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ABSTRACT
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Thesis directed by: Curtis R. Menyuk, Professor
Department of Computer Science and
Electrical Engineering

The optical beam spread and the optical beam quality factor in the presence of both

an initial quartic phase aberration and atmospheric turbulence is analyzed. We obtain ana-

lytical expressions for both the mean-square beam radius and the beam quality factor using

the moment method. We compare these expressions to the results from Monte Carlo sim-

ulations, which allows us to mutually validate the theory and the Monte Carlo simulation

codes. We also discuss the reason for the discrepancy between the moment method and

the classical approach for calculating the ensemble-averaged mean-square beam radius in

a turbulent atmosphere that is described by Andrews and Phillips (1) and by Fante (2).

We analyze the first and second-order statistical moments of the fluctuating intensity

of a propagating laser beam and the probability density function versus intensity as the

beam propagates through a turbulent atmosphere. At the end, we compare our analytical

expression and our simulations to field test experimental results, and we find good agree-

ment.

We simulate the propagation of both a partially spatially coherent infra-red (IR) and

a visible laser beam through a turbulent atmosphere, and we compare the intensity fluc-

tuations produced in the simulation to the intensity fluctuations that are observed in both

maritime and terrestrial environments at the US Naval Academy. We focus on the effect

of the level of turbulence and the degree of the beam’s spatial coherence on the receiver

scintillations, and we compare the probability density function (PDF) of the intensity in



our simulation to the experimental data. We also investigate the effect of optical beam

spreading on the coherent and partially coherent laser beams along the propagation path.

Finally, we investigate the evolution of a radio frequency (RF) X-band signal as it

propagates through the solar corona turbulence in superior solar conjunction at low Sun-

Earth-Probe (SEP) angles. Our analysis of the data that was obtained during several MES-

SENGER (MErcury Surface, Space ENivornment, GEochmeisty, and Ranging) conjunc-

tions reveals a short term and long term effect. Amplitude scintillation is a smaller effect

and is evident on a short time scale. Phase scintillations are stronger, but occur over a longer

time duration. We examine different possible phenomena in the solar plasma that could be

the source of the different time scales of the amplitude and phase scintillations. We propose

a theoretical model in which the amplitude scintillations are due to local fluctuations of the

index of refraction that scatter the RF signal. These rapidly varying fluctuations randomly

attenuate the signal without affecting its phase. By contrast, we propose a model in which

phase fluctuations are due to long ducts in the solar plasma, streaming from the sun, that

trap some parts of the RF signal. These ducts act as waveguides, changing the phase veloc-

ity of the RF beam as it travels a zigzag path inside a duct. When the radiated wave exits

from a duct, its phase is changed with respect to the signal that did not pass through the

duct, which can lead to destructive interference and carrier suppression. The trapping of

the wave is random in nature and can be either a fast or slow process. The predictions of

this model are consistent with observations.
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Chapter 1

Introduction

This dissertation focuses on optical and RF beam propagation in turbulent media. For

an optical beam, the turbulent medium is the atmosphere and for an RF beam it is the

plasma in the solar corona. This research is broadly comprised of six separate projects. The

first three projects focus on optical beam propagation through atmospheric turbulence and

possible techniques to reduce scintillations at the receiver. The fourth and fifth projects are

concentrated on the data analysis and theoretical study of RF beam propagation through the

solar corona during planetary conjunction. Lastly, the turbulence model that was used in the

optical studies was implemented for an RF beam to reproduce the amplitude scintillation

that was obtained from the data analysis and also to compare the behavior of optical and

RF propagation through turbulent media.

First, we obtained an expression for the beam spread in the presence of both quartic

beam aberrations and atmospheric turbulence. We evaluated the mutual coherence func-

tion using the moments method, and we showed that an exact analytical expression for the

ensemble-averaged mean-square beam radius, 〈r2〉 can be obtained, without first obtain-

ing an expression for the mutual coherence function. We also calculated the beam quality

factor, and we showed that this exact expression has the form M2
total = 1 + M2

ab + M2
turb,

where M2
ab and M2

turb are due to initial aberrations and turbulence respectively, indicating

1
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that the contribution of the turbulence, M2
turb, to the beam quality is strictly additive. We

computed the beam radius as a function of the propagation distance. We then compared the

analytical results to Monte Carlo simulations and demonstrated agreement. We also com-

pared the Monte Carlo simulation results to the field test data. This work was reported in

(3) and (4). Second, we showed that the turbulence contribution 〈W2
turb〉 to the beam radius

squared, is proportional to distance-cubed (z3) for all distances and for all refractive-index

structure parameters C2
n, in contrast to a classical result due to Fante (2). The analytical ex-

pression has been verified using Monte Carlos simulations. This work was reported in (5).

Third, we investigated the possibility of decreasing the receiver scintillations by reducing

the spatial coherence of the beam and thereby improving the bit error ratio. We focused on

the simulation of a partially spatially coherent laser beam and compared the results with

the field test data for both terrestrial and maritime environments. This work was reported

in (6).

In the fourth project, my colleagues and I investigated the effect of RF X-band signal

as it propagates through the solar corona turbulence in a superior solar conjunction at low

Sun-Earth-Probe (SEP) angles. We analyzed recent data obtained during superior solar

conjunction of MESSENGER spacecraft at X-band for days 114, 115, 339, 340, and 344

for year 2014 for an SEP angle between 0.7◦ to 1.84◦. Analysis of the data that was ob-

tained over several MESSENGER conjunctions reveals a short term and long term effect.

Amplitude scintillation imposed on the carrier signal is a weaker effect and is evident on

a short-time scale. Phase scintillation imposed on the carrier is stronger, but occurs over a

longer time duration. There is an expected monotonic increase in phase scintillation with

decreasing SEP angle (23). However, we find SEP angles where phase estimates are noisier

than expected. We have observed two distinct characteristics for the phase scintillation that

is induced on the carrier, depending on whether the imposed phase modulation index is

about an odd multiple of π/2 or far removed from it. The proximity of π/2 is related to
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carrier suppression. For example, a carrier suppression of 25 dB occurs within about 0.056

radians (3.2◦) of an odd multiple of π/2 and a 1 dB carrier suppression occurs within 1.1

radians (63.0◦). The carrier suppression is significant when the fluctuations in signal-to-

noise ratio are noticeably different from those caused by thermal noise alone. Fluctuations

of the thermal noise are dependent on solar elongation angle, solar activity, and also re-

ceiver noise figure. We have also obtained the phase scintillation spectral density, and we

observed two distinct characteristics for it, depending on whether the phase fluctuations

suppresses the carrier or not. The phase scintillation spectral density when the carrier is

not suppressed is consistent with a Kolmogorov process for which the frequency depen-

dence is proportional to f−8/3, and this result is in agreement with prior investigations by

Morabito (23) and Imamura (24). However, when the carrier is suppressed, the receiver

noise obscures the underlying turbulent process and produces instead an f−1 dependence,

corresponding to the f−1 flicker noise of the receiver. These results have been presented in

(7) and (8).

In our fifth project we concentrated on the physical explanation for why the amplitude

scintillations and phase scintillations occur on different time scales. The short time scale of

one second for the amplitude scintillations is not hard to understand. Solar wind turbulence

leads to constant changes in the local index of refraction. Variations in the index of refrac-

tion scatter the RF beam and cause the amplitude scintillations (8). The long time scale of

hundreds to thousands of seconds for the phase scintillations are harder to explain. We have

investigated four phenomena that exist in the solar wind that could potentially explain these

long-time phase scintillations. We first investigated the propagation of a radio frequency

(RF) wave in the positively and negatively charged clouds of protons and electrons that are

approximately a Debye length in size. The difference between the indices of refraction in

these clouds will lead to phase variation in the beam wavefront as the RF beam propagates.

Second, we investigated the passage of supersonic particles through acoustic waves that
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locally change the index of refraction, leading to phase variation in the beam wavefront as

the RF beam propagates. Third, we investigated the separation of electrons and protons that

are due to inhomogeneous solar magnetic fields. This separation leads to local changes in

the indices of refraction and hence phase variations in the beam wavefront as the RF beam

propagates. Fourth, we investigated ducts in the solar plasma that trap a part of the RF

beam, which leads to a phase difference in the beam wavefront as the RF beam propagates.

We concluded that the most probable explanation for the difference in time scales between

the amplitude and phase scintillations is the effect of the long ducts.

Lastly, we showed that the same phase screen technique that we used to study optical

communications in free space through a turbulent atmosphere can be used to simulate an

RF beam as it propagates through the turbulent solar plasma. We reproduced the amplitude

scintillations that were observed in our data using a Monte Carlo simulation. Our data and

theoretical model were consistent and showed that solar plasma turbulence is consistent

with Kolmogorov process, and we confirmed this result with a Monte Carlo simulation.



Chapter 2

Beam spreading in the presence of quartic beam

aberrations and atmospheric turbulence

2.1 Analytical Expressions

The classical approach for calculating the ensemble-averaged mean-square beam ra-

dius in a turbulent atmosphere is described in Andrews and Phillips (1) and Fante (2). This

approach is to find a good analytical approximation for the mutual coherence function and

then to carry out an integration over the transverse beam profile. This approach works

well with Gaussian beams, but it is not useful for aberrated beams where good analytical

approximations for the mutual coherence function are difficult to obtain. Therefore, it is

advantageous to use other approaches such as the moment method as described by Feizulin

and Kravtsov (9) and by Gbur and Wolf (10). The mean-square beam radius for a beam

with a quartic phase aberration in the presence of turbulence had not been studied prior to

our work.

The beam radius squared W2(z) is traditionally defined as twice the mean-square

radius, and it can be written as

5
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〈W2(z)〉 = 2〈r2〉 = 2

∫ ∫ ∞
−∞ d2r r2Γ2(r, r, z)∫ ∫ ∞
−∞ d2r Γ2(r, r, z)

, (2.1)

where z is the propagation distance, r is the transverse distance, r is the corresponding

transverse vector, r2 is the spatial average of r2 over the beam profile, and 〈r2〉 indicates

the ensemble average of r2 over all turbulence realizations. The mutual coherence function

Γ2(r, r, z) [(1), 7.27] can be written as

Γ2(r, r, z) =
(

k
2πz

)2 ∫ ∫ ∞

−∞
d2Q

∫ ∫ ∞

−∞
d2S U

(
S +

Q
2

)
U∗
(

S− Q
2

)

× exp
[

ik
z
(S− r) .Q

]
exp

[
−1

2
Dsp(Q)

]
, (2.2)

where Q = |Q| and Q is difference between two points in the wavefront, S is mean of two

points in the wavefront and k is the angular wavenumber. We use the definition [(1), Eq.

6.70] for the structure function Dsp(Q), and, when Q� l0, we find

Dsp(Q) = 1.09C2
nk2z l−1/3

0 Q2
[
1− 0.72(k0l0)1/3

]
' 1.09C2

nk2zl−1/3
0 Q2. (2.3)

We note here that Cn is the refractive-index structure parameter, l0 is the inner scale of the

turbulence, and k0 is the outer scale wavelength of the turbulence.

The particular aberration of interest is the quartic phase aberration that has been de-

scribed by Siegman (11) and Siegman and Ruff (12),

U (r, θ) = U0 (r, θ) exp
[

ik
(

r2

2F
− C4r4

) ]
. (2.4)
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The quantity C4 is the aberration strength of the non-ideal optical element, and F is the

focal length. The initial beam is a Gaussian beam profile for which U0(r, z = 0) =

exp
(
−r2/W2

0
)

, where W0 is the initial beam radius. The case in which the beam radius

is a minimum at z = 0 will be presented here. In that case, we find

1
2F

=
2r4

r2
. (2.5)

Therefore, using Eqs. 2.4 and 2.5, the initial wave function of a Gaussian-distributed beam

with quartic aberrations becomes

U(r) = exp
[
− r2

W2
0
+ ikC4(2r2W2

0 − r4)

]
. (2.6)

Substituting Eq. 2.6 into Eq. 2.2 results in

Γ2(r, r, z) =
(

k
2πz

)2 ∫ ∫ ∞

−∞
d2Q

∫ ∫ ∞

−∞
d2S exp

(
2S2

W2
0
− Q2

2W2
0

)

× exp
{

ik
z

[
1 + C4z

(
4W4

0 − 4S2 −Q2
) ]

S ·Q− ik
z

r ·Q
}

exp
[
−1

2
Dsp(Q)

]
. (2.7)

Even in the absence of turbulence, when Dsp(Q) = 0, Eq. 2.7 cannot be analytically

evaluated. However, the beam radius squared may be found using the moments method,

starting from Eq. 2.1. To do so, we first let G0 ≡
∫ ∫ ∞
−∞ d2r Γ2(r, r, z), so that

G0 =

(
k

2πz

)2 ∫ ∫ ∞

−∞
d2Q

∫ ∫ ∞

−∞
d2S exp

(
−2S2

W2
0
− Q2

2W2
0

)
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× exp
{

ik
z

[
1 + C4z

(
4W4

0 − 4S2 −Q2
) ]

S ·Q
}

δ (Q) =

(
k

2πz

)2 π

2
W2

0 , (2.8)

where δ(Q) is the two-dimensional Dirac-delta function. We next calculate G2, where

G2 ≡
∫ ∫ ∞
−∞ d2r r2 Γ2(r, r, z), so that

G2 =

(
k

2πz

)2(−z2

k2

) ∫ ∫ ∞

−∞
d2S

∫ ∫ ∞

−∞
d2Qδ (Q)∇2

Q exp

(
−2S2

W2
0
− Q2

2W2
0

)

× exp
{

ik
z

[
1 + C4z

(
4W4

0 − 4S2 −Q2
) ]

S ·Q
}

=

(
k

2πz

)2
[

π
W4

0
4

+
πz2

k2

(
1 + 2k2C2

4W8
0

)]
. (2.9)

We note here that∇2
Q is the two dimensional Laplacian operator with respect to the coordi-

nates
(
Qx, Qy

)
. Therefore, the beam radius squared in the absence of turbulence becomes

W2(z) = 2r2 = 2
G2

G0
= W2

0 +
4z2

k2W2
0

(
1 + 2k2C2

4W8
0

)
, (2.10)

so that the beam quality factor due to quartic aberrations is given by M2
AB = 2k2C2

4W8
0 .

This result is consistent with earlier calculations of Siegman (11) and Siegman and Ruff

(12).

Adding the effect of turbulence is straightforward at this point. Since exp [−Dsp(0)] =

1, the quantity G0 is unchanged. The ∇2
Q operation produces no interaction between tur-

bulence terms and the other terms, so that
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∇2
Q exp

[
−1

2
Dsp (Q)

]
= −

(
2.18C2

nk2zl−1/3
0 + higher-order terms

)
exp

[
−1

2
Dsp (Q)

]
.

(2.11)

The higher-order terms in Eq. 2.11 are proportional to Q2 and tend to zero as Q → 0.

Adding the turbulence contribution to the total beam radius squared, we obtain

〈W2(z)〉 = 2〈r2〉 = 2
G2

G0
= W2

0 + W2
diff + 〈W2

turb〉+ W2
AB, (2.12)

where W2
diff = 4z2/k2W2

0 , 〈W2
turb〉 = 2.18C2

nl−1/3
0 z3 and W2

AB = 8z2C2
4W6

0 . In the

absence of aberrations, this equation is consistent with that in [(9), Eq. 18].

The turbulent contribution to M4
total for all distances is given by

M2
TU =

k2W2
0

4z2

(
2.18C2

nl−1/3
0 z3

)
= 0.505C2

nl−1/3
0 k2zW2

0 , (2.13)

so that in total

M4
total = 1 + M4

AB + M4
TU. (2.14)

Using this expression, we plot M2
total vs. C2

n with W0 = 5 cm and l0 = 4 mm. Results

are shown in Fig. 2.1, which should be compared to Fig. 6 in (14). While there are small

differences due to our particular choices of the parameter values and different definitions

of the M2 factors, the behaviors are essentially the same, as we show in Fig. 2.1.

In order to verify this expression for an initial Gaussian beam, we calculated the beam

radius squared 〈W2〉MC = 2〈r2〉MC, using the Monte Carlo technique, where 〈·〉MC de-

notes the ensemble average of the Monte Carlo realizations. We first write the paraxial
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1 

Figure 2.1: M2
total vs. C2

n

wave equation [(1), Eq. 7.3],

2ik
∂U (R)

∂z
+∇2

TU (R) + 2k2n1 (R)U (R) = 0, (2.15)

where R = (r, z) is the position vector, ∇2
T is the transverse Laplacian operator, U (R)

is the envelope of the electric field, and n1(R) is the randomly fluctuating portion of the

atmosphere’s refractive index. The solution of the wave equation, Eq. 2.15, over a small

∆z can be written as

U (x, y, z + ∆z) = U (x, y, z) exp
[

ik
∫ ∆z

0
dz′n1

(
x, y, z′

)]
. (2.16)

We then write the first two statistical moments of θ ≡ k
∫ ∆z

0 dz′n1 (x, y, z′),

〈θ〉 = k
∫ ∆z

0
dz′〈n1(x, y, z′)〉 = 0 (2.17)
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Figure 2.2: The solid lines (−) indicate the exact result, Eq. 2.12, and stars (∗) indicate the
Monte Carlo simulations

and

〈[θ]2〉 = k2
∫ ∆z

0
dz′

∫ ∆z

0
dz′′〈n1(x, y, z′)n1(x, y, z′′)〉. (2.18)

We use the method of randomly varying phase screens, combined with the split-step

method (13), to calculate U (r, z) for a particular realization, and from that we calculate

r2 =
∫ ∫ ∞
−∞ d2r r2|U(r, z)|2/

∫ ∫ ∞
−∞ d2r |U(r, z)|2. We use the von Karman-Tatarski (1)

spectrum to calculate the phase screens. Averaging over 104 realizations, we obtain an

estimate 〈W2 (z)〉MC = 2〈r2 (z)〉MC. We show in Fig. 2.2 the comparison of Eq. 2.12

to Monte Carlo simulations with W0 = 5 cm, l0 = 30 mm, C4 = 0.08 m−3, and

λ = 1550 nm. The agreement between the simulation and the exact solution is excel-

lent as shown in Fig. 2.2.

We have also compared the Monte Carlo simulation results to field test data. In

Fig. 2.3, we presents the spatial profiles of an infrared laser beam in a maritime environ-
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ment at three different propagation distances. The data were captured off the Atlantic coast

near Wallops Island, VA (15). These results can be compared to Fig. 2.4, which shows the

IR spatial profiles of a Gaussian beam with over 104 iterations using Monte Carlo simula-

tions at propagation distances of 5.1 km, 10.7 km, and 17.8 km. For the field experiment, a

bi-directional infrared optical link was established between a lookout tower and a research

vessel that was located in a range from about 5 km away from the lockout tower to almost

the optical horizon distance of 17.8 km. The link was mechanically fixed and with adaptive

optics pointing and tracking were maintained at the terminal. The data that are presented

here were collected from the 2.54 cm diameter of optical lenes aperture, and the beam from

the tower was transmitted from a 10-cm adaptive optics aperture. Observed realizations

are each one-minute long. Samples of data were collected at a rate of 104 samples/second

or 6 × 105 data points for the one-minute observation time, and then normalized to the

mean of the data. We found that we had to use C2
n = 1.2× 10−15 m−2/3 at a propagation

distances of 5.1 km and 17.8 km, and C2
n = 4.0× 10−16 m−2/3 at a propagation distance

of 10.7 km to obtain good agreement between the probability distribution function (PDF)

of our simulations and experiments . These values differ somewhat from the path aver-

age value of 2.4× 10−15 m−2/3 that was estimated at the time of the experiments, but are

within the error range of this estimate. This estimate was rough, and, in fact, compari-

son to Monte Carlo simulations like ours (4) is an effective means of deducing the actual

value. Additional details of the experimental set-up as well as the overall environmental

characterizations can be found in (16) and (17).

Additionally, in Fig. 2.5, we show a comparison of the Monte Carlo simulations with

the field test data at a propagation distance of 17.8 km with both the lognormal and gamma-

gamma probability distribution function distributions (15). With moderate to strong turbu-

lence fluctuations the gamma-gamma PDF should agree well with both our simulations and
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(a) 5.1 km (b) 10.7 km (c) 17.8 km

Figure 2.3: IR spatial profiles of the propagating beam from data collected near Wallops
Island, VA (16).

experiments. The fluctuation regime is characterized by the Rytov variance (1),

σ2
R = 1.23C2

nk7/6z11/6. (2.19)

The weak fluctuation regime corresponds to σ2
R < 1, while the moderate-to-strong fluctua-

tion regime corresponds to σ2
R > 1. For our simulations, the Rytov variance is 4.7, and, for

the experiments, it is 10.5 at 17.8 km; so, the system is in the moderate to strong fluctuation

regime. Our results are consistent with those in (18).

Table 1 shows a comparison of the scintillation index that we obtain from our Monte

Carlo simulations and from our experiments. The scintillation index is a measure of the

degree of fluctuation that a signal’s amplitude experiences due to passage through turbu-

lence. The scintillation index is defined as the irradiance variance scaled by the square of

the mean irradiance (1),

σ2
I (r, z) =

〈I2(r, z)〉
〈I(r, z)〉2 − 1, (2.20)

where the irradiance is equal to mutual coherence function, 〈I(r, z)〉 = Γ2(r, r, z), and

the second moment of the irradiance is the fourth-order coherence function, 〈I2(r, z)〉 =

Γ4(r, r, r, r, z). In order to calculate the scintillation index of the simulation, we used 104

realizations, and we used the peak intensity for each run to calculate the irradiance vari-
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Figure 2.4: IR spatial profiles of a Gaussian beam using Monte Carlo simulations averaged
over 104 realizations at three different propagation distances.

ance and square of mean irradiance. In the experiments, the scintillation index is computed

directly from the data run. As can be seen in Table 1, the scintillation increases as the

distance increases. The agreement between the scintillation index of the simulations and

experimental results is very good at all distances as shown in Table 1. As was mentioned

previously, we found that we had to use C2
n = 1.2× 10−15 m−2/3 at a propagation dis-

tances of 5.1 km and 17.8 km, and C2
n = 7.0× 10−16 m−2/3 at a propagation distance of

10.7 km to obtain good agreement for scintillation index and PDF between our simulations

and experiments. The results indicate the utility of using Monte Carlo simulations to obtain

good estimates of the turbulence parameters.
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Figure 2.5: Comparison of the Monte Carlo simulations and the field test at a propaga-
tion distance of 17 km with the lognormal and gamma-gamma PDF models.
(a) The probability density function of the normalized intensity. (b) Probability
density function of the normalized intensity shown on a log-log plot.
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Scintillation Index
Distance Simulations Experiment
5.1 km 0.066 0.066

10.7 km 0.127 0.123
17.8 km 0.662 0.635

Table 2.1: Simulation vs. field test data

2.2 Beam spreading in the presence of atmospheric turbulence

In this project, we showed that the turbulence contribution 〈W2
turb〉 to the beam radius

squared, is proportional to distance z3 for all distances and for all refractive-index structure

parameters C2
n, in contrast to a classical result due to Fante (2). We have shown in Eq. 2.12

that 〈W2
turb〉 = 2.18C2

nl−1/3
0 z3. This formula is in agreement with Fante [(2), Eq. 37a]

at long distances, but is in disagreement with Fante [(2), Eq. 37] and the result that was

reproduced by Andrews and Phillips (1) at short distances. This discrepancy is due to an

approximation of the structure function, which becomes invalid at small Q. We may write

the spherical wave structure function as [(1), 6.67]

Dsp(Q) = 8π2k2z
∫ 1

0

∫ ∞

−∞
κΦn(κ) [1− J0(κξQ)] dκdξ. (2.21)

A useful form for Dsp(Q) may be obtained by explicitly expanding the Bessel function to

yield

Dsp(Q) = 8π2(0.033)C2
nk2z

∞

∑
n=1

(−1)n−1Q2n

22n(2n + 1)(n!)2 ×
∫ ∞

0
κ2n+1Φn (κ) dκ. (2.22)

In the limit Q → 0, we find Dsp(Q) = 0.022π2C2
nk2zQ2A, where A =

∫ ∞
0 κ3Φn (κ) dκ

is independent of both Q and z. The salient points to note are: (1) This Taylor expansion
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of Dsp(Q) in powers of Q2 is absolutely convergent and has Q2 as its lowest-order power;

(2) Dsp(Q) is strictly proportional to z. These points hold for any Φn(κ), so that the

scaling that we derive for 〈r2〉 as a function of z holds for any Φn(κ). An expression that

closely approximates Eq. 2.21 [(1), 6.70] for Q� l0 is

Dsp(Q) ' 1.09C2
nk2zl−1/3

0 Q2, (2.23)

and for Q� l0 is

Dsp (Q) ' 1.09C2
nk2zQ5/3. (2.24)

Fante (2) used Eq. 2.23 at long distances and Eq. 2.24 at short distances, which allowed

him to calculate an explicit approximation for Γ2(r, r, z) using Eq. 2.2, which he then sub-

stituted into Eq. 2.1 to calculate the beam radius. As we have shown, the mean square beam

radius 〈r2〉 is entirely determined by the behavior at Q = 0, where the approximation for

Dsp breaks down and Dsp (Q) ∝ Q2. We show the difference between Fante’s approxi-

mation for Dsp (Q) and the exact expression for Dsp (Q) in Fig. 2.6. In order to verify

this expression for an initial Gaussian beam, we used Monte Carlo simulations. Averag-

ing over 104 realizations, we obtain an estimate 〈W2 (z)〉MC = 2〈r2 (z)〉MC. In Fig. 2.7,

we show a comparison of the Monte Carlo simulations at short distances to both the ex-

act result, Eq. 2.12, in the absence of abberations, and Fante’s expression [(2), Eq. 37].

We show the turbulence contribution 〈W2
turb〉MC = 〈W2〉MC −W2

0 −W2
diff. The Monte

Carlo simulations agree well with the exact result. Using a least-square fit to the variation

of log〈W2
turb)〉MC with distance, we find that the 95% confidence interval for the slope is

3.0146± 0.0235, which is in agreement with the exact formula. the deviation grows on

a logarithmic scale as Q becomes small. This deviation at small Q translates into a dif-

ference in the beam intensity at large r. As shown in Fig. 2.8, the intensity using Fante’s

expression has a tail at large r in contrast to the intensity using the exact expression, which
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Figure 2.6: Dsp vs. Q for short distances. We compare the exact and approximate ex-
pressions. The red line indicates Dsp (Q) = 1.09C2

nk2zQ5/3. The green line
indicates Dsp (Q) = 1.09C2

nk2zl−1/3
0 Q2

is Gaussian-distributed at all distances.
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Figure 2.7: Turbulence contribution to the beam radius squared for short distances, where
λ = 630 nm, l0 = 0.011 m, Cn = 7.0 × 10−15 m−2/3. The green line
indicates the exact result, the red line indicates Fante’s result, and open circles
(◦) indicate the Monte Carlo result.
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Figure 2.8: Intensity as a function of radius, normalized to the initial peak intensity. Using
Fante’s expression for Dsp at short distance leads to incorrect results at large
r. Dashed lines indicates intensities with Dsp (Q) = 1.09C2

nk2zQ5/3. Solid
lines indicates intensities with Dsp (Q) = 1.09C2

nk2zl−1/3
0 Q2. Blue, red, and

black indicate respectively z = 2z/kW2
0 = 0.01, 0.03, 0.06.



Chapter 3

Partially coherent beam propagation through

turbulence

3.1 Simulations description

We investigated the possibility of decreasing the receiver scintillations by reducing

the spatial coherence of the beam and thereby improving the bit error ratio. A laser beam

propagating in free space can undergo significant random intensity fluctuations due to tur-

bulence along the propagation path. A coherent beam (CB) becomes partially coherent

when it propagates in atmospheric turbulence, especially in strong turbulence. The theory

developed by Banach et al. (19) and by Ricklin and Davidson (20) that models a spatially

partially coherent source beam, as applied to atmospheric turbulence for the communica-

tion channel, shows that it is possible to decrease the receiver scintillations in some cases

by reducing the spatial coherence of the beam and thereby improving the bit error ratio

(BER).

We focused on the simulation of a partially spatially coherent laser beam and com-

pared the results with the field test data for both terrestrial and maritime environments.

Experimental and simulation implementation of the partially coherent laser light has been

accomplished using a spatial light modulator (SLM) for both visible (HeNe) and infra-red

20
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(IR) frequencies. A spatial light modulator allows direct control over the phase front of

the laser beam. We can generate a partially spatially coherent beam by passing a coher-

ent Gaussian beam through a random phase screen. Most studies consider the Gaussian

Schell-model (GSM) beam, which is an analytically tractable model in which the beam

field amplitude distribution and the spatial coherence function are both Gaussian. We de-

veloped a MATLAB code to generate a random phase screen using a technique described

by Shirai, Korotkova, and Wolf (21). The initial GSM beam can be written as

V0(r) = V(r, z = 0) = exp

(
− r2

W2
0

)
exp

[
igφ(r)

]
, (3.1)

where r = (x, y) is the transverse vector, r = |r| is the magnitude of the transverse

vector, z is the propagation distance, W0 is the initial beam radius, and gφ(r) is a Gaussian-

correlated random function and can be written as a convolution integral,

gφ(r) =
∫

fφ(r− r′)Rφ(r′)d2r′. (3.2)

The quantity Rφ(r) is a two-dimensional real-valued random function that is Gaussian-

distributed with zero mean, while fφ(r) is a window function and is given by

fφ(r) = exp

(
− r2

γ2
φ

)
, (3.3)

where γφ is a positive constant. Figure 3.1 shows sample phase screens with different

values of γ2
φ that were used in our simulations and experiments.

In order to model the propagation of a GSM beam through turbulence, we use the

same method that was described in chapter 2.1.
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(a) (b)

(c)

Figure 3.1: (a) γ2
φ = ∞ (coherent), (b) γ2

φ = 1 (strong diffuser), (c) γ2
φ = 16.

3.2 Field TEST Description

For the USNA field test, both an IR (1550 nm) and a HeNe (632.8 nm) laser were

used. The IR laser beam was used over land with a 180-m propagation distance, and the

HeNe laser was used over water with a 314-m propagation distance as shown in Fig. 3.2. In

both experiments, the laser beam was vertically polarized, went through a beam expander

(IR and visible), was reflected from a 7.68 mm × 7.68 mm SLM (IR and visible), and then

propagated through the atmosphere to a target receiver. At the receiver, an amplified pho-

todetector and data acquisition system were used to collect data at 10,000 samples/second.

Each data run was approximately two minutes in duration. A scintillometer was used to

estimate the value of refractive-index structure parameter, C2
n, over the propagation path

for both field tests. We measured C2
n = 1× 10−14 m−2/3 for the 314-m path over a creek.

We suspect that the scintillometer was misaligned during the 180 m terrestrial test, and we

therefore estimated C2
n = 1× 10−15 m−2/3 based on previous measurements. For more

details on the field test data, see (22).
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Figure 3.2: USNA field tests, arrows show direction of laser beam propagation (a) 180 m
IR (1550 nm) laser beam propagation, scintillometer view is seen in left hand
image, (b) 314 m HeNe (632.8 nm) laser beam propagation over creek. Left-
hand side is the transmitter view, and the right-hand side image is the receiver
side view. Scintillometer was aligned along beam path (22).
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Figure 3.3: Comparison of the Monte Carlo simulations and the field test with a degree of
coherence γ2

φ = 2 to the lognormal PDF model for the IR beam at a propaga-
tion distance of 180 m.

3.3 Field test data vs. Simulations

Figures 3.3 and 3.4 show a comparison of the Monte Carlo simulations, the field test

data at a propagation distance of 314 m for the HeNe laser and 180 m for the IR beam,

and lognormal PDF distributions. In order to match the probability distribution function

from the simulations to the field test data, we used C2
n = 1× 10−13 m−2/3 for the IR

beam, and we used C2
n = 8 × 10−15 m−2/3 for the HeNe beam. These values differ

somewhat from the path average values that were estimated at the time of the experiments,

but are within the error ranges of these estimates. These estimates were rough, and, in

fact, comparison to Monte Carlo simulations like ours is an effective means of deducing

the actual values. With weak turbulence fluctuations, the lognormal PDF should agree

well with both our simulations and experiments. For the HeNe beam propagation, the

Rytov variance is σ2
R = 0.05 and for the IR beam propagation, it is σ2

R = 0.08; so, these

experiments are in the weak fluctuation regime.
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Figure 3.4: Comparison of the Monte Carlo simulations and the field test with a degree
of coherence γ2

φ = 2 to the lognormal PDF model for the HeNe beam at a
propagation distance of 314 m.

Tables 3.1 and 3.2 show a comparison of the scintillation index for varying spatial

coherence from fully coherent to nearly incoherent that we obtained from Monte Carlo

simulations and from the experiments for the IR beam over 180 m and the HeNe beam over

314 m.

For the IR beam simulations, the strongest diffusers, which correspond to γ2
φ = 1

through 8, have higher scintillation indices than the fully coherent beam. The scintillation

index is lower than the coherent beam for the partially spatially coherent beam with γ2
φ =

16 and γ2
φ = 128, which constitute “possible sweet spots” of the scintillation indices.

Values of γ2
φ at which the scintillation index is less than its value for the coherent beam

have been referred to as “possible sweet spots” (22). By “possible” we mean that the value

of γ2
φ at which a “sweet spot” occurs depends on C2

n and z. For the IR beam experiment, we

find a possible sweet spot at γ2
φ = 32. Table 3 shows the scintillation results for the HeNe

beam. The simulation results indicate that γ2
φ = 16 is a possible sweet spot. The HeNe

experimental results indicate that all values of γ2
φ in the range of 1 ≤ γ2

φ ≤ 64 are possible
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Scintillation
γ2

φ Simulations Experiment

Black (coherent) 0.0114 0.0063
1 (Strong diffuser) 0.0132 0.0110

2 0.0170 0.0121
4 0.0136 0.0105
8 0.0120 0.0102

16 0.0110 0.0079
32 0.0114 0.0057
64 0.0115 0.0077

128 (weak diffuser) 0.0113 0.0074

Table 3.1: Scintillation Indices for the IR laser beam at a propagation distance of 180 m
with a varying spatial coherence for both field test data [18] and simulations.
The italicized numbers indicate possible scintillation index sweet spots.

sweet spots. The simulations are in the reasonable agreement with the experiments, given

experimental uncertainties in C2
n. Both simulation and experiment indicate that possible

sweet spots exist for both the IR and HeNe laser beams. We attribute the differences in the

scintillation indices between the field test data and the simulations primarily to errors in the

estimates of the C2
n in the experiment, but we also note that the photodetector had a lense

aperture of 2.45 cm at the test setup, while the simulation used point measurements of the

center intensity profile in order to save computation time.

In Figs. 3.5(a) and (b), we show the beam spreading for the HeNe beam, both with

and without turbulence, for the coherent beam and partially coherent beam in the case

γ2
φ = 16. As expected, the partially coherent beam spreads more both with and without

turbulence than does the coherent beam. In order to investigate the effect of beam spreading

that is due only to turbulence, we look at the relative beam spread, which is the difference

between the beam spread without turbulence and with turbulence for each case. The relative
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Scintillation
γ2

φ Simulations Experiment

Black (coherent) 0.0076 0.0119
1 (Strong diffuser) 0.0090 0.0101

2 0.0124 0.0115
4 0.0093 0.0107
8 0.0080 0.0095

16 0.0073 0.0107
32 0.0076 0.0094
64 0.0076 0.0095

128 (weak diffuser) 0.0075 0.0122

Table 3.2: Scintillation indices for the HeNe laser beam at a propagation distance of 314 m
with varying spatial coherence for both field test data [18] and simulations. The
italicized numbers indicate possible scintillation index ”sweet spots”, where the
scintillation index of partially coherent beam is less than coherent beam.

beam spread for both the HeNe beam and the IR beam is presented in Figs. 3.6(a) and (b).

The results show that relative beam spread is lower for partially coherent beams than it

is for coherent beams. We conclude that partially coherent beams are less distorted by

atmospheric turbulence than are coherent beams in cases where the scintillation indices of

the partially coherent beams are smaller than is the scintillation index of a coherent beam.
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Figure 3.5: The beam spreading for the HeNe beam for a coherent and a partially coherent
beam with γ2

φ = 16 at a propagation distance of 314 m (a) with turbulence
and (b) without turbulence.
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Figure 3.6: Relative beam spreading for a coherent and a partially coherent beams:
(a) HeNe beam at a propagation distance of 314 m and (b) IR beam at a prop-
agation distance of 180 m.



Chapter 4

Solar scintillation study during planetary

conjunction: Data analysis

4.1 RF beam propagation through Solar Corona

The goal of this project is to investigate the effect of an RF X-band signal as it propa-

gates through the solar corona in superior solar conjunction at low Sun-Earth-Probe (SEP)

angles. This information is needed for existing and planned missions in which spacecraft

operate near conjunction, such as STEREO, and solar Probe Plus. A superior conjunction

occurs when a solar system body or a spacecraft lies along a straight line joining the Earth

and the Sun, but is on the opposite side of the Sun from the Earth, as shown in Fig. 4.1. Dur-

ing superior conjunction the spacecraft has limited communication with the ground station

due to the effects of the Sun on the RF signal transmission. In order to analyze RF beam

propagation at superior solar conjunction with a low SEP angle, we analyzed the recent

data obtained during superior solar conjunction of the MESSENGER (MErcury Surface,

Space ENivornment, GEochmeisty, and Ranging) spacecraft at X-band for days 114, 115,

339, 340, and 344 for year 2014, for a Sun-Earth-Probe (SEP) angle between 0.7◦ to 1.84◦.

MESSENGER was the Johns Hopkins University Applied Physics Laboratory mission to

Mercury. It was launched in 2004, and it was in orbit around Mercury from March 18, 2011

29
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Date DSS Location Start Time End Time Start SEP angle End SEP angle
DOY 114 2014 25 Goldstone 57902 s 86400 s 1.7961◦ 1.4344◦

DOY 115 2014 65 Madrid 23402 s 60600 s 1.1443◦ 0.7017◦

DOY 339 2014 35 Canberra 76625 s 86400 s 1.6114◦ 1.5622◦

DOY 340 2014 55 Madrid 33611 s 52200 s 1.14037◦ 1.3305◦

DOY 344 2014 15 Goldstone 59666 s 70133 s 1.7946◦ 1.8497◦

Table 4.1: Data analysis information

until April 30, 2015.

In this chapter we will focus on the data analysis and next chapter on the theocratical model.

4.2 Observation

The Deep Space Network (DSN) Radio Science Receiver (RSR) records a carrier

signal from the spacecraft, and the subcarriers are filtered. The DSN RSR captured the

MESSENGER’s X-band downlink throughout the Deep Space Station (DSS). For Day of

Year (DOY) 114, 115, 339, and 340, the spacecraft entered superior solar conjunction, so

that as the time increased the angle decreased. During DOY 344 the spacecraft egressed

from superior solar conjunction. Information on DOY, DSS location along with the dish

number, time and SEP angle is shown in Table. 4.1.

The data from MESSENGER for both DOY 114 and 115 were initially transmitted

through the low gain antenna (LGA) and later through the high gain antenna (HGA) for the

rest of the contact. During DOY 340, data were transmitted exclusively through LGA and

for DOY 339 and DOY 344 exclusively through HGA.
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Figure 4.1: Spacecraft in superior solar conjunction. The distance that the signal propa-
gates through the corona and solar wind is a function of the SEP angle. For
this data set, the distance was approximately 274 solar radii, the straight line
from spacecraft to earth.
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Figure 4.2: Data analysis process

4.3 Analysis Process

The data sample rate at the RSR was 1 ksps in the form of in-phase (I) and quadrature-

phase (Q) samples. We transformed the time-sampled I/Q data to the frequency domain,

using a 1024-point FFT (duration approximately one second), so that each bin has a resolu-

tion of approximately 1 Hz. Also the auxiliary SEP angle data provided to us was available

in one-second intervals. In Fig. 4.2, we show a flow chart for the entire data analysis.
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4.4 Estimation of Noise Power and Peak Amplitude

The noise power is obtained by calculating the variance of the amplitude fluctuations

after excluding amplitudes that are 4 dB above the average, as shown in Fig. 4.2, marked

as A. We chose a 4-dB threshold to prevent strong signals from biasing our estimate. We

found that the noise power is independent of the SEP angle and that there is no correlation

between the SEP angle and the noise power. We further found that the phase variance of the

same bins were independent of SEP angle. Therefore, we conclude that phase scintillation

is obscured by antenna thermal noise on a one-second time scale.

We next proceeded to investigate the peak amplitude (carrier) and peak amplitude

position for a 1024-point FFT as illustrated in Fig. 4.2, marked as B. These data were

recorded for each bin. The peak power is obtained by squaring the peak amplitude in each

bin. The peak power for day 115 where the SEP angle is the smallest, between 0.7◦ to 0.9◦,

shows that there is a slight power loss with decreasing SEP due to scattering of the signal

away from the line-of-sight, as shown in Fig. 4.3. We describe the variation of the peak

amplitude position in the next section.

4.5 Frequency Deviation

The peak amplitude position for each 1024-point FFT is recorded, as illustrated in

Fig. 4.2, marked as A. The peak amplitude position for DOY 114, 339, 340, and 344, shows

a systematic frequency deviation due to a spacecraft Doppler shift in approximately four-

hour periods. That is visible in Figs. 4.4(b), (c), (d), and (e). During these days, the SEP

angle changes from 1.33◦ to 1.84◦. On DOY 115, there is a systematic frequency deviation

in the four-hour periods due to both the spacecraft’s Doppler shift and broadening due to

solar scintillation, as shown in Fig. 4.4(a). We stress that the time scale of the changes in

frequency due to the Doppler shift or due to frequency modulation from solar scintillation
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Figure 4.3: Peak power for an SEP angle between 0.7◦ to 0.86◦

is on order of hours. Therefore on the time scale of data frames, there will be no measurable

frequency modulation and no spectral broadening for SEP > 1.0◦.

We have also investigated the bin shift distributions of the peak amplitude. In order

to find the frequency deviation distribution, we estimate the running average over 100 sec-

onds of all the peak positions, and we find the shifts for each bin from the running mean.

In Fig. 4.5, we plot the frequency distribution for every 1000 points. The SEP angle is

approximately constant over this time interval. Examination of the distribution of the peak

positions shows that the frequency deviation increases as the SEP angle decreases, and the

variance for an SEP angle of 0.7◦ is larger than for an SEP angle of 0.8◦, as shown in

Fig. 4.5.

4.6 Phase Scintillation

Phase scintillation arises from frequency fluctuations that are imposed on the carrier

by fluctuations in the solar plasma. In order to calculate the phase scintillation, we per-
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Figure 4.5: Frequency deviation distribution for SEP angles of 0.7◦ and 0.8◦.

formed a 1024-point FFT about some instant k, and we found the frequency bin n in which

the peak occurred. We denote this frequency bin by fn(k). Next, we repeated the same pro-

cess at the next instant, k+ 1, and we determined the frequency bin m at which the peak oc-

curred. The difference between two consecutive bins, [ fm(k + 1)− fn(k)]∆t = ∆ f (k)∆t,

where k = 1, 2, ..., and ∆t is approximately 1 second, as shown in Fig. 4.6.

The instantaneous phase is by definition (25)

Φ = 2π
∫ t

−∞
f (τ)dτ, (4.1)

so that ∑k ∆ f (k)∆t = ∆Φ/2π. The value ∆Φ that is thus obtained has an embedded

Doppler shift, which we subtracted from our ∆Φ. We then find the standard deviation of

1000 samples of ∆Φ and that is our rms phase scintillation, ϕrms, as shown in Fig. 4.7.

It is reasonable to expect a monotonic increase in phase scintillation with decreasing

SEP angle. However, we observe departures from the expected monotonic behavior on the
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Figure 4.6: The process to find the peak bin for each 1024-point FFT.

five data sets that was obtained. We have observed two distinct characteristics for the phase

scintillation depending on whether or not the phase fluctuation is sufficiently close to π/2.
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Figure 4.7: The rms phase scintillation for DOY 114, DOY 115, DOY 339, DOY 340,
and DOY 344. Each data set corresponds to the SEP angle that the data was
taken. When the normalized rms phase deviation approaches 0.25, 1± 0.25,
2± 0.25, ..., at which the corresponding phase deviation is an odd multiple of
π/2, a deep fade of the signal strength is observed.
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We attribute this behavior to phase modulation of the signal, which translates into

carrier suppression when averaged over 1000 samples. In order to obtain a good carrier-

to-noise ratio, the receiver has a narrow loop filter, which in our case is about 60 Hz. If

after phase modulation by the turbulence, carrier power is shifted to sidebands that lie

outside the loop bandwidth, then the carrier is effectively suppressed, leading to a low

carrier-to-noise ratio and a poor phase estimate. To understand when we expect the carrier

to be spread outside the bandwidth of the loop filter, so that carrier suppression occurs,

we write the phase-modulated signal as s(t) = Acos
[

ωt + ϕ(t)
]

, where A is the signal

amplitude, ω is the signal frequency, and ϕ(t) is the time-varying phase. When ϕ(t) varies

between +π/2 and −π/2 or more generally between +nπ/2 and −nπ/2, where n is

an odd integer, then s(t) will averaged to zero, and the carrier will suppressed. In Fig. 4.8,

we show the phase fluctuation for two cases. In the first case, in which the carrier is not

suppressed, the rms phase fluctuation is smaller than π/2. In the second case in which the

carrier is suppressed, the rms phase fluctuation is close to π/2. The carrier suppression

is never complete because the phase is randomly varying. We may characterize the carrier

suppression as

carrier suppression = 20 log10 cos (ϕrms), (4.2)

We show the carrier suppression versus ϕrms in Fig. 4.9, and, as shown in the figure, when

ϕrms approaches π/2, the magnitude of the carrier suppression (fade) becomes larger.

Therefore, the proximity of π/2 relates to the depth of the carrier suppression. For ex-

ample, as shown in Fig. 4.9, a carrier suppression of 25 dB occurs within about 0.056

radians ( 3.2◦) of an odd multiple of π/2, and a 1 dB carrier suppression occurs whitin

1.1 radians (63.0◦). The carrier suppression plays a significant role when fluctuations of

the signal-to-noise ratio becomes noticeably different from those caused by thermal noise
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Figure 4.8: Temporal phase fluctuations (a) when the carrier is not suppressed and (b)
when the carrier is suppressed. The red lines represent the rms phase devi-
ation, ϕrms, of phase fluctuations averaged over 1000 samples and its negative.

alone. Fluctuations of the thermal noise are dependent on the solar elongation angle, solar

activity, and also receiver noise figure. So, it is not possible to predict exactly how close

to an odd multiple of π/2 the average phase fluctuation must be for the carrier to be sup-

pressed sufficiently for the receiver to lose its phase lock. However, as we noted, the effects

of losing lock are clearly visible in the data.

In conclusion, we attribute the non-monotonic behavior in Fig. 4.7 to this extrinsic

effect. When the ϕrms caused by the intrinsic solar scintillation is at or near an odd multiple

of π/2, the carrier is suppressed at the receiver. The receiver’s own noise then plays

an increasingly important role in determining the carrier-to-noise ratio, Pc/N0. Because

a degradation of Pc/N0 produces a poorer phase estimate, we see larger fluctuations at

(n± 1/2)π, where n = 0, 1, 2, .. .

Another way to analyze the data is to examine the number of occurrences and the

cumulative distribution function of the carrier fade depth, as shown in Fig. 4.10. The fade

depth is obtained by subtracting the maximum Pc/N0 from Pc/N0 for each data set and

then calculating a histogram of the frequency of occurrence of the fade depth with a bin
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Figure 4.9: Carrier suppression vs ϕrms. As the angle ϕrms approaches an odd multiple of
π/2, the carrier suppression increases.

size of 1 sec. The green line corresponds to the case in which the carrier is not suppressed.

We note that the green line, corresponding to DOY 114, has a lower SEP, but it has a lower

fade depth than the dark-red line, corresponding to DOY 344. In the DOY 344 data, the

carrier is suppressed, and the fade depth is larger but has a lower fade probability. The pink

line shows data that is obtained from DOY 98, 2015 from MESSENGER. The SEP angle

for DOY 98 is almost the same as DOY 344, but the depth fade of DOY 98 is smaller,

which is due to differences in solar activity. Due to solar activity, the carrier is no longer

suppressed. The solar activity for DOY 114, 344 from 2014 and DOY 98 from 2015 is

shown in Fig. 4.11. Solar activity can transform a carrier that is not suppressed to one that

is.

We have also obtained the phase scintillation spectral density, and we observed two

distinct characteristics for the phase scintillation spectral density, depending on whether

the carrier is suppressed or not, as shown in Figs. 4.12 and 4.13. The phase scintillation
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Figure 4.10: (a) The percentage of the occurrence of fade depth within a bin size of 1 Hz.
(b) The corresponding cumulative distribution function.
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a) DOY 114, 2014 b) DOY 98, 2015 

c) DOY 344, 2014 

Figure 4.11: Solar activity for DOY 114 and 344 from 2014 and DOY 98 from 2015.
These images were obtained by the NASA Solar and Heliospheric Obser-
vatory (SOHO) (26). The small white object seen in DOY 98 and 344 is the
MESSENGER spacecraft.
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Figure 4.12: Phase scintillation spectra for DOY 114.

spectral density when the carrier is not suppressed is consistent with a Kolmogorov process

for which the frequency dependence is proportional to f−8/3, as shown in the trend line

in Fig. 4.12. This result is in agreement with prior investigations by Morabito (23) and

Imamura (24). However for a carrier-suppressed condition, the receiver noise obscures

the underlying turbulent process and produces dependence that is proportional to f−1, as

shown in Fig. 4.13, corresponding to the f−1 flicker noise of the receiver.

4.7 Amplitude Scintillation

Inspection of the 1024-point FFT indicates that sideband power was confined to 10

bins on either side of the carrier. Beyond that, any sideband power is obscured by antenna

thermal noise. Because the time duration of each FFT is 1.024 seconds, we conclude

that any modulation due to the solar corona has an upper bound of approximately 10 Hz.

Moreover, we determined that the upper and lower side bands are symmetrical about the
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Figure 4.13: Phase scintillation spectra for DOY 344.

carrier, and hence the modulation on this time scale is predominantly due to amplitude

modulation.

The strength of the sidebands depends on how amplitude modulation (AM) and phase

modulation (PM) are combined. For 100% amplitude modulation, we expect that the lower

side band (LSB) and upper side band (USB) are symmetrical, i.e., they have the same

amplitude and phase. Phase modulation causes the sidebands to be out of phase. So, the

combination of both causes the spectrum to be asymmetrical, as shown schematically in

Fig. 4.14.

The power in the LSB and the USB is obtained by averaging the summation of the

squared amplitude of 10 bins from the left and right side respectively of the peak power.

Analysis of the sidebands from our data indicates: 1) The ratio of the powers in the side-

bands for DOY 115 are higher than for DOY 114, as shown in Figs. 4.15 and 4.16, which

indicates that the scintillation effects on the sideband power increase as the SEP angle de-
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USB = Upper Side Band

LSB = Lower Side Band

Amplitude Modulation + Phase Modulation

Figure 4.14: Different Modulation Schemes.

creases. 2) Linear regressions for both data sets show a negative slope as expected, which

again indicates that the power in the sidebands increases as the SEP angle decreases. In

order to know the exact ratio of the amplitude modulation to phase modulation, one must

compare the amplitude and phase for each bin from LSB and USB. Since some bins were

dominated by noise, we compare the square root of the LSB and USB power for DOY 115.

The ratio of PM to AM for USB vs. LSB is (AM+PM) /(AM − PM) = 1.11, which cor-

responds to a 95% amplitude modulation and a 5% phase modulation. These results imply

that on a time scale of one second our data is dominated by amplitude modulation. There-

fore, we calculated the scintillation index, assuming that our data is amplitude modulated

as we explain next.

The scintillation index is a measure of the degree of fluctuation that a signal’s ampli-

tude experiences due to passage through the small-scale plasma irregularities in the corona.

The scintillation index is defined as the rms of the received intensity fluctuations divided by

the mean intensity. It can be calculated from a measured time series of the signal strength
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Figure 4.15: DOY 114; Ratio of USB power and LSB power to carrier power vs. SEP
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Figure 4.17: Amplitude scintillation index on a 1 sec time scale.

as the ratio of the rms of the received power fluctuations relative to the mean power over

the observation interval. Since our sideband power is dominated by amplitude modulation,

the root-mean square (rms) of the received intensity fluctuations is the rms of the received

power from both sidebands (25),

Ps =
|mA|2

2
, (4.3)

where m is the scintillation index. The mean intensity is the carrier power,

Pc =
1
2
|A|2. (4.4)

The scintillation index averaged over one second is shown in Fig. 4.17, and the results have

been compared to the theoretical model of Morabito (23). As shown in Fig. 4.17 our results

and Morabito’s follow the same trend, and the index of refraction reaches saturation when

the SEP angle is about 1.1◦.
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Figure 4.18: Loss due to amplitude scintillation index vs. SEP angle.

4.8 Loss due to Amplitude and Phase scintillation

The power from the carrier signal is transferred to the sidebands due to scintillation.

Therefore, the sideband power contributes to amplitude scintillation loss, but this loss is

not an additive loss; instead, it is a multiplicative loss. Hence, we cannot improve the

performance of the carrier by increasing the carrier power. We can write the loss due to

amplitude scintillation as

Ls =
Pc− Ps

Pc
= 10 log

(
1− m2

2

)
. (4.5)

As shown in Fig. 4.18, the loss to the sidebands is 3 dB when the SEP angle equals 0.7◦. At

this angle, half of the carrier power goes into the sidebands regardless of the carrier power

level since this loss is multiplicative.

Analysis of these data indicate that on a one-second time scale, the signal fluctuations

are dominated by amplitude scintillation. This finding is consistent with Morabito (23) and

Imamura (24). However, amplitude scintillation does not tell the whole story. Indeed, the
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data on DOY 344, which exhibits a lower amplitude scintillation than predicted by Mora-

bito’s theoretical model, had severe carrier fading over the entire data duration. Moreover,

the severity and frequency of occurrence of this fading was worse compare to DOY 114

as shown in Fig. 4.10, even though it has a larger SEP angle. As shown in Fig. 4.10 (b)

for DOY 344, the probability of a 10 dB fade is about 50 percent, which is due to phase

scintillation. This behavior is explained in the next section.



Chapter 5

Solar scintillation study during planetary

conjunction: Theoretical study

5.1 The Sun’s dynamic atmosphere and plasma

We analyzed recent data obtained during superior solar conjunction of MESSENGER

at X-band for days 114, 115, 339, 340, and 344, during which SEP angle varied between

0.7◦ to 1.84◦. We observed a short time-scale and a long time-scale effect. On a short

time scale of one second, the amplitude scintillations dominate. On a long time scale of

hundreds to thousands of seconds, the phase scintillations dominate. Prior to our work,

there was no physical explanation for why there are two different time scales for these

observations.

The rapid amplitude scintillations are due to scattering from the rapidly changing in-

dex of refraction in the solar wind. The slower phase scintillations are harder to explain.

We investigated several possible phenomena that explain the slow phase scintillations. We

found that long-lasting solar wind ducts could explain this behavior. Other possibilities that

we considered were propagation through seperate clouds of protons and electrons, changes

in the index of refraction due to supersonic particles, and separation of electrons and pro-

tons due to inhomogeneous magnetic fields, leading to changes in the index of refraction.

51



52

We found that these other possibilities, could not explain the slow phase scintillations. We

begin by reviewing the physics of the Sun’s atmosphere and the plasma that surrounds it.

The outer layer of the Sun near its surface is like a pot of boiling water, with bubbles of hot

electrons and protons in a fourth state of matter known as the plasma state. This plasma

circulates up from the interior of the Sun and bursts out into space (27). The steady stream

of particles blowing away from the Sun is known as the solar wind. The solar wind varies

in density, temperature, and speed as a function of time and the solar longitude. Its particles

can escape the Sun’s gravity because of their high energy. The solar wind plasma consists

of mostly electrons, protons and alpha particles.

A useful definition for a plasma follows: A plasma is a quasineutral gas of charged

and neutral particles that exhibits collective behavior (28). By collective behavior, we mean

that the motion of the particles not only depends on interactions with nearby particles and

external fields, but it also depends on the state of the plasma, which is determined by long-

range interactions among all the particles. As charges move around, they can generate local

concentrations of positive or negative charge, which give rise to electric fields. Motion of

charges also generate currents and hence magnetic fields. These fields affect the motion of

other charged particles far away. Therefore, the electron and proton charges of a plasma

exert a force on one another even at large distances. It is these long-range forces that give

the plasma a large repertoire of possible behaviors (28).

In order to investigate the origin of the two different time scales for amplitude scintil-

lations and phase scintillations, we will focus on the physics of single-component plasmas,

including the energy distribution of the charged particles that make up each component and

the separation between different components.
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5.2 Debye length in solar plasma

The Debye length (λD) is the minimum distance over which a plasma can exhibit

collective behavior. For plasma phenomena that occur on length scales that are less than

λD, the ions and electrons can be treated as individual particles. The length scales for

electrons and protons are given by (29)

λDe =

(
ε0KBTe

Nee2

)1/2

(5.1)

and

λDp =

(
ε0KBTp

Npe2

)1/2

, (5.2)

where ε0 is the permittivity of free space, KB is the Boltzmann constant, Te and Tp are

the electron and proton temperature, Ne and Np are the electron and proton density and

e is the absolute value of the electron charge. In Fig. 5.1, we show Debye lengths for

electrons and protons that are based on the fast solar wind temperature and density defined

in (30) and (31). The data on electron and proton temperature and density is provided

by the Solar Probe Plus Science team at the Johns Hopkins University Applied Physics

Laboratory (unpublished). Many of our results are functions of the solar radius, Rs. The

relation between Rs and the SEP angle is shown in Fig. 5.2.

The Debye length of the protons is longer than the electrons, as shown in the Fig. 5.1.

As mentioned above, the density of electrons and protons are constantly changing, and the

solar wind is dynamic. While Fig. 5.1 shows data for a fast solar wind, a similar difference

in Debye length exists for a slow and average solar wind. The degree to which collective
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behavior occurs is determined by the number of plasma particles in a Debye sphere (NλD),

NλD =
4π

3
λ3

DNe. (5.3)

When this number is much greater than unity, collective behavior dominates. In our case

the number of particles in a Debye sphere is much greater than unity.

In order to explain the amplitude scintillations, it is important to look at the ratio of the

RF beam wavelength to the Debye length scale. The RF X-band wavelength is 0.0375 m.

The scale of the Debye length for electrons is smaller than the X-band wavelength at closest

approach to the Sun. Therefore, the amplitude scintillations are caused by scattering of the

RF beam as it propagates through the clouds of electrons. However, as we previously noted,

this scattering does not explain the phase scintillations and its time scale. In order to do

that, we will first study the impact on the index of refraction of the separation between the

electrons and the protons.

5.3 Index of refraction in solar plasma

We begin with the equation of motion of an electron in an applied electric field, E(t) =

Eo exp (−iωt), where ω = 2π f and f is the radiation frequency, which in this case is the

X-band RF wave frequency (32),

m
d2x
dt2 = −eEo exp (−iωt)−mνc

dx
dt

, (5.4)

where x is the electron displacement from its neutral position, m is the electron mass and

νc is the collision frequency of electrons with the gas molecules. The steady-state solution

must vary as exp (−iωt) and is
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x =
e/m

ω2 + iνcω
Eo exp (−iωt) . (5.5)

We note that [(32), Eq. 5.2.9] is mistaken and predicts an index of refraction that is

less than one. However, we will show that the index of refraction in an ionized medium is

always greater than one. In order to compare our results to (32), we use cgs units in this

section.

The electric displacement D is given by

D = E + 4πP, (5.6)

where P is the polarization density. The electric displacement is also related to the electric

field as D = εE, where ε is the permittivity, and we assume that P is linearly proportional

to E. Therefore, we can write Eq. 5.6 as

ε = 1 + 4π
| P |
| E | . (5.7)

The polarization density is related to the electron displacement,

P = Nex, (5.8)

where N is the number of charge dipoles per unit volume in the ionized plasma or ion

density. By substituting Eq. 5.5 and Eq. 5.8 into Eq. 5.7, we obtain

ε = 1 +
ω2

e /ω

ω + iνc
= 1 +

ω2
e

ω

ω− iνc

ω2 + ν2
c

, (5.9)

where ω2
e = 4πNe2/m is the plasma frequency. The real part of Eq. 5.9 is related to the

index of refraction. Therefore the index of refraction for the RF wave with µ = 1 and
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νc � ω is

n =
kc
ω

=
(

1 + ω2
e /ω2

)1/2
. (5.10)

Equation 5.10 implies that the index of refraction is always greater than unity. In Fig. 5.3,

we show the indices of refraction for the electron and proton as the RF wave propagates

through them. The RF wave experiences different indices of refraction due to the mass

differences between electrons and protons. As the RF wave propagates further from the

Sun, the indices of refraction approach unity for both the electron and the proton, since the

plasma frequency gets very small, which also indicates that the effect of plasma on the RF

beam gets weaker.
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Figure 5.3: Index of refraction for (a) electrons and (b) protons.
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5.4 Investigation of possible sources of the long-time phase scintillations

We have investigated four phenomena that exist in the solar wind and that could po-

tentially explain the long-time phase scintillations.

We first investigated the propagation of radio waves in the positively and negatively

charged clouds of protons and electrons that are approximately a Debye length in size. The

difference between the indices of refraction in these clouds will lead to phase variations in

the beam wavefront as the RF beam propagates. Second, we investigated the passage of

supersonic particles in acoustic waves that locally change the index of refraction, leading to

phase variations in the beam wavefront as the RF beam propagates. Third, we investigated

the separation of electrons and protons that are due to inhomogeneous solar magnetic fields.

This separation leads to local change in the indices of refraction and hence phase variations

in the beam wavefront as the RF beam propagates. Fourth, we investigate ducts in the

solar plasma that trap a part of the RF beam, which leads to phase variations in the beam

wavefront as the RF beam propagates. We concluded that the most probable source of the

long time scale of the phase scintillations is the effect of long ducts.

5.4.1 The positively and negatively charge clouds of protons and electrons effect on

the RF beam

In the solar plasma, electrons and protons can be treated as individual clouds on the

scale of the Debye length, as shown schematically in Fig. 5.4. We investigated the propaga-

tion of radio waves in the positively and negatively charged clouds of protons and electrons

and whether the difference between the electron and proton plasma wave indices of refrac-

tion in these clouds can explain these long-time phase scintillations. To do so, we examined

the propagation of a radio wave in the plasma clouds.
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Figure 5.4: The solar wind plasma is shown schematically as patches of electron and pro-
ton clouds. These clouds are on the order of a Debye length in size.

The speed of a radio wave that propagates in these clouds of electrons and protons

is respectively, c/ne and c/np, where c is the speed of light, while ne and np are the

indices of refraction for electron and proton RF waves. The times required for radio wave

to propagate through the clouds of electrons, te, and protons, tp, are

te = λDe
ne

c
(5.11)

and

tp = λDp
np

c
. (5.12)

As shown in Fig. 5.5 the time te for the radio wave to propagate through a cloud of electrons

is three orders of magnitude less than the time tp for it to propagate through a cloud of

protons. However, the propagation time te for electrons varies between nanoseconds and

microseconds, which is far smaller than the time scale of hundreds to thousands of seconds

that we have observed in the phase scintillations. Hence, this effect cannot explain the

long-time phase scintillations.
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5.4.2 Passage of supersonic particles in acoustic waves and their effect on the RF

beam

Sound waves escaping the Sun’s interior create fountains of hot gas that shape and

power the chromosphere. They create a thin region in the Sun’s atmosphere that appears as

a red ring of fire (33). Ion acoustic waves in plasmas are frequently referred to as acoustic

waves or as sound waves. Acoustic waves are one type of longitudinal oscillation of the

ions and electrons in a plasma, much like acoustic waves traveling in a neutral gas. The

acoustic wave speed can be written as (34)
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vac =

√
KB(γTp + Te)

mp
, (5.13)

where KB is the Boltzmann constant, Te and Tp are the electron and proton temperature, γ

is the specific heat capacity ratio and mp is the proton mass. As shown in Fig. 5.6, the ion

acoustic speed decreases at distances that are further from the Sun, as expected.
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Figure 5.6: The speed of the ion sound wave decreases further from the Sun.

In the solar plasma, supersonic waves are constantly entering into the plasma, due to

eruptions on the surface of the Sun. Solar flares and coronal mass ejections (CME) both

generate supersonic waves (35).

When supersonic waves travel, the density, velocity, and pressure change across the
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shock. The index of refraction is related to the charge density as shown in Eq. 5.10. There-

fore, changes in density across the shock cause the index of refraction to also change.

We investigated the passage of supersonic particles through an acoustic wave that locally

changes the index of refraction, leading to phase variations in the beam wavefront as the

RF beam propagates.

The ion acoustic wave velocity, shown in Fig. 5.6, is 3.8× 105 m/s at closest approach

to the Sun. This velocity is smaller than the velocity of solar flares, 2.99× 108 m/s, and

CMEs, 4.4× 105 m/s (35). When the particles in solar flares and CMEs are moving faster

than the local acoustic velocity, they create a shock wave (34). The change of the density

across the front of a shock wave, N2, is (34)

N2 =
(γ + 1)M2

1
2 + (γ− 1)M2

1
N1, (5.14)

where N1 is the density of the acoustic waves and M1 is the Mach number. The Mach

number is the ratio of the particle speed to the acoustic speed. The heat capacity ratio, γ,

for an ideal gas is 1.4. In both solar flares and CMEs, the Mach number M1 � 1, so that

Eq. 5.14 reduces to

N2

N1
=

γ + 1
γ− 1

= 6. (5.15)

Therefore, the maximum change in density that exists across the shock waves is 6N1. From

the Clausius-Mossotti equation, we obtain the relation of the index of refraction to the

number density (36),
n2 − 1
n2 + 2

=
1

3ε0
Nα, (5.16)

where N is the number density, n is index of refraction, α is the polarizability, and ε0 is

the permittivity of the vacuum. We let K = (1/3ε0)Nα, and at one solar radius we obtain
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K ∼ 6.2× 106. The index of refraction of the sound waves may be written

n2
sound =

2K + 1
1− K

, (5.17)

and the index of refraction of the shock waves may be written

n2
shock =

12K + 1
1− 6K

. (5.18)

Therefore, the ratio of the indices of refraction becomes

n2
shock

n2
sound

=

(
12K + 1
2K + 1

)(
1− K

1− 6K

)
. (5.19)

We concluded that nshock ' nsound. This result also is consistent with Eq. 5.10. The second

term in the index of refraction is dominated by the RF beam frequency, so that increasing

the density by a factor of 6 will not make a significant change to index of refraction. Hence,

this effect cannot cause phase scintillations on the time scale of hundreds to thousands of

seconds that we have observed in our data.

5.4.3 Charge separation due to an inhomogeneous magnetic field

Electric currents inside the Sun generate a magnetic field that spreads throughout the

solar system. A solar wind composed of charged particles carries the magnetic field away

from the Sun’s surface and through the solar system. The Sun’s magnetic influence extends

well past the planets and into interstellar space (27).

The magnetic moment of electrons, the Bohr magneton (µB), is a factor of 1836 larger

than the magnetic moment of protons. Also, the force on an electron for a given gradient of

the magnetic field, is stronger than the force on a proton. The electron is a factor of 1836
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lighter than the proton. Thus, acceleration of electrons is a factor of 18362 stronger than

the acceleration of protons.

We investigated the separation of electrons and protons that is due to inhomogeneous

solar magnetic fields. This separation leads to local change in the indices of refraction and

hence phase variation in the beam wavefront as the RF beam propagates.

To investigate this possibility we must compare the two dipole forces that a charged

particle experiences due to the magnetic field gradient. The first dipole force is due to the

Larmor motion or gyro-motion of the particle in a magnetic field. The second dipole force

is due to the Bohr magneton.

The force on a charged particle in a magnetic field gradient is given by,

F = ∇ (µ · B) . (5.20)

where F is the external force, µ is the magnetic dipole moment and B is the applied mag-

netic field. For simplicity, we assume the gradient of the magnetic field only changes in

the z-direction as shown in Fig. 5.7. Therefore, the force due to the Bohr magneton on an

electron and on a proton becomes

FBe = µBe

(
∂Bz

∂z

)
, (5.21)

and

FBp = µBp

(
∂Bz

∂z

)
, (5.22)

where µBe and µBp are the magnetic dipole moments for the electron and protons respec-

tively. The Bohr magnetic moment for a charge particle is

µB =
eh̄
2m

, (5.23)
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where e is the elementary charge, h̄ is the reduced Plank constant, m is the rest mass of

the electron or proton. The Bohr magneton for an electron is µBe = 0.58 eV/G and for a

proton is µBp = 3.1× 10−4 eV/G.
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Figure 5.7: The spin and gyromotion of a charged particle in the presence of a magnetic
field gradient.

The charged particle also experiences a gyro-motion. The corresponding Larmor

dipole moment is

µL =
mv2
⊥

2B
, (5.24)

where v⊥ is the speed of the particle. We may write mv2
⊥/2 = W⊥, where W⊥ is the

perpendicular kinetic energy of the charged particle. The Larmor forces, acting on the
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electrons and protons, FLe and FLp respectively, are

FLe =

(
W2
⊥e

B

)(
∂Bz

∂z

)
(5.25)

and

FLp =

(
W2
⊥p

B

)(
∂Bz

∂z

)
. (5.26)

In Fig. 5.7, we show a schematic illustration of these forces.

We now write the perpendicular kinetic energy as W⊥e = KBTe and W⊥p = KBTp,

since KBT is the kinetic energy. Therefore, the ratio of the forces due to the Bohr magneton

magnetic moment and the Larmor magnetic moment is

FBe

FLe
=

µBeB
KBTe

∼ (0.6eV/G)(1G)

100eV
� 1 (5.27)

for an electron. The ratio of forces is

FBp

FLp
=

µBpB
KBTp

∼ (3× 10−4eV/G)(1G)

100eV
� 1 (5.28)

for a proton. Therefore, thermal motion dominates the charged particle motion, and inho-

mogeneity in the solar magnetic fields cannot cause a significant charge separation.

5.4.4 Plasma ducting effect on the RF beam

The influence of atmospheric refraction on the propagation of electromagnetic waves

has been studied from the beginning of radio wave technology (37). The path bending of

electromagnetic waves due to an inhomogeneous spatial distribution of the refractive index

can cause adverse effects such as multipath fading and interference. These effects signifi-

cantly impair radio communication, navigation, and radar systems. Atmospheric refractiv-
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ity is dependent on physical parameters of the air such as its pressure and temperature. It

varies in space and time due to physical processes in the atmosphere that are often difficult

to describe in a deterministic way and have to be, to some extent, considered as random

with its probabilistic characteristics (38). Atmospheric ducting is a mode of propagation of

electromagnetic radiation, usually in the lower layers of the Earth’s atmosphere, where the

waves are bent by atmospheric refraction. In over-the-horizon radar, ducting causes part

of the radiated and target-reflection energy of a radar system to be guided over distances

far greater than the normal radar range (39). It also causes long distance propagation of

radio signals in bands that would normally be limited to line of sight. We investigated the

possibility that the same phenomenon exists in the solar wind plasma. In particular, we in-

vestigated whether an inhomogeneous spatial distribution of the refractive index can create

a plasma duct in the solar plasma, so that part of the radiated plane wave is trapped in the

duct on a time scale of seconds to minutes.

To address this issue we start with a simple slab model. We consider a plane wave

that propagates through solar plasma and reaches a plasma duct as shown schematically in

Fig. 5.8. Ducting occurs due to refraction that bends the propagation path of the RF wave

as it propagates through layers of different density. Some parts of the radiated plane wave

are refracted into the duct due to a change of the index of refraction. Changes of the index

of refraction exist, as shown in Fig. 5.3. The index of refraction for protons is smaller than

for electrons, i.e, np < ne. When a portion of the radiated wave is trapped inside a duct, it

bounces many times before exiting from the duct, as shown in Fig. 5.8. When the radiated

wave leaves the duct, it can destructively interfere with radiation that was not in the duct,

suppressing the carrier. As shown schematically in Fig. 5.9, an RF uplink beam can pass

through many ducts before reaching Mercury. The wavefront of the beam that has traveled

a length l outside the duct and the wavefront of the trapped beam that has traveled a length
√

l2 + d2 inside the duct, interfere with each other. When the phases of the two wavefronts
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differ by an odd number of half wavelengths, so that

ne
√

l2 + d2 − npl = (2m + 1)λ/2, (5.29)

where m is an integer, or

l[ne

√
1 + (d/l)2 − np] = (2m + 1)λ/2, (5.30)

then this interference is destructive. The odd number of half-wavelengths can be accumu-

lated over many ducts. As shown in Fig. 5.9, the thicknesses of the ducts are on the order of

a Debye length. After passing through all of the ducts, the ducted and unducted wavefronts

merge and diffract as the beam propagates.

The threshold angle of incidence to achieve total internal reflection can be obtained

from Snell’s law,

sin θi =
np

ne
, (5.31)

and the grazing angle, θg = π/2− θi. Therefore, we can write Eq. 5.31 as

cos θg =
np

ne
. (5.32)

We can also write Eq. 5.32 as

cos θg =
1√

1 + tan2 θg

=
1√

1 + (d/l)2
=

np

ne
. (5.33)

Therefore, we can solve Eq. 5.30, for l to obtain

l =
np(2m + 1)λ/2

n2
e − n2

p
. (5.34)
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Equation 5.34 yields the accumulated distance that radiation must travel along multiple

ducts for destructive interference to occur.

As we showed in Fig. 4.18, the maximum loss due to amplitude scintillations is 3 dB.

Therefore, any larger fade is due to phase scintillations. Our model can explain the large

fades that are grater than 3 dB that are observed in the peak power plot for DOY 115 in

Fig. 4.3. The speed of the Mercury at aphelion is 38.7 km/s. So in order for the space-

craft that is moving around the Mercury to experience a fade that is one second long, the

diffracted beam front has to be about 40 km wide.

Our model is also consistent with the fade depth statistics that were observed. For

example, we may examine the 15 dB fade depth for DOY 344 in Fig. 4.10. Based on the

data that we obtained for 374 fade occurrences of 15 dB or higher over 10800 seconds, a

carrier suppression of 15 dB occurs within 10.2◦ of an odd multiple of π/2. Therefore, the

probability of a fade for 15 dB is 10.2/360 = 0.028. Our model predicts 302 events in this

time period, which agrees well with the 374 fades that we observed in the data.

In order to obtain a good carrier-to-noise ratio, the receiver has a narrow loop filter,

which in our case is about 60 Hz. If after phase modulation by the turbulence, carrier power

is shifted to sidebands that lie outside the loop bandwidth, then the carrier is effectively

suppressed, leading to a low carrier-to-noise ratio and a poor phase estimate. We have

observed such carrier fading over a time scale of hundreds to thousands of seconds.

Ducting is a random process, and it varies in space and time due to physical processes

in solar wind plasma that cannot be described in a deterministic way and must be charac-

terized probabilistically, like atmospheric turbulence. However, at smaller SEP angles (less

than 3◦), the electron and proton densities are larger; so, the the difference in the index of

refraction between the electron and proton plasma wave is larger. Therefore, the probabil-

ity that ducts exist is larger. We are proposing that these ducts are responsible for the large

fades that are observed in our data over a time scale of hundreds to thousands of seconds.
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Figure 5.8: Schematic illustration of a portion of radiated plane wave that refracts into a
duct because of the change in the refractive index, with a small grazing angle
θg.
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Figure 5.9: In order to reach Mercury an RF uplink beam can pass through many ducts.
The thickness of the ducts are on the order of Debye length. After passing
through all of the ducts, ducted and unducted wavefronts merge and diffract as
the beam propagates.



Chapter 6

RF beam propagation simulation through solar

plasma’s turbulence

In this section of the dissertation, we present Monte Carlo simulations that reproduce the

amplitude scintillations that we obtained from our data analysis. The scintillation index is

a measure of the degree of fluctuation that a signal’s amplitude experiences due to passage

through turbulence. The definition of scintillation applies to any electromagnetic wave

propagation through any turbulent medium. In the case that we study here, the RF wave

scintillation is caused by scattering of the beam due to the refractive index irregularities that

are related to the density fluctuations of the ions and the ducts. We will use the same phase

screen method that is frequently used in optics to describe the amplitude scintillations that

are due to plasma turbulence. We will use the Kolmogorov theory of turbulence in our

simulations, as we have done in optical systems [(3) and (4), see Chapter 2].

We use the phase screen method to reproduce the scintillations. The starting point for

our study is the paraxial wave equation [(1), Eq. 7.3],

2ik
∂U (R)

∂z
+∇2

TU (R) + 2k2n1 (R)U (R) = 0, (6.1)

where R = (r, z) is the position vector, r is the transverse distance, r is the corresponding
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transverse vector, k is the angular wavenumber, ∇2
T is the transverse Laplacian operator,

U (R) is the envelope of the electric field, and n1(R) is the randomly fluctuating portion of

the refractive indices of electron and protons. The solution of Eq. 6.1 over a small distance

∆z can be written as

U (x, y, z + ∆z) = U (x, y, z) exp
[

ik
∫ ∆z

0
dz′n1

(
x, y, z′

)]
. (6.2)

We then write the first two statistical moments of θ ≡ k
∫ ∆z

0 dz′n1 (x, y, z′),

〈θ〉 = k
∫ ∆z

0
dz′〈n1(x, y, z′)〉 = 0 (6.3)

and

〈θ2〉 = k2
∫ ∆z

0
dz′

∫ ∆z

0
dz′′〈n1(x, y, z′)n1(x, y, z′′)〉. (6.4)

Hence, we use 〈.〉 to denote the expected value, which we estimate by averaging over

many realizations. We will use the method of randomly varying phase screens (3) and (4),

combined with the split-step method (13), to calculate U (r, z) for a particular realization,

and from that we will calculate the scintillation index as the irradiance variance scaled by

the square of the mean irradiance (1),

σ2
I (r, z) =

〈I2(r, z)〉
〈I(r, z)〉2 − 1, (6.5)

where the irradiance is 〈I(r, z)〉 = 〈U (r, z)U∗ (r, z)〉, and U∗ (r, z) denotes the complex

conjugate field. The second moment of the irradiance is

〈I2(r, z)〉 = 〈U (r, z)U∗ (r, z)U (r, z)U∗ (r, z)〉. (6.6)

We averaged over 5000 realizations to obtain the expected values. This procedure is similar
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Figure 6.1: The simulation geometry.

to the procedure that we described in chapter 3, except that we are using a plane wave and

not a Gaussian beam, since due to the long propagation distance the RF beam at the aperture

is accurately approximated as a plane wave.

The geometry that we used is shown in Fig. 6.1, where

Rs = 6.955× 108 m, solar disk radius,

r = solar corona radius, 100Rs,

z = the distance from Earth to the element dz in the signal path being integrated,

Res = distance from earth to Sun, 1.5× 1011 m,

rmin = Res sin(SEP), the shortest distance from solar disk to the propagation path,
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b1a1 = distance from earth to where the turbulence media starts,

b1c = Res cos(SEP), half of the total distance,

b1b2 = 2× Res cos(SEP), total propagation distance,

a1a2 = the distance that the beam propagates in the turbulent medium,

a1c =
√

r2 − r2
min,

ca2 = a1c,

b1a1 = a2b2,

r(z) =
∫ a1a2

0

[
R2

es + z2 − 2zRes cos(SEP)
]1/2dz, and

C2
n may written as (23)

C2
n = a1

[
r(z)
Rs

]−4

+ b1

[
r(z)
Rs

]−7

, (6.7)

where a1 and b1 are fitting coefficients (23).

In Fig. 6.2, we compare the amplitude scintillations that we obtained from our Monte

Carlo simulation to Morabito’s result (23). As shown in the figure, our simulations predicts

lower amplitude scintillations than does Morabito. We attribute this differences to bias in

Morabito’s result (23) from phase scintillations. We showed in Fig. 4.7 that the phase

scintillations only occur when the rms phase deviation is an odd multiple of π/2, so that it

is not always present.
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Figure 6.2: Amplitude scintillations from our Monte Carlo simulation compared to Mora-
bito’s result (22).



Chapter 7

Conclusion

In conclusion, we have studied the optical and RF beam propagation in turbulent media. For

the optical beam, the turbulent medium was the atmosphere and for the RF beam it was the

plasma in the solar corona. This research was broadly comprised of six separate projects.

The first three projects focused on optical beam propagation through atmospheric turbu-

lence and possible techniques to reduce optical scintillations at the receiver. The fourth and

fifth projects were concentrated on the data analysis and theoretical study of RF beam prop-

agation through the solar corona during planetary conjunction. The turbulence model that

was used to study optical propagation was then applied to RF beam propagation to explain

the amplitude scintillations that were observed in the data analysis and also to compare the

impact of turbulence on optical and RF beam propagation.

In the first project, we obtained an analytical expressions for both the mean-square

beam radius and the beam quality factor using the moment method that was first developed

by Feizulin and Kravtsov (9). We have showed the moment method eliminates the need for

knowledge of the turbulence structure function. Prior to our work there was no analytical

expression for the spread of a laser beam and its degradation as it passes through atmo-

spheric turbulence when there is an initial quartic aberration. Our expressions are valid

for all distances, in contrast to the previous studies. We compared these expressions to the
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results from Monte Carlo simulations, which allowed us to mutually validate the theory

and our Monte Carlo codes. Also with simulations we showed the beam intensity follows

a Gaussian-distribution for all distances as shown in Fig. 2.8. Additionally, we compared

the simulation results to field test data. The agreement was excellent as shown in Fig. 2.5.

In particular, we obtained good agreement between the scintillation index that is found

experimentally and the scintillation index that is calculated in our simulations. We have

shown that the probability distribution for the mean-square beam radius that the simula-

tion predicts is a gamma-gamma distribution in agreement with experiments. Our results

demonstrate the usefulness of Monte Carlo simulations as a way to both understand the

experimental behavior and estimate the turbulence parameters.

We also used the Monte Carlo simulations to explain the discrepancy between a classic

expression of Fante’s for a Gaussian beam at a short distance of propagation versus using

the result from the moment method. In the short-distance limit in which our result differed

from Fante’s, the beam radius was dominated by diffraction. So, the quantitative difference

between the exact expression and Fante’s relative to the total beam spread was small as

shown in Fig. 2.7.

In the third project, we carried out simulations of partially spatially coherent infrared

and visible (HeNe) laser beams with different degrees of spatial coherence as they prop-

agate through a turbulent atmosphere. The results have been compared to both maritime

and terrestrial field test data that were collected at the US Naval Academy. We compared

the probability density function of the simulated intensity to what was observed in the field

test data. The simulations predict a lognormal probability distribution function in agree-

ment with experiments as shown in Figs. 3.3 and 3.4. We have shown that the scintillation

index has possible sweet spots that are associated with specific degrees of partial spatial

coherence of the laser beam and that depend on the propagation distance and atmospheric

parameters as shown in tables 3.1 and 3.2. We obtained good agreement between the scin-
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tillation index that is found experimentally and the scintillation index that is calculated in

our simulations. We showed that partially coherent beams whose scintillation indices are

lower than the index of a coherent beam are also less distorted by atmospheric turbulence.

In our fourth project, we analyzed recent data obtained during superior solar con-

junction of MESSENGER spacecraft at X-band for days 114, 115, 339, 340, and 344 for

year 2014 for an SEP angle between 0.7◦ and 1.84◦. There have been prior studies of RF

beam propagation during superior solar conjunction, but we obtained several new findings.

Analysis of the data that was obtained over several MESSENGER conjunctions reveals a

short-term and long-term effect. We showed that the amplitude scintillation imposed on

the carrier signal is evident on a short-time scale. We also showed that the phase scintil-

lation imposed on the carrier is stronger, and it occurs over a longer time duration. We

also observed a non-monotonic behavior as the SEP angle changes. We have observed two

distinct characteristics for the phase scintillation that is induced on the carrier, depending

on whether the imposed phase modulation index is close to an odd multiple of π/2 or is

far removed from it. The proximity to π/2 is related to carrier suppression. For example,

when the phase modulation index is within 0.056 radians, a carrier suppression of 25 dB

is expected; when the phase modulation is within 1.1 radians, a carrier suppression of 1

dB is expected as shown in Fig. 4.9. We have also obtained the phase scintillation spectral

density, and we observed two distinct characteristics for it, depending on whether or not the

carrier is suppressed. The phase scintillation spectral density for a non-carrier-suppressed

condition is consistent with a Kolmogorov process for which the frequency dependence is

proportional to f−8/3, and this result is in agreement with prior investigations by Mora-

bito (23) and Imamura (24) as shown in Fig. 4.12. When the carrier is suppressed, the

receiver noise obscures the underlying turbulent process and produces instead an f−1 de-

pendence, corresponding to the f−1 flicker noise of the receiver as shown in Fig. 4.13.

In our fifth project, we investigated possible explanations for the difference in time
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scales between the amplitude and phase scintillations. Prior to our work, there was no

physical explanation for why there are two different time scales for these observations. Our

starting point was a study of the Sun’s atmosphere and the plasma that surrounds it. We

investigated four phenomena that exist in the solar wind that could potentially explain these

long-time phase scintillations. We first investigated the propagation of radio waves in the

positively and negatively charged clouds of protons and electrons that are approximately

a Debye length in size. The difference between the indices of refraction in these clouds

will lead to phase variations in the beam wavefront as an RF beam propagates. Second, we

investigated the passage of supersonic particles through acoustic waves that locally change

the index of refraction, leading to phase variation in the beam wavefront as an RF beam

propagates. Third, we investigated the separation of electrons and protons that are due to

inhomogeneous solar magnetic fields. This separation leads to local change in the indices

of refraction and hence phase variation in the beam wavefront as an RF beam propagates.

Fourth, we investigated ducts in solar plasma that trap a part of an RF beam, which leads

to a phase difference in the beam wavefront as an RF beam propagates. We concluded

that the most probable explanation for the difference in time scales between the amplitude

and phase scintillations is the fourth, effect of long ducts. These ducts act as waveguides,

changing the phase velocity of an RF beam as it travels along a zigzag path inside the duct.

When the radiated wave exits from a duct, its phase is changed with respect to the signal

that did not pass through the duct, which can lead to destructive interference and carrier

suppression. The trapping of the wave is random in nature and can be either a fast or slow

process. The predictions of this model are consistent with observations. Also our model

explains the difference in time scales between the amplitude and phase scintillations.

Lastly, we showed since ducting is a random process, and it varies in space and time

due to physical processes in solar wind plasma that cannot be described in a determinis-

tic way and must be characterized probabilistically, like atmospheric turbulence, we can
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characterize the solar wind turbulence as a Kolmogorov process. We used the same phase

screen technique that was used to model optical propagation through turbulent atmosphere

to simulate an RF beam as it propagates through the turbulent solar plasma. We reproduced

the amplitude scintillations that we observed using Monte Carlo simulations. Our data and

theoretical model were mutually consistent and indicate that solar plasma turbulence is a

Kolmogorov process. Our Monte Carlo simulations confirmed this conclusion.

Reducing the scintillation at the receiver is one of the primary issues in free-space

optical communication systems. We looked at a partially coherent beam technique with

both IR (1550 nm) and HeNe (632.8 nm) lasers. We found a decrease in the scintillation

compared to a fully coherent beam. In future work, it would be interesting to use different

wavelengths and also different beam shapes, such as nonuniform polarized beam, which

may lead to a significant scintillation reduction.

Our study of RF X-band propagation through the solar plasma will aid future missions

that operate at or near solar conjunction to design communication links that can operate at

SEP angles that are less than 3◦. In future work, it would be interesting to also investigate

how much improvement can be obtained by increasing the frequency, for example in the

Ka-band, and compare the stability of links through the solar plasma.
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