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Insect migration is globally ubiquitous and can involve continental-scale

movements and complex life histories. Apart from select species of

migratory moths and butterflies, little is known about the structure of the

annual cycle for migratory insects. Using stable-hydrogen isotope analysis

of 852 wing samples from eight countries spanning 140 years, combined

with 21 years of citizen science data, we determined the full annual cycle

of a large migratory dragonfly, the common green darner (Anax junius).

We demonstrate that darners undertake complex long-distance annual

migrations governed largely by temperature that involve at least three gen-

erations. In spring, the first generation makes a long-distance northbound

movement (further than 650 km) from southern to northern range limits,

lays eggs and dies. A second generation emerges and returns south (further

than 680 km), where they lay eggs and die. Finally, a third resident gener-

ation emerges, reproducing locally and giving rise to the cohort that

migrates north the following spring. Since migration timing and nymph

development are highly dependent on temperature, continued climate

change could lead to fundamental changes in the biology for this and similar

migratory insects.
1. Introduction
Insects are the most species-rich and abundant group of macroscopic organisms

on the planet, yet our understanding of the biological underpinnings of their

annual cycles and migratory behaviours drastically trails behind that of

vertebrate taxa [1]. Perhaps the best-known insect migrations are the multi-

generational migrations of the monarch butterfly (Danaus plexippus) in eastern

North America [2], and the painted lady (Vanessa cardui) in Europe [3], which

migrate southbound each autumn from the northern reaches of their distri-

bution into southern North America and Africa, respectively. Monarchs wait

out the boreal winter [4] and the same individuals migrate northbound the fol-

lowing spring into the southern parts of their distribution where they lay eggs,

beginning the next generation that continues the northbound progression of

their lifecycle [2,3,5,6].

Few migratory insects have had their full annual cycles sufficiently

described despite their profound cultural [7], ecological [8] and agricultural

importance [9]. This disparity is owing largely to the difficulties with tracking

small organisms over space and time, as well as their complex life histories that

often require both terrestrial and aquatic habitats [10]. Among the migratory
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insects, almost all are suspected to employ complex multi-

generational migrations (but see [7,8]) similar to the monarch

butterfly and painted lady, where no single individual

completes the entire migratory circuit [2,3,5,6,10,11]. The con-

tinental distances travelled [12,13], small body sizes and

multi-generational aspect of their life histories pose signifi-

cant challenges to understanding the fundamental biology

of the full annual cycles of migratory insects. Adding to

this complexity, movements, timing and life-history strategies

are likely linked to photoperiod, weather, temperature and

other environmental forces [1,3,11,14–16].

The common green darner (Anax junius) is a ubiquitous,

charismatic migratory dragonfly found in North America.

Its complex life-history includes both resident and migratory

populations. The aquatic nymphs likely give rise to resident

and migratory phenotypes because they exhibit two distinct

developmental strategies [14]. Nymphs either undergo

rapid development and emerge within a single season or

develop slowly, enter diapause and emerge the following

summer [14]. The developmental strategy is governed by the

photoperiod experienced by the egg or early instars [17] and

temperature [14]. Therefore, the seasonal timing of oviposition

likely determines whether nymphs develop, emerge within a

single growing season and migrate, or enter diapause.

Darner migration is considered an adaptive strategy

because it spreads reproductive effort across multiple,

widely separated water bodies and ameliorates the risk of

predation, competition and drought [17,18]. Migratory move-

ments are commonly observed in autumn and have been

documented using direct [12] and indirect techniques [19].

Northbound migration in spring is suspected and supported

by anecdotal observations but is not well documented [20].

Although it is known that common green darners migrate,

no study to date has linked multiple populations over time

and space to better understand the phenology of the annual

cycle and the number of generations involved.
2. Methods and materials
We combined observational and stable-hydrogen isotope

data to identify the timing of migration and emergence ori-

gins of darners. Two publicly available datasets were

assembled to refine emergence assignments using stable iso-

topes. First, we acquired citizen science data on the first

observed migratory adult common green darners (first

flight dates) to determine the minimum temperature necess-

ary for darners to migrate (electronic supplementary

material, table S1). Daily mean temperature of the first

flight date was 9.178C, similar to the development threshold

(8.7+ 0.18C) reported by Trottier [14]. In addition to deter-

mining the temperature threshold for migratory flights, we

used occurrence records submitted by citizen scientists and

museum collections to generate a habitat suitability surface

that we included as prior information in the probabilistic

isotope-assignments [21] (see §2a).

(a) Emergence assignments
We obtained contemporary and museum specimens from 681

locations from eight countries ranging from the tropics to the

northern temperate zone (17.988 N to 51.148 N) that we used

to describe migration phenology and the number of gener-

ations within the annual cycle for the common green
darner. Specimens, which included exuviae, tenerals and

mature adults, were collected in every calendar month span-

ning over 100 years (electronic supplementary material, table

S2). Isotope analyses were performed on a small distal seg-

ment of the wing to determine where the captured

individuals emerged (see electronic supplementary material).

(b) Migratory distance
Determining the exact emergence origin from stable isotopes

is not possible given the uncertainty in geographical assign-

ment and lack of longitudinal variation in the underlying

isoscape. Therefore, we used a conservative distance estima-

tor as an index of migration distance. We determined the

minimum distance (kilometres) between the ‘likely’ emer-

gence origin surface and the location where the specimen

was collected (i.e. shortest possible distance travelled).

Migration distances were calculated using the gDistance

function in the rgeos [22] package in program R [23].

(c) Annual cycle
We summarized the emergence origins within the hardiness

zones (see electronic supplementary material, delineating

populations) for each calendar month to describe the pheno-

logy of the annual cycle. Isotope-based emergence origins

provide spatio-temporal information of adults but the

phenology of nymph development and emergence timing is

also needed to fully understand the annual cycle of darners.
3. Results
We combined data on stable-hydrogen isotopes of 852

common green darner museum and contemporary specimens

spanning 140 years (1874–2013) from eight countries with

citizen science observations to determine the emergence

origin, continental migrations and annual cycle of the

common green darner. Using citizen science observations,

we found that northbound darner migration closely tracks a

thermocline of 9.178C (figure 1). We then used this tempera-

ture-dependent flight phenology to refine stable-isotope

assignments, and found that adults originating from the

southern range margin migrate a minimum of 659.46+
49.11 km to the northern range edge in March and April

(n ¼ 50; electronic supplementary material, figure S1a). Pre-

vious estimates of darner daily migration rates indicate this

journey would take 55.42+4.13 days to complete [12]. There-

fore, the first migratory individuals arriving in the north

likely emerge in the south in January and February. However,

prevailing wind patterns in spring favour northbound

migration, potentially allowing individuals to migrate faster

[24]. If darners use high-altitude migratory flights to take

advantage of fast-moving winds, the distances reported

above could be covered more rapidly [11,13,25].

Combining stable-isotope assignments and temperature-

related nymph development [14], we found the annual

cycle of common green darners is comprised of at least

three generations (figure 2). The first generation emerges

between January and May in the southern part of the distri-

bution and migrates north into the northern reaches of the

distribution. The first generation is complete by August, the

last month when darners with southern stable isotopic ori-

gins are captured in the north (figure 2, August). The first
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Figure 1. First flight date of adult common green darner and the latitude of
the 9.178C thermocline. The mean latitude of the thermocline was extracted
along the observation longitude from 1994 to 2014. Error bars represent
the standard error in the latitude of the thermocline on the first flight date.
Data represented in figure 1 can be found in electronic supplementary material,
table S1. Graphic was drawn by Matthew Dodder (https://neornithes.wordpress.
com) and used with permission. (Online version in colour.)
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cohort of the second generation—young from the previous

year that overwinter as late-stage instars and eclose between

May and July [14]—begin flying in May with 4% (2 of 53;

figure 2, May) of individuals assigned to where they were

captured. Spatio-temporal overlap exists between the first

and second generations as northbound migration continues

through July. The number of locally emerged darners in the

north increases throughout the season, peaking in September

when offspring of the first generation in April and early May

eclose (May: 4%, 2 of 53; June: 22%, 16 of 74; July: 29%, 15 of

52; August: 50%, 5 of 10; September: 86%, 6 of 7; October:

67%, 2 of 3; electronic supplementary material, figure S3).

This latter cohort of the second generation then migrates

south.

Second generation darners with northern isotopic signa-

tures are first detected in the south during August and

September (figure 2, September), suggesting southbound

migration begins in July and continues into October [12].

These southbound migrants are composed of darners that

overwinter as nymphs and emerge in June and July and dar-

ners who develop within a single growing season that eclose

in September. Southbound migration to the southern range

edge peaks in September and October, with 64% (7 of 11)

of green darners captured at least 680.97+178.84 km from

where they emerge in the north (electronic supplementary

material, figure S1b). The second generation composed of

individuals that emerge in the northern portion of the distri-

bution ends in late October (figure 2, October). After this

time, no individuals with northern isotopic signatures were

captured in the south (figure 2, November), suggesting they

die shortly after they arrive in the south. However, south-

bound migrants from mid-latitudes were captured in

November (43%, 3 of 7; figure 2, November) and December

(57%, 4 of 7), emerging a minimum of 226.13+108.50 and

232.03+93.28 km away from where they were captured,

respectively. A third, non-migratory generation occurs in the
south between November and January (figure 2, November–

January). This generation must be resident because adults

that emerge in November likely die before April and May

when the first migratory individuals are captured in the

north, based on the adult longevity reported for the species

(five to seven weeks [16]). Thus, third generation adults that

emerge in November likely give rise to the first generation of

migratory individuals that are captured in the north. Stable

isotopes, however, are unable to differentiate between the

first and proposed third generation.
4. Discussion
The annual cycle of green darners is composed of at least two

migratory and one non-migratory generations. In spring, the

first generation makes a long-distance northbound movement

(659.46+ 49.11 km) from southern to northern range limits,

lays eggs and dies. A second generation emerges and returns

south (680.97+178.84 km), where they lay eggs and die.

Finally, a third resident generation emerges, reproducing

locally and giving rise to the cohort that migrates north the

following spring.

During spring, individuals with southern emergence ori-

gins arrive at northern locations prior to those with origins

from mid-latitudes (electronic supplementary material,

figure S2). A similar pattern is observed in autumn, where

individuals with northern origins are captured in the

southern portion of their distribution before green darners

that emerge at mid-latitudes. This migratory phenomenon

could arise from several alternative life-history strategies.

First, such patterns could result if individuals spread repro-

ductive risk across multiple, widely separated water bodies

and reproduce during their migratory journey north [18].

Their offspring could take advantage of warm surface

waters, mature rapidly within the same growing season

and migrate northbound (electronic supplementary material,

figure S4). Such a strategy is akin to the multi-generational

migration of the monarch and painted lady butterflies [1,2],

however, the longevity and strong direct flights of darners

allow populations to be connected over larger spatial scales

compared to the northbound multi-generational progression

of migratory butterflies. The observed pattern of shortened

migratory distances as the season progresses also could

result if individuals reproduce during southbound migration.

If darners reproduce during the journey south, their eggs

would hatch but the nymphs would enter a state of diapause

as temperatures drop, emerge and migrate north the follow-

ing spring when suitable thermal conditions allow [14,18].

A combination of these strategies is likely. Plasticity in

nymph development further complicates discerning between

the two strategies. Eggs laid during migratory periods could

either (i) undergo rapid development after hatching and

emerge within the same season or (ii) hatch, enter diapause

as nymphs and emerge the following spring, depending on

the photoperiod experienced by the egg or early instar [17].

Stable-hydrogen isotope data cannot differentiate between

these competing hypotheses. Regardless of the strategy, the

timing of migratory movements allows for spatial and tem-

poral overlap of both migratory and non-migratory

populations, explaining the lack of genetic structure in this

species [18,26].
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Figure 2. The full annual cycle of the common green darner is comprised of three generations. The first generation is migratory, emerges in the south between
February and May and dies in the north. The second generation emerges in the north, migrates south and dies. The third generation, offspring of migratory
individuals in the fall, is non-migratory and emerges in the south in November. The emergence origins of adults (colour ramp; grey ¼ zero, red ¼ many) captured
at the sampling locations (black dots) in each month are shown around the perimeter. Graphic was drawn by Matthew Dodder (https://neornithes.wordpress.com)
and used with permission.
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Common green darner migration appears to be governed

in part by temperature. Northbound adult migration during

spring coincides with a daily mean thermocline of approxi-

mately 98C (9.178C) and the last observed adults in autumn

coincide with a similar thermocline (9.548C). These findings

are consistent with the short migratory movements of

tagged individuals following synoptic cold fronts [12]. In

addition, the 98C thermocline observed here is similar to

the development threshold of the final instar (8.7+0.18C)

[14]. Taken together, these findings suggest that temperature

is a key limiting factor to the northbound migration of

dragonflies in spring, the emergence of nymphs and south-

bound migration in autumn. Given the critical role of

temperature, a warming climate could induce earlier

spring flights, trigger later autumn flights and potentially

shorten migratory distances as the 98C thermocline moves

northbound, allowing adults to reside at higher latitudes

during the winter months. Further research is needed to
determine how a changing climate may alter the migratory

schedules and annual cycle of dragonflies and other

migratory insects.
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