Auxiliary Material for

Asian and trans-Pacific Dust: A multi-model and multi-remote sensing observation analysis

Dongchul Kim^{1,2}, Mian Chin², Hongbin Yu², Xiaohua Pan^{2,3}, Huisheng Bian^{2,4}, Qian Tan^{5,6}, Ralph A. Kahn², Kostas Tsigaridis^{7,8}, Susanne E. Bauer^{7,8}, Toshihiko Takemura⁹, Luca Pozzoli¹⁰, Nicolas Bellouin¹¹, and Michael Schulz¹²

¹Universities Space Research Association, Columbia, Maryland, USA

²Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland,

USA

³Earth System Sciences Interdisciplinary Center, University of Maryland, College Park, Maryland, USA

⁴JCET/UMBC, Baltimore County, Baltimore, Maryland, USA ⁵Bay Area Environmental Research Institute, Moffett Field, California, USA ⁶NASA Ames Research Center, Moffett Field, California, USA

⁷NASA Goddard Institute for Space Studies, New York, New York, USA

⁸Center for Climate Systems Research, Columbia University, New York, New York,

USA

⁹Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan ¹⁰European Commission - Joint Research Center, Ispra, Italy ¹¹Department of Meteorology, University of Reading, Reading, UK

¹²Norwegian Meteorological Institute, Oslo, Norway

Introduction

There are a supplement table and six supplement figures. File names and figure captions are presented.

1. Table_S1.docx: AERONET site name, longitude, and latitude.

2. Table_S2.docx: Mean emissions from the Taklimakan desert (75°E-90°E, 35°N-45°N), Gobi Desert (95°E-115°E, 40°N-50°N), and Thar desert (60°E-80°E, 20°N-40°N). SRC_{all} is the sum of TAKL, GOBI and THAR deserts; SRC_{TAGO} is the sum of TAKL, GOBI; Total is the entire domain (60°E-140°W, 20°N-60°N) and the values are taken from Figure 4.

3. Suppliment_Figirures.docx

Supplement Figure Captions

Figure S1. Number of data samples (ncount) in million for January 2007 - December 2011: (a) -100<CAD<-20 and include clear-air; (b) -100<CAD<-70 and include clear-air; (c) -100<CAD<-20 and exclude clear-air; (d) -100<CAD<-70 and exclude clear-air. (e) ncount (-100<CAD<-20, include clear-air) minus ncount (-100<CAD<-70, include clear-air), (f) ratio of exclude clear-air to include clear-air (-100<CAD<-70), (g) percent ratio of CAD<-20 to CAD<-70 (exclude clear-air).

Figure S2. Comparison of monthly mean AOD between AEROENT and other satellite data and model values over the study domain. Number of total data point is 474 between 2000 and 2005. R, B, and E are the correlation coefficient, mean bias, and root-mean-square-error, respectively. Mean bias is defined as the sum of the ratio of the modeled or satellite AOD to AERONET AOD.

Figure S3. Monthly mean AOD over Land-West (60°E-100°E), Land-East (100°E-140°E), Ocean-West (140°E-180°E), Ocean-East (180E°-140°W) domains from top to bottom. Latitudinal ranges are 20°N to 60°N. Left- and right-columns are from satellites and models, respectively. All model plots are averaged from 2000 to 2005. Vertical bars are the standard deviation of monthly mean values.

Figure S4. Same as Figure S3 except for DOD.

Figure S5. Same as Figure S3 except for f_{DOD} .

Figure S6. Monthly mean DOD for 2000-2005 over the Taklimakan desert.

Figure S7. Map of precipitation (mm day⁻¹) of each season from models averaged from 2000 to 2005.