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Finding endmembers is a fundamental task in hyperspectral data exploitation. 

Many Endmember Finding Algorithms (EFAs) have been proposed over the past 

years. Among all the algorithms, using maximal Simplex Volume (SV) as an optimal 

criterion for finding endmembers has been a major approach, which results in a well-

known algorithm, N-finder algorithm (N-FINDR). As an alternative to N-FINDR, 

Simplex Growing Algorithm (SGA) was further proposed to reduce computational 

complexity to avoid an exhaustive search for endmembers required by N-FINDR. 

Nevertheless, both N-FINDR and SGA still suffer from an issue of numerical 

instability when it comes to SV calculation via matrix determinant. The research 

conducted in this dissertation converts Determinant-based SV calculation to 

Geometric SV (GSV) calculation by taking advantage of geometric structures of 

simplexes. As a result, there is no longer a need of using matrix determinant to 



 

 

calculate SV. Instead, GSV calculates the volume of a simplex by multiplying its base 

and height of a simplex.  Many benefits can be gained from GSV, such as (1) no need 

of dimensionality reduction; (2) avoidance of numerical instability incurred by 

finding determinants of a non-square matrices; (3) no matrix inverses required; (4) 

significantly reduced computational complexity and computing cost; (5) easy 

implementation in hardware design. By virtue of GSV calculation several GSV-based 

EFAs can be re-derived to replace original Determinant SGA (DSGA), which include 

Orthogonal Projection-based SGA (OP-SGA), Geometric SGA (GSGA), and 

Geometric Convex Cone Volume Analysis (GCCVA). In order to facilitate real-time 

processing capability, these algorithms are further extended to their respective 

recursive counterparts which also result in Kalman filter-like EFAs.  
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Chapter 1: INTRODUCTION 

 

Hyperspectral signal and image processing is one of a fast growing area which 

bridges communities of remote sensing and signal processing through the fact that 

many problems arising in the former can be now reformatted and solved by the latter. 

Hyperspectral sensors were originally developed for defense applications but are now 

widely used in many other areas, including food safety and inspection, agricultural 

land use and planning, environmental monitoring, as well as intelligence surveillance 

and medical imaging. 

In the early development of remote sensing, multispectral imaging was primarily 

develop based on spatial information and thus can be considered as a spatial domain-

based technique due to low spectral and spatial resolutions A multispectral image 

consists of tens of discrete spectral bands, which does not provide as much 

information as a hyperspectral image does by using hundreds of contiguous spectral 

bands. In this case, multispectral image processing must rely on spatial information 

and correlation of image pixels to make up insufficient spectral information. With 

recent advances of high spectral resolution sensors hyperspectral imaging has become 

an emerging technique for data exploitation in a wide range of applications in remote 

sensing, many of which cannot be resolved by multispectral imaging.  
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1.1 Hyperspectral Imaging 

A hyperspectral image is an image cube shown in Fig. 1.1 which contains a 

wealth of data information that provides crucial spectral information which cannot be 

offered by multispectral imaging.  

 

Figure 1.1. An illustration of a hyperspectral image cube 

 

Hyperspectral images offer many great benefits that multispectral images cannot 

provide. In particular, material substances which cannot be visually identified or 

inspected by multispectral imagery with prior knowledge, can now be uncovered by 

hyperspectral imagery. These objects or targets of interest generally appear either as 

subpixels with targets embedded in a single pixel or as mixed pixels consist of a 

number of material substances. Specifically, their presence is generally unexpected 

such as man-made targets, anomalies or rare small targets with distinctive spectral 

characteristics. Under the circumstances, using only spatial information is not 

effective. 
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One of fundamental task in hyperspectral imaging is finding endmembers from 

hyperspectral data. According to Schowengerdt (1997) an endmember is defined as 

an idealized pure signature that can be used to specify a particular spectral class. Due 

to low spectral resolution provided by multispectral imagery the presence of 

endmembers is very difficult to be justified. However, it is no longer true in 

hyperspectral imagery due to its very high spectral resolution. As a consequence 

finding endmembers in hyperspectral imagery has become a major application which 

cannot be found in multispectral imagery. This dissertation is devoted to this specific 

topic and further designs and develops algorithms to accomplish this task.  

 

1.2 Structure and Organization 

This dissertation is organized to consist of seven chapters. Chapter 2 provides 

preliminaries for finding endmembers in hyperspectral imagery. Chapter 3 first 

investigates the issue of simplex volume calculation via matrix determinant and 

discusses simplex volume from geometry structure aspect. Chapter 4 develops two 

algorithms, Geometry SGA (GSGA) and Orthogonal Projection-based SGA (OP-

SGA) by taking advantage of geometry structure of simplex to ease computational 

complexity for calculating SV via matrix determinant and reduce the computing time 

of DSGA. In Chapter 5, recursive approaches to implement GSGA and OP-SGA are 

discussed and they further cut down computational cost. In Chapter 6, an issue 

encountered in convex cone volume analysis is discussed. And an algorithm, 

Geometric Convex Cone Volume algorithm (GCCVA), takes advantage of geometric 

simplex volume calculation to improve endmember finding based on convex cone is 
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proposed. And the recursive version of GCCVA is also implemented. Chapter 7 

summaries the research work done in this dissertation and discusses the possible 

future work. 
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Chapter 2:  FINDING ENDMEMBERS: PRELIMINARIES 

 

2.1 Introduction 

As mentioned earlier in Chapter 1, finding endmembers has become increasingly 

important in hyperspectral image analysis due to significantly spectral resolution 

improved on imaging sensors. Subtle material substances can be uncovered or 

revealed as a result of the sensor improvement. These substances generally provide 

vital and crucial information in image analysis, such as rare minerals in geology, 

toxic waste in environmental monitoring, vehicle in battle field, etc. For example, 

because of their rare populations endmembers are most likely to appear as anomalies 

and could be only detected with high spatial resolution information. As a 

consequence, finding or extracting endmembers becomes an important but challenge 

issue. 

Over the past years, many Endmember Extraction Algorithms (EEAs) or 

Endmember Finding Algorithms (EFAs) have been developed, such as Minimum 

Volume Transform (MVT) by Craig (1994), Pixel Purity Index (PPI) by Boardman 

(1993), N-finder algorithm (N-FINDR) by Winter (1999), Iterative Error Analysis 

(IEA) proposed by Neville et al. (1999), Convex Cone Analysis (CCA) firstly 

developed by Ifarraguerri and Chang (1999), Unsupervised Fully Constrained Least 

Squares (UFCLS) by Heinz and Chang (2001), Automatic Target Generation Process 

(ATGP) by Ren and Chang (2003), Vertex Component Analysis (VCA) by 

Nascimento and Dias (2005), Simplex Growing Algorithm (SGA) by Chang et al. 

(2006), and Independent Component Analysis-based Endmember Extraction 
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Algorithm (ICA-EEA) by Wang and Chang (2006), and an Alternative N-FINDR 

(AN-FINDR), statistics-based EEAs which include PCA-EEA and High-Order 

Statistics-based EEA (Chang, 2013). There are three major criteria used by these 

algorithms, Simplex Volume (SV), Orthogonal Projection (OP), and Least Square 

Error (LSE).  

      1) SV-based Methods: 

There are two types of SV-based methods proposed in the literature. One is to 

use maximum SV as an optimal criterion to find a simplex with the maximal 

SV embedded in the data space, in which case the vertices of a simplex with 

maximal volume are assumed to be endmembers. Algorithms developed for 

this type are called maximum SV-based EFAs where N-FINDR can be 

considered as its representative. The other type is to use minimal SV as an 

optimal criterion which finds a simplex with minimal SV embracing all data 

samples in which case the vertices of the resulting simplex are considered as 

endmembers. MVT is a representative of this type of algorithms. A major 

difference between these two types of algorithms is that the endmembers 

found by maximal SV-based methods are data sample vectors in the data 

while the minimal SV-found endmembers are not necessarily in the data. 

      2) OP-based Methods: 

There are also two types of algorithms that can be developed using OP 

criterion, both of which assume that endmembers to be found are most likely 

the data samples with maximal or minimal OP onto a set of particularly 

specified vectors. One is to use of random specified vectors to identify 
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potential endmember candidates. The representative algorithm is PPI. The 

other is to specify particular vectors of interest to identify endmember 

candidates. A representative algorithm is ATGP. 

      3) LSE-based Methods:  

The idea of this type of algorithms is to take advantage of full abundance 

constraints, Abundance Sum-to-one Constraint (ASC) and Abundance Non-

negativity Constraint (ANC), imposed on a simplex to find potential 

endmember candidates. In this case, the well-known abundance Fully 

Constrained Least Squares (FCLS) developed by Heinz and Chang (2001) is 

generally used to perform linear spectral unmixing so that endmembers to be 

found are those data sample vectors that produce the minimal unmixing LSE. 

A representative algorithm is FCLS-based EFA (FCLS-EFA) developed by 

Gao et al. (2015).  

This dissertation is mainly focused on design and development of SV-based 

algorithms. 

 

2.2 Endmember Finding Algorithms 

Endmember finding is a fundamental task in hyperspectral data analysis which 

attempts to search for data samples that can represent spectral classes present in the 

data. According to Schowengerdt (1997) such data sample vectors are called 

endmembers whose spectral signatures are pure in the sense of signature purity. With 

this interpretation many endmember extraction algorithms reported in the literature do 

not really extract endmembers. This is because endmember extraction assume that 
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endmembers must in the data. Unfortunately, this assumption is not guaranteed in real 

world problems. In other words, no endmembers can be extracted if endmembers are 

not included in real data. Under such circumstances, endmember extraction is no 

longer applicable. As a result, those algorithms which claimed to extract endmembers 

actually find endmembers. They should be considered as EFAs which look for 

potential endmember-like data sample vectors rather than true endmembers. For 

example, N-FINDR is one of typical EFA that finds endmembers-like data sample 

vectors as its name implies. More specifically, the found endmembers by N-FINDR 

are not necessarily pure vectors. It has been misleading in the literature to call it an 

EEA. Similarly, PPI is also an EFA not EEA. As a matter of fact, it does not extract 

pure signatures. Instead, PPI finds potential endmember candidates from which true 

endmembers must be extracted from its found endmember candidates manually by 

human intervention.  

As mentioned earlier, many EFAs were proposed based on three different criteria, 

SV, OP, and LSE. Among these three types, SV-based algorithm has emerged as a 

preferred criterion for EFA due to the properties of a simplex which imposes two 

physical abundance constraints, ASC and ANC (Winter, 1999). These two abundance 

constraints turn out to be an effective means of determining if a signature is pure due 

to its convexity. In other words, SV-based algorithms look for an appropriate set of 

vertices that can be specified by desired endmembers. The major idea of SV-based 

algorithms is to find a simplex which embraces as many data sample vectors in the 

data space as possible due to the fact that every data sample in the simplex can be 

expressed as a linear mixture of its vertices where MVT is one example representing 
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this approach. As an alternative another approach is to look for a simplex that is 

embedded in the data space with maximal volume where N-FINDR is one of such 

algorithms developed for this purpose. But, for a given number of endmembers, N-

FINFDR must find p endmembers with maximum SV simultaneously. Consequently, 

N-FINDR generally requires excessive computing time to conduct such an exhaustive 

search, which nearly impossible in practice. In addition, the requirement of 

determining the number of endmembers p makes N-FINDR impractical since this 

number needs to be settled by trial-and-error and N-FINDR must be repeatedly 

implemented for different values of p. To resolve this issue, Virtual Dimensionality 

(VD) was introduced to estimate reasonable number of endmembers (Chang, 2003; 

Chang and Du, 2004; Chang, 2013). 

Although the number of endmembers can be determined by VD, the high 

computational complexity is still an issue in implementing N-FINDR. To address this 

issue, N-FINDR has been redesigned to be implemented sequentially not 

simultaneously to ease its complexity. In particular, two sequential versions, called 

sequential N-FINDR (SQ N-FINDR) and successive N-FINDR (SC N-FINDR) (Wu 

et al., 2008; Xiong, 2011; Chang, 2013) are of major interest. Unfortunately, such 

sequential N-FINDR algorithms also suffer from a computational issue that all 

endmembers must be found sequentially even though they do not find all 

endmembers simultaneously. To further mitigate this dilemma SGA was developed as 

an alternative approach. Instead of finding all endmembers sequentially, SGA finds 

endmembers one after another by growing simplexes with vertices one at a time 

where each generated new endmember yields the maximal SV during the process of 
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growing simplexes. As a consequence, SGA significantly reduces computer 

processing time. Because of its design simplexes found by SGA is not a global 

optimal solution but rather a local optimal one. Nevertheless, extensive experiments 

reported in the literature SGA indeed produces very close results to those produced 

by sequential versions of N-FINDR.  

 

2.3 Simplex Growing Algorithm (SGA) 

The development of SGA arises from reducing highly computational complexity 

caused by an exhaustive search for endmembers performed by N-FINDR. Unlike N-

FINDR which generates endmembers set simultaneously to form a simplex with 

maximal volume, SGA grows simplexes vertex by vertex one after another until it 

reaches the number of endmembers needed to be found. A similar idea was also 

found in VCA which grows convex hulls one vertex at a time sequentially 

(Nacimento and Dias, 2005) and CCGA which also grows convex cones with 

maximal volume one vertex at a time sequentially (Xiong, 2010). 

The key to making SGA work hinges on the approach to select new vertices 

appropriately to enlarge growing simplexes. According to N-FINDR, a simplex 

formed by p endmembers is the simplex with maximum volume among all possible 

simplexes formed by any set of p data sample vectors for a given value of p. While 

using the same criterion, SGA grows the current k-simplex (0) (1) ( )
( , , , )

k
S e e e  to a 

(k+1)-simplex (0) (1) ( ) ( 1)
( , , , , )

k k
S


e e e e  by adding a vertex e(k+1) so that the new (k+1)-

simplex (0) (1) ( ) ( 1)
( , , , , )

k k
S


e e e e  yields the maximal volumes among all possible (k+1)-

simplexes (0) (1) ( )
( , , , , )

k
S e e e r  augmented by any other data sample vector r. The 
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detailed implementation of the above simplex growing process is summarized as 

follows. 

 

Simplex Growing Algorithm (SGA) 

1.  Initialization:  

(a) Let p be the number of endmembers to be generated. 

(b) There are two ways to generate random initial endmembers for SGA. 

(i) Randomly select a data sample vector as an initial endmember e(0) and set 

0k  . In this case, SGA is referred to as 1-SGA. 

(ii) Randomly select a pair of two data sample vectors (e(0),e(1)) to form as a 

random degenerate 1-dimesnional simplex which is a line segment 

connecting e(0) and e(1). Set k = 1. In this case, SGA is referred to as 2-

SGA. 

2.  At 0k   and for each sample vector r, we calculate (0) ( )( , , , )kV e e r  defined by 

(0) (1) ( )

(0) ( )

1 1 ... 1 1
det

...
( , , , )

( 1)!

k

k
V

k




 
 
 re e e

e e r                             (2.1) 

which is the volume of the (k+1)-simplex, denoted by (0) (1) ( )
( , , , , )

k
S e e e r , consists 

of vertices (0) (1) ( )
{ , , , , }

k
e e e r . Since the matrix 

(0) (1) ( )

1 1 ... 1 1

...
k

 
 
 re e e

 in (2.1) is not 

necessarily a square matrix, a dimensionality reduction technique such as PCA or 

MNF is required to reduce the original data dimensionality L to the dimension k.   

3.  Find e(k+1) that yields the maximum of (2.1), that is,  

 ( 1) (0) ( )
arg max ( , , , )

k k

r
V


e e e r                                    (2.2) 
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4.   Stopping rule: 

If 1k p  , then 1k k   and go step 2. Otherwise, the final set of   

 (0) (1) ( 1)
,, ,

p
e e e  includes the desired p endmembers. 

 

Since SGA described above requires finding SV through matrix determinants 

specified in (2.1), it is referred to as Determinant-based SGA (DSGA) to distinguish 

various versions of SGA which will be developed later in this dissertation. 

Although extremely high computing time for finding endmembers 

simultaneously can be reduced by introducing DSGA, both N-FINDR and DSGA run 

into an inevitable numerical instability issue, that is, the matrices of vertices used to 

calculate SV are generally not of full rank due to the fact that the number of 

endmembers, p, is relatively small than the dimensionality of the data L which is the 

total number of spectral bands. Under such circumstances, two commonly used 

approaches are suggested. One is to reduce band dimensionality to the dimensionality 

of simplex as L to p-1. Another one is to make use of Singular Value Decomposition 

(SVD) without band Dimensionality Reduction (DR). In the former case, with 

different transforms used for DR it usually results in different sets of endmembers 

(Schowengerdt, 1997; Wang and Chang, 2006). On the other hand, in the latter case 

SVD may cause numerical instability which will be discussed in Chapter 3. Most 

importantly, the found SV by both approaches are not necessarily true SV as shown 

in Chapter 3. The research work in this dissertation investigates this issue and further 

develops two new approaches, to be called Geometric Simplex Growing Algorithm 

(GSGA) and Orthogonal Projection-based Simplex Growing Algorithm (OP-SGA), 
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as alternatives to DSGA. These two methods take advantage of simplex geometric 

structures to find SV without performing DR or SVD and will be introduced in 

Chapter 4. 

 

2.4  Image Datasets 

In this dissertation, several algorithms will be proposed. In order to evaluate 

these algorithms, a set of synthetic images and two real image data, HYDICE scene 

and airborne Cuprite data, will be used to conduct experiments. There are six 

scenarios image designed and simulated based on the Cuprite image data. Based on 

the providing complete ground-truth information these synthetic images can be used 

for algorithm validation. With the full knowledge of these images, the strengths and 

weakness of each algorithm can be easily identified.  

 

2.4.1 AVIRIS Cuprite Data 

The first image to be used for experiments is a well-known Airborne Visible 

Infrared Imaging Spectrometer (AVIRIS) image scene, Cuprite data, which is 

available on the U.S. Geological Survey website http://aviris.jpl.nasa.gov/, shown in 

Fig. 2.1(a). This scene consists of 224 spectral bands with size 350 × 350 pixels and 

was collected over Cuprite mining site, Nevada, in 1997. Because the surficial 

geology is well understood and ground-truth in the form of mineral spectra is 

available in spectra library, Cuprite images are commonly used for analysis in the 

literature. Due to water absorption and low SNR in bands 1-3, 105-115, and 150-170, 

those bands were removed prior to analyses which results in a total of 189 bands used 

for experiments. In Fig. 2.1(b), five minerals, Alunite (A), Buddingtonite (B), Calcite 
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(C), Kaolinite (K) and Muscovite (M), are specified by pixels with white circle and 

labeled by A, B, C, K, and M, respectively, along with their reflectance spectra shown 

in Fig. 2.1(c) and radiance spectra in Fig. 2.1(d). Both reflectance and radiance data 

are used to validate algorithms in this dissertation. 
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  (c)                                                                                   (d) 

Figure 2.1. (a) Cuprite AVIRIS image scene (b) spatial positions of five pure pixels corresponding to 

minerals: alunite (A), buddingtonite (B), calcite (C), kaolinite (K) and muscovite (M); (c) Five mineral 

reflectance spectra; (d) Five radiance spectra 

 

2.4.2 Hyperspectral Digital Imagery Collection Experiment (HYDICE) 

The image scene shown in Fig. 2.2 was acquired by the airborne Hyperspectral 

Digital Imagery Collection Experiment (HYDICE) sensor in August 1995 from a 

flight altitude of 10000 feet with ground sampling distance approximately 1.5 meters. 

It has 210 spectral channels ranging from 0.4 µm to 2.5 µm with spectral resolution is 
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10 nm. The low signal/high noise bands, bands 1-3 and bands 202-210, and water 

vapor absorption bands, bands 101-112 and bands 137-153, were removed. Therefore, 

a total of 169 bands were used for experiments. It has size of 64 × 64 pixel vectors 

shown in Fig. 2.2(a) along with its ground-truth provided in Fig. 2.2(b).  

   

(a)                                     (b) 

Figure 2.2. (a) A HYDICE panel scene which contains 15 panels; (b) Ground truth map of spatial 

locations of the 15 panels 

 

There are 15 panels located on a grass field and arranged in a 5 × 3 matrix where 

there is a forest on the left edge of the scene and a road on the right edge of the scene. 

Each colored element in Fig. 2.2(b) is a square panel and denoted by pij with rows 

indexed by 1,2, ,5i   and columns indexed by 1,2,3j  . For each row i, the panels 

pi1, pi2, pi3 were mad from the same material but with different sizes that in first, 

second, and third column are 3m × 3m, 2m × 2m, and 1m × 1m, respectively. For 

each column j, the five panels p1j, p2j, p3j, p4j, p5j have the same size but differ from 

their making materials or paints. The 1.56m-spatial resolution of the image scene 

suggests that most of the 15 panels are one pixel in size except that the panels in the 

1st column with the 2nd, 3rd, 4th, 5th rows which are two-pixel panels, denoted by p211, 

p221, p311, p312, p411, p412, p511, p521. As a result, there are a total 19 panel pixels of 

interest, where red pixels (R pixels) are the panel center pixels, considered to be pure 

p211, p212, p22, p23  

p221 

p311, p312, p32, p33 

p411, p412, p42, p43 

p511, p52, p53 

p521 

p11, p12, p13 
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pixels, and the pixels in yellow (Y pixels) are boundary panel pixels mixed with the 

background, considered to be mixed pixels.  

 

2.4.3 Synthetic Image  

The five mineral spectra signatures in Cuprite radiance spectra shown in Fig. 

2.1(d) were used to simulate synthetic images in this dissertation. The synthetic 

images for experiments are in size of 200 × 200 pixels image with 25 panels of 

various sizes which are arranged in a 5 × 5 matrix and located at the center of the 

scene shown in Fig. 2.3. The 25 panels were simulated according to legends provided 

in Fig. 2.1 with five panels in each row having the same mineral signature and five 

panels in each column having the same size. Among the 25 panels are five 4 × 4 

pure-pixel panels for each row in the first column and five 2 × 2 pure-pixel panels for 

each row in the second column, five 2 × 2 mixed pixel panels for each row in the 

third column, and both the five 1 × 1 subpixel panels for each row in the fourth and 

fifth columns. The purpose of introducing five mixed pixel panels in the 3rd column 

and subpixel panels in 4th and 5th columns was designed to conduct a study and 

analysis on five mineral signatures with different mixing conditions in one pixel and 

five mineral signatures embedded in single pixels at subpixel scale. And the sample 

mean of the image in Fig. 2.1(a) was used as a background signature b to simulate the 

image background in Fig. 2.3. 
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Figure 2.3. A set of 25 panels simulated by A, B, C, K, M 

 

Table 2.1 and 2.2 tabulate the details of mineral composition in the 20 mixed 

pixels in 3rd column and 10 subpixels in 4th and 5th columns, respectively.  

 

Table 2.1. Mixed pixel panels in 3rd column 

Row Panel pixel composition 

1st 
P1

3,11=0.5A+0.5B 

P1
3,21=0.5A+0.5K 

P1
3,12=0.5A+0.5C 

P1
3,22=0.5A+0.5M 

2nd 
P2

3,11=0.5B+0.5A 

P2
3,21=0.5B+0.5K 

P2
3,12=0.5B+0.5C 

P2
3,22=0.5B+0.5M 

3rd 
P3

3,11=0.5C+0.5A 

P3
3,21=0.5C+0.5K 

P3
3,12=0.5C+0.5B 

P3
3,22=0.5C+0.5M 

4th 
P4

3,11=0.5K+0.5A 

P4
3,21=0.5K+0.5C 

P4
3,12=0.5K+0.5B 

P4
3,22=0.5K+0.5M 

5th 
P5

3,11=0.5M+0.5A 

P5
3,21=0.5M+0.5C 

P5
3,12=0.5M+0.5B 

P5
3,22=0.5M+0.5K 

 

Table 2.2. Subpixel panels in 4th and 5th column 

Row 
50% subpixels in 4th 

column 

25% subpixels in 5th 

column 

1st P1
4,1=0.5A+0.5b P1

5,1=0.25A+0.75b 

2nd P2
4,1=0.5B+0.5b P2

5,1=0.25B+0.75b 

3rd P3
4,1=0.5C+0.5b P3

5,1=0.25C+0.75b 

4th P4
4,1=0.5K+0.5b P4

5,1=0.25K+0.75b 

5th P5
4,1=0.5M+0.5b P5

5,1=0.25M+0.75b 

 

 

A 

100% 50% signal + 50% any other four  

50% signal + 50% background 

25% signal + 75% background 

B 

C 

M 

K 
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So, there are a total of 130 pixels present in the scene, where 80 pure pixels in 1st 

column, 20 pure pixels in 2nd column, 20 mixed pixels in 3rd column, five 50%-

abundance subpixels in 4th column, and 25%-abundance subpixels in 5th column. 

Once panel pixels are simulated as described above, two types of target insertion 

can be designed to simulate experiments for various application. 

 

2.4.3.1 Target Implantation (TI) 

The first type of target insertion is Target Implantation (TI) which can be 

simulated using three scenarios as it is described in the following. 

 

Scenario TI1 (Clean targets implanted into an image with clean background) 

Given a clean background image, clean targets simulated as mentioned earlier 

can be implanted into the background image by replacing their corresponding 

background pixels. The resulting image shown in Fig. 2.4(a) is a synthetic image 

which has clean targets implanted in the image scene with clean background. 

 

Scenario TI2 (Clean targets implanted into an image with noisy background) 

In this simulation, a noisy background image was generated by a specific 

background signature b corrupted by an additive Gaussian noise to achieve a specific 

signal-to-noise ratio (SNR) defined as 50% signature divided by the standard 

deviation of the noise (Harsanyi and Chang, 1994). The clean targets are implanted 

into the simulated noisy background image by replacing their corresponding 

background pixels. The resulting image shown in Fig. 2.4(b) is a synthetic image 

which has clean targets implanted in the image scene with noisy background. 
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                     (a) Scenario TI1                       (b) scenario TI2                      (c) scenario TI3 

Figure 2.4. Three scenarios designed for target implantation 

 

Scenario TI3 (Plus additive Gaussian noise into an image with clean targets 

implanted in clean background) 

The synthetic image was the same image simulated in scenario TI1 but with an 

additive Gaussian noise to achieve a specific SNR. As a result, the synthetic image 

has both clean targets and clean background corrupted by an additive Gaussian noise 

with a specific SNR as shown in Fig. 2.4(c). 

 

2.4.3.2 Target Embeddedness (TE) 

A second type of target insertion is Target Embeddedness (TE) which can be 

simulated as the following three scenarios. 

 

Scenario TE1 (Clean targets embedded into an image with clean background) 

Given a clean background image, clean targets simulated as mentioned earlier 

can be superimposed into the background image while keeping their corresponding 

background pixels. The resulting image shown in Fig. 2.5(a) is a synthetic image 

which has clean targets embedded in the image scene with clean background. 
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Scenario TE2 (Clean targets embedded into an image with noisy background) 

In this simulation, the background image of this scenario is the same one used in 

scenario TI2, that is, noisy background image simulated by a signature b with an 

additive Gaussian noise to achieve a specific SNR. Instead of replacing corresponding 

background pixels as it is done for TI2, the targets are actually embedded into 

background pixels. In other words, the background pixels are not removed to 

accommodate the implanted targets. In this case, the resulting image shown in Fig. 

2.5(b) is a synthetic image which has clean targets embedded in the image scene with 

noisy background. 

 

Scenario TE3 (Plus additive Gaussian noise into an image with clean targets 

embedded in clean background) 

The synthetic image was the same image simulated in scenario TE1 but with an 

additive Gaussian noise to achieve a specific SNR. As a result, the synthetic image 

has both embedded clean targets and clean background corrupted by an additive 

Gaussian noise with a specific SNR as shown in Fig. 2.5(c). 

 

           

                     (a) Scenario TE1                     (b) scenario TE2                      (c) scenario TE3 

Figure 2.5. Three scenarios designed for target embeddedness   
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Chapter 3:  GROWING SIMPLEX VOLUME ANALYSIS 

(GSVA) 

 

3.1 Introduction 

As mentioned in Chapter 2, maximal SV is commonly used as an optimal 

criterion for finding endmembers. There are several well-known simplex-volume-

based EFA such as N-FINDR, sequential N-FINDR (SQ N-FINDR), successive N-

FINDR (SC N-FINDR), and Simplex Growing Algorithm (SGA) which were derived 

from N-FINDR to ease computational complexity (Chang et al., 2006). In the 

literature, little work has been reported on how SV is calculated. Intuitively, it seems 

that determinant-based volume calculation could work in any situation. As a matter of 

fact, it turns out that the issue of calculating SV is much more complicated and 

involved than we thought. In this chapter we investigate this issue and focus on 

methods of finding SV from two different aspects, geometry structure and eigen-

analysis.  

There is one major issue in eigen-analysis-based SV calculation which requires 

finding determinants of matrices formed by vertices. Due to the fact that the number 

of vertices is generally smaller than its data dimensionality, SV calculation suffers 

from ill-rank issues in finding matrix determinant. In this case, a simplex must be 

calculated by an ill-ranked matrix. There are two different approaches. One is to find 

the matrix determinant via Singular Value Decomposition (SVD) without issuing data 

dimensionality. The other is to pre-process data by data Dimensionality Reduction 

(DR) prior to matrix determinant calculation. These two methods can be categorized 
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as eigen-analysis approach. From the geometric structure of a simplex viewpoint, SV 

can be derived by multiplying its base with its height. As a result, the volume of an 

(n+1)-simplex can be calculated by the distance or height to its base, which is an n-

simplex. This approach is the one will be explored in this dissertation. 

 

3.2 Criteria for Simplex Volume Calculation 

3.2.1 Geometric Structure Approach 

In geometry, a simplex, also called a hyper-tetrahedron, is the generalization of a 

tetrahedral region of space to arbitrary n dimensions. A k-dimensional simplex or 

(k+1)-vertex simplex Sk is a k-dimensional convex hull with k+1 vertices (Stein, 1996; 

Wong, 2003; Friedberg et al., 2003; Berger, 2010). Thus, a single point could be 

considered as 0-simplex and 1-simplex is the line segment between two specified 

points. Moreover, 2-simplex is a triangle, 3-simplex is a tetrahedron, and 4-simplex is 

a pentachoron. 

Suppose k+1 points 0 1, , , n

k m m m  in an n-dimensional space are affinely 

independent, which means 1 0 0, , k m m m m  are linearly independent, a k-

simplex Sk can be expressed by the set of points as 

0 0 1 1

0

| 0,0 , 1
k

k k k i i

i

S i k    


 
        
 

m m m .                (3.1) 

The content or hyper-volume (hereinafter referred to briefly as volume) of a 

simplex is denoted as V(Sk), which can be the length of 1-dimensional simplex, the 

area of 2-dimensional simplex, the volume of 3-dimensional simplex, and so on. It is 
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noted that any vertex of a k-dimensional simplex can be regarded as the apex of a 

pyramid on a (k-1)-dimensional base formed by k vertices (Wong, 2003).  

    

        (a)                                                                  (b) 

Figure 3.1. (a) 3-dimensional simplex formed by three edge vectors v1, v2, v3 (b) 3-dimensional 

parallelotope (or parallelepiped) formed by the same edge vectors 

 

Theorem: Volume V(Sk) of a k-simplex is 
1

!k
 of the volume V(Pk) of the 

corresponding parallelotope, i.e.
1

( ) ( )
!

k kV S V P
k

 . 

   Proof. Let V(Sk-1) denotes the volume of the base and h the perpendicular 

distance (altitude or height) of the apex from the subspace containing the base. The 

volume V(Sk) of the pyramid is given by 

1

1 1
0

( ) ( ) ( )
k

k
h

k
k k k

h
k

h h
V S V S dh V S

h k



 


 
   

 
                            (3.2) 

through integral calculus as in Fig. 3.1(a). Therefore, V(Sk) can be renewed by the 

previous V(Si-1) for 1 i k   recursively as 

1 1 1

1
( ) ( )

!

k
k k k k

h
V S V S h h h

k k
    ,                                   (3.3) 

v1 

v2 

v3 

v
1
 

v
2
 

v
3
 

h 
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where h1 is the distance between the first two vertices. Considering a k-dimensional 

parallelotope Pk decided by k edge vectors which has the first base h1 and k-1 heights 

h2,…, hk perpendicular to base, then the volume of Pk  is 
1

k

i

i

h


 . Therefore V(Sk) in 

(3.3) can be rewrite as 

1

1 1
( ) ( )

! !

k

k i k

i

V S h V P
k k

  .                                         (3.4) 

By (3.3) and (3.4), it is proved that volume of a k-simplex V(Sk) is 
1

!k
 of the volume 

of the corresponding parallelotope as shown in Fig. 3.1(b). The interpretation of 

volume calculation for 3-dimensional parallelotope is in Fig. 3.2. 

 

Figure 3.2. An interpretation of the volume calculation for 3-dimensional parallelotope 

 

3.2.2 Eigen-analysis Approach 

Now considering an n-simplex Sn in an n-dimensional space with n+1 vertices, 

i.e. 0 1, , , n

n m m m . 

Corollary: The volume of the parallelotope Pn, which is determined by n edge 

vectors 1 0 2 0 0, , , n  m m m m m m , corresponding to Sn, is the absolute value of 

det(ME) with its edge matrix  1 0 2 0 0, , ,E n   M m m m m m m  as 

h1 

h
2
 

h
3
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    1 0 0( ) det det , ,n E nV P    M m m m m .                       (3.5) 

 

Thus, by (3.4) and (3.5) the volume V(Sn) of n-simplex Sn can be expressed as 

 
1 1

( ) ( ) det
! !

n n EV S V P
n n

  M .                                      (3.6) 

By elementary column operation of matrix and properties of the determinant for block 

matrix, it can be obtained that  

  

0 1

0 1 0 0

1 0 2 0 0

1 11
det

1 0 0
det

det , , ,

n

n

n

  
  
  

  
      

   

m mm

m m m m m

m m m m m m

                                (3.7) 

According to (3.7), V(Sn) is equivalent to 

  1 0 2 0 0

0 1

1
( ) det( )

!

1
det , , ,

!

1 111
det

!

n E

n

n

V S
n

n

n



   

  
   

  

M

m m m m m m

m mm

,                            (3.8) 

which is a well-known approach to calculate volume of simplex via determinant of its 

vertex matrix in linear algebra. It is worth noting that volume derived by (3.8) is only 

available while ME is a square matrix since determinant is defined as a value 

associated with a square matrix. More details of (3.8) can be found in (Stein, 1996). 

In order to obtain determinant easily and efficiently, some properties of 

determinant are recalled. 
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Properties: Let A and B be an n n  square matrix, there are some properties of the 

determinant det(A): 

1. det( ) det( )det( )AB A B  

2. det( ) det( )nc cA A where c is a scalar 

3. 
1

det( )
n

i

i




A where 
i  is eigenvalue of A 

4. 
0

det det det( )det( )
0

      
       

      

A A B
A C

B C C
 

5. By LU factorization,  

1
det( ) | | | | | || || |

n

iii
u


    A A PLU P L U  

where L is a lower triangular matrix and U is an upper triangular matrix, both of 

which given by  

21

1 2 3

1 0 0 0

1

0 0

1n n n

l

l l l

 
 
 
 
 
 

L , 

11 12 13 1

22 23 2

( 1) ( 1)

0

0 0 0

n

n

n n n n

nn

u u u u

u u u

u u

u

 

 
 
 
 
 
 

U , 

and P is a permutation matrix to be used for pivoting so as to achieve numerical 

stability during the LU factorization. 

 

In theoretical view, a simplex Sk is often defined in a k-dimensional space with 

k+1 vertices and volume V(Sk) can be easily calculated via (3.6). However, it stays not 

true in reality. To find a simplex Sk in n-dimensional space with n larger than k is 

more common instead. As a result, several comments on calculating SV via (3.6) are 

worthwhile. 
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1. Since a simplex Sk with k+1 vertices in n-dimensional space has only rank of k at 

most which is generally much smaller than full spectral dimensionality, n. 

Therefore, calculating SV via (3.6) generally requires dimensionality reduction to 

reduce n to k to find the DR-determinant of a non-square matrix. However, it is 

not necessary while using (3.1) to derive V(Sk).  

2. Once a simplex Sk in n-dimensional space is reduced to k-dimensional space, the 

matrix ME used to calculate V(Sk) in (3.6) becomes a k k  square matrix. And 

 det EM  can be calculated via its properties. Nevertheless, it should be noted 

that the found volume after DR does not guarantee to be the real volume of Sk but 

rather an approximation smaller than its original volume. 

3. When no DR is applied we must deal with the issue of undefined determinant for 

a non-square matrix in (3.6). In this case, SVD can be used for accomplishing the 

purpose. Briefly, the SVD can be applied to any nm  matrix whereas eigenvalue 

decomposition can only be used to non-singular square matrix. Applying an SVD 

of ME, two relations are held. 

(1)  * * * * * *

E E      M M V U U V V V  

(2)  * * * * * *

E E      M M U V V U U U  

Consequently, the columns of V are eigenvectors of *

E EM M , the columns of U 

are eigenvectors of *

E EM M , and the non-zero elements or singular value of   are 

the square roots of the non-zero eigenvalues of *

E EM M  or *

E EM M  (Kwizera, 

2010). Thus, let us define a pseudo-determinant of ME, det( )E


M , as 
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       
1/2

1/2 1/2
* *

0 0

det det det
i i

E E E E E i i

 

 

   

 
     

 
 M M M M M        (3.9) 

where 
i  is the non-zero eigenvalues of *

E EM M  or *

E EM M  and 
i  is the 

corresponding singular value of  . Unfortunately, V(Sk) calculated by (3.9) does 

not provide real volume of simplex Sk. There is no such problem by using (3.3). 

 

Theoretically, both (3.3) and (3.8) yield the same volume while finding volume 

of n-simplex in n-dimensional space. When it comes to practical implementation they 

do not produce identical answers due to the strategies used to solve the issue of 

nonexistent determinant of non-square matrix as mentioned above. However, using 

(3.3) does not have such problem. 

 

3.3 Numerical Results 

In this section, a comparison of volume calculation using various approaches 

described in section 3.2 is conducted. Let us define the volume calculated by (3.3) as 

Geometric Simplex Volume (GSV), the volume calculated by determinant as 

Determinant Simplex Volume (DSV), and the DSV with DR or SVD applied as DR-

DSV volume or pseudo-DSV. Theoretically, GSV and DSV can be shown to be 

identical. DR-GSV is also computed for comparison. The DR-GSV is derived by 

reducing the dimensionality of Sk in N-dimensional space to k-dimensional space as 

Sk
# and then apply (3.3) to Sk

#. 

To compare the volume value of simplex among these methods, we first use two 

simple 2-simplexes and a 3-simplex all lied in 3-dimensional space to illustrate their 
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differences and then a real hyperspectral image scene is also considered for 

comparative analysis.  

3.3.1 Mathematical Examples 

First of all, three different simplexes in a 3-dimensional space are generated. A 

triangle is formed by three points randomly generated in a 3-dimensional space as 

shown in Fig. 3.3(a). The three vertices are specified by coordinates, (7,7,7), (6,10,2), 

(7,2,1). And a special case of a 2-simplex embedded in a 3-dimensional data space 

known as a regular 2-simplex or a regular triangle with equal edge length 1.633 is 

also generated for comparison in Fig. 3.3(b) where the three vertices are specified by 

coordinates, (1,0,0), (-0.3333,0.9428,0), and (-0.3333,-0.4714,-0.8165). Finally, an 

arbitrary 3-simplex is plotted as a pyramid in Fig. 3.3(c) with vertices specified by 

coordinates, (8,2,4), (7,3,8), (4,7,7), (4,0,3). Unlike the first two simplexes in Fig. 

3(a-b) which are more realistic where the dimensionality of simplex is less than the 

dimensionality of its ambient space, this 3D-simplex has the same dimensionality 

with its ambient space. Comparisons for volume calculated by various volume 

calculation methods for the three examples are tabulated in Table 3.1. 
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Figure 3.3. (a) A triangle (b) a regular triangle (c) a 3D-simplex with one vertex in origin; in 3D-space 
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As we can see in Table 3.1, volumes calculated via three methods, geometric 

method, determinant-based method, and pseudo-determinant method, all yield the 

same value while the dimensionality of simplex equals to the dimensionality of its 

ambient space. In this case, no DR is needed and SVD could be used as an alternative 

method to obtain the volume. But this result does not support the usage of SVD for 

calculating volume of simplex in a different dimensional space. The GSV still yields 

the same volume as DSV while the dimensionalities of simplex and ambient space are 

different where the Pseudo-DSV is not consistent. 

 

Table 3.1. A comparative analysis for volume among various methods of simplexes in 3-D space 

Method 

S 
GSV DSV Pseudo-DSV PCA-GSV PCA-DSV 

Arbitrary 2-simplex 

(Fig. 3.3(a)) 
21.8518 X 155.5426 21.8518 21.8518 

Regular 2-simplex  

(Fig. 3.3(b)) 
1.1547 X 1.2172 1.1547 1.1547 

Arbitrary 3-simplex 

(Fig. 3.3(c)) 
15.8333 15.8333 15.8333 X X 

 

Another experiment is studied on a real image scene which is HYDICE data 

shown in Fig. 2.1.  

 

3.3.2 Real Image Experiments 

To compare the volumes calculated by these three methods, we first applied SGA 

to find a set of endmembers on this image. The simplex formed by the set of 

endmembers has 170 vertices in 169-dimensional space. Since the impact which 

occurred by a simplex with lower dimensionality than its ambient space is desired, we 

reformed the simplex using these set of data sample vectors as Sk, k = 0, 1,…, 169, by 
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the order of the found endmembers. In other words, S0 is formed by a single vertex v0, 

S1 is a line segment formed by two vertices v0, v1, and Sk consists of k+1 vertices v0, 

v1, …, vk. And the comparison for volume of simplex Sk is shown in Fig. 3.4. 

 

(a)                                                                                 (b) 

Figure 3.4. SV comparison (a) GSV versus PCA-DSV (b) PCA-GSV versus PCA-DSV 

 

By examining the results in Fig. 3.4, some interesting observations are worth 

being mentioned. First, the volume calculated by DR-DSV and GSV would be 

different, especially when the number of vertices is high. Although in the 

mathematical examples as shown in Table 3.1 volumes calculated by DR-DSV in a 

3D space were identical to GSV. However, there is a numerical issue needed to be 

addressed as the number of vertices and number of dimensions are increased. Second, 

the volume using both methods shows a trend that the volume was increased until it 

reached a peak at a specific number of vertices and then it began to decrease. This 

specific number occurs when the height, which is the distance from the newly 

generated vertex vk to the previous formed simplex Sk-1 denoted as hk, is less than the 
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dimensionality of simplex Sk, i.e. 1kh

k
 . The peak occurs when the 73th and 78th 

endmember was found without and with DR performed respectively. 

 

Figure 3.5. Comparisons of accumulated computing time required by GSV and PCA-DSV 

 

A major advantage of GSV over DSV is that GSV calculates SV which only uses 

mathematical products. This cannot be done by using DSV since the volume of Sj can 

only be calculated one at a time. Fig. 3.5 shows the accumulated time required by 

GSV to calculate SV by multiplying height h(Sj+1) with the SV of the previous j-

vertex simplex Sj compared to the accumulated time required by PCA-DSV where the 

computing time was obtained by an average of 100 trials. The experimental results 

show that GSV can significantly reduce the computing time of SV calculation. 

To further compare the performance for each method, a comparative of the 

computational complexity is in Table 3.2. Let us denote that p is the number of 

vertices and L is dimensionality of the ambient space. 

 

Table 3.2. Computational complexity of each SV approach 

Method GSV DSV PCA-DSV Pseudo-DSV 

Computational 

complexity 
O( )pL  3O( )p  

2 3O( ) O( )pL p  
2O( )p L  
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In order to calculate the volume of a simplex by GSV, only inner product 

operators are needed, which has complexity O( )pL ; compared to using DSV which 

has complexity with 3O( )p . In real world problems, the high data dimensionality is 

always an issue. To overcome this issue, a DR technique or SVD must be applied to 

the calculation. In this case the computational complexity becomes 2 3O( ) O( )pL p  

if PCA is performed for DR, and 2O( )p L  is requested to perform SVD process. 

A major advantage of GSV over DSV is that GSV provides ability in finding 

volumes from its previous found simplex in (2.2). This cannot be accomplished by 

the determinant-based method. Considering a desired simplex Sk to be found with k+1 

vertices v0, v1, …, vk, where Sk-1 with vi, i = 0, 1,…, k-1, is known or found in previous 

process, an inner product could be applied to find the distances from all other data 

samples to Sk-1 simultaneously. This cannot be done by using DSV since the volume 

of Sk can only be calculated one at a time.  

 

3.4 Conclusions 

This chapter investigates an issue arising from SV calculation caused by the 

inconsistent dimensionality of simplex and its ambient space. A geometric method is 

applied to address the issue.  It has several benefits that determinant-based method 

cannot provide. One is no requirement of DR. Another is that geometric approach 

gives the true SV without suffering from the numerical issues when it calculates the 

volume of a simplex in a high dimensional space. Third, the computational 

complexity is significantly reduced. Last but not least, when geometric approach is 
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applied to endmember finding algorithms it can avoid finding incorrect endmembers 

caused by the numerical errors resulting from using determinant-based approach to 

calculate SVs.  
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Chapter 4:  DESIGN AND DEVELOPMENT OF VARIANTS 

OF SGA 

 

4.1 Introduction 

This chapter develops two new endmember finding algorithms, to be called 

Geometric Simplex Growing Algorithm (GSGA) and Orthogonal Projection-based 

Simplex Growing Algorithm (OP-SGA) as alternatives to SGA, which is referred 

hereinafter as Determinant-based SGA (DSGA) to distinguish GSGA and OP-SGA 

from DSGA in the sense that the former takes advantage of geometric structure of 

simplex to find SV without DR or SVD required by the latter. Although there are 

methods with faster computing time proposed in (Xiong et al., 2011) to relieve 

computational complexity for DSGA, calculating matrix determinant still remains 

very challenging. The idea of GSGA and OP-SGA comes naturally from geometric 

structures of simplexes where SV can be calculated by multiplying the base of a 

simplex with its height as described in Chapter 3.  

Suppose that 0 1, , , km m m  are previously found endmembers and mk+1 is the 

next endmember to be generated. Assume that 0 1( , , , )kS m m m  is the k-simplex 

formed by 0 1, , , km m m  with the volume given by 0 1( , , , )kV m m m . Let tk+1 be a 

new vertex to be added to form (k+1)-simplex, 0 1 1( , , , , )k kS m m m t . Then its SV 

0 1 1( , , , , )k kV m m m t  can be calculated in proportional to the value of multiplying 

0 1 1( , , , , )k kV m m m t  as its base and 
h

1kt  as its height which can be obtained by 

finding the distance from tk+1 perpendicular to the base, i.e., 
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h

0 1 1 0 1 1( , , , , ) ( , , , )k k k kV V  m m m t m m m t  where the notation “  ” means 

“proportional” scaled by a constant. Then the desired endmember mk+1 is the one that 

maximizes 0 1 1( , , , , )k kV m m m t  over tk+1, i.e.,  

 
11 0 1 1arg max ( , , , , )

kk k kV
 

t
m m m m t .                          (4.1) 

Calculating SV via height is not a new concept. Most recently, Wang et al. 

proposed a distance measure to calculate distance from vertex candidate to base and 

developed an algorithm so called distance-based SGA (Dist-SGA) (Wang et al., 

2013). Although this distance measure seems to be a new approach, it is nothing more 

than finding height of simplex. In (Geng et al., 2014) a similar approach using 
h

1kt  

was also proposed for band selection but not for finding endmembers.  

One major contribution derived from GSGA and OP-SGA is to take advantage of 

geometry structure of a simplex to derive various versions of SGA through recursive 

processes of volume calculations which cannot be found in the literature. More 

specifically, let us start with two endmembers which is a two-vertex 1-simplex with 

maximal SV. In this case, two endmembers, m0 and m1 are found to be two data 

sample vectors with largest Euclidean distance, 1 0m m . Then the third endmembers 

will be a data sample vector, m2 that yields the maximal distance perpendicular to the 

segment 
0 1m m . These three endmembers, m0, m1 and m2 are then used to form a 2-

simplex as a triangle 0 1 2( , , ) m m m  to find the 4th endmembers m3 via (4.1). The 

same procedure is repeatedly over and over again until it reaches the desired number 

of endmembers, p and finds the pth endmember, mp-1. In this chapter, two different 

approaches are used in SV calculation to find the height 
h

1kt . One is to apply Gram-
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Schmidt Orthogonalization Process (GSOP) whereas the other is to apply Orthogonal 

Projection (OP) to accomplish the goal. 

 

4.2 Gram-Schmidt Orthogonalization Process for Finding Heights 

Suppose that for each 0 1k p    a simplex, Sk with the k+1 vertices is 

specified by k+1 data sample vectors,  
0

k

i i
m . One of key elements in implementing 

GSGA is to find the maximal height, GSGA

kh and its corresponding data sample vector 

GSGA

km  so that the 
GSGA

0 1( , , , )k k kS m m m  formed by 1 0 1( , , )k kS  m m with adding 

GSGA

km  as the kth vertex yields the maximal SV. According to (3.4) and (4.1),   

  
  

  

GSGA

0 1

0 1

GSGA

1 0 1

, , ,

max , , ,

, ,

k

k k k

k k k

k
k k

V S

V S

h
V S

k





 



 

m

m m m

m m m

m m

.                                 (4.2)   

The optimal solution to (4.2) can be found by the well-known Gram-Schmidt 

Orthogonalization Process (GSOP) in the following procedure. 

 

GSOP for Finding GSGA

j
h  

1.  Initial condition: 

1 1 0 m m m  and 

 
1 1

1 1/2

11 1
|| ||T

 
m m

u
mm m

. 

2. For the given target mk for 1k   find  

0k k m m m                                                    (4.3) 

and the orthonormal vector ku  to the space linearly spanned by 1 2 1, , , ku u u  by 
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 

1

1

1

1

1

1

1

1

,

,

,

k k i

k k ii
i i

k

k k i ii

k T

k k i ii

k T

k i i ki

















 

 

 

 









m m
m m m

m m

m m u u

m m u u

m u u m

                               (4.4) 

where  

 
1/2

|| ||

k k
k

T
kk k

 
m m

u
mm m

.                                       (4.5)  

3. The maximal height of GSGA, GSGA

k
h  can be found and computed by  

 GSGA arg max T

k k rm r u                                          (4.6) 

GSGA GSGAmax T

k k k kh  r r u m u                                      (4.7) 

GSGA GSGA

0k k m m m                                               (4.8) 

where 0 r r m . 

Check if k = p-1. If yes, the algorithm is terminated. Otherwise, let 1k k   and go 

to step 2. 

 

4.3 Geometric Simplex Growing Algorithm (GSGA) 

GSGA 

1. Initial Conditions:  

Find two data sample vectors with the maximal segment with two endpoints 

specified by m0 and m1, denoted by 
GSGA

0m  and 
GSGA

1m  respectively. Set 1k   and 

define 
GSGA GSGA GSGA

1 1 0 m m m . 
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2. For each 1 1k p    implementing GSOP to find 
GSGA

kh  by (4.7) via 

 GSGA arg max T

k k rm r u  using (4.6). 

3. Find 
GSGA GSGA

0k k m m m .  

4. The set of  GSGA

1

p

k k
m  obtained in step 3 is the desired set of endmembers 

generated by GSGA. In addition,   GSGA GSGA GSGA

0 1, , ,k k kV S m m m  calculated by 

(4.2) is the maximal SV produced by the simplex with its vertices specified by 

 
1

GSGA

0

p

k k




m . 

According to the above algorithm GSGA is actually a sequence of the following 

processes. 

GSGA th

1

(14)
GSGA GSGA th

1 1 0

(15)
GSGA

1

(16)
GSGA

1

(17) (18)
GSGA GSGA th

(19)
GSGA

 (  vertex/endmember)

 (( 1)  edge vector)

(orthogonalized vector)

(orthonormalized vector)

(  height)

k

k k

k

k

k k

k

k

k

h k



 





   





 

 

m

m m m

m

u

m

m
GSGA

0  (( 1)  vertex/endmember)th

k k m m

             (4.9) 

 

4.4 Orthogonal Projection Approach to Find Heights 

As it is shown in Fig. 4.1, finding the height of a simplex is equivalent to finding 

the Orthogonal Projection (OP) onto the hyperplane linearly spanned by its base.  
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Figure 4.1. Interpretation of finding heights via OP 

 

By virtue of (3.8) and (4.1) a general expression can be further represented by  

OP

0 1 1 2 1 0 1

1 1
( , , , ) det ( , , )

!
k k k k k kV V

k k
  

    m m t m m m t t m m     (4.10) 

for 0 1k p    where 
kt  is the kth endmember to be determined, 0k k t t m  and 

OP

kt  is the OP of 
kt  orthogonally projected on the hyperplane spanned by points 

0 1 1, ,..., km m m  in geometric space. It is worth noting that 
OP

kt  is the same as the OP 

of 0k k t t m  orthogonally projected on the hyperplane 
1kU  with 

 1 1 2 1k k U m m m  and 0k k m m m  for all 1 1k p   . Also since m0 is a 

constant vector,  
OPOP

0|| || || ||k k t t m  .  

In order to find the kth endmember mk we use (4.10) to find a data sample vector 

0k k m m m  that yields the maximal SV of (3.2), i.e. 

     0 1 0 1arg max ( , , , ) arg max OP( ) , ,
k kk k k kk V V   t tm m m t t m m        (4.11) 

which is equivalent to find a target data sample vector tk producing the maximal OP 

m

3
t





UP 

m

m1

OP

3t  





 1 0 2 0,  U m m m m


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in the space, 1k



U  perpendicular to the linear subspace 
1kU  spanned by the 

edge vectors of previously found k endmembers, 0 1, , km m . Interestingly, solving 

(4.11) is equivalent to solving  

   0 1

OParg max || || arg max
k k

T
kk



   t r r m Um t r r                    (4.12)  

which is in turn to find  

   
1

OParg max || || arg max
k k

kk P


 t r U
m t r                     (4.13)  

with 
1

#

1 1
k

k kP




  
U

I U U  and  
1

#

1 1 1 1

T T

k k k k



   U U U U  being the pseudo-inverse of 

1kU ,  
1 11 1

2

k kk k

T
T

P P P P
  

   
U UU U

r r r r r  and    
11 1

2

kk k

T

P PP
 

  
UU U

 being 

idempotent. In other words, (4.1) can be solved via (4.12-4.13) by 

 

    

      
1 11

1 1

1 1
OP

( , , , )

      1/ || || , ,

      

arg max

arg max

arg max arg max
k kk

kk

k

T
T

V

k V

P P
 





 







 

 

r

r

r U Ur U

m m m r

r m m

r r r r

.             (4.14) 

While we can find SV via geometric structure as (3.3) we can further derive a 

recursive equation that reduces one dimension at a time for (21) recursively as  

     

   

OP

0 0 1

OP1
00

, , 1/ , ,

( )!/ ! || || , ,

|| ||k kk

j
k i k ji

V k V

k j k V




 

 

    

m m m m

m m m

m
                       (4.15) 

for 0 1j k    until j = k-1 (4.12) becomes 

     

    

OP

0 0 1

OP1
0 10

, , 1/ , ,

                       1/ ! || || ,

|| ||k kk

k
k ii

V k V

k V






 

 

m m m m

m m m

m
                       (4.16) 

in which case  0 1,V m m  is 1-simplex with two vertices whose volume is the length of 
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the line segment connecting m0 and m1, 1 1 0 m m m . It should be noted that OP-

SGA does not directly use (2.1) to calculate SV. Instead it makes use of (3.3) and 

(4.16) without applying DR.  

 

4.5 Orthogonal Projection-based Simplex Volume Algorithm (OP-SGA) 

OP-SGA 

1. Initial Conditions:  

Find two data sample vectors with the maximal segment with two endpoints 

specified by m0 and m1, denoted by 
OP-SGA

0m  and 
OP-SGA

1m  respectively. Set 1k   

and define 
OP-SGA OP-SGA OP-SGA

1 1 0 m m m . 

2. At 1k   find 
OP-SGA

km  that solves (4.14). 

3. Stopping rule:  

If 1k p  , then 1 kk  and go to step 2. Otherwise, the final set of  

 OP-SGA OP-SGA OP-SGA

0 1 1, , , pm m m  is the desired p endmembers. 

 

4.6 Experiments 

Three different sets of hyperspectral images mentioned in Chapter 2 are used to 

conduct experiments in this section. In the experiments, endmember pixels found by 

the four EFAs, GSGA, OP-SGA, DSGA and Dist-SGA are shown in Figs 4.2-4.10 to 

conduct a comparative study. If we look more closely into the development of Dist-

SGA, the used distance is actually the orthogonal distance to existing endmember 

subspace which is exactly orthogonal projection (OP). Accordingly, it is not a 

surprise to see from the results that GSGA, OP-SGA and Dist-SGA produced 
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identical endmember pixels whereas DSGA produced completely different results. 

The reason that DSGA produced different endmembers from the other algorithms is 

mainly caused by the fact that DSGA computed SV via determinant with SVD to find 

endmember pixels which is a different strategy from OP-SGA, GSGA and Dist-SGA 

using OP. 

4.6.1 Synthetic Image Experiments 

In this subsection, the experimental results on six scenarios image data are 

conducted. Firstly, the synthetc data images were constructed using Cuprite radiance 

spectra as it is described in Chapter 2. For scenarios TI2, TI3, TE2, and TE3, an 

additive Gaussian noise with SNR = 20 is added to target panel pixels or background 

pixels. 

As a result of having full knowledge for the dataset, the performances of variants 

of SGA can be evaluated based on the provided ground-truth. Due to the effect 

caused by background, the experiments were conducted by assuming the number of 

endmembers p = 6 present in the scene with one endmember used to account for 

background signature. In the following results, open yellow circles represent found 

endmembers and the number used to label each circled pixels denotes its order. 

1

2

3

4

5

6

 

1

2

3

4

5

6

 

1

2

3

4

5

6

 

1

2

3

4

5

6

 

               DSGA                           Dist-SGA                             GSGA                            OP-SGA 

Figure 4.2. Endmember pixels found by  DSGA, Dist-SGA, GSGA and OP-SGA on TI1 
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Figs. 4.2-4.4 show the result of proposed GSGA and OP-SGA comparing to 

DSGA and Dist-SGA on first type of synthetic data. As shown in Fig. 4.2, all four 

EFAs can extract all five panel pixels successively.  

With introducing of noise in background to achieve SNR = 20 on scenario TI2, 

only DSGA missed target panel pixel C which has very similar spectrum with 

background signature. It would be interesting to know that DSGA is failed to find this 

target panel pixel C although the desired number was set to be three times of the total 

number of distinct signatures in synthetic image, i.e. p = 18. This result demonstrated 

that noisy background increases the interference of background signature to mineral 

spectral signature C. Interestingly, if noise is also introduced into panel pixels the 

contaminated background is no longer dominant. 
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Figure 4.3. Endmember pixels found by  DSGA, Dist-SGA, GSGA and OP-SGA on TI2 

1

2

3

4

5

6

 

1

2

3

4

5

6

 

1

2

3

4

5

6

 

1

2

3

4

5

6

 

DSGA                           Dist-SGA                             GSGA                            OP-SGA 

Figure 4.4. Endmember pixels found by  DSGA, Dist-SGA, GSGA and OP-SGA on TI3 
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Unlike the performance on scenario TI2, all four variants of SGA successfully 

extracted all panel pixels corresponding to five mineral spectral signatures on 

scenario TI3 as shown in Fig. 4.4. Similar results can be seen in Figs. 4.5-4.7 which 

shows the experimental results on Target Embededness scenarios. 

Following the same experiments conducted for scenario TI1, all variants of SGA 

extracted all panel pixels corresponding to five mineral signatures on scenario TE1. 

Different from results on scenario TI2, DSGA successfully finds all five panel pixels 

while noise was introduced to background pixels on TE2. Interestingly, the other 

three distance-based SGAs, GSGA, OP-SGA, and Dist-SGA, cannot extract panel 

pixel C while the total number of desired endmembers to be found was set to be six, 

i.e. p = 6. The panel pixel C then was found as 7th endmember. 
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Figure 4.5. Endmember pixels found by  DSGA, Dist-SGA, GSGA and OP-SGA on TE1 
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Figure 4.6. Endmember pixels found by  DSGA, Dist-SGA, GSGA and OP-SGA on TE2 
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Figure 4.7. Endmember pixels found by  DSGA, Dist-SGA, GSGA and OP-SGA on TE3 

 

While noise is also introduced into panel pixels, all four variants of SGAs can 

extract the five panel pixels successfully. But it shall be noticed that DSGA founds 

two pixels in 4th row that are corresponding to the same mineral spectral signature K. 

This endmember result of DSGA demonstrated the numerical instability issue 

encountered in volume calculation via SVD that is mentioned in Chapter 3.  

 

4.6.2 Real Image Experiments 

In this subsection, two real image data, HYDICE and Cuprite data, are used to 

conduct experiments. The performances of variants of SGAs are evaluated by the 

number of extracted panels for HYDICE image. More performance evaluation on 

Cuprite data will be discussed later in Chapter 5. 

 

4.6.2.1 HYDICE Image 

Unlike the synthetic dataset with complete knowledge, the number of 

endmembers, which is unknown in HYDICE image, must be determined prior to 

analysis for real image data processing. According to previous study in the literature, 

Virtual Dimensionality (VD), coined by Chang (2003) and later published by Chang 
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and Du (2004), was addressed this issue. The VD estimated for this HYDICE scene 

by using Harsanyi-Farrand-Chang (HFC) method in (Harsanyi et al., 1994) was 9. 

Recently, an approach using real target signal sources for VD estimation was 

proposed (Chang et al., 2014; Chang et al., 2015) and VD was shown to be in the 

range between 39 and 45. However, when unsupervised fully constrained least 

squares (UFCLS) in (Heinz and Chang, 2001) was used to find targets, the number of 

targets was determined as 34. As a result, the values of VD for HYDICE, nVD was set 

to be from 9 to 45.  

Interestingly, all the four algorithms cannot find all five pure panel pixels 

corresponding to the five panel signatures when nVD = 9 but can do so when nVD =18 

as shown in Fig. 4.8(b). This number is twice value of nVD = 9 which was also noted 

in the literature (Chang et al., 2010; Chang et al., 2011). Since these four algorithms 

are sequential, the endmembers generated by a smaller value of VD are always part of 

endmember pixels generated by a larger value of VD. Accordingly, the endmember 

pixels found in Fig. 4.2 are separated into four ranges: (a) nVD = 9; (b) nVD = 18; (c) 

nVD = 34 and (d) nVD = 45. 
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(a) 9 endmember pixels 
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 (b) 10-18 endmember pixels 
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 (c) 19-34 endmember pixels 
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 (d) 35-45 endmember pixels 

Figure 4.8. Endmember pixels found by  DSGA, Dist-SGA, GSGA and OP-SGA on HYDICE 
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As expected, GSGA, OP-SGA, and Dist-SGA found identical sets of 

endmembers as a matter of fact that the maximal OP of a vertex perpendicular to a 

simplex base is indeed its height. Moreover, while nVD = 18 all the four variants of 

SGA extracted five target panels successfully. 

 

4.6.2.2 AVIRIS Cuprite data 

In this sub-subsection, another real image scene to be used for experiments is a 

well-known Airborne Visible Infrared Spectrometer (AVIRIS) image scene 

mentioned earlier in Chapter 2. There are two types of Cuprite datasets, reflectance 

data and radiance data, were used for validate algorithms. Since there is no available 

prior knowledge about spatial locations of endmembers we must rely on an 

unsupervised means of identifying if an extracted target pixel is an endmember. To 

address this issue the following Endmember Identification Algorithm (EIA) 

developed in (Chang et al., 2014) was used for this purpose. 

 

Endmember Identification Algorithm (EIA) 

Assume that  
1

J

j j
t  are J extracted target pixels and  

1

p

i i
m  are known p ground-truth 

endmembers. 

1. Cluster all extracted pixels,  
1

J

j j
t  into p endmember classes  

1

p

j j
C


 according to 

the following rule 

 *

*

1      arg min SAM( )j i p j ij
C j    t t ,m                   (4.17) 
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where the Spectral Angle Mapper (SAM) is a spectral similarity measure (Chang 

et al., 2003).  

2. For each of endmembers, mi find the target pixel *i
t  among all the extracted 

pixels  
1

J

j j
t  which is closest to mi by 

     *

1arg min SAM( )j J j ii ,  t m                                   (4.18) 

3. Find all target pixels which satisfy  

   *

*

1arg min SAM( )j J j i ii
i , C   t m t                           (4.19) 

All those target pixels found in step 3 are extracted as endmembers. 

 

According to (Chang et al., 2014), the VD estimated by the HFC method was 

nVD = 22 for reflectance data with twice of VD values 2nVD = 44, and nVD = 15 for 

radiance data with twice of VD values 2nVD = 30.  Using these values along with the 

values that will be discussed later in Chapter 5, the experiments were conducted for 

three ranges, (a) nVD = 22; (b) nVD = 46; (c) nVD = 75; for both reflectance and 

radiance data. The reason that we could do so is because DSGA, Dist-SGA, GSGA, 

and OP-SGA are sequential algorithms and the endmember pixels generated by a 

smaller value of nVD are always part of endmember pixels generated by a larger value 

of nVD. 

Figs. 4.9-4.10 show the endmembers found by DSGA, Dist-SGA, GSGA, and 

OP-SGA for Cuprite reflectance data and Cuprite radiance data, respectively. The 

pixels marked by yellow circles represent the endmembers found by the algorithms 

along with numerals used to indicate their found orders. 
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 (a) 22 endmember pixels 
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 (b) 23-46 endmember pixels 
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DSGA                           Dist-SGA                             GSGA                            OP-SGA 

 (c) 47-75 endmember pixels 

Figure 4.9. Endmember pixels found by  DSGA, Dist-SGA, GSGA and OP-SGA on Cuprite 

reflectance data 
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 (b) 23-46 endmember pixels 
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 (c) 47-75 endmember pixels 

Figure 4.10. Endmember pixels found by  DSGA, Dist-SGA, GSGA and OP-SGA on Cuprite radiance 

data 

 

In order to identify which pixels among the found endmembers in Figs. 4.9-4.10 

are desired endmember pixels, the EIA described above was used for this purpose and 

the spatial locations of these desired endmember pixels are shown in Figs. 4.11-4.12 

where the pixels marked by the lower case of “a”, “b”, “c”, “k”, “m” with red 
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triangles are the desired endmember pixels found by EIA that correspond to the five 

ground-truth mineral endmembers marked by the upper cases of “A”, “B”, “C”, “K”, 

“M” with yellow crosses symbols in the sense of spectral similarity measured by 

SAM and spectral information divergence (SID)  (Chang, 2003). 
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      (a) DSGA                           (b) GSGA/OP-SGA/Dist-SGA 

Figure 4.11. Endmember pixels found by EIA compared to ground-truth pixels for Cuprite reflectance 

data 
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      (a) DSGA                           (b) GSGA/OP-SGA/Dist-SGA 

Figure 4.12. Endmember pixels found by EIA compared to ground-truth pixels for Cuprite radiance 

data 

 

Table 4.1 further tabulates the five desired endmember pixels found by EIA 

among DSGA-found target pixels,  DSGA
jt  and all three distance-based algorithms, 
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hereinafter represented by OP-SGA, -found target pixels,  SGA-OP
jt  where the subscript 

j indicates the order of a particular target pixel was found. 

 

Table 4.1. Endmember pixels found by EIA 

 Cuprite A B C K M 

DSGA 
reflectance 

DSGA

11t  DSGA

13t  DSGA

44t  DSGA

64t  DSGA

8t  

radiance 
DSGA

12t  DSGA

14t  DSGA

28t  DSGA

103t  DSGA

6t  

OP-SGA 
reflectance 

OP-SGA

29t  OP-SGA

53t  OP-SGA

40t  OP-SGA

27t  OP-SGA

9t  

radiance 
OP-SGA

16t  OP-SGA

14t  OP-SGA

68t  OP-SGA

11t  OP-SGA

7t  

 

As we can see from Table 4.1 for the reflectance data, it required by DSGA at 

least 64 target pixels to find the last mineral signature K to complete all the five 

mineral signatures, while 53 target pixels by OP-SGA to find the last mineral 

signature B.  For radiance data it took DSGA at least 103 target pixels to find the last 

mineral signature K to complete all the five mineral signatures, while 68 target pixels 

by OP-SGA to complete all the five mineral signatures with the mineral signature C 

being the last one to be found. Nonetheless, both DSGA and OP-SGA found the same 

first mineral signature which was M because the spectrum of M is probably the most 

distinct among the five mineral signatures which can be seen in Figs. 2.1(c)-2.1(d). 

Once the spatial locations of the five desired endmember pixels were found in Figs. 

4.11-4.12 we can further perform a comparative spectral analysis between EIA-

identified endmember pixels in Table 4.1 and the ground truth pixels in Fig. 2.1(b). 

For each of spectral signatures of the five mineral signatures, A, B, C, K, M both in 

reflectance data and radiance data, Figs. 4.13(a-e)-4.13(a-e) plot 3 spectra, ground-

truth pixel spectrum, spectrum of DSGA
jt , and spectrum of SGA-OP

jt  identified in Table 

4.1, for comparison. 
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     (a) “a” signature against “A”                                   (b) “b” signature against “B” 

0 20 40 60 80 100 120 140 160 180 200
500

1000

1500

2000

2500

3000

3500

4000

Band

R
e

fl
e
c
ta

n
c
e

 

 

Groundtruth

DSGA

OP-SGA

     
0 20 40 60 80 100 120 140 160 180 200

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Band

R
e

fl
e
c
ta

n
c
e

 

 

Groundtruth

DSGA

OP-SGA

 

     (c) “c” signature against “C”                                    (d) “k” signature against “K” 
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(e) “m” signatures against “M” 

Figure 4.13. Comparative plots of spectral signatures found by DSGA and OP-SGA on Cuprite 

reflectance data 
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    (a) “a” signatures against “A”                           (b) “b” signatures against “B” 
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    (c) “c” signatures against “C”                           (d) “k” signatures against “K” 
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(e) “m” signatures against “M” 

Figure 4.14. Comparative plots of spectral signatures found by DSGA and OP-SGA on Cuprite 

radiance data 
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While the plots of Figs. 4.13 and 4.14 offer an advantage of visual assessment 

about how close a found endmember pixel to a ground truth pixel it does not provide 

quantitative measurements on their spectral similarity. Tables 4.2 and 4.3 calculate 

spectral similarity values of the plots among identified target pixels against the 

ground truth pixels in Figs. 4.13 and 4.14 where SAM and SID were used as spectral 

measure.  

As we can see from Tables 4.2 and 4.3 the spectral similarity values between 

DSGA-found and OP-SGA-found pixels compared to the ground-truth pixels were 

indeed very close even the found pixels by DSGA and OP-SGA were identified by 

EIA in different locations. 

 

Table 4.2. SAM/SID of the closet target pixels with ground-truth by DSGA and OP-SGA on Cuprite 

reflectance data 

SAM 

SID 
(A,a) (B,b) (C,c) (K,k) (M,m) 

DSGA 
0.0167 

0.0002 

0.0334 

0.0009 

0.0379 

0.0009 

0.0341 

0.0007 

0 

0 

OP-SGA 
0 

0 

0.0497 

0.0012 

0.0379 

0.0009 

0.0304 

0.0006 

0.0264 

0.0005 

 

Table 4.3. SAM/SID of the closet target pixels with ground-truth by DSGA and OP-SGA on Cuprite 

radiance data 

SAM 

SID 
(A,a) (B,b) (C,c) (K,k) (M,m) 

DSGA 
0.0205 

0.0003 

0 

0 

0.0247 

0.0006 

0.0123 

0.0001 

0 

0 

OP-SGA 
0.0098 

0.0001 

0 

0 

0.0253 

0.0010 

0.0100 

0.0001 

0 

0 
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4.7 Conclusions 

Due to impracticality of exhaustively search procedure, determinant-based 

simplex growing algorithm (DSGA) has become a good alternative to N-FINDR in 

the sense that it finds endmembers sequentially through growing simplexes so as to 

reduce computing time. However, calculating simplex volume (SV) remains a 

challenging issue for DSGA in computation of matrix determinants. This chapter 

proposed two algorithms called geometric simplex growing algorithm (GSGA) and 

orthogonal projection-based simplex growing algorithm (OP-SGA), both of which 

calculate SV by taking advantage of geometric structure of a simplex via Gram-

Schmidt Orthogonalization process (GSOP) and Orthogonal Projection (OP) 

operators respectively. With appropriate interpretations GSGA and OP-SGA resolve 

several inherent issues in DSGA and N-FINDR. First of all, it requires no  

Dimensionality Reduction (DR). Second, true SV could be derived without suffering 

from the numerical issues when it comes to calculating the volume of a simplex in a 

high dimensional space. Last but not least, the computing time is significantly 

reduced since finding heights of all data sample vectors can be done through 

recursive processes without actually inverting matrices so that there is no need of 

computing matrix determinants. This great advantage is not applicable to DSGA.  
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Chapter 5:  RECURSIVE GROWING SIMPLEX VOLUME 

ANALYSIS (RGSVA) 

 

5.1 Introduction 

Chapter 4 introduces two new EFAs, GSGA and OP-SGA, as alternatives to 

DSGA in order to reduce computational complexity. Moreover, they can be 

considered as a new approach to SV calculation via heights without need of DR. 

However, both of them have a major drawback that they require finding heights 

repeatedly in each epoch. More specifically, since in OP-SGA a new endmember is 

generated in each epoch and U is augmented by adding this new endmember, P

U
 

must be re-implemented over and over again by varying U to generate next 

endmembers. Suppose that in k-2 iteration Uk-1 is a matrix consists of first k-1 

endmembers, 0 1 2, , , km m m , and mk-1 is newly found endmember. In order to 

generate endmember mk, P

U
 must be re-calculated by 

k
P

U
 with a new matrix Uk 

which includes Uk-1 and mk-1. A similar issue is also encountered in GSGA while 

performing orthogonalization process on all data samples. To deal with this issue 

recursive versions of GSGA and OP-SGA are further developed in this chapter, 

referred to as Recursive GSGA (RGSGA) and Recursive OP-SGA (ROP-SGA). They 

can be considered as Kalman-like filters which make use of recursive equations to 

update projections of all data samples via the newly found endmember and 
k

P

U
 via 

1k
P





U
, respectively, in GSGA and OP-SGA without the needs of re-processing all 

previous found k-1 endmembers, 0 1 1, , , km m m . Furthermore, the recursive 
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equations also provide an effective means of calculating GSV recursively. This 

advantage would be more significant in hardware design and implementation. 

 

5.2 Recursive Equations for GSGA 

For 1k   with the processed data 
iu  and a new input data sample vector 

0k k r r m , i.e. 
1

1

,

,

k k i

k k ii
i i




 

r m
r r m

m m
 and 

 
1/2

,
|| ||

i i
i

T
ii i

 
m m

u
mm m

 

for 1, , 1i k   . Now, let  1 1 2 1k k U u u u  . Then the orthonormalized vector kr  

can be derived by  

 
1

1 11

2 2 1 1

1 1 1

   

   

k T T

k k i i k k k k ki

T T

k k k k k k k

T

k k k k



 

   

  

   

  

 

r r u u r r U U r

r U U r u u r

r u u r

                             (5.1)  

where  

 
1

1 1 2 2 1 11

kT T T T

k k i i k k k ki



     
  U U u u U U u u .                         (5.2) 

 

5.3 Recursive GSGA 

5.3.1 RGSGA 

 

RGSGA 

1. Initial Conditions:  

Find two data sample vectors with the maximal segment with two endpoints 

specified by m0 and m1, denoted by 
GSGA

0m  and 
GSGA

1m  respectively. 

Define 
GSGA GSGA GSGA

1 1 0 m m m  and set 2k  . 
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2. At kth recursion: 

a. For each 1 1k p    use (14) to find 0k k r r m  and (5.1) to find 

  GSGA

1 1

2 2 1 1

GSGA

1 1 1

         

         

T

k k k k

T T

k k k k k k k

T

k k k k

 

   

  

 

  

 

r I U U r

r U U r u u r

r u u r

 

where  2 1 2 2k k U u u u . 

b. Use (4.6) to find  GSGA arg max
k

T

k k k
r

m r r . 

c. Calculate GSGA GSGA

k kh  m . 

d. Use (4.2) to find the simplex volume that 

     
GSGA

GSGA GSGA GSGA GSGA GSGA

1 1 1 1 1, , , , ,k
k k k k k

h
V S V S

k
   m m m m m . 

e. Update U  with  1 1 2 1k k U u u u  and 
|| ||

k
k

k


m

u
m

 by (5.2) 

3. Check if k = p - 1, terminating the algorithm. Otherwise, Let 1k k   and go 

back to step 2. 

It should be noted that the major difference of RGSGA from GSGA is the use of 

recursive equations (5.2) in step 6. 

 

5.3.2 KF-OSP-GSGA 

From (5.1) we can further derive Kalman filter-like equations for GSGA using 

OSP as follows. 

For 1k   the new endmember km  can be found by 
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 
1

1 11

1 1 2 2 1 1

1 1 2 2 1 1 1 1

1 2 2 1 1

1

     

     ( )

     

     

k T T

k k i i k k k k ki

T T

k k k k k k k k k

T T

k k k k k k k k k k k

T T

k k k k k k k k

k



 

     

       

    



   

    

      

     

 

m m u u m m U U m

m m m U U m u u m

m m m U U m m m u u m

m m U U m u u m

m  2 2 1 1

T T

k k k k k k     I U U m u u m

         (5.3) 

where  

1 1k k k k k     m m m m m                                      (5.4) 

is the innovations information obtained from km  but not in 1km  and with 

 
1

1 1 2 1 11

kT T T

k k i i k k ki



    
  U U u u U u u                              (5.5) 

updated by 2kU  and 1 1

T

k k u u .   

 

KF-OSP-GSGA 

1. Initial Conditions:  

Find two data sample vectors with the maximal segment with two endpoints 

specified by m0 and m1, denoted by 
GSGA

0m  and 
GSGA

1m  respectively. Set 1k   and 

define 
GSGA GSGA GSGA

1 1 0 m m m . 

2. For each 1 1k p    use (4.3) and (4.13) to find 0k k m m m . Update 

GSGA GSGA GSGA

1k k k  m m m  

and  

     GSGA GSGA GSGA GSGA GSGA GSGA

1 1 2 2 1 1

T T T

k k k k k k      U U U U u u . 

3. Now 
GSGA

km  and 
GSGA

ku  can be calculated by (4.5) and (5.3) with GSGA GSGA

k kh  m . 

4. Use (4.2) to find the simplex volume that 
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     
GSGA

GSGA GSGA GSGA GSGA GSGA

1 1 1 1 1, , , , ,k
k k k k k

h
V S V S

k
   m m m m m . 

5. Check if k = p-1, then the algorithm is terminated. Otherwise, let 1k k   and 

go to step 2. 

 

To perform (5.3) recursively there are three pieces of information: 

1. Processed information:  

  1 1 2 1k k U u u u  and  
1

1 1 1

kT T

k k i ii



  
U U u u  

  1 1

T

k k k k  m I U U m  

 
|| ||

k
k

k


m

u
m

,  

  1 1

T

k k I U U   

2. New information: 1 1 0k k  m m m . 

3. Innovations information: 1 1k k k   m m m . 

 

5.3.3 KF-OVP-GSGA 

Alternatively, (5.3) can be re-derived as 

 

 

1

1 11

1 1 2 2 1 1

1 2 2 1 1

1 2 2 1 1

 

    

    

    

k T T

k i i k ki

T T

k k k k k k

T T

k k k k k k k

T T

k k k k k k



 

     

    

    

   

    

     

    

r r u u r r U U r

r m m U U r u u r

r m U U r u u r

m I U U r u u r

                          (5.6) 

where 0 r r m  and 1 1k k k     r r m r m  for all data sample. 

By virtue of (5.6) equations (4.6) becomes   
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 GSGA arg max || ||
kk k

r
m r                                           (5.7) 

Using (5.7) the RGSGA can be re-derived as a Kalman filter–based orthogonal vector 

projection GSGA (KF OVP-GSGA) as follows. 

 

KF OVP-GSGA  

1. Initial Conditions:  

Find two data sample vectors with the maximal segment with two endpoints 

specified by m0 and m1, denoted by 
GSGA

0m  and 
GSGA

1m  respectively. Set 2k   

and define 
GSGA GSGA GSGA

1 1 0 m m m . Then 
GSGA

1
1 GSGA

1|| ||


m
u

m
. 

2. At kth recursion: 

a. For each 1 1k p    find 0 r r m  and use (5.6) to calculate 

 1 2 2 1 1 T T

k k k k k k k        r m I U U r u u r . 

Then 
GSGA

km  and GSGA

k
h could be found by (5.7) and (4.8) respectively. 

b. Use (4.2) to find the simplex volume 

     
GSGA

GSGA GSGA GSGA GSGA GSGA

1 1 1 1 1, , , , ,k
k k k k k

h
V S V S

k
   m m m m m . 

c. Update 
GSGA GSGA

1k k  r r m  and  

     GSGA GSGA GSGA GSGA GSGA GSGA

1 1 2 2 1 1

T T T

k k k k k k      U U U U u u . 

3. Check if k = p-1. If yes, the algorithm is terminated. Otherwise, let 1k k   and 

go to step 2. 

In order to perform (5.6) recursively, three pieces of information are required. 
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1. Processed information:  

 GSGA

1km .  

 
GSGA

GSGA 1
1 GSGA

1|| ||

k
k

k







m

u
m

.  

  2 1 2 2k k U u u u . 

  2 2

T

k k I U U . 

2. New information:  

 km  

 r  

3. Innovations information:  

 km . 

 1k k  r r m . 

 

5.4 Recursive equations for OP-SGA 

As shown in (4.16) the key element in calculating GSV is the product of 

maximal OPs,   

1 OP
0 || ||

k
i k i

  m ,                                                   (5.8) 

which is produced by endmembers where mk solves (4.12-4.13). This section 

develops a recursive equation to solve (4.14). According to (4.14) 

    
1 1

arg max
k k

T

k P P
 

  r U U
m r r , which corresponds to finding the maximal OP in the 

space 1k



U .  In this case, an recursive equation is needed to renew 

j
P

U
~  via 

1

~
j

P
U

. 
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Let        1 1 0 2 0 1 0 1 2 1k k k        U m m m m m m m m m  and 

 1 2 1 1k k k k k 
    U m m m m U m . Then we can obtain the following recursive 

equations for implementing OP-SGA. 

 
1

## #1
1 111

1 1 1

#1
1

11

T
T

T T
k k k k kk

T k k k k
k k T T

T
Tk k k k
k k

T
kk

 

 


 
      

 
 
 


 

 



 
   

      
   

 

U U U m m U U m
U U U m

U U
m U m m

m U

  (5.9) 

where  
1

#

1 1 1 1

T T

k k k k



    UU U U  and  

    
1

1 11

1 1 1 1
k

T T T T

k k k k k k k kP


 


        
    U

m I U U U m m mU .              (5.10) 

 
 

 

 

1 ## #
1 1 1 111

# 1

#

1

# # # #

1 1 1 1 1

#

1 1

       

T
T T

Tk k k k k k kk
T T k

k k k k TT
T k
k k

T
T T T

k k k k k k k k k

T
T T T

k k k k

 

 

 

 

  
       

 
 
 

    

 

 





 
  

    
   

  

 

U U U m m U m
U

m
m

m m m m

m m

U
U U U U

U

U U U U U

U U


 
 
  

      (5.11) 

  

 
 

 

 

1
#

1

# # # #

1 1 1 1 1

               1
#

1 1

#

1 1 1 1 1 1         

T T
k kk k k k k

T
T T T

k k k k k k k k k

k k T
T T T

k k k k

T
T T T

k k k k k k k k k k

 

 

   





    



 

     





  
 
 

   

    

U m

m m m m

U m

m m

m m m m

U U U U U

U U U U U

U U

U U u u u u
T

               (5.12) 

where 
#

1 1 1k k k k   mu U U . 

 

  

1

1

1
#

1 1 1 1

1 1

     

      =

k

k

k

T T

k k k k k k

T T T T

k k k k k k k k

T

k k k k

P

P

P

   












   



 

  

    

  

U

U

U

I

m m m

m m

I U U U U U U

u u u m u

u u

                (5.13) 
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where  
1

1
#

1 1 1 1 1 1
k

T T

k k k k k kP





       
U

II U U U U U U . It should be also noted that all 

1 1

T T

k k k k m mu u ,    1 1

TT

k k k k k k   m m m mu u ,  in (4.11)-(4.15) are scalars. If 

1kU  is invertible, then #

1 1k k  U U I . It should be noted that #

1 1 1k k k k   mu U U , 

1 1

T T

k k k k m mu u  and  
1

1

k

T

k kP





  
 U

m m  are used to account for correlation between 

1kU  and km . 

 

5.5 Recursive OP-SGA 

According to (4.10-4.11) the kth endmember km  can be found by maximizing the 

residuals of 
1k

P




U
r  over all the data sample vectors in the space 1k



U  and (5.13) is 

a recursive equation that can be used to compute 
k

P

U
 via 

1k

P




U
 recursively. The 

detailed implementation of recursive OP-SGA (ROP-SGA) is summarized as follows. 

 

Recursive OP-SGA (ROP-SGA) 

1. Initial conditions: 

a. Find two data sample vectors with the maximal segment with two endpoints 

specified by m0 and m1, denoted by 
OPSGA

0m  and 
OPSGA

1m  respectively. Define 

OPSGA OPSGA OPSGA

1 1 0 m m m . 

b. Find  
1

1
#

1 1 1 1 1 1

T T
P



   

U
I U U I U U U U  with  1 1 0 U m m  and 

0 1 0 1( , ) ( , )V dm m m m  

c. Set k = 2. 
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2. At the kth recursion:  

a. Find  
1

arg max
k

k P


 r U
m r   via (4.11). 

b. Calculate 
1

OP|| ||
k

k k
P




U

mm  

c. Compute volume by using 
OP|| ||km  obtained in step 2(b) as 

   OP
0 0 1

1
, , , ,|| ||k kkk

V V  m m m mm . 

d. Use the following recursive equation to calculate 

j
P

U
~ via 

1

~
j

P
U

. 

  
1

1 1
k k

T

k k k kP P 


 

    
U U

m mu u  

where 
#

1 1 1k k k k   mu U U . 

3. If 1k p  , 1 kk  and go to step 2. Otherwise, all p endmembers, 

0 1 1, , , pm m m  with 0k k m m m  for 1 k p  , have been generated by ROP-

SGA. 

 

5.6 Determining Number of Endmembers to be generated 

One issue encountered in implementing most of EFAs, such as NFINDR, VCA, 

and SGA, is that how to determine the value of p, i.e. the number of endmembers that 

present in the data. When its value is unknown, it must be determined in an 

unsupervised fashion. As it was mentioned in previous chapters, VD was used to 

address this issue. In this section, ROP-SGA offers a rather different approach 

without appealing for VD. While it generates endmembers, it also makes use of its 

found endmembers to determine the number of endmembers needed to generate.  
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The idea is originated from 
1

~
~~

1



















j

T
j

j
P mm

U
  in (5.10) which accounts for the 

accuracy in prediction of 

j
P

U
~  via 

1

~
j

P
U

 where the smaller β is, the better prediction of 



j
PU  by 

1

~
j

P
U

 is. In this case minimizing β is equivalent to maximizing j
T
j

j
P mm

U

~~
1

~




 


. 

Suppose that p is the number of endmembers needed to be determined. Then the 

quantity 

p
T
pp p
P mm U

~~
1




                                              (5.14)  

can be used to determine how many endmembers for RGSGA and ROP-SGA should 

be generated. In other words, both the pth endmember, pm~  found by (5.14). More 

interestingly, the ηp, turned to be exactly the same signal sources under the binary 

hypothesis testing problem considered in the maximal orthogonal subspace 

projection (MOSP) in (Chang et al., 2011) to determine VD or maximal orthogonal 

complement algorithm (MOCA) in (Kuybeda et al., 2007) to determine the rank of 

rare signal dimensionality as shown as follows.  

Following the same approach as in MOSP and MOCA, we can formulate a 

binary hypothesis testing problem using ηp as signal sources as follows.   

0 0 0

1 1 1

:   ( | ) ( )

versus

:   ( | ) ( )

p p p

p p p

H p H p

H p H p

  

  

 

 

    for 1,2, ,p L         (5.15) 

where the alternative hypothesis H1 and the null hypothesis H0 represent two cases of 

pm  being an endmember signal source under H1 and not an endmember signal source 

under H0 respectively in the sense that H0 represents the maximum residual resulting 

from the background signal sources, while H1 represents the maximum residual 
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leaked from the endmember signal sources. By virtue of extreme value theory 

(Leadbetter, 1987), ηp can be modeled as a Gumbel distribution, i.e., ( )
pv pF   is the 

cumulative distribution function (cdf) of vp given by 

       
2

1/2 1/2 1/2

2

( ) 1
2log 2log 2log loglog log4

22( )
( ) exp

p

x L p
N N N N

L p

vF x e






 
   


 

  
  
 
  

      (5.16) 

Since there is no prior knowledge available about distribution of signal sources, 

assuming ηp under H1 uniformly distributed seems most reasonable according to the 

maximum entropy principle in Shannon’s information theory.  

Under these two assumptions, we can use the same approaches as MOSP and 

MOCA to obtain 

   10( , ) ( ) ( ) /
p p p

p p pp p pp H p F p                                (5.17) 

   11( , ) ( ) ( ) 1/
p l p

p pp p pp H F p F                                 (5.18) 

where 

0 0

( )
( ) ( | )

( ) ( )

p p

p p

p

p p

p p p

p
p p H

p F



 

 
 

  
 


                        (5.19)  

and 

)()(

)(
)|()( 11

ppp

p

pp

pp

l

Fp

F
Hpp











 .                        (5.20) 

By virtue of (5.19) and (5.20) a Neyman-Pearson detector (NPD), denoted by δNP(ηp) 

for the binary composite hypothesis testing problem specified by (5.14) can be 

obtained by maximizing the detection power PD while the false alarm probability PF 

being fixed at a specific given value, α, which determines the threshold value τp in the 

following randomized decision rule  
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NP

ROP-SGA

1;    if ( )

( ) 1 with probability ;   if ( )

0;    if ( )

p p

p p p

p p

 

    

 

 

  

 







               (5.21) 

where the likelihood ratio test Ʌ(ηp) is given by 1 0( ) ( ) / ( )p p pp p     with 0 ( )pp   

and 1( )pp   given by (5.19) and (5.20). So, according to (5.14) a case of p p   

indicates that NP

ROP-SGA ( )p   in (5.21) fails the test, in which case ROP-SGA

p pm m  is 

assumed to be an endmember. It should be noted that the test for (5.21) must be 

performed for each of L potential endmember candidates. Therefore, for l the 

threshold l varies. Using (5.21) the VD can be determined by calculating  

NP NP

ROP-SGA F ROP-SGA2
VD (P ) ( )

L

pp
 


                               (5.22) 

where PF is a pre-determined false alarm probability, NP

ROP-SGA ( ) 1p      only if 

NP

ROP-SGA ( ) 1p    and NP

ROP-SGA ( ) 0p      if NP

ROP-SGA ( ) 1p   .  It should be noted that since 

p starts with 2, the actual value of VD estimated for ROP-SGA in (5.22) should be 

NP

ROP-SGA FVD (P ) 1 .  

Interestingly, it has been shown in (Chang et al., 2015) that the residual energy of 

the signal source pm~  in (5.14) into 
1p

P




U
 can be further modified by the residual 

strength of the signal source pm~  in (5.14) into 
1p

P




U
 and given by  

 
1

1/2

p

T

p p p pP 


 
U

m m .                                (5.23) 

The detector (5.21) is then performed on the signal residual strength ηp in (5.23) 

under the binary hypothesis testing problem (5.20). In this case, the VD in (5.22) 

becomes  
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NP NP

ROP-SGA F ROP-SGA2
VD (P ) ( )

L

pp
 


    .                         (5.24) 

 

5.7 Real Image Experiments 

5.7.1 VD estimation using real targets 

Despite that ROP-SGA can be used to find endmember candidates up to the 

number of total bands plus one, L + 1, there is no necessity for doing so. Using (5.14) 

and (5.23), the number of endmembers required for ROP-SGA to generate can be 

estimated while the process of ROP-SGA is ongoing. Table 5.1 tabulates the values 

of VD for HYDICE estimated by MOCA as well as NPD for various false alarm 

probabilities where MOCA is actually a maximum-likelihood detector (Chang et al., 

2014). 

Table 5.1. VD estimated by (5.14) and (5.23) on HYDICE 

ηp in (5.14) MOCA PF=10-1 PF=10-2 PF=10-3 PF=10-4 PF=10-5 

DSGA 98 98 98 98 98 98 

ROP-SGA 45 46 44 43 40 39 

 

ηp in (5.23) MOCA PF=10-1 PF=10-2 PF=10-3 PF=10-4 PF=10-5 

DSGA 98 98 98 98 98 98 

ROP-SGA 43 45 43 40 39 37 

 

For Cuprite image data, (5.14) and (5.23) were also used to estimate VD for both 

reflectance and radiance data and the results are tabulated in Tables 5.2 and 5.3 where 

an “F” indicates that the NPD test passed all the signal sources, in which case nVD = 

169 for HYDICE, nVD = 120 for Cuprite reflectance data and nVD = 139 for Cuprite 

radiance data. It should be noted that for Cuprite data DSGA could not produce 189 

target signal sources due to its use of SVD to calculate SV. From Tables 5.2 and 5.3, 

it can be seen that VD values estimated by (5.14) and (5.23) with endmembers found 
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by ROP-SGA will not over 75 while false alarm probability was set to be less than 

210
. Therefore, nVD = 75 was set to be the total number of endmembers for variants 

of SGA to generate in Chapter 4. 

 

Table 5.2. VD estimated for Cuprite reflectance data by (5.14) and (5.23) 

ηp in (5.14) MOCA PF=10-1 PF=10-2 PF=10-3 PF=10-4 PF=10-5 

DSGA F F F 119 119 117 

ROP-SGA 75 82 74 69 64 62 

 

ηp in (5.23) MOCA PF=10-1 PF=10-2 PF=10-3 PF=10-4 PF=10-5 

DSGA 119 119 119 117 103 95 

ROP-SGA 75 82 74 69 64 62 

 

Table 5.3. VD estimated or Cuprite radiance data by (5.14) and (5.23) 

ηp in (5.14) MOCA PF=10-1 PF=10-2 PF=10-3 PF=10-4 PF=10-5 

DSGA F F 109 106 104 95 

ROP-SGA 72 79 72 69 65 62 

 

ηp in (5.23) MOCA PF=10-1 PF=10-2 PF=10-3 PF=10-4 PF=10-5 

DSGA 103 106 103 95 95 85 

ROP-SGA 67 71 67 62 58 56 

 

5.7.2 Computer processing time comparison 

Despite that Dist-SGA, GSGA, RGSGA, OP-SGA, ROP-SGA, KF OSP-SGA 

and KF OVP-SGA produced identical sets of target pixels, their required computer 

processing times were quite different. In order to conduct a fair comparative analysis 

on computing time, all the algorithms, Dist-SGA, GSGA, RGSGA, OP-SGA, ROP-

SGA, KF OSP-SGA and KF OVP-SGA, were run to find simplexes from 1-simplex 

up to L-simpelx, L = 169 and L = 189 for HYDICE and Cuprite, respectiely, and 

further calculated their corresponding processing times. Figs. 5.1 and 5.2 plot their 

computer processing time for HYDICE scene and Cuprite data where the RGSGA 
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was the best and DSGA was the worst. It is worthy noted that the computing time for 

DSGA on Cuprite data can only be recoded up to L = 139 since only 139 

endmembers can be found in Cuprite reflectance data with DSGA using SVD to 

calculate SV. 
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               (a) DSGA versus geometric-based SGA                (b) variants of geometric-based SGA 

Figure 5.1. Accumulative computing time in seconds of DSGA without DR, Dist-SGA, OP-SGA, 

ROP-SGA, GSGA, RGSGA, KF OSP-GSGA, and KF OVP-GSGA as p increases on HYDICE data 
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               (a) DSGA versus geometric-based SGA                (b) variants of geometric-based SGA 

Figure 5.2. Accumulative computing time in seconds of DSGA without DR, Dist-SGA, OP-SGA, 

ROP-SGA, GSGA, RGSGA, KF OSP-GSGA, and KF OVP-GSGA as p increases on Cuprite data 
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Tables 5.4 and 5.5 also tabulate computer processing time required for DSGA, 

Dist-SGA, OP-SGA, ROP-SGA, GSGA, RGSGA, KF OSP-GSGA, and KF-OVP for 

both HYDICE scene and Cuprite data. As we can see from Tables 5.4 and 5.5, among 

all algorithms RGSGA was the best requiring least computing time, while DSGA was 

the worst requiring much more time. Additionally, while more endmembers are 

needed to be found more time was saved via RGSGA. It is worth noting that Dist-

SGA was shown to be the best in (Wang et al., 2013) among all variants of SGA. 

Figs. 5.1-5.2 and Tables 5.4-5.5 further show that our developed GSGA, RGSGA, KF 

OSP-GSGA, OP-SGA and ROP-SGA outperformed Dist-SGA. And KF OVP-GSGA 

had less computing time while the number of endmember is less than 140 for 

HYDICE. 

 

Table 5.4. Comparison of computing time in seconds for endmembers found by variants of SGA on 

HYDICE 

methods 

p 
DSGA 

Dist-

SGA 

OP-

SGA 

ROP-

SGA 
GSGA RGSGA 

KF OSP-

GSGA 

KF OVP-

GSGA 

9 1.7086 0.1134 0.1136 0.1026 0.0697 0.0640 0.0673 0.1519 

18 5.2592 0.2542 0.2292 0.2114 0.1521 0.1359 0.1457 0.3433 

34 20.1801 0.5202 0.4177 0.4014 0.3087 0.2639 0.2842 0.6843 

45 43.7703 0.7192 0.5482 0.5344 0.4236 0.3532 0.3763 0.9230 

 

Table 5.5. Comparison of computing time in seconds for endmembers found by variants of SGA on 

Cuprite data 

methods 

p 
DSGA 

Dist-

SGA 

OP-

SGA 

ROP-

SGA 
GSGA RGSGA 

KF OSP-

GSGA 

KF OVP-

GSGA 

22 291.91 10.15 7.68 7.65 6.06 5.34 5.54 14.83 

46 1372.89 22.97 16.40 16.35 13.51 11.36 11.90 32.43 

75 3945.55 39.89 26.93 26.87 23.34 18.66 19.64 53.63 
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As a final remark, some comments are noteworthy. It is known that VCA is also 

an OP-based algorithm and has been widely used and become popular for finding 

endmembers in recent years. However, it suffers from several implementation issues. 

One is its use of random initial conditions which result in finding inconsistent sets of 

endmembers. Another is that it generally requires pre-processing prior to finding 

endmembers such as DR transform to reduce data volumes. As shown in (Chang, 

2013), different DR transforms generally produce different sets of endmembers. Most 

importantly, VCA is not a fully constrained algorithm which generally finds sub-

optimal solutions. As shown in (Du et al., 2008; Chang et al., 2013), VCA cannot 

compete against ATGP in the sense of maximal OP. It is also shown in (Du, 2012) 

that SGA outperforms VCA in the sense of maximal SV. Compared to VCA, Dist-

SGA proposed by Wang et al. and the proposed algorithms using geometric volume 

to calculate SV, such as GSGA and OP-SGA along with their recursive versions, 

have no such issues. The only major advantage that VCA can offer is its simple 

computational complexity which requires only inner products. But this advantage can 

be also gained by GSGA and its recursive versions which also require only inner 

products.  

Fig. 5.3 plots computing times required to run the HYDICE scene and Cuprite 

data for six algorithms, ATGP which is an unconstrained OP-based algorithm, VCA 

with/without dimensionality reduction and the fully abundance sum-to-one constraint 

(ASC)-imposed OP-based endmember finding algorithms, Dist-SGA, GSGA, OP-

SGA along with their recursive versions, RGSGA, ROP-SGA, respectively. 
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                               (a) HYDICE data                                                    (b) Cuprite data 

Figure 5.3.  Computing times for ATGP, VCA with/without DR, Dist-SGA, OP-SGA, ROP-SGA, 

GSGA, and RGSGA 

 

As shown in Fig. 5.3, the computing time of VCA varies with size of data and is 

not stable compared to other algorithms because VCA with no DR applied required 

the least computing time for both HYDICE scene and Cuprite data whereas VCA 

with DR applied produced different results with regard to computing time 

performance. VCA took the longest computing time for HYDICE, but it was the 

second best algorithm in computing time for Cuprite data. Overall, Dist-SGA was the 

worst algorithm with worst computing time performance among all the eight 

algorithms except VCA, which is with DR applied prior to processing, for HYDICE, 

while ATGP and RGSGA are ranked as 2nd and 3rd best in computing time, 

respectively, next to VCA with no DR applied. However, since VCA is not designed 

to find maximal SV, it did not produce good endmember results unless VCA used 

ATGP-generated target pixels as initial conditions regardless of its savings in 

computing time which was pointed out in (Chang, 2013; Chen, 2014). It is also 

interesting to see that VCA with DR applied took the longest time to find 
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endmembers for HYDICE as shown in Fig. 5.3(a) but the 2nd best in time 

performance for Cuprite data as it is in Fig. 5.3(b) which is resulting from the 

performing of DR prior to projection step in VCA. When the size of data is very large 

such as Cuprite having 350×350 pixels, VCA with DR applied actually takes 

advantage of DR-reduced data to save computing time where DR is only one-time 

operation in VCA. As a result, VCA with/without DR applied achieved the two best 

methods in time performance. 

Another comment is noteworthy. Since VCA makes use of random initial 

conditions for each endmember it generates, it is interesting to see how random initial 

conditions have impact on its final endmember results. In (Chang, 2013; Chen, 2014) 

three initial conditions were investigated for VCA with no DR applied prior to 

projection step, (1) initial conditions generated by Gaussian random generators 

originally used by VCA, (2) the unity vector with all components specified by 1’s, 

i.e., (1,1, ,1)T

L

, and (3) ATGP-generated target pixels. It has been shown that the best 

performance VCA could produce was the one which used the ATGP-generated target 

pixels as initial conditions. Interestingly, in this case, VCA is simply reduced to 

ATGP. Moreover, it is also shown that if VCA is implemented with DR or using 

random initial conditions, VCA generally did not perform as well as ATGP did. 

Finally, it is faithfully to point out that as long as maximal OP and maximal SV 

are used as criteria for finding endmembers VCA may not be effective even though 

VCA with/without DR applied may take the least computing time as shown in Fig. 

5.3. Unfortunately, this must be traded for its suboptimal performance in finding 

endmembers as a compromise, for which we consider it not worthwhile. With all 



79 

 

things considered RGSGA and ROP-SGA is generally preferred among all currently 

available SV-based endmember finding algorithms in terms of performances in 

finding endmember and computing time. 

 

5.8 Conclusions 

This chapter develops recursive versions of geometry simplex growing algorithm 

(GSGA) and orthogonal projection-based SGA (OP-SGA). In the previous chapters, 

SV calculation via geometric method is proved to be a reliable approach to finding 

endmembers and also significantly reducing computational cost. The proposed 

versions of GSGA and OP-SGA make it easy to update the key operators in a 

recursive manner.  In particular, ROP-SGA is derived to allow OP-SGA to update 

orthogonal subspace 
k

P

U
 with 

1k
P





U
and new endmember mk without re-processing 

previous endmembers m0, m1, …, mk, whereas RGSGA is derived by updating 

orthogonalized vectors of all data sample vectors via km  corresponded to new 

endmember mk. The recursive versions of GSGA and OP-SGA have two significant 

benefits. One is tremendous reduction of computational cost. They replace matrix 

inverse calculations with calculating inner and outer products of vectors. Another is 

that the recursive equations developed to implement RGSGA and ROP-SGA are 

Kalman filter-like filters which can be easily implemented in real time and hardware 

design. Besides, ROP-SGA is able to provide an effective means of determining how 

many endmembers needed to be generated in an unsupervised fashion compared to 

SGA which must know this number in advance prior to its implementation. 
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Chapter 6: GEOMETRIC CONVEX CONE VOLUME 

ANALYSIS 

 

6.1 Introduction 

The previous chapters introduce two geometric approaches to implementing SGA, 

which are GSGA and OP-SGA. In order to provide their real-time capability, these 

algorithms are further extended to their corresponding recursive versions, RGSGA, 

KF OSP-GSGA, KF OVP-GSGA, and ROP-SGA, to reduce exceedingly high 

computational complexity and also avoid numerical issue caused by calculating SV 

via matrix determinant. Recently, an alternative to SGA, called Convex Cone Volume 

Analysis (CCVA), was developed by Chang et al. (2016) This chapter applies a 

similar treatment to develop a theory for CCVA, to be called Geometric Convex Cone 

Volume Algorithm (GCCVA).  

Convex Cone Analysis (Ifarraguerri and Chang, 1999) was aimed at looking for 

boundaries of a convex cone with convex region containing all data sample vectors in 

the data. The boundary vectors of a convex cone are specified as desired endmembers. 

In comparison with simplex-based approaches which finds a simplex with as many 

data samples lying on/inside the simplex as possible to satisfy fully-abundance 

constraints, where abundances must be sum-to-one and non-negative, convex-cone-

based methods express each data sample vectors as a linear combination of the 

boundary vectors with only abundances non-negativity constraint satisfied.  

Convex Cone-based Growing Algorithm (CCGA) (Xiong et al., 2010) was 

proposed to improve computational complexity of SGA by replacing maximal 
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simplex volume with maximal convex cone volume as a criterion where the vertices 

of a simplex are the projection points of convex cone boundary vectors e1,e2,…,ek on 

the hyperplane 1T e u  orthogonal to the sample mean vector u. However, the issue 

of direct simplex volume calculation in CCGA also arises from calculating SV via 

matrix determinant as it is described in Chapter 3.  

In this chapter, GCCVA takes advantage of the idea of geometric simplex volume 

calculation presented in Chapter 3 to reduce computing time of CCGA and improve 

the performance. 

 

6.2 Convex Cone Volume Analysis (CCVA) 

The idea of Convex Cone Analysis (CCA) is based on the observation that some 

physical quantities, such as radiance or mass spectra, are strictly nonnegative 

(Ifarraguerri and Chang, 1999). The data sample vectors formed by such spectra thus 

lie inside a convex region consisting of the nonnegative spectra. The objective of 

CCA is to find the boundary vectors of this region as defined by its corner vertices. 

With introducing a hyperplane to convex cone, a bounded convex cone can be found 

as shown in Fig. 6.1. This bounded convex cone is indeed a simplex formed by a set 

of projection vectors and origin. As a result, finding a convex cone with all the data 

sample vectors lying in the convex region becomes finding a bounded convex cone 

with maximal SV. The volume of this bounded convex cone can be used as a criterion 

for finding endmembers. 

Assume k points 1 2, , , n

k e e e  in an n-dimensional space are linearly 

independent. A convex cone Ck can be expressed by the set of points that satisfies 
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 1 1 2 2 | 0,1k k k iC i k         e e e .                           (6.1) 

A hyperplane 1T e u  thereafter is used to produce a bounded convex cone kC  with 

corner vectors 1 2

1 2

, , , k

T T T

k

e e e

e u e u e u
, which are projections of 1 2, , , ke e e  onto 

hyperplane 1T e u , where the content of kC  is denoted as ( )kV C . Therefore, the 

volume ( )kV C  of a bounded convex cone can be considered as 
h

k
 of the volume of 

simplex Sk-1 formed by k projection vertices, 1 2

1 2

, , , k

T T T

k

e e e

e u e u e u
 lying on hyperplane 

1T e u , i.e.  

1( ) ( )k k

h
V C V S

k
                                           (6.2) 

where h is the height from origin to hyperplane 1T e u . 

While this bounded convex cone kC  lies in an n-dimensional space with n = k, the 

volume ( )kV C  can be calculated via (3.5), so that 

   1

1
( ) ( ) det det

( 1)! !
k k E E

h h h
V C V S

k k k k
   


M M ,            (6.3) 

where 1 2

1 2

, , , k
E T T T

k

 
  
 

e e e
M

e u e u e u
. 
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Figure 6.1. A two dimensional bounded convex cone 

 

Now, finding boundary vectors of a convex cone Ck with maximal volume can be 

achieved by maximizing the volume of a bounded convex cone kC . Since the 

maximization of ( )kV C  is equivalent to the maximization of V(Sk-1), i.e. 

 

 

1

1

max ( ) max ( )

max ( ) max det( )
!

k k

k E

h
V C V S

k

h h
V S

k k





 
  

 

    M

,                           (6.4) 

it turns out that among all the data, convex cone volume analysis aims at finding a set 

of sample vectors  1 2, , , ke e e  which yields the maximal SV of a simplex 

consisting of  1 2, ,..., ke e e  lying on hyperplane 1T e u , where  1 2, ,..., ke e e  is a 

projection set corresponding to  1 2, , , ke e e . CCGA was proposed based on this 

idea and its procedures can be described as following. 

 

u 

Band1 

Band2 

e2 

e1 

S1(e1,e2) 

h 
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CCGA 

1. Pre-processing: 

a) Let p be the number of endmembers to be found. 

b) Apply a DR transform such as PCA to reduce the data dimensionality from L to 

p where L is the total number of spectral bands. 

2. Initialization: 

a) Project all data samples jr  onto hyperplane 1T e u  as , 1,...,j j Nr  where u 

is the sample mean vector of all the data and N is total number of data samples in 

the image.  

b) Let 0e  be an initial vector randomly selected from the data and 0e  be the 

corresponding projection. Search all data samples to find 1e  corresponding to 1e  

that yields maximum distance to 0e  by  1 1 0arg max ( , )S re e r . 

3. At 2k  , for each sample vector r , calculate 

1 1 1 2 1( ) ( ) ( ( , ,..., , ))k k k kV C V S V S    e e e r  defined by (6.3). 

4. Find ke  corresponding to ke  that maximize (6.4) as 

 1 1 2 1arg max ( , ,..., , )k k kS   re e e e r . 

5. Stopping rule: 

If k p , then 1k k   and go to step 3. Otherwise, the final set of 

 1 2, , , pe e e  is the desired p endmembers.  
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6.3 Geometric Convex Cone Volume Analysis (GCCVA) 

As it is mentioned in Chapter 3, calculating SV via matrix determinant can only 

be valid when the simplex and its ambient space are in the same dimensionality. 

Otherwise, a pre-processing procedure, such as SVD or DR transform, is necessary 

to be applied prior to SV calculation. To avoid an issue of numerical instability and 

a cumbersome process, Geometric Convex Cone Volume Algorithm is developed in 

this chapter. 

Since it is shown that the volume of a k-simplex is proportional to its 

corresponding parallelotope, by (3.3) and (6.2) the volume ( )kV C  of a bounded 

convex cone kC  can be expressed as 

1 1 2 1 1 2 1

1
( ) ( )

( 1)! !
k k k k

h h h
V C V S h h h h h h

k k k k
     


,                (6.5) 

where hj is height from je  to 2 1 2 1( , ,..., ), 1, ,j jS j k  e e e . 

Prior to calculating volume of the bounded convex cone kC , all data samples 

must be projected onto a determined hyperplane. In CCGA, the sample mean vector u 

is used to determine the hyperplane, and the central projection of center 0 is used to 

map data samples onto the hyperplane (Gallier, 2011). It should be noted that the 

central projection always keep the boundary vectors of a convex cone invariant. In 

other words, the boundary vectors of a convex cone will still be boundaries of the 

bounded convex cone no matter which hyperplane was used. An OP approach is 

suggested in this section to perform the projection process. Fig. 6.2 shows the 

difference of projecting data sample vectors onto hyperplane via central projection 

and OP. Consequently, Geometric Convex Cone Volume Analysis (GCCVA) can be 
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implemented in two different ways by central projection and OP. By using OP, it can 

not only guarantee to find the boundary points but also the farthest vectors from the 

origin along the direction of boundary vectors. A example of this concept is shown in 

Fig. 6.2 that two possible boundaries, {r1,r3} or {r2,r3}, could be found using central 

projection, but {r1,r3} will be the boundaries once OP is used to map the data. In this 

section, GCCVA is implemented with sample vectors mapping onto the hyperplane 

via OP. 

 

Figure 6.2. Illustration of projecting data samples onto selected hyperplane via central projection and 

OP; where Proj(r) indicates the central projection and ( )P

U
r  indicates OP, respectively. 

 

GCCVA 

1. Initial Conditions:  

a) Determine a hyperplane perpendicular to u. 

b) Project all data sample vectors jr  orthogonally onto the hyperplane 1T e u  as 

, 1,...,j j Nr , where N is the total number of data samples in the image. 

c) Let 0e  be an initial vector randomly selected from the data and 0e  be the 

r1 

r2 

r3 

Proj(r1) = Proj(r2) 

PU
⊥
(r1) ≠ PU

⊥
 (r2) 

U 
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corresponding projection. Search all data sample vectors to find 
1e  corresponding 

to 
1e  that yields maximum distance to 

0e  by  1 1 0arg max ( , )S re e r . Let 

 1U e . 

2. At 2k  , find 
1kh 
 that solves  

      argmax argmax
T

T

k P P 

 

 
  U Ur U r U

e r r r r .                 (6.6) 

3. Find ke  corresponding to ke . 

4. Stopping rule: 

If k p , then 1k k   and go to step 3. Otherwise, the final set of 

 1 2, , , pe e e  is the desired p endmembers.  

 

6.4 Recursive Geometric Convex Cone Volume Algorithm (RGCCVA)  

Since the maximum volume of a bounded convex cone problem can be considered 

as the maximum volume of a simplex lying inside the determined hyperplane, the key 

of making GCCVA work more efficiently is to derive the volume of the augmented 

simplex without re-recalculating from the previous vertices. Using the recursive 

equation (4.11) derived in Chapter 5 for OP-SGA, GCCVA can also be implemented 

in a recursive manner by updating kP

U
 from 1kP 



U
. The recursive version of GCCVA, 

so called Recursive Geometric Convex Cone Volume Algorithm (RGCCVA), can be 

described as follows. 
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RGCCVA 

1. Initial Conditions:  

a) Determine a hyperplane perpendicular to u. 

b) Project all data samples jr  orthogonally onto the hyperplane 1T e u  as 

, 1,...,j j Nr , where N is the total number of data sample vectors in the image. 

c) Let 0e  be an initial vector randomly selected from the data and 0e  be the 

corresponding projection. Search all data sample vectors to find 1e  corresponding 

to 1e  that yields maximum distance to 0e  by  1 1 0arg max ( , )S re e r . Let 

 1U e . 

2. At 2k  , find 1kh   that solves  arg maxk P




 Ur U

e r  via (4.11) 

3. Find ke  corresponding to ke . 

4. Stopping rule: 

If k p , then 1k k   and go to step 3. Otherwise, the final set of 

 1 2, , , pe e e  is the desired p endmembers.  

  

6.5 Experiments 

In the following experiments, GCCVA and RGCCVA were implemented with 

data samples orthogonal projected onto five different hyperplanes determined by 

vector u: 1) u is the sample vector with maximal vector length, 2) u is a unit vector 

along the direction of the first band, i.e., u = [1,0,0,…,0]T, 3) u is an all one vector 

[1,1,…,1], 4) u is the sample mean vector, and 5) u is randomly generated, and 
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analyses of their found endmember are conducted to compare with Automatic Target 

Generation Process (ATGP) (Ren and Chang, 2003), DSGA referred in previous 

chapters originated from Simplex Growing Algorithm (SGA) (Chang et al., 2006), 

Vertex component Analysis (VCA) (Nascimento and Dias, 2005), and CCGA. To be 

noticed that RGCCVA finds endmembers identical to GCCVA so that only results of 

GCCVA were shown in Figs. 6.3-6.9. Two sets of image are used to conduct 

experiments. One is a set of synthetic images of six different scenarios and another is 

a real image data, HYDICE, as described in Chapter 2. 

 

6.5.1 Synthetic Image Experiments 

In this subsection, the experimental results on six scenarios image data are 

conducted. As a result of having full knowledge for the dataset, the performances of 

various EFAs can be evaluated based on the provided ground-truth. Due to the effect 

caused by background, the experiments conducted by assuming the number of 

endmembers p = 6 present in the scene with one endmember used to account for 

background signature. In the following results, open yellow circles represent found 

endmembers and the number used to label each circled pixels denotes its order. 

Figs. 6.3-6.5 show the result of proposed GCCVA with data smaples projected 

onto five different hyperplanes comparing to four EFAs, ATGP, DSGA, VCA, and 

CCGA on three Target Implantation scenarios. As the results on TI1 shown in Fig. 

6.3, no matter onto which hyperplane data samples projected, all five target panels 

can be extracted using GCCVA in different orders. And the other four EFAs can also 

find all five target panels succesively.   
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                 (d) mean vector (5/6)            (e) Random vector (5/6)                (f) ATGP (5/6) 
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                     (g) DSGA (5/6)                         (h) VCA (5/6)                       (i) CCGA (5/6) 

Figure 6.3. Endmember pixels found by (a-e) GCCVA with data samples orthogonally projected onto 

different hyperplane on TI1; (f) ATGP (g) DSGA (h) VCA and (i) CCGA 

 

With introducing of noise into background as scenario TI2, all four EFAs other 

than GCCVA missed panel pixel C, which spectrum is very similar to background. It 

should be noticed that panel pixel C can be extracted by GCCVA with samples 

projected onto other three hyperplanes but hyperplanes orthogonal to sample mean 

vector and the vector with maximal vector length as shown in Fig. 6.4. Another 
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convex-cone-based algorithm, VCA which initialization process is to transform data 

samples into a selected space, failed to extract three panel pixels terribly. These 

results demonstrated that noisy background have a high influence on endmember 

finding. Interestingly, if noise is also introduced to panel pixels the contaminated 

background is no longer dominant. 
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                 (d) mean vector (4/6)            (e) Random vector (5/6)                (f) ATGP (4/6) 
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                      (g) DSGA (4/6)                         (h) VCA (2/6)                       (i) CCGA (3/6)  

Figure 6.4. Endmember pixels found by (a-e) GCCVA with data samples orthogonally projected onto 

different hyperplane on TI2; (f) ATGP (g) DSGA (h) VCA and (i) CCGA  
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                 (d) mean vector (5/6)            (e) Random vector (5/6)                (f) ATGP (5/6) 
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                     (g) DSGA (5/6)                        (h) VCA (3/6)                        (i) CCGA (5/6) 

Figure 6.5. Endmember pixels found by (a-e) GCCVA with data samples orthogonally projected onto 

different hyperplane on TI3; (f) ATGP (g) DSGA (h) VCA and (i) CCGA 

 

As shown in Fig. 6.5, unlike the performance on scenario TI2, GCCVA 

successfully extracted all panel pixels on scenario TI3 as it did on TI1. Also, ATGP, 

DSGA, and CCGA performed well in this scene whereas VCA still failed to find two 

panel pixels. Similar results can be seen as the experiments of scenarios TE images 

shown in Figs. 6.6-6.8.  
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                 (d) mean vector (5/6)            (e) Random vector (5/6)                (f) ATGP (5/6) 
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                    (g) DSGA (5/6)                         (h) VCA (5/6)                        (i) CCGA (5/6) 

Figure 6.6. Endmember pixels found by (a-e) GCCVA with data samples orthogonally projected onto 

different hyperplane on TE1; (f) ATGP (g) DSGA (h) VCA and (i) CCGA 

 

Following the same experiments conducted for scenario TI1, all EFAs including 

the proposed GCCVA and VCA extracted all panel pixels successfully. Different 

from results on scenario TI2, all five panel pixels on scenario TE2 can be extracted 

via ATGP, DSGA and GCCVA with data samples projected onto the hyperplane 

determined by vector with maximum vector length. GCCVA with other hyperplanes 
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applied missed panel pixel C whereas VCA and CCGA can only extract two panels 

out of five.  
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       (a) Maximal length Vector (5/6)  (b) unit vector band 1 (4/6)             (c) vector 1 (4/6)   
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                     (g) DSGA (5/6)                         (h) VCA (2/6)                       (i) CCGA (2/6) 

Figure 6.7. Endmember pixels found by (a-e) GCCVA with data samples orthogonally projected onto 

different hyperplane on TE2; (f) ATGP (g) DSGA (h) VCA and (i) CCGA 

 

Similar to scenario TI3, GCCVA, ATGP and DSGA successfully extracted all 

five panel pixels on scenario TE3. But interestingly, CCGA can only extract two 

panels out of five as VCA did. These results demonstrated an idea mentioned in 
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previous section that the effect of background to an embedded target can be removed 

by taking advantage of orthogonal projection. Unlike CCGA using central projection 

to project data samples onto the determined hyperplane, GCCVA uses orthogonal 

projection approach instead. 
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                 (d) mean vector (5/6)            (e) Random vector (5/6)                (f) ATGP (5/6) 
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                      (g) DSGA (5/6)                         (h) VCA (2/6)                        (i) CCGA (2/6) 

Figure 6.8. Endmember pixels found by (a-e) GCCVA with data samples orthogonally projected onto 

different hyperplane on TE3; (f) ATGP (g) DSGA (h) VCA and (i) CCGA 
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6.5.2 Real Image Experiments 

In this subsection, two real image data, HYDICE and Cuprite data, are used to 

conduct experiments. The performances of various EFAs are evaluated by the number 

of extracted panels for HYDICE image. And performance evaluation on Cuprite data 

will also be discussed later. 

 

6.5.2.1 HYDICE Image 

The first real image to be used for experiment is HYDICE dataset. Unlike the 

synthetic dataset with complete knowledge, the number of endmembers is unknown 

in this image. To address the issue, VD, coined in (Chang, 2003) and later published 

in (Chang and Du, 2004), is used to estimate the number of endmembers as previous 

chapters.  

The VD estimated for HYDICE scene by Harsanyi-Farrand-Chang (HFC) 

method (Harsanyi et al., 1994) was nVD = 9. Recently, an approach using real target 

signal sources was proposed for VD estimation (Chang et al., 2015), and VD was 

shown to be in the range between 39 and 45. Interstingly, all EFAs other than VCA 

and CCGA can find pure panel pixels corresponding to five panel signatures when 

nVD = 18 which is twice the value of nVD = 9, which is also noted in other literatures. 

Fig. 6.9 presents the endmember results of GCCVA with sample vectors 

projected onto different hyperplanes and other four EFAs on HYDICE scene. All of 

these algorithms except VCA and CCGA find five pure panel pixels corresponding to 

five target panels within 18 endmembers whereas CCGA finds all five panel pixels 

with nVD = 35 and VCA finds four panels out of five with nVD = 45. It is worthy noted 

that via GCCVA with various hyperplanes to perform the projection process onto, the 



97 

 

found endmembers are slightly different in the background and varied in panel pixels 

with different orders.  
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                     (g) DSGA (5/18)                      (h) VCA (3/18)                      (i) CCGA (3/18) 

Figure 6.9. Endmember pixels found by (a-e) GCCVA with data samples orthogonally projected onto 

different hyperplane on HYDICE; (f) ATGP (g) DSGA (h) VCA and (i) CCGA 

 

6.5.2.2 AVIRIS Cuprite data 

In this sub-subsection, a well-known Airborne Visible Infrafred Spectrometer 

(AVIRIS) image scene, Cuprite dataset, was used to conduct experiments. Two types 

of Cuprite datasets, reflectance data and radiance data, were used to validate 
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algorithms. Since there is no available prior knowledge about spatial locations of 

endmembers we must rely on an unsupervised means of identifying if an extracted 

target pixel is an endmember. Endmember Identification Algorithm (EIA) developed 

in (Chang et al., 2014) and described in Chapter 4 was used to address the issue. 
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                          (g) DSGA                                (h) VCA                                (i) CCGA 

Figure 6.10. Endmember pixels found by EIA compared to ground-truth pixels for Cuprite reflectance 

data; (a-e) GCCVA with data samples orthogonally projected onto different hyperplane, (f) ATGP, (g) 

DSGA, (h) VCA, and (i) CCGA 

 



99 

 

A

B

C

K

M

a b

c

k

m

     

A

B

C

K

M

a

b

c

k

m

     

A

B

C

K

M

a

b

c

k

m

 

              (a) maximal vector length                (b) unit vector                         (c) vector 1 

A

B

C

K

M

a

b

c

k

m

     

A

B

C

K

M

a

b

c

k

m

     

A

B

C

K

M

a

b

c

k

m

 

                    (d) mean vector                          (e) Random                              (f) ATGP 

A

B

C

K

M

a

b

c
k

m

     

A

B

C

K

M

a
b

c

k

m

     

A

B

C

K

M

a

b

c

k

 

                          (g) DSGA                                (h) VCA                                (i) CCGA 

Figure 6.11. Endmember pixels found by EIA compared to ground-truth pixels for Cuprite radiance 

data; (a-e) GCCVA with data samples orthogonally projected onto different hyperplane, (f) ATGP, (g) 

DSGA, (h) VCA, and (i) CCGA 

 

Figs. 6.10-6.11 show the spatial locations of various EFAs found endmembers 

identified by EIA. The pixels marked by the lower case of “a”, “b”, “c”, “k”, “m” 

with red triangles are the desired endmember pixels found by EIA that correspond to 

the five ground-truth mineral endmembers marked by the upper cases of “A”, “B”, 
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“C”, “K”, “M” with yellow crosses symbols in the sense of spectral similarity 

measured by SAM and spectral information divergence (SID)  (Chang, 2003). 

Table 6.1 tabulates the five desired endmember pixels found by EIA among 

ATGP-found target pixels, ATGP

jt , VCA-found target pixels, VCA

jt , CCGA-found target 

pixels, CCGA

jt , and GCCVA-found target pixels with all five different initial 

hyperplanes, GCCVA

jt , where the subscript j indicates the order of a particular target 

pixel was found. 

Table 6.1. Endmember pixels found by EIA 

 Cuprite A B C K M 

ATGP 
Reflectance 

ATGP

11t  ATGP

13t  ATGP

44t  ATGP

64t  ATGP

8t  

Radiance 
ATGP

12t  ATGP

14t  ATGP

28t  ATGP

18t  ATGP

6t  

VCA 
Reflectance F 

VCA

150t  VCA

140t  VCA

85t  F 

Radiance 
VCA

18t  VCA

28t  VCA

45t  VCA

61t  VCA

23t  

CCGA 
Reflectance 

CCGA

42t  CCGA

71t  CCGA

16t  CCGA

23t  CCGA

74t  

Radiance 
CCGA

29t  CCGA

19t  CCGA

42t  CCGA

21t  F 

GCCVA-

MaxVecLen 

Reflectance 12t  46t  63t  72t  10t  

Radiance 23t  18t  29t  12t  6t  

GCCVA-

unit vector 

Reflectance 18t  48t  80t  26t  8t  

Radiance 20t  14t  53t  45t  7t  

GCCVA-

vector 1 

Reflectance 52t  77t  87t  27t  10t  

Radiance 25t  17t  27t  16t  6t  

GCCVA-

mean vector 

Reflectance 25t  45t  15t  71t  13t  

Radiance 53t  15t  27t  70t  6t  

GCCVA-

rand vec 

Reflectance 12t  38t  55t  28t  9t  

Radiance 43t  17t  29t  46t  10t  

 

As we can see from Table 6.1 for the reflectance data, VCA failed to find 

mineral signatures A and M while the other EFAs found the last mineral signature 

within 80 target pixels to complete all the five mineral signatures.  For radiance data, 

CCGA failed to find mineral signature M while the other EFAs found the last mineral 

signature within 70 target pixels to complete all the five mineral signatures. 
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                    (e) “m” signatures against “M” 

Figure 6.12. Comparative plots of spectral signatures found by GCCVA, ATGP, VCA and CCGA on 

Cuprite reflectance data 
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                    (e) “m” signatures against “M” 

Figure 6.13. Comparative plots of spectral signatures found by GCCVA, ATGP, VCA and CCGA on 

Cuprite radiance data 
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Nonetheless, all EFAs besides VCA found the same first mineral signature which 

was M because the spectrum of M is probably the most distinct among the five 

mineral signatures which can be seen in Figs. 2.1(c)-2.1(d). Once the spatial locations 

of the five desired endmember pixels were found in Figs. 6.10-6.11 we can further 

perform a comparative spectral analysis between EIA-identified endmember pixels in 

Table 6.1 and the ground-truth pixels in Fig. 2.1(b). For each of spectral signatures of 

the five mineral signatures, A, B, C, K, M both in reflectance data and radiance data, 

Figs. 6.12-6.13 plot nine spectra including spectrum of ground-truth pixel, and 

spectrum of EIA identified pixel spectra of endmember results using different EFAs 

listed in Table 6.1 for comparison. 

While the plots of Figs. 6.12 and 6.13 offer an advantage of visual assessment 

about how close a found endmember pixel to a ground truth pixel, it does not provide 

quantitative measurements on their spectral similarity. Tables 6.2 and 6.3 calculate 

spectral similarity values of the plots among identified target pixels against the 

ground-truth pixels in Figs. 6.12 and 6.13 where SAM and SID were used as spectral 

measure. 

As we can see from Tables 6.2 and 6.3, the spectral similarity values among all 

EFAs-found pixels compared to the ground-truth pixels were indeed very close even 

the found pixels by these EFAs were identified by EIA in different locations. 

GCCVA with the initial hyperplane determined by the vector with maximal vector 

length outperformed the other EFAs on Cuprite radiance data since the average of 

spectral similarity between identified endmember pixels and the ground-truth pixels is 

the smallest compared to the others. 



104 

 

 
Table 6.2. SAM/SID of the closet target pixels with ground-truth by variants of geometric convex 

cone algorithms on Cuprite reflectance data 

SAM 

SID 
(A,a) (B,b) (C,c) (K,k) (M,m) 

ATGP 
0.0167 

0.0002 

0.0334 

0.0009 

0.0379 

0.0009 

0.0341 

0.0007 

0 

0 

VCA 
F 

F 

0.0613 

0.0020 

0.0411 

0.0011 

0.0341 

0.0007 

F 

F 

CCGA 
0.0580 

0.0030 

0.0589 

0.0018 

0.0374 

0.0009 

0.0314 

0.0007 

0.0700 

0.0027 

GCCVA-

MaxVecLen 

0.0167 

0.0002 

0.0623 

0.0020 

0.0436 

0.0011 

0.0341 

0.0007 

0.0264 

0.0005 

GCCVA-

unit vector 

0.0167 

0.0002 

0.0573 

0.0017 

0.0506 

0.0018 

0.0304 

0.0006 

0.0264 

0.0005 

GCCVA-

vector 1 

0 

0 

0.0670 

0.0024 

0.0493 

0.0013 

0.0341 

0.0007 

0.0264 

0.0005 

GCCVA-

mean vector 

0.0235 

0.0004 

0.0623 

0.0020 

0.0350 

0.0008 

0.0341 

0.0007 

0.0249 

0.0004 

GCCVA-

rand vec 

0 

0 

0.0218 

0.0003 

0.0418 

0.0013 

0.0348 

0.0008 

0.0264 

0.0005 

 

Table 6.3. SAM/SID of the closet target pixels with ground-truth by variants of geometric convex 

cone algorithms on Cuprite radiance data 

SAM 

SID 
(A,a) (B,b) (C,c) (K,k) (M,m) 

ATGP 
0.0205 

0.0003 

0 

0 

0.0247 

0.0006 

0.0219 

0.0003 

0 

0 

VCA 
0.0344 

0.0007 

0.0151 

0.0003 

0.0108 

0 

0.0128 

0.0001 

0.0328 

0.0010 

CCGA 
0.0223 

0.0006 

0.0082 

0.0001 

0 

0 

0.0081 

0.0001 

F 

F 

GCCVA-

MaxVecLen 

0.0230 

0.0004 

0 

0 

0 

0 

0 

0 

0 

0 

GCCVA-

unit vector 

0.0098 

0.0001 

0 

0 

0.0181 

0.0003 

0.0122 

0.0002 

0 

0 

GCCVA-

vector 1 

0.0086 

0.0001 

0 

0 

0.0279 

0.0004 

0 

0 

0 

0 

GCCVA-

mean vector 

0.0048 

0 

0 

0 

0.0261 

0.0006 

0.0202 

0.0009 

0 

0 

GCCVA-

rand vec 

0.0147 

0.0003 

0 

0 

0.0279 

0.0004 

0.0122 

0.0002 

0.0058 

0 
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6.5.2.3 Computer Processing Time 

In order to count a fair comparitive analysis for convex cone based algorithms on 

computing time, ATGP, CCGA with SV calculated via SVD, VCA, GCCVA, and 

RGCCVA were run to find the bounded convex cone from 1-simplex up to L-simplex, 

L = 169 and L = 189 for HYDICE and Cuprite data, respectively, and further 

calculated their corresponding processing time. Figs. 6.14 and 6.15 plot their 

computer processing time for HYDICE where RGCCVA was the best and CCGA 

with SVD calculated via SVD was the worst regarding in computing time. It is worth 

noted that the computing time of VCA varies with size of data and is not stable 

compared to other algorithms. As it can be seen in Figs. 6.14 and 6.15, VCA took the 

longest computing time for HYDICE, but it was the best algorithm in computing time 

for Cuprite data. Overall, CCGA was the worst algorithm with worst computing time 

performance among all the other algorithms while R-GCCVA is ranked as 1st and 2nd 

best in computing time for HYDICE and Cuprite data, respectively. Although VCA 

performs better in terms of computing time, it did not produce good endmember 

results unless VCA used ATGP-generated target pixels as initial conditions regardless 

of its savings in computing time which was pointed out in (Chang, 2013; Chen, 

2014).  
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Figure 6.14. Accumulative computing time in seconds of ATGP, CCGA with SV calculated via SVD, 

VCA, GCCVA, and RGCCVA as p increases on HYDICE data 

 

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of endmembers (p)

A
c
c
u
m

u
la

ti
v
e
 c

o
m

p
u

ti
n

g
 t

im
e

 (
s
e
c
)

 

 

ATGP

CCGA

VCA

GCCVA

RGCCVA

     
0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

40

50

60

70

Number of endmembers (p)

A
c
c
u
m

u
la

ti
v
e
 c

o
m

p
u

ti
n

g
 t

im
e

 (
s
e
c
)

 

 

ATGP

VCA

GCCVA

RGCCVA

 
Figure 6.15. Accumulative computing time in seconds of ATGP, CCGA with SV calculated via SVD, 

VCA, GCCVA, and RGCCVA as p increases on Cuprite data 

 

6.6 Conclusions 

This chapter introduces an approach which converts convex cone analysis to 

convex cone volume analysis. It projects a convex cone onto a hyperplane so that the 

volume of the projected convex cone can be realized by a simplex on the hyperplane. 

In this case, a new convex cone growing algorithm can be developed to ease 

computational complexity of SGA. As noted, SV calculation by the matrix 

determinant causes numerical instability in SGA. Geometric simplex volume (GSV) 
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calculation is applied to address this issue. As a result, a Geometric Convex Cone 

Volume Algorithm (GCCVA) is further developed. However, how to determine a 

desired hyperplane remains an issue. Fortunately, according to our extensive 

experiments conducted in this chapter, the hyperplane actually does not play an 

important role since the use of the central projection with center 0 keeps the convex 

cone invariant no matter which hyperplane is chosen for projection. Furthermore, it is 

also shown by experiments that using OP instead of the central projection with center 

0, GCCVA can successfully reduce the background effect to find endmembers more 

effectively. Moreover, a recursive version of GCCVA, called RGCCVA, can be 

derived to update convex cone volumes via OP in a recursive manner. The 

experimental results demonstrated that GCCVA developed in this chapter 

outperformed other convex cone-based algorithms in terms of finding endmembers. 

Also, RGCCVA not only provides the same results identical to the results found by 

GCCVA but also significantly reduces computational cost via updating volumes of 

bounded convex cones recursively. 
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Chapter 7:  CONCLUSIONS 

 

7.1 Summary 

The maximal Simplex Volume (SV) has been used as a major criterion to design 

Endmember Finding Algorithms (EFAs), especially Simplex Growing Algorithm 

(SGA), which was developed to resolve several issues arising from well-known N-

finder algorithm (N-FINDR). Although SGA successfully reduces high computational 

complexity resulting from exhaustive search for finding maximal-SV simplexes, its 

use of matrix determinant to calculate SV turns out not to produce true SV. In 

addition, calculating matrix determinants suffers from numerical instability. In 

particular since the number of endmembers is generally much smaller than the 

number of bands, computing the matrix determinant becomes more complicated in 

which case Dimensionality Reduction (DR) usually implemented prior to SV 

calculation. The research performed in this dissertation takes up these issue and 

focused on design and development of maximal SV-based EFAs. It converts direct 

finding SV via the matrix determinant to finding the height of simplexes by 

interpreting SV calculation as the multiplication of the height and base of a simplex 

from a geometric point of view. 

In Chapter 3, a concept of using geometric structure was proposed to address the 

issue encountered in SV calculation via the matrix determinant. The proposed 

geometric volume calculation approach is very simple and easy to be implemented. It 

offers several benefits that determinant-based SV approaches cannot provide. One is 

no requirement of DR. Another is that the geometric approach gives the true SV 
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without running into the numerical issues when a simplex to be calculated has very 

high dimensionality. Third, the computational complexity is significantly reduced by 

its geometric structure since it only needs to find the height of a simplex. Finally, it 

can avoid finding incorrect endmembers caused by the numerical errors resulting 

from using determinant-based SV approaches. 

The concept of Geometric SV (GSV) calculation is first proposed in Chapter 4 to 

replace SGA using matrix determinant to calculate SV, referred to as determinant-

based SGA (DSGA). Two such GSV-based EFAs are proposed, to be called 

Geometric SGA (GSGA) and Orthogonal Projection-based SGA (OP-SGA). By 

taking advantage of Gram-Schmidt Orthogonalization process (GSOP) to find heights 

of simplexes and Orthogonal Subspace Projection (OSP) to find Orthogonal 

Projection (OP), SV can be calculated and updated by new generated endmembers 

without re-computing volumes by matrix determinants. As a result, computational 

complexity significantly reduced.  

In order to realize real-time processing ability, Chapter 5 derives recursive 

equations to be used to further develop recursive versions of GSGA and OP-SGA 

called Recursive GSGA (RGSGA) and Recursive OP-SGA (ROP-SGA) so that both 

of them can be implemented as Kalman filter-like algorithms which can be easily 

implemented in hardware design. 

Finally, Chapter 6 presents another alternative geometric concept to simplex. By 

taking advantage of GSV calculation, it extends a recent work, Convex Cone 

Growing Analysis (CCGA) developed by Xiong et al. (2010), to Geometric Convex 
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Cone Volume Analysis (GCCVA) as well as its recursive version, Recursive GCCVA 

(R-GCCVA). 

 

7.2 Contributions 

There are several contributions made in this dissertation, each of which can be 

described as follows. 

1. Simplex volume analysis (Chapter 3) 

a. Investigates and analyzes the issue in calculating volume of simplexes 

from two different aspects, geometric structure and eigen-analysis. 

b. Proposes a simplex volume calculation method via the geometric 

structure of simplexes. 

2. Design and development of variants of SGA (Chapter 4) 

a. Develops two new EFAs, OP-SGA and GSGA, with SV calculation in 

SGA replaced by GSV calculation.  

b. Conducts a comparative analysis and study among various SV-based 

SGA and GSV-based SGA. 

3. Recursive growing simplex volume analysis (Chapter 5) 

a. Develops recursive versions of OP-SGA and GSGA, called ROP-SGA 

and RGSGA. 

b. Derives Kalman filter-like algorithms for ROP-SGA and RGSGA 

which can be easily implemented in real-time and hardware design. 

c. Provides an effective means of determining VD in an unsupervised 

fashion. 
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4. Geometric convex cone volume analysis (Chapter 6) 

a. Addresses the issue in volume calculation of bounded convex cones, 

and applies the GSV approach proposed in Chapter 3 to resolve the 

issue. 

b. Explores the issue of determination of hyperplanes that generate 

different bounded convex cone. 

c. Develops a new EFA using convex cone and its recursive version. 

 

7.3 Future work 

This dissertation develops several GSV-based EFAs and demonstrats their 

effectiveness and efficiency by experiments. One of best benefits is recursive versions 

of GSV-based SGA which can be used to design real-time process algorithms as well 

as their hardware implementations. Another is applications in real-time band 

processing according to a hyperspectral data acquisition format, Band SeQuential 

(BSQ). Since the number of endmembers, p, is relatively small compared to band 

dimensionality, it generally requires DR to reduce data dimensionality to p.  As an 

alternative to DR, Band Selection (BS) can also be used for this purpose. However, 

BS must be performed prior to endmember finding where the number of bands must 

be determined in advance and appropriate bands also must be selected beforehand. 

Therefore, there is no way for BS to provide information about how each band has 

effect on endmember finding. Interestingly, BSQ allows EFAs to process data band 

by band progressively so that various endmembers can be found through different 

stages of band processing. Consequently, one potential application is to extend OP-
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SGA and GSGA to their progressive band processing versions in such a manner that 

OP-SGA and GSGA can be carried out according to BSQ band by band progressively 

to provide progressive endmember finding maps from which we can see different 

levels of difficulty with finding various endmembers. 
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