

 © 2019 IEEE. Access to this work was provided by the University of Maryland, Baltimore County
(UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-
SOAR) platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by
emailing scholarworks-group@umbc.edu and telling us
what having access to this work means to you and why
it’s important to you. Thank you.

mailto:scholarworks-group@umbc.edu

In proceedings of IEEE International Conference on Big Data Security on Cloud, May 2019

A Policy based Framework for
Privacy-Respecting Deep Packet Inspection of

High Velocity Network Traffic
Arya Renjan∗, Sandeep Nair Narayanan∗, Karuna Pande Joshi†

∗Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County
†Department of Information Systems, University of Maryland, Baltimore County

Email: {arenjan1, sand7, karuna.joshi}@umbc.edu

Abstract—Deep Packet Inspection (DPI) is instrumental in
investigating the presence of malicious activity in network traffic,
and most existing DPI tools work on unencrypted payloads. As
the internet is moving towards fully encrypted data-transfer,
there is a critical requirement for privacy-aware techniques
to efficiently decrypt network payloads. Until recently, passive
proxying using certain aspects of TLS 1.2 were used to perform
decryption and further DPI analysis. With the introduction of
TLS 1.3 standard that only supports protocols with Perfect
Forward Secrecy (PFS), many such techniques will become
ineffective. Several security solutions will be forced to adopt
active proxying that will become a big-data problem considering
the velocity and veracity of network traffic involved. We have
developed an ABAC (Attribute Based Access Control) framework
that efficiently supports existing DPI tools while respecting user’s
privacy requirements and organizational policies. It gives the
user the ability to accept or decline access decision based on his
privileges. Our solution evaluates various observed and derived
attributes of network connections against user access privileges
using policies described with semantic technologies. In this paper,
we describe our framework and demonstrate the efficacy of our
technique with the help of use-case scenarios to identify network
connections that are candidates for Deep Packet Inspection. Since
our technique makes selective identification of connections based
on policies, both processing and memory load at the gateway will
be reduced significantly.

Index Terms—Attribute-based Access Control (ABAC), Deep
Packet Inspection, TLS 1.3, Perfect Forward Secrecy, Semantic
Technologies, Privacy

I. INTRODUCTION

With the unprecedented growth of the Internet, security and
privacy have become critical concerns to its users. Adoption
of security protocols like SSL (Secure Socket Layer) and
TLS (Transport Layer Security) to provide secure network
connections is also on the rise. Popular web browsers like
Chrome and Firefox have made the requirement for encrypted
connections a priority. Since 2018, Chrome deems a website
as ‘not secure’ if it uses HTTP. As of 2019, around 80% of
web traffic through Google Chrome is encrypted [1], and more
than 50% of Alexa top one million websites are HTTPS [2].
One side-effect of the adoption of encryption is its usage by
malicious hackers to conceal malware from signature-based

detection strategies. Gartner [3] expects that at least half of
attacks caused by malware in 2019 will use some encryption.
Hence, it is imperative to analyze encrypted data streams to
detect potential security threats.

TLS version 1.2 was released in August 2008, and it
supports many legacy cryptographic protocols like SHA1 and
MD5 which are now considered insecure. They are susceptible
to several known attacks like SLOTH [4], POODLE [5], etc.
Its latest version, TLS 1.3 (released in 2018), addressed these
issues by removing support for many such legacy protocols.
Another significant change in TLS 1.3 makes Perfect Forward
Secrecy (PFS) mandatory [6] unlike its predecessors, where it
was optional. With PFS enabled, the session key (negotiated
between the client and the server during TLS handshake)
for data encryption is never transmitted across the network.
Instead, it uses protocols like ephemeral Diffie-Hellman key
exchange to generate the same session key in the client and the
server. As a result, even a compromise of the server’s private
key will not affect the confidentiality of the previous sessions
that used it.

It is evident that PFS improves the security and privacy of its
users, but it has some adverse effects on several existing secu-
rity solutions [7]. Many security solutions use TLS 1.2 features
to decrypt sessions and use DPI (Deep Packet Inspection)
tools like SolarWinds 1, Paessler Packet Sniffing 2, etc. for
further analysis. For example, if RSA authentication is used,
a unique pre-master secret (used for generating the master
secret) is first encrypted with the server’s public key and is
sent to the server. The server’s private key may not available
to these security solutions also. However, they circumvent
this by inserting a root certificate to their clients and use
them during the handshake. Using this pre-master secret and
other random numbers that can be extracted from the session
traffic, the DPI tools decrypt the entire session and use it for
malware detection, internet censoring, and so forth. With PFS,
such solutions will not work because the actual session keys

1https://www.solarwinds.com/topics/deep-packet-inspection
2https://www.paessler.com/manuals/prtg/packet sniffer header sensor

never leave the client or server machine and passive decryption
becomes difficult.

One existing solution to overcome this problem is to use
active proxying in which the gateway encrypts and decrypts
every connection between all clients and servers. Considering
the velocity and veracity of traffic through the gateway, this
will become a big-data problem and will be highly resource
intensive. Another solution is to use techniques like Cisco ETA
(Encrypted Traffic Analysis)3 that tries to identify malware
without decryption. Anderson et al. [8] present a study on
using TLS meta-characteristics for malware detection. Yet
another competing technique is from ExtraHop Networks
[6] where the session keys are retrieved from the client for
decryption. In this paper, we describe an ABAC (Attribute-
Based Access Control) policy framework in which the various
observed and derived attributes of the network connections are
evaluated using policies defined with semantic technologies.
It enables the support for existing DPI tools and respects the
privacy of its users by giving them an option to choose in
accordance with organizational policies. Since our solution
selectively identifies connections based on policies for DPI
analysis, the processing load and memory load at the gateway
will be reduced significantly. This analysis could be taken
offline as well. We demonstrate the flexibility and efficacy of
our technique by describing handpicked use-case scenarios.

The rest of this paper is organized as follows: Section II
describes a brief literature review. Section III presents our
system’s architecture, and Section IV discusses the imple-
mentation. Section V demonstrates the usefulness of our
technique with the help of use-case scenarios followed by the
conclusions and future work in Section VI.

II. RELATED WORK

Policy-based access control is a much-researched topic
that finds applications in a plethora of fields. In addition
to the classical access control models like discretionary
(DAC), mandatory (MAC) and role-based (RBAC) models,
the attribute-based access control (ABAC) model also gained
traction in recent years. In [9], Jin et al. investigate formal
connections between these three classical models and ABAC
models. ABAC techniques are used in several fields like cloud
computing [10], web services [11], Internet-of-Things [12],
[13], and grid computing [14].

Access control policies are also widely used in the field
of network security to reduce the risk of unauthorized access.
Some research in this field is discussed here. Berger et al. [15]
propose a framework for dynamic ABAC configuration in
firewalls where the temporary binding between a user and
IP address is used to create policies to access resources over
the internet. In another research, Burmester et al. [16] present
an extended ABAC model called real-Time Attribute-Based
Access Control model (T-ABAC), that can guarantee real-
time availability for high priority IP packets. In [17], Basile

3https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-
network-security/eta.html

et al. discuss an ontology-based policy translation approach
that mimics IT administrators, to identify device configurations
based on network topology and security policies.

The policy management techniques discussed above use
Attribute-Based Access Control for traffic filtering, suspicious
activities identification, and so forth. In this paper, we describe
our system that uses ABAC to selectively identify network
connections for Deep Packet Inspection (DPI) in encrypted
traffic while respecting the user’s privacy requirements and
organizational policies. In another related research, Hu et
al. [18] patented a policy enabled Deep Packet Inspection
framework for telecommunications network. In contrast, our
system extracts several direct and extended attributes and uses
ABAC using semantic technologies with a goal of specifically
supporting DPI in perfect forward secrecy implementations
like the new TLS 1.3 standard.

III. SYSTEM ARCHITECTURE

In this section, we discuss the architecture of our policy-
based framework. The main goal of our approach is to enable
efficient passive monitoring on encrypted traffic that also
respects user’s privacy requirements for implementations like
TLS 1.3 where perfect forward secrecy is enforced. For this
purpose, we envision a multi-agent system as presented in
Fig. 1. Unlike active monitoring techniques that are resource
intensive, in our architecture, the client-user agents interact
with the monitoring component based on organizational poli-
cies for achieving its goal. In this paper, we use an extended
ABAC (Attribute Based Access Control) with a knowledge
graph and reasoner to infer policy decisions. The three key
modules in our architecture are Network Monitoring Engine,
Client Agents, and Policy Engine.

Fig. 1: System Architecture

The attribute extraction module in the network monitoring
engine resides at the edge node of the organizational boundary
(typically external gateways). It extracts various attributes
(observable attributes like IP address, protocol, etc. and ex-
tended attributes like IP intelligence) for every connection and
requests the policy engine to make access control decisions.
The policy engine uses organizational policies to make various
access control decisions as described in section III-A2. The
decisions are then sent to the policy enforcement module
of the network monitoring engine for further processing and
enforcement. The policy enforcement module interacts with
the client-user agents and supports efficient DPI only for
selected connections, thus providing required levels of security
and privacy to its users. The detailed description of each of
these key components ensues in the subsequent subsections.

A. Network Monitoring Engine

The network monitoring engine monitors the traffic across
the network boundary and enforces the decisions taken by the
policy engine. It has two main modules: The first module is
the attribute extraction module that fetches network attributes
and security intelligence from traffic in real-time. The second
module is policy enforcement module which enforces the
access decisions generated by the policy engine.

1) Attribute Extraction Module: The attribute extraction
module performs real-time traffic monitoring of every con-
nection traversing the gateway and extracts their attributes
simultaneously. In the attribute extraction module, the system
extracts various network and flow attributes of each connec-
tion. Network attributes are those attributes which give infor-
mation on the network parameters of traffic like source and
destination IP address, protocol, Server Name Indication(SNI)
of the external user, etc. In addition to network attributes, the
module also extracts flow attributes that provide information
on traffic flow like time, packet size, count of packets, etc.

The attribute extraction module then uses this information
to derive more attributes related to the connection. It takes
inputs like external IP address and SNI to gather information
about the IP intelligence, domain category, etc. in real-time.
For extracting attributes on network intelligence, we can use
reputation scoring services that give information on the mali-
cious characteristics of external users. This reputation scores
may be boolean values indicating the presence of external IP
in blacklists, or numeric probability scores corresponding to
its possible maliciousness. In addition to security intelligence,
this module also gathers information regarding the category of
service the user is trying to access. For example, facebook.com
is a ‘social networking’ website, youtube.com delivers ‘media
and video streaming’, etc. All these attributes are then sent to
the policy engine for generating policy decisions.

2) Policy Enforcement Module: This module enforces the
access decisions generated by the policy engine. The major
access decisions made by the policy engine and their respective
enforcement actions are discussed below:

• AllowConnection: If a connection is as per the organiza-
tional policies, it will be allowed without any restrictions.

This access decision will be used in scenarios where
the user is trying to access legitimate websites like
google.com or stackoverflow.com.

• BlockConnection: This decision is generated if a connec-
tion is against the organization’s policies. Network con-
nections to known malicious hosts is a typical example of
blocked connections. In such cases, the policy enforce-
ment module will block the connection, thus avoiding any
potential spurious network activity.

• MandatoryInspection: This decision is used to give cer-
tain privileges to specific sets of users, but with some
restrictions. Consider the case of a software company
which does not want its developers to upload proprietary
source code or resources to external file servers. Since
blocking all connection to file servers is too restrictive,
a more appropriate access decision will be to perform
mandatory deep packet inspection and allow the connec-
tion. MandatoryInspection access decision informs the
policy enforcement module to perform deep inspection
of data packets. In such a case, it will start capturing the
data packets and will interact with the client-agents in
user-clients to retrieve the required session key. Once the
session key is retrieved, the packets are decrypted and
are transferred to the Deep Packet Inspection module to
inspect further for suspicious content. If the client-agents
fails to deliver the keys, the connection will be blocked.

• OptionalInspection: This access decision will allow flexi-
bility to privileged users who are more responsible or are
experts. Consider a case where the security team wants to
download malware samples from some known malicious
external source. If the contents of the connections are
deep inspected, it will raise false alarms and hence they
can choose not to allow inspection. However, if they want
to download some resources which are not malicious but
from a suspicious source, they can opt for inspection,
giving flexibility to the users. If this access decision is
received, the policy enforcement module interacts with
the client user-agent and requests permission. If the user
responds with key, it will decrypt the contents with
the session key and send them to perform deep packet
inspection. However, if the response from the user is
negative, the enforcement module will take action as if
the access decision was AllowConnection.

B. Client Agents

Each user-client in the internal network will run a client
agent module. It has two main functions: interaction with
the network monitoring engine and retrieving the required
session keys from its user client. The first task of the client
agent is to extract session keys for different connections.
Many applications provide inbuilt facilities to extract session
keys from TLS connections they make with external clients.
For example, Chrome and Mozilla web browsers have an
option, when enabled, extracts and stores specific session
keys. The user client agent will maintain this list of session
keys and responds to requests from the policy enforcement

Fig. 2: Relevant extract from our knowledge graph

module as required. The client agents can receive two types
of requests from the Policy enforcement module. If the request
contains a MandatoryInspection decision, it will retrieve the
key and return it to the user. On the other hand, if it is an
OptionalInspection decision, the agent will ask the user for a
decision. The existence of this module enables the user with
the ability to choose.

C. Policy Engine

This module is the core of our system and is responsible
for making decisions by using a knowledge graph and ABAC
policies specified for the organization. It accepts attributes
extracted by the attribute extraction module and use them
in conjunction with policies to generate access decisions.
The policy engine can generate four access decisions: Al-
lowConnection, BlockConnection, MandatoryInspection, and
OptionalInspection as described in Section III-A2. The policy
engine uses an extended ABAC (Attribute Based Access
control) model using semantic technologies to make a policy
decision per connection. In ABAC, the different attributes of
each entity are used to define policies for access control. There
are two major modules in the policy engine, knowledge graph
server and policy management module which are described in
the following subsections.

1) Knowledge Graph Server: Knowledge graph server
houses the knowledge graph that encapsulates the domain
knowledge, ABAC access control policies defined using se-
mantic web technologies, and a reasoner that infers the access
decisions. A major contribution in this paper is the develop-
ment of a knowledge graph that abstract the attributes and
knowledge to make policy decisions. Fig. 2 presents a relevant
part of the knowledge graph designed for this purpose.

Of the many classes in the knowledge graph, User class
plays an important role while developing policies. The User
class has several object and data properties like IP addresses,
associated roles, reputation scores, etc. depending on the
different user categories. In our knowledge graph design,
we define many types of users and are categorized hier-

archically by their roles and functions. The first level of
sub-classes consists of InternalUser (users who are part of
the organizational network) and ExternalUser (users who are
external to the network). The ExternalUser class is further
classified into sub-classes BlackListedUser, WhiteListedUser,
GreyListedUser, etc. This hierarchical arrangement helps our
knowledge graph to incorporate various external attributes
like IP addresses, intelligence about external users like their
presence in blacklists, reputation scores, etc. and use them to
define policies for decision making. Other classes include Flow
class that define the information about the flow and messages
for which we need to make access decisions, Protocol which
may be extracted from the messages, Service class that define
the type of resource or application the connection is trying to
access, Category, Time, etc.

Another major component in the knowledge graph server
consists of ABAC policies which are implemented using
semantic technologies. We can define policies using SWRL4

(Semantic Web Rule Language) or using other policy speci-
fication frameworks like Rein [19]. The advantage of using
semantic technologies for specifying the policies is their
ability to reason over the knowledge graph and infer complex
relationships. For example, they give the administrators the
ability to define simple rules like if the external IP is an
IP address corresponding to a BlackListedUser, then issue
BlockConnection for all requesting users. The reasoner will
automatically infer which users should get access to it, what
kind of services to that IP address need to be blocked,
etc. Detailed examples of their usefulness are described in
section V. However, different policies may result in conflicting
access control decisions for the same connection. We address
this issue by prioritizing the access decision in the order
OptionalInspection, BlockConnection, MandatoryInspection,
and AllowConnection. For example, if the policies result in two
decisions BlockConnection and AllowConnection, the priority
decision BlockConnection will be the final decision.

4https://www.w3.org/Submission/SWRL/

2) Policy Management Module: This module is used to cre-
ate, modify, and delete access policies on the entities defined
in the knowledge graph. Additionally, system administrators
use the policy management module to add more knowledge to
the knowledge graph by adding new instances to it, updating
the knowledge graph, etc. For example, this module can
be used to add new user clients, define his/her privileges,
create new classes, etc. The policy management module can
also periodically update the knowledge graph with the latest
blacklists and whitelists of IP addresses to keep in par with
the dynamic nature of network intelligence.

IV. IMPLEMENTATION

This section describes the tools and API’s used in the
development of our system. In our implementation, the net-
work monitoring engine is developed using mitmproxy5 and
python scripts. mitmproxy is an open source HTTPS proxy
that supports a python API to manipulate different connections
flowing through it. We developed separate python scripts on
top of mitmproxy to implement the functions of attribute
extraction module and policy enforcement module. In addition
to extracting flow and network related attributes as described
in section III-A1, our system interfaces this module to a repu-
tation scoring engine DAbR [20]. DAbR will extract several
attributes about the external IP addresses and generates a
numeric reputation score. All these information are then sent
to the policy engine.

The policy enforcement module is also implemented in
python using the API’s from the mitmproxy. If the access
decision is BlockConnection, the user is redirected to a generic
error page, and when the access decision is AllowConnection,
the connection details are just logged. If the access decision
is MandatoryInspection or OptionalInspection, the script will
interact with the respective client-agents over secure sockets
to retrieve sessions keys. Once the session keys are retrieved,
the scripts use tshark to decrypt the encrypted packets and
forward them to DPI tools.

Our system uses the RDF triple store, Apache Fuseki6, as
the knowledge graph server. The policy rules can then be
defined using SWRL rules. Fuseki is configured with a generic
reasoner and standard OWL ruleset to provide inferencing.
The policy engine uses the SPARQLWrapper7 API to insert
information about different live flows into Fuseki and query
it to generate access control decisions. This wrapper is also
used by the policy management module to add and manipulate
more knowledge into the knowledge graph server.

V. USE-CASE SCENARIO

Our framework helps to enable efficient deep packet in-
spection using various organizational policies. To demon-
strate its capabilities, we created a virtual corporate network
with several employees and user roles. We populated our
knowledge graph using the policy management module of

5https://mitmproxy.org/
6https://jena.apache.org/documentation/fuseki2/
7https://rdflib.github.io/sparqlwrapper/

the policy engine. First, we added information about the
employees in our virtual corporation. In our setup, all the
managerial employees are mapped as instances of SuperUser
class, developers as instances of InterimPrivilegedUser class,
and contract employees as instances of LeastPrivilegedUser
class. We used the list of known IP blacklists from hpHosts8,
and some whitelists from IP addresses corresponding to top
domains from OpenDNS9 as the instances of BlackListedUser,
and WhiteListedUser classes respectively. Information about
different flows and messages are inserted into the knowledge
graph during runtime.

We defined several access control policies to our use-case
scenario using SWRL rules. Some of them are presented
below:

hasMessage (?flow, ?message) ˆ
hasSourceIPAddress (?message, ?srcIP) ˆ
hasIPAddress (?srcUser, ?srcIP) ˆ
GuestUser (?srcUser) ˆ hasServiceRequest
(?message, ?service) ˆ hasServiceName
(?service, "FileTransfer") ˆ
AccessDecision (?decision) ˆ
hasAccessDecisionName (?decision,
"MandatoryInspection") ->
hasAccessDecision (?flow, ?decision)

The policy defined above using SWRL suggests that Guest
users should be monitored if they are making any “FileTrans-
fer” requests. A variety of attributes may decide if a message
is requesting a “FileTransfer” service, such as, the protocol
being FTP/SFTP, connections using well-defined port number
21, SNI/IP address pointing to a well-known file-server, etc. In
our architecture, the administrators can specify simple policies
as presented above and the reasoner will automatically infer
whether the connection is requesting a “FileTransfer” using
the knowledge graph. Hence, if a guest user tries to access,
say, a known file-server, it first infers the connection as a
“FileTransfer” request. Since the connection initiated from a
guest user, the policy engine will generate the access decision
as MandatoryInspection. Policy enforcement module will then
contact the client agents, extract specific session key from the
internal user, and send the traffic for further inspection.

hasMessage(?flow, ?message) ˆ
hasSourceIPAddress(?message, ?srcIP) ˆ
hasIPAddress(?srcUser, ?srcIP) ˆ
hasDestinationIPAddress(?message,
?destIP) ˆ hasIPAddress(?destUser,
?destIP) ˆ SuperUser(?srcUser) ˆ
GreyListedUser(?destUser) ˆ
hasReputationScore(?destUser, "low") ˆ
AccessDecision(?decision) ˆ
hasAccessDecisionName(?decision,
"OptionalInspection") ->
hasAccessDecision(?flow, ?decision)

The policy presented above gives additional privileges to users
who belong to the SuperUser class even though the external

8https://www.hosts-file.net/
9https://github.com/opendns/public-domain-lists

resource is not completely trustworthy. As per the above
policy, if a SuperUser is trying to access an external user with
low reputation score, the policy engine will decide to perform
OptionalInspection. The assumption is that SuperUser users
can determine if the connection is spurious or not, for instance,
the security team who wants to download malware samples
for analysis. In our implementation, if such a request comes
from the security team, the above policy will generate an
OptionalInspection because the requesting user is inferred as
a SuperUser. In this scenario, the policy enforcement module
will request the user client agent for the session keys and
depending on the response from the user, the connection will
proceed further. For other users, however, the decision may be
different depending on other attributes and their privileges.

hasMessage(?flow, ?message) ˆ
InterimPrivilegedUser(?srcUser) ˆ
ConfidentialResource(?destUser) ˆ
hasSourceIPAddress(?message, ?srcIP) ˆ
hasIPAddress(?srcUser, ?srcIP) ˆ
hasDestinationIPAddress(?message,
?destIP) ˆ hasIPAddress(?destUser,
?destIP) ˆ AccessDecision(?decision) ˆ
hasAccessDecisionName(?decision,
"MandatoryInspection") ->
hasAccessDecision(?flow, ?decision)

The above policy specifies another scenario where an Inter-
imPrivilegedUser is trying to access a ConfidentialResource.
According to this policy, the access decision should be Manda-
toryInspection. A software developer trying to access user
credentials stored in a secure server is one such use-case. This
scenario mandates extra inspections because of the sensitive
contents in the resource. The policy engine now generates
MandatoryInspection that will trigger the policy enforcement
to retrieve the session keys and further inspection.

VI. CONCLUSION AND FUTURE WORK

We have developed an ABAC (Attribute-Based Access
Control) policy framework that supports existing Deep Packet
Inspection tools in ‘Perfect Forward Secrecy’ implementation
like TLS 1.3. It respects user’s privacy requirements and
organizational policies and also gives the user the ability to
accept or decline the access decision based on his privileges.
In our framework, various observed and derived attributes of
the network connections are evaluated against user access priv-
ileges defined using semantic technologies. We implemented
a prototype system for our framework and demonstrated the
efficacy of our technique with the help of meaningful use-case
scenarios. Security intelligence is a highly dynamic domain,
and new intelligence is pushed by a variety of structured
and semi-structured sources daily. In the future, we plan to
ingest knowledge from such sources to automatically generate
policies and adapt to the modified landscape.

ACKNOWLEDGMENT

We would like to thank Prof. Anupam Joshi, the Oros
Family Professor and Chair of CSEE Department, Dr. Tim

Finin, Willard and Lillian Hackerman Chair in Engineering
and other members of the Ebiquity Research Lab at University
of Maryland Baltimore County, for their constant guidance and
support in this research.

REFERENCES

[1] “Google transparency report: Https encryption on the web,” https:
//transparencyreport.google.com/https/overview?hl=en, accessed: 2019-
03-27.

[2] “Alexa top 1 million analysis - august 2018,” https://scotthelme.co.uk/
alexa-top-1-million-analysis-august-2018/, accessed: 2019-03-27.

[3] “Encrypted malware: a threat facilitated by the gdpr?”
https://www.pandasecurity.com/mediacenter/malware/encrypted-
malware-facilitated-gdpr/, accessed: 2019-03-27.

[4] “Sloth: Tls 1.2 vulnerability (cve-2015-7575),” https://access.redhat.
com/articles/2112261, accessed: 2019-03-28.

[5] “Poodle ssl vulnerability now attacking tls security protocol,” https:
//thehackernews.com/2014/12/SSL-Poodle-TSL-attack.html, accessed:
2019-03-28.

[6] “What is perfect forward secrecy?...and what does it mean for
you?” https://www.extrahop.com/company/blog/2017/what-is-perfect-
forward-secrecy/, accessed: 2019-03-27.

[7] “The impact on network security through encrypted protocols tls
1.3,” https://blogs.cisco.com/security/the-impact-on-network-security-
through-encrypted-protocols-tls-1-3, accessed: 2019-03-27.

[8] B. Anderson, S. Paul, and D. McGrew, “Deciphering malwares use of
tls (without decryption),” Journal of Computer Virology and Hacking
Techniques, pp. 1–17, 2016.

[9] X. Jin, R. Krishnan, and R. Sandhu, “A unified attribute-based access
control model covering dac, mac and rbac,” in Data and Applications
Security and Privacy XXVI, N. Cuppens-Boulahia, F. Cuppens, and
J. Garcia-Alfaro, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 41–55.

[10] M. Ed-Daibouni, A. Lebbat, S. Tallal, and H. Medromi, “A formal
specification approach of privacy-aware attribute based access control
(pa-abac) model for cloud computing,” in 2016 Third International
Conference on Systems of Collaboration (SysCo), Nov 2016, pp. 1–5.

[11] E. Yuan and J. Tong, “Attributed based access control (abac) for web
services,” in IEEE International Conference on Web Services (ICWS’05),
July 2005, p. 569.

[12] M. Gupta, J. Benson, F. Patwa, and R. Sandhu, “Dynamic
groups and attribute-based access control for next-generation smart
cars,” in Proceedings of the Ninth ACM Conference on Data
and Application Security and Privacy, ser. CODASPY ’19. New
York, NY, USA: ACM, 2019, pp. 61–72. [Online]. Available:
http://doi.acm.org/10.1145/3292006.3300048

[13] P. K. Das, S. Narayanan, N. K. Sharma, A. Joshi, K. Joshi, and T. Finin,
“Context-sensitive policy based security in internet of things,” in 2016
IEEE International Conference on Smart Computing (SMARTCOMP).
IEEE, 2016, pp. 1–6.

[14] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, and T. Freeman,
“A flexible attribute based access control method for grid computing,”
Journal of Grid Computing, vol. 7, no. 2, p. 169, Nov 2008. [Online].
Available: https://doi.org/10.1007/s10723-008-9112-1

[15] S. Berger, A. Vensmer, and S. Kiesel, “An abac-based policy framework
for dynamic firewalling,” in ICSNC 2012, 2012.

[16] M. Burmester, E. Magkos, and V. Chrissikopoulos, “T-abac: An
attribute-based access control model for real-time availability in highly
dynamic systems,” in 2013 IEEE Symposium on Computers and Com-
munications (ISCC), July 2013, pp. 000 143–000 148.

[17] C. Basile, A. Lioy, S. Scozzi, and M. Vallini, “Ontology-based security
policy translation,” Journal of Information Assurance and Security,
vol. 5, 01 2010.

[18] Q. J. Hu, M. Klenzak, and P. Smith, “Policy-enabled dynamic deep
packet inspection for telecommunications networks,” Dec. 11 2012, uS
Patent 8,331,229.

[19] L. Kagal and T. Berners-Lee, “Rein: Where policies meet rules in the
semantic web,” Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA, vol. 2139, 2005.

[20] A. Renjan, K. P. Joshi, S. N. Narayanan, and A. Joshi, “Dabr: Dynamic
attribute-based reputation scoring for malicious ip address detection,”
in 2018 IEEE International Conference on Intelligence and Security
Informatics (ISI), Nov 2018, pp. 64–69.

	ScholarWorksCoverSheet_2019 IEEE
	918

