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ABSTRACT
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Disruptors
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Thesis directed by: Dr. Marie desJardins, Professor and
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Electrical Engineering

Computing solutions to intractable planning problems igipalarly problematic in
dynamic, real-time domains. For example, visitation plagrproblems, such as a deliv-
ery truck that must deliver packages to various locatioas, lse mapped to a Traveling
Salesman Problem (TSP). The TSP is an NP-complete probésmiring planners to use
heuristics to find solutions to any significantly large peshlinstance, and can require a sig-
nificant amount of time. Planners that solve the dynamicavdyithe Dynamic Traveling
Salesman Problem (DTSP), calculate an efficient route tbavget of potentially changing
locations (Psaratftis, 1988). When a new location becomes&nd TSP planners typically
use heuristics to add the new locations to the previouslypeed route. Depending on the
placement and quantity of these new locations, the effigiehthis adapted, approximated
solution can vary significantly (Psaraftis, 1995; Lapottale 2000; Larsen, 2000). Solv-
ing a DTSP in real time thus requires choosing between a T&khpt, which produces a
relatively good but slowly generated solution, and a DTSthpér, which produces a less
optimal solution relatively quickly.

Instead of quickly generating approximate solutions owktagenerating better so-
lutions at runtime, this dissertation introduces an aliegrapproach of precomputing a

library of high-quality solutiongrior to runtime. One could imagine a library containing



a high-quality solution for every potential problem instarconsisting of potential new lo-
cations, but this approach obviously does not scale witheaming problem complexity.
Because complex domains preclude creating a comprehensigey) | instead choose a
subset of all possible plans to include. Strategic planctiele will ensure that the library
contains appropriate plans for future scenarios.

Experimental results demonstrate that plan quality coaigarto online repair can
be achieved by calculating solutions for a sample of thenii@leproblem instances. |
present novel algorithms that use the sampled solutionsdodipproximate solutions to
other problem instances by exploiting structure in the temtuspace. For domains with
solution spaces that do not contain sufficient structurdolrsthat applying abstraction,
normalization, and reindexing operations to the solutaarscreate the necessary structure.
For the domains tested, the algorithms generated full jbaarles containing solutions as
good or better than online repair by calculating solutianag few as 0.2% of the potential
problem instances.

This dissertation thus contributes (1) a representatiaméwork to reason about the
structure of solution spaces, (2) novel algorithms to exgloucture in the solution space
in order to generate plan libraries, (3) techniques to foansthe structure of the solution
space to facilitate the use of the algorithms, and (4) anueti@n of the algorithms in

several test domains.
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Chapter 1

INTRODUCTION & MOTIVATION

The ability of a planning system to quickly adapt to envir@mtal changes is critical
in time-constrained domains. Online, heuristic plan repgproaches are sufficient for
small changes in the environment; however, repeated a tdrgnges can cause plan qual-
ity to degrade. | present an approach that uses availabilesdfiine to analyze the space of
potential changes in the environment and creates a mappingbn problem instances and
solutions for use during runtime. | show that this approdldwa a system to rapidly adapt
to changes, while yielding plan quality that is comparablgaditional online approaches.

The motivation for this work stems from the common theme antered in the course
of my work in several domains including shipboard computiegource management,
mine-like object visitation, and mobile sensor schedulifigpe shipboard computing re-
source management task is to allocate computing resourcerstical ship processes to
support overall ship function. However, if a negative evergacts the ship, then a signifi-
cant number of the computing resources can suddenly becoavailable. In this case, the
system must quickly reallocate the remaining computingueses to the critical processes
such that overall ship function remains viable.

In the mine-like object (MLO) visitation domain, one or mai@ips must visit all of

the MLOs in a region to determine if the object is actually aendor some other innocuous
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artifact. Ideally, this would be done as quickly as possiblerder to certify the region
as safe for travel. During the course of visiting the known®4, a new MLO may be
detected by a satellite or other means. In this case, thesadfithe ships in the region must
be recalculated to incorporate this new location.

The mobile sensor scheduling problem is similar to the ML@dm except that, one,
the mobile sensor only has to pass close enough to a locaticeceive of sample of its
broadcasts, and, two, it must sample the broadcasts withenoo more time windows.
In this problem, similar to the MLO domain, new locations aimde windows can be
introduced and must be incorporated into the schedule ¢f saasor.

In all of these domains, it is useful to maintain a high qyatitan, even when the
requirements of the problem change. The range of changeatyjpioccurs on a small
number of dimensions, and arrives slowly enough such thpdameing does not have to
take into account a large number of changes. Thus, the expets in this domain tend to
reflect that bias. However, future work does discuss how pipeaaches proposed in the

dissertation would scale to larger problems.

1.1 Planning

Planning is the branch of artificial intelligence concermeth efficiently generating
sequences of actions, i.@lans to achieve goals. Typically, a planning domain consists
of a set of states, described by state variables; a set dablaiactions, described by
their effects on state variables; and one or more goal stAtptanning problem defines a
starting state, and the task of the planner is to find a settiofrecthat transform the starting
state into a goal state. Depending on the complexity of telpm, finding any feasible
plan may be satisfactory; in other cases, finding the legstresive plan in terms of length

or some total action cost is desired.
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Planning for environments in which the planner has a liméstbunt of time to pro-
duce a plan is calletime-constrained planningrhis type of planning applies to situations
in which the usefulness, attility, of a plan degrades over time. Typically, a tradeoff exists
between spending more time searching the space for a b&tteapd quickly deciding on
a plan that may have lower utility. When some prior plan alyeaxists, the planner can
either repair the current plan, which is typically fastarreplan, which typically yields
better utility.

| will use the traveling salesman problem (TSP) planningfam as a reference prob-
lem throughout much of this dissertation. The TSP requiresleer to find the shortest
route that visits a given set of locations. This is a classkedémplete problem that has
been studied widely in computer science. In the basic pnophldl of the locations are
static. The dynamic variant, the DTSP, allows locationseadriroduced to the planner

after execution begins.

1.2 Overview of Problem Space Approximation

Instead of computing approximate solutions at runtime, ppreach is to precompute
a library of high-quality solutionprior to runtime. In the case of DTSP, one could imagine
a library containing a high-qualitysolution for every possible combination of potential
new destinations. Obviously, as the scale of the planninglpm increases, the level of
complexity precludes creating a comprehensive libraryingoractice a library can only
contain a subset of all possible plans. Therefore, | alsoduce methods to ensure that
the library contains appropriate plans for use when thertenenvironment changes.

An understanding of the problem space characteristics eaiséd to choose the plan-

1“High-quality” refers to the plan generated by an offline fistic solver. Since a heuristic solver creates
an approximate solution, the result cannot be assumed tptbeal. Thus, | describe the resulting solutions
as “high-quality” rather than optimal, ideal, or exact.
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ning scenarios for which to generate solutions. In paricutentifying regions of prob-
lem instances with identical solutions allows for the eéfidi creation of a mapping from
problem instances to solutions, calledPeblem-Solution MagPS Map). A PS Map is
a component oproblem space analysi®SA), which allows a system to make informed
decisions about which solutions to include in the library.

Problem instances contain characteristics that are whntalledstatic characteris-
tics, and characteristics that differ between them wheable featuresthat lead to differ-
ences in the problem instance solutions. The PS Map repeeadibrary of solutions for
problem instances, indexed by the variable features oféhefgproblem instances. This
map provides a mapping from a problem instance to its selusbowing the changes in
the solutions as a function of the variable features withie problem instances. | will

discuss several techniques to efficiently build this map.

1.3 Summary of Contributions

This dissertation contributes an approach to real-timarpfay that leverages offline
time to generate a plan library. Chapter 3 introduces theeagtnaf a Problem-Solution
(PS) Map, and describes several novel approximation aphesain order to create the
plan library. | note how the solution spaces of a domain cam llemogeneous regions
that can be exploited to efficiently find solutions to a largenber of problem instances.
The most promising algorithms are those that are able tckiyimd the borders of the
solutions regions.

| then demonstrate this approach’s applicability to midtipomains through experi-
ments in Chapter 4. These experiments illustrate that goptbapnate PS Maps can be
obtained from a small number of samples in the problem sphatso demonstrate how

creating abstract solutions allows these algorithms totitizad in a domain in which the



solutions do not form homogeneous regions.

This dissertation also briefly examines practical tradeb#tween online and offline
planning time in Chapter 5. This includes some timing resatis thoughts on choosing a
sample rate and the appropriate algorithm. This chapterraissits the issue of irregular
solutions spaces, and discusses reindexing a solutioe sysa& technique to facilitate the
use of PS Map approximation algorithms.

Finally, Chapter 6 suggests extensions to this work and odeslthe dissertation.



Chapter 2

BACKGROUND & RELATED WORK

My work primarily focuses on developing a plan library fotdte use as the plan-
ning environment changes. Related work for two plan reusgegfiesuniversal planning
andcase-based reasoningre presented below. | then present two alternativespoori
planning. Robust planningechniques generate plans that may be viable even when the
environment change®lan repairattempts to modify an existing plan during execution in
response to changes in the environment.

| then discuss several works that leverage domain spacelangpace information.
The final sections in this chapter present related work instémapling and classification

literature.

2.1 Plan Reuse & Plan Caching

Building a plan library is similar to the general notion of pleaching and plan reuse.
The concept of plan caching in anticipation of future usevident in backbone planning,
where partial plans are precomputed; case-based reas@BR), where previously ex-
ecuted plans are stored; and universal planning, where letenplans are precomputed.
In this section I'll briefly discuss universal planning arake-based reasoning. Backbone

planning is addressed in Section 2.4.



2.1.1 Universal Planning

Universal planners, also called reactive planners, préeety store plans in order
to react quickly to new information. One classic approac8dboppers’ universal plans
(Schoppers, 1987, 1989, 1994; Chapman, 1989), in which &@olio every possible sit-
uation is stored in a plan library. The drawback of this tegha is the sheer number of
states that must be considered (Ginsberg, 1989b,a; Joasdd#ckstbm, 1996). Jonsson
and Backstom (1996) formally bound the size of a universal plan libriamygeneral plan-
ning problems. They conclude thative universal planning is not feasible, but the advan-
tage of reactive planning in dynamic environments makeeajon of efficient universal
planning for specific applications worthwhile. My work attpts to provide exactly this

capability.

2.1.2 Case-Based Reasoning

Identifying the minimal solution set required to achievenptent coverage of a prob-
lem space is well studied in the case-based reasoning (CBRjtlite. Typically, a CBR
system will encounter a problem and store the solution farreuuse. CBR is normally
used in domains with discrete representations, althoughgmot always the case (Ram
and Santamaai 1997). In most cases, CBR does not truly pre-plan; ratHexf a$ stored
solutions are generated during runtime. Conversely, tla¢esfies in this dissertation seek
to generate its store of solutions prior to runtime. Stil, rasearch does borrow from work
in this field.

Smyth and McKenna (2001) measure the competence of a libyanpw well it cov-
ers the problem space. Smyth and McKenna rely on a “Solvesdigate to determine
whether a solution is suitable for a problem instance (“tas€BR vernacular), and uses

this information to evaluate the library’s competence.slgriocess can also be used to re-
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duce the library size by removing redundant cases. My wosknslar in that it seeks to
determine a library’s competence, but differs in the medpplied. | proactively generate
solutions that cover the complete problem space, whereas @iéally only stores solu-
tions to problems encountered during runtime. In order smeiate an unsolved problem
instance with a solution, both our works may use a k-nearaghbor approach. Interest-
ingly, Massie et al. (2003) empirically demonstrate thay®nand McKenna’s model does
not adequately predict a library’s competence.

The McSherry (2000) coverage model attempts to expliciilyneerate the set of prob-
lems that a solution set can solve. As Smyth and McKenna tlugetype of brute force
approach is not scalable to most CBR systems. My approaclesraaepresentation simi-
lar to McSherry’'s model, but attempts to resolve the schtglohallenge by using approx-
imations.

As an alternative to traditional case-based retrieval, Me&'s later work (McSh-
erry, 2003) suggests a scheme in which cases beyond thosernchy a traditional nearest
neighbor approach are considered. Within this scheme, mmnipes are suggested to a
user based upon a more nuanced representation of the problesar preferences. McSh-
erry’s system does not require an exact match of the usesfengnces, and is guided by
policies such amore-is-betterless-is-betteror nearer-is-better Additionally, the scheme
will offer solutions that may violate the constraints, blat offer higher utility in other

dimensions.

2.2 Planning Robust Solutions

The approaches in the previous section address adaptinget@rtvironment by
caching multiple plans.Conditional planningis another approach to planning within

changing environments in which a plan contains steps thpémte on the environment



9
state. For example, a plan may dictate “if the left turn sigmgreen, then turn, otherwise
go straight.” Contingency planninglso uses branches, but only in the case of failures.
In one implementation of a conditional planner, Onder antiaBlo (1996) identify the
contingencies to plan for by calculating an expeateitility for an action that fails. Their
planner chooses the actions with the highest disutilitygamerates a plan from a hypothet-
ical state in which the action fails. Onder and Pollack deficions and their probabilistic
effects as branches. For example, consider a factory teptqresses parts for painting. If
the part is not processed properly, then there is a 5% chaatéhe painted part will have
a blemish. If the PAINT action is invoked from a state whera# s not processed, it will
have two branches: one representing the transition to @ sfat painted part with blem-
ishes, and the other representing the state of the partutiidemishes. To start, Onder and
Pollack create a skeletal plan in a STRIPS-like manner, withegard for contingencies.
After completing the plan, the planner searches the treleifiirmeasures afisutility, such
as that represented by the existence of a blemished parthargan is refined by adding
actions that would resolve the effects of the failed PAINTiat

The limitations of Onder and Pollack’s research includerteéed to enumerate all of
the effects and contingencies related to actions. In a largentinuous domain, the effects
or contingencies will be numerous or infinite. Additionatlyis research is limited to plans
that can be divided into hierarchical goals. Both Onder arlth€ids and my approaches
generate contingencies for future adaptation needs. Hawew work is intended to ad-
dress a comprehensive set of changes instead of only pngdaria subset. Additionally,
my work does not require enumeration of action effects, besdequire some knowledge
of the possible values of each state variable.

Burns et al. (2012) introducenline continual planning problem®CPPs), in which
a planner continually receives new goals that it must graariwhile executing its current

plans. This situation is representative of domains suclsisgWAV'S to monitor a region;
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because the environment continually changes, the regimves successfully "monitored.”
Rather, success is the ability to continually respond to #ve requirements within a suit-
able amount of time. They introdueaticipatory online planningin which they consider
future changes to the environment in their current plann8igilar to my approach, they
sample from the set of possible environmental changes. Aawidey do assume a known
probability distribution for these changes. Also, theyarporate this information into the
current plan in order to either resolve the goal or stratdlyigplace the system in a state
that facilitates resolving the goal. This method is didtinem my approach, which always
generates plans that are specifically tailored for the godle new environment. Also, the
plans that | generate are stored as separate plans in g Irather than being incorporated
into an existing plan.

Conrad et al. (2009) describe an approach to planning in dgnamvironments
through building options into a high-level plan, thus allogva planner to choose the best
option during runtime. However, deciding between the ob®ican result in a significant
time cost. This can be mitigated by generating the choicBmef storing the choices
efficiently by recording a baseline plan, and then repraésgraidditional plans as differ-
ences from the baseline plan. This allows more rapid travefplans during the selection

process.

2.3 Plan Repair & Replanning

My dissertation proposes algorithms that efficiently preapate a set of plans to mit-
igate changes in a planner’s environment. The major alteet my approach is replan-
ning through plan repair. Typically, a planner employing thicheme will execute a plan
until the environment changes, effectively creating a nesblem instance. It will then

modify, orrepair, the existing plan until it is applicable to the new problarmetance. This
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process is generally faster than creating a new plan froatdgrwith the tradeoff that the
repaired plan may not be as good as a plan generated by a ¢cemgpéan.

One example of a plan repair system is thee & planner (Logan and Poli, 1997),
which starts with a complete plan and creates new plans ghrgarious deforming oper-
ations. In this way, the planner finds a suitable plan by $@agahrough a solution space
as opposed to a state space. This is closely related to ptasnhemes that employ plan
repair techniques as their primary mechanism.

A domain-independent solution by van der Krogt and de We@@dd5) presents a
framework that intends to encompass a variety of plan regdgorithms. They describe
plan repair as consisting of removing actions from the aagplan that conflict with or
impede achieving the new goal during therefinemenstage. Unrefinement is followed
by the refinementstage, in which actions are added to the original plan tHatait to
achieve the new goal. The framework thus implements plaaireg a process alternating
between unrefinement and refinement until a solution catelsisfies the problem re-
guirements. The online repair baseline for the final testalornm this dissertation follows

this framework.

2.4 Domain and State Space Analysis

Several related works leverage plan or problem space asaty§ind critical partial
plans for future use. These planners take advantage ofatbasdics that are specific to a
domain or problem type. Bulka and desJardins describe legafaatures of a plan space to
find a “backbone” common to a set of problem instances to usepastial initial solution
for planning (Bulka, 2006; Bulka and desJardins, 2008). Ireotdases, robots can learn
critical components of plans as “skills” that may be applieduture plans (Konidaris,

2008; Konidaris and Barto, 2008). These works and my apprbacé similarities, but my
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approach focuses on storing complete plans rather thaialgalens.

Hoffmann (2001) characterizes the topology of the planrspgces of benchmark
planning problems to gain a measure of their difficulty. Foaraple, a large number of
states representing local minima may represent an easielepn, while a large number of
states on local plateaus with few exit states (“benchesd)large number of dead ends rep-
resents a difficult problem. This work demonstrates theiozahip between the planning
space characteristics and the success of the selectedtieeuri

The hill-climbing algorithm takes advantage of the fredlyecontinuous surface rep-
resenting solution utility as a function of a specific prabl@stance. By slightly modifying
the solution, the algorithm can determine the gradient@hili and search in the proper di-
rection for better solutions. The “restart hill-climbingpproach executes the hill-climbing
algorithm for multiple starting solutions in order to inase the change of finding a glob-
ally optimal solution. Otherwise, the algorithm risks Itmg its search to a locally optimal
region.

The theme of characterization of a space of problem or swistihrough a small set of
samples is echoed in several works. Boyan and Moore (208@gealgorithm augments
the traditional restart hillclimbing algorithm by usingstéts from multiple iterations of
restart hillclimbing to estimate the relationship betwé®nstarting state and the quality of
the final state, as measured by an objective function. Invalg Stage can estimate the
initial state that is most likely to optimize the objectiventtion.

Stage varies the initial state to map the relationship betwbe starting state and the
final state within a single problem instance. By contrast, pyraach varies the problem
instance to map the relationship between a problem ins@amt@ problem solution within
a set of problem instances. Thus, my approach is more ansdgdBoyan and Moore’s
brief description of theiX-Stagealgorithm, which explores how information from one

problem instance can be applied to other instances. X-Sisggthe Stage feedback from
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multiple previously solved instances as the input to a gptimechanism that informs the
starting state for unsolved problem instances. Boyan and®&®weoting approach parallels
my SC-based algorithms. In their case, the results were miketoth experiments, the
X-Stage algorithm approached the solution more rapidly Btage, but in one experiment,
the solution achieved by X-Stage was inferior to that ackddyy Stage.

Gopal and Starkschall (2002) use plan space visualizatiguickly compare tumor
treatment plans. A plan consists of a vector trajectory ew@ch to apply radiation. Be-
cause a trajectory will generally pass through both hedidgue and tumor, plans that
minimize healthy tissue’s exposure and maximize the tusnexposure are preferred. To
assist physicians with choosing a treatment plan, the tsfigcmultiple plans are calcu-
lated and plotted into an n-dimensional plan space with eeq@®senting the effect on the
various organs. Their work is similar to mine in terms of ixitg of plans. However,
my work indexes plans by the characteristics of the problemdysolved, whereas Gopal
and Starkschall’s work indexes plans by characteristite@plan. Additionally, any visu-
alizations generated by my work are tangential artifacteene@as Gopal and Starkschall’s
visualizations are intended as the primary product. A rdextension of their work would
be to infer the utility of plans not explicitly addressed bwir solver, similar to my moti-
vations. The authors present some initial thoughts aboué mapidly populating the plan
space with better automation of the calculations, but docoasider inferring plan char-
acteristics. Given the critical nature of their domain, lexy performing calculations is
likely the more appropriate approach.

The TIM domain analyzer, used within the STAN4 planner (Fad &ong, 2001),
recognizes subproblems characteristic of path-plannimgsmurce management problems
and routes them to the FORPLAN planner, a planner optimizethfise domains. Other
subproblems are sent to the domain-generic STAN3 planrers,TFox and Long decom-

pose a planning problem into subproblems that map to donf@ighich domain-specific
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algorithms can be utilized. One aspect of this dissertatisnggested future work is to
decompose a homogeneous planning problem in a generabfashatching the problem
instance to an appropriate algorithm chosen from a set ofrugt

Domshla et al. (2010) seek to optimize the use of multipleiisgas in search. Their
goal is to optimize the tradeoff between spending too muoke talculating heuristics for
states that will be expanded, regardless of the resultsusespending too little time cal-
culating heuristics and wasting time expanding statesdbatot contribute to the optimal
solution. They introduce a map of the state space showingléa heuristic to employ at
each state. Their goal is to learn the map by taking samples tine state space as input to
a Bayes net, thus identifying the relative accuracy of theibgcs as a function of the lo-
cation in the search space. During search, the heuristioisan by computing the tradeoff
between each heuristic’s computation time and expectattacg This approach achieves
better results than the use of either individual heurisfibeir approach is analogous to
mine in that they explicitly define an ideal map that theyrafteto approximate through

sampling and classification.

2.5 Classification

As | will show in subsequent chapters, the majority of theodatbms | present in
my dissertation consist of an initial sampling of the sauntspace, followed by classifica-
tion techniques to assign solutions to problem instancassukh, it is relevant to present
classification and sampling techniques in this and theviollg section. The classification
techniques used in my algorithms are based upon k-neargstboe (KNN) and support
vector machines (SVM).

K-nearest neighbor (Cover and Hart, 1967) is a simple appréaclassification in

which a data point is classified by surveying the classificatf its k nearest neighbors.
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The data point is then classified based on the plurality vbtieeoclassifications.
A support vector machine (Cortes and Vapnik, 1995) uses arplgree to divide a
space such that distance between the hyperplane and pbuiiffeang classifications is
maximized. Newer techniques allow for non-linear divisimynusing the “kernel trick,” in

which a space is transformed to make a linear division of flaes possible.

2.6 Sampling Techniques

My research relies on an initial sampling of the planningcgpia seed the subsequent
classification. The classification is thus dependent on pkathat adequately represents
the planning space. The primary sampling techniques — rarsgonpling and active learn-
ing — are described below, along with several related adtem

Active learning(Settles, 2010) techniques iteratively refine an interpaaby ac-
quiring additional information after each completed iptdation. One approach for clas-
sification, minimum marginal hyperplaneequests information about points close to the
hyperplane that a support vector machine would construct.

Maximum curiosityis an alternate approach that tests each unknown data paatt
which would be most beneficial to increase accuracy. To doatelarge number of data
points, such a technique would have to choose a subset obthis po consider.

Several sampling techniques stem from the experimentame®main. Validating
complex systems or models by exhaustive testing is notbkadue to the large number
of variable combinations. However, Latin hypercube sangpl(LHS) can identify crit-
ical combinations of variables for testing. Nearly orthongbLatin hypercube sampling
(NOLHS) (Cioppa, 2002) is an extension that, at high dimarsioesults in a lower av-
erage distance between sample points and is computatidaa#i costly. Early compo-

nents of this dissertation considered adapting these ipodsi to problem space sampling
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(Holder, 2008). As a basis for initial sampling, schemesebdasn hypercube sampling
(McKay et al., 2000; Ye et al., 1998; Cioppa, 2002) or stratiBampling variants (McKay
et al., 2000; Kwok et al., 2006) are relevant. Following atiahsample, a biased sampling
scheme like exponential sampling (Holder et al., 2006), imiclv samples become closer
to each other in a geometric progression as they get closetatget location, would assist
with more thoroughly exploring areas of interest.

Instead of calculating the complete set of samples at orne timother approach is to
start from a single point and stochastically expand. Ramgploring Random Trees (RRT)
explore a space by branching out from an initial locatiorthvai bias towards unexplored
subregions. Unmodified, an RRT explores a space in a uniforrmara However, work
such as bi-directional RRT (LaValle and Kuffner, 2001), Rapikploring Evolutionary
Trees (RET) (Martin et al., 2007), Extended Rapidly explorikgndom Trees (ERRT)
(Bruce and Veloso, 2002), and other variants (Zucker et @022Ferguson et al., 2006)
demonstrate biasing the tree growth towards areas of stteneen in a potentially changing

environment.



Chapter 3

PROBLEM SPACE ANALYSIS

| use the termproblem space analyai@SA) to describe methods that attempt to
estimate the solutions for a large number of problem ingsrny analyzing patterns of
solutions of a small number of problem instances. In manyaios) problem instances
that are adjacent when indexed by theriable featuregend to have the same or similar
solutions. This chapter describes seven PSA algorithmgléor adaptation and presents a
complexity analysis in the final section.

A graphical rendering of a Problem Solution (PS) Map for acdetmall Traveling
Salesman Problems (TSPs) is shown in Figure 3.1. The stai@acteristics are the x- and
y-coordinates of four destinations that are common to &llgiroblem instances (i.e., that
the initial plan solution uses), plus the location of thetsththe path (at the central solid
circle). The coordinates of the destinations are (10,21),30), (5,35), and (35,25). The
variable features of the problem instances arerthady coordinates of a fifth destination,
that could be added to the route as a dynamic change thatesqulan adaptation. The
ranges of these latter features — th@ndy coordinates of the added fifth destination —
are represented by the axes of the PS Map. At each locatidve imap, the shortest route
for the new five-city problem is generated as the solutiomaly, each unique solution,

consisting of a sequence of city identifiers, is assigned@r @nd plotted. For example,

17
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FiG. 3.1: Problem-Solution Map for a 5-city TSP. Hollow circlepresent the locations of
the four static city locations, and the axes representthedy coordinates of possible lo-
cations of the fifth city. The map shows eight unique highhtyigolutions for all possible
problem instances at the given granularity. (Best viewealarg
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FiG. 3.2: Problem-Solution Map for knapsack problem. Axeseepnt the possible weight

and value characteristics of one additional item that themér may add to the knapsack.
The map shows 11 unique high-quality solutions for all gassproblem instances, for

objects in the integral weight and value range [1,100]. (Besved in color.)
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(20,10) represents a problem instance in which the fifthisitpcated at (20,10), and has
a shortest path solution of 0-5-1-3-2-4. Proceeding in fdwshion results in a mapping
between each DTSP problem instance and the solution reypiregéhe shortest route.

As another example, a PS Map for a set of 0-1 Knapsack Probkemhspicted in
Figure 3.2. The knapsack problem requires the solver toisketen a set of available items,
each with a value and a weight, such that the total value wisteelected is maximized and
the total weight is below a threshold. Intuitively, one watite contents of knapsack to be
as valuable as possible while not being too heavy to carrg OFfh variant specifies that
a maximum of one instance of each item may be selected. Thigldrepresents the
problem domain in which a solver has already selected froat afstems and encounters
a new item to consider adding to the knapsack, potentiaflgldcing a current item. Each
problem instance’s static characteristics is a set of 283teeach with a weight and value;
this is analogous to the TSP’s fixed city locations. The pobinstances have two variable
features, consisting of the weight and value of the new itghich are used as the axes of
the PS Map; this is analogous theandy coordinates of the additional destination in the
TSP. The solution at any point in the map is the set of itemsehdy the solver where the
pool of available items consists of the 22 static items ghestew item that has weight and
value as represented by the coordinate location within S\&1Rp.

The dimensions of the PS Maps are represented as ordinalimsmich requires
the ability to enumerate the values of each dimension. Rigrproblems containing di-
mensions with discrete domains must define an ordering ofahes and nearness metric
that defines how “close” any two values are. For example, &ftaimension with do-
main {red, green, blupmust define a strict ordering and nearness metric in ordeeto b
used by the algorithms described here. Dimensions camgisfireal values must define a
granularity to be used within the algorithms.

There is also an implicit assumption that similar problestamces have similar solu-
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tions when indexed by the problem characteristics. If tesuanption holds, then problem
instances with similar solutions will appear in homogersgegroups within the PS Map,
which is the feature that these algorithms exploit. In treedhat a domain does not adhere
to this assumption, there are methods, analogous to the Sarivektrick, that may allow
for my algorithms to be applied. These ideas are discuss€tapter 6 as future work.

As previously mentioned, it is impractical to generate ankggality PS Map through
brute-force mechanisms. For example, finding a high-quidéap for a problem space with
four fixed and one variable city, consisting of 12,000 prabiestances, can be generated in
less than a second with my current implementation on a @@ds standard laptopHow-
ever, the PS Map for the same problem with two variable ciéeglires solving 12,060
problem instances, which would take approximately thraeg$ito complete. Adding more
dimensions of variability increases the size of the PS Maggegntially? Since real-world
problems can have many more dimensions and problem instahaa in these experi-
ments, it is imperative to develop efficient approaches ffeating approximate PS Maps.

| present seven novel techniques for creating PS Map appeatians. These tech-
niques were conceived in somewhat linear fashion, suchstitzgequent algorithms take
advantage of insights gleaned from the results of priorrélgos. All seven methods begin
with generating high-quality solutions to a random sampleroblem instances, computed
using heuristic search. Treampling-classificatioffSC) andsampling-classification with
bias (SC+bias) techniques use the solved problems and theii@wuds a training set to
classify new problem instances into one of the solutionsadiered during the initial sam-
pling. The former uses random selection to select the It@blem instances for solving.

This is the simplest algorithm and was the first attempt tadedéd the plausibility of the

LASUS laptop with an Intel i5 1.70GHz CPU processor, runnirgingle-threaded Java process with a
2GB memory limit.

2Note that, while increasing the variable city locationg@ases the number of TSP instances to be solved,
each individual problem instance remains a static TSP.
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overall approach to PS Map approximation, and thus coulddyeed as a baseline for sub-
sequent approximation algorithms. The latter attemptsas the initial random selection
towards problem instances that are close to the bordersbataolution regions. Thso-
lution border estimatiofSBE) technique uses the heuristic search objective fumetial
the solutions of the sampled instances to estimate wheredinedaries between solution
clusters lie. Theselect from sampled solutiorfSSS) technique applies each known so-
lution to an unsolved problem instance and assigns theisoluiith the best utility. The
sampling-classification with active learnif§C+AL) technique attempts to bias computa-
tional time towards solving problem instances that arergay ambiguous. Theupport
vector machingSVM) technique utilizes a support vector machine (SVM)l&ssify prob-
lem instances into solutions. Tlsepport vector machine with solution border estimation
(SVM+SBE) technique also utilizes an SVM, but augments thiaitng samples by finding
problem instances near the borders of solution regions.s& heethods are described in
more detail below. This chapter then concludes with a coxitgl@nalysis of the algo-

rithms.

3.1 Sampling-Classification (SC)

The sampling-classificatiofSC) technique (Algorithm 1) computes solutions to a
random sample of the problem instances, then uses an exgafixked-radius neighbor
classification to assign solutions to the remaining (uredjyproblem instances. Figure 3.3
illustrates the steps involved. First, an initial randormpée of solutions is solved by the
heuristic solver (a). Next, solutions to unsolved problestances are assigned by polling
the solutions of the sampled problem instances within aiBpdcadius (b). Finally, if the
polling does not result in a plurality, then the polling naslis doubled until a plurality is

achieved (c). Polling does notinclude inferred soluti@s;h unsolved instance is assigned



Algorithm 1 Sampling-Classification

=

Letalpha € (0.0, 1.0)

2. Let sampleRate € (0.0,1.0)
3: LetproblemSpace < set of problem instances
4: LetpollingRadius € 7
5: total NumSamples < |problemSpace| * sample Rate
6: for 1...total NumSamples do
7: Randomly select unsolved problem instance
8: Generate solution for unsolved problem instance
o: Add problem instance & solution to PS Map
10: end for
11: for all u € unsolved problem instance®
12: Letrad < polling Radius
13:  while u is unsolved &rad < radiusOfproblemSpace) do
14: Score solutions of problem instances withind of u
15: if there is a solution with a unique maximum sctven
16: Assign solution ta:
17: else
18: rad < rad * 2
19: end if
20: end while
21: if there does not exist a unique solution with the maximum sitwe
22: Randomly choose one of the top solutions
23: end if

24: Add problem instance & solution to set of pending entries
25: end for
26: Add pending entries to PS Map
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(a) (b) (c)

FiG. 3.3: SC procedure. The dot represents the problem instanadich a solution will
be inferred, and the solutions to sampled problem instameeepresented by letters.

FIG. 3.4: Ideal PS Map of a five-city TSP

a solution based solely on the solutions to the original $amifproblem instances. Thus,
the order in which the instances are solved does not affeatdhfiguration of the resulting
PS Map.

A visual example of the effect of this algorithm is demont&dain Figure 3.5, which
depicts an initial sampling of an problem space, and Figuevghich depicts the resulting

PS Map after running the SC algorithm.
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FiG. 3.5: Possible initial sampling of a TSP problem space. Baipresent individual

problem instances color coded by their solution.

FiG. 3.6: Approximated PS Map generated by applying the SC iltgorto the initial

sampling in Figure 3.5
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Let FF = {fi, f2,..., fn} De a set of fixed points; be the start of the tour, angbe a

variable point. An optimal solution to the TSP problem is quenceS = {si,...,s,42}
of the pointsF U {p, o} such thafs """ dist(s;, s;41) is minimized.
Consider two solutions, S1 = {0,...,84, 80, S¢;---,8n12} and Sy =

{0,...,84,D, Sp,Sc - -, Sns2}, differing only in the order in whichp and s, are vis-

ited. Without loss of generality, le, be any static city location. The border betweg

and S, is the set of points wher§; and S; have equal quality, which are the points that
satisfy:

dist(o, s1) + dist(sa, s3) + - - - + dist(sq_1, Sq) +

dist(sq, sp) + dist(sy, p) + dist(p, s.) +

dist(Se, Ser1) + -+ + dist(Spi1, Snaz) =

dist(o, 1) + dist(sa, s3) + -+ + dist(Sa—1, Sa) +

dist(sq, p) + dist(p, sp) + dist(sy, s¢) +

dist(Se, Ser1) + -+ + dist(Spi1, Sna2)-

Reducing, we obtain

dist(s,, sp) + dist(p, s.) = dist(sq,p) + dist(sp, Sc)-

Substituting the known poing, for the variable poinp results in a valid equation. There-
fore, s, is on the border betwee$y andS,.

Fic. 3.7: Proof that static cities in the DTSP must lie on a bolaktween two solution
regions
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dist(A,B) + dist(B,p) = dist(A,p) + dist(p,B)
dist(A,B) = dist(A,p)

dist(p,A) =C

FiG. 3.8: Solution border calcuated by SBE for a two-city TSP. Rasua circle around
city B with a constant radius equivalent to the distance ffoto B.
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Let A-p-B and A-B-p represent the routes specified by two sahst To find the shape
the border, we set the distances of the routes to be equal.

dist(p, A) + dist(p, B)
dist(p, A)
V= A2 + (0, — A,

(pr — As)? + (py — 4y)

FIG. 3.9: The border between solutions A-p-B and A-B-p simplifeea circle

st

st

dis
di
di
dis

2 2

t(A, B) + dist(p, B)
(4, B)
(4, B)
t(4, B)

Let A-B-C-p-D and A-p-B-C-D represent the routes specified by $olotions. To find the
shape of the border, we set the distances of the routes touad eq

dist(A, B) + dist(B, C) + dist(p, C) + dist(p, D) =

dist(p, A) + dist(p, B) + dist(B,C) + dist(C, D)

dist(p, A) — dist(p, B) + dist(p,C') — dist(p, D) =
dist(B,C) + dist(C, D) — dist(A, B)

FiG. 3.10: The border between solutions A-B-C-p-D and A-p-B-C-D &ason-trivial
simplification

Df

D
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Algorithm 2 Sampling-Classification+Bias
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Letalpha € (0.0,1.0)

Let sampleRate € (0.0,1.0)

Let problemSpace «— set of problem instances

Let polling Radius € Z*

LetbiasFactor € 7™

Let cityRadius € Z™*

total NumSamples < |problemSpace| * sample Rate

numNearSamples — bmsFactloiﬁ;tiziaé‘];fcq;gSamples

for 1...numNearSamples do
Randomly select unsolved problem instance wittiity Radius of city
Generate solution for unsolved problem instance
Add problem instance & solution to PS Map

: end for
: for numNearSamples + 1. .. total NumSamples do

Randomly select unsolved problem instance outsidétgfRadius of city
Generate solution for unsolved problem instance
Add problem instance & solution to PS Map

: end for
: for all 4 € unsolved problem instance®s

Letrad <« polling Radius
while « is unsolved &rad < radiusO f(problemSpace) do
Score solutions of problem instances withind of u
if there exists a unique solution with the maximum sc¢bemn
Assign solution ta:
else
rad <« rad * 2
end if
end while
if there does not exist a unigue solution with the maximum sttene
Randomly choose one of the top solutions
end if
Add problem instance & solution to set of pending entries
end for
Add pending entries to PS Map
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Algorithm 3 Sampling-Classification + Active Learning

L
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16:
17:
18:
19:
20:
21:
22:
23:
24:.
25:

Letalpha € (0.0,1.0)

Let sampleRate € (0.0, 1.0)

Let problemSpace «— set of problem instances

Let polling Radius € Z*

Letlandslide € 7"

total NumSamples «— |problemSpace| * sample Rate

numlinitialSamples « total NumSamples x alpha

usedSamples «— numInitial Samples

for 1...numlInitialSamples do
Randomly select unsolved problem instance
Generate solution for unsolved problem instance
Add problem instance & solution to PS Map

: end for
: for all € unsolved problem instance®s

Let V' < solutions of problem instances withialling Radius of u ordered by decreasing
count

if |V|=1then /lthere is only one solution
Assign solution ta:
else if iggfj%’; > landslide then /Ihighest score divided by second-highest

AssignVy tou
else ifusedSamples < total NumSamples then
Solvewu and assign solution
else
Expand radius and assign solution as with Sampling-Classification
end if
end for
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FiG. 3.11: Various ideal PS Maps demonstrating a pattern oétation between fixed city
location and solution borders.

3.2 Sampling-Classification with Bias (SC+bias)

The sampling-classification with bigSC+bias) technique, described in Algorithm 2,
attempts to exploit the observation that certain condsatfor example, known city lo-
cations — indicate boundaries between solutions. Thisioekhip is suggested by Figures
3.4 and 3.11, and the proof in Figure 3.7 demonstrates tait sity locationanustlie on
a border between two solutions. Thus in SC+bias, the probistance samples are biased
towards the known city locations in the hope that additic@hples in these regions will
allow the classification step to discover the borders betvedutions with greater accu-
racy. After gathering the additional samples, this techaigssigns solutions to unsolved
instances in the same manner as the SC technique.

This technique relies on two additional parameters. Tiheradiusparameter is a
radius defining a pool of problem instances that are “neaitydacation; instances outside

this radius are considered not to be near the city. Qile factorparameter defines the ratio
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of the number of near city points to the number of non-negipmints selected in the initial
random sample. For example, a bias factor of three indithéshree times as many near-
city points as non-near points will be selected.
The use of this technique is specific to TSP problems. Althdbgre is consideration
for taking into account specific constraints of static peobicharacteristics to inform sam-
pling bias, it is not clear how this applies in a general caseis, this technique was tested

only on the TSP domain.

3.3 Sampling-Classification with Active Learning (SC+AL)

The sampling-classification with active learnin@C+AL) algorithm modifies the
SC (sampling and classification) technique to utilize &c#ampling rather than random
sampling to select problem instances to solve (Algorithm Bhis algorithm adds two
paramtersalphaandlandslide The alpha parameter represents the fraction of the total
number of problem instances that will be selected througbae sampling. The landslide
threshold is used to determine whether the voting by theeséaeighbors is ambiguous.
For example, a sample rate of .01 in a problem space with @dr@@ances results in a
total of 100 samples. Assuming an alpha of 0.2, an initiatlcem sampling of 20 prob-
lem instances will be solved. The remaining 80 samples wlchosen after evaluating
the fixed-radius neighbors of unsolved problem instancéshel fixed-radius neighbors
of an unsolved problem instance indicate little or no amitygwhen approximating its
solution, then the problem instance is assigned a solusoim &C, by a plurality vote.
However, if the fixed-radius neighbors do indicate ambiguten the problem instance
is solved heuristically if the total allocation of problemstance samples has not been ex-
hausted. In this algorithm, ambiguity refers to either Zeted-radius neighbors, or more

than one fixed-radius neighbor in which the number of ocaues of the best solution di-
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Algorithm 4 Solution Border Estimation - trace
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25:
26:
27.
28:
29:
30:

Let sampleRate € (0.0, 1.0)

Let problemSpace <+ set of problem instances

total NumSamples «— |problemSpace| * sample Rate

for 1...total NumSamples do
Randomly select unsolved problem instance
Generate solution for unsolved problem instance
Add problem instance & solution to PS Map

end for

borderSet <

: for each pair of problem instancgsq with differing solutionss,,, s, do

use binary search to find pair of adjacent problem instances with diffedhutions
border < DoTracef, s,, sq, 0)
Add border to borderSet

: end for
: find intersections of borders to determine regions
. for all region rdo

find problem instance to serve as regional representative
find best solution for this problem instance
assign solution to all problem instances in the region

: end for
: function DOTRACE(instance,solution,altSolution,border)

addinstance to border
for all problem instance, adjacent tanstance do
if p, is adjacent to a problem instance with wheteSolution is better tharsolution
then
addp, to border
DoTracep,,solution,altSolution,border)
end if
end for
return border
end function
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FiG. 3.12: Initial sampling of a problem space augmented wigetgf resolution for sev-
eral unsolved problem instances

vided by the number of occurrences of the second-best snldtes not meet tHandslide
threshold. Figure 3.12 provides a pictorial representativambiguous problem instances
requiring evaluation by the solver, and landslide and unanis problem instances which

can be classified with nearest neighbor.

3.4 Solution Border Estimation (SBE)

This next technique differs from previous algorithms inttinstead of using a nearest
neighbor approach to classify unsolved problem instancdsdwn solutions, this tech-
nique uses the problem domain’s objective function to firedlibrders between solutions,

thus allowing it to classify all the problem instances witla region. The intent is that
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this technique will be more accurate than the previous dlguos, but does require the
availability of an objective function and can be more comapionally expensive.

Thesolution border estimatio(SBE) technique calculates solutions to a random sam-
ple of the problem instances as in the previous algorithrhenTfor every pair of solutions,
SBE calculates a border in the problem space where one solhgicomes better than the
other. The combination of these borders creates a set amnegiithin the problem space.
Because the borders that create the regions are determilydalyanpair of solutions, there
is no guarantee that some third solution is not preferabthinveiny region. To resolve
this uncertainty, the algorithm determines the best smhutiithin a region by solving one
problem instance within each region, and assigning thaitisol to all problem instances
in the region.

Ideally, these borders would be calculated by equating bpective functions repre-
senting each solution and finding a closed-form expressiotheé boundary location, such
as shown in Figures 3.8 and 3.9 for a 2-city TSP problem. Hewsekis approach is not
practical for large problems or problems that are not eastlyressed with an objective
function. As an example of the difficulty presented by a laggeblem, consider resolving
the border between 5-city TSP solutions A-B-C-p-D and A-p-B-Calbere p is the un-
known location and A, B, C, and D represent known locationss Tésults in a non-trivial
equation in Figure 3.10 with four radicals (pairwise dists) and a constant. Therefore,
my implementationSBE-trace uses an approximation of the SBE technique, as described
in Algorithm 4.

Figure 3.13 illustrates the SBE-trace algorithm. First, sebtved problem instances
with differing solutions are selected (a). Next, a binargrsé is applied to the space
between the two solved instances to find two adjacent probistances that have different
solutions (b). Then, the remainder of the border is disa@yély testing neighboring points

for adjacency to a problem instance with the alternate swiptorming a continuous border
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FIG. 3.13: Skeletal PS Map created by SBE-trace procedure

between the solution regions (c,d). Applying this proceduara pairwise fashion to the
remaining discovered solutions (e,f) creates an appraiomaf the skeletal PS Map (g).

Finally, sampling within each region yields an approximg&Map (h).

3.5 Support Vector Machine (SVM)

The support vector machinapproach, described in Algorithm 5, utilizes a support
vector machine (Cortes and Vapnik, 1995) to classify unsblblem instances into
classes consisting of known solutions. A support vectorimmecclassifies inputs into one
of two classes by calculating a hyperplane that splits thatispace into two regions, one
for each class, that lies as far as possible from any inptamee. A simple example of this
is shown in Figure 3.14. An advantage of this classifier isitrszales to high-dimensional
spaces. SVMs employ a “kernel trick” that allows them to gldte a hyperplane when

the inputs are not linearly separable, as is typically treeda the plan spaces that | have
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G. 3.14: Expected classification of unsolved problem ingarxy SVM algorithm given

two solved problem instances from the initial sample.

studied.

In this algorithm, an initial sample of problem instances solved to generate solu-

tions, as in the SC technique. | train the SVM with the probiestances’ variable charac-

teristics and the high-quality solution generated by thariséc solver. After training, the

unsolved instances are assigned solutions based on thesS\Nadgsifications.

Algorithm 5 Support Vector Machine

=

e el
W NP o

©ooNaRWD

. Let sampleRate € (0.0, 1.0)
Let problemSpace «— set of problem instances
total NumSamples < |problemSpace| * sample Rate
for 1...total NumSamples do
Randomly select unsolved problem instance
Generate solution for unsolved problem instance
Add problem instance & solution to PS Map
Add problem instance features & solution to SVM training set
end for
Train SVM
: for all unsolved problem instances
Add problem instance and SVM classification to PS Map
: end for
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Algorithm 6 Support Vector Machine + Solution Border Estimation

=

Let alpha € (0.0,1.0)
Let sampleRate € (0.0, 1.0)
Let problemSpace <+ set of problem instances
total NumSamples «— |problemSpace| * sample Rate
numlinitialSamples « total NumSamples x alpha
for 1...numlInitialSamples do
Randomly select unsolved problem instance
Generate solution for unsolved problem instance
Add problem instance & solution to PS Map
Add problem instance features & solution to SVM training set
: end for
: for each pair of problem instances with differing solutiapss, do
use binary search to find pair of adjacent problem instances with difedtutions
Add pair of problem instances and their solutions to SVM training set
: end for
: Train SVM
: for all unsolved problem instances
Add problem instance and SVM classification to PS Map
: end for

©oNTORAWDN
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Algorithm 7 Select from Sampled Solutions

=

Let sampleRate € (0.0, 1.0)
Let problemSpace < set of problem instances
Let polling Radius € Z*
total NumSamples < |problemSpace| * sampleRate
for 1...total NumSamples do
Randomly select unsolved problem instance
Generate solution for unsolved problem instance
Add problem instance & solution to PS Map
end for
: for all « € unsolved problem instances
Generate utility ofu for each known solution in PS Map
if there does not exist a unique solution with the maximum sttare
Randomly choose one of the top solutions
end if
Add problem instance & solution to set of pending entries
: end for
: Add pending entries to PS Map

©ooNAA®WDN
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via random
sampling

via SBE-trace

FiG. 3.15: Expected classification of unsolved problem ingarny SVM+SBE algorithm
given two solved problem instances from the initial sampie &vo from the SBE augmen-
tation step.

3.6 Support Vector Machine with Solution Border Estimation (SVM+SBE)

The support vector machine with solution border estimat{@VM+SBE) technique
(Algorithm 6) utilizes a fraction of the total allocated sales to create an initial sample of
problem instances from which to generate a set of knownisolsit For each combination
of pairwise problem instances that have different solijahe SBE technique is used to
find a pair of problem instances that lie on the border betwibertwo solutions. These
border points and their solutions are added to the SVM mgiset. Finally, the unsolved
problem instances are assigned solutions as dictated [SMNReresults. An illustration of

this is presented by Figure 3.15.

3.7 Select from Sampled Solutions (SSS)

The select from sampled solutiofSSS) technique calculates solutions to a random

sample of the problem instances. This technique assigons@w to each unsolved prob-
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lem instance by computing the utility of each of the discedesolutions when applied to
the unsolved instance, and assigning the maximum-utiityt®n. In the case of contin-
uous objective functions, which creates large homogensolugion regions, this process
generates a PS Map identical to that of SBE-trace. Howeveause it must determine the
maximum utility solution for every problem instance in thgase, this algorithm risks per-
formance degradation as the problem size increases. Fompdxafor a map representing
a DTSP with two variable cities consisting of 12,8@doblem instances, SSS would entail
evaluating every unknown solution for every problem inseanHowever, in situations in
which the number of stored solutions is small or the cost fdating the utility is cheap
enough, the discovered solutions could be stored, rath@ralcomplete map. This could
mitigate the disadvantage that SSS may encounter relatS8E-trace.

One interesting feature of this algorithm is that it can beduto remove errors in
ideal maps caused by the use of heuristics when solving gmolihstances. Heuristic
solvers may assign different solutions to differing problastances that in fact do have
identical solutions. The application of this algorithm aartigate this type of error by
considering all the discovered solutions within the prablgpace. Visually, this has the
effect of “smoothing” the solution regions into more regusaapes within the TSP and

knapsack problem domains.

3.8 Algorithm Analysis

| have analyzed these algorithms primarily in terms of thenber of problem in-
stances that must be resolved by the heuristic solver. i@pkiproblem instance with the
heuristic solver takes the highest amount of time for a sipgbblem instance; however,
many of the solutions involve less expensive operations avarge number of problem

instances and thus the heuristic solve time cannot be asstmi®minate the complexity
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expresssion.

Let H represent the time complexity required to solve a singlélera instance with a
heuristic solver, and letrepresent the sample rate.will represent the size of the problem
space andy will represent the complexity of the fixed-radius neighbearsh. A brute-
force fixed-radius neighbor search(i$n) in the number of candidate neighbors. However,
other approaches can be appropriate depending on the nwhlsandidate neighbors,
which varies as function of the sample size. To accommodasevariability, the final
complexities listed in Table 3.1 present the complexitissg a generids for the fixed-

radius neighbor search as well as assuming a worst-casdedtypf O(n).

SC Algorithm  The Sampling-Classification (SC) uses an initial sample ofezbl
problem instances to perform nearest neighbor-like diaasiobn of the unsolved problem
instances. For the SC algorithm, the initial loop samplescibmplete problem space and
solves an initial sample of problem instances. This conigldg O(HsP). Next, the
remaining(1 — s)P problem instances must be solved. For each instance, thethfg
runs the fixed-radius neighbor search repeatedly untiéettiere is a plurality of solutions
within SC’s expanding radius, or the radius encompassesdhwlete problem space.
Since the radius doubles with each iteration, the maximumbmar of iterations possible
per problem instance isg, P. Thus the complexity for SCi®(HsP + (1 — s)PKlogP),
whereK is the complexity of fixed-radius neighbor search. The intétthese algorithms
is for s to be small, particularly wheH is large. Therefore, it is not clear whether the first
term, which is a product of a large and small number, domsates dominated by the
second term, which is a product of a number near one, the sittes oroblem space, its

log, and the complexity of the fixed-radius neighbor search.
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SC+Bias Algorithm  The SC+Bias algorithm is identical to SC except that the ihitia
sampling is biased towards sampling specific locationsamptioblem space. There is some
expense to identify the set of problem instances that atd@miibhe radius of a city, but this
one-time cost, amortized over repeated runs, is negligibleus the calculations are the

same as the SC algorithm, resulting in the complexit9 o/ sP + (1 — s) PKlogP).

SC+AL Algorithm  SC with Active Learning (SC+AL) splits the total allocatiofi o
samples between the initial random and targeted samplinggithe classification stage.
The complexity of the SC+AL algorithm must consider the alpaaameter that deter-
mines the initial fraction of problem instances to be sollredristically through random
sampling. The complexity of this step¥ H spa). The remaining problem instances to be
solved heuristically are determined by the utility of théusions discovered when polling
within the radius of the problem instance. The complexityhis step iSO(H sp(1 — «)).
Combining these two termé{sPa + HsP(1—«), simplifies to the same initial term as the
previous algorithmsH s P. The cost of solving the remainin@ — s) P problem instances
is, in the worst case, the cost of expanding the polling adaiin SC. This results in a total

complexity ofO(HsP + (1 — s)PKlogP), again the same as the SC algorithm.

SBE-trace Algorithm Support Border Estimation-trace (SBE-trace) is an approx-
imation of SBE, which calculates borders between known gwigtusing the domain’s
objective function. The SBE-trace algorithm is limited toot@imensions, which is used
to simplify its complexity analysis. As with the previougafithms, the initial sampling is
again of complexityD(H sP). The loop starting at line 10 runs for each pairwise combina-
tion of solutions for a total of(n — 1) iterations, where: is the number of solutions. The
number of solutions is the result of solving the initial saengf problem instances. Thus,

n is equal tos P and the loop executes’(sP — 1) times.
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Each loop iteration executes a binary search that may in threstvcase span the
problem space and therefore has a complexitjogf. Each iteration also executes the
DoTRACE function, which executes a loop that considers the seveacteadf problem in-
stances to a given instance. The recursion then contineesviluation for the length a
complete border, which is at worst the size of the problencsp&hus, the complexity of
the function is7P. As mentioned above, these two operations exeebi{@ P — 1) times,
for a total complexity ok P(sP — 1)(logP + 7P), simplifying to O(s*P3).

The process at line 15 of finding the points at the intersestiaf borders requires
looping through each pairwise set of borders to find poirds éxist in both borders. This
requiresB(B — 1) loop iterations, wherd3 is the number of borders, for a complexity
of O(B?). Recalling that the number of borders@g(sP)?) and that a border may at
most containP points, the overall complexity of this operation(((sP)?)? x P), which
simplifies toO(s*P?).

The final loop at line 16 requires selecting a solution for pneblem instance in
each region resulting in a complexity 6f( s PR), wheresP is the number of solutions to
evaluate, and? is the number of regions generated by the border intersectitn two-
dimensional spaces, the number of regions generated lgirtiva space with lines or

circles isO(n?). Intuitively, this can be demonstrated by observing thatith line that

n(n—1)

divides a space adds at mastegions to the space, thereby creathy i = =%

regions for a complexity o©(n?). Replacingn with the number of borders)((sP)?),
and substituting foR?, the complexity of this loop i® (sP x s*P*) = O(s°P?).

The sum of all of these terms 8(HsP + s*P? + s*P5 + s°P®). The fourth term
dominates the second and third terms, simplifyingXddsP + s> P°). As before, it is
not clear which, if either, of the terms dominates the exgices and thus both of them are

preserved.
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SVM Algorithm  The SVM algorithm trains a support vector machine with thie in
tial random sample in order to classify unsolved problerteimses to one of the discovered
solutions. The SVM and SVM+SBE algorithms rely heavily ongongd machine training
algorithms, which has a generally accepted upper bouri@(of) in the number of train-
ing instances (Bottou and Lin, 2007; List and Simon, 2009)e ¢bmplexity of the SVM
algorithm is readily calculated as the sum of the complegitsampling, training, and
possibly classificationO(HsP + (1 — s)*P? + (1 — s)P). Dropping the final term be-
cause of the domination of the middle term results in an SVib@ihm complexity of

O(HsP + (1 —s)3P?)

SVM+SBE Algorithm  SVM+SBE splits its total sample allocation between the ini-
tial random sample and targeted sampling within the regomite/een problem instances
with differing solutions. The SVM+SBE algorithm complexig/similar to the SVM com-
plexity, but uses an alpha parameter that determines tbedneof sampled instances that
will be derived from solution border estimation. Becausehid,tthe complexity of the ini-
tial sample iSO(H sP«). The loop starting at line 12 runs a maximum(of- o) s P times
and has the same binary search as line 11 of the SBE - tracdtlatgoEach of the border
problem instances is solved with &1 H )-complexity heuristic search. Thus the complex-
ity of this loop isO((1—a)P(H +logP)). The SVM training is agai®(n?) in the number
of training instances for a complexity 6f(s* P3). The last loop at line 17 iterates over the
(1 — s)P unsolved problem instances and places them in the PS MapmBugnthe terms
results in a complexity o0 (HsPa + (1 — «)sP(H + logP) + s*P? + (1 — s) P), which
simplifies toO(HsP + s*P?).

SSS Algorithm  Select from sampled solutions (SSS) tests each soluticowbsed

during the initial sample against each of the unsolved rmobinstances. The SSS al-



Algorithm | Complexity K =0((1-s)P)

SC O(HsP + (1 — s)PKlogP) | O(HsP + (1 — s)*P?logP)
SC+bias | O(HsP + (1 — s)PKlogP) | O(HsP + (1 — s)?P%logP)
SC+AL O(HsP + (1 — s)PKlogP) | O(HsP + (1 — 5)*P?logP)
SBE O(HsP + s°P?)

SSS O(HsP + sP?)

SVM O(HsP 1 (1 — s)°P%)

SVM+SBE | O(HsP + s*P?)
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Table 3.1: Summary of PS Map approximation complexity. Hhescomplexity of generat-
ing a high-quality solution, s is the sample rate, P is thelmemof instances in the problem
space, and K is the complexity of the fixed-radius neighbarce

gorithm requiresD(H s P) for the initial sample and for each of the remainifig— s) P

unsolved instances, it must evaluate each of the discogetations. Assuming each sam-

ple results in a unique solution, this results in the worsegd — s) P x sP evaluations,

or O(sP?) assuming a small. Thus, the complexity of SSS &(H sP + sP?).



Chapter 4

EVALUATION IN TEST DOMAINS

This chapter presents the results of applying the algosttlescribed in the previous
chapter to three test domains. | show that, in many casesjtilitg loss from PS Map
approximation is comparable to that of online repair. Hosvethe performance of the
approximation algorithms varies between problem domaiddaetween different problem
configurations within the same problem domain. In both cabesdifferences in the size
and quantity of heterogeneous regions intrinsic to the lproldomain and configuration
appear to be suggestive as reasons for the differences inoxap@ation accuracy. | tested
the algorithms using the traveling saleman problem (T3f)khapsack problem, and an
elevator problem. The TSP and knapsack problems are cldssiains in optimization
and computer science. The elevator problem is a challengmitiocreated for the AAAI
International Planning Competition (IPC) (Coles et al., 2018}l of the problems are
NP-complete or NP-hard, and quickly become intractablé witmplex enough problem
instances.

Traditional TSP problems consist of a set of unordered lonat sometimes referred
to as “cities,” that must be ordered such that the length oferéhat traverses the set is
minimized. In the dynamic variant, one or more additionablitons become known after

the initial ordering is computed, and must be incorporatéa the route while minimizing

45
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computation time and total route distance.

In the knapsack problem, one chooses from a set of given jteath with a weight
and value characteristic, such that the total value of tlag&ack is maximized and the total
weight does not exceed a given weight constraint. | use thedrant, in which each item
may be selected a maximum of one time. After computing aralrsblution, | present one
or more additional items with which the system may revissalsition.

The elevator domain defines the initial and desired locatmina set of passengers,
and several elevators of varying speeds with which to trangmssengers. The goal is to
move all the passengers to their desired floors as cheaplysasofe through efficient use
of elevator movements. For my testing, | use a variant in tvloice or more passengers’
initial location may change after the initial plan is comgulit

My primary metric for evaluation is utility loss, measureslafraction of the utility
of a problem instance’s high-qualitgolution, as calculated by a heuristic solver. For
example, if the total value of a high-quality knapsack solutis 100, and the solution
retrieved from the approximated PS Map has a value of 95, tiemtility loss for that
specific solution is .05 (i.ei2=9)  The evaluation of an approximated PS Map is the

' 100

average utility loss over all of the discrete locations ia thap. Thus, the evaluation for a

E.é@nap heuristic; —approx;

PS Map over all problem instances+s e e whereapprox; andheuristic;
euristic;

1Emap

are the utility of the solutions given by the PS Map and a Istiarplanner, respectively, for
a given problem instance Lower utility loss is preferred; the best approximatedusoh
will have a utility loss of zero.

For most of the experiments, the independent variable isaheple rate, defined as the

fraction of problem space instances that are solved withéueistic solver. For example, a

IAs previously mentioned, “high-quality” refers to solutiogenerated by heuristic search methods. As
solutions to intractable problems they cannot be guardrteée optimal; therefore, | avoid the use of that
term.
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sample rate of .002 applied to a PS Map with 10,000 probletamggs would indicate that
a total of 20 problem instances were solved with the hearsilver. Several algorithms
distinguish between problem instances solved during thlisample and those solved
at an intermediate stage of the algorithm. However, the gangpe does not make this
distinction, and thus represents the fraction of problestainces solved with the heuristic

solver, regardless of the stage that employs it.

4.1 Traveling Salesman Problem

The traveling salesman problem (TSP) is a classic NP-campleblem in computer
science in which cities must be ordered such that the lengtieaesulting route is mini-
mized. The dynamic variant, the DTSP, allows for cities todraoved or added while the
route is being traversed, creating a more challenging prolsh which the route should be
reoptimized in real time. | used the TSP as an initial domairafgorithm validation and
development. | generated problem instances ranging froiie’s ¢o 100 cities, represent-
ing a range of problem complexity. This domain also assuimesthe city locations occur
at integer locations, and treats the problem space as tHisdfer example, a city location

at (10,10) is valid, but a city location at (10.5,10) is not.

4.1.1 High-Quality PS Map

For testing in the TSP domain, | generated three instanadsaeb, 10, 20, 50, and
100-city DTSPs. One of the cities included with each of theSP$ has a variable location.
As the gold standard, high-quality PS Maps were generatethe Clark-Wright (Clarke
and Wright, 1964) and Gillett-Miller (Gillett and Miller, I/2) algorithms, as implemented

by the Drasys library. | then removed errors stemming from heuristic-based ssliogr

2As of this writing, this library appears to no longer be palgliavailable. | have placed a copy of the
original download ahttp://www.umbc.edu/"holderl/orl24.jar
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executing the SSS algorithm over the PS Map. As describe@aticdh 3.7, this process
tests each unique solution against each problem instags@lting in a more accurate PS

Map.

4.1.2 Online Repair Baseline

To compare how well PS Map approximation techniques periagainst traditional
online repair, |1 implemented the insertion approach (A8syd988). This approach in-
corporates new cities into the route by finding the neardgtarid inserting the new city
into the route either before or after the nearest city. Altiioit is not the best repair tech-
nique, it is well suited for online repair due to its speedtHis case, the repair accuracy
was within the expected loss of utility provided by other IPTé@line repair algorithms as
discussed by Larsen. This baseline will be discussed in met&l when presenting the

experimental results.

4.1.3 Sampling-Classification Experiment

The sampling classification (SC) algorithm is a simple akhomi used as an initial
exploration of the feasibility of the general approach oihgsclassification techniques
to match problem instances with solutions. The basic implaation accepts problem
instances and their solutions as input, and uses neargstoetlike classification to assign

solutions to unsolved problem instances.

SC Experiment Parameters The PS Map approximations were generated using 19
sample rates between .0001 and .01. The experimental caoatfus were drawn from the
permutations created by the cross product of the DTSP prgldample rate, and approxi-

mation technique. Each run was executed ten times.
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Results The initial algorithm, sampling-classification (SC), saerandom sample
of the problem instances and uses classification based oesteighbor to assign solu-
tions discovered during the initial sample to each unsoprethlem instance. In the initial
experiment, all of the solutions of solved problem instanaghin a static radius of an
unsolved problem instance were polled and the solution thgtplurality was assigned to
the unsolved problem instance. These results are includegjure 4.1 as “SC, 100-city.”
Subsequent experiments weighted the solutions by theroeeipof the distance or the dis-
tance squared, this giving more weight to the solutions obl@m instances closer to the
unsolved instance. These results, also in Figure 4.1, beddd as “SC-distance” and “SC-
distance squared,” respectively. Figure 4.1 also incltidesesults of the SC experiments.
In addition to showing fractional loss results, the grapjhhghts the range of fractional
utility loss expected by online repair, as suggested bydraf2000). | also implemented a
nearest-neighbor DTSP solver to insert the variable city fhe route. The mean average

loss from that online repair method was 1.97%, which is ciasi with Larsen’s range.

4.1.4 SC+Bias

Based on the results of the SC experiments, it became apphatiiie larger solution
regions tended to be represented in the approximated PSkapmaller regions tended
to disapppear. This occurred due to the lower probabilityhef initial random sample
choosing a problem instance in that region, resulting inegit particular region not being
represented in discovered solutions or probable solutensy assigned. One attempt to
mitigate this effect was inspired by observing that wittie high-quality PS Map, more
rapid changes in solutions and smaller solution regiond terexist near city locations.
The SC+bias algorithm attempts to take advantage of thisnedtsen by biasing samples
towards the regions near cities. The city radius and bieapeaters determine, respectively,

the radius of the region around a city to apply the bias and imoxeh to bias the samples.
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FIG. 4.1: Results of applying various approximation algoritiimshe 100-city TSP do-
main. The SBE/SSS line are the results of the SBE and SSS algastit The three
SC lines are the results of three executions of the SC algoritSC-distance and SC-
distanceSquared are the results of running SC and weigihi@ngpting contribution of each
neighbor by its, respectively, distance and distance sgliaom the unsolved problem in-
stance. The SC+AL line is the result of the SC+AL algorithm. Assaeline, the dotted line
represents the utility loss of the online planner. As a sdapnbaseline, the shaded region
is the expected loss of DTSP online repair algorithms asestgd by Larsen (2000).
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FiG. 4.2: Average utility loss of approximate PS Maps generate&C+bias for DTSP
problems of various sizes.

The near-city region is defined as a circle with the specifielius. The bias represents the
odds that the near-city region will be sampled. For examgpl#as value of three indicates

that the near-city region will be sampled with odds 3:1 veitfie non-near-city region.

Experiment Parameters This experiment approximated a PS Map for a 100-city
DTSP. | assigned a bias factor as integers in the range framtmfive, inclusive, and
the city radius in the range from one to five, inclusive. Thpragimation algorithm was

executed ten times for each combination of bias factor aydadius.

Results The results of this experiment are shown in Figures 4.2 aBd #hese
results do not appear to show an obvious pattern to detemwtiieh parameters are most
promising. For example, the best performance are at theyg(recall that lower utility
loss is preferred) at bias values of one, four, and five, aduisavalues of two, four, and
five. Looking at the graph, there is not an obvious gradiestiggest a generalized rule for

setting these parameters.
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FIG. 4.3: Average utility loss of approximate PS Maps generaie8C+bias for 100-city
DTSP problems at sample rate .005. SC-generated PS Mapsatehender identical
conditions have an average accuracy of .035.

415 SC+AL

Sampling classification with active learning (SC+AL) is dreatattempt to allow for
smaller solution regions to be approximated effectively+8L may be considered a gen-
eralization of SC+bias in that it allows more concentratead@ang in regions of the prob-
lem space in which the classification appears ambiguousrréthn limiting the targetted
samples to predetermined locations. For example, if twotgwis are both strong candi-
dates to be assigned to a specific problem instance, then S@oAld solve the problem
instance rather than risk assigning an incorrect solut®milarly, if there are no strong
candidates for a particular problem instance, then SC+ALlavaillow the problem in-

stance to be solved rather than assign an arbitrary soltditn

Experiment Parameters The alpha parameter was set to 0.5. Thus, half of the

allotted problem instances solved were selected with namgampling. The other half
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were reserved for problen instances that the algorithnreétes to be ambiguous.

Results The results of this experiment are shown in Figure 4.1. Atdteer sample
rates, the performance of the SC+AL algorithm appears toigbtlsi better than the SC
results. This could suggest that at low sample rates, it remmiatical to choose samples that
convey the most information about the solution space. #&sonable that as the sample
rate increases, the probability increases of obtainingsiwame sample information through

chance.

416 SSS

Experiment Parameters No algorithm-specific parameters were required for this
experiment. As with the other experiments in this domaie, sample rate ranged from

.0001 to .01 for a problem space consisting of 100-city DT&Pgaining one variable city.

Results The results of this experiment are shown in Figure 4.1. Thlgyukoss
of SSS quickly drops, and at sample rates greater than .0f8ries the best performing
algorithm. Intuitively, this seems reasonable: assuminay the initial sample discovers
most solutions, then testing each of the solutions agdiegptoblem instance would result

in the problem instance being assigned the optimal solution

4.1.7 SBE

The solution border estimation algorithm (SBE) consideesrttathematical features
of the TSP. It calculates the border by recognizing that trdér between any two solutions
is represented by equating the distance functions of thestlgions. Unfortunately, at the
time of this experiment, | did not find a Java library that cbsiblve the complex equations

that resulted from this technique. The SBE-trace technigjugspired by SBE; however, it
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finds borders between two solutions by searching the spaaeée two problem instances
with known solutions. Thus, a binary search can be emplopeguming that the border
between two solutions is continuous, then the remaindeh@fborder can be found by

comparing the utility of the two solutions at each problesstamce.

Experiment Parameters No algorithm-specific parameters were required for this
experiment. As with the other experiments, the sample eatgad from .0001 to .01 for a

problem space consisting of 100-city DTSPs, with one ciwjrigavariable location.

Results The results of SBE-trace are shown in Figure 4.1. Note that 8&te
is only suitable for two-dimensional PS Map approximatiddecause of this limitation,
it is not applicable to most domains, and thus | did not emiglkathis algorithm in the

subsequent experiments, which have PS Maps with highemditioas.

41.8 SVM

The support vector machine algorithm (SVM) uses a suppatovenachine to try to
generalize the idea of SBE to multiple dimensions. Suppartorenachines calculate a
maximum margin plane to separate different classes. Thergdisons in this application

are the sampled problem instances labeled with their solsiti

Experiment Parameters No algorithm-specific parameters were required for this
experiment. As with the other experiments, the sample atged from .0001 to .01 for
a problem space consisting of 100-city DTSPs, with one cayirlg variable location. |

configured the SVM to use the radial basis function kernel.

Results The results of this approach are included in Figure 4.4. malestrates that
at sample rates greater than about .01, the SVM-based talgoperforms better than the
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FIG. 4.4: Average utility loss of approximate PS Maps generbie8VM and SVM+SBE

for 100-city TSP domain. Alpha refers to the fraction of séspused for random initial
sampling.

online repair baseline of fractional loss of 0.02 to 0.06 amtioned earlier.

419 SVM+SBE

One disadvantage of the SVM-based approach is that it carlasgfy problem in-
stances. SVM determines the borders between two solutipong by calculating a hyper-
plane such that the gap between problem instances witlriddgfsolutions is as large as
possible. This process results in a border that is apprderignenidway between differing
solutions. SVM has been shown to be a good optimization tgqakrin general; however,
it does lead to misclassifications when the actual bordes doéconform to this approx-
imation. By applying additional samples in key locationg Ibcation of the hyperplane
calculated by the SVM can be made more consistent with theabbbrders. In this ap-
proach, the first step is an initial set of problem instanbesare sampled and solved. The
second step applies the binary search used in the SBE-tigaétlain to each distinct pair

of solutions, resulting in problem instances that represelutions on the border between
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the distinct pair of solutions. Finally, those problem arstes and the labeled solutions are

added to the training set for the SVM.

Experiment Parameters The alpha parameter, which determines the fraction of the
total allocated sample that will be used during randomahgampling, was set to 0.2 and
0.5 in separate runs. The SVM algorithm as described in tequs experiment uses all
of its allocated samples during initial sampling, and isstthe equivalent of using an alpha
parameter of 1.0. Choosing 0.2 and 0.5 values in this expatiresults in testing of alpha
values that span the most of the range of 0.0 to 1.0. | confiblne SVM to use the radial

basis function kernel.

Results The results of this approach are included in Figure 4.4. ihtsresting to
note that the performance of SVM+SBE using an alpha value€giéforms better at lower
sample rates, and that with an alpha rate of 0.5 performeregthigher sample rates. The
crossover point is at a sample rate of approximately 0.02ppears that at higher sample
rates, the random sampling is sufficient to discover the drdogtween solutions without
targetting samples. At lower sample rates, the stucturdefsblution space is not as
explored, and thus it is valuable to discover key points wlosre solution becomes better
than another. However, at lower sample rates fewer sokigmea discovered. Thus, there
is a tension between random sampling in order to discovesdhdions that exist in the
space, versus targeted sampling, which assists in achufiging the borders between
the discovered solutions. Revisiting the SVM algorithm, ethis equivalent to SVM+SBE
with an alpha value of 1.0, the trend continues: using fewsgdated samples results in

worse performance at lower sample rates, but performsrizthegher sample rates.
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4.1.10 Analysis

These results show that these algorithms are comparabitdaiter than online repair
performance: all of the algorithms except for SC perforntdsehan online repair at sample
rates of .002 and above. It is quite reasonable that thenalieralgorithms would perform
better than SC, because SBE and SC+AL proactively attempt taéyngroblem instances
that distinguish one solution from another, and SSS corsith@re information than SC
during classification. The fact that the distance-squamdion of SC performs better
than the others suggests that solved problem instancearthaloser to the instance being
classified are more indicative of the proper solution thdwesbproblem instances that are
further away.

The results for SC+bias applied to TSP of various sizes arenshio Figure 4.2.
Again, the results are comparable to online repair, but saga@od as other techniques.
SC+bias hadias factorandcity radius parameters that can be modified and were set to
various values within the experiment. Bias factor represém degree to which to bias
sampling to be near a city. The city radius indicates howeclagproblem instance has
to be to a city to potentially benefit from the bias. Figure gki®ws utility loss results
at sample rate .005 when SC+bias is applied with a range ofrgdes configurations.
The results vary widely, and there does not appear to be angubcorrelation between
specific parameter settings and the utility loss. This behalso appears reasonable. The
goal of this algorithm was to attempt to exploit city locaisoas indicators of boundaries
between solution regions. However, there are many soluéigions that are not near cities;
thus, this algorithm has uneven and limited benefit.

The early experiments demonstrate that SSS and SBE have she@dxdormance.
SBE's performance is perhaps expected, as this algorithm divestly finds solution re-

gions, thus exploiting the characteristic of this domaiacgpin which similar problem
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FiG. 4.5: Average utility loss of approximate PS Maps generége&BE and SSS for
DTSP problems of various sizes.

instances tend to have similar solutions. Alternative§sSS performance is best attributed
to its brute-force approach of examining every problemainsé and testing all known so-
lutions. This would seem to continue to be feasible with atédale number of problem
instances and solutions, but may not scale well. Figurexp®mees SSS and SBE’s poten-
tial with additional problem sizes. The performance cammto be good for all problem
sizes, but appears to converge more rapidly for the smaitdrigm sizes. This behavior is

expected due to the small number of unique solutions andd&@mogeneous regions.

4.2 Knapsack Problem

The knapsack problem is a combinatorial optimization pEobln which a subset of
items of variable weight and value are chosen such that taévalue is maximized and
the total weight falls below a given threshold. For this expent, | use the 0-1 knapsack
problem variant, in which either zero or one copies of eaemitmay be placed in the
knapsack. The knapsack is prepopulated with a set of iteatsutilize 396 dekagrams
(dag) of the total knapsack capacity of 400 dag, and one oe t@ms of varying value
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and weight is added to the pool of items. Similar to the TSP aamthis domain will
limit the weight and value of each item to integers, resgltma discrete domain. | discuss
adaptation to continuous domains is in Section 6.1.

The knapsack domain demonstrates the applicability of lip@righms in a different
domain. One difference between this domain and the TSP doi¢hat it entails a more
abstract representation of distance, as an item’s weightvalue characteristics do not
directly correspond to location and distance as do thesciti¢hin the TSP domain. The
high-quality solution PS Map’s characteristics also diffe this domain. For example,
looking at the high-quality PS Map, one can see that, whettea3 SP domain had very
circular homogeneous regions, the knapsack domain hasgedar homogeneous regions.
| apply the same algorithms to this domain, with the exceptibthe SBE-trace algorithm,
which is only suitable for problem spaces of two dimensidrexpect that performance of
the algorithms could be worse in this domain, due to the greaimber of solutions and

smaller solution region size.

4.2.1 High-Quality PS Map

For the experiment, | defined a set of 22 items, each with kneeight and value
characteristics as shown in Table 4.1, from which to max@ntie value of the knapsack
while conforming to its maximum weight capacity. | defineceadditional item, varying
the weight and value from 1-100 inclusive to create 10,000)1problem instances. As a
baseline, | solved all 10,000 problem instances to genarhigh-quality PS Map. As with
the TSP domain, | applied SSS over the PS Map to reduce eramnsthe heuristic solver.

A visualization of the resulting two-dimensional PS Map epitted in Figure 4.6.
The majority of the solutions do not incorporate the new itemd are represented by the
largest blue region that encompasses most of the right aperygortion of the space of

problem instances. This is consistent with intuition aséhare the problem instances in



60
which the newly available item tends to have a high weightaiue ratio, thus making
it an unattractive option. At the upper-left region of thelplem space, the red region
indicates where the new item is added to the knapsack dus tweight falling within
the slack available in the current knapsack. Outside of ¢deregion, the weight of the
new item violates the weight constraint, and is not incluched the knapsack. However,
once the value of the item exceeds the value of the leasthalitam in the knapsack — the
sunglasses with weight 7 and value 20 — and is within the weighstraint, then the item is
included in place of the sunglasses. This is the solutioresemted by the magenta region.
As long as the weight of the new item is 11 dag or less (the sutmedflack in the knapsack
and the weight of the sunglasses) with value of 20 or gre#tervalue of the sunglasses),
the new item will be included in the knapsack. When the weiglgreater than 11, then
the new item is again excluded until its value becomes langeigh to displace a different
item. The light green region adjacent to the magenta regpresents the solution when
the new item with value 35 displaces the compass with weigtdrid value 35. Thus the
corners of the square regions correspond to the weightsalnds/of the items currently in
the knapsack because it is at these thresholds that theerevbécomes more beneficial to
include into the knapsack.

Following the generation of the two-dimensional PS Mapespnting the weight and
value dimensions of one additonal item, | then generate@ mamplex problem spaces by
adding two items of varying weight and value charactesstiicthe pool. Solving each of
the resulting problem instances — consisting of the stiims and two additional items —
resulted in a four-dimensional PS Map consisting of two Wweand two value dimensions.
| generated a high-quality PS Map, solving all 176,42 (x 212) problem instances.

Continuing, | generated an eight-dimensional problem sgaocsisting of a weight
and value axis for each of four variable items. The range efweight was 16 to 20

inclusive and the range of the value was 31 to 35 inclusivayltieg in a problem space



Object Weight | Value
apple 39 40
banana 27 60
beer 52 10
camera 32 30
cheese 23 30
compass 13 35
glucose 15 60
map 9 150
note-case 22 80
sandwich 50 160
socks 4 50
sunglasses 7 20
suntan cream 11 70
t-shirt 24 15
tin 68 45
towel 18 12
trousers 48 10
umbrella 73 40
water 153 200
waterproof overclothes 43 75
waterproof trousers 42 70

Table 4.1: Knapsack static item pool

61
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FIG. 4.6: High-quality PS Map for a knapsack problem. Best vieimezblor.

of 5% = 390, 325 problem instances. For each of the problem instances in rbiagm
space, | created the full problem instance by adding thebbeiitems indicated by the
problem instance to the knapsack. For example, if a probhstance in the problem space
is (wo, vo, w1, v1, W, U2, w3, v3), then | solved a knapsack problem consisting of the pool
of items in Table 4.1 plus items with weight and value scofgsug, vy), (wy,v1), (ws, vs),
and(ws, v3). | solved each of the knapsack problems and created a mafspmgeach of
the instances in the problem space to each of the calculatetios, thus composing the
PS Map.

Finally, | generated a second PS Map of an eight-dimensmoélem space as above,
but with the range of the weight expanded by one unit to 15 ta@€ulting in a problem

space of* x 5* = 810, 000 instances.
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4.2.2 Online Repair Baseline

The online repair method is a greedy solver that selectstédme with the highest

value-to-weight ratio.

4.2.3 Experiment Parameters

The knapsack problem tested the sampling-classificatiGh &ampling-classification
with active learning (SC+AL), support vector machine (SVMpport vector machine
with solution border estimation (SVM+SBE), and select froampled solutions (SSS)
methods. | did not perform experiments with SBE because,@squsly mentioned, it is
only applicable for two-dimensional domains, and, thusidsas useful in general cases.
The SC+Bias approximation algorithm is also omitted becatssagplication is specific
to the TSP domain’s city location parameters, and there tisarmear analog within the
knapsack domain.

In my experiments, | found that large regions of the problgrace were homoge-
neous, particularly as the values of the problem instancasable features increase. To
avoid positively skewing the results, | chose feature rarigdocus on the more heteroge-
neous regions of the problem instance space. For the twerdiional experiment, | limited
the problem space to problem instances with weights fror@, ir2lusive, and values from
50-70, inclusive. For example, when considering only orgitahal item, the first prob-
lem instance would consist of the static items plus an amlthii item with a weight and
value (1,50); the second problem would consist of the sitims plus an additional item
with weight and value (2,50); and so forth, accounting fopaksible combinations.

The approximation of all maps was done for sample rates ngrfgpm .0001 to .001.
For the SC+AL and SVM+SBE algorithms, the alpha rate was seftoThus, the initial

sample rate is half of the allocated samples, leaving halaétive sampling. As before,
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the evaluation of the approximation is the fraction of thiditytlost with respect to the

heuristically calculated heuristic solution.

4.2.4 Results & Analysis

The result of generating a high-quality PS Map is displayeBigure 4.6. The map
confirms an intuitive estimation of solutions: for problenstances in which the variable
item’s weight falls within the slack of the original solutipit is always included in the
knapsack. Once the variable item’s weight exceeds theadlaiklack, it is excluded from
the knapsack until it becomes valuable enough to repladeandurrently in the knapsack.
Moving along the weight dimension, the variable item reraamthe knapsack until it
becomes too heavy for its value to contribute to an optimiitem and is excluded from
the knapsack. This pattern repeats, creating a set of gofutesembling a staircase of
solutions, the edges of which represent a boundary in theisolspace between where the
variable item is included and excluded.

Figure 4.7 shows the results of applying the various PS Mapogmation algorithms
to a knapsack problem with one variable item. As one migheegpnost of the algorithms
trend towards zero utility loss as the sample rate increddes notable exceptions are the
SC and SSS algorithms. The SSS algorithm appears to promdevghat of a theoretical
best performance, with the other algorithms gradually eogmg. The SC algorithm ap-
pears to have a much slower convergence, as it still showssadbapproximately 20%
of the optimal utility at a 0.1 sample rate. Figure 4.8 hights the turbulent region up to
and including sample rate 0.01. Here it becomes apparenthin&C algorithm performs
comparably to the other algorithms at this low sample ratth thie AL algorithm initially
lagging behind. Figure 4.9 zooms in an additional time toltieer tenth of the sample
rate range, up to and including 0.001, showing even moregunmoeced performance differ-

ences. The SC, SVM, and SVM+SBE algorithms are generally gopgether, and the
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FIG. 4.7: Results of algorithms applied to a two-dimensionalsagk problem domain.

AL and SSS algorithms show a utility loss at a fairly constamél at opposite ends of the
performance range.

Figures 4.10, 4.11, and 4.12 show the relative rankingseoatgorithms for the each
of the preceding three figures. Although the quantitatifiedince in performance is lost
in these graphs, it does notionally illustrate the pretkakyorithm as the sample rate in-
creases. We again see that the AL algorithms initially pemfopoorly, but converges
quickly to become comparable to the SVM and SVM+SBE algorith@onversely, the SC
algorithm performance degrades and quickly becomes thet\atgorithm.

These results suggest that at very low sample rates, it ersageous to use SC rather
than AL, perhaps because SC’s broader coverage of the sppobtgém instances is more
useful than AL's targeted sampling for small sample rateoweler, at higher sample
rates, the higher number of samples available for AL's ahisample appears to provide
broad enough converage for the targeted sampling to ootperthe SC algorithm. It is
interesting that there is not the same level of distinctiebween SVM and SVM+SBE,

perhaps because SVM's classifications methods permit tbemation gained from a sam-
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FiG. 4.8: Results of algorithms applied to a two-dimensionalpsagk problem domain,
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FIG. 4.12: Ranking of algorithms applied to a two-dimensionapsack problem domain,
focus on sample rate .001 and lower.

ple to be applied more broadly, through the use of the maximargin plane. SC and
AL, on the other hand, limit the use of a sample’s informatiom very localized region.
The advantage of SVM+SBE over SVM is that the targeted sanmglpsto provide a more
precise hyperplane location. However, in the knapsack dgnmawhich the utilities of the
available solutions are similar, the benefit of the moreipeekyperplane location is not as
significant. Additionally, the number of samples availatdetargeted sampling may not
provide enough information to create a more precise mapgirticularly as the number of
dimensions increases.

Figure 4.13 shows the results of applying the PS Map appratkim algorithms to
a knapsack problem with two variable items. Because eachhtesra weight and height
characteristic, this results in a four-dimensional PS Magphis experiment, | limited the
range of the weight and value of the items to [14,24] and [3]) #espectively, due to the
computation time required to complete the experiment. Tiaplyshows a loss of utility

well under 1% at low sample rates. In this domain, the algor# appear to benefit from
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FIG. 4.13: Results of algorithms applied to a four-dimensiomagsack problem domain.

the higher dimensionality, because there is not a largee@se in the number of unique
solutions, leading to larger homogeneous solution redioaitsthe algorithms can exploit.
The spikes in the SVM+SBE results are the effect of high vaeahat is a function of
the manner in which SVM+SBE selects its sample points andtthetare of the knapsack
problem space. After the initial random sampling, SVM+SBEaugs additional samples
to find problem instances that correspond to borders betwaewise solutions. As a
result, all of SVM+SBE's subsequent samples will be in a nregibthe problem space that
is bounded by the initial sample set. Therefore, if theahgample does not bound a region
that represents all solutions, then no subsequent sampletisgover those solutions. In
this test case, the region had a total of four solutions. dfithitial sample discovered all
four, then the average fraction utility loss was close t@zé#rthe initial sample discovered
only three solutions and none were feasible with respechéounrepresented problem
instances, then the average fraction utility loss rose ooirzdt 0.15. If the initial sample

discovered only two solutions, the average fraction ytiliise to around .45, indicating
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FIG. 4.14: Results of algorithms applied to a four-dimensiomagsack problem domain,
highlighting low utility loss.

that the library did not have a feasible solution for almaat bf the problem instances.
This effect is less pronounced in the other algorithms. Foy SSS, and SVM, the
probability of excluding a solution region at a particulangle rate is smaller because, un-
like SVM+SBE, all of the samples are used in the initial sampéher than a subset. For
AL, which, like SVM+SBE, also reserves a fraction of its saegdor targeted sampling, its
subsequent sampling targets unrepresented regionshyireucing the probability that a
region of the problem space would remain unsampled. Thddagir is the domain, for
which not all solutions are feasible for a given problemanse. In contrast to TSP, in
which any solution can be applied to any problem instaneektfapsack problem domain
defines a hard constraint — total weight — that if violated splution renders it inappli-
cable to the problem instance. This characteristic leadartge losses of utility because

an infeasible solution has a utility close to z&rajhereas in a domain like TSP, a poor

3To avoid division-by-zero errors, the lowest utility in tkeapsack problem domain is 1.
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solution still does contribute some portion of the optimiity.

Figure 4.14 highlights the area of the graph where severhleoélgorithms appear to
have similar performance. Upon closer inspection, theeglpapid convergence of the SSS
algorithm is again visible. In this case, the other algonshtend asymptotically towards
zero utility loss as well.

Figure 4.15 puts these results in context against variogslin@s. The taller blue
bars represent the fraction of utility lost if one were towass a PS Map consisting of a
single solution. Because the high-quality PS Map had seVeti@us, there are seven cases
represented in the graph. In this scheme, it is possiblehkgienalty for plan infeasibility
could dominate the error results. The shorter red bar repteghe result of applying a
default solution to a problem instance, but allows the sygtechoose an alternate solution
if the default solution violates the weight threshold of kmapsack. In this case, a feasible
plan is randomly chosen. The upper dotted line representéréiction of utility loss of
SVM+SBE at a sample rate of .004. The lower dotted line repitssthe identical loss
of the online repair method as well as when sampling at a fa@0é using SVM+SBE.
The online repair method is a greedy solver that selectdehesiwith the highest value to
weight ratios. This demonstrates that the performanceeoB¥MM+SBE algorithm when

sampling at rate of .006 is roughly equivalent to that of thine repair technique.

4.3 Elevator Problem

The final domain, a elevator passenger transport problepnesents a more tradi-
tional planning domain. The TSP and knapsack domains cawisdered optimization
problems as well as planning problems. The elevator donadimihto the more traditional
realm of planning, in which one has to find steps to accomgligbal but there is no direct

mathematical representation of the domain. Also, this domsaexpected to be more chal-
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FIG. 4.15: Results of applying SVM+SBE to a knapsack with two \@dabjects. Dotted
lines indicate fractional utility loss for online repaid04 sample rate, and .006 sample rate,
as labeled. Bars indicate the fractional loss when usingauttehap consisting of either a
single default solution, or a default solution and the beshftl feasible solution.

lenging for the algorithms because the homogeneous regiankkely to be smaller and
less regular. Lastly, this domain represents another thaddstraction, in that the solutions
that are applied to the domain are not necessarily thosehbatlgorithms will operate
upon; the experiment parameters section describes this isgletail. | also apply the al-
gorithms to this domain, again with the exception of SBEdramtuition would suggest
that this domain is the most challenging of the three, du&éopbssibility of changes in
optimal plan being very sensitive to changes in the problestance configuration.

The elevator domain is used by ICAPS in its International Rilagn Competition. It
specifies several elevators, floors, and passengers, amdesthe planner to deliver the
passengers from their starting floor to their destinatioorflat the lowest possible cost.
Each elevator is either “fast” or “slow.” The slow elevatamnsur little cost for movement,

but more for stopping and starting. Conversely, the fasttes incur more cost for move-
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ment, but little for stopping and starting. The planner #jesc movements for the slow
elevators, which may stop at any floor within a defined comtigu“block” of floors, and
the fast elevators, which traverse the entire range of fldarsonly stop at block centers
and boundaries. For example, for a 12-floor problem with tiea £levators, one slow
elevator will travel between the bottom six floors, and theeotslow elevator will travel
between the top six floors. The fast elevator will travel tigioout the floors, but only stop
atfloors 0, 3, 6, 9, and 12. More formally, these featurespeeied with M and N param-
eters, which create a problem domain with M+1 total floorslotks of N+1 floors, with
fast elevators that may stop at floors that are multiple% ofrhus, in the example above,
M is 12 (13 floors from 0 to 12) and N is 6 (two blocks each of sefl@ors, one from O to
6 inclusive, the other from 6 to 12 inclusive).

Typically, each planner submitted to the competition tegggther the “optimal” or
“satisficing” track. The “optimal” track requires a planrnerfind the least costly means of
transporting the passengers to their destinations. Thisfisang” track does not require a
planner to find the optimal plan, but only to find a feasiblengladeliver all of the passen-
gers. My experiments focused on the optimal track and usedbbthe more successful

planners, the LAMA Planner (Richter and Westphal, 2010).

4.3.1 High-quality PS Map generation

For this domain, | generated a 12-floor and two 24-floor etevatoblems. The 12-
floor problem contained two seven-floor blocks (M=12, N=&)o tslow elevators, and
one fast elevator. Each problem assumed two passengervaméble starting position,
creating 169 problems to be solved with the LAMA planner. Q#defloor configuation
consisted of six five-floor blocks (M=24, N=4), and the othentained four seven-floor
blocks (M=24, N=6). The 24-floor problems vary the startiocdtion of three passengers,

thereby creating a high-quality map of 216 (i®) problem instances.
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Similar to other hard problems, planners in this domain empleuristics in order
to solve these intractable problems, and thereby beneffit femnoothing” as described in
Section 3.7: when generating the high-quality PS Map, e&theosolutions is evaluated
against each of the problem instances, and, if necessarpyrtiblem instance is assigned
a new solution. This prevents the odd phenomenon of the meEd®pproximate solution

having better utility than the “optimal” solution, which mnakew the results.

4.3.2 Experiment Parameters

My initial experiment used the 12-floor problem with thresgengers, two slow ele-
vators, and one fast elevator. | varied the starting postiaf two passengers, resulting in
a 169-instance problem space. In my initial experimentgteere too many unique plans,
and the algorithms could not create classifications fronsémepling. In addition, the plans
specified moving elevators from and to specific floors, makiddficult to apply plans for
one problem instance to a different problem instance. Toentfalk domain appropriate for
the algorithm, | abstracted the plans to transform a platrtitwves elevators to a specific
floor into a plan to move elevators to the location of a spegéissengerthus creating a
plan that can be applied to other problem instances. Impibytdhis means that the prob-
lem instances do not change; it is only the representatidgheofolutions to the problem

instances that are modified. For example, consider a rawvgtarthe steps

(move-down-slow slow0-0 n6 nO)
(board p0O slow0-0 nO nO nil)
(move-up-slow slow0-0 nO n3)

(leave pO slow0-0 n3 nl n0)

This plan specifies that, first, the slow elevator with id $)evmoves from floor 6 to

floor 0. Next, the passenger with id pO boards the elevatooat ), and the number of
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passengers increases from 0 to 1. Then the elevator mowvedlfyor O to floor 3, and in
the final step, the passenger leaves the elevator at floor hamimber of passengers in
the elevator decreases from O to 1.

In order to make this plan reusable, it is transformed to beergeneral:

elevator slow0-0 picks up passenger p0O

elevator slow0-0 drops off passenger p0O

The first step specifies that the elevator with id slow0-0 rsdeepassenger pQ’s cur-
rent location, and pO boards the elevator. The second ségpsipecifies that the elevator
moves to passenger’s desired destination and the passhsgetbarks. This general plan
can be applied to problem instances in which the elevatopassgengers are on floors other
than those assumed by the raw plan.

In addition to abstracting the plans, | normalize the plarthed differences in the
ordering of independent actions are not interpreted amdigilans. For example, consider

the plan below, annotated with action ids for ease of refsgen

1: elevator slow0-0 picks up passenger p0O
2. elevator slowl-0 picks up passenger pl
3: elevator slow0-0O drops off passenger pO
4

. elevator slowl1l-0 drops off passenger pl

Note that the only dependencies are that action 1 must oaforébaction 3, and
action 2 must occur before action 4. Thus, there are six tiatgslang representing the
same overall process. | normalize the plan by grouping legets many actions as possible

that are performed by the same elevator. In this case, thétirgsnormalization is:

41,2,3,4), (1,2,4,3), (1,3,2,4), (2,1,3,4), (2,1,4,36 €2,4,1,3)
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elevator slow0-0 picks up passenger pO
elevator slow0-0 drops off passenger pO

elevator slowl-O picks up passenger pl

elevator slowl-0 drops off passenger pl

My subsequent experiments used a 24-floor elevator problémsix passengers,
three of which had variable starting locations. One expeninused six fast elevators and

three slow elevators, and the other used four slow elevators

4.3.3 Online Repair Baseline

As a baseline, | implemented an online repair algorithm.derKrogt and de Weerdt
(2005) describe plan repair as consisting of removing astfoom the original plan that
conflict with or impede achieving the new goal, followed byded) actions to the origi-
nal plan that allow it to achieve the new goal. My baselinarmenteplanning algorithm is
consistent with this methodology. The new goal changestitialilocation of the passen-
ger, and thus I consider all actions that reference thaepaes as candidates for deletion.
van der Krogt and de Weerdt suggest that heuristics shouls&e to determine if a can-
didate action should be deleted. My heuristic is a simple doaly remove the candidate
action if it refers to a passenger whose starting positi@rhaved outside the range of the
elevator used by the action. For example, consider an abstiactionelevator slow0-0
picks up passenger pElevator slow0-0’s range is floors n0O through n6. If this@cis
applied to a problem instance in which pQ’s starting positeon7 or above, then the action
would be removed.

In the event that an action is removed, | proceed with thersécomponent of plan
repair, in which | add actions to the original plan to achi¢he new goal. There are

two alternatives for continuation: either remove all supsnt actions that refer to the
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passenger and replan the entire route, or preserve thegudrgeactions and replan the
passenger route to comply with the constraints implied leysiibsequent actions. In the
case of the former, | generate a solution to transport thegma®ers whose actions were
removed. In order to plan without the influence of the passengvhose actions have
already been established, the initial starting conditiohghose passengers is set to be
equal to their destination location. In the case of the Hattes final condition is set to
the location expected by the action that moves the passémggsrfinal destination. For
example, if an action moves p2 from n6 to N2 to complete itsrjey then the planner will

set the final destination to n6.

Algorithm 8 Unrefinement
1: for each passenger p in plardB

2: if first action referencing p is invalithen
3: remove all actions referencing p

4: end if

5. end for

Algorithm 9 Refinement

1: actions— generate plan for deleted passenger actions
2: parse and abstract actions

3: add actions to P

4: normalize P

4.3.4 Results

Results from the 12-floor elevator problem domain are digalag Figure 4.16. The
dotted lines represent the fractional utility loss of thredependent runs of the online
repair algorithm described in Algorithms 8 and 9. The sale$ represent the results of

applying the SVM+SBE approximation algorithm with variolgNs kernels and the SSS
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FIG. 4.16: Results of applying the SVM+SBE algorithm to a 12-flolevator problem
consisting of 2 slow elevators, 1 fast elevator, and 3 végiphssenger starting locations.
Dotted lines represent the utility loss of online repaidid&bnes represent approximations
using various alpha values.

algorithm. The results demonstrate that the SSS algorithsnldss fractional utility loss
than the online algorithms, but the various SVM+SBE algonglgenerally perform worse
than the online repair algorithms.

Figures 4.17 through 4.19 show results of all the algoritlamglied to the same 12-
floor configuration mentioned above. Again, the utility lesshuch greater in this domain
than in other domains. This is due to the small number of waplutions and the smaller
size of homogeneous regions in the space. This effect cabd®eed more explicitly by
examining the performance of the algorithms in two différ2f-floor configurations.

Results from the 24-floor elevator domain experiments arevshia Figures 4.20
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FIG. 4.17: Results of applying various approximation algorihito a 12-floor elevator
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FIG. 4.19: Results of applying various approximation algorihto a 12-floor elevator
problem consisting of 2 slow elevators, 1 fast elevator, anvariable passenger starting
locations, focus on sample rate 0.01 and lower.

through 4.25. These results show that for each problem amatign, SSS performs better
than SVM+SBE. Additionally, the algorithms perform bettgamst the problem configu-
ration with fewer elevators. This is not unexpected, givenrature of the problem space
of each configuration and the algorithms used. In all of thefigarations, the problem
spaces have homogeneous regions, but they are small, wdmchnake it difficult for an
SVM-based algorithm to converge and find the appropriatentdaties. However, those
small regions are not a disadvantage for the SSS algoriteoause it chooses a solution for
each unsolved problem instance, rather than attemptingdayfioupings like SVM+SBE.
This same logic is applicable to the generally better redoit the problem configuration
with fewer elevators. In the configuration with four slow\eleors, the homogeneous re-
gions are larger than in the problem space with six slow &esaand thus the SVM+SBE
algorithm performs better. Because there are fewer totatisak in the configuration with

fewer elevators, the SSS algorithm performs better as well.
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FIG. 4.20: Results of applying various approximation algorishto a 24-floor elevator
problem consisting of 6 slow elevators, 3 fast elevatord, &mariable passenger starting
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FiG. 4.21: Results of applying various approximation algorighta a 24-floor elevator
problem consisting of 6 slow elevators, 3 fast elevatord, Znariable passenger starting
locations of 6 total, focus on sample rate 0.1 and lower.
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FIG. 4.22: Results of applying various approximation algorishto a 24-floor elevator
problem consisting of 6 slow elevators, 3 fast elevatord, &mariable passenger starting
locations of 6 total, focus on sample rate 0.01 and lower.
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FIG. 4.23: Results of applying various approximation algorihto a 24-floor elevator
problem consisting of 4 slow elevators, O fast elevatord, Zinariable passenger starting
locations of 6 total.
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FiG. 4.24: Results of applying various approximation algorightm a 24-floor elevator
problem consisting of 4 slow elevators, O fast elevatord, Zimariable passenger starting
locations of 6 total, focus on sample rate 0.1 and lower.
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4.4 Overall Analysis & Discussion

The results generally show little difference between agphes at low sample rates.
In fact, the results tend to be highly volatile, perhaps du¢he high dependence on a
small number of samples, which leads to large variancesasdfutions available for the
algorithms to consider.

SC tends to be a reasonable approach, with the added beaéfitithvery simple to
implement. SC+bias shows the ability to improve on SC; howeat& not clear how to
tune its parameters to achieve consistently good resus.ciarly is the best performer in
the domains in which it was applied. However, my implemeotadf SBE is limited to two
dimensions. SSS tends to have the same results as SBE, bud 88%icomputationally
intensive, potentially leading to scaling issues in larggbfem spaces.

The use of the SVM approach was intended to mimic the idea of, 8BEadds the
ability to apply it to higher-dimensional domains. This amgch tended to yield reason-
able results. Augmenting SVM with additional points to doais the margin plane in
SVM+SBE did not appear to have the significant impact one nfigiie expected. This
may be because the test domains are fairly forgiving wheiyagpa less optimal solu-
tion to a problem instance. A domain in which there is a lapg@Emalty for less optimal
solutions may require an approach like SVM+SBE, which woutal/jgle a more accurate
classification of solutions to the problem instances. AltiloSVM and SVM+SBE did not
achieve the results of SSS or SBE, they do have the advantagegfless computationally
intensive and being applicable to domains of more than tweedsions.

The results of all algorithms appear to be sensitive to prmdomain characteristics.
In the case of TSP, for example, larger size and a smallettiggiahhomogeneous solutions
regions generally resulted in better performance by theralgns. This was also apparent

when comparing the performance of the algorithms in theousrelevator domain config-



85
urations. The algorithms were able to perform well where@sigainst configurations that
resulted in large homogeneous spaces in the solution space.

Most importantly, the results do demonstrate that thedeniqoes are useful as an
alternative to online plan repair. At the appropriate sanpte, performance tends to be
comparable, and sometimes better, than the online solulioa benefit of my approach is
that, assuming the ability to compute the necessary lilyvafgre the environment changes,
the new plan can be accessed much more rapidly than the oejpaérer can calculate a

new plan. These tradeoffs are discussed in more detail indkiechapter.



Chapter 5

DISCUSSION

This chapter presents considerations when using the pnogpace analysis (PSA)
algorithms described Chapter 3. It details some of the intgiceria for effective use of
the algorithms, discusses the tradeoffs between usingerdpair and PSA, and describes

other potential applications.

5.1 Algorithmic Assumptions

The effectiveness of the algorithms described in the pres/ahapters requires the ex-
istence of regions in the problem space with identical smhst Fewer regions and larger
region size allow the algorithms to be more effective. Thaswlemonstrated through the
experiments in which TSPs with fewer cities created fewaegdr homogeneous solution
regions and had better PS Map approximation. Likewise,atbevdomains with larger
N values — that is, larger blocks of floors — tend to be moreikgagproximated by the
algorithms. Conversely, increasing the number of fast ébesgpotentially increases the
number of regions, and, consistent with the results, besdess amenable to approxima-
tion by the algorithms.

Additionally, the algorithms tend to assume some tolerdacerror between neigh-

boring solution regions. Outside of solution border estiorg which attempts to math-

86
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ematically define solution borders, all of the algorithmsrehe approximate the border
between solutions. A solution space in which there is a latgiy difference between
neighboring solutions is likely to negatively impact penfance due to errors in determin-
ing the correct solution for problem instances near thosgiea border locations. If the
solution regions also are small, this would exacerbate tbklgm.

Thus, the algorithms rely on plan solution spaces contgihimmogeneous solution
regions which the algorithms attempt to exploit. Theseaegicould be considered a func-
tion of a problem domain’s objective function, as demorsttaby the justification for
SBE. Recall that the goal of SBE is to mathematically discovemdaries between solu-
tion regions by equating the objective functions of probiestances with differing variable
features. In this way SBE discovers problem instances fochvtwo solutions have equal
utility, thus constituting a boundary between two solutiegions.

As seen with SBE and its skeletal generation of solution regaundaries, a TSP’s
solution boundaries are defined by each pairwise set of ensglutions discovered by
an initial sample. Fewer unique solutions increases thebeumf problem instances per
solution; that is, it increases the size of the solutionolgi At a given sample rate, the
larger solution regions create a greater likelihood tharalom sample will include the
points necessary to identify the unique solutions withiaphoblem space.

Other problem domains, such as the elevator domain, do et éwplicit objective
functions, but do have problem configurations that can sawsame purpose. Within the
TSP domain, the number of fixed cities affects the number s$ifte unique solutions, a
fraction of which are represented in the problem space asisolregions. In the knapsack
domain, the set of static items affects the number of passibique solutions as well. As
the value of a variable item increases, it eventually sigukss a static item, resulting in a
new solution. For example, every problem instance in whikehvariable item is “worse”

than the “worst” static item will have a solution that incegithe static item rather than the
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variable itemt The problem instances for which the variable item is “bé&tfesin the static
item will result in a distinct solution. Each static item peats an opportunity for a new
solution. Thus, increasing the number of static items thrapaesent in the domain results
in more distinct solutions and thereby more solution reginil exist.

In the elevator domain, the number of blocks of floors afféieesnumber of solution
regions. In general, the number of steps for a passengerve fram its starting to final
destination is a function of the floor block that containssitgrting location. If abstracted
as previously described, there is potentially little difiece in the solution regardless of
where in the floor block the passenger starts, which itsglfests an identical solution for
several starting locations. The greater number of floorkddbereby leads to a greater
number of solution regions.

The general conclusion is that the static characteriste® la direct impact on the
number of homogeneous solution regions. This can be oldartbe previous examples
in which the static characteristics tend to serve as anatoliof a threshold that variable
features may cross and create a distinct solution.

In order to create these homogeneous regions, the axesruigel PS Map must be
chosen appropriately, such that the problem instancessaitilar solutions are grouped
together. In the TSP domain, indexing by the x- and y-coa@tgis of the variable location
resulted in homogeneous regions; in the knapsack domalexiing by the variable item’s
weight and value results in homogeneous regions; and inlévater domain, indexing
by the starting passengers’ starting location resultecdbmdgeneous solution regions. In
other domains, the surface attributes may not provide aaaguouping. For example, |
briefly investigated the problem space of a gaden Frontiers This game falls in the

category of worker placement, in which a player rolls atieasee and sometimes up to

1The evaluation of “worse” and “worst” depends on the heigrissed by the solver, but one example is
the ratio of weight to value.
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seven dice, and may choose to place dice of meeting ceriteni@iin a “docking station.”
For example, two or three of a kind is required for some daglstations; others require
three dice of consecutive increasing value (e.g. 3,4,5);@hers merely require a total
value of greater than seven. Particularly in the early ganpair is a valuable roll, and my
solver would generally create one class of plan for rollstammg a pair, and another for
rolls not containing a pair. In this domain, indexing by ttedue of the dice did not result
in homogeneous regions. Rather, a better indexing scherhesinase would have been a
derived boolean attribute, indicating “pair” or “not pair.

In addition to appropriate indexing, the plans must be abstd enough to create sim-
ilar plans that can form homogeneous regions. This is detraied in the elevator domain
in which the raw plans were abstracted to more generic plamsdexing and abstraction
result in homogeneous clumps, then an either an SBE apprmawsihjch objective func-
tions are equated, or an SVM+SBE approach could be apprepifatot, SSS could be a

viable alternative.

5.2 Tradeoff with Online Repair

These techniques allow a system to find solutions for largel®us of similar problem
instances, providing useful information in domains thandoallow for large amounts of
replanning time once an incident occurs, but in which thergome time before such an
incident. However, it is worth noting that in addition to @f# version online repair, a
system could also choose not to replan at all. For exampke sifstem determined that
the utility loss of the current solution with respect to thaspevent problem instance was
tolerable, then it could be reasonable to continue with tireenit solution. One could also
consider the external costs related to a new plan that isqpdite in the problem instance.

For example, a new plan could require more resources thazuthent plan, or there could
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be a cost in switching plans. In this case, if the cost of thve plan is greater than the loss
from the use of the suboptimal solution, then the systenddo@justified in not replanning.

However, assuming that the system does determine that #ralbeost analysis sup-
ports replanning, then it is worth considering how best tatteantage of the offline time
available to prepare for online events. Given that the samgik determines the accuracy
of the approximated map, a system would want to use the Higla@sple rate possible.
In the case where the system knows the expected time unsragdive event occurs, then
this technique could be used as a contract algorithm (&tber et al., 1999) — an algorithm

that is given a specific amount of time with which to find a solut- with a sample rate:

timeggfline

rate = — ,
tzmeinst * Ninst

wheretimeggiine IS the estimated time preceding the disruptive evénte,,,; is the time
required to solve a single problem instance, ang; is the total number of problem in-
stances in the space. (More intuitively, it is the amount fflin@ time divided by the
amount of time that would be required to solve every problestance.) In the case where
there is no knowledge of the length of time until the disrupevent, then the system can
definetimeqgiine @s a periodic “refresh” interval that triggers the generadf a new PS
Map, or use a real-time algorithm approach in which PS Mapganerated with succes-
sively larger sample rates until the time of the event.

Considering the test domains of the previous chapter, tidedfacan be made more
concrete. The typical time to solve a 100-city TSP with therlstic solver is three seconds
on a laptop and approximately 0.4 seconds on a high-perfarenanachine. The knapsack
problem required .016 seconds on a high-performance macaind the elevator domain
required 30-60 seconds on the same machine. Knowing thaintivee repair for a 100-

city TSP has a fractional utility loss of approximately .0%lanapping that to a SVM+SBE
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approximation sample rate of .002 in Figure 4.1, one cantitisese values to the equation.

timepffline

0§02=—
00 0.4sec % 10000

This results in &imeggfjine Of €ight seconds. Thus, if the system comparable to the
laptop’s capability has eight seconds or more with whichregpfan, then it is advantageous
to use PSA. Otherwise, plan repair is probably a better optir the knapsack domain,

using the online repair results from Figure 4.15, | obtamelquation

timeggfline
.016sec * 10000

.006 =

This results in &imegg(ine 0f 0.96 seconds. Of course, determining whether investing
the required lead time or the online repair time is preferauld be application-specific.
Figures 5.12 and 5.13 show the quickly increasing solves tiaquired as the problem sizes
grow larger, which would imply that the time required to gexte a PS Map would also
increase. In the same way, online repair time for increaginglem complexity would also
increase. This again points to a tradeoff between the isargaolution time needed for
PSA and the expected decline in the performance of onlingnep

A more comprehensive view of this tradeoff is shown in Figutel through 5.5.
Looking at the knapsack results, there does not seem to bepatially strong correla-
tion between the computation time and the utility loss. @itlee random nature of the
SC algorithm, it is not surprising that there is a lot of vaaa in the results. The other
algorithms show a stronger relationship between compmutditne and performance. This

is not surprising given the more directed nature of theserdhlgns.
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FiG. 5.1: Relationship between SC approximation computatioe t&ind map quality for a
two-dimensional knapsack domain.
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FIG. 5.5: Relationship between SVM+SBE approximation compaoietime and map qual-
ity for a two-dimensional knapsack domain.

Similar to the knapsack problem, the elevator domain shostsomg correlation be-
tween computation time and utility loss when the more sdaited algorithms are em-
ployed, as shown in Figures 5.6 through 5.10. However, dvemandom SC algorithm in
this domain seems to show a tendency towards better penaerat high sample rates.

It is worth noting the discrete characteristic of severahaf maps. This results from
very low variance in utility loss as a function of the discmee solutions. That is, the set
of solutions that the initial sampling discovers tends ttedaine the overall performance
of the approximation algorithm. This is most evident in tH&SSalgorithm, in which the
assignment of the solutions to unsolved problem instarsce®st directly determined by
the set of discovered solutions. Recall that in SSS, eachiwetsproblem is assigned a
solution by testing each previously discovered solutiomhe®approximation algorithms
attempt to avoid testing all discovered the solutions, butside of SC, these algorithms
still tend to use the information from the set of discoveretlisons in a consistent, al-

though not deterministic, manner.
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FIG. 5.6: Relationship between SC approximation computatioe tind map quality for a
three-dimensional elevator domain.

A similar effect explains the horizontal clustering appearié several of the maps.
This clustering is a function of low number of solutions i tspace, leading to low num-
bers of permutations of discovered solutions during thgalrsampling stage. Again, the
performance of the algorithms is sensitive to the solutdissovered. Thus the same per-
mutation tends to lead to similar performance of the alfaritresulting in clustering at a
specific utility loss measure.

This discrete characteristic and cluster effect appeasflequently in the elevator
domain, likely due to the larger number of solutions avddab the domain. Thus, the set
of discovered solutions is more varied.

This leaves the question of how to accurately estimate tpea®d performance is
for a particular sample rate. Recalling that the effectigsnaf the algorithms appears to
be a function of the number of size of homogeneous solutigions, it may be possible
to estimate the number of homogeneous solution regions &yiexng the characteristics

of the objective function or the problem configuration. Frample, an elevator domain
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FIG. 5.9: Relationship between SVM approximation computatioe tand map quality for
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guality for a three-dimensional elevator domain.
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with configuration M=12, N=6, with one slow elevator per tkpbas approximately two
solution regions: one in which the elevator in the first blpatks up the passenger, and one
in which the elevator in the second block picks up the passei@ne might then speculate
that the number of solution regions is approximat&ly assuming one slow elevator per
block and zero fast elevators. Determining the number aftgwi regions in other domains
is potentially less straightforward. For example, Figurglsshows PS Maps for several
randomly configured DTSPs. The unique solutions vary fraghtetio eleven.

As one experiment shows, the number of unique solutions inapgack PS Map is
approximated by the number of unique item weights in the &aek prior to the consider-
ation of the variable item. In the first experiment, | starnté@th a knapsack of static items
and generated a PS Map for several weight threshold valumsedeh weight threshold,
| found the knapsack solution and recorded the number ofuenitem weights. | then
introduced the variable item, generated the PS Map, anddeddhe number of unique
solutions.

In the second experiment, | kept the weight threshold comstad generated a PS Map
for several static item configurations. As in the first exymemt, | recorded the number of
unigue weight values in the static item set, added the Vieriedm, generated the PS Map,
then recorded the number of unique solutions in the PS Map.

The results of the first experiment demonstrate that the eumbunique solutions

per number of unique weights is approximately 1.02.

5.3 Scalability of Algorithms

The time complexity of the algorithms presented is polyradnm the size of the prob-
lem space and sample rate, as discussed in Section 3.8 antbsized in Table 3.1. The

overall complexity also depends on the complexity of getiragea high-quality solution,
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FiG. 5.11: Various high-quality PS Maps of five-city TSPs. Tatamber of unique solu-
tions varies from eight to eleven.
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FIG. 5.12: Time required to solve TSP problems of various sizés.average time to solve
400-city TSPs is less that required to solve 200-city TSPs.
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which is domain-specific. The largest challenge for algponiscalability is thus managing
the size of the problem space as the problem domains grovesniplexity. Parallelism, as
discussed in Section 6.2, is a potent mitigation approach.

In the TSP domain, each new location adds two dimensionse@tbblem space,
which quickly increases in size. As the problem space graggrithms that solve large
portions of the unsolved problem instances at once, ratieer individual problem in-
stances, become more important. The solution border esim¢SBE) and the support
vector machine (SVM) algorithms attempt to find solutionsat@e regions of the space,
and thus could be viable when considering more complex pmllomains. A similar eva-
lution would hold for knapsack problem, in which two dimeorss — one for weight and one
for value — are added to the problem space with every new tetmtust be considered. In
the elevator domain, each new starting or destination ilmecainly adds one dimension to

the space, so it grows more slowly.
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In terms of space complexity, storing a solution for eveglyem instance in a simple
map would quickly become unwieldy. Initially, moving to goresentation such as quad
trees, which represent regions of the space, would help. eMexythe best solution may
be to store models, such as those generated by the SVM and §8ithahs, rather than
mappings from individual problem instances to solutiongdsoAhe select from sampled
solutions (SSS) algorithm could be adapted to only storesthetions it finds and then
match a problem instance to a solution at runtime, theredglirig off online reaction time
to save storage space.

As the problem size increases, another consideration isuhg&er of samples re-
quired to reach a desired level of performance. Intuitiveélgppears that the algorithms’
improvement resembles a sigmoid function: as the numbearoptes increase, the perfor-
mance slowly improves until the number of samples reachesieat mass. At that point,
performance improve rapidly until the space is effectivagresented, making additional
samples redundant, and performance levels off. Howevesuldimagine a high degree of
variability due to the stochastic nature of taking samplemsfa problem space. For exam-
ple, if a sample happens upon a key solution, or provides s@yéformation regarding
a solution border, then that specific sample could greatfyrave the performance of that
instance of the algorithm. Thus it is possible that improgabhcould vary widely with
each sample, particularly in a problem domain in which sohg may have very different

utilities.



Chapter 6

CONCLUSION & FUTURE WORK

This dissertation introduced the conceptpdéin space analysiéPSA), specifically
the use of Problem-Solution Maps to rapidly allow a systeradjust its plan when it en-
counters a change in the environment. Ideally, a systemdnuuane a library of plans for
numerous possible changes in the environment, thereby béie to select one at runtime,
rather than replanning from scratch or engaging in onlipaire Chapter 3 provided ex-
amples of PS Maps, noted that a brute-force approach targesPS Map is not feasible,
and presented seven algorithms to approximate a PS Map. héper also presented a
complexity analysis of the algorithms. Chapter 4 describedraveling salesman problem
(TSP), knapsack problem, and elevator problem as test dsnaaid presented the results
of approximating PS Maps within those domains. The res@taahstrate that the utility
of the plans given by the approximated PS Map are frequewnthyparable to the utility
of the plans generated with online repair. Chapter 5 disclapproaches to determin-
ing the tradeoff between using PSA versus online repaitiquéarly when considering the
time available for PSA calculations. In addition to consing tradeoffs related to timing,
the chapter also detailed requirements for representiagtbblem instances within the

problem space. Namely,

e The problem space axes should be selected such that praidtances with identical

102
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solutions are adjacent.

e The solutions should be abstracted in order to create sisvlations, thus allowing

for homogeneous solution regions.

In the TSP, knapsack, and elevator domains, using the Varehtures of the prob-
lem instance as axes for the problem space was sufficiene&dechomogeneous solution
regions. However, one could imagine other domains in whielhe are homogeneous solu-
tion regions, but only with respect to a more complex functtbthe variable features, such
as with the example of the game described in Section 5.1 abrctse, axes that considered
higher-level or derived features, such as whether the ntsnbéled on the dice constitute
a pair or straight, would be much more useful than axes bas#geonumbers themselves.

Abstraction was not required for raw solutions to the TSP lamapsack problems.
However, the elevator domain did require abstraction andmigalization for the solutions
to be appropriate for the algorithms.

Chapter 5 also described the tradeoff between expected'penfice and offline plan-
ning time based on examination of problem characteristics.

Some thoughts for extending this work follow.

6.1 Continuous Domains

All of the evaluation domains presented in Chapter 4 assunigceete domain. For
example, all of the TSP city locations are at integer coatdis, and all of the knapsack
weights and values are whole numbers. To apply this work torgirtuous domain, one
mechanism would be to choose a tolerable granularity, teugge decimal places, and then
scale the representation of the domain accordingly, e.gltipty all the values by103.

Thus, a TSP domain with a problem space of size 100 x 100 wiity éocation at 20.334
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would be scaled to a TSP domain with@ x 10> problem space with a city location at
20334.

Itis possible that this mechanism would not be adequatedonaain requiring a very
high degree of granularity, or one that requires a truly iooi@us representation. In this
case, itis not possible to complete the PS Map via enumaeratier the unsolved problem
instances as done by the algorithms described in this tkéssr. However, it would be
possible to adapt several algorithms to work in a continutmrsain.

One modification required of all the algorithms is specifithte initial sampling step.
Each of these domains requires an initial sample, which bas lexpressed as a sample
rate. For a continuous domain in which there are infinite daspt would be required
to express the initial sample as a raw number of samples. Bpedific application, this
number could be estimated by dividing the estimated aMailaffline time by the time
required to solve a single problem instance.

The three SC-based algorithms — SC, SC+bias, and SC+AL — areiteat &r a truly
continuous domain because they require explicit enunwgratf each problem instance.
However, he following algorithms could be adapted to a tadptinuous domain because
they can be adapted to either classify a set of solutions @gi@mm which does not require
enumeration, or they can be applied at runtime when thefsppobblem instance becomes

known.

6.1.1 Select from Sampled Solutions (SSS)

The algorithm records the solutions found from solving alan sample of problem
instances in the problem space. The version described idiglsertation then assigns a
solution to each problem instance by evaluating the utilityach of the recorded solutions.
A continuous variant of this algorithm would not create d &6 Map, instead merely

testing the runtime problem instance against the set of kremutions. This version of the
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algorithm would be a bit slower at runtime since it would hawvevaluate several solutions
instead of merely executing a look up in a table. Howeves, dlgorithm could require less

offline planning time because it would not create a compl&&/Rp.

6.1.2 Solution Border Estimation (SBE)

The SBE algorithm performs a pairwise comparison of eacltisolit discovers dur-
ing the initial sampling, and calculates where the soluborders exist in the space. My
implementation of this is SBE-trace, which traverses thélgm instance space to find two
adjacent problem instaces with differing solutions. In atowous domain, the concept of
adjacency does not exist; however SBE-trace could still useay search to explore the
space between two solved problem instances that haveidgfsolutions. It would stop
searching when it discovers problem instances that arensgtime nearness threshold that
have different solutions.

Perhaps a better approach would be to return to the idediB&dapproach in which
the borders are calculated mathematically. | chose to ws8HBE-trace approach because
the algebraic expressions resulting from equating thectibgefunctions of the pairwise so-
lutions quickly became non-trivial. However, as numermgatimization packages become
better, it is possible that this expressions could be sadwetithe solution borders directly

calculated.

6.1.3 Support Vector Machine (SVM)

This algorithm uses the initial sampling of solved problerstances as a training set
to a support vector machine. The algorithm then uses theostygctor machine to classify
the unsolved problem instances. Similar to the SSS modditathis algorithm could be
adapted to a continuous domain by not solving each problaetance offline, but rather

by applying the support vector machine model to the problestaince discovered during
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runtime.

6.1.4 Support Vector Machine + Solution Border Estimation (SVM+SBE)

The discrete version of this algorithm searches the prolsigace for adjacent prob-
lem instances with differing solutions to add as trainingeaations to the support vector
machine. The modification for a continuous domain uses theesaodification described
for the SVM algorithm, and would preserve the model gendrate training and apply
it during runtime instead of solving every problem instapféne. The SBE component
would still use the same binary search to find problem ingsuvath differing problem

solutions that with within some nearless threshold.

6.2 Parallelization of PSA Algorithms

As domains become larger and computing resources becoutig/razailable, adapt-
ing the algorithms presented in this dissertation to a fErebmputing environment is a
natural target for future work. The initial sampling stepiefhis common to each of the
algorithms could be parallelized by dividing the plannipgse betweek processors and
allocating‘2“=emples samples to each processor. The centralized version of goeitaim
is a normally distributed random sample, and dividing thacepin the manner will not
affect that. However, the probability of obtaining a skevsagnple by chance would be
diminished by this stratification of the space.

Select from Sampled Solutions (SSS) is most readily pdild The planning space
can be divided between the available processors and a cdpg &hown solutions can be
provided to each. Each processor can then test its secttbe pfanning space against each
solution and emit the best solution for each planning insgaithe Support Vector Machine

(SVM) algorithm would likely have to include a centralizet@s where the support vector
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machine is trained with the initial sample. Then, similaB®S, a copy of the model could
be provided to each processor which would then classify @oseof the unsolved problem
instances.

The basic Sampling-Classification (SC) algorithm can be |giwdd by ensuring that
each processor has a copy of all the problem instances antiossl discovered by the
initial sampling. Then each processor can choose a set ofuatsproblem instances on
which to run the nearest neighbor step. The Solution Bordem@&son (SBE) algorithm
parallelization would also require that each processaivea@ copy of the initial sampling,
but also an assigned set of solutions to do the pairwise bestenation. It is not clear
if the final step, collection all the border information, asampling once in each region,
could be easily parallelized because determining the nsgimm all the borders appears
to be require all the border information to be in one location

SC+bias, SC+Active Learning (SC+AL), and SVM+SBE are more diffito par-
allelize because they utilize targeted sampling after tiiteal sample. At a minimum, a
shared memory that records the number of targeted samlieedito enforce the cap on
total samples. Each of the proecessors would also requice@anof the results of the ini-
tial sample. Then, similar to other parallizations, thelgeon space can be divided between

the processors to be classified by the respective algorithm.

6.3 Distributed Planning

Distributed planning in this sense is the problem of muttipidependent agents work-
ing to solve a single problem. Many solutions to distribupdainning problems involve
agent negotiation resulting in agent-specific plans thatrdmite to accomplishing an over-
all task. This agent negotiation could involve calculatdagent-specific PS Maps. These

PS Maps could take into account potential changes in theamwvient and provide the miti-
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gation plan. This would result in a coordinated responsetwal environmental changes,
as all agents would alter their actions in a manner that isistant with completing the
overall task, without the need for explicit communication.

Not specific to distributed planning, but an agent could usdblem space analysis
to preference it towards situations in which there are lessiple plans, resulting in less
volitile replanning. This would lessen the impact of a eomiment changes that could result
in multiple agents having to adjust their plans.

Finally, one could consider the PSA as a means to mitigatngiat faults in an agent.
Particularly when there is limited communication, it mayuseful to represent the actions
of peer agents as environmental uncertainty. PSA techsigo!d thus be used to help an

agent anticipate and plan for the potential unexpectedmrtf other agents.

6.4 Risk Assessment and Mitgation

PS Maps give a view of how frequently alternate plans occthiwia range of variable
attributes that are found in the scope of possible enviranitiganges. Particularly in cases
in which the alternate plan is very different from the cutrplan, this could be valuable
for allowing a system to prepare for switching to that planP8 Map could also assist in
identifying enviroment changes that are more likely togagthe need for an alternative
plan. If there are resources available to mitigate that gbathen this information would
allow them to be deployed most appropriately. For exampke AS Map were to demon-
strate that modifying a TSP route to accomodate new loca&igmore disruptive than
accomodating new location B, then steps could be taken thvempréhe need for location
A, or to acquire additional information about the possibibf location A, and perhaps
determine that preparing for that possibility is not neaegs

Another use of a PS Map would be to determine specific ategout which a change



109
is likely to cause trigger a new plan. One could observe atospecific axis of the PS Map
to determine the number of plans that occur in that dimensisnvell of the ranges of that
attribute for which specific plans occur. Returning to the ES8mple, if the x-axis of the
PS Map has more unique plans than the y-axis, one could sith@schanges in location
along the x-axis are risker to the stability of the currerdteyn plan. Similarly, one could
also compare the range of x values for which these new plang.df a specific plans tend
to occupy a large range of values in a dimension, rather tisamedier range of values, then

one could characterize the environment in which the syssampérating as less volitile.

6.5 Suboptimal Plans

The PS Map map assists in plan library creation by showingrtmemum number
of solutions required for optimal competency across thdlpra space. In the case of a
5-city DTSP map, as few as only eight solutions are requiregkesenting fewer than 7%
of the 120 (5!) possible solutions. However, for large peoh$, storing even 7% of the
possible solutions may not be feasible. One alternate appres to accept suboptimal
solutions in the library, particularly when one suboptimplian may replace multiple one or
more optimal plans. In this case, this map gives hints alEgions in which tolerating a
suboptimal plan over a large region, in place of severalgpfeom smaller regions, may be

beneficial in reducing the number of plans in the library.

6.6 Automated Plan Abstraction

Srivastava et al. (2008)’s work describes the process n$toaming a plan specific to
a single problem instance into a generalized plan that ifcgiybe to more than one prob-
lem instance. This is similar to the transformation dondinithe elevator domain testing,

although Srivastava et al. present a general approach chvapieration preconditions are
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examined, thus formalizing the conditions that can be gdizexd. This approach would
be likely be applicable when applying my work to additionamming domains. Within the

elevator domain, my approach was to transform steps such as

move elevator slow0-0 to floor 2

board passenger pl into elevator slow0-0
to
elevator slow0-0 picks up passenger pl

This allows the plan to be valid for any passenger locatidhiwielevator slow0-0’s range.
Srivastava et al.’s abstractions would include this levaransformation, and might also

consider a further generalization such as
elevator slow0-0 picks up a passenger within range
or even introduce loops such as

for each passenger p within range

elevator slow0-0 picks up passenger p

The primary result would be to create similar solutions, vidrich the appropriate
axes could create homogeneous solution regions. This vadsibdassist with reducing the

number of plans to store in the library.

6.7 Analysis of Problem Configuration and Sample Rate

As mentioned in Chapter 5, the ability to estimate the con&igon of the solution
region would be helpful in determining the appropriate skemate to increase the effec-
tiveness of the approximation algorithms. Future work daertail finding a correlation
between problem domain configuration and the sample ratestimauld be targeted for a

good approximation.
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6.8 Sampling-based Motion Planning

In robot motion planning, one way to reduce the computatiooenplexity of path
planning is to represent the area of operations as a setaktiscells and points, called
C-space Sampling the operations area will provide a subset of tistagltes that the plan
must have the robot avoid, effectively creating a plan walaxed constraints. A plan that
is not feasible with the relaxed constraints can be dischraed plans that are feasible can
be further refined.

The sampling in my algorithms is across full problem insemcthe sampling in
sampling-based planning is across the constraints of a idoitius always generating a
partially defined problem instance. This approach wouldduevalent to adding an addi-
tional index to the solution space that represented thetionts Because the obstacles are
simply binary — either the plan will consider the obstacletavill not — it may be more
efficient to use sampling-based planning to samplethieinary combinations rather than
addingn additional dimensions. This would support rapid replagnimcases in which an

obstacle appears or disappears during the course of plantexe

6.9 NASA

Smith (2012) describes a challenge that the Mars Rover doigdram faces in which
they must decide on a set of goals for a planner to considegreTére many constraints
to consider that would make for a challenging planning pFohlhowever, the key issue is
that the scientists do not have a way to evaluate the traglbeffveen the goals they may
consider. Smith proposes a solution in which scientistsasate to consider a variety of
plans from which they could get a sense of what goal comlminatare feasible. My work
could be suitable for this initial need. However, the secoadd that Smith describes is

plan explanation, in which scientists could ask why one goatcluded in the plan and
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not another, as well as what-if questions that allow thenxpiage tradeoffs between their
goals.

A PS Map for a planning domain shows the set of solutions abkalfor a set of po-
tential changes in the problem space. An interesting exiemsay be a PS Map that gives
information about the set of solutions two steps removethftbe current environment.
In principle, this could be accomplished by adding axes ¢égafoblem space representing
all two-hop changes, similar to a TSP PS Map that considers than one new location.
However, in more traditional planning domain, it may be jassto exploit the temporal

relationship between two-hop changes to create the map effariently.

6.10 Solver Validation

In addition to library generation, the SBE techniques suggesathematical frame-
work that proves the solution similarity of groups of prablenstances. When comparing
approximate maps to the high-quality maps, | found instarafesolution variety in re-
gions of the problem space that the SBE technique indicamadibe homogeneous. This
led me to develop a “smoothing” technique in which | run SS8rapecific groups of
instances to increase the accuracy of the high-quality m@bis approach could also be
used to compensate for the flaws inherent to a heuristicisbhsed on search. Future work
could examine confirming the solution of a given problemnictaby also solving problem
instances that are similar to it and returning the best mslutHHow to best mutate the given
problem instance to maximize the chance of finding a betletisa may be an interesting

research question.
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Configuration Unsmoothed Smoothed
M=24, N=4, 6 slow, 3 fast| 1072 506

3 variable

M=24, N=6, 4 slow, O fast| 590 198

3 variable

Table 6.1: Effect on smoothing on PS Maps created by a heussiver. “Configuration”
refers the elevator domain’s M and N parameters, the totadbau of elevators, and the
number of passengers with variable starting positions.stoothed” and “smoothed” is
the number of unique solutions prior to and after smoothing.

6.11 Concluding Thoughts

The challenge of rapidly finding good solutions to complesiypems is a theme com-
mon to many projects in my workplace. During the course o wrk, | have been happy
to discover numerous potential applications for some oifdbas presented here. | find my-
self particularly interested in related problems withie mart Grid and energy manage-
ment, and hope to explore solutions to problems in that donméiope that the approaches
| have developed here may be of some use or inspiration tosoéimeountering these types

of problems.



Bibliography

L. Bottou and C.-J. Lin.Large Scale Kernel Machingshapter Support Vector Machine
Solvers. MIT Press, 2007.

Justin Boyan and Andrew W. Moore. Learning evaluation fuorito improve optimiza-

tion by local searchJournal of Machine Learning Researchi77-112, 2000.

J. Bruce and M. Veloso. Real-time randomized path planningdioot navigationlIntelli-

gent Robots and System, IEEE/RSJ Internatia2@02.

Blazej Bulka. Analyzing, learning, and shaping planning sgac In ICAPS Docto-
rial Consortium 20062006. URLhttp://www.plg.inf.uc3m.es/icaps06/
dc-papers/paper4.pdf

Blazej Bulka and Marie desJardins. Useful topological fesgf planning state spaces. In
The Third North East Student Colloquium on Artifcial Intefigce (NESCAIO8)thaca,
NY, May 2 2008.

Ethan Burns, J. Benton, Wheeler Ruml, Sung Wook Yoon, and Minh BmAnticipatory
on-line planning. INCAPS 2012.

David Chapman. Penguins can make cakieMag., 10(4):45-50, 1989. ISSN 0738-4602.

Thomas M. Cioppa. Efficient Nearly Orthogonal And Space-Filling Experimental
Designs For High-Dimensional Complex ModelsPhD thesis, Naval Postgraduate

114



115
School, September 2002. URMhitp://www.nps.navy.mil/or/thesis2.
asp?offset=20&id=34

G. Clarke and J. Wright. Scheduling of vehicles from a centegdad to a humber of
delivery points.Operations Resear¢ii2(4):568-581, 1964.

Amanda Coles, Andrew Coles, Angel Gﬁﬁ)laya, Sergio Jinez, Carlos Linaresdpez,
Scott Sanner, and Sungwook Yoon. A survey of the seventmiatienal planning com-
petition. Al Magazine 33(1):83-88, 2013. URIhttp://www.aaai.org/ojs/

index.php/aimagazine/article/view/2392

Patrick R. Conrad, Julie A. Shah, and Brian C. Williams. Flex#tecution of plans with
choice. INICAPS 2009.

Corinna Cortes and Vladimir Vapnik. Support-vector networkéachine Learning 20
(3):273-297, 1995. ISSN 0885-6125. URittp://dx.doi.org/10.1007/
BF00994018 .

T. Cover and P. Hart. Nearest neighbor pattern classificali€lBE Transactions on Infor-

mation Theory13(2):21-27, 1967. ISSN 0018-9448.

Carmel Domshla, Erez Karpas, and Shaul Markovitch. To maxobitay max: Online
learning for speeding up optimal planning. Pnoceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence (AAAI-1(ages 1071-1076, 2010.

D. Ferguson, N. Kalra, and A. T. Stentz. Replanning with RRTsProceedings of the

IEEE International Conference on Robotics and Automatiday 2006.

Maria Fox and Derek Long. Hybrid STAN: Identifying and mamagcombinatorial op-

timisation sub-problems in planning. Rroceedings of the Seventh International Joint



116
Conference on Artificial Intelligence (IJCAI-Qlpages 445-450, Seattle, Washington,
August 2001.

B. E. Gillett and L. R. Miller. A heuristic algorithm for the vathe dispatch problem.
Operations Resear¢l22:340-349, 1974.

M. L. Ginsberg. Ginsberg responds to schoppers and chaphbiairersal planning: an

(almost) universally bad ide#&l Mag., 10(4):61-62, 1989a. ISSN 0738-4602.

M. L. Ginsberg. Universal planning: an (almost) univengddad idea. Al Mag., 10(4):
40-44, 1989b. ISSN 0738-4602.

Ramesh Gopal and George Starkschall. Plan space: Represeofareatment plans in
multidimensional spacdnternational Journal of Radiation Oncology, Biology, Rios

53(5):1328-1336, 2002.

Jorg Hoffmann. Local search topology in planning benchmarks empirical analysis.
In Proceedings of the Seventh International Joint Conferemc@rtificial Intelligence

(IJCAI-01), pages 453-458, Seattle, Washington, August 2001.

R. Holder, C. Pascale, M. Dale, R. Daley, E. Chong, V. Shestak 3iedel, and D. Mari-
nescu. Company Resource Management (CRM) Algorithm Desanifidiocument.

ARMS Final Report, December 2006.

Robert Holder. Improving a Plan Library for Real-time Systdssing Nearly Orthogonal
Latin Hypercube Sampling. IRroceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence pages 1804-1805. AAAI Press, July 2008. (Student abktract

Peter Jonsson and Christeadkstbm. On the size of reactive plans. AMAI-96 Proceed-

ings 1996.



117
George Konidaris. Autonomous Robot Skill Acquisition. Rmoceedings of the Twenty-
Third AAAI Conference on Atrtificial Intelligencpages 1855-1856. AAAI Press, July
2008. (Student abstract).

George D. Konidaris and A. G. Barto. Sensorimotor abstracsielection for efficient,
autonomous robot skill acquisition. Proceedings of the 7th IEEE International Con-

ference on Development and Learnidgigust 2008.

Y.-K. Kwok, A. A. Maciejewski, H. J. Siegel, I. Ahmad, and A.h&foor. A semi-static
approach to mapping dynamic iterative tasks onto hetemmencomputing systems.

Journal of Parallel and Distributed Computing6:77-98, 2006.

Gilbert Laporte, Michel Gendreau, Jean-Yves Potvin, artific Semet. Classical and
modern heuristics for the vehicle routing problemternational Transactions in Opera-

tions Research/:285-300, 2000.

Allan Larsen.The Dynamic Vehicle Routing Problei@hD thesis, Technical University of

Denmark, 2000.

S. LaValle and J. Kuffner. Randomized kinodynamic plannihgernational Journal of

Robotics Resear¢l20(5), 2001.

Nikolas List and Hans Ulrich Simon. Svm-optimization aneegiest-descent line search.

In In Proceedings of the 21st Annual Conference on Learningifi(@DOLT 20092009.

Brian Logan and Riccardo Poli. Route planning in the space optetaplans. Inn Pro-
ceedings of the Fifteenth Workshop of the UK Planning an@®&dmg Special Interest
Group (PLANSIG-1996pages 233-240, 1997.

Sean R. Martin, Steve E. Wright, and John W. Sheppard. Offlideoafine evolutionary

bi-directional RRT algorithms for efficient re-planning imwronments with moving



118
obstacles. IProceedings of the 3rd annual IEEE Conference on AutomattenSe

and EngineeringNew York, September 2007. IEEE Press.

Stewart Massie, Susan Craw, and Nirmalie Wiratunga. What riscolmpetence? In
Poster presentation at the twenty-third Annual Internagéilb@onference of the British

Computer Society’s Specialist Group on Artificial Inteliige 2003.

M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison ofehmethods for
selecting values of input variables in the analysis of oufmm a computer codelech-

nometrics 42(1):55-61, 2000. ISSN 0040-1706.

David McSherry. The case-recognition problem in inteligease-authoring support. In
11th Irish Conference on Atrtificial Intelligence and Cogreti8ciencepages 180-189,
2000.

David McSherry. Similarity and compromise. lim Proceedings of the Fifth International
Conference on Case-Based Reasonpapes 291-305. Springer, 2003. URttp:

/[citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.8116

Nilufer Onder and Martha E. Pollack. Contingency selectioplan generation. IRlan
Execution: Problems and Issues: Papers from the 1996 AAAISyanposium pages
102-108. AAAI Press, Menlo Park, California, 1996. ISBN 1-35-015-4. URL

http://citeseer.ist.psu.edu/onder97contingency.html

Harilaos N. Psaraftis. Dynamic vehicle routing problems.Bl Golden and A. Assad,

editors,Vehicle Routing: Methods and Studiékrth-Holland, 1988.

Harilaos N. Psaraftis. Dynamic vehicle routing: StatuspmdpectsAnnals of Operations

Research61:143-164, 1995.



119
A. Ram and J. C. Santamari Continuous case-based reasonidgtif. Intell., 90(1-2):

25-77,1997. ISSN 0004-3702.

Silvia Richter and Matthias Westphal. The LAMA planner: Goglcost-based anytime
planning with landmarkslournal of Artificial Intelligence Research (JAIRBP:127-177,
2010. URL http://www.informatik.uni-freiburg.de/"srichter/
papers/richter-westphal%-jair10.pdf

M. J. Schoppers. Universal plans for reactive robots in edigtable environments. In
John McDermott, editorProceedings of the Tenth International Joint Conference on
Artificial Intelligence (IJCAI-87) pages 1039-1046, Milan, Italy, 1987. Morgan Kauf-
mann publishers Inc.: San Mateo, CA, USA. URIlieseer.ist.psu.edu/

schoppers87universal.html

Marcel Schoppers. In defense of reactions plans as ca&iddag., 10(4):51-60, 1989.
ISSN 0738-4602.

Marcel Schoppers. Estimating reaction plan sizePdoceedings of AAAI'94pages 1238—
1244, Menlo Park, CA, USA, 1994. ISBN 0-262-61102-3.

Burr Settles. Active learning literature survey. TechniBaport 1648, University of

Wisconsin-Madison, January 2010.
David E. Smith. Planning as an iterative processAfAl, 2012.

Barry Smyth and Elizabeth McKenna. Competence models and dirgenance problem.

Computational Intelligencel 7:235—-249, May 2001.

Siddharth Srivastava, Neil Immerman, and Shlomo Zilb@rsteearning generalized plans
using abstract counting. Froceedings of the Twenty-Third AAAI Conference on Artifi-

cial Intelligence pages 991-997, 2008.



120
Roman van der Krogt and Mathijs de Weerdt. Plan repair as @msixin of planning. Iin

Proceedings of the 15th International Conference on Autech®lanning and Schedul-

ing (ICAPS-05)pages 161-170, 2005.

K. Q. Ye, W. Li, and A. Sudjianto. Algorithmic constructiorf optimal symetric Latin

hypercube designgournal of Statistical Planning and Inferenc®0(1):145-159, 1998.

Shlomo Zilberstein, Francois Charpillet, and Philippe Glaszg. Real-time problem-
solving with contract algorithms. IRroceedings of IJCAI-99ages 1008-1013, 1999.

M. Zucker, J. Kuffner, and M. Branicky. Multipartite RRTs fapid replanning in dynamic
environments. IProceedings of the IEEE International Conference on Robaditd

Automation 2002.








