact Areas. We build off previous efforts that have compared 



     |  3RIGGIO et al.

agreement between geospatial datasets, such as degraded lands 
(Gibbs & Salmon, 2015), urban areas (Potere & Schneider, 2007), land 
cover classes (Klein Goldewijk & Ramankutty, 2004; Tuanmu & Jetz, 
2014) and human influence maps based on original values and clas-
sifications (Kennedy et al., 2019). Here, for the first time, we present 
a comparison of the agreement and disagreement in areas mapped 
as low human influence globally to answer two critical questions at 
the foundation of forthcoming ambitious targets: Is 50% of land left 
with little human influence on it, which protected area expansion 
can proactively conserve and where is it? Summary statistics iden-
tify the levels of agreement and disagreement between the four data 
layers both globally and across different biomes. In producing our 
congruency map, we identify further recommendations that could 
lead to improvements in future mapping efforts.

2  | METHODS

For each human influence dataset, we produced two binary 
outputs—very low human influence and low human influence— 
according to the native dataset definitions (Table 1).

For the Anthromes dataset, we grouped the wild woodlands, 
wild treeless and barren lands, and wild ice classes into the very low 
human influence threshold—wildlands being defined as ‘lands with-
out human populations or substantial land use’ (Ellis et al., 2010). 
We included these in addition to remote rangeland, semi-natural 
remote woodlands, and semi-natural treeless and barren lands to 
delineate the low human influence threshold. In Kennedy et al. 
(2019), low modification areas were classified as areas with <10% 
of human modification per 1 km2 and had median HM values on the 
lower half of the distribution globally (HM ≤ 0.10) and, on average, 
two overlapping human stressors. For this analysis, we assigned 
very low modification to 1 km2 cells with <1% of mapped human 
modification (HM  ≤  0.01), which were areas with very small pro-
portions of only one low-intensity human stressor and coincided 
with the common level of modification detected in strict protected 
areas (i.e., median HM = 0.008 in IUCN Ia & Ib protected areas). We 
considered areas having no pressure (i.e., value = 0) in the Human 
Footprint dataset to have very low human influence (Venter et al., 
2016), while areas having low pressure (i.e., value ≤ 3), indicating 
‘land which is predominantly free of permanent infrastructure, but 

may hold sparse human populations’ (Allan et al., 2017), as having 
low human influence. Finally, the Low Impact Areas dataset defines 
two categorical thresholds—low impact and very low impact. We 
used their low impact class (‘landscapes that currently have low 
human density and impacts and are not primarily managed for 
human needs’) for the low human influence threshold (Jacobson 
et al., 2019). For the very low human influence threshold, we used 
their very low impact class, which reduces the human population 
and livestock density thresholds to <1 per 1 km2 and excludes all 
raster cells containing roads.

Once the categories were set for each dataset, we standardized 
the projection and cell size for comparison purposes. We also iden-
tified the land grid cells that each dataset had in common because 
each had slightly different land/water boundaries. As the Global 
Human Modification and Human Footprint layers are natively set 
to 1 km raster cell resolution (Mollweide equal-area projection), we 
used this as our comparison point, re-projecting the Low Impact 
Areas dataset (from World Eckert IV) and resampling Anthromes 
(from ~5 km resolution) to meet this resolution and projection. We 
then overlaid all datasets together and used the resulting layer as a 
mask so that all four datasets were clipped to the same coastline, 
interior water, and permanent ice and snow boundaries, resulting in 
the same number of terrestrial cells for each dataset (128,207,944 
cells). Fundamentally, this means that most of the inland water bod-
ies, and areas of permanent ice and snow, were excluded from the 
analysis.

We first compared the standardized input datasets based on the 
aggregate percentage of the terrestrial surface of the world each 
classified as being in very low and low human influence. We then 
quantified how strongly correlated the binary spatial outputs from 
each dataset were by calculating pairwise Jaccard similarity coeffi-
cients (Jaccard, 1912). Jaccard similarity measures the size of the in-
tersection between datasets (e.g., number of cells that both datasets 
classified as having very low human influence), divided by the size 
of the union of the datasets (e.g., number of cells that either data-
set has classified as having very low human influence) to provide a 
statistic describing classification similarity between binary datasets. 
Values can range from 0 (no similarity) to 1 (identical datasets) and 
are presented as percent similarity. Therefore, we only considered 
the similarity between datasets in their classification of very low and 
low human influence cells.

To assess the aggregate percentage of the world classified as 
either low or very low influence by the input datasets, we divided 
the number of cells in either classification by the total number of 
land cells (see above). We then evaluated each cell as the number 
of times it was identified in the classification. This produced two 
comparison datasets. A value of 4 indicating full agreement with the 
low influence classification and a value of 0 indicating agreement in 
non-low influence classification, while a value of 2 indicates great-
est disagreement between datasets (i.e., an even split between very 
low influence and non-low influence classifications). Intermediate 
values of 1 and 3 indicate a minority (one of the four) and majority 
(three of the four) of datasets classifying the cell as low influence, 

TA B L E  1   Input dataset thresholds for low and very low human 
influence

Human influence 
dataset

Very low influence 
threshold

Low influence 
threshold

Anthromes ‘Wildlands’ (61, 62 
and 63)

43, 53, 54, 61, 62 
and 63

Global Human 
Modification

0–0.01 0–0.1

Human Footprint 0 0–3

Low Impact Areas Categorical Categorical
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respectively. Using these overlay datasets, we calculated the over-
all spatial agreement for the binary classification of very low human 
influence and low human influence across all (values of 0 and 4) and 
the majority (3 out of 4) of datasets (values of 0, 1, 3 and 4). Similarly, 
we calculated these agreement statistics between these datasets at 
a biome level, categorizing cells by biome using the Ecoregions 2017 
dataset (Dinerstein et al., 2017).

Finally, we calculated pairwise Jaccard distance (the inverse of 
Jaccard similarity; Levandowsky & Winter, 1971) between each 
human influence dataset to determine which biomes (Dinerstein 
et al., 2017; Ecoregions, 2017) have the greatest disagreement in 
their classification of very low and low human influence. We finally 
calculated the mean of the pairwise Jaccard distance values across all 
pairwise comparisons to provide a single value of dissimilarity in the 
classification of very low and low human influence for each biome.

3  | RESULTS

Each of the four human influence datasets uses their own unique 
definition, methodological approach and data inputs to identify 
areas of lower and higher ‘human influence’ (Table  2). Aside from 

the similarities and differences in definition and process, there 
is partial overlap in the data inputs (i.e., human stressors) used to 
produce these four datasets (Figure 1). All integrate spatial data on 
human population density, cropland and built-up areas. However, 
each dataset considers unique human stressors: Anthromes uses 
rice and irrigated area as input layers; Global Human Modification 
incorporates electrical infrastructure, energy production and min-
ing; Human Footprint includes access due to navigable waterways 
and coastlines; and Low Impact Areas uses forest cover change and 
strictly protected areas (Figure 1). Even when there is similarity in 
stressor type across the four datasets, there are few overlaps in the 
specific input dataset used for the stressor and how they were spa-
tially mapped (Table S1; Table 2).

The aggregate percentages mapped as very low and low 
human influence are similar across the four datasets at a global 
scale (Table 3). On average, just over 50% of the world is classified 
as low influence (48%–56%), while roughly a quarter of the plan-
et's ice-free terrestrial surface is considered very low influence 
(20%–34%).

All pairwise comparisons between the input datasets for both 
the very low and low human influence thresholds show greater than 
50% similarity in classification with substantially higher similarity 

TA B L E  2   Comparison of the methods used in creating the four global human influence datasets and their outputs

  Anthromes Global Human Modification Human Footprint Low Impact Areas

Resolution ~5 km 1 km 1 km 1 km

Data year 2015 2016 2009 2015

Type Categorical Continuous Ordinal Categorical

Scaling 6 groups; 19 classes 0–1 (low to high) 0–50 (low to high) 3 classes

Definition Human biomes—‘the 
globally significant 
ecological patterns 
created by sustained 
interactions between 
humans and 
ecosystems’

Ecological condition of lands 
based on the spatial extent 
and intensity of human 
activities

Cumulative human pressure on 
the environment

Landscapes with low human 
densities and impacts, and 
not primarily managed for 
human needs

Primary stressor 
datasets

6 (human population 
density, built-up area, 
cropland, rice area, 
irrigated area, pasture)

13 (human population 
density, built-up area, 
cropland, livestock, major 
roads, minor roads, two 
tracks, railroads, mines, oil 
wells, wind turbines, power 
lines, night-time lights)

8 (human population density, 
built-up area, cropland, 
pasture, major roads, railroads, 
navigable rivers, night-time 
lights)

7 (human population density, 
built-up area, cropland, 
livestock, forest cover 
change, roads [in very low 
impact class], night-time 
lights)

Calculation of 
spatial extent

Classifications based 
on proportion of total 
area experiencing the 
stressor

Determined the proportion 
modified by each stressor 
per 1 km2 area (values 
ranged from 0 to 1)

Treated each stressor layer as 
present or absent

Treated each stressor layer as 
present or absent

Indirect effects 
due to human 
access

N/A N/A Applied a distance decay 
effect of for roads, navigable 
waterways and coastlines

N/A

Stressor 
weighting

N/A Spatial extent × intensity 
value, continuous from 0 
to 1

Assigned pressure scores from 
0 to 10

Equal

Cumulative 
score

N/A Applied fuzzy sum algorithm Summation of cell values N/A
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at the low compared to very low human influence level (Table 4). 
The Anthromes and Human Footprint datasets are the most simi-
lar for the very low influence threshold (57%; Table 4a), while the 
Anthromes and Global Human Modification datasets are the most 
similar in their classification of low human influence (73%; Table 4b). 
Conversely, the Anthromes and Global Human Modification data-
sets are the least similar for the very low influence threshold 
(52%; Table 4a), while the Human Footprint and Low Impact Areas 
datasets are the least similar in their classification of low human 

influence (65%; Table  4b). However, similarity in classifying land 
having very low and low human influence varies widely by biome 
(Table  S2). For example, Global Human Modification and Human 
Footprint have less than 1% similarity in their classification in very 
low human impact in tropical dry forests, whereas Anthromes and 
Low Impact Areas have 98% similarity in their classification in low 
human impact in tundra.

Much of the very low (Figure 2a; Figure S1a) and low influence 
(Figure 2b; Figure S2b) portions of the planet are comprised of cold 
(e.g., boreal forests, montane grasslands and tundra) or arid land-
scapes (i.e., deserts; Figure 3; Table S4). Encouragingly, however, a 
substantial portion of the Amazon Basin also contains a larger area 
of agreement for very low and low human influence.

Similarly, despite different objectives, input layers and meth-
odologies, the overlay of the four input datasets shows substantial 
agreement at the coarse global scale for these binary classifications 
of human influence (Figure 3; Table S3). All four layers agree com-
pletely on just over a third of the planet's terrestrial surface as areas 
of low human influence (35%). While overall agreement of very low 
human influence is only 13%, the majority of datasets agree on 21% 
of the world as having very low influence. Overall, less than 10% 

F I G U R E  1   Venn diagram showing the various overlapping types of human stressors used in the Anthromes, Global Human Modification, 
Human Footprint and Low Impact Areas datasets. *Roads used to classify areas of very low human influence in the Low Impact Areas 
dataset

TA B L E  3   Percentage of the world classified as either low or very 
low human influence by the input datasets

Human influence dataset
Very low 
influence (%)

Low 
influence (%)

Anthromes 24.5 53.6

Global Human Modification 19.8 47.8

Human Footprint 25.3 49.2

Low Impact Areas 33.8 56.2

Average 25.9 51.7
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of the planet has ‘Mixed’ classification results for both influence 
thresholds. These areas are likely the most challenging to assess for 
human influence.

Only two biomes (tundra and boreal forests) have a majority of 
datasets agreeing that at least half of their area has very low human 
influence (Figure  3a), while deserts and temperate coniferous for-
ests have a majority of datasets agreeing that at least half of their 
area has low human influence (Figure 3b).

Worrisomely, <1% of temperate grasslands, tropical coniferous 
forests and tropical dry forests have very low human influence by 
the majority of datasets; and when considering full agreement, trop-
ical grasslands, mangroves and montane grasslands also have <1% 
land identified as very low influence (Figure 3a).

When looking at average spatial classification agreement on a 
per biome basis, temperate coniferous forests, tropical dry forests, 
temperate grasslands and mangroves have the greatest disagree-
ment at both the very low and low human influence thresholds 
(Table 5; Figure S2). For both influence thresholds, tundra, boreal 
forests and deserts have the greatest spatial agreement (Table 5; 
Figure S2).

4  | DISCUSSION

Despite varying input human stressor layers and methodologies em-
ployed by maps of Anthromes, Global Human Modification, Human 
Footprint and Low Impact Areas, the percentage of the terrestrial 
surface of the Earth that has very low and low human influence was 
found to be similar at global scales: 48%–56% low influence and 
20%–34% very low influence (Table  3). Indeed, all pairwise com-
parisons between the input datasets for both the very low and low 
human influence thresholds show >50% similarity in spatial classifi-
cation (Table 4). Furthermore, the majority of datasets agree on 46% 
of the non-ice or snow terrestrial land as low, and 21% of the Earth's 
surface as remaining in a very low human influence state (Figure 3; 
Table S3). Independently, these datasets predict that approximately 

half of the planet has low human influence, and a quarter is very low 
influence.

We note the input data layers used in the four human influence 
datasets contain underlying assumptions and sources of error that, 
in turn, affect the level of agreement in the very low and low human 
influence congruence maps. Some of the human stressor datasets 
directly map physical sources of human activities and land use (e.g., 
roads and other infrastructure). Others are classified from remotely 
sensed imagery that have some amount of built-in inaccuracy due to 
the modeling approach. For example, the ESA CCI Land Cover map 
has a reported 75% overall validation accuracy (Defourny et al., 2017), 
and accuracy assessments are only as precise as their method and val-
idation data (Foody, 2002). Furthermore, some land cover types are 
easier to classify, such as built-up areas, and there is a strong negative 
relationship between accuracy and landscape heterogeneity (Herold, 
Mayaux, Woodcock, Baccini, & Schmullius, 2008). Other studies show 
that certain tropical biomes can be more difficult to classify than their 
temperate counterparts (Jacobson et al., 2015; Tchuenté, Roujean, & 
de Jong, 2011). Similarly, we find that tropical and montane grassland 
(at the very low human influence threshold) and tropical coniferous 
forest (at the low threshold) biomes have the greatest classification 
disagreement among the four datasets (Table  5). In addition, some 
human stressor input data rely completely on modeling human pres-
sure based on census data and government records (e.g., human 
population and livestock density). Errors here could derive from ei-
ther the census data or the models used to create the spatial out-
puts. Problematically, any source of error in any input dataset will be 
carried through to the final congruency map. Thus, unanimous agree-
ment in the congruency maps represent low human influence lands 
where there is a high level of confidence in this classification, but we 
recognize that disagreement could be due to error in a single human 
stressor input layer, used by a single human influence dataset.

Disagreement between the four human influence datasets com-
pared here could also result, not only from differences in the human 
stressor input layers and their attributes (e.g., resolution or source 
year; Table  S1) but also from differences in the methodology of 

(A) Very low 
human influence Anthromes

Global Human 
Modification

Human 
Footprint

Low Impact 
Areas

Anthromes        

Global Human 
Modification

52%      

Human Footprint 57% 53%    

Low Impact Areas 54% 55% 56%  

(B) Low human 
influence Anthromes

Global Human 
Modification

Human 
Footprint

Low Impact 
Areas

Anthromes        

Global Human 
Modification

73%      

Human Footprint 68% 71%    

Low Impact Areas 68% 72% 65%  

TA B L E  4   Pairwise Jaccard similarity 
coefficients for the input datasets 
classification of (A) very low and (B) low 
human influence



     |  7RIGGIO et al.

weighting and combining these data layers (Table 2). Global Human 
Modification and Human Footprint combined stressors to create 
cumulative scores that produced continuous and ordinal datasets, 
respectively, whereas classification was used for Anthromes and 
Low Impact Areas, resulting in categorical maps. Although each 
dataset provides a metric for the extent of human influence on 
landscapes, their definitions vary, reflecting differential purposes in 
their creation (Table 2). Disagreement between these datasets could 
stem from any of these human stressor input and methodological 

differences, making it striking that they map similar proportions of 
low and very low human influence across the terrestrial surface of 
the planet. At the same time, there can be substantial differences at 
the biome scale, with large areas of spatial disagreement for certain 
biomes, such as temperate coniferous forests, tropical dry forests, 
temperate grasslands and mangroves (Table S2; Table 5).

For the purposes of this study, we focused on evaluating the agree-
ment among four global datasets that map low or very low human influ-
ence at the broad biome scale, excluding an analysis of the extent of no 

F I G U R E  2   Maps showing the level of agreement between the four input datasets classification of (a) very low or (b) low human influence. 
‘Full’ indicates all four datasets are in full agreement and all identify that cell as low (or very low) human influence, while ‘none’ indicates zero 
of the datasets identify that cell as low (or very low) human influence. ‘Majority’ reference areas where three out of the four, ‘Mixed’ two out 
of four and ‘Minority’ one out of four datasets identify that cell as low (or very low) human influence
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direct human influence. It is likely that agreement at the level of areas 
completely free from human influence is lower than the figures we find 
here. For instance, the Human Footprint maps roughly 19% of Earth's 
non-Antarctic land areas as totally free from human influence (Watson, 
Shanahan, et al., 2016), whereas the Human Modification maps ~5% as 
free from human modification (Kennedy et al., 2019). Assessments of 
the accuracy of these layers identify the difficulty of mapping this level 
of influence (Kennedy, Oakleaf, Baruch-Mordo, Theobald, & Kiesecker, 
2020; Venter, Possingham, & Watson, 2020). Moreover, we note that 
a consistent evaluation of areas with no human influence was not 
feasible across all four datasets given that Anthromes and Low Impact 
Areas do not map areas free from human influence.

We also acknowledge that additional global mapping efforts exist 
beyond those we incorporated, including those focused on accessi-
bility/travel time to cities (Weiss et al., 2018), human appropriation 

of net primary productivity (Haberl et al., 2007) and Global Land 
Systems (van Asselen & Verburg, 2012, 2013). The choice to include 
or exclude any dataset would obviously affect the outcome of this 
analysis. Furthermore, while our analysis only considered global 
datasets, other human influence maps exist at regional (e.g., Cao, 
Carver, & Yang, 2019; Fisher et al., 2010; McGarigal et al., 2018; 
Perkl, 2017; Theobald, 2013) and biome scales (e.g., Bryant, Nielson, 
& Tangley, 1997; Henwood, 2010; Potapov et al., 2017).

4.1 | Advances in mapping human influence 
on the planet

Mapping and monitoring ecosystem condition are central to moni-
toring progress towards most Aichi Targets (CBD & UNEP, 2010; 

F I G U R E  3   Overall percent agreement between the four input datasets classification of (a) very low or (b) low human influence of the 
terrestrial surface of the world and classified by biome. ‘Full’ indicates all four datasets are in full agreement and all identify that cell as low 
(or very low) human influence, while ‘none’ indicates zero of the datasets identify that cell as low (or very low) human influence. ‘Majority’ 
reference areas where three out of the four, ‘Mixed’ two out of four and ‘Minority’ one out of four datasets identify that cell as low (or very 
low) human influence
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Watson et al., 2020), the identification of the IUCN Red List of 
Ecosystems (Keith et al., 2013; Rodríguez et al., 2011), assessments 
of High Conservation Value (Brown et al., 2013) and tracking fea-
sibility and progress towards area-based protection targets, such 
as Nature Needs Half or Half-Earth (Locke, 2013; Wilson, 2016). 
However, ecosystem condition has multiple dimensions including 
connectivity and fragmentation, genetic, species and community 
composition, and functional diversity. Many current approaches to 
mapping ecosystem condition, including the datasets in our analy-
sis, focus on the mapping of easier-to-document human stressors 
and do not directly measure the condition of biodiversity itself 
(Beyer, Venter, Grantham, & Watson, 2019). These approaches can 
relate to important aspects of ecological condition, such as frag-
mentation and connectivity (Jacobson et al., 2019; Kennedy et al., 
2019) or species extinction (Di Marco et al., 2018). In addition, 
not all aspects of biodiversity condition can be measured remotely 
(e.g., hunting rates or fuel gathering), thus maps of human impacts 
are important proxies (see O’Connor et al., 2015). The assumption 
is that ecosystem condition can be inferred by proxy through as-
sessing the variety and intensity of stressors, and that ecosystems 
respond consistently in an empirically similar way to pressures 
(but see Halpern et al., 2008). However, there are a number of 

reasons this may not be true, for example, when stressors are not 
known or correctly mapped; when stressors interact with one an-
other and with biota in unknown ways (Crain, Kroeker, & Halpern, 
2008; Darling & Côté, 2008); and when ecosystems are variously 
resilient to stressors (Erb et al., 2017). Thus, we argue that directly 
measuring ecosystem condition and integrating this with advances 
in cumulative human pressure mapping directly are valuable ap-
proaches for the goals listed above.

Measuring and mapping condition is difficult, although progress 
has been made using very high-resolution, hyperspectral and LiDAR 
data (Nagendra et al., 2013; Pettorelli, Owen, & Duncan, 2016). 
There is a limited set of studies mapping ecosystem condition from 
remotely sensed data, and most are local or focused on a partic-
ular biome, such as forest (e.g., Kent, Lindsell, Laurin, Valentini, & 
Coomes, 2015). An example of a global approach to mapping one 
aspect of ecosystem condition is the Biodiversity Intactness Index 
(Newbold et al., 2016). This produced a spatially explicit global es-
timate of how land use pressures have impacted species richness 
and abundance relative to the richness and abundance of originally 
present species (but see Martin, Green, & Balmford, 2019).

With continuing advances in the generation of large training 
datasets by citizen scientists and computer vision algorithms to an-
alyze global-scale satellite imagery, a new map of global ecosystem 
condition may be within reach (Watson et al., 2020). Commercial 
cloud computing platforms enable processing and analysis at global 
scale (Gorelick et al., 2017), and deep learning computer vision algo-
rithms are being applied to satellite imagery analysis and monitoring 
on a daily basis (Finer et al., 2018). There is an opportunity to teach 
crowds of non-experts to construct open-access labeled image data-
sets, of sufficient scale to train algorithms that can advance auto-
mated global-scale ecosystem condition mapping. Indeed, projects 
such as Geo-Wiki (Fritz et al., 2009) and Collect Earth (Bey et al., 
2016) provide platforms to use crowdsourced training data to val-
idate land cover (Fritz et al., 2012) or develop cropland (Fritz et al., 
2015) and wilderness maps (See et al., 2015). These efforts, refined 
to use a well-designed, probability-based global survey, can help di-
rect citizen science sourcing of validation data to ensure that the 
maximum statistical information can be extracted from these hard-
won data (Olofsson et al., 2012; Theobald, 2016). However, image 
interpretation and remotely sensed assessments are likely to miss 
many land uses that require ground-based assessment such as hunt-
ing, foraging and fuel-gathering, as well as to capture land use inten-
sity (Erb et al., 2013, 2017).

4.2 | Conservation implications and conclusion

By combining four global maps of human influence (Anthromes, 
Global Human Modification, Human Footprint and Low Impact 
Areas), we identify the location and proportion of the planet that 
has relatively low human influence. Our findings suggest that ~50% 
of the terrestrial surface of the planet experiences low human in-
fluence and, as a consequence, it is possible to achieve bold global 

TA B L E  5   Average pairwise Jaccard distances (percent 
dissimilarity) for the input datasets classification of (A) very low and 
(B) low human influence per biome type

(A) Biome name

Very low 
influence 
(%) (B) Biome name

Low 
influence

Tundra 11.4 Tundra 2.9

Boreal forests 31.4 Boreal forests 11.4

Deserts 50.7 Deserts 24.4

Mediterranean 62.1 Temperate 
coniferous forests

30.4

Temperate 
coniferous 
forests

64.5 Montane 
grasslands

38.1

Tropical moist 
forests

68.3 Tropical moist 
forests

39.1

Temperate 
broadleaf forests

69.6 Tropical grasslands 48.0

Tropical grasslands 77.4 Mediterranean 51.2

Montane 
grasslands

78.4 Temperate 
broadleaf forests

57.0

Flooded grasslands 79.3 Flooded grasslands 60.5

Mangroves 85.1 Temperate 
grasslands

60.6

Temperate 
grasslands

93.4 Mangroves 66.8

Tropical dry 
forests

94.3 Tropical dry forests 72.0

Tropical coniferous 
forests

96.3 Tropical coniferous 
forests

75.0



10  |     RIGGIO et al.

calls to proactively conserve at least 50% of the terrestrial planet 
(Baillie & Zhang, 2018; Dinerstein et al., 2017; Locke, 2013; Maron, 
Simmonds, & Watson, 2018; Wilson, 2016). This fits within bold 
protected area goals being proposed (e.g., Dinerstein et al., 2019) 
and also calls to proactively retain intact ecosystems via all conser-
vation mechanisms available (e.g., Maron et al., 2018). However, as 
the current international conservation targets (CBD & UNEP, 2010) 
include clear directions for achieving ecosystem representation and 
connectivity and for targeting sites that are essential for achieving 
biodiversity conservation outcomes, it is not simply the amount but 
also the location of new protected areas that matters (Pimm et al., 
2018; Pouzols et al., 2014; Watson, Venter, et al., 2018). We found 
that only two biomes (tundra and boreal forests) have a majority of 
datasets agreeing that at least half of their area has very low human 
influence, while deserts and temperate coniferous forests meet that 
metric at the low influence threshold (Figure 3; Table S4).

With substantial portions of low and very low influence areas 
found in cold and/or dry biomes, meeting full-representational 
targets will be difficult (Dinerstein et al., 2017; Jacobson et al., 
2019; Kennedy et al., 2019; Watson, Jones, et al., 2016). Thus, 
bold conservation agendas (such as trying to conserve 50% of the 
biome) will require conservation targets that include restoration 
activity (Mappin et al., 2019; Maron et al., 2018). While targeted 
restoration of lands with lower human influence may meet much 
of this shortfall, in regions where the majority of lands have 
been heavily modified by humans, innovative conservation solu-
tions, such as payment for ecosystem services will be necessary 
(Bullock, Aronson, Newton, Pywell, & Rey-Benayas, 2011; Mappin 
et al., 2019; Watson, Evans, et al., 2018). Finally, while there is a 
desire to conserve intact ecosystems for its own sake, there are 
other, potentially competing, conservation objectives that must be 
balanced, such as the protection of non-intact Indigenous lands 
(Garnett et al., 2018), biodiverse areas that occur beyond intact 
ecosystems (Myers, Mittermeier, Mittermeier, Da Fonseca, & 
Kent, 2000; Pimm et al., 2018), degraded regions with high eco-
system services such as carbon storage capacity (Kennedy et al., 
2020), or agricultural production (Mehrabi, Ellis, & Ramankutty, 
2018). As such, a balanced conservation response that addresses 
land sovereignty, weights trade-offs with land demands for agri-
culture, settlement and other resource needs (Ellis, 2019; Kennedy 
et al., 2016), and that speaks to the condition of Earth is essential 
(Locke et al., 2019). Therefore, while we illustrate the capability 
and strongly endorse the need to greatly increase global conser-
vation targets, a simplistic focus on meeting area-based targets 
alone is inadequate and more nuanced targets are also needed.
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