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ABSTRACT

Title of Thesis: Rapid Plan Adaptation Through Offline Analysis of Potential Plan

Disruptors

Robert H. Holder, III, Ph.D. in Computer Science, 2016

Thesis directed by: Dr. Marie desJardins, Professor and
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Computing solutions to intractable planning problems is particularly problematic in

dynamic, real-time domains. For example, visitation planning problems, such as a deliv-

ery truck that must deliver packages to various locations, can be mapped to a Traveling

Salesman Problem (TSP). The TSP is an NP-complete problem, requiring planners to use

heuristics to find solutions to any significantly large problem instance, and can require a sig-

nificant amount of time. Planners that solve the dynamic variant, the Dynamic Traveling

Salesman Problem (DTSP), calculate an efficient route to visit a set of potentially changing

locations (Psaraftis, 1988). When a new location becomes known, DTSP planners typically

use heuristics to add the new locations to the previously computed route. Depending on the

placement and quantity of these new locations, the efficiency of this adapted, approximated

solution can vary significantly (Psaraftis, 1995; Laporte et al., 2000; Larsen, 2000). Solv-

ing a DTSP in real time thus requires choosing between a TSP planner, which produces a

relatively good but slowly generated solution, and a DTSP planner, which produces a less

optimal solution relatively quickly.

Instead of quickly generating approximate solutions or slowly generating better so-

lutions at runtime, this dissertation introduces an alternate approach of precomputing a

library of high-quality solutionsprior to runtime. One could imagine a library containing



a high-quality solution for every potential problem instance consisting of potential new lo-

cations, but this approach obviously does not scale with increasing problem complexity.

Because complex domains preclude creating a comprehensive library, I instead choose a

subset of all possible plans to include. Strategic plan selection will ensure that the library

contains appropriate plans for future scenarios.

Experimental results demonstrate that plan quality comparable to online repair can

be achieved by calculating solutions for a sample of the potential problem instances. I

present novel algorithms that use the sampled solutions to find approximate solutions to

other problem instances by exploiting structure in the solution space. For domains with

solution spaces that do not contain sufficient structure, I show that applying abstraction,

normalization, and reindexing operations to the solutionscan create the necessary structure.

For the domains tested, the algorithms generated full plan libraries containing solutions as

good or better than online repair by calculating solutions to as few as 0.2% of the potential

problem instances.

This dissertation thus contributes (1) a representation framework to reason about the

structure of solution spaces, (2) novel algorithms to exploit structure in the solution space

in order to generate plan libraries, (3) techniques to transform the structure of the solution

space to facilitate the use of the algorithms, and (4) an evaluation of the algorithms in

several test domains.
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Chapter 1

INTRODUCTION & MOTIVATION

The ability of a planning system to quickly adapt to environmental changes is critical

in time-constrained domains. Online, heuristic plan repair approaches are sufficient for

small changes in the environment; however, repeated or large changes can cause plan qual-

ity to degrade. I present an approach that uses available offline time to analyze the space of

potential changes in the environment and creates a mapping between problem instances and

solutions for use during runtime. I show that this approach allows a system to rapidly adapt

to changes, while yielding plan quality that is comparable to traditional online approaches.

The motivation for this work stems from the common theme encountered in the course

of my work in several domains including shipboard computingresource management,

mine-like object visitation, and mobile sensor scheduling. The shipboard computing re-

source management task is to allocate computing resources to critical ship processes to

support overall ship function. However, if a negative eventimpacts the ship, then a signifi-

cant number of the computing resources can suddenly become unavailable. In this case, the

system must quickly reallocate the remaining computing resources to the critical processes

such that overall ship function remains viable.

In the mine-like object (MLO) visitation domain, one or moreships must visit all of

the MLOs in a region to determine if the object is actually a mine or some other innocuous

1
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artifact. Ideally, this would be done as quickly as possiblein order to certify the region

as safe for travel. During the course of visiting the known MLOs, a new MLO may be

detected by a satellite or other means. In this case, the routes of the ships in the region must

be recalculated to incorporate this new location.

The mobile sensor scheduling problem is similar to the MLO domain except that, one,

the mobile sensor only has to pass close enough to a location to receive of sample of its

broadcasts, and, two, it must sample the broadcasts within one or more time windows.

In this problem, similar to the MLO domain, new locations andtime windows can be

introduced and must be incorporated into the schedule of each sensor.

In all of these domains, it is useful to maintain a high quality plan, even when the

requirements of the problem change. The range of change typically occurs on a small

number of dimensions, and arrives slowly enough such that replanning does not have to

take into account a large number of changes. Thus, the experiments in this domain tend to

reflect that bias. However, future work does discuss how the approaches proposed in the

dissertation would scale to larger problems.

1.1 Planning

Planning is the branch of artificial intelligence concernedwith efficiently generating

sequences of actions, i.e.,plans, to achieve goals. Typically, a planning domain consists

of a set of states, described by state variables; a set of available actions, described by

their effects on state variables; and one or more goal states. A planning problem defines a

starting state, and the task of the planner is to find a set of actions that transform the starting

state into a goal state. Depending on the complexity of the problem, finding any feasible

plan may be satisfactory; in other cases, finding the least expensive plan in terms of length

or some total action cost is desired.
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Planning for environments in which the planner has a limitedamount of time to pro-

duce a plan is calledtime-constrained planning. This type of planning applies to situations

in which the usefulness, orutility, of a plan degrades over time. Typically, a tradeoff exists

between spending more time searching the space for a better plan and quickly deciding on

a plan that may have lower utility. When some prior plan already exists, the planner can

either repair the current plan, which is typically faster, or replan, which typically yields

better utility.

I will use the traveling salesman problem (TSP) planning problem as a reference prob-

lem throughout much of this dissertation. The TSP requires asolver to find the shortest

route that visits a given set of locations. This is a classic NP-complete problem that has

been studied widely in computer science. In the basic problem, all of the locations are

static. The dynamic variant, the DTSP, allows locations to be introduced to the planner

after execution begins.

1.2 Overview of Problem Space Approximation

Instead of computing approximate solutions at runtime, my approach is to precompute

a library of high-quality solutionsprior to runtime. In the case of DTSP, one could imagine

a library containing a high-quality1 solution for every possible combination of potential

new destinations. Obviously, as the scale of the planning problem increases, the level of

complexity precludes creating a comprehensive library, soin practice a library can only

contain a subset of all possible plans. Therefore, I also introduce methods to ensure that

the library contains appropriate plans for use when the planning environment changes.

An understanding of the problem space characteristics can be used to choose the plan-

1“High-quality” refers to the plan generated by an offline heuristic solver. Since a heuristic solver creates
an approximate solution, the result cannot be assumed to be optimal. Thus, I describe the resulting solutions
as “high-quality” rather than optimal, ideal, or exact.
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ning scenarios for which to generate solutions. In particular, identifying regions of prob-

lem instances with identical solutions allows for the efficient creation of a mapping from

problem instances to solutions, called aProblem-Solution Map(PS Map). A PS Map is

a component ofproblem space analysis(PSA), which allows a system to make informed

decisions about which solutions to include in the library.

Problem instances contain characteristics that are identical, calledstatic characteris-

tics, and characteristics that differ between them, thevariable features, that lead to differ-

ences in the problem instance solutions. The PS Map represents a library of solutions for

problem instances, indexed by the variable features of the set of problem instances. This

map provides a mapping from a problem instance to its solution, showing the changes in

the solutions as a function of the variable features within the problem instances. I will

discuss several techniques to efficiently build this map.

1.3 Summary of Contributions

This dissertation contributes an approach to real-time planning that leverages offline

time to generate a plan library. Chapter 3 introduces the concept of a Problem-Solution

(PS) Map, and describes several novel approximation approaches in order to create the

plan library. I note how the solution spaces of a domain can have homogeneous regions

that can be exploited to efficiently find solutions to a large number of problem instances.

The most promising algorithms are those that are able to quickly find the borders of the

solutions regions.

I then demonstrate this approach’s applicability to multiple domains through experi-

ments in Chapter 4. These experiments illustrate that good approximate PS Maps can be

obtained from a small number of samples in the problem space.I also demonstrate how

creating abstract solutions allows these algorithms to be utilized in a domain in which the
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solutions do not form homogeneous regions.

This dissertation also briefly examines practical tradeoffs between online and offline

planning time in Chapter 5. This includes some timing resultsand thoughts on choosing a

sample rate and the appropriate algorithm. This chapter also revisits the issue of irregular

solutions spaces, and discusses reindexing a solution space as a technique to facilitate the

use of PS Map approximation algorithms.

Finally, Chapter 6 suggests extensions to this work and concludes the dissertation.



Chapter 2

BACKGROUND & RELATED WORK

My work primarily focuses on developing a plan library for future use as the plan-

ning environment changes. Related work for two plan reuse strategies,universal planning

andcase-based reasoning, are presented below. I then present two alternatives toa priori

planning. Robust planningtechniques generate plans that may be viable even when the

environment changes.Plan repairattempts to modify an existing plan during execution in

response to changes in the environment.

I then discuss several works that leverage domain space and plan space information.

The final sections in this chapter present related work in thesampling and classification

literature.

2.1 Plan Reuse & Plan Caching

Building a plan library is similar to the general notion of plan caching and plan reuse.

The concept of plan caching in anticipation of future use is evident in backbone planning,

where partial plans are precomputed; case-based reasoning(CBR), where previously ex-

ecuted plans are stored; and universal planning, where complete plans are precomputed.

In this section I’ll briefly discuss universal planning and case-based reasoning. Backbone

planning is addressed in Section 2.4.

6
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2.1.1 Universal Planning

Universal planners, also called reactive planners, preemptively store plans in order

to react quickly to new information. One classic approach isSchoppers’ universal plans

(Schoppers, 1987, 1989, 1994; Chapman, 1989), in which a solution to every possible sit-

uation is stored in a plan library. The drawback of this technique is the sheer number of

states that must be considered (Ginsberg, 1989b,a; Jonssonand B̈ackstr̈om, 1996). Jonsson

and B̈ackstr̈om (1996) formally bound the size of a universal plan libraryfor general plan-

ning problems. They conclude that naïve universal planning is not feasible, but the advan-

tage of reactive planning in dynamic environments makes exploration of efficient universal

planning for specific applications worthwhile. My work attempts to provide exactly this

capability.

2.1.2 Case-Based Reasoning

Identifying the minimal solution set required to achieve competent coverage of a prob-

lem space is well studied in the case-based reasoning (CBR) literature. Typically, a CBR

system will encounter a problem and store the solution for future use. CBR is normally

used in domains with discrete representations, although this is not always the case (Ram

and Santamariá, 1997). In most cases, CBR does not truly pre-plan; rather, all of its stored

solutions are generated during runtime. Conversely, the strategies in this dissertation seek

to generate its store of solutions prior to runtime. Still, my research does borrow from work

in this field.

Smyth and McKenna (2001) measure the competence of a libraryby how well it cov-

ers the problem space. Smyth and McKenna rely on a “Solves” predicate to determine

whether a solution is suitable for a problem instance (“case” in CBR vernacular), and uses

this information to evaluate the library’s competence. This process can also be used to re-
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duce the library size by removing redundant cases. My work issimilar in that it seeks to

determine a library’s competence, but differs in the metricapplied. I proactively generate

solutions that cover the complete problem space, whereas CBR typically only stores solu-

tions to problems encountered during runtime. In order to associate an unsolved problem

instance with a solution, both our works may use a k-nearest neighbor approach. Interest-

ingly, Massie et al. (2003) empirically demonstrate that Smyth and McKenna’s model does

not adequately predict a library’s competence.

The McSherry (2000) coverage model attempts to explicitly enumerate the set of prob-

lems that a solution set can solve. As Smyth and McKenna note,this type of brute force

approach is not scalable to most CBR systems. My approach creates a representation simi-

lar to McSherry’s model, but attempts to resolve the scalability challenge by using approx-

imations.

As an alternative to traditional case-based retrieval, McSherry’s later work (McSh-

erry, 2003) suggests a scheme in which cases beyond those chosen by a traditional nearest

neighbor approach are considered. Within this scheme, compromises are suggested to a

user based upon a more nuanced representation of the problemor user preferences. McSh-

erry’s system does not require an exact match of the user’s preferences, and is guided by

policies such asmore-is-better, less-is-better, or nearer-is-better. Additionally, the scheme

will offer solutions that may violate the constraints, but that offer higher utility in other

dimensions.

2.2 Planning Robust Solutions

The approaches in the previous section address adapting to the environment by

caching multiple plans.Conditional planningis another approach to planning within

changing environments in which a plan contains steps that depend on the environment
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state. For example, a plan may dictate “if the left turn signal is green, then turn, otherwise

go straight.” Contingency planningalso uses branches, but only in the case of failures.

In one implementation of a conditional planner, Onder and Pollack (1996) identify the

contingencies to plan for by calculating an expecteddisutility for an action that fails. Their

planner chooses the actions with the highest disutility andgenerates a plan from a hypothet-

ical state in which the action fails. Onder and Pollack defineactions and their probabilistic

effects as branches. For example, consider a factory that preprocesses parts for painting. If

the part is not processed properly, then there is a 5% chance that the painted part will have

a blemish. If the PAINT action is invoked from a state where a part is not processed, it will

have two branches: one representing the transition to a state of a painted part with blem-

ishes, and the other representing the state of the part without blemishes. To start, Onder and

Pollack create a skeletal plan in a STRIPS-like manner, without regard for contingencies.

After completing the plan, the planner searches the tree forhigh measures ofdisutility, such

as that represented by the existence of a blemished part, andthe plan is refined by adding

actions that would resolve the effects of the failed PAINT action.

The limitations of Onder and Pollack’s research include theneed to enumerate all of

the effects and contingencies related to actions. In a largeor continuous domain, the effects

or contingencies will be numerous or infinite. Additionally, this research is limited to plans

that can be divided into hierarchical goals. Both Onder and Pollack’s and my approaches

generate contingencies for future adaptation needs. However, my work is intended to ad-

dress a comprehensive set of changes instead of only preparing for a subset. Additionally,

my work does not require enumeration of action effects, but does require some knowledge

of the possible values of each state variable.

Burns et al. (2012) introduceonline continual planning problems(OCPPs), in which

a planner continually receives new goals that it must prioritize while executing its current

plans. This situation is representative of domains such as using UAVs to monitor a region;
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because the environment continually changes, the region isnever successfully ”monitored.”

Rather, success is the ability to continually respond to the new requirements within a suit-

able amount of time. They introduceanticipatory online planning, in which they consider

future changes to the environment in their current planning. Similar to my approach, they

sample from the set of possible environmental changes. However, they do assume a known

probability distribution for these changes. Also, they incorporate this information into the

current plan in order to either resolve the goal or strategically place the system in a state

that facilitates resolving the goal. This method is distinct from my approach, which always

generates plans that are specifically tailored for the goalsin the new environment. Also, the

plans that I generate are stored as separate plans in a library rather than being incorporated

into an existing plan.

Conrad et al. (2009) describe an approach to planning in dynamic environments

through building options into a high-level plan, thus allowing a planner to choose the best

option during runtime. However, deciding between the choices can result in a significant

time cost. This can be mitigated by generating the choices offline, storing the choices

efficiently by recording a baseline plan, and then representing additional plans as differ-

ences from the baseline plan. This allows more rapid traversal of plans during the selection

process.

2.3 Plan Repair & Replanning

My dissertation proposes algorithms that efficiently precompute a set of plans to mit-

igate changes in a planner’s environment. The major alternative to my approach is replan-

ning through plan repair. Typically, a planner employing this scheme will execute a plan

until the environment changes, effectively creating a new problem instance. It will then

modify, or repair, the existing plan until it is applicable to the new problem instance. This
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process is generally faster than creating a new plan from scratch, with the tradeoff that the

repaired plan may not be as good as a plan generated by a complete replan.

One example of a plan repair system is the SALIX planner (Logan and Poli, 1997),

which starts with a complete plan and creates new plans through various deforming oper-

ations. In this way, the planner finds a suitable plan by searching through a solution space

as opposed to a state space. This is closely related to planning schemes that employ plan

repair techniques as their primary mechanism.

A domain-independent solution by van der Krogt and de Weerdt(2005) presents a

framework that intends to encompass a variety of plan repairalgorithms. They describe

plan repair as consisting of removing actions from the original plan that conflict with or

impede achieving the new goal during theunrefinementstage. Unrefinement is followed

by the refinementstage, in which actions are added to the original plan that allow it to

achieve the new goal. The framework thus implements plan repair as a process alternating

between unrefinement and refinement until a solution candidate satisfies the problem re-

quirements. The online repair baseline for the final test domain in this dissertation follows

this framework.

2.4 Domain and State Space Analysis

Several related works leverage plan or problem space analysis to find critical partial

plans for future use. These planners take advantage of characteristics that are specific to a

domain or problem type. Bulka and desJardins describe learning features of a plan space to

find a “backbone” common to a set of problem instances to use asa partial initial solution

for planning (Bulka, 2006; Bulka and desJardins, 2008). In other cases, robots can learn

critical components of plans as “skills” that may be appliedto future plans (Konidaris,

2008; Konidaris and Barto, 2008). These works and my approachhave similarities, but my
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approach focuses on storing complete plans rather than partial plans.

Hoffmann (2001) characterizes the topology of the planningspaces of benchmark

planning problems to gain a measure of their difficulty. For example, a large number of

states representing local minima may represent an easier problem, while a large number of

states on local plateaus with few exit states (“benches”) ora large number of dead ends rep-

resents a difficult problem. This work demonstrates the relationship between the planning

space characteristics and the success of the selected heuristic.

The hill-climbing algorithm takes advantage of the frequently continuous surface rep-

resenting solution utility as a function of a specific problem instance. By slightly modifying

the solution, the algorithm can determine the gradient of the hill and search in the proper di-

rection for better solutions. The “restart hill-climbing”approach executes the hill-climbing

algorithm for multiple starting solutions in order to increase the change of finding a glob-

ally optimal solution. Otherwise, the algorithm risks limiting its search to a locally optimal

region.

The theme of characterization of a space of problem or solutions through a small set of

samples is echoed in several works. Boyan and Moore (2000)’sStagealgorithm augments

the traditional restart hillclimbing algorithm by using results from multiple iterations of

restart hillclimbing to estimate the relationship betweenthe starting state and the quality of

the final state, as measured by an objective function. In thisway, Stage can estimate the

initial state that is most likely to optimize the objective function.

Stage varies the initial state to map the relationship between the starting state and the

final state within a single problem instance. By contrast, my approach varies the problem

instance to map the relationship between a problem instanceand a problem solution within

a set of problem instances. Thus, my approach is more analogous to Boyan and Moore’s

brief description of theirX-Stagealgorithm, which explores how information from one

problem instance can be applied to other instances. X-Stageuses the Stage feedback from
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multiple previously solved instances as the input to a voting mechanism that informs the

starting state for unsolved problem instances. Boyan and Moore’s voting approach parallels

my SC-based algorithms. In their case, the results were mixed. In both experiments, the

X-Stage algorithm approached the solution more rapidly than Stage, but in one experiment,

the solution achieved by X-Stage was inferior to that achieved by Stage.

Gopal and Starkschall (2002) use plan space visualization to quickly compare tumor

treatment plans. A plan consists of a vector trajectory overwhich to apply radiation. Be-

cause a trajectory will generally pass through both healthytissue and tumor, plans that

minimize healthy tissue’s exposure and maximize the tumor’s exposure are preferred. To

assist physicians with choosing a treatment plan, the effects of multiple plans are calcu-

lated and plotted into an n-dimensional plan space with axesrepresenting the effect on the

various organs. Their work is similar to mine in terms of indexing of plans. However,

my work indexes plans by the characteristics of the problem being solved, whereas Gopal

and Starkschall’s work indexes plans by characteristics ofthe plan. Additionally, any visu-

alizations generated by my work are tangential artifacts, whereas Gopal and Starkschall’s

visualizations are intended as the primary product. A natural extension of their work would

be to infer the utility of plans not explicitly addressed by their solver, similar to my moti-

vations. The authors present some initial thoughts about more rapidly populating the plan

space with better automation of the calculations, but do notconsider inferring plan char-

acteristics. Given the critical nature of their domain, explicitly performing calculations is

likely the more appropriate approach.

The TIM domain analyzer, used within the STAN4 planner (Fox and Long, 2001),

recognizes subproblems characteristic of path-planning or resource management problems

and routes them to the FORPLAN planner, a planner optimized for those domains. Other

subproblems are sent to the domain-generic STAN3 planner. Thus, Fox and Long decom-

pose a planning problem into subproblems that map to domainsfor which domain-specific
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algorithms can be utilized. One aspect of this dissertation’s suggested future work is to

decompose a homogeneous planning problem in a general fashion, matching the problem

instance to an appropriate algorithm chosen from a set of options.

Domshla et al. (2010) seek to optimize the use of multiple heuristics in search. Their

goal is to optimize the tradeoff between spending too much time calculating heuristics for

states that will be expanded, regardless of the results, versus spending too little time cal-

culating heuristics and wasting time expanding states thatdo not contribute to the optimal

solution. They introduce a map of the state space showing theideal heuristic to employ at

each state. Their goal is to learn the map by taking samples from the state space as input to

a Bayes net, thus identifying the relative accuracy of the heuristics as a function of the lo-

cation in the search space. During search, the heuristic is chosen by computing the tradeoff

between each heuristic’s computation time and expected accuracy. This approach achieves

better results than the use of either individual heuristic.Their approach is analogous to

mine in that they explicitly define an ideal map that they attempt to approximate through

sampling and classification.

2.5 Classification

As I will show in subsequent chapters, the majority of the algorithms I present in

my dissertation consist of an initial sampling of the solution space, followed by classifica-

tion techniques to assign solutions to problem instances. As such, it is relevant to present

classification and sampling techniques in this and the following section. The classification

techniques used in my algorithms are based upon k-nearest neighbor (kNN) and support

vector machines (SVM).

K-nearest neighbor (Cover and Hart, 1967) is a simple approach to classification in

which a data point is classified by surveying the classification of its k nearest neighbors.
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The data point is then classified based on the plurality vote of the classifications.

A support vector machine (Cortes and Vapnik, 1995) uses a hyperplane to divide a

space such that distance between the hyperplane and points of differing classifications is

maximized. Newer techniques allow for non-linear divisionby using the “kernel trick,” in

which a space is transformed to make a linear division of the space possible.

2.6 Sampling Techniques

My research relies on an initial sampling of the planning space to seed the subsequent

classification. The classification is thus dependent on a sample that adequately represents

the planning space. The primary sampling techniques – random sampling and active learn-

ing – are described below, along with several related alternates.

Active learning(Settles, 2010) techniques iteratively refine an interpolation by ac-

quiring additional information after each completed interpolation. One approach for clas-

sification,minimum marginal hyperplane, requests information about points close to the

hyperplane that a support vector machine would construct.

Maximum curiosityis an alternate approach that tests each unknown data point to see

which would be most beneficial to increase accuracy. To scaleto a large number of data

points, such a technique would have to choose a subset of the points to consider.

Several sampling techniques stem from the experimental design domain. Validating

complex systems or models by exhaustive testing is not feasible due to the large number

of variable combinations. However, Latin hypercube sampling (LHS) can identify crit-

ical combinations of variables for testing. Nearly orthogonal Latin hypercube sampling

(NOLHS) (Cioppa, 2002) is an extension that, at high dimensions, results in a lower av-

erage distance between sample points and is computationally less costly. Early compo-

nents of this dissertation considered adapting these techniques to problem space sampling
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(Holder, 2008). As a basis for initial sampling, schemes based on hypercube sampling

(McKay et al., 2000; Ye et al., 1998; Cioppa, 2002) or stratified sampling variants (McKay

et al., 2000; Kwok et al., 2006) are relevant. Following an initial sample, a biased sampling

scheme like exponential sampling (Holder et al., 2006), in which samples become closer

to each other in a geometric progression as they get closer toa target location, would assist

with more thoroughly exploring areas of interest.

Instead of calculating the complete set of samples at one time, another approach is to

start from a single point and stochastically expand. Rapidlyexploring Random Trees (RRT)

explore a space by branching out from an initial location, with a bias towards unexplored

subregions. Unmodified, an RRT explores a space in a uniform manner. However, work

such as bi-directional RRT (LaValle and Kuffner, 2001), Rapidly exploring Evolutionary

Trees (RET) (Martin et al., 2007), Extended Rapidly exploringRandom Trees (ERRT)

(Bruce and Veloso, 2002), and other variants (Zucker et al., 2002; Ferguson et al., 2006)

demonstrate biasing the tree growth towards areas of interest, even in a potentially changing

environment.
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PROBLEM SPACE ANALYSIS

I use the termproblem space analyais(PSA) to describe methods that attempt to

estimate the solutions for a large number of problem instances by analyzing patterns of

solutions of a small number of problem instances. In many domains, problem instances

that are adjacent when indexed by theirvariable featurestend to have the same or similar

solutions. This chapter describes seven PSA algorithms forplan adaptation and presents a

complexity analysis in the final section.

A graphical rendering of a Problem Solution (PS) Map for a setof small Traveling

Salesman Problems (TSPs) is shown in Figure 3.1. The static characteristics are the x- and

y-coordinates of four destinations that are common to all the problem instances (i.e., that

the initial plan solution uses), plus the location of the start of the path (at the central solid

circle). The coordinates of the destinations are (10,10), (20,30), (5,35), and (35,25). The

variable features of the problem instances are thex andy coordinates of a fifth destination,

that could be added to the route as a dynamic change that requires plan adaptation. The

ranges of these latter features – thex andy coordinates of the added fifth destination –

are represented by the axes of the PS Map. At each location in the map, the shortest route

for the new five-city problem is generated as the solution. Finally, each unique solution,

consisting of a sequence of city identifiers, is assigned a color and plotted. For example,

17
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FIG. 3.1: Problem-Solution Map for a 5-city TSP. Hollow circlesrepresent the locations of
the four static city locations, and the axes represent thex andy coordinates of possible lo-
cations of the fifth city. The map shows eight unique high-quality solutions for all possible
problem instances at the given granularity. (Best viewed in color.)

FIG. 3.2: Problem-Solution Map for knapsack problem. Axes represent the possible weight
and value characteristics of one additional item that the planner may add to the knapsack.
The map shows 11 unique high-quality solutions for all possible problem instances, for
objects in the integral weight and value range [1,100]. (Bestviewed in color.)
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(20,10) represents a problem instance in which the fifth cityis located at (20,10), and has

a shortest path solution of 0-5-1-3-2-4. Proceeding in thisfashion results in a mapping

between each DTSP problem instance and the solution representing the shortest route.

As another example, a PS Map for a set of 0-1 Knapsack Problemsis depicted in

Figure 3.2. The knapsack problem requires the solver to select from a set of available items,

each with a value and a weight, such that the total value of items selected is maximized and

the total weight is below a threshold. Intuitively, one wants the contents of knapsack to be

as valuable as possible while not being too heavy to carry. The 0-1 variant specifies that

a maximum of one instance of each item may be selected. This PSMap represents the

problem domain in which a solver has already selected from a set of items and encounters

a new item to consider adding to the knapsack, potentially displacing a current item. Each

problem instance’s static characteristics is a set of 22 items, each with a weight and value;

this is analogous to the TSP’s fixed city locations. The problem instances have two variable

features, consisting of the weight and value of the new item,which are used as the axes of

the PS Map; this is analogous thex andy coordinates of the additional destination in the

TSP. The solution at any point in the map is the set of items chosen by the solver where the

pool of available items consists of the 22 static items plus the new item that has weight and

value as represented by the coordinate location within the PS Map.

The dimensions of the PS Maps are represented as ordinal domains, which requires

the ability to enumerate the values of each dimension. Planning problems containing di-

mensions with discrete domains must define an ordering of thevalues and nearness metric

that defines how “close” any two values are. For example, a “color” dimension with do-

main {red, green, blue} must define a strict ordering and nearness metric in order to be

used by the algorithms described here. Dimensions consisting of real values must define a

granularity to be used within the algorithms.

There is also an implicit assumption that similar problem instances have similar solu-
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tions when indexed by the problem characteristics. If this assumption holds, then problem

instances with similar solutions will appear in homogeneous groups within the PS Map,

which is the feature that these algorithms exploit. In the case that a domain does not adhere

to this assumption, there are methods, analogous to the SVM kernel trick, that may allow

for my algorithms to be applied. These ideas are discussed inChapter 6 as future work.

As previously mentioned, it is impractical to generate a high-quality PS Map through

brute-force mechanisms. For example, finding a high-quality map for a problem space with

four fixed and one variable city, consisting of 12,000 problem instances, can be generated in

less than a second with my current implementation on a circa-2015 standard laptop.1 How-

ever, the PS Map for the same problem with two variable citiesrequires solving 12,0002

problem instances, which would take approximately three hours to complete. Adding more

dimensions of variability increases the size of the PS Map exponentially.2 Since real-world

problems can have many more dimensions and problem instances than in these experi-

ments, it is imperative to develop efficient approaches for creating approximate PS Maps.

I present seven novel techniques for creating PS Map approximations. These tech-

niques were conceived in somewhat linear fashion, such thatsubsequent algorithms take

advantage of insights gleaned from the results of prior algorithms. All seven methods begin

with generating high-quality solutions to a random sample of problem instances, computed

using heuristic search. Thesampling-classification(SC) andsampling-classification with

bias (SC+bias) techniques use the solved problems and their solutions as a training set to

classify new problem instances into one of the solutions discovered during the initial sam-

pling. The former uses random selection to select the initial problem instances for solving.

This is the simplest algorithm and was the first attempt to validate the plausibility of the

1ASUS laptop with an Intel i5 1.70GHz CPU processor, running asingle-threaded Java process with a
2GB memory limit.

2Note that, while increasing the variable city locations increases the number of TSP instances to be solved,
each individual problem instance remains a static TSP.
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overall approach to PS Map approximation, and thus could be viewed as a baseline for sub-

sequent approximation algorithms. The latter attempts to bias the initial random selection

towards problem instances that are close to the borders between solution regions. Theso-

lution border estimation(SBE) technique uses the heuristic search objective function and

the solutions of the sampled instances to estimate where theboundaries between solution

clusters lie. Theselect from sampled solutions(SSS) technique applies each known so-

lution to an unsolved problem instance and assigns the solution with the best utility. The

sampling-classification with active learning(SC+AL) technique attempts to bias computa-

tional time towards solving problem instances that are potentially ambiguous. Thesupport

vector machine(SVM) technique utilizes a support vector machine (SVM) to classify prob-

lem instances into solutions. Thesupport vector machine with solution border estimation

(SVM+SBE) technique also utilizes an SVM, but augments the training samples by finding

problem instances near the borders of solution regions. These methods are described in

more detail below. This chapter then concludes with a complexity analysis of the algo-

rithms.

3.1 Sampling-Classification (SC)

The sampling-classification(SC) technique (Algorithm 1) computes solutions to a

random sample of the problem instances, then uses an expanding fixed-radius neighbor

classification to assign solutions to the remaining (unsolved) problem instances. Figure 3.3

illustrates the steps involved. First, an initial random sample of solutions is solved by the

heuristic solver (a). Next, solutions to unsolved problem instances are assigned by polling

the solutions of the sampled problem instances within a specified radius (b). Finally, if the

polling does not result in a plurality, then the polling radius is doubled until a plurality is

achieved (c). Polling does not include inferred solutions;each unsolved instance is assigned
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Algorithm 1 Sampling-Classification

1: Let alpha ∈ (0.0, 1.0)
2: Let sampleRate ∈ (0.0, 1.0)
3: Let problemSpace← set of problem instances
4: Let pollingRadius ∈ Z

+

5: totalNumSamples← |problemSpace| ∗ sampleRate

6: for 1 . . . totalNumSamples do
7: Randomly select unsolved problem instance
8: Generate solution for unsolved problem instance
9: Add problem instance & solution to PS Map

10: end for
11: for all u ∈ unsolved problem instancesdo
12: Let rad← pollingRadius

13: while u is unsolved &rad < radiusOf(problemSpace) do
14: Score solutions of problem instances withinrad of u

15: if there is a solution with a unique maximum scorethen
16: Assign solution tou
17: else
18: rad← rad ∗ 2
19: end if
20: end while
21: if there does not exist a unique solution with the maximum scorethen
22: Randomly choose one of the top solutions
23: end if
24: Add problem instance & solution to set of pending entries
25: end for
26: Add pending entries to PS Map
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FIG. 3.3: SC procedure. The dot represents the problem instancefor which a solution will
be inferred, and the solutions to sampled problem instancesare represented by letters.

FIG. 3.4: Ideal PS Map of a five-city TSP

a solution based solely on the solutions to the original sample of problem instances. Thus,

the order in which the instances are solved does not affect the configuration of the resulting

PS Map.

A visual example of the effect of this algorithm is demonstrated in Figure 3.5, which

depicts an initial sampling of an problem space, and Figure 3.6, which depicts the resulting

PS Map after running the SC algorithm.
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FIG. 3.5: Possible initial sampling of a TSP problem space. Points represent individual
problem instances color coded by their solution.

FIG. 3.6: Approximated PS Map generated by applying the SC algorithm to the initial
sampling in Figure 3.5
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Let F = {f1, f2, . . . , fn} be a set of fixed points,o be the start of the tour, andp be a
variable point. An optimal solution to the TSP problem is a sequenceS = {s1, . . . , sn+2}
of the pointsF ∪ {p, o} such that

∑n+1
i=1 dist(si, si+1) is minimized.

Consider two solutions, S1 = {o, . . . , sa, sb, p, sc, . . . , sn+2} and S2 =
{o, . . . , sa, p, sb, sc . . . , sn+2}, differing only in the order in whichp and sb are vis-
ited. Without loss of generality, letsb be any static city location. The border betweenS1

andS2 is the set of points whereS1 andS2 have equal quality, which are the points that
satisfy:

dist(o, s1) + dist(s2, s3) + · · ·+ dist(sa−1, sa) +

dist(sa, sb) + dist(sb, p) + dist(p, sc) +

dist(sc, sc+1) + · · ·+ dist(sn+1, sn+2) =

dist(o, s1) + dist(s2, s3) + · · ·+ dist(sa−1, sa) +

dist(sa, p) + dist(p, sb) + dist(sb, sc) +

dist(sc, sc+1) + · · ·+ dist(sn+1, sn+2).

Reducing, we obtain

dist(sa, sb) + dist(p, sc) = dist(sa, p) + dist(sb, sc).

Substituting the known pointsb for the variable pointp results in a valid equation. There-
fore,sb is on the border betweenS1 andS2.

FIG. 3.7: Proof that static cities in the DTSP must lie on a borderbetween two solution
regions
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FIG. 3.8: Solution border calcuated by SBE for a two-city TSP. Result is a circle around
city B with a constant radius equivalent to the distance fromA to B.
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Let A-p-B and A-B-p represent the routes specified by two solutions. To find the shape of
the border, we set the distances of the routes to be equal.

dist(p,A) + dist(p,B) = dist(A,B) + dist(p,B)

dist(p,A) = dist(A,B)
√

(px − Ax)2 + (py − Ay)2 = dist(A,B)

(px − Ax)
2 + (py − Ay)

2 = dist(A,B)2

FIG. 3.9: The border between solutions A-p-B and A-B-p simplifiesto a circle

Let A-B-C-p-D and A-p-B-C-D represent the routes specified by twosolutions. To find the
shape of the border, we set the distances of the routes to be equal.

dist(A,B) + dist(B,C) + dist(p, C) + dist(p,D) =

dist(p,A) + dist(p,B) + dist(B,C) + dist(C,D)

dist(p,A)− dist(p,B) + dist(p, C)− dist(p,D) =

dist(B,C) + dist(C,D)− dist(A,B)

FIG. 3.10: The border between solutions A-B-C-p-D and A-p-B-C-D hasa non-trivial
simplification
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Algorithm 2 Sampling-Classification+Bias

1: Let alpha ∈ (0.0, 1.0)
2: Let sampleRate ∈ (0.0, 1.0)
3: Let problemSpace← set of problem instances
4: Let pollingRadius ∈ Z

+

5: Let biasFactor ∈ Z
+

6: Let cityRadius ∈ Z
+

7: totalNumSamples← |problemSpace| ∗ sampleRate

8: numNearSamples← biasFactor∗totalNumSamples
1+biasFactor

9: for 1 . . . numNearSamples do
10: Randomly select unsolved problem instance withincityRadius of city
11: Generate solution for unsolved problem instance
12: Add problem instance & solution to PS Map
13: end for
14: for numNearSamples + 1 . . . totalNumSamples do
15: Randomly select unsolved problem instance outside ofcityRadius of city
16: Generate solution for unsolved problem instance
17: Add problem instance & solution to PS Map
18: end for
19: for all u ∈ unsolved problem instancesdo
20: Let rad← pollingRadius

21: while u is unsolved &rad < radiusOf(problemSpace) do
22: Score solutions of problem instances withinrad of u

23: if there exists a unique solution with the maximum scorethen
24: Assign solution tou
25: else
26: rad← rad ∗ 2
27: end if
28: end while
29: if there does not exist a unique solution with the maximum scorethen
30: Randomly choose one of the top solutions
31: end if
32: Add problem instance & solution to set of pending entries
33: end for
34: Add pending entries to PS Map
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Algorithm 3 Sampling-Classification + Active Learning

1: Let alpha ∈ (0.0, 1.0)
2: Let sampleRate ∈ (0.0, 1.0)
3: Let problemSpace← set of problem instances
4: Let pollingRadius ∈ Z

+

5: Let landslide ∈ Z
+

6: totalNumSamples← |problemSpace| ∗ sampleRate

7: numInitialSamples← totalNumSamples ∗ alpha

8: usedSamples← numInitialSamples

9: for 1 . . . numInitialSamples do
10: Randomly select unsolved problem instance
11: Generate solution for unsolved problem instance
12: Add problem instance & solution to PS Map
13: end for
14: for all u ∈ unsolved problem instancesdo
15: Let V ← solutions of problem instances withinpollingRadius of u ordered by decreasing

count
16: if |V | = 1 then //there is only one solution
17: Assign solution tou
18: else if count(V0)

count(V1)
≥ landslide then //highest score divided by second-highest

19: AssignV0 to u

20: else ifusedSamples < totalNumSamples then
21: Solveu and assign solution
22: else
23: Expand radius and assign solution as with Sampling-Classification
24: end if
25: end for
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FIG. 3.11: Various ideal PS Maps demonstrating a pattern of correlation between fixed city
location and solution borders.

3.2 Sampling-Classification with Bias (SC+bias)

Thesampling-classification with bias(SC+bias) technique, described in Algorithm 2,

attempts to exploit the observation that certain constraints – for example, known city lo-

cations – indicate boundaries between solutions. This relationship is suggested by Figures

3.4 and 3.11, and the proof in Figure 3.7 demonstrates that static city locationsmustlie on

a border between two solutions. Thus in SC+bias, the problem instance samples are biased

towards the known city locations in the hope that additionalsamples in these regions will

allow the classification step to discover the borders between solutions with greater accu-

racy. After gathering the additional samples, this technique assigns solutions to unsolved

instances in the same manner as the SC technique.

This technique relies on two additional parameters. Thecity radiusparameter is a

radius defining a pool of problem instances that are “near” a city location; instances outside

this radius are considered not to be near the city. Thebias factorparameter defines the ratio
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of the number of near city points to the number of non-near city points selected in the initial

random sample. For example, a bias factor of three indicatesthat three times as many near-

city points as non-near points will be selected.

The use of this technique is specific to TSP problems. Although there is consideration

for taking into account specific constraints of static problem characteristics to inform sam-

pling bias, it is not clear how this applies in a general case.Thus, this technique was tested

only on the TSP domain.

3.3 Sampling-Classification with Active Learning (SC+AL)

The sampling-classification with active learning(SC+AL) algorithm modifies the

SC (sampling and classification) technique to utilize active sampling rather than random

sampling to select problem instances to solve (Algorithm 3). This algorithm adds two

paramters,alpha and landslide. The alpha parameter represents the fraction of the total

number of problem instances that will be selected through random sampling. The landslide

threshold is used to determine whether the voting by the nearest neighbors is ambiguous.

For example, a sample rate of .01 in a problem space with 10,000 instances results in a

total of 100 samples. Assuming an alpha of 0.2, an initial random sampling of 20 prob-

lem instances will be solved. The remaining 80 samples will be chosen after evaluating

the fixed-radius neighbors of unsolved problem instances. If the fixed-radius neighbors

of an unsolved problem instance indicate little or no ambiguity when approximating its

solution, then the problem instance is assigned a solution as in SC, by a plurality vote.

However, if the fixed-radius neighbors do indicate ambiguity, then the problem instance

is solved heuristically if the total allocation of problem instance samples has not been ex-

hausted. In this algorithm, ambiguity refers to either zerofixed-radius neighbors, or more

than one fixed-radius neighbor in which the number of occurrences of the best solution di-
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Algorithm 4 Solution Border Estimation - trace

1: Let sampleRate ∈ (0.0, 1.0)
2: Let problemSpace← set of problem instances
3: totalNumSamples← |problemSpace| ∗ sampleRate

4: for 1 . . . totalNumSamples do
5: Randomly select unsolved problem instance
6: Generate solution for unsolved problem instance
7: Add problem instance & solution to PS Map
8: end for
9: borderSet← ∅

10: for each pair of problem instancesp, q with differing solutionssp, sq do
11: use binary search to find pair of adjacent problem instances with differing solutions
12: border ← DoTrace(p, sp, sq, ∅)
13: Add border to borderSet

14: end for
15: find intersections of borders to determine regions
16: for all region rdo
17: find problem instance to serve as regional representative
18: find best solution for this problem instance
19: assign solution to all problem instances in the region
20: end for
21: function DOTRACE(instance,solution,altSolution,border)
22: addinstance to border

23: for all problem instancepa adjacent toinstance do
24: if pa is adjacent to a problem instance with wherealtSolution is better thansolution

then
25: addpa to border

26: DoTrace(pa,solution,altSolution,border)
27: end if
28: end for
29: return border

30: end function
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FIG. 3.12: Initial sampling of a problem space augmented with type of resolution for sev-
eral unsolved problem instances

vided by the number of occurrences of the second-best solution does not meet thelandslide

threshold. Figure 3.12 provides a pictorial representation of ambiguous problem instances

requiring evaluation by the solver, and landslide and unanimous problem instances which

can be classified with nearest neighbor.

3.4 Solution Border Estimation (SBE)

This next technique differs from previous algorithms in that instead of using a nearest

neighbor approach to classify unsolved problem instances to known solutions, this tech-

nique uses the problem domain’s objective function to find the borders between solutions,

thus allowing it to classify all the problem instances within a region. The intent is that
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this technique will be more accurate than the previous algorithms, but does require the

availability of an objective function and can be more computationally expensive.

Thesolution border estimation(SBE) technique calculates solutions to a random sam-

ple of the problem instances as in the previous algorithms. Then, for every pair of solutions,

SBE calculates a border in the problem space where one solution becomes better than the

other. The combination of these borders creates a set of regions within the problem space.

Because the borders that create the regions are determined only by a pair of solutions, there

is no guarantee that some third solution is not preferable within any region. To resolve

this uncertainty, the algorithm determines the best solution within a region by solving one

problem instance within each region, and assigning that solution to all problem instances

in the region.

Ideally, these borders would be calculated by equating the objective functions repre-

senting each solution and finding a closed-form expression for the boundary location, such

as shown in Figures 3.8 and 3.9 for a 2-city TSP problem. However, this approach is not

practical for large problems or problems that are not easilyexpressed with an objective

function. As an example of the difficulty presented by a larger problem, consider resolving

the border between 5-city TSP solutions A-B-C-p-D and A-p-B-C-D, where p is the un-

known location and A, B, C, and D represent known locations. This results in a non-trivial

equation in Figure 3.10 with four radicals (pairwise distances) and a constant. Therefore,

my implementation,SBE-trace, uses an approximation of the SBE technique, as described

in Algorithm 4.

Figure 3.13 illustrates the SBE-trace algorithm. First, twosolved problem instances

with differing solutions are selected (a). Next, a binary search is applied to the space

between the two solved instances to find two adjacent probleminstances that have different

solutions (b). Then, the remainder of the border is discovered by testing neighboring points

for adjacency to a problem instance with the alternate solution, forming a continuous border
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FIG. 3.13: Skeletal PS Map created by SBE-trace procedure

between the solution regions (c,d). Applying this procedure in a pairwise fashion to the

remaining discovered solutions (e,f) creates an approximation of the skeletal PS Map (g).

Finally, sampling within each region yields an approximatePS Map (h).

3.5 Support Vector Machine (SVM)

The support vector machineapproach, described in Algorithm 5, utilizes a support

vector machine (Cortes and Vapnik, 1995) to classify unsolved problem instances into

classes consisting of known solutions. A support vector machine classifies inputs into one

of two classes by calculating a hyperplane that splits the input space into two regions, one

for each class, that lies as far as possible from any input instance. A simple example of this

is shown in Figure 3.14. An advantage of this classifier is that it scales to high-dimensional

spaces. SVMs employ a “kernel trick” that allows them to calculate a hyperplane when

the inputs are not linearly separable, as is typically the case in the plan spaces that I have
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FIG. 3.14: Expected classification of unsolved problem instances by SVM algorithm given
two solved problem instances from the initial sample.

studied.

In this algorithm, an initial sample of problem instances are solved to generate solu-

tions, as in the SC technique. I train the SVM with the probleminstances’ variable charac-

teristics and the high-quality solution generated by the heuristic solver. After training, the

unsolved instances are assigned solutions based on the SVM’s classifications.

Algorithm 5 Support Vector Machine

1: Let sampleRate ∈ (0.0, 1.0)
2: Let problemSpace← set of problem instances
3: totalNumSamples← |problemSpace| ∗ sampleRate

4: for 1 . . . totalNumSamples do
5: Randomly select unsolved problem instance
6: Generate solution for unsolved problem instance
7: Add problem instance & solution to PS Map
8: Add problem instance features & solution to SVM training set
9: end for

10: Train SVM
11: for all unsolved problem instancesdo
12: Add problem instance and SVM classification to PS Map
13: end for
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Algorithm 6 Support Vector Machine + Solution Border Estimation

1: Let alpha ∈ (0.0, 1.0)
2: Let sampleRate ∈ (0.0, 1.0)
3: Let problemSpace← set of problem instances
4: totalNumSamples← |problemSpace| ∗ sampleRate

5: numInitialSamples← totalNumSamples ∗ alpha

6: for 1 . . . numInitialSamples do
7: Randomly select unsolved problem instance
8: Generate solution for unsolved problem instance
9: Add problem instance & solution to PS Map

10: Add problem instance features & solution to SVM training set
11: end for
12: for each pair of problem instances with differing solutionssp, sq do
13: use binary search to find pair of adjacent problem instances with differing solutions
14: Add pair of problem instances and their solutions to SVM training set
15: end for
16: Train SVM
17: for all unsolved problem instancesdo
18: Add problem instance and SVM classification to PS Map
19: end for

Algorithm 7 Select from Sampled Solutions

1: Let sampleRate ∈ (0.0, 1.0)
2: Let problemSpace← set of problem instances
3: Let pollingRadius ∈ Z

+

4: totalNumSamples← |problemSpace| ∗ sampleRate

5: for 1 . . . totalNumSamples do
6: Randomly select unsolved problem instance
7: Generate solution for unsolved problem instance
8: Add problem instance & solution to PS Map
9: end for

10: for all u ∈ unsolved problem instancesdo
11: Generate utility ofu for each known solution in PS Map
12: if there does not exist a unique solution with the maximum scorethen
13: Randomly choose one of the top solutions
14: end if
15: Add problem instance & solution to set of pending entries
16: end for
17: Add pending entries to PS Map
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FIG. 3.15: Expected classification of unsolved problem instances by SVM+SBE algorithm
given two solved problem instances from the initial sample and two from the SBE augmen-
tation step.

3.6 Support Vector Machine with Solution Border Estimation (SVM+SBE)

Thesupport vector machine with solution border estimation(SVM+SBE) technique

(Algorithm 6) utilizes a fraction of the total allocated samples to create an initial sample of

problem instances from which to generate a set of known solutions. For each combination

of pairwise problem instances that have different solutions, the SBE technique is used to

find a pair of problem instances that lie on the border betweenthe two solutions. These

border points and their solutions are added to the SVM training set. Finally, the unsolved

problem instances are assigned solutions as dictated by theSVM results. An illustration of

this is presented by Figure 3.15.

3.7 Select from Sampled Solutions (SSS)

The select from sampled solutions(SSS) technique calculates solutions to a random

sample of the problem instances. This technique assigns solutions to each unsolved prob-
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lem instance by computing the utility of each of the discovered solutions when applied to

the unsolved instance, and assigning the maximum-utility solution. In the case of contin-

uous objective functions, which creates large homogeneoussolution regions, this process

generates a PS Map identical to that of SBE-trace. However, because it must determine the

maximum utility solution for every problem instance in the space, this algorithm risks per-

formance degradation as the problem size increases. For example, for a map representing

a DTSP with two variable cities consisting of 12,0002 problem instances, SSS would entail

evaluating every unknown solution for every problem instance. However, in situations in

which the number of stored solutions is small or the cost of calculating the utility is cheap

enough, the discovered solutions could be stored, rather than a complete map. This could

mitigate the disadvantage that SSS may encounter relative to SBE-trace.

One interesting feature of this algorithm is that it can be used to remove errors in

ideal maps caused by the use of heuristics when solving problem instances. Heuristic

solvers may assign different solutions to differing problem instances that in fact do have

identical solutions. The application of this algorithm canmitigate this type of error by

considering all the discovered solutions within the problem space. Visually, this has the

effect of “smoothing” the solution regions into more regular shapes within the TSP and

knapsack problem domains.

3.8 Algorithm Analysis

I have analyzed these algorithms primarily in terms of the number of problem in-

stances that must be resolved by the heuristic solver. Solving a problem instance with the

heuristic solver takes the highest amount of time for a single problem instance; however,

many of the solutions involve less expensive operations over a large number of problem

instances and thus the heuristic solve time cannot be assumed to dominate the complexity
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expresssion.

LetH represent the time complexity required to solve a single problem instance with a

heuristic solver, and lets represent the sample rate.P will represent the size of the problem

space andK will represent the complexity of the fixed-radius neighbor search. A brute-

force fixed-radius neighbor search isO(n) in the number of candidate neighbors. However,

other approaches can be appropriate depending on the numberof candidate neighbors,

which varies as function of the sample size. To accommodate this variability, the final

complexities listed in Table 3.1 present the complexities using a genericK for the fixed-

radius neighbor search as well as assuming a worst-case complexity of O(n).

SC Algorithm The Sampling-Classification (SC) uses an initial sample of solved

problem instances to perform nearest neighbor-like classification of the unsolved problem

instances. For the SC algorithm, the initial loop samples the complete problem space and

solves an initial sample of problem instances. This complexity is O(HsP ). Next, the

remaining(1 − s)P problem instances must be solved. For each instance, the algorithm

runs the fixed-radius neighbor search repeatedly until either there is a plurality of solutions

within SC’s expanding radius, or the radius encompasses the complete problem space.

Since the radius doubles with each iteration, the maximum number of iterations possible

per problem instance islog2P . Thus the complexity for SC isO(HsP +(1− s)PKlogP ),

whereK is the complexity of fixed-radius neighbor search. The intent of these algorithms

is for s to be small, particularly whenH is large. Therefore, it is not clear whether the first

term, which is a product of a large and small number, dominates or is dominated by the

second term, which is a product of a number near one, the size of the problem space, its

log, and the complexity of the fixed-radius neighbor search.
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SC+Bias Algorithm The SC+Bias algorithm is identical to SC except that the initial

sampling is biased towards sampling specific locations in the problem space. There is some

expense to identify the set of problem instances that are within the radius of a city, but this

one-time cost, amortized over repeated runs, is negligible. Thus the calculations are the

same as the SC algorithm, resulting in the complexity ofO(HsP + (1− s)PKlogP ).

SC+AL Algorithm SC with Active Learning (SC+AL) splits the total allocation of

samples between the initial random and targeted sampling during the classification stage.

The complexity of the SC+AL algorithm must consider the alphaparameter that deter-

mines the initial fraction of problem instances to be solvedheuristically through random

sampling. The complexity of this step isO(Hspα). The remaining problem instances to be

solved heuristically are determined by the utility of the solutions discovered when polling

within the radius of the problem instance. The complexity ofthis step isO(Hsp(1 − α)).

Combining these two terms,HsPα + HsP (1−α), simplifies to the same initial term as the

previous algorithms,HsP . The cost of solving the remaining(1− s)P problem instances

is, in the worst case, the cost of expanding the polling radius as in SC. This results in a total

complexity ofO(HsP + (1− s)PKlogP ), again the same as the SC algorithm.

SBE-trace Algorithm Support Border Estimation-trace (SBE-trace) is an approx-

imation of SBE, which calculates borders between known solutions using the domain’s

objective function. The SBE-trace algorithm is limited to two dimensions, which is used

to simplify its complexity analysis. As with the previous algorithms, the initial sampling is

again of complexityO(HsP ). The loop starting at line 10 runs for each pairwise combina-

tion of solutions for a total ofn(n− 1) iterations, wheren is the number of solutions. The

number of solutions is the result of solving the initial sample of problem instances. Thus,

n is equal tosP and the loop executessP (sP − 1) times.
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Each loop iteration executes a binary search that may in the worst case span the

problem space and therefore has a complexity oflogP . Each iteration also executes the

DOTRACE function, which executes a loop that considers the seven adjacent problem in-

stances to a given instance. The recursion then continues the evaluation for the length a

complete border, which is at worst the size of the problem space. Thus, the complexity of

the function is7P . As mentioned above, these two operations executesP (sP − 1) times,

for a total complexity ofsP (sP − 1)(logP + 7P ), simplifying toO(s2P 3).

The process at line 15 of finding the points at the intersections of borders requires

looping through each pairwise set of borders to find points that exist in both borders. This

requiresB(B − 1) loop iterations, whereB is the number of borders, for a complexity

of O(B2). Recalling that the number of borders isO((sP )2) and that a border may at

most containP points, the overall complexity of this operation isO(((sP )2)2× P ), which

simplifies toO(s4P 5).

The final loop at line 16 requires selecting a solution for oneproblem instance in

each region resulting in a complexity ofO(sPR), wheresP is the number of solutions to

evaluate, andR is the number of regions generated by the border intersections. In two-

dimensional spaces, the number of regions generated by dividing a space withn lines or

circles isO(n2). Intuitively, this can be demonstrated by observing that the ith line that

divides a space adds at mosti regions to the space, thereby creating
∑n

i=1 i = n(n−1)
2

regions for a complexity ofO(n2). Replacingn with the number of borders,O((sP )2),

and substituting forR, the complexity of this loop isO(sP × s4P 4) = O(s5P 5).

The sum of all of these terms isO(HsP + s2P 3 + s4P 5 + s5P 5). The fourth term

dominates the second and third terms, simplifying toO(HsP + s5P 5). As before, it is

not clear which, if either, of the terms dominates the expression, and thus both of them are

preserved.
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SVM Algorithm The SVM algorithm trains a support vector machine with the ini-

tial random sample in order to classify unsolved problem instances to one of the discovered

solutions. The SVM and SVM+SBE algorithms rely heavily on support machine training

algorithms, which has a generally accepted upper bound ofO(n3) in the number of train-

ing instances (Bottou and Lin, 2007; List and Simon, 2009). The complexity of the SVM

algorithm is readily calculated as the sum of the complexityof sampling, training, and

possibly classification:O(HsP + (1 − s)3P 3 + (1 − s)P ). Dropping the final term be-

cause of the domination of the middle term results in an SVM algorithm complexity of

O(HsP + (1− s)3P 3)

SVM+SBE Algorithm SVM+SBE splits its total sample allocation between the ini-

tial random sample and targeted sampling within the regionsbetween problem instances

with differing solutions. The SVM+SBE algorithm complexityis similar to the SVM com-

plexity, but uses an alpha parameter that determines the fraction of sampled instances that

will be derived from solution border estimation. Because of this, the complexity of the ini-

tial sample isO(HsPα). The loop starting at line 12 runs a maximum of(1− α)sP times

and has the same binary search as line 11 of the SBE - trace algorithm. Each of the border

problem instances is solved with anO(H)-complexity heuristic search. Thus the complex-

ity of this loop isO((1−α)P (H + logP )). The SVM training is againO(n3) in the number

of training instances for a complexity ofO(s3P 3). The last loop at line 17 iterates over the

(1− s)P unsolved problem instances and places them in the PS Map. Summing the terms

results in a complexity ofO(HsPα + (1− α)sP (H + logP ) + s3P 3 + (1− s)P ), which

simplifies toO(HsP + s3P 3).

SSS Algorithm Select from sampled solutions (SSS) tests each solution discovered

during the initial sample against each of the unsolved problem instances. The SSS al-
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Algorithm Complexity K = O((1-s)P)
SC O(HsP + (1− s)PKlogP ) O(HsP + (1− s)2P 2logP )
SC+bias O(HsP + (1− s)PKlogP ) O(HsP + (1− s)2P 2logP )
SC+AL O(HsP + (1− s)PKlogP ) O(HsP + (1− s)2P 2logP )
SBE O(HsP + s5P 5)
SSS O(HsP + sP 2)
SVM O(HsP + (1− s)3P 3)
SVM+SBE O(HsP + s3P 3)

Table 3.1: Summary of PS Map approximation complexity. H is the complexity of generat-
ing a high-quality solution, s is the sample rate, P is the number of instances in the problem
space, and K is the complexity of the fixed-radius neighbor search.

gorithm requiresO(HsP ) for the initial sample and for each of the remaining(1 − s)P

unsolved instances, it must evaluate each of the discoveredsolutions. Assuming each sam-

ple results in a unique solution, this results in the worst case,(1 − s)P × sP evaluations,

or O(sP 2) assuming a smalls. Thus, the complexity of SSS isO(HsP + sP 2).



Chapter 4

EVALUATION IN TEST DOMAINS

This chapter presents the results of applying the algorithms described in the previous

chapter to three test domains. I show that, in many cases, theutility loss from PS Map

approximation is comparable to that of online repair. However, the performance of the

approximation algorithms varies between problem domains and between different problem

configurations within the same problem domain. In both cases, the differences in the size

and quantity of heterogeneous regions intrinsic to the problem domain and configuration

appear to be suggestive as reasons for the differences in approximation accuracy. I tested

the algorithms using the traveling saleman problem (TSP), the knapsack problem, and an

elevator problem. The TSP and knapsack problems are classicdomains in optimization

and computer science. The elevator problem is a challenge domain created for the AAAI

International Planning Competition (IPC) (Coles et al., 2013). All of the problems are

NP-complete or NP-hard, and quickly become intractable with complex enough problem

instances.

Traditional TSP problems consist of a set of unordered locations, sometimes referred

to as “cities,” that must be ordered such that the length of route that traverses the set is

minimized. In the dynamic variant, one or more additional locations become known after

the initial ordering is computed, and must be incorporated into the route while minimizing

45
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computation time and total route distance.

In the knapsack problem, one chooses from a set of given items, each with a weight

and value characteristic, such that the total value of the knapsack is maximized and the total

weight does not exceed a given weight constraint. I use the 0-1 variant, in which each item

may be selected a maximum of one time. After computing an initial solution, I present one

or more additional items with which the system may revise itssolution.

The elevator domain defines the initial and desired locations of a set of passengers,

and several elevators of varying speeds with which to transport passengers. The goal is to

move all the passengers to their desired floors as cheaply as possible through efficient use

of elevator movements. For my testing, I use a variant in which one or more passengers’

initial location may change after the initial plan is computed.

My primary metric for evaluation is utility loss, measured as a fraction of the utility

of a problem instance’s high-quality1 solution, as calculated by a heuristic solver. For

example, if the total value of a high-quality knapsack solution is 100, and the solution

retrieved from the approximated PS Map has a value of 95, thenthe utility loss for that

specific solution is .05 (i.e.,100−95
100

). The evaluation of an approximated PS Map is the

average utility loss over all of the discrete locations in the map. Thus, the evaluation for a

PS Map over all problem instances is
∑

i∈map heuristici−approxi
∑

i∈map heuristici
whereapproxi andheuristici

are the utility of the solutions given by the PS Map and a heuristic planner, respectively, for

a given problem instancei. Lower utility loss is preferred; the best approximated solution

will have a utility loss of zero.

For most of the experiments, the independent variable is thesample rate, defined as the

fraction of problem space instances that are solved with theheuristic solver. For example, a

1As previously mentioned, “high-quality” refers to solutions generated by heuristic search methods. As
solutions to intractable problems they cannot be guaranteed to be optimal; therefore, I avoid the use of that
term.



47

sample rate of .002 applied to a PS Map with 10,000 problem instances would indicate that

a total of 20 problem instances were solved with the heuristic solver. Several algorithms

distinguish between problem instances solved during the initial sample and those solved

at an intermediate stage of the algorithm. However, the sample rate does not make this

distinction, and thus represents the fraction of problem instances solved with the heuristic

solver, regardless of the stage that employs it.

4.1 Traveling Salesman Problem

The traveling salesman problem (TSP) is a classic NP-complete problem in computer

science in which cities must be ordered such that the length of the resulting route is mini-

mized. The dynamic variant, the DTSP, allows for cities to beremoved or added while the

route is being traversed, creating a more challenging problem in which the route should be

reoptimized in real time. I used the TSP as an initial domain for algorithm validation and

development. I generated problem instances ranging from 5 cities to 100 cities, represent-

ing a range of problem complexity. This domain also assumes that the city locations occur

at integer locations, and treats the problem space as discrete. For example, a city location

at (10,10) is valid, but a city location at (10.5,10) is not.

4.1.1 High-Quality PS Map

For testing in the TSP domain, I generated three instances each of 5, 10, 20, 50, and

100-city DTSPs. One of the cities included with each of the DTSPs has a variable location.

As the gold standard, high-quality PS Maps were generated via the Clark-Wright (Clarke

and Wright, 1964) and Gillett-Miller (Gillett and Miller, 1974) algorithms, as implemented

by the Drasys library.2 I then removed errors stemming from heuristic-based solvers by

2As of this writing, this library appears to no longer be publicly available. I have placed a copy of the
original download athttp://www.umbc.edu/˜holder1/or124.jar
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executing the SSS algorithm over the PS Map. As described in Section 3.7, this process

tests each unique solution against each problem instance, resulting in a more accurate PS

Map.

4.1.2 Online Repair Baseline

To compare how well PS Map approximation techniques performagainst traditional

online repair, I implemented the insertion approach (Psaraftis, 1988). This approach in-

corporates new cities into the route by finding the nearest city and inserting the new city

into the route either before or after the nearest city. Although it is not the best repair tech-

nique, it is well suited for online repair due to its speed. Inthis case, the repair accuracy

was within the expected loss of utility provided by other DTSP online repair algorithms as

discussed by Larsen. This baseline will be discussed in moredetail when presenting the

experimental results.

4.1.3 Sampling-Classification Experiment

The sampling classification (SC) algorithm is a simple algorithm used as an initial

exploration of the feasibility of the general approach of using classification techniques

to match problem instances with solutions. The basic implementation accepts problem

instances and their solutions as input, and uses nearest neighbor-like classification to assign

solutions to unsolved problem instances.

SC Experiment Parameters The PS Map approximations were generated using 19

sample rates between .0001 and .01. The experimental configurations were drawn from the

permutations created by the cross product of the DTSP problem, sample rate, and approxi-

mation technique. Each run was executed ten times.
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Results The initial algorithm, sampling-classification (SC), solves a random sample

of the problem instances and uses classification based on nearest neighbor to assign solu-

tions discovered during the initial sample to each unsolvedproblem instance. In the initial

experiment, all of the solutions of solved problem instances within a static radius of an

unsolved problem instance were polled and the solution withthe plurality was assigned to

the unsolved problem instance. These results are included in Figure 4.1 as “SC, 100-city.”

Subsequent experiments weighted the solutions by the reciprocal of the distance or the dis-

tance squared, this giving more weight to the solutions of problem instances closer to the

unsolved instance. These results, also in Figure 4.1, are labeled as “SC-distance” and “SC-

distance squared,” respectively. Figure 4.1 also includesthe results of the SC experiments.

In addition to showing fractional loss results, the graph highlights the range of fractional

utility loss expected by online repair, as suggested by Larsen (2000). I also implemented a

nearest-neighbor DTSP solver to insert the variable city into the route. The mean average

loss from that online repair method was 1.97%, which is consistent with Larsen’s range.

4.1.4 SC+Bias

Based on the results of the SC experiments, it became apparentthat the larger solution

regions tended to be represented in the approximated PS Map,but smaller regions tended

to disapppear. This occurred due to the lower probability ofthe initial random sample

choosing a problem instance in that region, resulting in either a particular region not being

represented in discovered solutions or probable solutionsbeing assigned. One attempt to

mitigate this effect was inspired by observing that within the high-quality PS Map, more

rapid changes in solutions and smaller solution regions tend to exist near city locations.

The SC+bias algorithm attempts to take advantage of this observation by biasing samples

towards the regions near cities. The city radius and bias parameters determine, respectively,

the radius of the region around a city to apply the bias and howmuch to bias the samples.
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FIG. 4.1: Results of applying various approximation algorithmsto the 100-city TSP do-
main. The SBE/SSS line are the results of the SBE and SSS algorithms. The three
SC lines are the results of three executions of the SC algorithm. SC-distance and SC-
distanceSquared are the results of running SC and weightingthe voting contribution of each
neighbor by its, respectively, distance and distance squared from the unsolved problem in-
stance. The SC+AL line is the result of the SC+AL algorithm. As abaseline, the dotted line
represents the utility loss of the online planner. As a secondary baseline, the shaded region
is the expected loss of DTSP online repair algorithms as suggested by Larsen (2000).
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FIG. 4.2: Average utility loss of approximate PS Maps generatedby SC+bias for DTSP
problems of various sizes.

The near-city region is defined as a circle with the specified radius. The bias represents the

odds that the near-city region will be sampled. For example,a bias value of three indicates

that the near-city region will be sampled with odds 3:1 versus the non-near-city region.

Experiment Parameters This experiment approximated a PS Map for a 100-city

DTSP. I assigned a bias factor as integers in the range from one to five, inclusive, and

the city radius in the range from one to five, inclusive. The approximation algorithm was

executed ten times for each combination of bias factor and city radius.

Results The results of this experiment are shown in Figures 4.2 and 4.3. These

results do not appear to show an obvious pattern to determinewhich parameters are most

promising. For example, the best performance are at the valleys (recall that lower utility

loss is preferred) at bias values of one, four, and five, and radius values of two, four, and

five. Looking at the graph, there is not an obvious gradient tosuggest a generalized rule for

setting these parameters.
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FIG. 4.3: Average utility loss of approximate PS Maps generatedby SC+bias for 100-city
DTSP problems at sample rate .005. SC-generated PS Maps generated under identical
conditions have an average accuracy of .035.

4.1.5 SC+AL

Sampling classification with active learning (SC+AL) is another attempt to allow for

smaller solution regions to be approximated effectively. SC+AL may be considered a gen-

eralization of SC+bias in that it allows more concentrated sampling in regions of the prob-

lem space in which the classification appears ambiguous rather than limiting the targetted

samples to predetermined locations. For example, if two solutions are both strong candi-

dates to be assigned to a specific problem instance, then SC+ALwould solve the problem

instance rather than risk assigning an incorrect solution.Similarly, if there are no strong

candidates for a particular problem instance, then SC+AL would allow the problem in-

stance to be solved rather than assign an arbitrary solutionto it.

Experiment Parameters The alpha parameter was set to 0.5. Thus, half of the

allotted problem instances solved were selected with random sampling. The other half
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were reserved for problen instances that the algorithm determines to be ambiguous.

Results The results of this experiment are shown in Figure 4.1. At thelower sample

rates, the performance of the SC+AL algorithm appears to be slightly better than the SC

results. This could suggest that at low sample rates, it is more critical to choose samples that

convey the most information about the solution space. It’s reasonable that as the sample

rate increases, the probability increases of obtaining that same sample information through

chance.

4.1.6 SSS

Experiment Parameters No algorithm-specific parameters were required for this

experiment. As with the other experiments in this domain, the sample rate ranged from

.0001 to .01 for a problem space consisting of 100-city DTSPscontaining one variable city.

Results The results of this experiment are shown in Figure 4.1. The utility loss

of SSS quickly drops, and at sample rates greater than .003 becomes the best performing

algorithm. Intuitively, this seems reasonable: assuming that the initial sample discovers

most solutions, then testing each of the solutions against the problem instance would result

in the problem instance being assigned the optimal solution.

4.1.7 SBE

The solution border estimation algorithm (SBE) considers the mathematical features

of the TSP. It calculates the border by recognizing that the border between any two solutions

is represented by equating the distance functions of the twosolutions. Unfortunately, at the

time of this experiment, I did not find a Java library that could solve the complex equations

that resulted from this technique. The SBE-trace technique is inspired by SBE; however, it
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finds borders between two solutions by searching the space between two problem instances

with known solutions. Thus, a binary search can be employed.Assuming that the border

between two solutions is continuous, then the remainder of the border can be found by

comparing the utility of the two solutions at each problem instance.

Experiment Parameters No algorithm-specific parameters were required for this

experiment. As with the other experiments, the sample rate ranged from .0001 to .01 for a

problem space consisting of 100-city DTSPs, with one city having variable location.

Results The results of SBE-trace are shown in Figure 4.1. Note that SBE-trace

is only suitable for two-dimensional PS Map approximation.Because of this limitation,

it is not applicable to most domains, and thus I did not emphasize this algorithm in the

subsequent experiments, which have PS Maps with higher dimenstions.

4.1.8 SVM

The support vector machine algorithm (SVM) uses a support vector machine to try to

generalize the idea of SBE to multiple dimensions. Support vector machines calculate a

maximum margin plane to separate different classes. The observations in this application

are the sampled problem instances labeled with their solutions.

Experiment Parameters No algorithm-specific parameters were required for this

experiment. As with the other experiments, the sample rate ranged from .0001 to .01 for

a problem space consisting of 100-city DTSPs, with one city having variable location. I

configured the SVM to use the radial basis function kernel.

Results The results of this approach are included in Figure 4.4. It demonstrates that

at sample rates greater than about .01, the SVM-based algorithm performs better than the
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FIG. 4.4: Average utility loss of approximate PS Maps generatedby SVM and SVM+SBE
for 100-city TSP domain. Alpha refers to the fraction of samples used for random initial
sampling.

online repair baseline of fractional loss of 0.02 to 0.06 as mentioned earlier.

4.1.9 SVM+SBE

One disadvantage of the SVM-based approach is that it can misclassify problem in-

stances. SVM determines the borders between two solution regions by calculating a hyper-

plane such that the gap between problem instances with differing solutions is as large as

possible. This process results in a border that is approximately midway between differing

solutions. SVM has been shown to be a good optimization technique in general; however,

it does lead to misclassifications when the actual border does not conform to this approx-

imation. By applying additional samples in key locations, the location of the hyperplane

calculated by the SVM can be made more consistent with the actual borders. In this ap-

proach, the first step is an initial set of problem instances that are sampled and solved. The

second step applies the binary search used in the SBE-trace algorithm to each distinct pair

of solutions, resulting in problem instances that represent solutions on the border between
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the distinct pair of solutions. Finally, those problem instances and the labeled solutions are

added to the training set for the SVM.

Experiment Parameters The alpha parameter, which determines the fraction of the

total allocated sample that will be used during random initial sampling, was set to 0.2 and

0.5 in separate runs. The SVM algorithm as described in the previous experiment uses all

of its allocated samples during initial sampling, and is thus the equivalent of using an alpha

parameter of 1.0. Choosing 0.2 and 0.5 values in this experiment results in testing of alpha

values that span the most of the range of 0.0 to 1.0. I configured the SVM to use the radial

basis function kernel.

Results The results of this approach are included in Figure 4.4. It isinteresting to

note that the performance of SVM+SBE using an alpha value of 0.2 performs better at lower

sample rates, and that with an alpha rate of 0.5 performs better at higher sample rates. The

crossover point is at a sample rate of approximately 0.02. Itappears that at higher sample

rates, the random sampling is sufficient to discover the border between solutions without

targetting samples. At lower sample rates, the stucture of the solution space is not as

explored, and thus it is valuable to discover key points where one solution becomes better

than another. However, at lower sample rates fewer solutions are discovered. Thus, there

is a tension between random sampling in order to discover thesolutions that exist in the

space, versus targeted sampling, which assists in accurately finding the borders between

the discovered solutions. Revisiting the SVM algorithm, which is equivalent to SVM+SBE

with an alpha value of 1.0, the trend continues: using fewer targeted samples results in

worse performance at lower sample rates, but performs better at higher sample rates.
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4.1.10 Analysis

These results show that these algorithms are comparable to or better than online repair

performance: all of the algorithms except for SC perform better than online repair at sample

rates of .002 and above. It is quite reasonable that the alternate algorithms would perform

better than SC, because SBE and SC+AL proactively attempt to findkey problem instances

that distinguish one solution from another, and SSS considers more information than SC

during classification. The fact that the distance-squared version of SC performs better

than the others suggests that solved problem instances thatare closer to the instance being

classified are more indicative of the proper solution than solved problem instances that are

further away.

The results for SC+bias applied to TSP of various sizes are shown in Figure 4.2.

Again, the results are comparable to online repair, but not as good as other techniques.

SC+bias hasbias factorandcity radiusparameters that can be modified and were set to

various values within the experiment. Bias factor represents the degree to which to bias

sampling to be near a city. The city radius indicates how close a problem instance has

to be to a city to potentially benefit from the bias. Figure 4.3shows utility loss results

at sample rate .005 when SC+bias is applied with a range of parameter configurations.

The results vary widely, and there does not appear to be any obvious correlation between

specific parameter settings and the utility loss. This behavior also appears reasonable. The

goal of this algorithm was to attempt to exploit city locations as indicators of boundaries

between solution regions. However, there are many solutionregions that are not near cities;

thus, this algorithm has uneven and limited benefit.

The early experiments demonstrate that SSS and SBE have the best performance.

SBE’s performance is perhaps expected, as this algorithm most directly finds solution re-

gions, thus exploiting the characteristic of this domain space in which similar problem
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FIG. 4.5: Average utility loss of approximate PS Maps generatedby SBE and SSS for
DTSP problems of various sizes.

instances tend to have similar solutions. Alternatively, SSS’s performance is best attributed

to its brute-force approach of examining every problem instance and testing all known so-

lutions. This would seem to continue to be feasible with a tractable number of problem

instances and solutions, but may not scale well. Figure 4.5 explores SSS and SBE’s poten-

tial with additional problem sizes. The performance continues to be good for all problem

sizes, but appears to converge more rapidly for the smaller problem sizes. This behavior is

expected due to the small number of unique solutions and larger homogeneous regions.

4.2 Knapsack Problem

The knapsack problem is a combinatorial optimization problem in which a subset of

items of variable weight and value are chosen such that the total value is maximized and

the total weight falls below a given threshold. For this experiment, I use the 0-1 knapsack

problem variant, in which either zero or one copies of each item may be placed in the

knapsack. The knapsack is prepopulated with a set of items that utilize 396 dekagrams

(dag) of the total knapsack capacity of 400 dag, and one or more items of varying value
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and weight is added to the pool of items. Similar to the TSP domain, this domain will

limit the weight and value of each item to integers, resulting in a discrete domain. I discuss

adaptation to continuous domains is in Section 6.1.

The knapsack domain demonstrates the applicability of the algorithms in a different

domain. One difference between this domain and the TSP domain is that it entails a more

abstract representation of distance, as an item’s weight and value characteristics do not

directly correspond to location and distance as do the cities within the TSP domain. The

high-quality solution PS Map’s characteristics also differ in this domain. For example,

looking at the high-quality PS Map, one can see that, whereasthe TSP domain had very

circular homogeneous regions, the knapsack domain has rectangular homogeneous regions.

I apply the same algorithms to this domain, with the exception of the SBE-trace algorithm,

which is only suitable for problem spaces of two dimensions.I expect that performance of

the algorithms could be worse in this domain, due to the greater number of solutions and

smaller solution region size.

4.2.1 High-Quality PS Map

For the experiment, I defined a set of 22 items, each with knownweight and value

characteristics as shown in Table 4.1, from which to maximize the value of the knapsack

while conforming to its maximum weight capacity. I defined one additional item, varying

the weight and value from 1-100 inclusive to create 10,000 (1002) problem instances. As a

baseline, I solved all 10,000 problem instances to generatea high-quality PS Map. As with

the TSP domain, I applied SSS over the PS Map to reduce errors from the heuristic solver.

A visualization of the resulting two-dimensional PS Map is depicted in Figure 4.6.

The majority of the solutions do not incorporate the new itemand are represented by the

largest blue region that encompasses most of the right and upper portion of the space of

problem instances. This is consistent with intuition as these are the problem instances in
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which the newly available item tends to have a high weight-to-value ratio, thus making

it an unattractive option. At the upper-left region of the problem space, the red region

indicates where the new item is added to the knapsack due to its weight falling within

the slack available in the current knapsack. Outside of the red region, the weight of the

new item violates the weight constraint, and is not includedinto the knapsack. However,

once the value of the item exceeds the value of the least valuable item in the knapsack – the

sunglasses with weight 7 and value 20 – and is within the weight constraint, then the item is

included in place of the sunglasses. This is the solution represented by the magenta region.

As long as the weight of the new item is 11 dag or less (the sum ofthe slack in the knapsack

and the weight of the sunglasses) with value of 20 or greater (the value of the sunglasses),

the new item will be included in the knapsack. When the weight is greater than 11, then

the new item is again excluded until its value becomes large enough to displace a different

item. The light green region adjacent to the magenta region represents the solution when

the new item with value 35 displaces the compass with weight 13 and value 35. Thus the

corners of the square regions correspond to the weights and values of the items currently in

the knapsack because it is at these thresholds that the new item becomes more beneficial to

include into the knapsack.

Following the generation of the two-dimensional PS Map representing the weight and

value dimensions of one additonal item, I then generated more complex problem spaces by

adding two items of varying weight and value characteristics to the pool. Solving each of

the resulting problem instances – consisting of the static items and two additional items –

resulted in a four-dimensional PS Map consisting of two weight and two value dimensions.

I generated a high-quality PS Map, solving all 176,400 (202 × 212) problem instances.

Continuing, I generated an eight-dimensional problem spaceconsisting of a weight

and value axis for each of four variable items. The range of the weight was 16 to 20

inclusive and the range of the value was 31 to 35 inclusive, resulting in a problem space
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Object Weight Value
apple 39 40
banana 27 60
beer 52 10
camera 32 30
cheese 23 30
compass 13 35
glucose 15 60
map 9 150
note-case 22 80
sandwich 50 160
socks 4 50
sunglasses 7 20
suntan cream 11 70
t-shirt 24 15
tin 68 45
towel 18 12
trousers 48 10
umbrella 73 40
water 153 200
waterproof overclothes 43 75
waterproof trousers 42 70

Table 4.1: Knapsack static item pool
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FIG. 4.6: High-quality PS Map for a knapsack problem. Best viewedin color.

of 58 = 390, 325 problem instances. For each of the problem instances in the problem

space, I created the full problem instance by adding the variable items indicated by the

problem instance to the knapsack. For example, if a problem instance in the problem space

is (w0, v0, w1, v1, w2, v2, w3, v3), then I solved a knapsack problem consisting of the pool

of items in Table 4.1 plus items with weight and value scores of (w0, v0), (w1, v1), (w2, v2),

and(w3, v3). I solved each of the knapsack problems and created a mappingfrom each of

the instances in the problem space to each of the calculated solution, thus composing the

PS Map.

Finally, I generated a second PS Map of an eight-dimensionalproblem space as above,

but with the range of the weight expanded by one unit to 15 to 20, resulting in a problem

space of64 × 54 = 810, 000 instances.
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4.2.2 Online Repair Baseline

The online repair method is a greedy solver that selects the item with the highest

value-to-weight ratio.

4.2.3 Experiment Parameters

The knapsack problem tested the sampling-classification (SC), sampling-classification

with active learning (SC+AL), support vector machine (SVM),support vector machine

with solution border estimation (SVM+SBE), and select from sampled solutions (SSS)

methods. I did not perform experiments with SBE because, as previously mentioned, it is

only applicable for two-dimensional domains, and, thus, isnot as useful in general cases.

The SC+Bias approximation algorithm is also omitted because its application is specific

to the TSP domain’s city location parameters, and there is not a clear analog within the

knapsack domain.

In my experiments, I found that large regions of the problem space were homoge-

neous, particularly as the values of the problem instances’variable features increase. To

avoid positively skewing the results, I chose feature ranges to focus on the more heteroge-

neous regions of the problem instance space. For the two-dimensional experiment, I limited

the problem space to problem instances with weights from 1-20, inclusive, and values from

50-70, inclusive. For example, when considering only one additional item, the first prob-

lem instance would consist of the static items plus an additional item with a weight and

value (1,50); the second problem would consist of the staticitems plus an additional item

with weight and value (2,50); and so forth, accounting for all possible combinations.

The approximation of all maps was done for sample rates ranging from .0001 to .001.

For the SC+AL and SVM+SBE algorithms, the alpha rate was set to 0.5. Thus, the initial

sample rate is half of the allocated samples, leaving half for active sampling. As before,
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the evaluation of the approximation is the fraction of the utility lost with respect to the

heuristically calculated heuristic solution.

4.2.4 Results & Analysis

The result of generating a high-quality PS Map is displayed in Figure 4.6. The map

confirms an intuitive estimation of solutions: for problem instances in which the variable

item’s weight falls within the slack of the original solution, it is always included in the

knapsack. Once the variable item’s weight exceeds the available slack, it is excluded from

the knapsack until it becomes valuable enough to replace an item currently in the knapsack.

Moving along the weight dimension, the variable item remains in the knapsack until it

becomes too heavy for its value to contribute to an optimal solution and is excluded from

the knapsack. This pattern repeats, creating a set of solutions resembling a staircase of

solutions, the edges of which represent a boundary in the solution space between where the

variable item is included and excluded.

Figure 4.7 shows the results of applying the various PS Map approximation algorithms

to a knapsack problem with one variable item. As one might expect, most of the algorithms

trend towards zero utility loss as the sample rate increases. The notable exceptions are the

SC and SSS algorithms. The SSS algorithm appears to provide somewhat of a theoretical

best performance, with the other algorithms gradually converging. The SC algorithm ap-

pears to have a much slower convergence, as it still shows a loss of approximately 20%

of the optimal utility at a 0.1 sample rate. Figure 4.8 highlights the turbulent region up to

and including sample rate 0.01. Here it becomes apparent that the SC algorithm performs

comparably to the other algorithms at this low sample rate, with the AL algorithm initially

lagging behind. Figure 4.9 zooms in an additional time to thelower tenth of the sample

rate range, up to and including 0.001, showing even more pronounced performance differ-

ences. The SC, SVM, and SVM+SBE algorithms are generally grouped together, and the
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FIG. 4.7: Results of algorithms applied to a two-dimensional knapsack problem domain.

AL and SSS algorithms show a utility loss at a fairly constantlevel at opposite ends of the

performance range.

Figures 4.10, 4.11, and 4.12 show the relative rankings of the algorithms for the each

of the preceding three figures. Although the quantitative difference in performance is lost

in these graphs, it does notionally illustrate the preferred algorithm as the sample rate in-

creases. We again see that the AL algorithms initially performs poorly, but converges

quickly to become comparable to the SVM and SVM+SBE algorithms. Conversely, the SC

algorithm performance degrades and quickly becomes the worst algorithm.

These results suggest that at very low sample rates, it is advantageous to use SC rather

than AL, perhaps because SC’s broader coverage of the space ofproblem instances is more

useful than AL’s targeted sampling for small sample rates. However, at higher sample

rates, the higher number of samples available for AL’s initial sample appears to provide

broad enough converage for the targeted sampling to outperform the SC algorithm. It is

interesting that there is not the same level of distinction between SVM and SVM+SBE,

perhaps because SVM’s classifications methods permit the information gained from a sam-
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FIG. 4.8: Results of algorithms applied to a two-dimensional knapsack problem domain,
focus on sample rate .01 and lower.

FIG. 4.9: Results of algorithms applied to a two-dimensional knapsack problem domain,
focus on sample rate .001 and lower.
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FIG. 4.10: Ranking of algorithms applied to a two-dimensional knapsack problem domain.

FIG. 4.11: Ranking of algorithms applied to a two-dimensional knapsack problem domain,
focus on sample rate .01 and lower.
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FIG. 4.12: Ranking of algorithms applied to a two-dimensional knapsack problem domain,
focus on sample rate .001 and lower.

ple to be applied more broadly, through the use of the maximummargin plane. SC and

AL, on the other hand, limit the use of a sample’s informationto a very localized region.

The advantage of SVM+SBE over SVM is that the targeted sampleshelp to provide a more

precise hyperplane location. However, in the knapsack domain, in which the utilities of the

available solutions are similar, the benefit of the more precise hyperplane location is not as

significant. Additionally, the number of samples availablefor targeted sampling may not

provide enough information to create a more precise margin,particularly as the number of

dimensions increases.

Figure 4.13 shows the results of applying the PS Map approximation algorithms to

a knapsack problem with two variable items. Because each itemhas a weight and height

characteristic, this results in a four-dimensional PS Map.In this experiment, I limited the

range of the weight and value of the items to [14,24] and [30,40], respectively, due to the

computation time required to complete the experiment. The graph shows a loss of utility

well under 1% at low sample rates. In this domain, the algorithms appear to benefit from
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FIG. 4.13: Results of algorithms applied to a four-dimensional knapsack problem domain.

the higher dimensionality, because there is not a large increase in the number of unique

solutions, leading to larger homogeneous solution regionsthat the algorithms can exploit.

The spikes in the SVM+SBE results are the effect of high variance that is a function of

the manner in which SVM+SBE selects its sample points and the structure of the knapsack

problem space. After the initial random sampling, SVM+SBE uses its additional samples

to find problem instances that correspond to borders betweenpairwise solutions. As a

result, all of SVM+SBE’s subsequent samples will be in a region of the problem space that

is bounded by the initial sample set. Therefore, if the initial sample does not bound a region

that represents all solutions, then no subsequent samples will discover those solutions. In

this test case, the region had a total of four solutions. If the initial sample discovered all

four, then the average fraction utility loss was close to zero. If the initial sample discovered

only three solutions and none were feasible with respect to the unrepresented problem

instances, then the average fraction utility loss rose to around 0.15. If the initial sample

discovered only two solutions, the average fraction utility rose to around .45, indicating
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FIG. 4.14: Results of algorithms applied to a four-dimensional knapsack problem domain,
highlighting low utility loss.

that the library did not have a feasible solution for almost half of the problem instances.

This effect is less pronounced in the other algorithms. For SC, SSS, and SVM, the

probability of excluding a solution region at a particular sample rate is smaller because, un-

like SVM+SBE, all of the samples are used in the initial sample, rather than a subset. For

AL, which, like SVM+SBE, also reserves a fraction of its samples for targeted sampling, its

subsequent sampling targets unrepresented regions, thereby reducing the probability that a

region of the problem space would remain unsampled. The lastfactor is the domain, for

which not all solutions are feasible for a given problem instance. In contrast to TSP, in

which any solution can be applied to any problem instance, the knapsack problem domain

defines a hard constraint – total weight – that if violated by asolution renders it inappli-

cable to the problem instance. This characteristic leads tolarge losses of utility because

an infeasible solution has a utility close to zero,3 whereas in a domain like TSP, a poor

3To avoid division-by-zero errors, the lowest utility in theknapsack problem domain is 1.
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solution still does contribute some portion of the optimal utility.

Figure 4.14 highlights the area of the graph where several ofthe algorithms appear to

have similar performance. Upon closer inspection, the typical rapid convergence of the SSS

algorithm is again visible. In this case, the other algorithms tend asymptotically towards

zero utility loss as well.

Figure 4.15 puts these results in context against various baselines. The taller blue

bars represent the fraction of utility lost if one were to assume a PS Map consisting of a

single solution. Because the high-quality PS Map had seven solutions, there are seven cases

represented in the graph. In this scheme, it is possible thatthe penalty for plan infeasibility

could dominate the error results. The shorter red bar represents the result of applying a

default solution to a problem instance, but allows the system to choose an alternate solution

if the default solution violates the weight threshold of theknapsack. In this case, a feasible

plan is randomly chosen. The upper dotted line represents the fraction of utility loss of

SVM+SBE at a sample rate of .004. The lower dotted line represents the identical loss

of the online repair method as well as when sampling at a rate of .006 using SVM+SBE.

The online repair method is a greedy solver that selects the items with the highest value to

weight ratios. This demonstrates that the performance of the SVM+SBE algorithm when

sampling at rate of .006 is roughly equivalent to that of the online repair technique.

4.3 Elevator Problem

The final domain, a elevator passenger transport problem, represents a more tradi-

tional planning domain. The TSP and knapsack domains can be considered optimization

problems as well as planning problems. The elevator domain falls into the more traditional

realm of planning, in which one has to find steps to accomplisha goal but there is no direct

mathematical representation of the domain. Also, this domain is expected to be more chal-
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FIG. 4.15: Results of applying SVM+SBE to a knapsack with two variable objects. Dotted
lines indicate fractional utility loss for online repair, .004 sample rate, and .006 sample rate,
as labeled. Bars indicate the fractional loss when using a default map consisting of either a
single default solution, or a default solution and the best found feasible solution.

lenging for the algorithms because the homogeneous regionsare likely to be smaller and

less regular. Lastly, this domain represents another levelof abstraction, in that the solutions

that are applied to the domain are not necessarily those thatthe algorithms will operate

upon; the experiment parameters section describes this issue in detail. I also apply the al-

gorithms to this domain, again with the exception of SBE-trace. Intuition would suggest

that this domain is the most challenging of the three, due to the possibility of changes in

optimal plan being very sensitive to changes in the problem instance configuration.

The elevator domain is used by ICAPS in its International Planning Competition. It

specifies several elevators, floors, and passengers, and requires the planner to deliver the

passengers from their starting floor to their destination floor at the lowest possible cost.

Each elevator is either “fast” or “slow.” The slow elevatorsincur little cost for movement,

but more for stopping and starting. Conversely, the fast elevators incur more cost for move-
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ment, but little for stopping and starting. The planner specifies movements for the slow

elevators, which may stop at any floor within a defined contiguous “block” of floors, and

the fast elevators, which traverse the entire range of floors, but only stop at block centers

and boundaries. For example, for a 12-floor problem with two slow elevators, one slow

elevator will travel between the bottom six floors, and the other slow elevator will travel

between the top six floors. The fast elevator will travel throughout the floors, but only stop

at floors 0, 3, 6, 9, and 12. More formally, these features are specified with M and N param-

eters, which create a problem domain with M+1 total floors in blocks of N+1 floors, with

fast elevators that may stop at floors that are multiples ofN
2

. Thus, in the example above,

M is 12 (13 floors from 0 to 12) and N is 6 (two blocks each of sevenfloors, one from 0 to

6 inclusive, the other from 6 to 12 inclusive).

Typically, each planner submitted to the competition targets either the “optimal” or

“satisficing” track. The “optimal” track requires a plannerto find the least costly means of

transporting the passengers to their destinations. The “satisficing” track does not require a

planner to find the optimal plan, but only to find a feasible plan to deliver all of the passen-

gers. My experiments focused on the optimal track and used one of the more successful

planners, the LAMA Planner (Richter and Westphal, 2010).

4.3.1 High-quality PS Map generation

For this domain, I generated a 12-floor and two 24-floor elevator problems. The 12-

floor problem contained two seven-floor blocks (M=12, N=6), two slow elevators, and

one fast elevator. Each problem assumed two passengers withvariable starting position,

creating 169 problems to be solved with the LAMA planner. One24-floor configuation

consisted of six five-floor blocks (M=24, N=4), and the other contained four seven-floor

blocks (M=24, N=6). The 24-floor problems vary the starting location of three passengers,

thereby creating a high-quality map of 216 (i.e.,63) problem instances.
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Similar to other hard problems, planners in this domain employ heuristics in order

to solve these intractable problems, and thereby benefit from “smoothing” as described in

Section 3.7: when generating the high-quality PS Map, each of the solutions is evaluated

against each of the problem instances, and, if necessary, the problem instance is assigned

a new solution. This prevents the odd phenomenon of the occasional approximate solution

having better utility than the “optimal” solution, which may skew the results.

4.3.2 Experiment Parameters

My initial experiment used the 12-floor problem with three passengers, two slow ele-

vators, and one fast elevator. I varied the starting positions of two passengers, resulting in

a 169-instance problem space. In my initial experiment, there were too many unique plans,

and the algorithms could not create classifications from thesampling. In addition, the plans

specified moving elevators from and to specific floors, makingit difficult to apply plans for

one problem instance to a different problem instance. To make this domain appropriate for

the algorithm, I abstracted the plans to transform a plan that moves elevators to a specific

floor into a plan to move elevators to the location of a specificpassenger, thus creating a

plan that can be applied to other problem instances. Importantly, this means that the prob-

lem instances do not change; it is only the representation ofthe solutions to the problem

instances that are modified. For example, consider a raw planwith the steps

(move-down-slow slow0-0 n6 n0)

(board p0 slow0-0 n0 n0 n1)

(move-up-slow slow0-0 n0 n3)

(leave p0 slow0-0 n3 n1 n0)

This plan specifies that, first, the slow elevator with id slow0-0 moves from floor 6 to

floor 0. Next, the passenger with id p0 boards the elevator at floor 0, and the number of
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passengers increases from 0 to 1. Then the elevator moves from floor 0 to floor 3, and in

the final step, the passenger leaves the elevator at floor 3 andthe number of passengers in

the elevator decreases from 0 to 1.

In order to make this plan reusable, it is transformed to be more general:

elevator slow0-0 picks up passenger p0

elevator slow0-0 drops off passenger p0

The first step specifies that the elevator with id slow0-0 moves to passenger p0’s cur-

rent location, and p0 boards the elevator. The second step then specifies that the elevator

moves to passenger’s desired destination and the passengerdisembarks. This general plan

can be applied to problem instances in which the elevator andpassengers are on floors other

than those assumed by the raw plan.

In addition to abstracting the plans, I normalize the plan sothat differences in the

ordering of independent actions are not interpreted as distinct plans. For example, consider

the plan below, annotated with action ids for ease of reference:

1: elevator slow0-0 picks up passenger p0

2: elevator slow1-0 picks up passenger p1

3: elevator slow0-0 drops off passenger p0

4: elevator slow1-0 drops off passenger p1

Note that the only dependencies are that action 1 must occur before action 3, and

action 2 must occur before action 4. Thus, there are six potential plans4 representing the

same overall process. I normalize the plan by grouping together as many actions as possible

that are performed by the same elevator. In this case, the resulting normalization is:

4(1,2,3,4), (1,2,4,3), (1,3,2,4), (2,1,3,4), (2,1,4,3), and (2,4,1,3)
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1: elevator slow0-0 picks up passenger p0

3: elevator slow0-0 drops off passenger p0

2: elevator slow1-0 picks up passenger p1

4: elevator slow1-0 drops off passenger p1

My subsequent experiments used a 24-floor elevator problem with six passengers,

three of which had variable starting locations. One experiment used six fast elevators and

three slow elevators, and the other used four slow elevators.

4.3.3 Online Repair Baseline

As a baseline, I implemented an online repair algorithm. vander Krogt and de Weerdt

(2005) describe plan repair as consisting of removing actions from the original plan that

conflict with or impede achieving the new goal, followed by adding actions to the origi-

nal plan that allow it to achieve the new goal. My baseline online replanning algorithm is

consistent with this methodology. The new goal changes the initial location of the passen-

ger, and thus I consider all actions that reference that passenger as candidates for deletion.

van der Krogt and de Weerdt suggest that heuristics should beused to determine if a can-

didate action should be deleted. My heuristic is a simple one: I only remove the candidate

action if it refers to a passenger whose starting position has moved outside the range of the

elevator used by the action. For example, consider an abstracted actionelevator slow0-0

picks up passenger p0. Elevator slow0-0’s range is floors n0 through n6. If this action is

applied to a problem instance in which p0’s starting position is n7 or above, then the action

would be removed.

In the event that an action is removed, I proceed with the second component of plan

repair, in which I add actions to the original plan to achievethe new goal. There are

two alternatives for continuation: either remove all subsequent actions that refer to the
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passenger and replan the entire route, or preserve the subsequent actions and replan the

passenger route to comply with the constraints implied by the subsequent actions. In the

case of the former, I generate a solution to transport the passengers whose actions were

removed. In order to plan without the influence of the passengers whose actions have

already been established, the initial starting conditionsof those passengers is set to be

equal to their destination location. In the case of the latter, the final condition is set to

the location expected by the action that moves the passengerto its final destination. For

example, if an action moves p2 from n6 to n2 to complete its journey, then the planner will

set the final destination to n6.

Algorithm 8 Unrefinement

1: for each passenger p in plan Pdo
2: if first action referencing p is invalidthen
3: remove all actions referencing p
4: end if
5: end for

Algorithm 9 Refinement

1: actions← generate plan for deleted passenger actions
2: parse and abstract actions
3: add actions to P
4: normalize P

4.3.4 Results

Results from the 12-floor elevator problem domain are displayed in Figure 4.16. The

dotted lines represent the fractional utility loss of threeindependent runs of the online

repair algorithm described in Algorithms 8 and 9. The solid lines represent the results of

applying the SVM+SBE approximation algorithm with various SVM kernels and the SSS
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FIG. 4.16: Results of applying the SVM+SBE algorithm to a 12-floor elevator problem
consisting of 2 slow elevators, 1 fast elevator, and 3 variable passenger starting locations.
Dotted lines represent the utility loss of online repair. Solid lines represent approximations
using various alpha values.

algorithm. The results demonstrate that the SSS algorithm has less fractional utility loss

than the online algorithms, but the various SVM+SBE algorithms generally perform worse

than the online repair algorithms.

Figures 4.17 through 4.19 show results of all the algorithmsapplied to the same 12-

floor configuration mentioned above. Again, the utility lossis much greater in this domain

than in other domains. This is due to the small number of unique solutions and the smaller

size of homogeneous regions in the space. This effect can be observed more explicitly by

examining the performance of the algorithms in two different 24-floor configurations.

Results from the 24-floor elevator domain experiments are shown in Figures 4.20
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FIG. 4.17: Results of applying various approximation algorithms to a 12-floor elevator
problem consisting of 2 slow elevators, 1 fast elevator, and3 variable passenger starting
locations.

FIG. 4.18: Results of applying various approximation algorithms to a 12-floor elevator
problem consisting of 2 slow elevators, 1 fast elevator, and3 variable passenger starting
locations, focus on sample rate 0.1 and lower.
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FIG. 4.19: Results of applying various approximation algorithms to a 12-floor elevator
problem consisting of 2 slow elevators, 1 fast elevator, and3 variable passenger starting
locations, focus on sample rate 0.01 and lower.

through 4.25. These results show that for each problem configuration, SSS performs better

than SVM+SBE. Additionally, the algorithms perform better against the problem configu-

ration with fewer elevators. This is not unexpected, given the nature of the problem space

of each configuration and the algorithms used. In all of the configurations, the problem

spaces have homogeneous regions, but they are small, which can make it difficult for an

SVM-based algorithm to converge and find the appropriate boundaries. However, those

small regions are not a disadvantage for the SSS algorithm, because it chooses a solution for

each unsolved problem instance, rather than attempting to find groupings like SVM+SBE.

This same logic is applicable to the generally better results for the problem configuration

with fewer elevators. In the configuration with four slow elevators, the homogeneous re-

gions are larger than in the problem space with six slow elevators, and thus the SVM+SBE

algorithm performs better. Because there are fewer total solutions in the configuration with

fewer elevators, the SSS algorithm performs better as well.
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FIG. 4.20: Results of applying various approximation algorithms to a 24-floor elevator
problem consisting of 6 slow elevators, 3 fast elevators, and 3 variable passenger starting
locations of 6 total.

FIG. 4.21: Results of applying various approximation algorithms to a 24-floor elevator
problem consisting of 6 slow elevators, 3 fast elevators, and 3 variable passenger starting
locations of 6 total, focus on sample rate 0.1 and lower.
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FIG. 4.22: Results of applying various approximation algorithms to a 24-floor elevator
problem consisting of 6 slow elevators, 3 fast elevators, and 3 variable passenger starting
locations of 6 total, focus on sample rate 0.01 and lower.

FIG. 4.23: Results of applying various approximation algorithms to a 24-floor elevator
problem consisting of 4 slow elevators, 0 fast elevators, and 3 variable passenger starting
locations of 6 total.
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FIG. 4.24: Results of applying various approximation algorithms to a 24-floor elevator
problem consisting of 4 slow elevators, 0 fast elevators, and 3 variable passenger starting
locations of 6 total, focus on sample rate 0.1 and lower.

FIG. 4.25: Results of applying various approximation algorithms to a 24-floor elevator
problem consisting of 4 slow elevators, 0 fast elevators, and 3 variable passenger starting
locations of 6 total, focus on sample rate 0.01 and lower.
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4.4 Overall Analysis & Discussion

The results generally show little difference between approaches at low sample rates.

In fact, the results tend to be highly volatile, perhaps due to the high dependence on a

small number of samples, which leads to large variances in the solutions available for the

algorithms to consider.

SC tends to be a reasonable approach, with the added benefit that it is very simple to

implement. SC+bias shows the ability to improve on SC; however, it is not clear how to

tune its parameters to achieve consistently good results. SBE clearly is the best performer in

the domains in which it was applied. However, my implementation of SBE is limited to two

dimensions. SSS tends to have the same results as SBE, but SSS is more computationally

intensive, potentially leading to scaling issues in large problem spaces.

The use of the SVM approach was intended to mimic the idea of SBE, but adds the

ability to apply it to higher-dimensional domains. This approach tended to yield reason-

able results. Augmenting SVM with additional points to constrain the margin plane in

SVM+SBE did not appear to have the significant impact one mighthave expected. This

may be because the test domains are fairly forgiving when applying a less optimal solu-

tion to a problem instance. A domain in which there is a largerpenalty for less optimal

solutions may require an approach like SVM+SBE, which would provide a more accurate

classification of solutions to the problem instances. Although SVM and SVM+SBE did not

achieve the results of SSS or SBE, they do have the advantage ofbeing less computationally

intensive and being applicable to domains of more than two dimensions.

The results of all algorithms appear to be sensitive to problem domain characteristics.

In the case of TSP, for example, larger size and a smaller quantity of homogeneous solutions

regions generally resulted in better performance by the algorithms. This was also apparent

when comparing the performance of the algorithms in the various elevator domain config-
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urations. The algorithms were able to perform well when tested against configurations that

resulted in large homogeneous spaces in the solution space.

Most importantly, the results do demonstrate that these techniques are useful as an

alternative to online plan repair. At the appropriate sample rate, performance tends to be

comparable, and sometimes better, than the online solution. The benefit of my approach is

that, assuming the ability to compute the necessary librarybefore the environment changes,

the new plan can be accessed much more rapidly than the onlinerepairer can calculate a

new plan. These tradeoffs are discussed in more detail in thenext chapter.



Chapter 5

DISCUSSION

This chapter presents considerations when using the problem space analysis (PSA)

algorithms described Chapter 3. It details some of the implicit criteria for effective use of

the algorithms, discusses the tradeoffs between using online repair and PSA, and describes

other potential applications.

5.1 Algorithmic Assumptions

The effectiveness of the algorithms described in the previous chapters requires the ex-

istence of regions in the problem space with identical solutions. Fewer regions and larger

region size allow the algorithms to be more effective. This was demonstrated through the

experiments in which TSPs with fewer cities created fewer, larger homogeneous solution

regions and had better PS Map approximation. Likewise, elevator domains with larger

N values – that is, larger blocks of floors – tend to be more readily approximated by the

algorithms. Conversely, increasing the number of fast elevators potentially increases the

number of regions, and, consistent with the results, becomes less amenable to approxima-

tion by the algorithms.

Additionally, the algorithms tend to assume some tolerancefor error between neigh-

boring solution regions. Outside of solution border estimation, which attempts to math-

86
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ematically define solution borders, all of the algorithms merely approximate the border

between solutions. A solution space in which there is a largeutility difference between

neighboring solutions is likely to negatively impact performance due to errors in determin-

ing the correct solution for problem instances near those solution border locations. If the

solution regions also are small, this would exacerbate the problem.

Thus, the algorithms rely on plan solution spaces containing homogeneous solution

regions which the algorithms attempt to exploit. These regions could be considered a func-

tion of a problem domain’s objective function, as demonstrated by the justification for

SBE. Recall that the goal of SBE is to mathematically discover boundaries between solu-

tion regions by equating the objective functions of probleminstances with differing variable

features. In this way SBE discovers problem instances for which two solutions have equal

utility, thus constituting a boundary between two solutionregions.

As seen with SBE and its skeletal generation of solution region boundaries, a TSP’s

solution boundaries are defined by each pairwise set of unique solutions discovered by

an initial sample. Fewer unique solutions increases the number of problem instances per

solution; that is, it increases the size of the solution regions. At a given sample rate, the

larger solution regions create a greater likelihood that a random sample will include the

points necessary to identify the unique solutions within the problem space.

Other problem domains, such as the elevator domain, do not have explicit objective

functions, but do have problem configurations that can servethe same purpose. Within the

TSP domain, the number of fixed cities affects the number of possible unique solutions, a

fraction of which are represented in the problem space as solution regions. In the knapsack

domain, the set of static items affects the number of possible unique solutions as well. As

the value of a variable item increases, it eventually supersedes a static item, resulting in a

new solution. For example, every problem instance in which the variable item is “worse”

than the “worst” static item will have a solution that includes the static item rather than the



88

variable item.1 The problem instances for which the variable item is “better” than the static

item will result in a distinct solution. Each static item presents an opportunity for a new

solution. Thus, increasing the number of static items that are present in the domain results

in more distinct solutions and thereby more solution regions will exist.

In the elevator domain, the number of blocks of floors affectsthe number of solution

regions. In general, the number of steps for a passenger to move from its starting to final

destination is a function of the floor block that contains itsstarting location. If abstracted

as previously described, there is potentially little difference in the solution regardless of

where in the floor block the passenger starts, which itself suggests an identical solution for

several starting locations. The greater number of floor blocks thereby leads to a greater

number of solution regions.

The general conclusion is that the static characteristics have a direct impact on the

number of homogeneous solution regions. This can be observed in the previous examples

in which the static characteristics tend to serve as an indicator of a threshold that variable

features may cross and create a distinct solution.

In order to create these homogeneous regions, the axes used in the PS Map must be

chosen appropriately, such that the problem instances withsimilar solutions are grouped

together. In the TSP domain, indexing by the x- and y-coordinates of the variable location

resulted in homogeneous regions; in the knapsack domain, indexing by the variable item’s

weight and value results in homogeneous regions; and in the elevator domain, indexing

by the starting passengers’ starting location resulted in homogeneous solution regions. In

other domains, the surface attributes may not provide a natural grouping. For example, I

briefly investigated the problem space of a game,Alien Frontiers. This game falls in the

category of worker placement, in which a player rolls at least three and sometimes up to

1The evaluation of “worse” and “worst” depends on the heuristic used by the solver, but one example is
the ratio of weight to value.
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seven dice, and may choose to place dice of meeting certain criteria in a “docking station.”

For example, two or three of a kind is required for some docking stations; others require

three dice of consecutive increasing value (e.g. 3,4,5); and others merely require a total

value of greater than seven. Particularly in the early game,a pair is a valuable roll, and my

solver would generally create one class of plan for rolls containing a pair, and another for

rolls not containing a pair. In this domain, indexing by the value of the dice did not result

in homogeneous regions. Rather, a better indexing scheme in this case would have been a

derived boolean attribute, indicating “pair” or “not pair.”

In addition to appropriate indexing, the plans must be abstracted enough to create sim-

ilar plans that can form homogeneous regions. This is demonstrated in the elevator domain

in which the raw plans were abstracted to more generic plans.If indexing and abstraction

result in homogeneous clumps, then an either an SBE approach,in which objective func-

tions are equated, or an SVM+SBE approach could be appropriate. If not, SSS could be a

viable alternative.

5.2 Tradeoff with Online Repair

These techniques allow a system to find solutions for large numbers of similar problem

instances, providing useful information in domains that donot allow for large amounts of

replanning time once an incident occurs, but in which there is some time before such an

incident. However, it is worth noting that in addition to offline version online repair, a

system could also choose not to replan at all. For example, ifa system determined that

the utility loss of the current solution with respect to the post-event problem instance was

tolerable, then it could be reasonable to continue with the current solution. One could also

consider the external costs related to a new plan that isnot explicit in the problem instance.

For example, a new plan could require more resources than thecurrent plan, or there could



90

be a cost in switching plans. In this case, if the cost of the new plan is greater than the loss

from the use of the suboptimal solution, then the system could be justified in not replanning.

However, assuming that the system does determine that the overall cost analysis sup-

ports replanning, then it is worth considering how best takeadvantage of the offline time

available to prepare for online events. Given that the sample rate determines the accuracy

of the approximated map, a system would want to use the highest sample rate possible.

In the case where the system knows the expected time until a disruptive event occurs, then

this technique could be used as a contract algorithm (Zilberstein et al., 1999) – an algorithm

that is given a specific amount of time with which to find a solution – with a sample rate:

rate =
timeoffline

timeinst ∗ ninst

,

wheretimeoffline is the estimated time preceding the disruptive event,timeinst is the time

required to solve a single problem instance, andninst is the total number of problem in-

stances in the space. (More intuitively, it is the amount of offline time divided by the

amount of time that would be required to solve every problem instance.) In the case where

there is no knowledge of the length of time until the disruptive event, then the system can

definetimeoffline as a periodic “refresh” interval that triggers the generation of a new PS

Map, or use a real-time algorithm approach in which PS Maps are generated with succes-

sively larger sample rates until the time of the event.

Considering the test domains of the previous chapter, the tradeoff can be made more

concrete. The typical time to solve a 100-city TSP with the heuristic solver is three seconds

on a laptop and approximately 0.4 seconds on a high-performance machine. The knapsack

problem required .016 seconds on a high-performance machine, and the elevator domain

required 30-60 seconds on the same machine. Knowing that theonline repair for a 100-

city TSP has a fractional utility loss of approximately .02 and mapping that to a SVM+SBE
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approximation sample rate of .002 in Figure 4.1, one can insert these values to the equation.

.002 =
timeoffline

0.4sec ∗ 10000

This results in atimeoffline of eight seconds. Thus, if the system comparable to the

laptop’s capability has eight seconds or more with which to preplan, then it is advantageous

to use PSA. Otherwise, plan repair is probably a better option. For the knapsack domain,

using the online repair results from Figure 4.15, I obtain the equation

.006 =
timeoffline

.016sec ∗ 10000

This results in atimeofflineof 0.96 seconds. Of course, determining whether investing

the required lead time or the online repair time is preferable would be application-specific.

Figures 5.12 and 5.13 show the quickly increasing solver time required as the problem sizes

grow larger, which would imply that the time required to generate a PS Map would also

increase. In the same way, online repair time for increasingproblem complexity would also

increase. This again points to a tradeoff between the increasing solution time needed for

PSA and the expected decline in the performance of online repair.

A more comprehensive view of this tradeoff is shown in Figures 5.1 through 5.5.

Looking at the knapsack results, there does not seem to be an especially strong correla-

tion between the computation time and the utility loss. Given the random nature of the

SC algorithm, it is not surprising that there is a lot of variation in the results. The other

algorithms show a stronger relationship between computation time and performance. This

is not surprising given the more directed nature of these algorithms.
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FIG. 5.1: Relationship between SC approximation computation time and map quality for a
two-dimensional knapsack domain.

FIG. 5.2: Relationship between SC+AL approximation computationtime and map quality
for a two-dimensional knapsack domain.
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FIG. 5.3: Relationship between SSS approximation computation time and map quality for
a two-dimensional knapsack domain.

FIG. 5.4: Relationship between SVM approximation computation time and map quality for
a two-dimensional knapsack domain.
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FIG. 5.5: Relationship between SVM+SBE approximation computation time and map qual-
ity for a two-dimensional knapsack domain.

Similar to the knapsack problem, the elevator domain shows astrong correlation be-

tween computation time and utility loss when the more sophisticated algorithms are em-

ployed, as shown in Figures 5.6 through 5.10. However, even the random SC algorithm in

this domain seems to show a tendency towards better performance at high sample rates.

It is worth noting the discrete characteristic of several ofthe maps. This results from

very low variance in utility loss as a function of the discovered solutions. That is, the set

of solutions that the initial sampling discovers tends to determine the overall performance

of the approximation algorithm. This is most evident in the SSS algorithm, in which the

assignment of the solutions to unsolved problem instances is most directly determined by

the set of discovered solutions. Recall that in SSS, each unsolved problem is assigned a

solution by testing each previously discovered solution. Other approximation algorithms

attempt to avoid testing all discovered the solutions, but,outside of SC, these algorithms

still tend to use the information from the set of discovered solutions in a consistent, al-

though not deterministic, manner.
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FIG. 5.6: Relationship between SC approximation computation time and map quality for a
three-dimensional elevator domain.

A similar effect explains the horizontal clustering apparent in several of the maps.

This clustering is a function of low number of solutions in the space, leading to low num-

bers of permutations of discovered solutions during the initial sampling stage. Again, the

performance of the algorithms is sensitive to the solutionsdiscovered. Thus the same per-

mutation tends to lead to similar performance of the algorithm, resulting in clustering at a

specific utility loss measure.

This discrete characteristic and cluster effect appears less frequently in the elevator

domain, likely due to the larger number of solutions available in the domain. Thus, the set

of discovered solutions is more varied.

This leaves the question of how to accurately estimate the expected performance is

for a particular sample rate. Recalling that the effectiveness of the algorithms appears to

be a function of the number of size of homogeneous solution regions, it may be possible

to estimate the number of homogeneous solution regions by examining the characteristics

of the objective function or the problem configuration. For example, an elevator domain



96

FIG. 5.7: Relationship between SC+AL approximation computationtime and map quality
for a three-dimensional elevator domain.

FIG. 5.8: Relationship between SSS approximation computation time and map quality for
a three-dimensional elevator domain.
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FIG. 5.9: Relationship between SVM approximation computation time and map quality for
a three-dimensional elevator domain.

FIG. 5.10: Relationship between SVM+SBE approximation computation time and map
quality for a three-dimensional elevator domain.
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with configuration M=12, N=6, with one slow elevator per block, has approximately two

solution regions: one in which the elevator in the first blockpicks up the passenger, and one

in which the elevator in the second block picks up the passenger. One might then speculate

that the number of solution regions is approximatelyM
N

, assuming one slow elevator per

block and zero fast elevators. Determining the number of solution regions in other domains

is potentially less straightforward. For example, Figure 5.11 shows PS Maps for several

randomly configured DTSPs. The unique solutions vary from eight to eleven.

As one experiment shows, the number of unique solutions in a knapsack PS Map is

approximated by the number of unique item weights in the knapsack prior to the consider-

ation of the variable item. In the first experiment, I startedwith a knapsack of static items

and generated a PS Map for several weight threshold values. For each weight threshold,

I found the knapsack solution and recorded the number of unique item weights. I then

introduced the variable item, generated the PS Map, and recorded the number of unique

solutions.

In the second experiment, I kept the weight threshold constant and generated a PS Map

for several static item configurations. As in the first experiment, I recorded the number of

unique weight values in the static item set, added the variable item, generated the PS Map,

then recorded the number of unique solutions in the PS Map.

The results of the first experiment demonstrate that the number of unique solutions

per number of unique weights is approximately 1.02.

5.3 Scalability of Algorithms

The time complexity of the algorithms presented is polynomial in the size of the prob-

lem space and sample rate, as discussed in Section 3.8 and summarized in Table 3.1. The

overall complexity also depends on the complexity of generating a high-quality solution,
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FIG. 5.11: Various high-quality PS Maps of five-city TSPs. Totalnumber of unique solu-
tions varies from eight to eleven.

FIG. 5.12: Time required to solve TSP problems of various sizes.The average time to solve
400-city TSPs is less that required to solve 200-city TSPs.
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FIG. 5.13: Time required to solve knapsack problems of various sizes.

which is domain-specific. The largest challenge for algorithm scalability is thus managing

the size of the problem space as the problem domains grows in complexity. Parallelism, as

discussed in Section 6.2, is a potent mitigation approach.

In the TSP domain, each new location adds two dimensions to the problem space,

which quickly increases in size. As the problem space grows,algorithms that solve large

portions of the unsolved problem instances at once, rather than individual problem in-

stances, become more important. The solution border estimation (SBE) and the support

vector machine (SVM) algorithms attempt to find solutions tolarge regions of the space,

and thus could be viable when considering more complex problem domains. A similar eva-

lution would hold for knapsack problem, in which two dimensions – one for weight and one

for value – are added to the problem space with every new item that must be considered. In

the elevator domain, each new starting or destination location only adds one dimension to

the space, so it grows more slowly.
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In terms of space complexity, storing a solution for every problem instance in a simple

map would quickly become unwieldy. Initially, moving to a representation such as quad

trees, which represent regions of the space, would help. However, the best solution may

be to store models, such as those generated by the SVM and SBE algorithms, rather than

mappings from individual problem instances to solutions. Also the select from sampled

solutions (SSS) algorithm could be adapted to only store thesolutions it finds and then

match a problem instance to a solution at runtime, thereby trading off online reaction time

to save storage space.

As the problem size increases, another consideration is thenumber of samples re-

quired to reach a desired level of performance. Intuitively, it appears that the algorithms’

improvement resembles a sigmoid function: as the number of samples increase, the perfor-

mance slowly improves until the number of samples reaches a critical mass. At that point,

performance improve rapidly until the space is effectivelyrepresented, making additional

samples redundant, and performance levels off. However, I would imagine a high degree of

variability due to the stochastic nature of taking samples from a problem space. For exam-

ple, if a sample happens upon a key solution, or provides somekey information regarding

a solution border, then that specific sample could greatly improve the performance of that

instance of the algorithm. Thus it is possible that improvement could vary widely with

each sample, particularly in a problem domain in which solutions may have very different

utilities.



Chapter 6

CONCLUSION & FUTURE WORK

This dissertation introduced the concept ofplan space analysis(PSA), specifically

the use of Problem-Solution Maps to rapidly allow a system toadjust its plan when it en-

counters a change in the environment. Ideally, a system would have a library of plans for

numerous possible changes in the environment, thereby being able to select one at runtime,

rather than replanning from scratch or engaging in online repair. Chapter 3 provided ex-

amples of PS Maps, noted that a brute-force approach to creating a PS Map is not feasible,

and presented seven algorithms to approximate a PS Map. The chapter also presented a

complexity analysis of the algorithms. Chapter 4 described the traveling salesman problem

(TSP), knapsack problem, and elevator problem as test domains and presented the results

of approximating PS Maps within those domains. The results demonstrate that the utility

of the plans given by the approximated PS Map are frequently comparable to the utility

of the plans generated with online repair. Chapter 5 discussed approaches to determin-

ing the tradeoff between using PSA versus online repair, particularly when considering the

time available for PSA calculations. In addition to considering tradeoffs related to timing,

the chapter also detailed requirements for representing the problem instances within the

problem space. Namely,

• The problem space axes should be selected such that problem instances with identical

102
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solutions are adjacent.

• The solutions should be abstracted in order to create similar solutions, thus allowing

for homogeneous solution regions.

In the TSP, knapsack, and elevator domains, using the variable features of the prob-

lem instance as axes for the problem space was sufficient to create homogeneous solution

regions. However, one could imagine other domains in which there are homogeneous solu-

tion regions, but only with respect to a more complex function of the variable features, such

as with the example of the game described in Section 5.1. In that case, axes that considered

higher-level or derived features, such as whether the numbers rolled on the dice constitute

a pair or straight, would be much more useful than axes based on the numbers themselves.

Abstraction was not required for raw solutions to the TSP andknapsack problems.

However, the elevator domain did require abstraction and canonicalization for the solutions

to be appropriate for the algorithms.

Chapter 5 also described the tradeoff between expected performance and offline plan-

ning time based on examination of problem characteristics.

Some thoughts for extending this work follow.

6.1 Continuous Domains

All of the evaluation domains presented in Chapter 4 assume a discrete domain. For

example, all of the TSP city locations are at integer coordinates, and all of the knapsack

weights and values are whole numbers. To apply this work to a continuous domain, one

mechanism would be to choose a tolerable granularity, e.g.,three decimal places, and then

scale the representation of the domain accordingly, e.g., multiply all the values by103.

Thus, a TSP domain with a problem space of size 100 x 100 with a city location at 20.334
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would be scaled to a TSP domain with a105 x 105 problem space with a city location at

20334.

It is possible that this mechanism would not be adequate for adomain requiring a very

high degree of granularity, or one that requires a truly continuous representation. In this

case, it is not possible to complete the PS Map via enumeration over the unsolved problem

instances as done by the algorithms described in this dissertation. However, it would be

possible to adapt several algorithms to work in a continuousdomain.

One modification required of all the algorithms is specific tothe initial sampling step.

Each of these domains requires an initial sample, which has been expressed as a sample

rate. For a continuous domain in which there are infinite samples, it would be required

to express the initial sample as a raw number of samples. For aspecific application, this

number could be estimated by dividing the estimated available offline time by the time

required to solve a single problem instance.

The three SC-based algorithms – SC, SC+bias, and SC+AL – are not suited for a truly

continuous domain because they require explicit enumeration of each problem instance.

However, he following algorithms could be adapted to a trulycontinuous domain because

they can be adapted to either classify a set of solutions in a region which does not require

enumeration, or they can be applied at runtime when the specific problem instance becomes

known.

6.1.1 Select from Sampled Solutions (SSS)

The algorithm records the solutions found from solving a random sample of problem

instances in the problem space. The version described in thedissertation then assigns a

solution to each problem instance by evaluating the utilityof each of the recorded solutions.

A continuous variant of this algorithm would not create a full PS Map, instead merely

testing the runtime problem instance against the set of known solutions. This version of the
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algorithm would be a bit slower at runtime since it would haveto evaluate several solutions

instead of merely executing a look up in a table. However, this algorithm could require less

offline planning time because it would not create a complete PS Map.

6.1.2 Solution Border Estimation (SBE)

The SBE algorithm performs a pairwise comparison of each solution it discovers dur-

ing the initial sampling, and calculates where the solutionborders exist in the space. My

implementation of this is SBE-trace, which traverses the problem instance space to find two

adjacent problem instaces with differing solutions. In a continuous domain, the concept of

adjacency does not exist; however SBE-trace could still use abinary search to explore the

space between two solved problem instances that have differing solutions. It would stop

searching when it discovers problem instances that are within some nearness threshold that

have different solutions.

Perhaps a better approach would be to return to the idealizedSBE approach in which

the borders are calculated mathematically. I chose to use the SBE-trace approach because

the algebraic expressions resulting from equating the objective functions of the pairwise so-

lutions quickly became non-trivial. However, as numericaloptimization packages become

better, it is possible that this expressions could be solvedand the solution borders directly

calculated.

6.1.3 Support Vector Machine (SVM)

This algorithm uses the initial sampling of solved problem instances as a training set

to a support vector machine. The algorithm then uses the support vector machine to classify

the unsolved problem instances. Similar to the SSS modification, this algorithm could be

adapted to a continuous domain by not solving each problem instance offline, but rather

by applying the support vector machine model to the problem instance discovered during
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runtime.

6.1.4 Support Vector Machine + Solution Border Estimation (SVM+SBE)

The discrete version of this algorithm searches the problemspace for adjacent prob-

lem instances with differing solutions to add as training observations to the support vector

machine. The modification for a continuous domain uses the same modification described

for the SVM algorithm, and would preserve the model generated by training and apply

it during runtime instead of solving every problem instanceoffline. The SBE component

would still use the same binary search to find problem instances with differing problem

solutions that with within some nearless threshold.

6.2 Parallelization of PSA Algorithms

As domains become larger and computing resources become readily available, adapt-

ing the algorithms presented in this dissertation to a parallel computing environment is a

natural target for future work. The initial sampling step which is common to each of the

algorithms could be parallelized by dividing the planning space betweenk processors and

allocating totalsamples

k
samples to each processor. The centralized version of the algorithm

is a normally distributed random sample, and dividing the space in the manner will not

affect that. However, the probability of obtaining a skewedsample by chance would be

diminished by this stratification of the space.

Select from Sampled Solutions (SSS) is most readily parallelized. The planning space

can be divided between the available processors and a copy ofthe known solutions can be

provided to each. Each processor can then test its section ofthe planning space against each

solution and emit the best solution for each planning instance. The Support Vector Machine

(SVM) algorithm would likely have to include a centralized step where the support vector



107

machine is trained with the initial sample. Then, similar toSSS, a copy of the model could

be provided to each processor which would then classify a section of the unsolved problem

instances.

The basic Sampling-Classification (SC) algorithm can be parallelized by ensuring that

each processor has a copy of all the problem instances and solutions discovered by the

initial sampling. Then each processor can choose a set of unsolved problem instances on

which to run the nearest neighbor step. The Solution Border Estimation (SBE) algorithm

parallelization would also require that each processor receive a copy of the initial sampling,

but also an assigned set of solutions to do the pairwise border estimation. It is not clear

if the final step, collection all the border information, andsampling once in each region,

could be easily parallelized because determining the regions from all the borders appears

to be require all the border information to be in one location.

SC+bias, SC+Active Learning (SC+AL), and SVM+SBE are more difficult to par-

allelize because they utilize targeted sampling after the initial sample. At a minimum, a

shared memory that records the number of targeted samples utilized to enforce the cap on

total samples. Each of the proecessors would also require ancopy of the results of the ini-

tial sample. Then, similar to other parallizations, the problem space can be divided between

the processors to be classified by the respective algorithm.

6.3 Distributed Planning

Distributed planning in this sense is the problem of multiple independent agents work-

ing to solve a single problem. Many solutions to distributedplanning problems involve

agent negotiation resulting in agent-specific plans that contribute to accomplishing an over-

all task. This agent negotiation could involve calculationof agent-specific PS Maps. These

PS Maps could take into account potential changes in the environment and provide the miti-
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gation plan. This would result in a coordinated response to general environmental changes,

as all agents would alter their actions in a manner that is consistent with completing the

overall task, without the need for explicit communication.

Not specific to distributed planning, but an agent could use problem space analysis

to preference it towards situations in which there are less possible plans, resulting in less

volitile replanning. This would lessen the impact of a environment changes that could result

in multiple agents having to adjust their plans.

Finally, one could consider the PSA as a means to mitigate potential faults in an agent.

Particularly when there is limited communication, it may beuseful to represent the actions

of peer agents as environmental uncertainty. PSA techniques could thus be used to help an

agent anticipate and plan for the potential unexpected actions of other agents.

6.4 Risk Assessment and Mitgation

PS Maps give a view of how frequently alternate plans occur within a range of variable

attributes that are found in the scope of possible environment changes. Particularly in cases

in which the alternate plan is very different from the current plan, this could be valuable

for allowing a system to prepare for switching to that plan. APS Map could also assist in

identifying enviroment changes that are more likely to trigger the need for an alternative

plan. If there are resources available to mitigate that change, then this information would

allow them to be deployed most appropriately. For example, if a PS Map were to demon-

strate that modifying a TSP route to accomodate new locationA is more disruptive than

accomodating new location B, then steps could be taken the prevent the need for location

A, or to acquire additional information about the possibility of location A, and perhaps

determine that preparing for that possibility is not necessary.

Another use of a PS Map would be to determine specific attributes in which a change
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is likely to cause trigger a new plan. One could observe alonga specific axis of the PS Map

to determine the number of plans that occur in that dimension, as well of the ranges of that

attribute for which specific plans occur. Returning to the TSPexample, if the x-axis of the

PS Map has more unique plans than the y-axis, one could surmise that changes in location

along the x-axis are risker to the stability of the current system plan. Similarly, one could

also compare the range of x values for which these new plans occur. If a specific plans tend

to occupy a large range of values in a dimension, rather than asmaller range of values, then

one could characterize the environment in which the system is operating as less volitile.

6.5 Suboptimal Plans

The PS Map map assists in plan library creation by showing theminimum number

of solutions required for optimal competency across the problem space. In the case of a

5-city DTSP map, as few as only eight solutions are required,representing fewer than 7%

of the 120 (5!) possible solutions. However, for large problems, storing even 7% of the

possible solutions may not be feasible. One alternate approach is to accept suboptimal

solutions in the library, particularly when one suboptimalplan may replace multiple one or

more optimal plans. In this case, this map gives hints about regions in which tolerating a

suboptimal plan over a large region, in place of several plans from smaller regions, may be

beneficial in reducing the number of plans in the library.

6.6 Automated Plan Abstraction

Srivastava et al. (2008)’s work describes the process of transforming a plan specific to

a single problem instance into a generalized plan that is applicable to more than one prob-

lem instance. This is similar to the transformation done within the elevator domain testing,

although Srivastava et al. present a general approach in which operation preconditions are
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examined, thus formalizing the conditions that can be generalized. This approach would

be likely be applicable when applying my work to additional planning domains. Within the

elevator domain, my approach was to transform steps such as

move elevator slow0-0 to floor 2

board passenger p1 into elevator slow0-0

to

elevator slow0-0 picks up passenger p1

This allows the plan to be valid for any passenger location within elevator slow0-0’s range.

Srivastava et al.’s abstractions would include this level of transformation, and might also

consider a further generalization such as

elevator slow0-0 picks up a passenger within range

or even introduce loops such as

for each passenger p within range

elevator slow0-0 picks up passenger p

The primary result would be to create similar solutions, forwhich the appropriate

axes could create homogeneous solution regions. This wouldalso assist with reducing the

number of plans to store in the library.

6.7 Analysis of Problem Configuration and Sample Rate

As mentioned in Chapter 5, the ability to estimate the configuration of the solution

region would be helpful in determining the appropriate sample rate to increase the effec-

tiveness of the approximation algorithms. Future work could entail finding a correlation

between problem domain configuration and the sample rate that should be targeted for a

good approximation.
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6.8 Sampling-based Motion Planning

In robot motion planning, one way to reduce the computational complexity of path

planning is to represent the area of operations as a set of discrete cells and points, called

C-space. Sampling the operations area will provide a subset of the obstacles that the plan

must have the robot avoid, effectively creating a plan with relaxed constraints. A plan that

is not feasible with the relaxed constraints can be discarded, and plans that are feasible can

be further refined.

The sampling in my algorithms is across full problem instances; the sampling in

sampling-based planning is across the constraints of a domain, thus always generating a

partially defined problem instance. This approach would be equivalent to adding an addi-

tional index to the solution space that represented the constraint. Because the obstacles are

simply binary – either the plan will consider the obstacle orit will not – it may be more

efficient to use sampling-based planning to sample the2n binary combinations rather than

addingn additional dimensions. This would support rapid replanning in cases in which an

obstacle appears or disappears during the course of plan execution.

6.9 NASA

Smith (2012) describes a challenge that the Mars Rover scientific team faces in which

they must decide on a set of goals for a planner to consider. There are many constraints

to consider that would make for a challenging planning problem; however, the key issue is

that the scientists do not have a way to evaluate the tradeoffs between the goals they may

consider. Smith proposes a solution in which scientists areable to consider a variety of

plans from which they could get a sense of what goal combinations are feasible. My work

could be suitable for this initial need. However, the secondneed that Smith describes is

plan explanation, in which scientists could ask why one goalis included in the plan and
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not another, as well as what-if questions that allow them to explore tradeoffs between their

goals.

A PS Map for a planning domain shows the set of solutions available for a set of po-

tential changes in the problem space. An interesting extension may be a PS Map that gives

information about the set of solutions two steps removed from the current environment.

In principle, this could be accomplished by adding axes to the problem space representing

all two-hop changes, similar to a TSP PS Map that considers more than one new location.

However, in more traditional planning domain, it may be possible to exploit the temporal

relationship between two-hop changes to create the map moreefficiently.

6.10 Solver Validation

In addition to library generation, the SBE techniques suggest a mathematical frame-

work that proves the solution similarity of groups of problem instances. When comparing

approximate maps to the high-quality maps, I found instances of solution variety in re-

gions of the problem space that the SBE technique indicated should be homogeneous. This

led me to develop a “smoothing” technique in which I run SSS over specific groups of

instances to increase the accuracy of the high-quality maps. This approach could also be

used to compensate for the flaws inherent to a heuristic solver based on search. Future work

could examine confirming the solution of a given problem intance by also solving problem

instances that are similar to it and returning the best solution. How to best mutate the given

problem instance to maximize the chance of finding a better solution may be an interesting

research question.
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Configuration Unsmoothed Smoothed
M=24, N=4, 6 slow, 3 fast,
3 variable

1072 506

M=24, N=6, 4 slow, 0 fast,
3 variable

590 198

Table 6.1: Effect on smoothing on PS Maps created by a heuristic solver. “Configuration”
refers the elevator domain’s M and N parameters, the total number of elevators, and the
number of passengers with variable starting positions. “Unsmoothed” and “smoothed” is
the number of unique solutions prior to and after smoothing.

6.11 Concluding Thoughts

The challenge of rapidly finding good solutions to complex problems is a theme com-

mon to many projects in my workplace. During the course of this work, I have been happy

to discover numerous potential applications for some of theideas presented here. I find my-

self particularly interested in related problems within the Smart Grid and energy manage-

ment, and hope to explore solutions to problems in that domain. I hope that the approaches

I have developed here may be of some use or inspiration to others encountering these types

of problems.
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