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1. Introduction. We consider the optimal control problem

min
y,p,u

J(y, p, u) =
γy
2
‖y − yd‖2L2(Ω) +

γp
2
‖p− pd‖2L2(Ω) +

β

2
‖u‖2L2(Ω),(1)

subject to the stationary Navier-Stokes equations

(2)

−ν∆y + (y · ∇)y +∇p = u in Ω,

div y = 0 in Ω,

y = 0 on ∂Ω,

where Ω ⊂ R2 is a bounded convex polygonal domain. The goal of the control problem
is to find a force u that gives rise to a velocity y and/or pressure p to match a known
target velocity yd, respectively pressure pd. Since this problem is ill-posed, we consider
a standard Tikhonov regularization for the force, with the regularization parameter β
being a fixed positive number. The constants γy, γp are nonnegative, not both zero.

Optimal control problems constrained by the Navier-Stokes equations have been
studied in many papers, see e.g. [11, 12, 13, 5] and the references therein, where both
optimality conditions and numerical methods are addressed, for the unconstrained,
control-constrained, or mixed control-state constrained problems. For a comprehen-
sive overview of optimal flow control we refer to [10]. This paper focuses on the efficient
solution of the linear systems arising in the solution process of (1)–(2), specifically
on the design of multigrid preconditioners for the reduced Hessian in the Newton-CG
method. To the best of our knowledge, this has not been addressed in the litera-
ture for the Navier-Stokes optimal control problem. For the Stokes optimal control
problem, the design of efficient preconditioners for the Karush-Kuhn-Tucker (KKT)
system is addressed in [15, 17] and the case of the reduced KKT system is discussed
in [7]. This paper is an extension of the work on the Stokes optimal control problem
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in [7]; essentially, we show that for low to moderate Reynolds numbers the constructed
preconditioners display the same optimal behavior as in the case of Stokes flow. While
the design of the preconditioner is rooted in [7], the analysis presents several chal-
lenges due to the presence of the convection term in the constraints. Therefore, the
main contribution in this work lies in the analysis of the multigrid preconditioner for
the case when the constraints are formed by the Navier-Stokes equations; the analysis
is restricted to the two-dimensional case.

The paper is organized as follows. In Section 2, we introduce the optimal control
problem and review results that will be needed in the sequel. In Section 3, we in-
troduce the discrete optimal control problem and prove finite element estimates that
will be needed for the multigrid analysis. Section 4 contains the main result of the
paper, the analysis of the two-grid preconditioner. In Section 5, we present numerical
experiments that illustrate our theoretical results. Conclusions are given in Section 6.

2. Problem formulation.

2.1. Preliminaries. In this section we introduce notations and review some
classical results regarding the Navier-Stokes equations. We use standard notation
for the Sobolev spaces Hm(Ω) and for their vector-valued counterparts we use the
boldface notation. We denote by H̃−m(Ω) the dual (with respect to L2-inner product)
of Hm(Ω) ∩H1

0(Ω) and define Q = L2
0(Ω) = {p ∈ L2(Ω) :

∫
Ω
p dx = 0}, X = H1

0(Ω),
and V = {v ∈ H1

0(Ω) : (div v, q) = 0, ∀q ∈ Q}. Throughout this paper we write (·, ·)
for the inner product in L2(Ω) or L2(Ω), according to context, if there is no risk of
misunderstanding. The Hm(Ω) or Hm(Ω)-norm will be denoted by ‖ · ‖m, while ‖ · ‖
denotes the L2(Ω) or L2(Ω)-norm. Furthermore, define the norm in V ′ by

‖u‖V ′ = sup
φ∈V \{0}

(u, φ)/‖∇φ‖.

To define the weak formulation of (2), we introduce the bilinear forms

a(y, φ) = ν(∇y,∇φ) = ν

2∑
i=1

∫
Ω

∇yi · ∇φi dx ∀y, φ ∈ X,(3)

b(φ, p) = −
∫

Ω

pdiv φdx ∀φ ∈ X,∀p ∈ Q,(4)

and the trilinear form

c(y;φ, ψ) = ((y · ∇)φ, ψ) ∀y, φ, ψ ∈ H1(Ω).(5)

A weak formulation of the Navier-Stokes equations is given by:
Given u ∈ H−1(Ω), find (y, p) ∈ X ×Q satisfying

(6)
a(y, φ) + c(y; y, φ) + b(φ, p) = 〈u, φ〉 ∀φ ∈ X,

b(y, q) = 0 ∀q ∈ Q,

where 〈·, ·〉 denotes the duality pairing between H1
0(Ω) and H−1(Ω). Following [16],

the system (6) can be written equivalently as:
Find y ∈ V that satisfies

(7) a(y, φ) + c(y; y, φ) = 〈u, φ〉 ∀φ ∈ V.

We recall here a standard result regarding the existence of solution of (6) and
uniqueness for small data, see e.g. [8, 16]. For H2 regularity see [4].
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Theorem 1. Let Ω ⊂ R2 be a bounded domain with Lipschitz continuous bound-
ary. Then for any ν > 0 and u ∈ H−1(Ω) there exists at least one solution (y, p) ∈
V ×Q of the stationary Navier-Stokes problem (6) that satisfies the estimate

‖∇y‖ ≤ ν−1‖u‖V ′ .(8)

Moreover, the solution is unique if the data satisfies the smallness condition

Mν−2‖u‖V ′ < 1, with M = sup
φ,ψ,χ∈X\{0}

|c(φ;ψ, χ)|
‖∇φ‖‖∇ψ‖‖∇χ‖

.(9)

If Ω is convex and polygonal, and u ∈ L2(Ω), then y ∈ H2(Ω), p ∈ H1(Ω) and

‖y‖2 + ‖p‖1 ≤ C(1 + ‖u‖3).(10)

Throughout this paper we will assume Ω to be convex, so that the H2-regularity of the
Navier-Stokes problem is ensured. We state here some well-known results concerning
the trilinear form defined in (5), that will be needed in the sequel [3, 8, 13].

Lemma 2. The trilinear form c(y;φ, ψ) defined in (5) has the following properties:

(11)

c(y;φ, ψ) = −c(y;ψ, φ) ∀y ∈ V,∀φ, ψ ∈ H1(Ω),

c(y;φ, φ) = 0 ∀y ∈ V, φ ∈ H1(Ω),

c(y;φ, ψ) = ((∇φ)Tψ, y) ∀y, φ, ψ ∈ H1(Ω),

|c(y;φ, ψ)| ≤ ‖y‖1‖φ‖1‖ψ‖1 ∀y, φ, ψ ∈ V,
|c(y;φ, ψ)| ≤ M‖∇y‖‖∇φ‖‖∇ψ‖ ∀y, φ, ψ ∈ X,
|c(y;φ, ψ)| ≤ C‖u‖1‖φ‖1‖ψ‖1 ∀y, φ, ψ ∈ H1(Ω),

|c(y;φ, ψ)| ≤ C‖y‖‖φ‖2‖ψ‖1 ∀y, ψ ∈ X,φ ∈ H2(Ω),

|c(y;φ, ψ)| ≤ C‖y‖1‖φ‖2‖ψ‖ ∀y, ψ ∈ X,φ ∈ H2(Ω),

with M given in (9) and C independent of y, φ, ψ.

Proof. While the others are standard, we prove here only the last estimate. Using
Hölder’s inequality and the embedding H1(Ω) ↪→ L4(Ω), we have

|c(y;φ, ψ)| = |((y · ∇)φ, ψ)| ≤ ‖y‖L4(Ω)‖∇φ‖L4(Ω)‖ψ‖L2(Ω) ≤ C‖y‖1‖φ‖2‖ψ‖.

When discretizing (6) using finite elements, in order to preserve the antisymmetry
in the last two arguments of the trilinear form c on the finite element spaces, it is
standard to introduce a modified trilinear form [12, 16]

c̃(y;φ, ψ) =
1

2
{c(y;φ, ψ)− c(y;ψ, φ)} ∀y, φ, ψ ∈ X,(12)

that has the following properties:

(13)

c(y;φ, ψ) = c̃(y;φ, ψ) ∀y ∈ V, φ, ψ ∈ X,
c̃(y;φ, ψ) = −c̃(y;ψ, φ) ∀y, φ, ψ ∈ X,
c̃(y;ψ,ψ) = 0 ∀y, φ ∈ X,
|c̃(y;φ, ψ)| ≤ M‖∇y‖‖∇φ‖‖∇ψ‖ ∀y, φ, ψ ∈ X,

for the same M =M(Ω) as in (9). Thus, another variational formulation of (6) is:
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Given u ∈ H−1(Ω), find (y, p) ∈ X ×Q satisfying

(14)
a(y, φ) + c̃(y; y, φ) + b(φ, p) = 〈u, φ〉 ∀φ ∈ X,

b(y, q) = 0 ∀q ∈ Q.

We define the set of admissible controls U = {u : L2(Ω) : ‖u‖ < ν2/(Mκ)}, with
M defined in (9) and κ the embedding constant of L2(Ω) into V ′. By Theorem 1,
the Navier-Stokes equations have a unique solution for each u ∈ U on the right hand
side of (6). We introduce the control-to-state operators Y : U → V , P : U → Q that
assign to each u ∈ U ⊂ L2(Ω) the corresponding Navier-Stokes velocity y = Y (u) and
pressure p = P (u), and rewrite problem (1) in reduced form as

min
u∈U

Ĵ(u) =
γy
2
‖Y (u)− yd‖2 +

γp
2
‖P (u)− pd‖2 +

β

2
‖u‖2.(15)

Throughout this paper we will assume that the target velocity field yd is from H1(Ω)
and the target pressure pd is from Q.

We note that for all pairs (y(u), u) with u ∈ U , we have

ν >M(y), with M(y) := sup
v∈X

|c(v; y, v)|
‖∇v‖2

,(16)

which ensures the ellipticity of the linearized equations about y.

Lemma 3. Let u ∈ U and y = Y (u) ∈ V . Then for every g ∈ V ′ there exists a
unique weak solution (w, r) ∈ X ×Q of the linearized Navier-Stokes system

(17)

−ν∆w + (w · ∇)y + (y · ∇)w +∇r = g in Ω,

divw = 0 in Ω,

w = 0 on ∂Ω,

and

‖∇w‖ ≤ 2

ν
‖g‖V ′ .(18)

If Ω is a convex and polygonal, and g ∈ L2(Ω), then w ∈ H2(Ω), r ∈ H1(Ω), and

‖w‖2 ≤ C(y)‖g‖.(19)

Proof. Existence and uniqueness follows from the Lax-Milgram lemma, using (16)
to prove the ellipticity of the associated bilinear form. For the proof of (18) see [19],
Corollary 3.7. To prove (19), we note that for g ∈ L2(Ω), we have (w · ∇)y, (y · ∇)w
∈ L2(Ω) (see estimates below); thus by rewriting (17) as

−ν∆w +∇r = g − (w · ∇)y − (y · ∇)w,

we can use standard regularity results for the Stokes equations to obtain

‖∇∇w‖ ≤ C1(Ω)(‖g‖+ ‖(w · ∇)y‖+ ‖(y · ∇)w‖).(20)

We have

‖(w · ∇)y‖2 =

∫
Ω

|(w · ∇)y|2dx ≤
∫

Ω

|w|2|∇y|2dx ≤ ‖w‖2L4(Ω)‖∇y‖
2
L4(Ω),
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which implies

‖(w · ∇)y‖ ≤ C‖w‖1‖∇y‖1 ≤ C1(y)‖g‖,(21)

since H1(Ω) ↪→ L4(Ω). Similarly, it can be shown that

‖(y · ∇)w‖ ≤ C‖y‖1‖∇w‖L4(Ω) ≤ C2(y)‖∇w‖1/2‖∇∇w‖1/2,

where we used Ladyzhenskaya’s inequality,

‖∇w‖L4(Ω) ≤ C‖∇w‖1/2‖∇∇w‖1/2.

Finally, using Young’s inequality we obtain

‖(y · ∇)w‖ ≤ C2(y)
(1

2
C2(y)C1(Ω)‖∇w‖+

1

2C2(y)C1(Ω)
‖∇∇w‖

)
=

1

2
C2

2 (y)C1(Ω)‖∇w‖+
1

2C1(Ω)
‖∇∇w‖.

Substituting in (20) gives

‖∇∇w‖ ≤ C1(Ω)
(
‖g‖+ C1(y)‖g‖+

1

2
C2

2 (y)C1(Ω)‖∇w‖+
1

2C1(Ω)
‖∇∇w‖

)
,

from which (19) follows immediately.

We recall here the following results from [5] regarding the differentiability of the
solution operators Y , P .

Theorem 4. Let u ∈ U and y = Y (u). The control-to-state operators Y , P are
twice Fréchet differentiable at u and their derivatives w = Y ′(u)g, r = P ′(u)g and
λ = Y ′′(u)[g1, g2], µ = P ′′(u)[g1, g2] are given by the unique weak solutions of the
systems:

(22)

−ν∆w + (w · ∇)y + (y · ∇)w +∇r = g in Ω,

divw = 0 in Ω,

w = 0 on ∂Ω,

and

(23)

−ν∆λ+ (y · ∇)λ+ (λ · ∇)y +∇µ = −(Y ′(u)g1 · ∇)Y ′(u)g2

− (Y ′(u)g2 · ∇)Y ′(u)g1 in Ω,

div λ = 0 in Ω,

λ = 0 on ∂Ω,

respectively.

Lemma 5. Let u ∈ U , y = Y (u), and Y ′(u)∗ be the adjoint of Y ′(u). Then
z = Y ′(u)∗g is the first component of the unique weak solution (z, ρ) of the system

(24)

−ν∆z − (y · ∇)z + (∇y)T z +∇ρ = g in Ω,

div z = 0 in Ω,

z = 0 on ∂Ω.

If Ω ⊂ R2 is a convex polygonal domain then z ∈ H2(Ω), ρ ∈ H1(Ω) and

‖z‖2 ≤ C(y)‖g‖.(25)

Proof. See [19, Theorem 3.10] and Lemma 3.
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2.2. Optimality conditions. We derive next the first-order necessary optimal-
ity conditions associated with the optimal control problem (15). For g ∈ L2(Ω),

Ĵ ′(u)g = γy(Y (u)− yd, Y ′(u)g) + γp(P (u)− pd, P ′(u)g) + β(u, g),

therefore

∇Ĵ(u) = γyY
′(u)∗(Y (u)− yd) + γpP

′(u)∗(P (u)− pd) + βu.(26)

Thus, the optimal control u is the solution of the non-linear equation

γyY
′(u)∗(Y (u)− yd) + γpP

′(u)∗(P (u)− pd) + βu = 0.(27)

The reduced Hessian is computed using the second variation of Ĵ : if g1, g2 ∈ L2(Ω)

(28)
Ĵ ′′(u)[g1, g2] = γy(Y ′(u)g2, Y

′(u)g1) + γy(Y (u)− yd, Y ′′(u)[g2, g1])

+ γp(P
′(u)g2, P

′(u)g1) + γp(P (u)− pd, P ′′(u)[g2, g1]) + β(g1, g2).

We use different approaches in proving the main multigrid results, depending on
whether the pressure term is present in the cost functional (1) or not, therefore we
will derive the reduced Hessian for the two cases separately.

2.2.1. Velocity control only. We consider first the case of velocity control
only, i.e., γy = 1, γp = 0. In this case the second variation of Ĵ becomes

(29) Ĵ ′′(u)[g1, g2] = (Y ′(u)g2, Y
′(u)g1) + (Y (u)− yd, Y ′′(u)[g2, g1]) + β(g1, g2).

We denote by L and M the solution operators of (22), such that Lg = Y ′(u)g,
Mg = P ′(u)g. Although L, M depend on y = y(u) in (22), we use the notation L,
M instead of L(u), M(u), for simplicity, when there is no risk of misunderstanding.
Cf. Theorem 4, λ = Y ′′(u)[g1, g2] is the solution of

(30)

a(λ, φ) + c(y;λ, φ) + c(λ; y, φ) + b(φ, µ)

= −c(Lg1;Lg2;φ)− c(Lg2;Lg1, φ) ∀φ ∈ X,
b(λ, q) = 0 ∀q ∈ Q.

Similarly, we let z = L∗(Y (u)− yd). Note that is the solution of

(31)
a(z, φ) + c(y;φ, z) + c(φ; y, z) + b(φ, ρ) = (y − yd, φ) ∀φ ∈ X,

b(z, q) = 0 ∀q ∈ Q.

By taking φ = z in (30) and φ = λ in (31) we obtain

−c(Lg1;Lg2; z)− c(Lg2;Lg1, z) = (Y (u)− yd, λ).(32)

Using this in (29) we get

Ĵ ′′(u)[g1, g2] = (Lg1, Lg2)− c(Lg1;Lg2, z)− c(Lg2;Lg1, z) + β(g1, g2)

= (Lg1, Lg2) + ((Lg1 · ∇)z, Lg2)− ((∇Lg1)T z, Lg2) + β(g1, g2).

The Hessian operator associated with Ĵ , defined by (Hβ(u)v, g) = Ĵ ′′(u)[v, g], is

(33) Hβ(u)v = βv + L∗Lv + L∗((Lv · ∇)− (∇Lv)T )L∗(y − yd).

To simplify the presentation we introduce the notation

A(u)v = L∗Lv, C(u)v = L∗((Lv · ∇)− (∇Lv)T )L∗(Y (u)− yd),

that we will use throughout the paper. Note that

(C(u)v, v) = −2c(Lv;Lv,L∗(Y (u)− yd)).(34)
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2.2.2. Mixed/pressure control. Here we consider the general case of mixed
velocity/pressure control or pressure control only, i.e, γp 6= 0.

Let (z̃, ρ̃) be the solution of the problem

(35)
a(z̃, φ) + c(y;φ, z̃) + c(φ; y, z̃) + b(φ, ρ̃) = γy(y − yd, φ) ∀φ ∈ X,

b(z̃, q) = γp(p− pd, q) ∀q ∈ Q,

which is the weak form of the problem

(36)

−ν∆z̃ − (y · ∇)z̃ + (∇y)T z̃ +∇ρ̃ = γy(y − yd) in Ω,

div z̃ = γp(pd − p) in Ω,

z̃ = 0 on ∂Ω.

By taking φ = λ in (35), φ = z̃ in (30), and using b(λ, ρ̃) = 0, b(z̃, µ) = γp(p− pd, µ)
we obtain

γy(y − yd, λ) + γp(p− pd, µ) = −c(Lg1;Lg2, z̃)− c(Lg2;Lg1, z̃).

Thus, the second variation of the reduced cost functional (28) becomes

(37)
Ĵ ′′(u)[g1, g2] = γy(Y ′(u)g2, Y

′(u)g1) + γp(P
′(u)g2, P

′(u)g1) + β(g1, g2)

− c(Lg1;Lg2, z̃)− c(Lg2;Lg1, z̃) + β(g1, g2)

and the reduced Hessian is given by

(38) Hβ(u)v = βv + γyL
∗Lv + γpM

∗Mv + L∗((Lv · ∇)z̃ − (∇Lv)T z̃).

We introduce the notation

C̃(u)v = L∗((Lv · ∇)z̃ − (∇Lv)T z̃)(39)

and note that

(40) (C̃(u)v, v) = −2c(Lv;Lv, z̃).

Note that if we take γy = 1, γp = 0 in (35), then (35) is the adjoint linearized
Navier-Stokes system and in this case (38) reduces to (29).

3. Discretization and approximation results. The strategy we adopt is to
first discretize the Navier-Stokes system, then optimize the cost functional J in (1)
subject to the resulting discrete constraints.

3.1. Finite element approximation. In this section we collect several approx-
imation results pertaining to the finite element approximation of the Navier-Stokes
equations and the linearized/adjoint linearized Navier-Stokes equations.

We consider a shape regular quasi-uniform quadrilateral mesh Th of Ω̄, and we
assume that the mesh Th results from a coarser regular mesh T2h from one uniform
refinement. We use the Taylor-Hood Q2 −Q1 finite elements to discretize the state
equation. The velocity field y is approximated in the space X0

h = Xh ∩H1
0(Ω), where

Xh = {vh ∈ C(Ω̄)2 : vh|T ∈ Q2(T )2 for T ∈ Th}

and the pressure p is approximated in the space

Qh = {qh ∈ C(Ω) ∩ L2
0(Ω) : qh|T ∈ Q1(T ) for T ∈ Th},
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where Qk(T ) is the space of polynomials of degree less than or equal to k in each vari-
able [2]. The control variable u is approximated by continuous piecewise biquadratic
polynomial vector functions from Xh. We also introduce the space

Vh = {vh ∈ X0
h : (div vh, qh) = 0 ∀qh ∈ Qh}(41)

and note that Vh * V .

Remark 1. The choice to work with quadrilateral Q2−Q1 Taylor-Hood elements
was made for convenience and clarity of exposition; our analysis can be extended to
triangular P2 −P1 elements as well as other stable mixed finite elements.

For a given control uh ∈ Xh∩U , the solution (yh, ph) of the discrete state equation
is given by

(42)
a(yh, φh) + c̃(yh; yh, φh) + b(φh, ph) = (uh, φh) ∀φh ∈ X0

h,

b(yh, qh) = 0 ∀qh ∈ Qh.

Let Yh and Ph be the solution mappings of the discretized state equation, defined anal-
ogously to their continuous counterparts. The discretized, reduced optimal control
problem reads

min
uh

Ĵh(uh) =
γy
2
‖Yh(uh)− yhd‖2 +

γp
2
‖Ph(uh)− phd‖2 +

β

2
‖uh‖2,(43)

where yhd , p
h
d are the L2-projections of the data onto Xh, respectively Qh.

We denote by Lh, Mh the solution operators of the discretized linearized Navier-
Stokes equations (about yh), i.e., Lhg = wh, Mhg = rh, where

(44)

a(wh, φh) + c̃(yh;wh, φh) + c̃(wh; yh, φh) + b(φh, rh)

= (g, φh) ∀φh ∈ X0
h,

b(wh, qh) = 0 ∀qh ∈ Qh,

We remark that, as in the continuous case, zh = L∗hg satisfies

(45)

a(zh, φh) + c̃(yh;φh, zh) + c̃(φh; yh, zh) + b(φh, ρh)

= (g, φh) ∀φh ∈ X0
h,

b(zh, qh) = 0 ∀qh ∈ Qh.

3.2. A priori estimates.

Lemma 6. Let πh be the L2-orthogonal projection onto Xh. The following ap-
proximation properties hold:

‖(I − πh)v‖H̃−k(Ω) ≤ Ch
k‖v‖ ∀v ∈ L2(Ω), k = 1, 2,(46)

‖(I − πh)u‖H̃−1(Ω) ≤ Ch
2‖u‖1 ∀u ∈ H1(Ω),(47)

with C independent of h.

Proof. The estimate (46) is a standard result (e.g., see [6]). For (47), let Ih :
H1(Ω)→ Xh be the interpolant introduced by Scott and Zhang in [18]. We have

‖u− πhu‖H̃−1(Ω) = sup
v∈H1

0(Ω)\{0}

(u− πhu, v)

‖v‖1
= sup
v∈H1

0(Ω)\{0}

(u− πhu, v − Ihv)

‖v‖1

≤ sup
v∈H1

0(Ω)\{0}

‖u− πhu‖‖v − Ihv‖
‖v‖1

≤ Ch‖u− πhu‖,
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where we have used ‖v − Ihv‖ ≤ Ch‖v‖1 (see [18, (4.6)]). Moreover,

‖u− πhu‖ ≤ ‖u− Ihu‖ ≤ ch‖u‖1,

which combined with the previous estimate leads to (47).

Theorem 7. Let u ∈ U and y = Y (u) ∈ V ∩H2(Ω) (so that ν >M(y)), and L,
M be the velocity/pressure operators of the linearized Navier-Stokes equations about
y, and Lh, Mh their discrete counterparts. There exists constants C, C1 = C1(y),
C2 = C2(y), and C3 = C3(y) such that the following hold:

(a) smoothing:

‖Lv‖ ≤ C1‖v‖H̃−2(Ω) ∀v ∈ L2(Ω),(48)

‖Mv‖ ≤ C2‖v‖H̃−1(Ω) ∀v ∈ L2(Ω).(49)

(b) approximation:

‖Y (u)− Yh(u)‖ ≤ Ch2‖u‖ ∀u ∈ U,(50)

‖Lv − Lhv‖1 ≤ C1h‖v‖ ∀v ∈ L2(Ω),(51)

‖Lv − Lhv‖ ≤ C1h
2‖v‖ ∀v ∈ L2(Ω),(52)

‖Mv −Mhv‖ ≤ C2h‖v‖ ∀v ∈ L2(Ω),(53)

‖L∗v − L∗hv‖1 ≤ C3h‖v‖ ∀v ∈ L2(Ω),(54)

‖L∗v − L∗hv‖ ≤ C3h
2‖v‖ ∀v ∈ L2(Ω),(55)

(c) stability:

‖Yh(u)‖ ≤ C‖u‖ ∀u ∈ U,(56)

‖Lhv‖ ≤ C1‖v‖ ∀v ∈ L2(Ω),(57)

‖Mhv‖ ≤ C2‖v‖ ∀v ∈ L2(Ω),(58)

‖L∗hv‖ ≤ C3‖v‖ ∀v ∈ L2(Ω).(59)

Proof. The statement at (a) is similar to the case of the Stokes problem [7].
For (50) in (b) see [9], page 32, and for (51)–(55) see [11]. The stability in (c) follows
from (8), (a), and (b).

Remark 2. Theorem 7 and Lemma 6 imply that there is a constant C > 0 inde-
pendent of h such that

‖L(I − πh)v‖ ≤ Ch2‖v‖ ∀v ∈ L2(Ω)(60)

and

‖M(I − πh)v‖ ≤ Ch‖v‖ ∀v ∈ L2(Ω).(61)

For a polygonal domain Ω ⊂ R2, the weighted Sobolev space W 1,0
0 (Ω) is defined

to be the class of functions for which the following norm is finite:

‖w‖2
W 1,0

0 (Ω)
=

∫
Ω

|∇w|2dx+

∫
Ω

δ(x)−2|w|2dx,

where δ(x) = min{dist(x, P ) : P a vertex of Ω}.
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Theorem 8. Let Ω ⊂ R2 be a convex polygonal domain, u ∈ U , y = Y (u) ∈ V
and f ∈ L2(Ω), g ∈ W 1,0

0 (Ω),
∫

Ω
gdx = 0. Furthermore, let z̃ = L̃(f, g), ρ̃ = M̃(f, g)

be the weak solution of

(62)

−ν∆z̃ − (y · ∇)z̃ + (∇y)T z̃ +∇ρ̃ = f in Ω,

div z̃ = g in Ω,

z̃ = 0 on ∂Ω.

Then z̃ ∈ H2(Ω), ρ̃ ∈ H1(Ω) and there exists a constant C = C(Ω, y) > 0 such that

‖z̃‖H2(Ω) + ‖∇ρ̃‖ ≤ C(‖f‖L2(Ω) + ‖g‖W 1,0
0 (Ω)).(63)

Moreover, if z̃h is the velocity of the corresponding discrete problem, then

‖z̃ − z̃h‖1 ≤ Ch(‖f‖L2(Ω) + ‖g‖W 1,0
0 (Ω)), ‖z̃h‖1 ≤ C(‖f‖L2(Ω) + ‖g‖W 1,0

0 (Ω)).(64)

Proof. The existence of a unique solution (z̃, ρ̃) ∈ X×Q of (62) and the estimate

‖z̃‖H1(Ω) + ‖ρ̃‖ ≤ C(‖f‖−1 + ‖g‖),(65)

follow from standard results for saddle point problems [1]. In [14], it is shown that
under the hypotheses of the theorem, the solution of the generalized Stokes system

−ν∆z +∇ρ = f in Ω,

div z = g in Ω,

z = 0 on ∂Ω,

satisfies z ∈ H2(Ω), ρ ∈ H1(Ω) and

‖z‖H2(Ω) + ‖∇ρ‖ ≤ C(‖f‖+ ‖g‖W 0
0,1

).

Using this result together with (65), it is straightforward to show (63) using the same
approach as in Lemma 3. For finite element spaces Xh, Qh that satisfy the inf-sup
condition, we have

‖z̃ − z̃h‖H1(Ω) + ‖ρ̃− ρh‖ ≤ C( inf
φh∈Xh

‖z̃ − φh‖H1(Ω) + inf
qh∈Qh

‖ρ̃− qh‖),

which combined with interpolation estimates yields (64).

4. Two-grid preconditioner. We begin with the description of the discrete
Hessian in Section 4.1, followed by the construction and analysis of the two-grid
preconditioner in Section 4.2. The velocity control and mixed/pressure control are
treated separately, as the form of the Hessian differs significantly in the two cases.

4.1. The discrete Hessian. As in the continuous case, the discrete Hessian
operator at u ∈ U ∩Xh is defined by the equality

(66) (Hh
β (u)v, g) = Ĵ ′′h (u)[v, g], ∀v, g ∈ Xh.
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4.1.1. Velocity control. As in the continuous case, when γp = 0 we have

∇Ĵh(u) = Y ′h(u)∗(Yh(u)− yhd ) + βu, u ∈ U ∩Xh,(67)

with the second variation of the discrete cost functional being given by

Ĵ ′′h (u)[g1, g2] = (Y ′h(u)g2, Y
′
h(u)g1) + (Yh(u)− yhd , Y ′′h (u)[g2, g1]) + β(g1, g2).(68)

The second variation λh = Y ′′h (u)[g1, g2] ∈ X0
h is the solution of

(69)

a(λh, φh) + c̃(yh;λh, φh) + c̃(λh; yh, φh) + b(φh, µh)

= −c̃(Y ′h(u)g1;Y ′h(u)g2, φh)− c̃(Y ′h(u)g2;Y ′h(u)g1, φh) ∀φh ∈ X0
h,

b(λh, qh) = 0 ∀qh ∈ Qh.

The discrete adjoint zh = Y ′h(u)∗(yh − yhd ) = L∗h(Yh(u)− yhd ) is the solution of

(70)

a(zh, φh) + c̃(yh;φh, zh) + c̃(φh; yh, zh) + b(φh, ρh)

= (yh − yhd , φh) ∀φh ∈ X0
h,

b(zh, qh) = 0 ∀qh ∈ Qh.

Using the same approach as in the continuous case, we obtain

−c̃(Lhg1;Lhg2, zh)− c̃(Lhg2;Lhg1, zh) = (yh − yhd , λh)

and

Ĵ ′′h (u)[g1, g2] = (Lhg1, Lhg2)− c̃(Lhg1;Lhg2, zh)− c̃(Lhg2;Lhg1, zh) + β(g1, g2).

Hence, the discrete Hessian is given by

Hh
β (u)v = βv + L∗hLhv + Ch(u)v = βv +Ah(u)v + Ch(u)v,(71)

where

(Ch(u)v, v) = −2c̃(Lhv;Lhv, zh).(72)

4.1.2. Mixed/pressure control. Similarly with the derivation in Section 2.2.2,
in the case of mixed/pressure control, the discrete Hessian takes the form

Hh
β (u)v = βv + γyL

∗
hLh + γpM

∗
hMh + C̃h(u)v,(73)

where

(C̃h(u)v, v) = −2c̃(Lhv;Lhv, z̃h)(74)

and z̃h is the solution of the discrete problem (35).

4.2. Two-grid preconditioner for discrete Hessian. In this section, we con-
struct and analyze a two-grid preconditioner for the discrete Hessian Hh

β (u) defined
in (71) and (73). The construction is a natural extension of the technique used for the
optimal control of the Stokes equations in [7], and is the same for both velocity- and
mixed/pressure control. Let Xh = X2h ⊕W2h be the L2-orthogonal decomposition,
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where we consider on Xh the Hilbert-space structure inhertied from L2(Ω). Let π2h

be the L2-projector onto X2h. For u ∈ U ∩Xh we define the two-grid preconditioner

(75) Thβ (u) = H2h
β (π2hu)π2h + β(I − π2h).

It is worth noting that

(76) (Thβ (u))−1 = (H2h
β (π2hu))−1π2h + β−1(I − π2h).

We should remark that the difference between the preconditioner in (75) and the one
in [7] is given by the dependence of the Hessian on the control u, which forces us to
choose a coarse-level control uc ∈ X2h at which the coarse Hessian H2h

β (uc) in (75) is
computed. The natural choice is uc = π2hu.

4.2.1. Analysis for the case of velocity control. Cf. (71) and (75),

(77) Thβ (u) = (βI +A2h(π2hu) + C2h(π2hu))π2h + β(I − π2h).

Lemma 9. Let u ∈ U ∩Xh and y = Y (u), p = P (u), p̄ = P (π2hu), ȳ = Y (π2hu).
Also, let v ∈ Xh and w = L(u)v, q = M(u)v, w̄ = L(π2hu)v, q̄ = M(π2hu)v. Then
there exists a constant K = K(u, ν,Ω) > 0 such that

|y − ȳ|1 ≤ K‖u− π2hu‖H̃−1(Ω),(78)

‖p− p̄‖ ≤ Kh2‖u‖1,(79)

and a constant C independent of h such that

‖w − w̄‖1 ≤ Ch2‖u‖1‖v‖,(80)

‖q − q̄‖ ≤ Ch2‖u‖1‖v‖.(81)

Proof. Since y and ȳ are the solutions of the Navier-Stokes equations with forcing
u, π2hu, respectively, we have

a(y, φ) + c(y; y, φ) = (u, φ) ∀φ ∈ V,
a(ȳ, φ) + c(ȳ; ȳ, φ) = (π2hu, φ) ∀φ ∈ V.

By taking φ = y − ȳ and subtracting the equations we obtain

a(y − ȳ, y − ȳ) + c(y − ȳ; y, y − ȳ) + c(ȳ; y − ȳ, y − ȳ) = (u− π2hu, y − ȳ).

Given that c(ȳ; y − ȳ, y − ȳ) = 0, we obtain

ν|y − ȳ|21 = (u− π2hu, y − ȳ)− c(y − ȳ; y, y − ȳ)

≤ ‖u− π2hu‖H̃−1‖y − ȳ‖1 +M(y)|y − ȳ|21.

Since M(y)) < ν and y, ȳ ∈ X = H1
0(Ω), we get

(ν −M(y))|y − ȳ|21 ≤ ‖u− π2hu‖H̃−1‖y − ȳ‖1 ≤ C‖u− π2hu‖H̃−1 |y − ȳ|1,

which implies (78). From the weak formulations of the Navier-Stokes equations in X,
with forcing u, π2hu respectively, we have

b(φ, p− p̄) = (u− π2hu, φ)− a(y − ȳ, φ) + c(ȳ; ȳ, φ)− c(y; y, φ).
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Thus for φ ∈ X

|b(φ, p− p̄)| ≤ ‖u− π2hu‖−1‖φ‖1 + ν‖y − ȳ‖1‖φ‖1 + |c(ȳ; y − ȳ, φ) + c(ȳ − y; y, φ)|
≤ ‖u− π2hu‖−1‖φ‖1 + ν‖y − ȳ‖1‖φ‖1 + ‖y − ȳ‖1‖φ‖1(‖ȳ‖1 + ‖y‖1).

Then, from the inf-sup condition

β∗‖q − q̄‖ ≤ sup
06=φ∈X

|b(q − q̄, φ)|
‖∇φ‖

,(82)

combined with (78), (47), we obtain

‖p− p̄‖ ≤ C(ν, u, β∗)h2‖u‖1.

Recall that (w, q) (resp. (w̄, q̄)) satisfy the linearized Navier-Stokes equations (22)
about y (resp. ȳ) with with forcing v, whose weak form in V read:

a(w, φ) + c(w; y, φ) + c(y;w, φ) = (v, φ) ∀φ ∈ V,(83)

a(w̄, φ) + c(w̄; ȳ, φ) + c(ȳ; w̄, φ) = (v, φ) ∀φ ∈ V.(84)

By taking φ = w − w̄ in the equations above and subtracting we obtain

(85)
−a(w − w̄, w − w̄) =c(w; y;w − w̄) + c(y;w,w − w̄)

− c(w̄; ȳ, w − w̄)− c(ȳ; w̄, w − w̄).

We have

c(w; y, w − w̄)− c(w̄; ȳ, w − w̄) = c(w; y − ȳ, w − w̄) + c(w − w̄; ȳ, w − w̄)

c(y;w,w − w̄)− c(ȳ; w̄;w − w̄) = c(y − ȳ;w,w − w̄),

where we used c(ȳ;w− w̄, w− w̄) = 0 (see Lemma 2). Using these in (85), we obtain

ν|w − w̄|21 = |c(y − ȳ;w;w − w̄) + c(w; y − ȳ, w − w̄) + c(w − w̄; ȳ;w − w̄)|.

From the continuity of the trilinear form c and (16) we get

ν|w − w̄|21 ≤M (|y − ȳ|1|w|1|w − w̄|1 + |w|1|y − ȳ|1|w − w̄|1) +M(ȳ)|w − w̄|21

which leads to

(ν −M(ȳ))|w − w̄|21 ≤ 2M|w|1|y − ȳ|1|w − w̄|1.

Since ‖π2hu‖ ≤ ‖u‖, π2hu ∈ U , and so ν −M(ȳ) > 0; hence we obtain

|w − w̄|1 ≤ C|y − ȳ|1|w|1
(18),(47),(78)

≤ Ch2‖u‖1‖v‖.(86)

with C depending on ν, y, κ, M, but not on h. To prove (81), we consider the weak
formulations of (83) and (84) in X

a(w, φ) + c(w; y, φ) + c(y;w, φ) + b(q, φ) = (v, φ) ∀φ ∈ X,
a(w̄, φ) + c(w̄; ȳ, φ) + c(ȳ; w̄, φ) + b(q̄, φ) = (v, φ) ∀φ ∈ X,
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from which we obtain

b(q − q̄, φ) = −a(w − w̄, φ)− c(w; y, φ)− c(y;w, φ) + c(w̄; ȳ, φ) + c(ȳ; w̄, φ)

= −a(w − w̄, φ)− c(w; y − ȳ, φ)− c(w − w̄; ȳ, φ)− c(y;w − w̄, φ)

− c(y − ȳ; w̄, φ), ∀φ ∈ X.

Thus, ∀φ ∈ X

|b(q − q̄, φ)| ≤ C|φ|1 (|w − w̄|1 + |w − w̄|1(|y|1 + |ȳ|1) + |y − ȳ|1(|w|1 + |w̄|1)) .

Using the inf-sup condition (82) we obtain

‖q − q̄‖ ≤ C(|w − w̄|1 + |y − ȳ|1(|w|1 + |w̄|1) + |w − w̄|1(|y|1 + |ȳ|1))

(86)

≤ C|y − ȳ|1(|w̄|1 + |w|1(1 + |y|1 + |ȳ|1))

≤ C|y − ȳ|1‖v‖
(47),(78)

≤ Ch2‖u‖1‖v‖.

Lemma 10. Let u ∈ U ∩Xh and y = Y (u), ȳ = Y (π2hu). Also, let v ∈ Xh and
z = L∗(y−yd), z̄ = L∗(ȳ−yd). Then there exists a constant C = C(u, yd) independent
of h such that

‖z − z̄‖ ≤ Ch2‖u‖1.(87)

Proof. Recall that z and z̄ are solutions of

a(z, φ) + c(y;φ, z) + c(φ; y, z) = (y − yd, φ) ∀φ ∈ V
a(z̄, φ) + c(ȳ;φ, z̄) + c(φ; ȳ, z̄) = (ȳ − yd, φ) ∀φ ∈ V.

By taking φ = z − z̄ in the previous equations and subtracting them we obtain

ν|z − z̄|21
≤ |(y − ȳ, z − z̄)|+ |c(y − ȳ; z − z̄, z̄)|+ |c(z − z̄; y − ȳ, z)|+ |c(z − z̄; ȳ, z − z̄)|
≤ C1‖y − ȳ‖H−1 |z − z̄|1 + ‖y − ȳ‖1‖z − z̄‖1(‖z̄‖1 + ‖z‖1) +M(ȳ)|z − z̄|21,

which gives

(ν −M(ȳ))|z − z̄|21 ≤ |z − z̄|1(C1‖y − ȳ‖+ ‖y − ȳ‖1(‖z‖1 + ‖z̄‖1)).

Hence,

|z − z̄|1 ≤ ‖y − ȳ‖1(C1 + C2‖y − yd‖+ C3‖ȳ − yd‖)
(78),(47)

≤ C(u, yd)h
2‖u‖1.

from which (87) follows immediately.

Lemma 11. Let u ∈ U ∩Xh, y = Y (u), yh = Yh(u). Also, let z = L∗(y− yd) and
zh = L∗h(yh − yhd ). Then there exists C = C(u, yd) independent of h so that

‖yh − yhd‖ ≤ C(‖u‖+ ‖yd‖1),(88)

‖z − zh‖k ≤ Ch2−k‖u‖, k = 0, 1.(89)
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Proof. We have

‖yh − yhd‖ ≤ ‖yh‖+ ‖yd‖+ ‖yd − yhd‖
(56)

≤ C‖u‖+ ‖yd‖+ ‖yd − yhd‖
≤ C‖u‖+ ‖yd‖+ ‖yd − Ihyd‖ ≤ C(‖u‖+ ‖yd‖+ h‖yd‖1).

For h < 1 this leads to (88). To prove (89), recall that z and zh satisfy (31) and (70),
respectively. Let (z̄h, ρ̄h) be the solution of

(90)

a(z̄h, φh) + c̃(yh;φh, z̄h) + c̃(φh; yh, z̄h) + b(φh, ρ̄h)

= (y − yd, φh) ∀φh ∈ X0
h,

b(z̄h, qh) = 0 ∀qh ∈ Qh.

From (54)-(55), we have

‖z − z̄h‖k ≤ Ch2−k‖y − yd‖, k = 0, 1.(91)

By taking φh = zh − z̄h in (70) and (90) and subtracting the equations we obtain

ν|zh − z̄h|21 + c̃(yh; zh − z̄h, zh − z̄h) + c̃(zh − z̄h; yh, zh − z̄h) + b(zh − z̄h, ρh − ρ̄h)

= (y − yh, zh − z̄h)− (yd − yhd , zh − z̄h),

which, by using (12) and (yd − yhd , zh − z̄h) = 0, simplifies to

ν|zh − z̄h|21 + c̃(zh − z̄h; yh, zh − z̄h) = (y − yh, zh − z̄h).

Thus,

ν|zh − z̄h|21 ≤ ‖y − yh‖‖zh − z̄h‖+M(yh)|zh − z̄h|21.

Since ν −M(yh) > 0, we obtain

‖zh − z̄h‖1 ≤ C‖y − yh‖
(50)

≤ Ch2‖u‖,

which combined with (91) proves the lemma.

Theorem 12. Given u ∈ U ∩ Xh, there exists a constant C = C(Ω, u, yd) such
that

‖(Hh
β (u)− Thβ (u))v‖ ≤ Ch2‖v‖ ∀v ∈ Xh.(92)

Proof. Cf. (71) and (77),

Thβ (u)−Hh
β (u) = A2h(π2hu)π2h −Ah(u) + C2h(π2hu)π2h − Ch(u).

We first estimate

(93)
A2h(π2hu)π2h −Ah(u) = [A2h(π2hu)−A(π2hu)]π2h +A(π2hu)(π2h − I)

+A(π2hu)−A(u) +A(u)−Ah(u).

For any v ∈ Xh we have

|(A(u)−Ah(u))v, v)| = |(L∗Lv − L∗hLhv, v)| = |‖Lv||2 − ‖Lhv‖2|
≤ ‖(L− Lh)v‖(‖Lv‖+ ‖Lhv‖) ≤ Ch2‖v‖2,
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which implies

‖(A(u)−Ah(u))v‖ ≤ Ch2‖v‖,

since A(u)−Ah(u) is symmetric on Xh. Similarly, it can be shown that

‖(A2h(π2hu)−A(π2hu))π2hv‖ ≤ Ch2‖v‖.

For the second term in (93) we have

‖A(π2hu)(π2h − I)v‖ = ‖L∗(π2hu)L(π2hu)(π2h − I)v‖
(60)

≤ Ch2‖v‖.

Finally, we have

|(A(π2hu)v −A(u)v, v)| = |(L∗(π2hu)L(π2hu)v − L∗(u)L(u)v, v)|
= |‖L(π2hu)v‖2 − ‖L(u)v‖2| ≤ ‖(L(π2hu)v − L(u)v‖(‖L(π2hu)v‖+ ‖L(u)v‖)
(80)

≤ Ch2‖u‖1‖v‖,

which implies
‖(A(π2hu)−A(u))v‖ ≤ Ch2‖v‖.

Combining this with the previous estimates we obtain

‖(A2h(π2hu)−Ah(u))v‖ ≤ Ch2‖v‖.(94)

Next, we estimate

(95)
C2h(π2hu)π2h − Ch(u) = (C2h(π2hu)− C(π2hu))π2h + C(π2hu)(π2h − I)

+ C(π2hu)− C(u) + C(u)− Ch(u).

We begin by estimating the term ‖C(u)v − Ch(u)v‖. Let y = Y (u), yh = Yh(u),
z = L∗(y − yd), zh = L∗h(yh − yhd ). Cf. (34) and (72),

(C(u)v, v) = −2c(Lv;Lv, z) and (Ch(u)v, v) = −2c̃(Lhv;Lhv, zh).

We have c(Lv;Lv, z) = c̃(Lv;Lv, z) since Lv ∈ V . Therefore,

|(C(u)v − Ch(u)v, v)| = |2c̃(Lv;Lv, z)− 2c̃(Lhv;Lhv, zh)|
≤ |c(Lv;Lv, z)− c(Lhv;Lhv, zh)|

+ |c(Lv; z, Lv)− c(Lhv; zh, Lhv)|.

The first term in the inequality above can be bounded by

|c(Lhv;Lhv, zh)− c(Lv;Lv, z)|
≤ |c((Lh − L)v;Lhv, zh)|+ |c(Lv;Lhv, zh − z)|+ |c(Lv; z, (Lh − L)v|,

where we used c(Lv; (Lh − L)v, z) = −c(Lv; z, (Lh − L)v), since Lv ∈ V .
We have

|c((Lh − L)v;Lhv, zh)|
≤ |c((Lh − L)v; (Lh − L)v, zh)|+ |c((Lh − L)v;Lv, zh)|
≤ ‖(Lh − L)v||1‖(Lh − L)v‖1‖zh‖1 + ‖(Lh − L)v‖‖Lv‖2‖zh‖1
(51),(52)

≤ Ch2‖v‖2‖zh‖1
(59)

≤ Ch2‖v‖2‖yh − yhd‖
(88)

≤ C(u, yd)h
2‖v‖2,
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and

|c(Lv;Lhv, zh − z)| ≤ |c(Lv; (Lh − L)v, zh − z)|+ |c(Lv;Lv, zh − z)|
≤ ‖Lv‖1‖(Lh − L)v‖1‖zh − z‖1 + C‖Lv‖1‖Lv‖2‖zh − z‖
(51),(19),(89)

≤ Ch2‖v‖2‖yh − yhd‖
(88)

≤ C(u, yd)h
2‖v‖2.

Combining these estimates with

|c(Lv; z, (Lh − L)v)| ≤ C‖Lv‖1‖z‖2‖(Lh − L)v‖
(25),(52)

≤ C(u, yd)h
2‖v‖2,

we obtain

|c(Lhv;Lhv, zh)− c(Lv;Lv, z)| ≤ C(u, yd)h
2‖v‖2.

Similarly,

|c(Lhv; zh, Lhv)− c(Lv; z, Lv)|
≤ |c((Lh − L)v; zh, Lhv)|+ |c(Lv; zh, (Lh − L)v)|+ |c(Lv;Lv, z − zh)|
≤ |c((Lh − L)v; zh − z, Lhv)|+ |c((Lh − L)v; z, Lhv)|

+ |c(Lv; zh − z, (Lh − L)v)|+ |c(Lv; z, (Lh − L)v)|+ |c(Lv;Lv, z − zh)|
≤ ‖(Lh − L)v‖1‖zh − z‖1‖Lhv‖1 + C‖(Lh − L)v‖‖z‖2‖Lhv‖1

+ ‖Lv‖1‖zh − z‖1‖(Lh − L)v‖1 + C‖Lv‖1‖z‖2‖(Lh − L)v‖

+ C‖Lv‖1‖Lv‖2‖z − zh‖
(25),(51),(52),(89)

≤ C(u, yd)h
2‖v‖2.

Using the same approach, it can be shown that

‖(C2h(π2hu)− C(π2hu)π2hv‖ ≤ Ch2‖v‖.

Let z̄ = L∗(Y (π2hu)− yd). The third term in (95) can be bounded as

|(C(π2hu)v − C(u)v, v)| = 2|c(Lv;Lv, z̄)− c(Lv;Lv, z)| = 2|c(Lv;Lv, z̄ − z)|

≤ C‖Lv‖1‖Lv‖2‖z̄ − z‖
(19)

≤ C‖v‖2‖z̄ − z‖
(87)

≤ C(u, yd)h
2‖u‖1‖v‖2.

Finally let w = (π2h − I)v. With L = L(π2hu), we have

|(C(π2hu)(π2h − I)v, v)|
= |((Lw · ∇)z̄ − (∇Lw)T z̄, Lv)| ≤ |((Lw · ∇)z̄), Lv)|+ |(∇Lw)T z̄, Lv)|

= |c(Lw; z̄, Lv)|+ |c(Lv;Lw, z̄)| (11)
= |c(Lw; z̄, Lv)|+ |c(Lv; z̄, Lw)|

(11)

≤ C‖Lw‖‖z̄‖2‖Lv‖1
(60)

≤ Ch2‖v‖‖z̄‖2‖v‖
(25)

≤ C(u, yd)h
2‖v‖2.

To assess the quality of the preconditioner we use the spectral distance introduced
in [6], defined for two symmetric positive definite operators T1, T2 ∈ L(Vh) as

dh(T1, T2) = sup
w∈Vh\{0}

∣∣∣∣∣ ln (T1w,w)

(T2w,w)

∣∣∣∣∣.(96)
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Corollary 1. Let u ∈ U ∩Xh. If Ch(u) is symmetric positive definite then

d(Hh
β (u), Thβ (u)) ≤ C

β
h2,(97)

for h < h0(β,Ω, L).

Proof.∣∣∣∣∣ (Thβ (u)v, v)

(Hh
β (u)v, v)

− 1

∣∣∣∣∣ ≤ C

β

h2‖v‖2

‖v‖2 + β−1(‖Lhv‖2 + (Ch(u)v, v))
≤ C

β
h2.

Assuming Cβ−1h2
0 = α < 1, and 0 < h ≤ h0. Hence Thβ (u) is positive definite and

sup
v∈Xh\{0}

∣∣∣∣∣ ln (Thβ (u)v, v)

(Hh
β (u)v, v)

∣∣∣∣∣ ≤ | ln(1− α)|
α

sup
v∈Xh\{0}

∣∣∣∣∣ (Thβ (u)v, v)

(Hh
β (u)v, v)

∣∣∣∣∣
≤ | ln(1− α)|

α

C

β
h2 ≤ C

β
h2,

where we also used that for α ∈ (0, 1), x ∈ [1− α, 1 + α] we have

ln(1 + α)

α
|1− x| ≤ | lnx| ≤ | ln(1− α)|

α
|1− x|.

4.2.2. Analysis for the case of mixed/pressure control. Recall from (73)
that in the case of mixed/pressure control, the discrete Hessian takes the form

Hh
β (u)v = βv + γyAhv + γpBhv + C̃h(u)v,

where Bh = M∗hMh and Ah = L∗hLh as in (71). Following the definition in (75), the
two-grid preconditioner takes the form

(98) Thβ (u) = (βI + γyA2h(π2hu) + γpB2h(π2hu) + C̃2h(π2hu))π2h + β(I − π2h).

Lemma 13. Let u ∈ U ∩Xh and y = Y (u), p = P (u), ȳ = Y (π2hu), p̄ = P (π2hu).
Also, let v ∈ Xh and z̃ = L̃(γy(y − yd), γp(pd − p)), ẑ = L̃(γy(ȳ − yd), γp(pd − p̄)),
with L̃ defined in Theorem 8. Then there exists a constant C = C(u, yd, pd, γy, γp)
independent of h such that

‖z̃ − ẑ‖1 ≤ Ch‖u‖1/21 .(99)

Proof. Recall that (z̃, ρ̃) is the solution of (35), and (ẑ, ρ̂) satisfies

(100)
a(ẑ, φ) + c(ȳ;φ, ẑ) + c(φ; ȳ, ẑ) + b(φ, ρ̂) = γy(ȳ − yd, φ) ∀φ ∈ X,

b(ẑ, q) = γp(p̄− pd, q) ∀q ∈ Q,

By subtracting (100) from (35) we obtain

a(z̃ − ẑ, φ) + c(y;φ, z̃ − ẑ) + c(φ; y, z̃ − ẑ) + b(φ, ρ̃− ρ̄) =

γy(y − ȳ) + c(ȳ − y;φ, ẑ) + c(φ; ȳ − y, ẑ)
b(z̃ − z̄, q) = γp(p̄− p), ∀φ ∈ X, q ∈ Q,
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which represents the weak form of

−ν∆(z̃ − ẑ)− (y · ∇)(z̃ − ẑ) + (∇y)T (z̃ − ẑ) +∇(ρ̃− ρ̂) = γy(y − ȳ) + ((y − ȳ) · ∇)ẑ

− (∇(y − ȳ))T ẑ in Ω,

div (ρ̃− ρ̂) = γp(p̄− p) in Ω

z̃ − ẑ = 0 on ∂Ω.

Using (65), we get

‖z̃ − ẑ‖1 ≤ C(γy‖y − ȳ‖+ γp‖p− p̄‖+ ‖((y − ȳ) · ∇)ẑ‖+ ‖(∇(y − ȳ))T ẑ‖).(101)

From (21), we have

‖((y − ȳ) · ∇)ẑ‖ ≤ C‖y − ȳ‖1‖∇ẑ‖
(78),(47),(65)

≤ Ch2(γy‖ȳ − yd‖+ γp‖p̄− pd‖).

Of the four terms in the right hand side of (101), only the last is of order one in h:

‖(∇(y − ȳ))T ẑ‖ ≤ ‖∇(y − ȳ)‖L4(Ω)‖ẑ‖L4(Ω) ≤ C‖∇(y − ȳ)‖1/2‖∇∇(y − ȳ)‖1/2‖ẑ‖1
(10),(78),(47),(65)

≤ C(u)h‖u‖1/21 (‖ȳ − yd‖+ ‖p̄− pd‖).

Using these estimates together with (78), (79), (47) in (101) we obtain

‖z̃ − ẑ‖1 ≤ C(u)h‖u‖1/21 (γy‖ȳ − yd‖+ γp‖p̄− pd‖).

Theorem 14. Let u ∈ U ∩Xh be so that p = P (u) ∈W 1.0
0 (Ω). If pd ∈W 1,0

0 (Ω)∩
Q, then there exists a constant C = C(Ω, u, yd, pd, γy, γp) such that

‖(Hh
β (u)− Thβ (u))v‖ ≤ Ch‖v‖ ∀v ∈ Xh.

Proof. For any u ∈ U ∩Xh, we have

Thβ (u)−Hh
β (u) = γy(A2h(π2hu)π2h −Ah(u)) + γp(B2h(π2hu)π2h −Bh(u))

+ C̃2h(π2hu)π2h − C̃h(u).

We use the same approach as in the case of velocity control only. We have already
shown in (94) that the first term is O(h2‖v‖). The second term is estimated similarly:

(102)
B2h(π2hu)π2h −Bh(u) = [B2h(π2hu)−B(π2hu)]π2h +B(π2hu)(π2h − I)

+B(π2hu)−B(u) +B(u)−Bh(u).

For any v ∈ Xh we have

|((B(u)−Bh(u))v, v)| = |(M∗Mv −M∗hMhv, v)| = |‖Mv‖2 − ‖Mhv‖2|
≤ ‖Mv −Mhv‖(‖Mv‖+ ‖Mhv‖) ≤ Ch‖v‖2,

where we used (53) and (58). Similarly, it can be shown

‖(B2h(π2hu)−B(π2hu))v‖ ≤ Ch‖v‖2, ∀v ∈ Xh.
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The second term in (102) can be bounded as

‖B(π2hu)(π2h − I)v‖ = ‖M∗(π2hu)M(π2hu)(π2h − I)v‖
(61)

≤ Ch‖v‖.(103)

Finally, we have

|(B(π2hu)v −B(u)v, v)| = |(M∗(π2hu)M(π2hu)v −M∗(u)M(u)v, v)|
= |‖M(π2hu)v‖2 − ‖M(u)v‖2|

≤ ‖(M(π2hu)v −M(u)v‖(‖M(π2hu)v‖+ ‖M(u)v‖)
(81)

≤ Ch2‖u‖1‖v‖,

which gives

‖(B(π2hu)−B(u))v‖ ≤ Ch2‖u‖1‖v‖.(104)

Next, we estimate

(105)
C̃2h(π2hu)π2h − C̃h(u) = [C̃2h(π2hu)− C̃(π2hu)]π2h + C̃(π2hu)(π2h − I)

+ C̃(π2hu)− C̃(u) + C̃(u)− C̃h(u).

We first estimate the term ‖C̃(u)v − C̃h(u)v‖, and recall that

(C̃(u)v, v) = −2c(Lv;Lv, z̃) and (C̃h(u)v, v) = −2c̃(Lhv;Lhv, z̃h),

with z̃ = L̃(γy(y − yd), γp(pd − p)), z̃h = L̃h(γy(yh − yhd ), γp(p
h
d − ph)), with the

operators L̃ and L̃h as defined in Theorem 8. Thus,

|(C̃(u)v − C̃h(u)v, v)| = |2c̃(Lv;Lv, z̃)− 2c̃(Lhv;Lhv, z̃h)|
≤ |c(Lv;Lv, z̃)− c(Lhv;Lhv, z̃h)|

+ |c(Lv; z̃, Lv)− c(Lhv; z̃h, Lhv)|.

The first term in the inequality above can be bounded by

|c(Lhv;Lhv, z̃h)− c(Lv;Lv, z̃)| ≤ |c((Lh − L)v;Lhv, z̃h)|+ |c(Lv;Lhv, z̃h − z̃)|
+ |c(Lv; z̃, (Lh − L)v|,

where we used c(Lv;Lhv−Lv, z̃) = −c(Lv; z̃, Lhv−Lv) since Lv ∈ V . Thus, we have

|c(Lhv;Lhv, z̃h)− c(Lv;Lv, z̃)|
≤ C(‖Lv − Lhv‖1‖Lhv‖1‖z̃h‖1 + ‖Lv‖1‖Lhv‖1‖z̃h − z̃‖1 + ‖Lv‖1‖z̃‖1‖Lhv − Lv‖1)

(51),(64)

≤ Ch‖v‖2(γy‖y − yd‖+ γp‖p− pd‖W 1,0
0

).

Note that we have used (64) also for ‖Lhv‖1 ≤ C‖v‖, since Lhv = L̃h(v, 0). Also,

|c(Lhv; z̃h, Lhv)− c(Lv; z̃, Lv)| ≤ |c((Lh − L)v; z̃h, Lhv)|+ |c(Lv; z̃h, (Lh − L)v)|
+ |c(Lv;Lv, z̃ − z̃h)|
≤ ‖Lhv − Lv‖1‖z̃h‖1‖Lhv‖1 + ‖Lv‖1‖z̃h‖1‖Lhv − Lv‖1
+ ‖Lv‖1‖Lv‖1‖z̃ − z̃h‖1 ≤ Ch‖v‖(γy‖y − yd‖+ γp‖p− pd‖W 1,0

0
).
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Similarly, it can be shown that ‖(C̃2h(π2hu) − C̃(π2hu)π2hv‖ ≤ Ch‖v‖. To estimate
the third term in (105), let z̄ = L̃(γy(Y (π2hu)− yd), γp(pd − P (π2hu))). Then

|(C̃(π2hu)v − C̃(u)v, v)| = 2|c(Lv;Lv, z̃)− c(Lv;Lv, z̄)| = 2|c(Lv;Lv, z̃ − z̄)|

≤ C‖Lv‖21‖z̃ − z̄‖1
(64)

≤ C‖v‖2‖z̃ − z̄‖1
(99)

≤ C(u, yd, pd, γy, γp)h‖v‖2.

Finally, let w = (π2h − I)v. With L = L(π2hu) we have (see (39))

|(C̃(π2hu)(π2h − I)v, v)| = |((Lw · ∇)z̄ − (∇Lw)T z̄, Lv)|
≤ |((Lw · ∇)z̄), Lv)|+ |(∇Lw)T z̄, Lv)| = |c(Lw; z̄, Lv)|+ |c(Lv;Lw, z̄)|
= |c(Lw; z̄, Lv)|+ |c(Lv; z̄, Lw)| ≤ C‖Lw‖‖z̄‖2‖Lv‖
(60)

≤ Ch2‖v‖‖z̄‖2‖v‖
(62)

≤ C(u, yd, pd, γy, γp)h
2‖v‖2

which combined with the other estimates yields the conclusion.

Corollary 2. Let u ∈ U ∩Xh. If C̃h(u) is symmetric positive definite then

d(Hh
β (u), Thβ (u)) ≤ C

β
h,(106)

for h < h0(β,Ω, L,M, L̃).

Remark 3. The two-grid preconditioner can be extended to a multigrid precondi-
tioner following essentially the same strategy as in [7], and the analysis is extended in
a similar fashion to show that the multigrid preconditioner satisfies the estimates (97)
and (106). Suffice it to say that the correct multigrid preconditioner has a W -cycle
structure, while the associated V -cycle gives suboptimal results; furthemore, the coars-
est level has to be sufficiently fine in order for the optimal quality to be preserved.

5. Numerical results. We present a set of numerical results to showcase the
behavior of our multigrid preconditioner in the Newton iteration of (43) on Ω = (0, 1)2.
We consider uniform rectangular grids with mesh sizes h = 1/32, 1/64, 1/128, 1/256,
and we use Taylor-Hood Q2-Q1 elements for velocity-pressure and Q2 elements for
the controls. The data is given by yhd = Yh(uh), phd = Ph(uh), with uh being the
interpolant of the target control u(x, y) = [103(sign(y − 0.9) + 1)(y − 0.9)2, 0] (see
Figure 1); the velocity field resembles one obtained from a lid-driven cavity flow. The
Newton iteration is stopped when ‖∇Ĵh‖∞ ≤ 10−10. On the coarsest grid at h = 1/32
we use a zero-initial guess for the Newton solve, while for subsequent grids we start
the iteration using the solution from the coarser problem. The linear systems at each
iteration are solved in two ways: first we use conjugate gradient preconditioned by the
multigrid preconditioner (MGCG) (see Remark 3), with base cases h0 = 1/32 or 1/64,
depending on necessity. Second, we solve the same systems using unpreconditioned
conjugate gradient (CG). The reduced Hessian is applied matrix-free using (71)–(73).
Obviously, the Hessian-vector multiplication (matvec) is the most expensive operation,
as it essentially requires solving the linearized Navier-Stokes system twice. The goal
is to show that, as a result of multigrid preconditioning, the number of matvecs at
the highest resolution is relatively low compared to the unpreconditioned case.

We present in Table 1 results for low and in Table 2 for moderate Reynolds
numbers, and we compare velocity control (γp = 0) with mixed velocity-pressure

control with varying ratios of the two terms in Ĵh (γy = 1, γp = 10−4, 10−3). As for
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the regularization parameter we let β = 10−4, 10−5. For each of the twelve parameter
choices and for each h = 1/64, 1/128, 1/256 we report the number of iterations of the
MGCG/CG-based solves for each Newton iteration as well as the total (added) wall-
clock time of the linear solves. For example, in the top left compartment of Table 2,
we show the case ν = 0.01, γy = 1, γp = 0 (velocity control only), β = 10−4 with
resolutions 1/64, 1/128, 1/256. At resolution h = 1/256 two Newton iterations were
required with CG necessitating 382 and 274 iterations, with a total time of linear
solves of 11.4 hours, while the four-grid MGCG needed 6 and 4 iterations for a total
of 0.58 hours, meaning almost twenty times faster. Note that at the coarsest level
we actually build the Hessian at each Newton iteration and invert it using direct
methods, the time of this operation being included in the reported wall-clock time.
The relative tolerance for both CG and MGCG is set at 10−8.

The tables indicate a behavior that is standard for the multigrid preconditioner
presented in this work, and which is consistent with the analysis. First we notice that
unpreconditioned CG is scalable, in the sense that for each case the number of CG
iterations is bounded with respect to mesh-size (the wall-clock times suffer due to the
fact that we used direct solvers for the linearized Navier-Stoles solves in the matvec).
The MGCG instead shows an efficiency that increases over CG with decreasing h,
measured both in terms of number of iterations and wall-clock time, and this can
be seen for all the velocity control cases, and for the mixed control cases with base
case h0 = 1/64 at ν = 0.1 (see Table 1). As usual with these types of algorithms,
the lower order of approximation for the mixed/pressure control case leads not only
to a slightly higher number of MGCG iterations, but also requires a finer base case;
for all the mixed velocity-pressure control problems, the four-grid preconditioner at
resolution h = 1/256 (base case h0 = 1/32) led to a divergent iteration. However,
the base case choice h0 = 1/64 appears to be sufficient when ν = 0.1. However, for
the higher Reynolds number case, while we did not encounter divergence with base
case h0 = 1/64, it is conceivable that it may still be too coarse, that is, it will lead to
divergence at higher resolutions. We should point out that we purposefully selected
a set of parameters that exhibit a variety of behaviors expected from these types of
algorithms. Yet we find it remarkable that whenever MGCG converges, it does so
significantly faster than unpreconditioned CG, with significant wall-clock savings.

6. Conclusions. We have developed and analyzed a two-grid preconditioner to
be used in the Newton iteration for the optimal control of the stationary Navier-Stokes
equations. Under the natural assumption that the iteration starts sufficiently close
to the solution it is shown that the preconditioner has a behavior that is similar to
the optimal control of the stationary Stokes equations [7]. While the extension to
multigrid is not explicitly discussed due to the similarity with the Stokes-control case,
numerical results confirm that the behavior is consistent with the analysis, and can
lead to significant savings over unpreconditioned CG-based solves.
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Fig. 1. Top images: components of target control. Bottom images: velocity (stream function)
and pressure data. Viscosity is ν = 0.01 with Re = ν−1‖Y (u)‖∞ ≈ 105, and h = 1/64.

Fig. 2. Top images: components of optimal control corresponding to data from Figure 1.
Bottom images: optimal velocity (stream function) and pressure. Parameters values are: γy = 1,
γp = 10−3, and β = 10−5.
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