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Abstract— As robots have become lower-cost, more ubiqui-
tous, and more capable, the importance of enabling untrained
users to interact with them has increased. Such robots have
the potential to provide assistance and reduce workloads in
the home, in the workplace, and in the context of assistive
technologies. However, it is difficult to predict the specific tasks
that these robots should be programmed to assist with before
they are deployed, and in these settings, robots will often
be interacting with non-expert end users. In this paper, we
argue that one approach to dealing with this type of human-
robot interaction is teachable robotics, in which robots learn
to perform novel tasks in novel environments from humans
using intuitive teaching modalities, such as natural language.
We describe two recent projects that make progress in this
direction, and discuss the challenges revealed by this work.

I. INTRODUCTION AND MOTIVATION

As robots have become more ubiquitous and capable, the
importance of enabling untrained users to interact with them
has increased. Small, low-cost robots have the potential to
provide assistance and reduce workloads in the home, in the
workplace, and in the context of assistive technologies. (Fig.
1 shows a robot designed for such tasks.)

However, despite this breadth of possible applications, it
is not practical to predict every specific task that ubiquitous
helper robots will need to perform. A manipulator robot
might be asked to assist with soldering at a workbench,
pipetting in a laboratory, or chopping an onion, depending on
the context and the users’ needs. One possible solution is to
have end users themselves instruct robots about the world,
including goals and actions, as needed for their particular
situation. In this model, the focus is on the interactions
between a human non-specialist and a teachable robot, a
system able to accept and learn from instructions describing
how to perform tasks.

Interactive learning is a broad problem, with compo-
nents including natural language (NL) understanding, user
interface design, active learning, learning by demonstration,
gaze and gesture tracking, and probabilistic world modeling.
In this paper, we discuss our work on natural language
grounding–the interpretation of human natural language into
semantically informed structures in the context of robotic
perception and actuation.

Human instruction-giving is a rich area; modalities such
as speech, gesture, gaze, and demonstration are all natural
mechanisms by which humans teach, and learn from, one
another. In response, unconstrained natural-language interac-
tion with robots has emerged as a significant research area.
The integration of natural language instruction with teaching
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Fig. 1: The mid-cost Gambit manipulator arm was designed for
small-scale tabletop manipulation tasks. Here, it plays chess against
a human opponent.

by action and demonstration is intuitive and comfortable for
human users, while offering sufficient signal to support robot
task planning and any necessary modeling of previously
unknown world state.

At a high level, our goal is to make it easier for untrained
users to interact with robots in a comfortable way. This re-
quires robots with the ability to learn from natural language,
in unfamiliar environments, about words and objects that
the systems have not previously encountered. To this end,
we use as case studies two projects we have undertaken. In
both, natural language grounding is treated as a problem of
machine translation from a natural language, English, to a
formal control language.

The remainder of this paper is organized as follows. We
describe two lines of research: first, learning to transform
natural language route instructions to execution system in-
puts in an unfamiliar map, and second, learning a joint model
of unfamiliar natural language and world percepts describing
object attributes such as color and shape. We provide a brief
overview of some related work in natural language ground-
ing, instruction-following, vision, and learning, and conclude
with a discussion of challenges encountered, expected future
work, and the placement of teachable robotics in the broader
context of HRI.

II. LEARNING TO FOLLOW ROUTE INSTRUCTIONS

We explore the question of interpreting, or grounding,
natural language commands so they can be executed by a
robot, specifically in the context of following route instruc-
tions through a map [20]. Language grounding is treated as a
question of semantic interpretation–that is, the extraction of
a semantically meaningful representation of goals and world
state from human-provided instruction text. This approach
encompasses two key components: First, parsing natural



language into a formal representation capable of representing
a robot and its operation in an environment; and, second,
mapping the formal representation to actions and perceptions
in the real world.

A. Goal
The key goal of this work is to learn grounding relations

from data (rather than defining a mapping of natural language
to actions), and to execute them against a previously unseen
world model (in this case, a map of an environment). A sta-
tistical machine translation (SMT) approach is used to train a
parser, which learns to parse natural language to expressive
formal λ-calculus representations. The system learns the
parser based on examples of English commands annotated
by experts with the corresponding RCL expressions.

While λ-calculus and other formal languages have been
used to represent complex robot control systems [6], [13],
learning from human interaction requires this additional
parser learning step, as non-expert end users are unlikely to
be willing to write formal control language structures. Our
goal in this work is a system that learns, from a reasonable
number of examples, to parse NL commands into structures
that capture the kind of procedural statements used by human
instruction givers, such as counts, looping, and conditionals.
Fig. 2 gives an overview of the approach.

Fig. 2: The high-level architecture of the end-to-end system.
During training, An English-to-RCL parser is learned. In testing,
the learned parser maps NL instructions to an RCL program that
is executed in simulation.

B. Approach
In practice, human route instructions include complex lan-

guage, and robots must be able to execute these without being
given a fully specified world model. We parse these complex
instructions into correct, robot-executable commands for
these complex NL instructions. Parses are expressed into a
LISP-like control language called Robot Control Language,
or RCL. [20].

The components of the system are as follows. First, paired
corpora of natural language sentences and RCL commands
were gathered. Approximately 25 non-experts gave route
instructions describing randomly generated paths through a
map, providing the natural language training data. Those sen-
tences were annotated by experts (see Fig. 3 for an example).

These corpora were given as input to the Unification-Based
Learner, or UBL [14], [15], and a combined syntactic and
semantic model was trained.

Fig. 3: Examples of an English sentence and its associated RCL
program. While short, this example demonstrates a few of the more
complex concepts intrinsic to even simple natural language.

An important benefit of this approach is that the nature
of our formal representation enables a robot to interpret
route instructions online while moving through a previously
unknown environment. The actual contextualization of the
language into a world model happens as the map is discov-
ered. The resulting system can represent control structures
such as ‘while,’ higher-order concepts such as ‘nth,’ and set
operations, as well as following directions through unknown
maps.

C. Parser Learning

RCL is a formal language defined by a grammar. To
parse NL instructions into that language, we use an extended
version of the Unification-Based Learner, UBL [14]. The
grammatical formalism is combinatory categorial grammars,
or CCGs [25], a type of phrase structure grammar. UBL
creates a parser by inducing a CCG from a set of training
examples (described above). CCGs model both the syntax
(language constructs, such as NP for noun phrase) and the
semantics (expressions in λ-calculus) of a sentence. The
resulting RCL statement can be passed to a robot control
system for execution.

Importantly, UBL can learn a parser solely from training
data of the form {(x,z)}, where x is a natural-language sen-
tence and z is a corresponding semantic-language sentence.
In a nutshell, UBL learns a model for p(z,y | x;θ), where θ

parameterizes the learned grammar G and y is a derivation
in G. UBL uses a log-linear model: p(z,y | x;θ) ∝ eθ·φ(x,y,z).
UBL first generates a set of possibly useful lexical items,
then alternates between increasing the size of this lexicon
and estimating the parameters of G via gradient descent
optimization (see [14] for more details).

D. Results and Discussion

For testing, a large set of routes through a previously
unseen map was generated. These routes were divided into
short (1 sentence) and long (an average of 5 sentences).
English descriptions of those routes were generated by
permuting known English phrases to describe elements of
movement through the map, and those route instructions
were parsed using the language model. Parses were tested by
executing the resulting RCL programs in simulation. Table



I summarizes the percentage of path/NL pairs for which a
simulated robot reached the destination successfully, on the
desired route, by following the generated RCL program.

data set success (short) success (long)
enriched 92.4% 62.5%

Table I: Testing the end-to-end system on 1,000 short and 200
more complex sets of route instruction.

Execution was successful in 924/1000 of the short paths,
and 125/200 of the complex paths. It is unsurprising that
longer paths are more likely to fail than shorter ones: our
simulated control system does not attempt any local error
recovery if it encounters an unexpected situation, so a single
poorly-parsed phrase in a route instruction means the robot
cannot reach the destination.

Lessons and Challenges: In general, we believe this
approach uses an effective approach to grounding natural
language route instructions into a formal control language.
Nonetheless, in the course of working with this data and
system, a number of challenges were encountered. While
the effort involved in expert annotation of natural language
is far less than that of writing control system for the tasks,
it still requires experts to be involved in the teaching pro-
cess. Additionally, instructions through a map–and possibly
instructions in general–tend to take a sequential form, in
which individual instructions can be parsed separately with
little loss of generality; however, this trait also makes local
error recovery crucial, as shown by the results of our longer
trials in Table I.

Lastly, we raise two points which we will touch on in
the next section. Even a state of the art parser learning
system does best with large amounts of training data, and
gathering natural language from human subjects is extremely
time-consuming. In our case, this resulted in a working set
small enough to require artificial amplification (as described
above). Furthermore, the language being gathered is still tied
to our pre-defined grammar–the robot cannot be taught tasks
which cannot be expressed using existing RCL symbols.

III. LEARNING NOVEL OBJECT ATTRIBUTES

The instruction-following framework described in the pre-
vious section has a number of desirable characteristics. The
underlying parser-learning infrastructure is not particularly
domain-dependent, and the resulting system generates correct
RCL programs from NL in a reasonable number of test cases,
although work remains. Nonetheless, it has some significant
simplifications. One concern is that the set of people pro-
viding instructions was quite small, resulting in a need for
artificial amplification in training and test cases [19], [20].
For this reason, in subsequent work, we explore gathering
language via crowdsourcing.

A second, subtler concern is that, while previously-unseen
English terms can be learned, the space of possible formal
RCL programs that can be generated is limited by the
set of predefined tokens appearing in the expert-provided

RCL grammar. For many tasks, robots that can learn from
natural language will need not only to learn how new natural
language connects to existing concepts, but also to learn
novel concepts in the underlying world model.

To address these concerns and to demonstrate the relative
domain independence of our approach, we consider a second
experiment: learning novel object attributes from a joint
language and visual classification model [18].

A. Goal

Our goal in this work is to extend the framework de-
scribed in Sec. II to incorporate visual percepts in order
to learn about completely new color and shape attributes.
This requires taking full advantage of physically grounded
sensors and actuators in order to learn about objects in
the environment. To do this, a robot must jointly reason
about the data encountered, for example language and vi-
sion, and automatically induce rich associations. We target
object attributes that might be defined both linguistically
and visually; for example, “These are yellow cylinders,”
uttered about a physical workspace that contains a number
of objects that vary in shape and color. We assume that a
robot can understand sentences like this if it can solve the
associated object selection task–correctly identifying objects
by characteristics encountered during a natural language
teaching session.

Fig. 4: An example of an RGB-D object identification scene.
Columns on the right show examples of segmented objects. The far
right column shows objects identified by the sentence “These are
various types of yellow colored objects”; the center column shows
non-selected objects. The correct associated RCL interpretation is
λ.x(obj-color x, color-yellow).

There are a number of subproblems implicit in this goal.
First, the robot must realize that words such as “yellow”
and “square” refer to object attributes (unlike other unfa-
miliar words encountered during training, such as “thing”
or “nearby”). It must also ground these words by mapping
them to components of a perceptual system that enable it to
identify the specific physical objects the language is referring
to, even in cases where the attributes are entirely novel. Given
the sentence “These are yellow” and the visual field shown
in Fig. 4, the system must identify the cluster of blocks near
the top of the image.



B. Approach

In order to learn the meanings of new words and as-
sociate them with new concepts, several components must
be trained: visual classifiers that identify object properties,
the meaning of individual words that may indicate these
classifiers, and a model of compositional semantics that can
be used to analyze sentences. We learn these components
jointly, building on existing work on visual attribute classi-
fication [3] and the parser learning system described above.

In the experiment described in Sec. II, training data had
two components, a natural language sentence x and an RCL
expression y that formally captures the semantics of x. We
now add additional terms: a set of scene objects O detected
by a sensor, and the subset G⊆O of objects described by x.
We also require a set of visual attribute classifiers C, where
each classifier c ∈ C defines a distribution P(c = true | o ∈
O) of the classifier returning true for each object o in the
scene–for example, there would be a unique classifier c for
each possible color or shape an object can have. We can
then use logistic regression to train classifiers on color and
shape features extracted from object segments detected with
a Kinect depth camera.

Our key challenge is to learn to create new classifiers,
associated with new NL words, which describe attributes
not previously seen. We take a simple, exhaustive approach
by creating a set of new classifiers which are initialized to
uniform distributions. Each classifier is additionally paired
with a new logical constant in RCL. Finally, a new parse
rule is created by pairing each previously unknown word in
a sentence with each new and existing classifier constant,
with a very low initial likelihood of being used in parsing.
This approach learns to jointly reestimate the parameters of
both the new classifiers and the expanded parsing model. At
the same time, the new classifiers are trained on each new
object that is described by the word.

C. Experiments

We began by collecting a dataset of natural language
sentences describing a variety of scenes. In order to avoid
the problems described above of insufficient human data,
we used Amazon’s Mechanical Turk, a system which allows
web-based distribution of small tasks to a group of workers
in exchange for small payments [12]. Workers were asked to
look at a scene and provide English descriptions of objects
being gestured to (Fig. 5 shows an example). In this way,
we gathered 1,003 natural language descriptions of objects
appearing in 142 visual scenes.

Training is conducted in two phases. We conduct an
initialization or ‘bootstrapping’ phase, in which we construct
initial, limited language and perceptual models. We make
use of a small supervised data set containing language and
scenes, but in which we additionally label the latent logical
form z and classifier outputs—for instance, the English word
“yellow”, the RCL constant color-yellow, and the associated
classifier ccolor-yellow. We subdivide our data such that this
initialization does not contain words and attributes which
will appear in training.

Fig. 5: Example scenes presented on Mechanical Turk. Left: A
scene that elicited descriptions such as “here are some red things”
and “these are various types of red colored objects”, both of
which would be labeled with the meaning λx.(objcolor x, red).
Right: A scene associated with the sentence/meaning pair
“this toy is an orange cube”, λx.(objcolor x, orange) ∧
(objshape x, cube).

We then jointly train the classifier model and language
model on pairs of scene/language pairs. If this approach is
successful, natural language words and phrases describing
a new attribute will be consistently parsed to one of the
new classifiers, which in turn should have good predictive
power for identifying objects which have that attribute; words
which do not denote an attribute or other RCL symbol should
consistently parse to null. Fig. 6 shows an example of the
parse likelihood of lexemes, or word-to-symbol mappings,
after a typical run.

D. Results

We test for understanding via the object set selection task
described above, using an 80/20 split of novel sentences
for training/testing. The split of attributes into those used
for bootstrapping and those used for training and testing
is randomized over the span of 20 trials, and the order
of sentences within each class is randomized. The robot is
given a novel sentence and a scene with no objects marked,
and precision, recall, and F1 score (a joint measure of

Fig. 6: Lexeme weights at the end of a training run. The x-
axis shows new natural language tokens discovered in training,
and associated classifier symbols are given on the y-axis. In this
example, each of three new colors and shapes has a single classifier
that is strongly preferred, while the semantically empty tokens
‘thing’, ‘that’, and ‘toys’ have positive weight only in the lexeme
mapping to null.



accuracy) are recorded for whether the objects described by
the language are correctly identified.

Averaged across our trials, we obtain precision=0.81,
recall=0.72, and F1=0.76 on the set selection task. This
suggests that our integrated approach allows for reasonably
effective learning with no explicit labeling of logical meaning
representations or attribute classifier outputs. We also test the
same data sets with the vision component removed, and with
the language model replaced by simple keyword matching, to
determine whether joint learning is necessary for our data. As
expected, in both cases the system’s performance degrades
sharply. Results are summarized in Table II.

Approach Precision Recall F1
Language only 0.52 0.09 0.14

Vision+keywords 0.92 0.41 0.55
Joint learning 0.81 0.72 0.76

Table II: A summary of the precision, recall, and F1 score
for learning jointly versus ablations in which each component is
reduced or removed. The vision-only system has good precision,
because it generally identifies only a small number of objects.

Lessons and Challenges: We have presented a brief
overview of a system that is able to successfully learn to
generate formal expressions describing world characteris-
tics from natural language paired with sensor inputs, using
initialization data that does not contain the attributes we
test against. Using Mechanical Turk for data collection was
successful, and could readily lend itself to other ‘teachable’
problems–that is, those in which we wish to learn from non-
expert data.

The learned model ise initialized with annotated data,
and then trained on data that does not include the anno-
tation. Given the cost of expert annotation, this is a definite
step towards learning from interaction. Nonetheless, this
initialization still requires some expert annotation, which is
expensive and which means that the system cannot simply
be deployed in a completely new domain with naı̈ve users.

Perhaps more serious, the data efficiency of learning
could be improved (as many positive and negative examples
currently are required to train classifiers). This suggests that
learning world models in a targeted, efficient way will be
an important component in effective learning from real-time
interaction.

IV. RELATED WORK

Human-robot interaction is by nature a broad, cross-
disciplinary problem, especially in the context of learn-
ing through interaction. Previous work in natural language
grounding, human learning, formal representations, and vi-
sion, among others, are relevant. We highlight examples of
relevant papers in this section.

With the advent of low-cost sensor platforms and strong
language learning models, there has been significant work
recently on grounded learning in the robotics and vision com-
munities. Roy developed a series of techniques for grounding
words in visual scenes [21], [23], [10]. In computer vision,
language grounding often relates to detecting objects and

attributes in visual information (e.g., see [1]), although these
approaches primarily focus on isolated word meaning.

Interaction that takes perception into account relies heavily
on vision. Object recognition has a clear place in teachable
robotics, particularly in the context of building up a world
model; current state-of-the-art systems [8], [27] are based on
local image descriptors, for example SIFT over images [17]
and Spin Images over 3D point clouds [11].

When trying to learn about new characteristics of ob-
jects in the world, visual attributes provide a rich source
of information, and have become a popular topic in the
computer vision community [7], [22]. Recent work on kernel
descriptors [2] shows that these hand-designed features are
equivalent to a type of match kernel that performs similarly
to sparse coding [27], [28] and deep networks [16] on many
object recognition benchmarks [2].

Approaches that learn probabilistic language models from
natural language input [19], [5], especially those that include
a visual component [26], [18], are closest to being directly
usable in teachable robotics. [24] created a system that
also learns to parse navigation instructions, but limited their
formal language to a set of predefined parses.

Logic-based control systems have been used successfully
in robotics [4], [9], [13], providing a framework for map-
ping language to robot control. In Dzifcak et al [6], it is
demonstrated that NL commands can be mapped to robot
controllers modeled as λ-calculus expressions, albeit with a
manually constructed parser to map from NL commands to
λ-calculus.

V. CONCLUSIONS

We draw several conclusions from these experiments.
First, it is possible to use weakly supervised learning to
learn a model of language and world-state able to handle
complex natural language commands for robot instruction.
This approach supports the learning of complex structures
and entirely novel concepts. We find these results extremely
encouraging with respect to the goal of learning to interpret
rich NL instructions based on interaction with non-experts.

Increasingly available and capable robotics make perva-
sive, low-cost robots and robotic systems seem not only pos-
sible, but likely, in the near future. Successful human-robot
interaction in this context will depend on the ability of those
systems to learn from natural, intuitive interactions with these
users—what we describe here as teachable robotics. The
projects discussed highlight possible approaches, challenges,
and avenues for further research; we believe that, when
explored, this space will yield increasingly capable, effective
pervasive robots.
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