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The rapid spread of misinformation, including
misleading and manipulative content, is a current
and urgent threat to our society and to our democ-
racy (Starbird, 2017). Several fact-checking web-
sites (e.g., Snopes.com and PolitiFact.com) have
been formed to manually verify/falsify claims, but
this process is expensive and lacks scalability. An
automated process to verify these claims is in high
demand so that we can keep up with the speed that
misinformation spreads.

Early notable works in this domain fit a model
(e.g. a neural network) to labeled training instances
from sites like PolitiFact.com to predict a claim’s
veracity (Rashkin et al., 2017). More recent meth-
ods also consider external evidence to verify the
claims’ authenticity. Popat et al. (2017, 2018a,b)
leverage articles (retrieved from the Web via a
search engine) which confirm or refute a claim and
jointly assesses the language style (using subjec-
tivity lexicons), the trustworthiness of the sources,
and the credibility of the claims which are provided
in natural language form, such as news headlines,
quotes from speeches, blog posts, etc.

In this work, we propose to jointly model arti-
cles’ relevance to a claim together with their sup-
port of the claim, etc., thereby making these in-
ferences mutually informing. Our approach is the
first to use a single unified model to verify user-
generated claims in an end-to-end fashion. Our
approach builds on the DeClarE DNN architecture
proposed by Popat et al. (2018b), later developed
and deployed in an online portal named DeepEye
(Popat et al., 2018a). First, we construct claim and
article representations c̄i, āj by averaging GloVe
(Pennington et al., 2014) word embeddings.
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Here, L is the number of words per article or claim.
We then retrieve a set of all the potentially rele-
vant articles based on cosine similarity of the em-
beddings with the target claim (e.g. the top 200
articles). Next, we predict the relevance of these
candidate articles using an attention mechanism.
We concatenate each candidate article j’s represen-
tation with the target claim i’s representation and
then apply a neural network layer (e.g. with a tanh
activation), followed by a softmax transformation
to calculate a normalized attention score αj,i which
represents the relevance to the target claim i.

âj,i = āj ⊕ c̄i , a′j,i = f(Waâj,i + ba) (2)
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Next, we sum up the article representations,
weighted by their attention weights αj,i, to con-
struct the relevance-weighted claim representation
zi that feeds into a deep neural network to predict
the overall credibility label yi.

zi =

N∑
k=1

αkāk ⊕ c̄i , yi = DNN(zi) (4)

The credibility prediction DNN and the attention
parameters are trained jointly via back-propagation.
We use the dataset published by Popat et al. (2018b)
based on Snopes.com, where there are one or more
relevant articles snippets per claim and the labels
are manually generated. We have tested our ini-
tial implementation of the model on 20% held-out
data and found out it was 73% accurate. This does
not yet outperform a simpler neural network (with-
out article attention), but we are currently working
to refine our implementation and we expect that
we will be able to present improved results at the
symposium.
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