HONORS THESIS

```
"Does the Use of Manipulatives Fealiy Make
    a Diffemence in Teaching a Unit
        om Duadrilaterals?"
```

Judy E . Johnsom
Advisor: Dr: Geraldine FoEsi

Does the use of manipulatives really make a difference in teaching a unit on quadrilaterals in a geometry class? Sperifically, is there a notable improvement in studente; achievement or attitudes towerd geometry? Based on the theories of cognitive styles, does a particular type of learner respond best to the use of manipulatives? These were the questions considered in the study.

In order to investigate these questions, the experimenting student teacher conducted her research on her two geometry classes of tenth through twelfth graders. Due to a difference in class size and student ability, twelve students in the experimental group were paired with twelve students in the control group for the purposes of validity and consistency. The experimenter then administered two pretests, one achievement and one attitude/learnimg style, to both groups. Since these instruments were designed by the experimenter and the thesis advisor, they must be considered an informal means of assessing these qualities. With these scores documented, the experimenter began teaching a unit on quadrilaterals to both groups. The experimental group's lessons were enriched with manipulatives intended to add meaning by linking the concrete to the abstract mathematical concepts. The control group was taught in a traditional manner, void of the use of manipulatives. The entire fourteen-day unit was taught in this manner. At the end of
the unit, the chapter test, the achievement posttest, and the attitude posttest were administered, and the scores on each were documented.

Analyzing these scores, significant t values (at the 95% confidence level) were obtained by the experimental group in the aress of achievement and attitude when the pretest and posttest scores on each were compared. Their results on the t. tests were clearly more impressive than those of the control group. Thus, the advantages of using manipulatives to add meaning by bridging the gap between the concrete realm and the abstract realm were supported by this testing. Specifically, t tests also revealed that visual learmers followed by kimesthetic learners in the experimental group acceled the most of any group in achievement due to the use of manipulatives. In summary, substantial improvements in achievement and attitude were experienced by the experimental group who learned through manipulative activities.

THESIS STATEMENT

Does the use of manipulatives really make a differemce in teaching a unit on quadrilaterals in a geometry class? Specifically, is there a notable improvement in students' schievement or attitudes toward geometry? Based on the theories of cognitive styles, does a particular type of learner respond best to the use of manipulatives?

INTRODUCTION

As a means of introduction, manipulatives are defined to be "concrete models that incorporate mathematical concepts. appeal to several semses, and amb be tourhed and moved around by students' iHynes ily : lised primarily im mathemstise teaching, mamipulatives Ean be used to teach a wide range of topics including algobre, geometry, and probability and statistics, not to mention fundamental eiementary school mathematical concepts. Schultz \{54) has further categorized manipulatives as active, passive, and nonmanipulative. Active manipulatives are those that students can touch and move. Passive manipulatives are those that the students observe the teacher tourhing and moving. Nonmanipulatives such as pietures on worksheets and bulletin boards cannot be moved or manipulated. Thus defined, manipulatives can be implemented by the classroom teacher to supplement a wide variety of lessons and classroom activities.

The premise underlying the use of manipulatives in the classroom is that students learn best by doing (Dessart 81). Manipulatives are "devices that allow the students to do geometry rather than to watch geomet:-y" (Prevost 4i己). In a study by Corwin (Suydam 82) manipulative aids were found to heip "the students visualize and understand the geometric concepts." Too often students look for patterns to solving protlems instead of truiv urderstanding the solutions. Erlwanger states, "students often proceed by manipulatimg meaningless symbols with mo attempt to ast what the symbuls
mean" (Davis 115\%). In further support Carpenter and his colleapues stated that "students appear to be learming many mathematical stills at a rote manipulation level and do not umderstand the concepts underlying the momputation' (Dessart 4B) = Thus by having studerts actively involved with manipulatives during the learning process, they are more likely to grasp the fundamental concepts beimg studied. Also, if actively involved, students are kept on task a greater majority of the time. Time on task is vitally important in two respects. First, "time on task has been directly related to achievement" (Dessart 4). Second, if the students are busily on task, fewer discipline problems are likely to result. Thus, the use of manipulatives in the classmoom is supported by a variety of rationales.

Muth research has begn done on the ages and ability
levels of students helped most by the use of manipulatives. Suydam stated that "achievement is entanced across a variety of topics at every grade, achievement, and ability level" (Kennedy 7). According to Thornton and Wilmot (38), manipulatives can benefit the learning handicapped as well as the mathematically gifted if they are properly used. Commenting on ability levels, Shoecraft stated that "students who are low achievers in mathematics might have more need for concrete materials and wouid therefore find a manipulative approach to mathematics more conducive to learning than a more abstract, symbolic approach" (Threadgill 367). Further,
Shogeraft commented that "high achieving students would likely be less قffected by instruttional methods and be able to process information from either approachi (Theadgill
3G7) : Thus : even for high achievers the rosults of using manipulatives in the classroom are not detrimental.
Another area explored in this research was the cognitive styles of the students. As defined in a project done by the East Lansing (Michigan) school personnel,
"a child's cogmitive styie is the way he takes meaning from the world around him, how he comes to know what he knows. The technique used in determining a child's cognitive style is called 'mapping.' By the use of tests and observations, and in interviews, the teacher seeks answers to the question of how a child derives meaning his own unique way. How does the child note his surroundings, seek meaning, and become informed? ls he a listener or a reader? Does he make up his own mind or seek. consensus with his peer groups?" (Gartner 13)
According to Kagan and Kogan, a child's cognitive style "develops early in life and remains relatively fixed" (Ryan 1874). From Messick's (1976) theory that "cognitive style has a direct relationship to the way a person behaves," Hunt's (1977) theory that "the way teachers iearn can significantly influence the way in which they teach" is supported. Teaching to just one type of learner can be very detrimental as algebra teachers are warned to "guard against an overemphasis on verbal kinds of instruction" (Dessart 21). According to Garther and Riessman, "some children learn more readily by reading, others by nearing, and some learn faster when they can be physically involved in the process, doing
things with their hands and bodies" (9). These authors are referting to the classification of students as visual. auditory, and tactile-kinesthetic learners. When preparing lesson plans, teachers should remember to adapt their teaching to the learning styles of the students (Dunn and Dunn). Due to the average classroom size in the public sthool systems individuaized instruction has not been feasible. However, by practicing the maxim "vary Thy Teaching" (Dessart \quad) teachers can better meet the mepds of individual learners. In other words, teachers should "provide a varied set of experiences for their students so that if they cannot learn by one approach, they will learn by another" (Dessart 22). Thus, since manipulatives are a method by which teachers ran vary the presentation of topirs, their use would be supported by the above sources. Specificaily in this research an attempt will be made to discover whith, if any, type of iearner ivisual, auditory: or kinesthetic) is helped most by the implementation of manipulatives in the classroom.

The use of manipulatives in the mathematics classroom has been supported by many professional educational organizations. In particular, the National Council of Teachers of Mathematics (NCTM) has devoted several publications to this topic. In l946,
"NCIM's Eighteenth Yearbook was entitled Multi-. Sensory Aids in the Teaching of Mathematics. In the Twenty-fifth Yearbook, the basic role of sensory learning continued to be emphasized, in
particular in Hardgrove and Sueltz's (1960)
shapter on Instructional Materials, In
1763 the Cambridge Conference (1963, 35)
made an even stronger cese for the use of
manipulative materials. Etating that every
student should have ample opportunity to
manipulate physical objects. . . in 1973 the
NCTM published the Thirty- Fourth Yearbook,
Instructional Aids in Mathematics. In 1980 ,
An Agenda for Action (NCTM 1980,12) contimued
this call for the use of manipulatives:
Teachers should use diverse instructional
strategies, materials, and resources, suct
as. . the use of manipulatives, where suited,
to illustrate or develop a concept or skill."
(Worth 2)

Putting all of this into practice,
"a middle school teacher Herbert (19日5, 4) wrote that manipulatives allow teachers to create situations that draw mathematical responses from children. Such situations result in improvements in motivation, involvement, understanding, and arhievement-Qvermhelming ressons to believe that manipulatives are good mathematics." (Kenmedy ?)

Thus, from the findings of the NCTM and practicing teachers, the benefits of using manipulatives in the teaching of mathematics are well documented.

In addition to the support from teachers, the use of manipulatives has quite a foundation in learning theory. The basic link between the two is that manipulatives are intended to give students a clearer meanimg of mathematical concepts.
"The mental-discipline and stimulus-response theories of the nimeteenth and early twentieth centuries gave way to meaning theory, espoused by William Browneli in the 1730's. This theory is based on the belief that children must understand the basic concepts that underlie what they are learning if learning is to be permanent. Brownell's discussion of learning generated interest in having children use
manipulative materials to form the concepts necessary in learning mathematics."
(Kennedy b)
According to Jean Piaget (1952) and Richard Skemp (1992).
"manipulative materials are significant learning aids in all four stages cof cognitive development]. Students mental images and abstract ideas are based on their experiences. Hence, students who see and manipulate a variety of objects have clearer mental inages and can represent abstract ideas more Gompletely than those whose experiences are meager." (Kemmedy 6)

Jerome Bruner's theory of learning and plea to educators is summarized below:
"any subject can be taught effectively in some intellectually honest form to any child at any stage of development. . . [There is a need to rewritel the basic subjects and their teaching materials in such a way that the pervading ideas and attitudes relating to them are given a central role." (Brumer 33, 18)

Dienes (1960) also advocates the use of manipulatives since they provide moutiple embodiments' rather than a single representation of a concept" (kemmedy b). Each manipulative device "supplies a proper concrete representation of a concept" (kennedy 6). In conclusion, kennedy offers this synopsis:
"Learming theories suggest that children whose mathematical learning is firmly grounded in manipulative experiences will be more likely to bridge the gap between the world ir which they live and the abstract world of mathematics. The manipulatives help children understand both the meanings of mathematical ideas and the applications of these ideas to real-world situations." (6)

Regardless of the existing support, manipulatives are not being used extensively in the classroom. "Dne survey [feyl reported that mine percent of elementary shhod classes (k-b) never used manipulatives and thet thittymeven perment used them lese than once a week" (Worth 3). This fatt suggests that the drawbarks to the use of manipulatives should be Fessarched. "Dne reason may be the financial constraints on education today" (Worth e). Sohopl budgets may not provide funds for teachers to purchase commercial manipulatives. "Post (1980) speculates that another reason has to do with teachers' concerns about management and control" (Worth e). Unless carefully monitored, manipulatives may be transformed into play toys for the students. Post also mentions that "when achievement in mathematics is largely determined by students' ability to compute on standardized tests, widespread use of manipulatives seems almost counterproductive'" (Worth 2). When using manipulatives, teachers must remember the importance of helping students bridge the gap by "connecting the world of manipulatives and the world of [mathematical] symbols" (Bright 4). Of a similar מhilosophy Truetlood states that
"prospective teachers resist using manipulatives in the classroom for two reasons: a lack of confidence in their own ability to use manipulative materials correctly and the general belief that children will become too dependent on these materials and, as a result, will not master basic computational algorithms and related concepts. This general belief seems related to a lack of confidence in helping

$$
\begin{aligned}
& \text { children make the transition from the concrete } \\
& \text { to the abstract." (G) }
\end{aligned}
$$

Thus, for a variety of finantial and pedagogiaal reasors manipulatives have not been implemented extencively in tre publit school system,

Wher choosing maripulative materials for classtoom use, teachers should consider the following pedagogiral and physical eriteria. One pedagogical criterion is "the adaptability of materials in different contexts" (Moser ?). A certain mamipulative device is much more valuable if it is versatile, useful iri teaching many different concepts. Aiso, "an added advantage of using a familiar set of materials repeatediy is that valuable instructional time is not lost on "play, which is needed any time some new and unfamiliar materials are introduced" (Moser 9). Another pedagogical griterion is whetrer the manipulative provides a "begr representation of methematical ideas: (Hymes liy a In other words, will the students clearly grasp the underlying concepts from using the manipulative device? Also. teacherc should ensure that the chosen manipulatives are "appropriate for the students' developmental levei" (Hynes 11). Manipulatives should not be too complex for youmger students nor too childish for older students. Finally. Fennema suggests that teachers should choose "manipulative aids [that] do arouse students' interest and improve their motivation to learn mathematics" (Hynes 11). Tearhers should also consider the physical criteria of manipulatives.
 as a review of the unit on quadrilaterals.

In too many elassrooms mathematical activities are intended to keep students content and quiet (Dessart 19). Instead, these activities should challenge and stimulate discussion by the students. As described in the following procedure section, the geometry students in the experimental group were actively involved and on task in the learning process. The experimenter attempted to follow the guidelines for "the sound use of manipulatives in geometry and geometric-measurement instruction" suggested by Clements and Battista (q.). According to them: first of all students should be involved with four representations of a new idea" (29). The four representations are as follows: "use Classroom manipulatives, examine the physical world, examine and draw diagrams, and learn names, definitions, or symbolizations" (Ciements 29). This order represents a progression from the concrete to the abstract, bridging the gep between the world of manipulatives and the world of symbols. A second guideline is that "the use of manipulatives should promote the development of spatial visualization" (Clements 29). This spatial visualization is vital to the students' comprehension of geometrical concepts. Finally, Clements and Battista state that "activities with manipulatives should be oriented toward problem solving" (29). Iri the experimenter's classroom students practiced this by conjecturing conclusions, after using manipulatives, to theorems given their hypotheses. Thus, following these

```
guidelines the experimenter began the research supported by
this concluding statement:
"Learming theories and evidence from research
and claseroom practice support the use of
manipulative materials to help childrem learm
and understand mathematics. Well-chosen and
properiv used manipulative materials entance
children's learning, generate interest,
relieve boredom, and promote problem solving
and computational skilis." (kennedy 7)
```

After visiting the school that the experimenter had been assigned for student teaching, plans were begun for the unit in which manipulatives would be utilized. The unit was on quadrilaterals with a slight mention of locus points. The students were tenth through twelfth graders. In the control group, the secand period ciass, there were twenty-four students. This class was taught in a traditional manner without the use of manipulatives. In the experimental group, the third period class. there were fourteen students. This class was enriched with a wide variety of manipulative materials. Obviously, the difference in class numbers presented a problem. In terms of the procedure, the size difference had no effect. However, when analyzing the data and drawing the conclusions, the experimenter did pair the students between the two groups. The rationale and process by which this was completed will be described later in the discussion of data section of this thesis.

To begin the unit on quadrilaterals, two pretests were administered to both of the geometry classes. First, an achievement pretest (Sample Test 1) was given before instruction on the unit was begun. The first five items were to test recall af the previnus unit and readiness for the ome to be taught by the experimenter. Items six through elever were objective items to determine how much the students already knew about parallelograms. Questions twelve through
fifteen asked the students to define and list ali of the properties they knew about a parallelogram, a rhombus: a trapezoid, and a rertangle. Duestions sixteen and seventepn were intended to measure the student s ability to analyae z problem. In Each, stated was the "given" for a proof, and students were asked to write down all of the facts they knew from the "given." In several of the above questions, the studerts were asked to list all that they knew about a watticular guestion. For this reason the achievement pretests were graded on a point scale. For every correct fact, the student received a poimt. Helping to familiarize the experimenter with the new students, this pretest provided information gbout each student as well as a measure with which to compare the posttest when the unit was completed.

Also given to both classes, the second pretest was an attitude/learming style inventory. To measure the students' original attitudes toward geometry, a semantic differential adapted from the work of Osgood (Reisman 120) was used. Whereas his semantic differential used ten bipolar pairs, the experimenter included seven bipolar pairs to simplify the students questionnaire. The differential is scored on a scale depending upon where each student places a check. The scale ranges from -3 to +3 and includes all of the inclusive integers. A sum total is obtained by adding the integer equivalent of the student's check for each of the seven bipolar pairs. Them, to find the student's attitude rating,
this sum total is divided by seven to find the mean. See the Sample semantic differential (Sample Test e) for an example of the scoring. Also on this pretest were straightforward questions intended to determine the student's learning style, whether visual, auditory, or kinesthetic (Peterson 845). Questions $1,2,4,5,7$, and 9 were aimed strictly at determining these sensory modality differences in students" learning styles. If in three out of these six questions a student gave a visual (auditory or kinesthetic) response, then the student was classified as a visual cauditory or kinesthetic) learner. Questions 3 and 6 were designed to classify a student as an introvert or an extrovert. Since many of the manipulatives were studied in groups, the experimenter desired a prediction of how well each studemt worked with others. In the initial testing, the experimenter decided to ask extre questions surh as this to leave several areas open for possible analysig later in the research. Finally, question 8 was to determine left and right brain hemisphere learners. Again, this question was an extra direction that the experimenter could have explored later. Actually, in some cases the answer to this question was used as a tie breaker since a three in six score determined a student's learning style in this research system. Since right hemisphere learners tend to be visual learners (Davidson), students who preferred a chapter overview in question 8 were classified as visual learners in the event of
a tie. Thus, much of the classification done in this study was premised on the results of the attitudelieaming style and achievement pretests.

At this point in the research the experimenter began implementing manipulatives in the third period class. The second period class was taught the same material in a traditional manner, void of manipulatives. Hencefortin, only the procedure with the third period class, the experimental group, will be described. The cooperating teacher had introduced the experimenter's unit on quadrilaterals by teaching the first section. The experimenter began teaching the second settion of the unit with a lessori or the properties of parallelograms. In this lesson each student Had his own geoboard, protractor/ruler, and rubber bands: of course, the students needed a few moments of play as an orientation to the geoboards after receiving instruction about their use. The approach in this discovery lesson was for the students to analyze the parallelograms they had constructed (from definitions given on the previous day) on their geoboards (Photograph 1) and formulate the theorems in section two without having seen them first. These activities helped to build students' analysis and problem solving skills. The students were not required te formally prove the theorems since the cooperating teacher had never stressed this. After their discovery time and a few prompts from the experimenter, the students were able to formulate
the following theorems：

> 1. "Opposite sides of a parallelogram are comgruent." (Hirsch 223)
> 2. "Opposite angles of a parallelogram arecongruent." (Hirsth 2eム)
> 3. "The diagonals ot゙ a parallelgram bisect each other." (Hirsch 2e34)
> 4. "The distance between two parallel lines is a constant." (Hirsch 22S)
> 5. "The diagonal and the sides of a parallelogram form two congruent triangies." (Hirser 2e3)

As an example of a passive manipulative（Schultz 54），the experimenter again emphasized the final theorem above with a paper parallelogram（Photographs $2 \& 3$ ）．The experimenter drew the diagonal of the parallelogram and then folded it on the diagonal in order for the students to see the two congruent triangles as they overlapped．Overall，the students＇ participation was good．Especially，they were very attentive，and no discipline problems were experienced． Although they used rubber bands，the experimenter warned them that they had a quota，and all of them had to be returned． This discouraged any mischievous activity．Most importantly， many students seemed shocked that they could discover geometry theorems on their own．This really impressed and motivated the students．

The second day on section two was spent in a bulletin board geme activity（please see Bulletin Board）．To begin the activity students were paired，and each team was given a
geoboard, protractor/ruler, and rubber bands. As a review each team was to read a property from the bulletin board and ronstruct a parallelogram, a rectangle, a rhombus. and a square, checking each to see if the property applied to it (Photographs 4-7), This way; all of the teans were actively involved. Then, experimenter called on one team (per property to come to the bulletin board. One teammate constructed the diffarent quadrilaterals and demonstrated or disproved the particular property for each. The other teammate placed a check on the bulletin boerd where appropriate to match the quadrilaterals and their properties. The students were actively involved in the learning process and seemed to genuinely enjoy this type of review. In the lessan on section three the students used geostrips and brads to prove that certain types of quadrilaterals are parallelograms. Each student was given six geostrips, with at least two congruent pairs coded by color (Photograph e). Again, after some orientation and play time, the students settled down to work. Without having seen the theorems for this lesson, the students completed the conclusions to the following theorems given their hypotheses:

1. "If two sides of a quadrilateral are parallel and congruent, then the quadrilateral is a parallelogram." (Hirsch 2コ9)
2. "If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram." (Hirsch 230)
3. "If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram." (Hirsch 230)

Given the hypotheses above, the students were able to construct the conditions for each (Photographs 9-12) and conclude that the quadrilateral was a parallelogram in each case, Dnce finalized, the experimenter referred to the textbook (Hirsch 2e9-30), showing the students that they had formulated the theorems for this lesson. Several commented that this was more fun than the teacher just standing in front of the class reciting facts.

Parallelograms and parallel lines were studied in section four. For the manipulative portion of the lesson, each student was given a geoboard, a protractor/ruler, and five rubber bands. By this time the students were familiar with the properties of the geobonrds. Since the pegs are arranged along parallet lines on a geoboard, the students could vichalize the hypothesis of the fallowing theorem: "If thee or more parallel lines cut off congruent segments on one transversal, then they cut off congruent segments on every transversal" (Hirsch 235). Also familiar with transversals, the students then placed another rubber band across the three parallel rubber bands to represent the transversal in the hypothesis and noted its division into three congruent segments. Prompted by the experimenter's question of what happens to a second transversal of the same three lines, the students constructed a second rubber band transversal on their
geoboards (Phetograph 13). UEing their intuition they volunteered observations and suggested possible answers. Asked to back up their speculations with proof the students used their rulers to measure the segments of the second transversal. After doing this, the students were able to formulate the conclusion to the above theorem. A second theorem covered in the lesson pertained to triangles and parallel lines: "If a segment joins the midpoints of two sides of a triangle, then it is parallel to the third side, and its length is one-half the length of the third side" (Hirsch 234). Each student constructed a triangle on his geoboard and then measured to find the midpoints of two of the legs, comnedtimg them with a rubber band (photogrept i4). Analyzing this: the students first noticed that the segment was parallel to the third side. After a prompt by the experimenter, the students began testing their estimates of the segment's length. Completing this process for several triangles, the students eventually formulated the last part of the theorem's conclusion. The students were more challenged today to test their educated guesses before stating their conclusions. Nonetheless, they still seemed to prefer this active learning technique over the lecture method.

In section five the diagonals of rectangles and rhombuses were the focus of study. Each student was given three geostrips, a brad, and a protractor/ruler (Photograph 15).

For this activity, the experimenter stressed that the geostrips now represented the diagonals of a quadrilateral, not the sides as they had done previously. In Photographs 15-18 the cut out rircles at the ends of each geostrip can be observed. These circles represented the vertices of the quadrilateral formed by the two diagonals. Either by sight or by filling in these circies on paper and connecting the dots, the students had to state what type of quadrilaterai was formed in each case. The students investigated cases of congruent diagonals, perpendicular diagonals, and various otner arrangements. From this activity the students were able to formulate the following theorems once the experimenter had stated the hypotheses in each case:

1. "A parallelogram is a rectangle if and only if its diagonals are congruent." (Hirsch 240)
2. "A parallelogram is a rhombus if and only if its diagonals are perpendicular." (Hirsch 241)
3. "A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles of the parallelogram." (Hirsch 241)

This activity was more successful than the experimenter had anticipated because the students discovered several connections. For example, when working with perpendicular diagonals, many of the students thought the parallelogram had to be a square. However, by constructing another figure with perpendicular diagonals, the students understood that perpendicular diagonals produce a square in a particular case
(four right angles), but in general perpendicular diagonals always produce a rhombus. From this the stadents were able to transfer their new knowledge to conclude that a sauare is a particular case of a rhombus, an accurate conclusion. They also learmed that theorems are always true in every case not stated just to satisfy one particular case because a Eounteremample could be found. Similarly, many students thought the paralielogram in theorem one above had to be a square, but later understood that the general Ease of a rectangle had to be concluded by the theorem. The students, as well as the teacher, seemed very pleased by the mental excursion this activity lamched. To close this day's lesson, the bulletin board activity was used again to review the new properties learned. Called upon at random, each student had to use their geostrips to construct supporting evidence for placing new checks ori the bulletin board. In their seats the other students alsc followed along, completing the same geostrip constructions and verifying the accuracy of the checks placed on the bulletin board. Thus, the students were able to help each other learn as well as discovering information on their own.

Since these properties of diagonals were so vital to the students' classification of quadrilaterals, a second day was devoted to this topic. Also, at this point in the unit, the students had been exposed to a great deal of information necessary for them to distinguish among the different types
of quadrilaterals. Thus, in effect today's activity was a review of all of the material covered thus far in the unit. First of all, the class was divided into four groups. Each group was given a different quadrilateral constructed from "orbit materials" (Photographs 17-22). The diagonals were also constructed in each manipulative figure. Thus, there was a parallelogram group, a rectangle group, a rhombus groups and a square group. Without the aid of notes or the textbook (Hirsch), the students in each group were to compile a complete list of the properties of their quadrilateral. Qnce formulated, each list was written on chalkboard and checked for accuracy and completeness. From the lists on the board, the students were able to revise and condense the information through class discussion led by the experimenter's questions. They summarized that:

1. A rectangle has all of the properties of parallelogram, four right angles, and congruent diagonals.
2. A rhombus has all of the properties of a parallelogram, four congruent sides, and diagonals that are perpendicular and that bisect opposite angles.
3. A square has all of the properties of a parallelogram, a rectangle, and a rhombus.

From their ability to easily formulate this synopsis, the experimenter concluded that the manipulatives helped this ciass to see the similarities and transfer the information more readily than the control group based on observation alone.

In section six of this unit, the topic changed from parallelograms to trapezoids. To supplement the instruction each student was given a geoboard, a protractor/ruler, and rubber bands. After reviewing the definition and parts of an isosceles trapezoid, each student constructed one on his geoboard and used rubber bands to represent the diagomals (Photographs 23 \& 24). Measuring with the protractor/rulers and focusing on the angles and the diagonals, the students were able to formulate the following theorems:

1. "Each pair of base angles of an isosceles trapezoid is congruent." (Hirsch 24b)
2. "The diagonals of an isosceles trapezoid are congruent." (Hirsch 247)

Similar to the triangle theorem from section four, the students then constructed the median of a general trapezoid on their geoboards (Photograph 25) and then made observations. Once again, they had to prove their educ:ated guesses by measuring several examples. Through this familiar process the students were able to state the following theorem without having seen it first: "the median of a trapezoid is parallel to the bases, and its length is one-half the sum of the lengths of the bases. Although this activity required more knowledge of terminology and concentration, the students still seemed to enjoy being actively involved. As their teacher, the experimenter sbserved that actually constructing and studying isosceles trapezoids then general trapezoids helped the experimental students differentiate between the
properties of each, avoiding some of the confusion experienced by the control group.

In the final section of the unit, quadrilaterals were abandoned for a study of locus points and locus theorems. This topic was so complex and difficult to understand that instruction without the aid of manipulatives would be next to impossible for the students to comprehend. First of all, a locus was defined to be "the set of all points, and only those points, that satisfy a given condition" (Hirsch eso). Basicaliy, this section was intended to sharpen the students' problem solving abilities. However, on the sophomore level students are often discouraged by activities such as these. After the students seemed to understand the concept of locus points, the experimenter began to present the locus theorems. For earh theorem one or two the te-dimensipnal models were premented to illustrate the theorem for the studente (photographs B - 27). Reading the theorems meant rothing to the students; they were much too wordy. However, seeing and touching the models allowed the students to study the given for each theorem and then follow through the model to discover where the locus points had to be. In order to make the same visual comnection the students did, please refer to Photographs $26--29$ again as the following theorems are read:

1. "The locus of points in a plane equidistant from two given points is the perpendicular bisector of the segment joining the two points." (Hirsch 254)
2. "The locus of points equidistant from two given pointe is the perpendicular bisecting plane of the segment joining the giveri points: "Hirsen ess?
3. "In a plane, the locus of points equidistant from the sides of an angle is the bisecting ray of the angle, excluding its endpoint:" (Hirsch 255)

In this case especially, manipulatives rave a very important Tole im mating wotdy mathematical jargon real to the sthdents. To support this, the experimenter's cooperating teacher and the school assistant principal observed the lesson and commented on how vital the manipulative models were to the students' comprehension. Proven by this lesson, manipulatives serve to simplify and tangibly represent difficult mathematical concepts if properly selected and Lsed. The 1 . H . som on lous points concluded the presentation of now material in the unit on guartilaterals.

The next two days were spert in review followed by the chapter test on the third day. The first day of the review was plamed as a computer activity. The software package utilized was Sunburst Communication's Geometric Supposer: Quadilaterals (Photograph 30): This software allows the user to draw quadrilaterals and diagonals, label vertices and intersection points, and measure angles ard segments. After reviewing the software, the experimenter created a worksheet which covered the main points from the unit. A copy of this worksheet has been included in the following pages (Geometry worksheet). The worksheet was lengthy and
intended to occupy the students for the entire period. Amazingly, some of the slower, failing students were the first to complete the worksheet. Whem finished, they willingly walked around helping others. Later, they commented on how much the computer/worksheet activity helped them review the material. When questioned as to whether they really enjoyed just having an opportunity to use the computers, they admitted that the computers were fum, but they convincingly stated that they had reviewed and learned material that they would not heve by studying on their own or by doing assigned problems. The second review day was filled with assigned problems and factual reviews, identical to the lesson for the control group. On the following day both classes took the same chapter test Sample Test 3), and the unit on quadrilaterals was completed. Approximately one week after the graded chapter tests were returned to the students, two posttests were administered to both classes. One posttest (Sample Test 4) was an attitude inventory identical to the attitude pretest. The purpose of this was to measure any improvements or declines in students attitudes toward geometry during the course of the unit on quadrilaterals. The second posttest (Sample Test 5) was an achievement posttest. Half of it was identimal to twelve questions from the pretest. This was planned so as to determine the amount of improvement between the raw scores on these sections of the two tests. The second half of the

```
achievement posttest was to test the students: recall of
specifics from the unit. This section was planned for a
comparison of raw scores on recall between the two classes,
in an attempt to determine if manipulatives improve
students' retention of information. Finally, the studerts in
the experimental class were asked to fill out the
questionnaire included in the following pages
(Questionnaire). The questions were designed to measure how
the students felt atout using manipulatives, which activities
they preferred, and what benefits the students experienced
from their use. Further results from the posttests as well
as the other tests mentioned in this procedure section have
been thoroughly documented and analyzed in the following
discussion of data section.
```

Sample Test 1
Mame \qquad

1. List methods of proving 2 tiängles ave congmext.
2. List methods of proving 2 right tricangles are compuext.
3. List the colresponding conguent parts of $\triangle A B C \stackrel{\ominus}{=} \triangle D E F$
4. List 10 . pains of N / s.
5. Yame 't oupplements of <4
6. $\overline{\mathrm{PS}} / /$ \qquad .
7. \triangle PTS \cong \qquad
8. If $m \angle P=70$ and $m \angle S=110$, then

9. $\angle 1 N$ \qquad .
10. $\overline{\mathrm{Px}} \cong$ \qquad
11. of $P T=10 x$ and $S R=8 x+6, x=$ \qquad .

- Slifinc and list pupecties of the follo.ing:

12. parallelograns
13. hhomtes
14. trapegoid
15. nectangle
ey the folloring ure "GIVEN" for a purf, what could you conclude?
M. $\overline{S T} \| \overline{G X}, \overline{T X} \cong \overline{R X}$
16. $\angle T O R$ and $\angle Q R S$ ale aupplementary $\angle Q R S$ and $\angle R S T$ are aupplemuxtary

Sample lest α Mare - \qquad
Please place a check in the appropinate blaxte.
Geometry

Please circle the appropirate answer.
0.29

1. When learning something new, do you preffi to listex to a lectuw, to read books, or to apply the information in a new situation?
2. Which do you understand bette v : information prevented); orally ix lecture or information a ra reed ix a chart?
3. Faced with an important project to corxpeite, do you prefer to work in yourself oi Grith a group).
4. Un the laboratory, do you learn bette by performing the experiment el by watching ether de it?
K. ten your the time, are you moot likely playing sports,
reading a book or a magazines or listening to music?
5. Que you a people person" or are you more of an indurdualiot?
I. tin math class, which described when you c fully comprehend the material:

- as the teacher verbally explains it,
(- as the teacher writes it on the chalbboand,
- as you complete classwork or homeurorte related. to the topic.

8. When you start a new unit in geometry do you prefer that the teacher
(a) gives an overview of all the topics in the chapter or
b) tells the steps to solve problems ix the first section (jumps) right ix)?
9. When asking for directions to a party, do you: prefer that someone drauryou a map oi that someone orally explains the directions 8

Sample Test 3 Name
Chapter 5 Jest
Fill ix the blank.
A quadrilateral with exactly one pain of opposite sides parallel is a \qquad

1. A quadrilateral in which lath pairs of opposite sides are parallel is a \qquad -
2. A parallelogram with four right angles is a \qquad

- A parallelograms with four congruent sides is a \qquad A quadrilateral which is both a rectangle and a rhombus is a \qquad .
kencioes 6-12 refer to \square RSTW.
$\overline{\mathrm{RS}} \|$ \qquad .
$\overline{T S} \cong$ \qquad .
$\overline{\omega X} \underline{ }$ \qquad . 9. $\angle \omega R S \cong$ \qquad 1. \triangle ST $\xlongequal{\cong}$ \qquad .

11. $\angle 1 \cong$ \qquad .
12. L \qquad and \angle \qquad are supplements of $\angle \omega R S$.
exercises $13-19$ refer to \square CDEF
13. $C E=12, C X=$ \qquad
14. $m \angle C D E=72, m \angle E F C=$ \qquad .
F. $m \angle 1+m \angle 2=103 ; m \angle F C D=$ \qquad

15. $m \angle 4=87, m \angle 2=$ \qquad
16. $m \angle 3=4 x+4 ; m \angle 4=6 x ; m \angle F E D=104 ; x=$ \qquad .
17. $X E=2 y+2 ; C E=12 ; y=$ \qquad .
18. $m \angle F C D=70 ; m \angle C F E=110 ; m \angle F E D=$ \qquad .

Please write' whether the potatemext io SOMEIMES, AlwAYS, on NEVER truce. 20. Elf each diagonal bisects a pain of opposite angles, then the parallelogram is io a nombus.
If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a rectangle.
The median of a trapezoid is parallel to the based.
23. Ex $\triangle C D E$, if X and Y are the midpoints of $\overline{C E}$ and $\overline{D E}$, respectively, then $X Y=C D$.
In $\triangle A B C$, if X and Y are the midpoints of $\overline{A C}$ and $\overline{B C}$, then $\overline{X Y}$ is parallel to $\overline{A B}$.
5. ten quadrilateral $A B C D$, if $\overline{A C} \cong \overline{B D}$ then $A B C D$ is a rectangle.
26. Arectangle io a square.
<compat>.7. Ex a parallelogram $A B C D$, if $\overline{A C}$ is perpendicular to $\overline{B D}$ then parallelogram $A B C D$ is a square.
Dow the following given information guarantee that $A B C D$ in a parallelograms? (yes an mo)
28. $\overline{A E} \xlongequal{N} \overline{C E} ; \overline{B E} \cong \overline{D E}$

- 9. $\overline{A C} \perp \overline{B D}$

30. $\overline{A B} \| \overline{C D} ; \overline{A B} \cong \overline{C D}$

Exercises 31-33 refer to the 3 parallel lines $h, j,+K$.
31. th $E G=7, G F=7, R S=8$, then $S T=$ \qquad
2. If $G F=\frac{1}{2} E F$ and $R S=5.6$, then $R T=$ \qquad
33. Hf $\overline{E G} \cong \overline{R S}$, does quadrilateral GSRE have to le a parallelogram?

Whirs trapezoid $A B C D . \overline{M N}$ is the median
34. $A B=16, D C=10, M N=$ \qquad
25. $D C=12, M N=15, A B=$ \qquad

f. $\angle D M N \cong$ \qquad because segment $\overline{M N}$ is to base $\overline{A B}$.
17. If $\overline{A D} \cong \overline{B C}$, then $\angle D A B \cong$ \qquad .
2. Af $\overline{C B} \cong \overline{A D}$, then $\overline{D B} \cong$ \qquad .

Exercises 39-42 refer to $\triangle R S T$. JK joins the midpoints of $\overline{R T}$ and $\overline{S T}$.
B9. 灭 is \qquad to $\overline{R S}$.
40. $J_{k}=7.2, R S=$ \qquad .
\qquad .

1. eff $R S=6 c+10$, then $J K=$ \qquad
2. $\angle T K J \cong$ \qquad .
3. The set of all points, and only those points, that eatiof a given condition is a \qquad -

Oraw a sketch and describe the solution.
44. In a plane, the locus of points equidistant from the sides of an angle.
45. The locus of points in a plane equidistant from 2 given points.

He. Do one of these 2 proofs.
a. Shier: points A and D are the midpoints of $\overline{B E}$ and $\overline{C E}$.
Prone: Quadrilateral $A B C D$ is a trapeyoid.

b. Liven: $A B C D$ is a rectangle ; $\overline{A B} \cong \overline{B C}$ Prove: $A B C D$ is a square.

Sample Test 4 Marne \qquad
Place one check per line in the lay xe moot representative) of you fulings or attitudes when you thins of geometry.
"Geometry"
\qquad

Postteat

1. Diver \qquad SRTA
a) $\overline{P S} 11$ \qquad .
B) $\triangle P T . S \cong$ \qquad

C) Eff $m \angle P=70$ and $m \angle S=110$, then $m \angle R=$ \qquad
D) $\angle 1 \cong$ \qquad
E) $\overline{P X} \cong$ \qquad
F) ff $P T=10 x$ and $S R=8 x+6, x=$ \qquad .
2. Define and list properties of the following: (as many "
A) parallelogram
B) rhomeres)
c) trapezoid
D) rectangle
3. Af the follourng were "given" for a proof, what could you conclude?
A) $\overline{S T} \| \overline{Q R}, \overline{T X} \cong \overline{R X}$

B) $\angle T Q R$ and $\angle Q R S$ are aupplemextany;
$\angle Q R S$ and $\angle R S T$ au e suppermextary.

Westtent (con't.)
4. What facts can you recall about the DIAGONALS of the following?
A) Parallelogram
B) Rectangle
c) Phombres
D) Square

Write an equation to find the following lengths:
a)

a) $B C=$ \qquad
b)

b) $E F=$ \qquad

State all that you tenon- (other than $\overline{w z} \cong \overline{X Y}$) from the follouricy figure: trapergoid

$$
w x y z
$$

FRDPEFTY

OFFOSTTE STDEG ARE FARALKEL *
QFFOSTTE SIDES ARE
CORGKUENT
OFFOSITE ANGLES AFE
COMGRUENT $*$
DIAGOMALS ERSECT EACH OTHEFDIAEONALS ARE CONGRUENT
DIAGQNAL FOFMS E CONGFUENT TFTANGLESD) AGUNAL S ARE PERFENDTCULAF:DTAGODALS ETSERT OFPOSTTEGNGLES
ALL ANGLES AFE FIGHT ANGLES * *
ALL STDES AFE COWGRUENT

1 lame
Etemetry - Chapter 5
Buick Worksheet
Draws parallelogram (Random).
Choose ax angle \qquad ; its measure is \qquad
tels opposite angle \qquad has measure \qquad .

Choose a $3^{\text {nd }}$ angle \qquad ; its measure ia \qquad tet es opposite angle \qquad has measure \qquad .
Supporting theorem:
L \qquad is a supplement of \angle \qquad and L \qquad
Prove by the measures above:

Supporting theorenv:
Choose a side \qquad ; its measure is \qquad .
Uts opposite side \qquad has measure \qquad .
Choose a $3^{\text {nd }}$ ride \qquad ; its measure is \qquad
tets opposite side \qquad has measure \qquad .
lupporting theorem:
Draw 2 diagonals and label their intersection.
diagonal \qquad has measure \qquad - Diagonal \qquad hoo measure \qquad
Measure the segruext from vertex \qquad to the point of intersection of the 2 diagonals; its measure is \qquad - Measure from the same intersectir point \qquad to the opposite vertex \qquad ; its measure is \qquad .

So, intersection point \qquad is the \qquad of diagonal \qquad Measure the segment from a $3^{\frac{-d}{d}}$ vertex \qquad to the point of intersection of the: diagonals', its measure is \qquad . Measure from the same intersection
point \qquad tother opposite vertex \qquad ; ito measure is \qquad - So, intwect.
\qquad is the \qquad of diagonal \qquad .
supporting theorem:
Aw shape (N). Parallelogram. Rectangles.
L has measure \qquad L \qquad has measure \qquad
L - has measure \qquad . \angle \qquad has measure \qquad
Side \qquad has measure \qquad ; ito opposite side \qquad tao теазure \qquad
Side \qquad hims measure \qquad ; Ito opposite aide \qquad has mecaure \qquad
2) Supporting theorems):

Draw 2 diagonals.
diagonal \qquad has measure \qquad - diagonal \qquad taos measure \qquad No, diagonal \qquad is \qquad to diagonal \qquad .
supporting theourn):

Sill of the above are also characteristics) of a \qquad which has the additional property that \qquad

Bew thape. Parallelogran. Bhombus).
Side_has measure \qquad - Side \qquad has measure \qquad
Side - has measure \qquad - Side \qquad has meaoure \qquad
Craw 2 diagonals.
liagonal. \qquad has measure \qquad - Diagonal \qquad hao mecueure \qquad
talel the intersection of the 2 diagonals. \qquad .
Measum the 4 angles formed by the 2 diagonals.
\qquad has measure \qquad . L \qquad ha* measure \qquad .
\qquad has measure \qquad . L \qquad has measure \qquad .
D, the diagonals of a Mombus are \qquad .
livose a vertuk L \qquad ; its measure is \qquad .

The diagonal \qquad cuts throigh the vertek L \qquad (above). The 2 ingles formed, $<$ \qquad and \angle \qquad have measures
and \qquad .
The vertex angles opposite L in the rhomerus is L \qquad ; it is cut by the parne diagonal \qquad . The 2 angles formed, L and L \qquad , have meaoures \qquad and. \qquad \&upporting theoren:

Maing the small angles from the 2 poblerestabve:
\qquad
\qquad and L \qquad are alternate ixteriou angles. thismeans that side \qquad and side \qquad are \qquad \angle \qquad and \angle \qquad are alternate interior angles. This meaxs that side \qquad and side \qquad are \qquad .
his redefines the fact that a rhombus is a \qquad based upon the eupporting theoresx:

Tewithape. (N) Trapezoid. randoms.
Label. Subdivide segment. Segment (choose a leg). Sections 2
Repeat this process to get the midpoint of the other leg.
Draw the segment connecting the 2 pointsalove.
his segnext \qquad has measure \qquad and is called the \qquad
Base \qquad has measure \qquad
Base \qquad has measure \qquad .
Set up a relationship equating these 3 measures:
upporting theolers:
Choose ax angle \qquad formed by the median and the leg \qquad ; the angle's measure is \qquad .
Angle \qquad is formed by the laseaxd the same log; ito measure is
b, L \qquad is \qquad to \angle \qquad .
These 2 angles are \qquad angles.
Dow we can say that eegrient \qquad is parallel to segrext \qquad due to the supporting theorarx:

This proves that in a trapezoid, the median is \qquad to the \qquad .

Whew shape (N). Your own. sides + angles. $\angle D A B=60 \cdot A B=2 . \angle A B C=120 \cdot B C=$: $\angle B C D=60$. Draw.
Te measure of side $\overline{A B}$ is \qquad ; its opposite side \qquad has measure \qquad haw $\overline{A C}$.

$$
m \angle D C A=
$$

\qquad

$$
m \angle C A B=
$$

\qquad
bo, side \qquad to side \qquad service alt. 'interior $\angle s$ are Bred on these facts (*), we can say that quadrilateral $A B C D$ is a because of the aupporting theorem:

Marne
(thentionnaive)
MANIDULATIVES = geo-boards, geo-xtrips, low models, te. Did you enjoy using manipulatives as we studied quadrilaterals. Explain.

Do you fuel the manipulatives helped you learn and /or retain the pacts about quadrilaterals better than just the textbook? Explain.

Was there a particular type of manipulative activity you liked best?

Did you hern anything from going to the computer nom? Do you fuel that the worksheet and compute prograirn helped you review for the tent?

Did the manipulatives make geometry more fun and interacting? Explain.
did you ever fuel as if the activities were too childish yo you? Explain.

Please use this space to give me any additional Fudlack about maxipulatives that you wish.
Any comments yon make (positive on negative) will be a great help.

DISCUSSION OF DATA

In the thesis statement one of the gaals was to determine if the use of manipulatives produced any differerices in the students' achievement or attitudes toward geometry. Further. analyzing the effects on visual, auditory, and kinesthetic learners specifically in the areas of achievement ard attitude was another goal. In this section of the thesis data is presented, and the process by which it was analyzed is described. To draw the conclusions, t tests for correlated means (Linton 212-215) were performed to analyze the significance of the data.

When compiling the data, it was necessary to pair students between the experimental group and the control group for several reasons. First of all, there was a difference in class size. In the statistical comparisons, the number of students mepded to stay constant for the purpose of continuity. Also, the ヨbility levels differed between the two groups. These conditions were beyond the experimenter's control. Pairing was an option to compensate for this. The fact that pairing did occur must be a constraint on the research because of possible errors. When pairing the students, the decision was based on the students achievement and ability, as revealed by the students previous chapter test averages and pretest scores. Out of the fourteen students in the experimental group, tweive of them were matched with similar students in the control group. Data

```
from these twelve pairs of students was gathered throughout
the research and used to draw the cunclusions on actievement
and attitudes.
```

In the area of achievement, two means of comparison were used. First of all, the differences between the students' pretest and posttest (recall) scores in both the control group and the experimental group were identified. The second comparison was between the students' quadrilateral chapter test scores and the averages of their previous chapter test scores. As a student teacher the experimenter did not administer these previous chapter tests; however, the cooperating teacher assisted in constructing the test and validated that it was similar to the previous chapter tests. Therefore, this comparison was a valid measure of achievement.

Considering the pretest and posttest scores specifically, the difference in t values between the experimental group and the control group was conclusive (Exhibits 1 \& 2). Exhibit 1 presents the pretest and posttest scores for the twelve students in the experimental group who were successfully paired with twelve students in the control group. Also presented in Exhibit 1 are the results of the t tests on this data. For the resesarch the 95% confidence level was used to find the critical value for t (Hoel 402). Similarly, the same information for the control group is presented in Exhibit 2. Comparing the obtained value for t with the critical value for t in each extibit, there is a significant difference between the pretest and posttest scores in both
cases. This is to be expected because an entire unit of material was taught in the elapsed time. However, the t value of 4.180 for the experimental group is more significant than the control group's t value of 3.015. This difference can be attributed to the experimental group's use of manipulatives. These results are most impressive considering that the students im the experimental group may have had the same ability as their partners in the control group, but they were not high achievers. Whereas the control group was more academic in nature, the students in the experimental group were not likely to study for tests or quizzes. Examining Exhibits 1 and 2 more closely, the total raw score for the experimental group on the pretest was 70 compared to the total raw score of 120 for the control group. Looking to the posttest (recall) scores, the experimental group's total score of 151 was a 116% increase as compared to a 38% increase in the control group's score. Considering the natures of the experimental students and the t test results, the use of manipulatives produced a definite increase in achievement.

As another measure of achievement, the quadrilateral chapter test score was compared to the average of the previous chapter tests for both groups. The data and t test results for the experimental group are presented in Exhibit 3; the same data for the control group is presented in Exhibit 4. Since neither t value is significant labove the
critical value), the null hypothesis (Linton 213) is supported. For both groups, no significant differences in achievement were found between the students quadrilateral chapter test scores and their average scores of the previous chapter tests. Although this proved to be an inconclusive measure of achievement, several comments can be made about this comparison. First of all, the experimental group was not one for studying for tests. Any possible improvements in performance would have been surpassed by the control group due to their fine studying habits. Since neither t value was significant, further support is added for the similarity of this test to the previous tests. Also, the general meaning nature of manipulatives may not transfer over to the sperifics demarded by a chapter test. This may explain why the experimental group performed so well on the general recall posttest. Another final reason is that teachers must make a trade-off when using manipulatives. The experimental group missed a review day that the control group had due to the computer room activity. Although the control group students worked individually on the same assignment that the experimental group had for homework during this one review day, time still had to be swapped in order for the computer activity to take place. Thus, teachers must make sure that the manipulative activities are just as worth-while as the missed class time. In other words, missing the one in-class review day may have hurt the experimental group's performance
on the chapter test. This trade-off which must take place is a choice which teachers must ponder. In summary, in spite of the inconclusive results from the chapter test comparison, the pretest and posttest (recall) comparison provided strong support for the improvement in students' achievenent brought about by the use of manipulatives in the mathematics classroom.

While teaching the unit, the experimenter observed that the low achieving students seemed to participate more in class if manipulatives were used. This observation brought about the question of whether manipulatives help to improve the achievement of slower students in particular. For this reason the student pairs were again analyzed, and more t tests were run on just the average to below average $1 C$ or below) students. Thus, in Exhibits 5 and 6 data for only nine pairs of average or below average students is presented. In these exhibits student performance on the pretest and posttest is compared. As expected, the t values for both the experimental group and the control group are significant. Further, the t value for the experimental group is still more significant than the t value for the control group. Thus, the slower students also showed improvement due to the use of manipulatives. Unfortunately, due to the limited number of pairs in this study, an accurate comparison of t values between the low and high achievers in just the experimental group could not be justifiably performed. Due to the
experimenter's observations, this is an area well worthy of further study. However, if manipulatives keep slower students on task and out of trouble, they also tiave numerous other benefits for the classroom teacher.

Examining the same hypothesis as in Exhibits 5 and b, t tests were performed on the differences between the quadrilateral chapter test scores and the average scores of the previous chapter tests for the same nine pairs of students: The data and t test results for these average or below average students are presented in Exhibits 7 and 8 . In Exhibit 7 the obtained value for t in the experimental group is not significant, and the null hypothesis is supported. Oddly, the t value for the control group is significant in Ehhibit 8. One possible reason for this is the nature of the control group; they were more grade conscious. Perhaps certain students noticed their deficiency and determined to improve their performance, especially for a new tearher, Otherwise, the comparisons in Exhibits 7 and 8 proved to be inconclusive. Thus, the benefits of using manipulatives with slower and underachieving students remains a topic for further study (Thornton 38).

ATTITUDES

Another area of interest was whether using manipulatives causes a positive improvement in students' attitudes toward geometry. A student's attitude toward a subject has a great influence on his performance, According to Jacobs (1974), "attitude is positively correlated with achievement (Dessart 23). Further, an unfavorable attitude can produce anxiety over math, evidenced by stress and tension (Dessart 24). Therefore, to ensure student success teachers must attempt to implant proper, positive attitudes toward mathematics in the students.

In order to measure changes in the students attitudes, an attitude test was administered before the unit was begun and again after the unit was completed. In Exhibits 9 and 10, the students' scores on the pretest and the posttest for both groups are presented. The t test results for both groups are also given in Exhibits 9 and 10 . The obtained value for t for the control group (Exhibit 10) is not significant. In fact, there was no difference between the total raw scores on the pretest and the posttest. This is important to disprove any attitude improvements due to the new teacher situation. However, Exhibit 9 does show a significant t value for the experimental group. Thus, the use of manipulatives did produce a positive improvement in the students' attitudes toward geometry. In fact, the total raw score more than doubled in the positive direction between

```
the pretest and the posttest. Further, the number of
experimental students with overall negative attitudes toward
geometry decreased from five to two. The two negative scores
were only slightly negative, -0.29 and -0.14. Thus, the
improvement in attitudes of the students who used
manipulatives is very well supported. The students seemed
interested and occupied when using the manipulatives, and
this was well documented by the test results.
```


LEARNING STYLES

As a link between attitudes and learning styles, the comments by experimental students on a questionnaire given after the unit was completed have been compiled. Their responses were sorted by learning style (visual, auditary, and kinesthetic). Some selected responses have been chosen for inclusion in this thesis. Surprisingly, even though manipuletives are mot envisioned to help auditory learners, one auditory learner commented, "The manipulatives made the theorems easier to understand." One above average, kinesthetic learner commented that manipulatives helped, "Esperially the locus models, if I didn't have them I wouldn't have known it." Dne below average, kinesthetic learner commented, "In the textbooks it just shows you one side, but the manipulatives give you a three-dimensional figure." A below average, visual learner said, "Everybody enjoys having time out from always writing and trying to learn from what the teacher is doing." Another below average, visual learner admitted, "Manipulatives made me pay attention, more than just looking at the book." Finally, another below average, visual learner declared, "I think my grade in this class went up because of the manipulatives. They made me understand it completely." From these comments, manipulatives clearly improve the achievement and the attitudes of all types of learners in geometry.

In the mext stage of research, the twelve students in each group were sorted by learning style (visual, auditory, or kinesthetic). In Exhibit 11, the posttest scores for the five visual, one auditory, and six kinesthetic learners in both the control and experimental groups are presented. The average scote in each category has also been calculated. Evaluating these scores, the visual experimental group scored the highest, followed by the kinesthetic control group. Although the visual experimental learners' result was in accordance with expectations, the kinesthetic control learners made a surprising showing. For this reason, t tests were performed on this data to analyze the results more closely. In Exhibit 12 the data for the visual experimental group 15 presented. The pretest and posttest scores are compared to determine the degree of improvement. For this group a vory significant tyalue of 4.079 was calculated as to be expected. Exhibit 13 presents the same data for the visual control group. Here, the t value is not significant in accordance with the hypothesis of this research. The t tests were not performed for the auditory learners since only one student was in this category in both the control group and the experimental group. However, in Exhibit 14 very interesting results are found for the kinesthetic experimental group. The obtained value for t is very significant. In contrast, the kinesthetic control group results in Exhibit 15 reveal a t value which is not
significant. This is surprising considering their first place showing in Enhibit 11. One reason for this is thet these students are high achievers and scored well on their pretests. Thus, there was not much room for improvement. Returning to Exhibit 14 , the kinesthetic experimental group is not a strong group of learners, as evidenced by their pretest scores. In fact, the total post score in Exhibit 14 is less than the total pre score of the control group in Exhibit 15. Thus, the comparison made in Exhibit 11 is too general to be accurate and informative. However, the significant t value for this group lends support for the use of manipulatives with kinesthetic learners. The manipulatives were designed for this type of learner and obviously proved to be effective. To summarize the results of the t tests, no significant improvements resulted in either of the control groups (Exhibits $13 \& 15$). The manipulatives produced a significant improvement in the scores of the kinesthetic experimental learners (Exhibit 14). The most impressive results occurred with the visual experimental group (Exhibit 12). This group had the lowest total pre score (26) of any group analyzed, well below the kinesthetic experimental group's score of 45. The low ability, vistal experimental group showed a phenomenal improvement. Their post score of 82 was only two points below that of the high ability, kinesthetic control group.

Obviously, this group responded most dramatically to the use manipulatives in terms of pretest and posttest scores.

In Exhibit is the chapter test scores of both the control group and the experimental group have been categorized by the students learning styles. The mean score in each sategory was also calculated. Dnce again, the strong, kinesthetic control learners scored highest on the chapter test. Due to their ability and tendency to study, this result was not surprising. Not much variation in scores was evident among the other classificetions. For this reason, t tests were completed to check for progress between the quadrilateral chapter test and the average of the previous chapter tests. Exhibits 17 through 20 present the data and t test results for the visual and kinesthetic learners in both the control group and the experimental group. Dnce again, t tests could not be performed to find the improvement of the auditory learners since only one student was classified in this manner. Although the greatly improved, visual experimental learmers had the greatest obtained value for t, nome of the t tests in Exhibits 17 through 20 were conclusive since the obtained t values were less than the critical values for t. Thus, no improvements in achievement due to the use of manipulatives were evident from the analysis of the chapter test scores.

Another method of comparison chosen was examining the number of correct responses to open ended questions on the
posttest. The motivation for this comparison was to discover If the experimental students would recall more facts from having worked with the manipulatives. In Exhibit 21 posttest question four is stated, and the students' scores are presented. For every correct fact answered, the students received one point. In Exhibit 21 their raw scores are classified according to the learning styles of the studemts, and the average score for each category has been calculated. Dnce again, the slower, visual experimental students made a surprising showing, having the highest mean score of all of the categories. This group was closely followed by the academic, kinesthetic control group. The mean scores of the auditory and kinesthetic experimental learners were third and fourth respectively. Thus, allowing for the exceptional study habits of the kinesthetic control group, the experimental students achieved the highest scores on recalling facts about diagonals. Hopefully, this is due to the extensive use of geostrips to teach the seetion of diagonals to the experimental group. If so, manipulatives also help to improve the reaall of the students who use them in the learming process. The raw scores from question six on the same posttest are presented in Exhibit 2e. Analyzing the mean scores in each category, very little difference in scores was found among the different categories of learmers. Perhaps the nature of this question was too general or open for the students to give detailed responses.

Whatever the reason, the analysis of question six was inconclusive. Im addition to Exhibit 21, further tests of this type would be necessary to yield supporting evidemce for the ciaim that manipulatives increase students petention of information.

The data presented in Exhibits 1 through 2 e was compiled from attitude and achievement pretests and posttests administered by the experimenter during her student teaching experience. The scores on these instruments have been analyzed to determine if the use of manipulatives effected an improvement in students' achievement or attitudes toward geometry. Another dimension of the research was to determine the cognitive styles which benefited most from the use of manipulatives. Having described the results of the t tests on this data, the experimenter must now present the limitations of this research and draw the findl conclusions.

EXHTETT 1

…… … -...............

CUMULATTVE SCOFES OR EDUAL SECTTONS
EXFEFTMENTAL EFOLF

		FFE SCORE	FODT SCORE	DTFFERENCE (FRE-POST)	DIFFERENCE GQUARED
STUDENT	1	7	7	0	0
STUDENT	e	6	15	--8	St
STUDENT	3	古	10	-4	16
STUDENT	4	6	eᄅ	-16	csa
STUDENT	5	11.	13	- ${ }^{\text {c }}$	4
Student	6	2	8	-6	36
STUDENT	7	5	24	-19	361
STUDEET	3	\square	1 E	-4	16
ETUDENT	9	9	14	-5	5
Student	10	3	11	-8	64
STUDENT	J. 1	4	G	-4	16
Student	12	3	7	-4	16
Total		70	151	-81	991

THE TOTAL NLMEEF OF SUBJECTS (N)
$\mathrm{H}=$
1 E

THE STAMDARD DEVIATION OF THE DIFFERENCE SCORES

$$
5 d=5.594
$$

THE MEAN OF THE DXFFEFENCES (FRE-FOST)

$$
\bar{x}=-6.75
$$

THE OBTAINED VALUE FOR

$$
t=4.130
$$

THE CRITICAL VALUE FOR $t(N-1,0.0 E)$
$t=$
1.796

CUMULATIVE GCOFES ON EDUAL GEETTONS CONTFOL GROUF

THE TOTAL NUMEEF OF SUBJECTS (N)

$$
N=\quad 1 e
$$

THE STANDARD DEVIATION OF THE DIFFERENCE SCORES

$$
5 d=4.307
$$

THE MEAN OF THE DIFFERENCES (PRE-FOST)

$$
\bar{x}=\quad-3.75
$$

THE OBTAINED VALUE FOR t

$$
t=3.015
$$

$$
t=1.796
$$

EHAFTER TEST SCOFES UN EOUAL SECTTONS EXFEFFTMENTAL GFOUF

THE TOTAL NUMEEF OF GURJECTS (N)

$$
N=\quad 12
$$

THE STANOARD DEUIATION OF THE DIFFEFENCE GCOFES

$$
50=9.460
$$

THE MEAN GF THE DIFFERENCES

$$
\bar{x}=\quad-\mathrm{en} 00
$$

THE DETAINED VALUE FOF t

$$
t=0.732
$$

THE ERTTTCAL UALUE FOF t (N-1, O. OE)

```
t=1.796
```

CHAFTEF TEST SCORES ON EOUAL SECTTONS CONTEOL EFOUF
.

GTUDENT	1
STUDENT	2
GTUDENT	3
STUDENT	4
GTUDENT	5
STUDENT	6
STUOENT	7
STUDENT	9
STUDENT	7
GTUDENT	10
STUDENT	11
STUDENT	12

TOTALS

FRE CHAFT. 5 CHAPTEF 5
SCORE

DIFFERENCE DTFFERENCE

68
84
90
78

96

ge
60
96

92

92
6 c
อᄅ

934
75
83
92
60
99
67
69
79
96
66
61
88

-13
169
$-3 \quad 9$
已 4
$-13 \quad 3 e^{4}$
e
-15
4
e2s
81
es9 16
256
9
-17
4
-16
-1
6
-60
1414

THE TOTAL NUMEER OF SUETECTS (N)

$$
N=\quad 1 e
$$

THE STANDAFD DEVIATION OF THE DIFFERENCE SCORES

$$
\mathrm{Sd}=10.063
$$

THE MEAN OF THE DIFFERENCES

$$
\bar{x}=\quad-5.00
$$

THE OBTAINED VALUE FOR t

$$
t=1.721
$$

THE CRITICAL VALUE FOR $t(N-1.0 .05)$

$$
t=1.790
$$

EXHTEIT E

ACHIEVEMENT
EXPERTMENTAL GROUF
WTUDENT 4

TOTALS
FFE
BCOFE

DIFFERENCE DIFFERENCE (PRE-FOST) GQUAFED

THE TOTAL SUMEEF OF SUETECTS (N)
$N=$
9

THE STANDAFD DEVIATIDN OF THE DIFFEFENCE SCOFES

$$
\operatorname{sd}=6.140
$$

THE MEAN DF THE DTFFEFENCES (FFE-FOST)

$$
\bar{x}=\quad-7.779
$$

THE OETAJNED VALUE FOF t

$$
t=\quad 3.800
$$

THE CFTTICAL VALUE FOF t (N-1, 3 , OE)

$$
t=\quad 1.860
$$

EXHIETT 6

ACHIEVEMERT
CONTFGL EROLF

TOTALS

STUDENT	1
STUDENT	2
STUDENT	3
STUDENT	4
STUDENT	5
STUDENT	6
STUDENT	7
STUDENT	6
STUDENT	9

THE TOTAK NUMEEF OF SUBJEETS (N)

$$
N=
$$

$$
9
$$

THE GTANDAFD DEVIATTON OF THE DIFFEFEWEE SCOFES

$$
5 d=4.096
$$

THE FEAN OF THE DTFFEFENCES (FFE-FOST)

$$
\bar{x}=\quad-2.779
$$

THE OETATNED VALUE FOF *

$$
t=\quad 8.040
$$

THE CRTTTCAL VALUE FOF t (N-1, $D . O E)$
$t=$
1.860

EXHTETT 7

ACHIEVEVENT
EXFEFIMENTAL GROUF

```
FRE CHAFT, 5 GHAFTEF 5 DIFFEFENCE DIFFEFENCE
    GCOFE SCORE
```

FRE CHAFT. 5
CHAFTEF E GCORE SCOFE
\qquad

```
DIFFERENGE
DTFFEFENEE SQUAFED
```


GTUDENT	1
STUDENT	2
GTUDENT	3
STUDENT	4
STUDENT	6
GTUDENT	6
STUDENT	7
STUDENT	8
STUDENT	9

TOTALS

76	78	\cdots	4
81	®2	-1	1
57	80	--93	59
6	66	-1	1
69	70	-1	1
78	66	-8	64
60	74	-14	196
54	44	10	100
80	ge	-	4
6 e	662	--42	900

THE TOTAL NUMEEF OF SUETEETS (N)
$N=$
9

THE STANDAFD DEVIATION OF THE DIFFEFENCE SCOFES $5 d=\quad 9.38 \pm$.

THE MEAN OF THE DIFFEFENCES

$$
\bar{x}=\quad-4 \times 60^{7}
$$

THE OETAINED VALUE FOF t

$$
t=1.492
$$

THE CFTTICAL VALUE FOF t (N-I, OD.OE)
$t=$
1.860
EXHIETTE
ACHTEVEPENTCONTROL GROUF
FRE CHAFT. E CHAPTEF : SCORE

 SCOFE

 SCORE
 D JFFERENCE DSFFEFENCE gQUARED
-....-....................
-....-....................$-13$1.69
-3 9
-13 324
-15 ees
9 81
-17 289
-16 256
$-1$136

STUDENT	1
STUDENT	$巳$
STUDENT	3
STUDENT	4
STUDENT	5
STUDENT	6
STUDENT	7
STUDENT	9
STUDENT	9

EXHIEIT 9

ATTITUDES

EXFEFIMENTAL GROUF

		FFE SCORE	$\begin{aligned} & \text { Fost } \\ & \text { Cone } \end{aligned}$	DTFFEFENCE (FFE FOCTT)	DIFFERENCE GQUARED
STUDENT	1	1.71	1.71	0.00	0.00
STUDENT	2	0.57	0.57	0.00	0.00
STUDENT	3	-0.e9	0.43	-0.71	0.51
STUDENT	4	-0.43	0.57	-1.00	1.00
STUDENT	5	1.29	1.00	o.eq	0.08
Student	6	-0.e9	1.00	- -1.29	1.65
student	7	-0.09	0.43	-0.71	0.51
Student	8	0.96	1.14	-0.e9	0.08
STUDENT	9	0.00	0.00	0.00	0.00
STUDENT	16	0.14	-0.e9	0.43	0.18
student	11	-0.71	-0.14	-0.57	0.33
Student	1 L	$0 . \mathrm{eq}$	0.29	0.00	0.00
total		2.96	6.71	-3.86	4.35

THE TOTAL NUMEER OF SUBTECTS (N)

$$
N=\quad 12
$$

THE STANDARD DEVIATION OF THE DIFFERENCE SCORES

$$
5 d=0.53 x
$$

THE MEAN OF THE DIFFERENCES (FRE-FOST)

$$
\bar{x}=-0.3 e 1
$$

THE QETATNED VALUE FOR t

$$
t=\quad 2.095
$$

THE CRITICAL VALUE FOR t (N-1.9.OS)

$$
t=1.796
$$

EXHTETT 10

ATTITUDES
 CONTROL GFOUF

THE TOTAL NUMBER OF SUBTECTS (N)

$$
N=\quad 12
$$

THE STANDARD DEUIATION OF THE DIFFERENCE GCORES

$$
5 d=1.175
$$

THE MEAN OF THE DIFFERENCES (FRE-FOST)

$$
\bar{x}=0.000
$$

THE OBTATNED VAL UE FOF t
$t=$
0.000

THE CRITICAL VALUE FIR t (N-1.0.OE)

$$
t=1.796
$$

FOSTTEST AVEFAGES

COHTFOL
EXFEFIPENTAL

LEAFNTNG ETVLE:

AUDTTOFY

- ---................

7
16
1 e
1.7

巳
5
84

14
'7
19
8
10
14
7

61
10. ${ }^{\circ}$
EXHXETT 1 .
UTSUAL
EXPEFTMENTAL GROUF
PRE
GCORE

FOST
SCORE

DIFFEFENOE (FRE-FOST) SGUARED

STUDENT	1
STUDENT	3
STUDENT	3
STUDENT	4
STUDENT	5

STUDENT Z STUDENT 3 STUDENT 4 ETUDENT 5
TOTALS

VISUAL
CONTFEL GROUF

		FFE SCOFE	FOST SCOFE	DTFFERENCE (FRE-FOST)	D IFFEFENCE gQUARED
STLIDENT	1	9	1.9	-10	100
STUDENT	E	6	18	-12	144
STUDEDT	3	1 e	12	O	O
STUDENT	4	6	6	\%	0
STUDENT	5	9	9	-1.	1
TOTAL		41.	64	--3	\% 48

THE TOTAL NUMEER OF SUBTECTS (N)

$$
N=\quad 5
$$

THE STANDARD DEVTATION OF THE DTFFEFENCE SCOFES

$$
5 d=5.979
$$

THE MEAN OF THE DIFFEFENCES (FFE-FOST)

$$
\bar{x}=\quad-4.600
$$

THE OETATNED VALUE FOF t

$$
t=\quad 1.744
$$

THE CFITTCAL VALLEE FOR t (N-1, O.OS)

$$
t=\quad=13 \mathrm{E}
$$

EXHTEST 14

KTNESTHETTE
EXFEFTMENTAL GFOUF

EXHTETT $: 5$

KINESTHETIC CONTFOL GROUF

		FRE SCORE	FOST SCORE	DIFFERENCE (PRE-POST)	DIFFERENCE SOUARED
STUDENT	1	10	9	1	1
STUDENT	e	1 E	16	-4	16
gtudent	3	18	1 e	6	36
STUDENT	4	13	19	-6	36
Student	5	16	E]	-'7	49
STUDENT	6	4	5	-1	1
TOTAL		73	34	-11	139

THE TOTAL NUMEEF OF SUBJECTS (N)
$N=$
6

THE STANDARD DEVTATION OF THE DIFFERENCE SCORES

$$
5 d=4.875
$$

THE MEAN DF THE DTFFERENCES (PRE-FOST)

$$
\bar{x}=-1.833
$$

THE GETATNED VALUE FOR t
$t=$
0.921

$$
t=e .015
$$

LEAFNTMG STYLE:

VIGUAL
…
$\mathrm{MEAN}=$

AUD T TOFY
………............

KTMESTHETTC

- - ………-..................

MEAN =
85.7

Be
90
8%
70
74
396
79.0

44

86	70
96	86
82	66
96	86
92	89
66	$8 e$
-514	-290

81. 3

VISUAL

EXFEFIMENTAL GROUF

```
PRE CHAFT. S CHAPTEF S DIFFERENCE DIFFERENCE
    SCORE
    GCORE
\begin{tabular}{ll} 
STUDENT & 1 \\
STUDENT & \\
STUDENT & 3 \\
STUDENT & 4 \\
STUDENT & 5
\end{tabular}
totals
\begin{tabular}{r}
31 \\
73 \\
57 \\
69 \\
60 \\
\hline \\
360
\end{tabular}
घอ
\(-1\)
1
STUDENT E STUDENT 3 STUDENT 4




396
\(-36\)
736

THE TOTAL NUMEEF OF SUBTECTS (N)
\(N=\)
5

THE STANDARD DEVIATION OF THE DIFFERENCE SCORES \(5 \mathrm{c}=\) 10.910

THE MEAN OF THE DTFFERENCES
\[
\bar{x}=\quad-7 n 200
\]

THE DETAINED vALUE FOR \(t\)
\(t=\)
1.475

THE CFITICAL VALUE FOE \(t\) ( \(N-19.9 .05\) )
\[
t=\quad e .13 e
\]

\section*{EXHIETT 18}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & FRE CHAFT. 5 GCOFE & CHAFTEF E GCORE & DTFFEFENCE & DTFFEFENCE SDUAFED \\
\hline STUDENT & 1 & 75 & 89 & \(-1.7\) & 169 \\
\hline STUDENT & E & 9 F & 90 & e & 4 \\
\hline STUDENT & 3 & 67 & 60 & 9 & 81 \\
\hline GTUDENT & 4 & 66 & ge & \(-16\) & 256 \\
\hline STUDENT & 5 & 88 & 9 e & 6 & 36 \\
\hline TOTAL & & 390 & 402 & -1. 1. & 546 \\
\hline
\end{tabular}

THE TOTAL SUMEEF OF SUETECTS (N)
\(N=\)
5

THE STANOAFD DEVIATTON OF THE DIFFEFENCE SCOFES
\[
9 \mathrm{~d}=\quad 11.371
\]

THE MEAN OF THE DIFFEFENCES
\[
\bar{x}=\quad-\quad \mathrm{En} 40
\]

THE OETATNED VALUE FOF \(t\)
\(t=\)
0.472

THE GFTTTCAL VALUE FOF \(t\) (N-1, O.OS)
\(t=\)
E. 132

\section*{EXHTETT 19}

K゙INESTHETTO EXFEFIMENTAL EFOUF

\begin{tabular}{|c|c|c|c|c|c|}
\hline STLDENT & 1 & 76 & 76 & - & 4 \\
\hline STUDENT & ? & 93 & 60 & 5 & EE \\
\hline GTUDENT & 3 & 65 & 66 & \(\cdots-1\) & 1 \\
\hline STUDENT & 4 & 78 & 96 & \(-8\) & 64 \\
\hline STUDENT & 5 & 98 & 88 & 10 & 100 \\
\hline STUDENT & 6 & 80 & 82 & - e & 4 \\
\hline
\end{tabular}

THE TOTAL NUMEEF OF SUESECTS (N)
\(N=\)
6

THE STANDARD OEVTATYON OF THE DIFFEFENCE SCOFES
\[
5 \mathrm{~d}=\quad 6.2 \mathrm{EPe}
\]

THE NEAN OF THE DIFFEFENCES
\[
x=0.333
\]

THE OETATNED VALUE FOF \(t\)
\[
t=0.130
\]

THE CRTTYCAL VALUE FOF \(t\) (N-W, O OE)
\(t=\)
2.015

\section*{EXHIETT 20}

KTNESTHETIC
CONTROL GROUF


83
98
67
79
76
6.
……….............
484
\begin{tabular}{ll} 
STUDENT & 1 \\
STUDENT & 2 \\
ETUDENT & 3 \\
STUDENT & 4 \\
STUDENT & 5 \\
STUDENT & 6
\end{tabular}

TOTALs

THE TOTAL NUMEER OF SUETECTS (N)

DIFFERENCE
DIFFERENCE gQuared - -

6

86
76
ae
96
9 9
6


514
\(-30\)

9
4
еᄅе 289 16 1

544

THE STANDARD DEVIATION OF THE DIFFEFENCE SCORES
\[
5 \mathrm{~d}=\quad 8.877
\]

THE MEAN OF THE DIFFERENCES
\[
\bar{x}=-5.000
\]

THE OBTAINED VAluE Fof \(t\)
\(t=\)
1.300

THE CFITICAL VALUE FOR \(t(N-1,0,05)\)
\[
t=\quad \text { e.0I5 }
\]

\section*{LEAFNIMG STYLE:}
\begin{tabular}{|c|c|c|}
\hline VISUAL & 4 & 5 \\
\hline ------- & 3 & 4 \\
\hline & E & 2 \\
\hline & 1 & 13 \\
\hline & 4 & 1 \\
\hline & 14 & e5 \\
\hline MEAN = & E.8 & 5 \\
\hline
\end{tabular}

AUDITOFY
-

KINESTHETTE
6

MEAN =
4.8

6
7
0
8
6
2
29
3
7
6
0
5
6
0
0
3.3

\section*{FOSTTEST QUESTION 6}

CONTROL EYFEFTMEWTAL
LEADNTNG STYLE:

\section*{VSUAL}

AUDTTOFY
巳
0

KINESTHETTC
\(\stackrel{\sigma}{6}\)
5
0
e
1
1.

9
1
3


1
e
\(\square 1\)
- \(-\cdots\)

MEAN =
1.5
1.5

DUESTION -

State all that you know (other than \(\bar{W} Z=\bar{X} \bar{Y}\) ) from the following figure: trapezaid WXYZ
la \(x\)
\(\qquad\)

For a variety of reasons, several limitations exist to the validity and completeness of this research. As orie constraint, changes in attitude or achievement mey have occurred solely as a result of having a new (student) teacher with a different teaching style. Another constraint on the research was the difference in class size between the experimental group and the control group. For consistency, the experimenter paired the students between the two groups based on ability, as determined by their pretest scores and average scores on the previous chapter tests. obviously, when determining the pairing of the twelve sets of students, judgment errors could have easily been made. In order to identify the students' learning styles, an instrument was designed by the experimenter and the thesis advisor. The questions on the instrument were straightforward, designed to indicate students' learning styles without ambiguity. However, this instrument had not been tested for validity before its use in this research. Therefore, this factor is another possible source of error. Finally, since the manipulatives were only implemented in one group of twelve students, the results cannot be generalized; they must remain applicable only to the experimenter's third period, experimental geometry class.

In many studies of the benefits of using manipulatives, researchers have focused on standardized tests as measures of achievement. In this research analyzing the results of the quadrilateral chapter test provided inconclusive results. However, when the improvement from the pretest to the posttest was studied, that of the experimental group was much more significant than that of the control group. For this reason, future research should be geared at analyzing benefits from mary different angles in various areas. For example, observing the students, the experimenter noticed the benefits of students helping teach other students how to use the manipulatives. Through their explanations to other students, these students gained confidence and more expertise with the topics at hand. Benefits of students teaching other students have been documented by Gartmer (16), and future research should address this as an added benefit of manipulative activities. As classroom teachers consider the use of manipulatives in their lessons, Gartner (24) reminds them to assess the learning styles of their students and adapt their instruction accordingly. Further research should be done to determine the type of learner most benefited by manipulatives. The results of this study revealed that the visual learmers benefited the most. However, the nature of manipulatives lends itself to helping kinesthetic learners; perhaps future research would confirm this most strongly.

The experimenter's observations supported the use of manipulatives with low achieving students especially. However, the limited number of pairs in the experimental group prevented an accurate comparison of the improvements of low achievers with the improvements of high achievers. This would be a direction well worth further investigation. Finally, the use of two posttest questions to determine conclusive evidence of increased retention due to manipulatives should be supported by further measures. Some research to this effect has been done by Suydam (10). Gince mathematirs is a building discipline, retention is vital; more reseach in this area is justified. Thus, due to the limitations, as well as the results, of this research many directions for future research on manipulatives have been suggested.

After planning lessons to include manipulatives, teaching the unit, administering tests, pairing students, and analyzing the results of \(t\) tests, the experimenter has drawn several conclusions from the research in answer to the questions posed by the thesis statement. From the analysis of the data, the experimental group experienced significant improvements over the control group in achievement based on their scores on the pretest and the posttest. As measured by the semantic differential, the attitudes of the experimental group toward geometry were much more positive than the control group's due to their exposure to manipulatives. Finally, visual learners seemed to benefit most from the use of manipulatives. Kinesthetic learners also showed significant improvements due to the manipulatives. Thus, as supported by this research, the use of manipulatives in the geometry classroom does indeed make a difference in a variety of different areas.

Bright, George W. "Using Manipulatives." Arithmetic Teacher 33.6 (1986): 4.

Bruner, Jerome. The Process of Education. New York: Random House, Vintage Books, 1960. (as cited in Fey "Mathematics Education")

Cambridge Conference on School Mathematics. Goals for School Mathematics. Boston: Houghtor Mifflin Co., 1763. (as cited in Worth)

Carpenter, Thomas P., Mary Kay Corbitt, Henry S. Kepner, Jr., Mary Lindquist, and Robert E. Reys. "Results of the Second NAEP Mathematics Assessment: Secondary School." Mathematics Teacher 73 (May 1980b): 329-38. (as cited in Dessart)

Clements, Douglas C. and Michael Battista. "Geometry and Geometric Measurement." Arithmetic Teacher 33.6 (1986): 29-32.

Corwin, Vera-Anne whittier Versfelt. "A Comparison of Learning Geometry with or without Laboratory Activities Using Manipulative Aids and Faper Folding Techniques." (Doctoral dissertation, Wayne State University, 1977.) Dissertation Abstracts International 38A (May 1978): 6584-85.

Davidson, Patricia S. "The Brain: Education's Next Frontier." Massachusetts Teacher (December 1780).

Davis, Robert, and Edward Silver. "Mathematical Behavior of Children." Encyclopedia of Educational Research. 1982 ed.

Dessart, Donald J., and Marilyn N. Suydam. Classroom Ideas from Research on Secondary School Mathematics. Reston, Virginia: The National Council of Teachers of Mathematics, Inc., 1983.

Dienes, Zoitan P. Building Up Mathematias. London: Hutchison Education, 1960. (as cited in Kennedy)

Dunn, R., and K. Dunn. Teaching Students Through Their Individual Learning Styles: A Practical Approach. Reston, Virginia: Reston Publishing, 1978. (as cited in Peterson)

Erlwanger, S. H. "Benny's Conception of Rules and Answers in IPI Mathematics: Journal gf Children's Mathematical Behaviot 1 (1773): 7-2b.

Femmema, Elizabeth. "Manipulatives in the Classroom," Arithmetic Teacher 20 (May 1973): 350-52. (ascited in Hynes)

Fey, James T. "Mathematics Eduration." Encyclopedia of Educational Research. 1982 ed.

Fey, James T. "Mathematics Teaching Today: Perspectives from Three National Surveys." Arithmetic Teacher 27 (October 1979): 10-14. (as cited in Worth)

Gartner, Alan and Frank Riessman. How to Individualize Learning. Bloomington, Indiana: The PMi Deltakappa Educational Foundation, 1977.

Hardgrove, Ciarence, and Ben A, Sueltz, "instructional Materials." In Instruction in Arithmetis. Twenty-fifth Yearboge of the Nationel Eouncil of Teachers of
 Council: 1760 , ©as eited in Worthy

Herbert, Elizabeth. "Manipulatives Are Good Mathematics." Arithmetic Tearher 32 (February 1985): 4. (as cited in kenmedy)

Hirsch, C , et al. Geometry* Second ed. Glemview, Illinois: Scott, Foresman, 1984.

HoE1, Paul G. Introduction to Mathematical Statistics. New York: John Wiley \& Sons, Inc., 19b己.

Hunt, D. E. "Learning/teaching Styles in S. V. C." In Dubois (Ed.), Conference on Multiculturalism in Education. Ottawa: Mutual Press, 1977, pp. 47-54. ( 3.5 cited in Ryan)

Hynes, Michael C. "Selection Criteria." Arithmetim Teacher 33.6 (1986): 11-13.

Jacobs, Judith Ellen. "A Comparison of the Relationships between the Level of Acceptance of Sex-Role Stereotyping and the Attitudes toward Mathematics of Seventh Graders and Eleventh Graders in a Suburban Metropolitan New York Community." (New York University, 1974.) Dissertation Abstracts International 34A (June 1974): 7585. (as cited in Dessart)

Kagan. J., and N. Kogan. "Individual Variation in Dognitive Processes." In P. H. Mussan (Ed.), Carmirhael's Marual of Child Psychology (Vol. 1). New Yort: Wiley, 1970. (as cited in Ryan)

Kennedy, Leonard M. "A Rationale." Arithmetic Teacher 33.6 (1986): 6-7.

Krierr, Charles Calvin. "The Enhancement of Traditional Instruction and Learning in Analytic Geometry via Computer Support." (Doctoral dissertation, Lehigh University, 1981.) Dissertation Abstracts International 42A (February 1782): 3483. (as cited in Dessart

Linton, Marigold and Philip G. Gallo, Jr. The Practical Statistician: Simplified Handooot of Statistics. Ann Arbor, Michigan: Malloy Lithographing, Inc. . 1975.

Messick, S. (Ed.) Individuality in Learning. San Francisco: Jossey-Bass, 1976. (as cited in Petersor)

Moser, James M. "Curricular 1 ssues." Arithmetic Teacher 33.6 (1986): 8-10.

National Council of Teachers of Mathematics. An Agenda for Action: Fecommendations for School Mathematics of the 1980's. Reston, Virginia: The Council, 1980. (as Eited in worth)

Dsgood, C., G. Suci, and P. Tannenbaum. Ihe Meßsurement of Meaning. Urbana, Illinois: University of Illinois Press, 1957. (ascited in Reisman)

Peterson, Penelope L. "Individual Differences." Encyclopedia of Educational Research. 1982 ed.

Piaget, Jean. The Child's Concept of Number. New York: Humanities Press, 1952. (as cited in Kennedy)

Post, Thomas R. "The Role of Manipulative Materials in the Learning of Mathematical Concepts." In Selected Issues in Mathematics Education, edited by Mary Montgomery Lindquist, pp. 109-31. Reston, Virginia: National Council of Teachers of Mathematics, 1980. (as cited in worth)

Prevost, Fernand J. "Geometry in the Junior High School." Mathematics Teacher (September 1985): 411-18.

Reisman, Fredricka k. A Guide to the Diagnostic Teacting of Arithmetic. Secand ed. Columbus, Ohio: Charles E. Merril? Putulishing Company, 1982.

Pyan, Kevin, and Debra Phillips. "Teacher Characteristics." Encyslopedia of Educational Research. 1982 ed.

Schulta, Karen A. "Representational Models from the Learner's Perspective." Arithmetic Teacher 33.6 (1986): 52-55.

Schwartz, Judah L., and Michal Yerushalmy. "The Geometric Supposer: An Intellectual Prothesis for Making Conjectures.: The Colleqe Mathematics Journal 18.1 (1987): 58-68.

Shoecraft, P. J. "The Effects of Provisions for Imagery through Materials and Drawings on Translating Algetra Word Problems, Grades Seven and Nine." (Doctoral dissertation, University of Michigart, 1971). Dissertation Abstracts International, 1972, 32, 3874A 3875A. (Umiversity Microfilms No. 72-4976) (as cited in Threadgill-Sowder)

Skemp, Richard. "Mathematics as an Activity of Our Intelligence: A Model for Diagnosis and Remediation of Learning Difficulties in Mathematics." In Research Reports from the Seventh Annual National Conference on Diagnostic and Prescriptive Mathemtics, edited by Ian D. Beattie, pp. 1-12. Bowling Green, Dhio: Research Council for Diagnostic and Prescriptive Mathematics, 1982. (as cited in Kennedy)

Suydam, Marilyn N. "Manipulative Materials and Achievement." Arithmetic Teacher 33.6(1986): 10.

Thornton, Carol A., and Barbara Wilmot. "Special Learners." Arithmetic Teacher 33.6 (1986): 38-41.

Threadgill-Sowder, Judith A. "Manipulative Versus Symbolic Approaches to Teaching Logical Connectives in Junior High School: An Aptitude \(X\) Treatment Interaction Study." Journel for Research in Mathematics Education (November 1980), 367-374.

Trueblood, Cecil R. "Hands On: Help for Teachers." Arithmetic Teacher 33.6 (1986): 48-51.

Witkin, H. A., et al. "Field Dependent and Field Independent Cognitive Styles and Their Educatiomal Implications." Review of Educational Research 47 (1977): 1-64. (as cited in Peterson)

Worth, Joan. "By Way of Introduction." Arithmetic Teacher 33.6 (1986): 2-3.

Yerushalmy, Michal, and Richard A. Houde. "The Geometric Supposer: Promoting Thinking and Learning." Mathematics Teacher 79.6 (1988), 418-22.```

