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Advances in pervasive communication technology have enabled many unconventional 

applications that facilitate and improve the safety and quality of life in modern 

societies.  Among emerging applications is situational awareness where individuals and 

first-responders receive timely alerts about serious events. Another example is 

exchanging road conditions between vehicles in a peer-to-peer fashion.  The increasing 

popularity of smart devices and their support for multiple device-to-device (D2D) 

communication standards have made them an attractive choice for realizing these 

emerging applications. However, most existing protocols for data sharing among smart 

devices either require an internet connection, which may not be available, could incur 

extra costs, or suffer from the device’s operating system limitations. Moreover, there 

is no existing solution that allows a set of devices to start sharing data dynamically 

without forcing users to apply an elaborate procedure for setting up a group. These 

shortcomings render existing solutions unsuitable for emergency cases and highly 

dynamic applications.  

In this dissertation, we fill such a technical gap and present a framework for 

enabling an infrastructure-less data exchange in a cost-effective and timely manner 



  

through the establishment of peer-to-peer links among smart devices. In addition, our 

framework opts to minimize the required user interaction for setting up a connection. 

Our framework consists of a suite of protocols for data exchange using Wi-Fi Direct. 

First we present a protocol for Alert Dissemination using Service discovery (ADS) in 

Wi-Fi Direct that is suitable for short messages. ADS uses the service discovery feature 

of Wi-Fi Direct for distributing its data in a connectionless manner, thus  avoiding the 

setup delay in creating Wi-Fi Direct groups. In addition, we present an Efficient and 

Lightweight protocol for peer-to-peer Networking of smart devices over Wi-Fi Direct 

(ELN) that is suitable for sharing large amounts of data between a group of users.  ELN 

mainly provides a group management solution that allows dynamic memberships and 

adapts for topology changes. Finally, we present an Efficient Multi-group formation 

and Communication (EMC) protocol for Wi-Fi Direct that is suitable for sharing data 

between many users distributed along a wide area, which cannot be covered by one 

group. EMC allows potential group owners to be qualified based on certain criteria and 

enable dynamic formation of groups. Moreover, EMC allows data exchange between 

different Wi-Fi Direct groups. To support the implementation of EMC in Android, we 

have developed an IP Subnet Negotiation Protocol for Seamless Multi-Group 

Communications (ISNP). ISNP overcomes a limitation of Android’s Wi-Fi Direct 

implementation that forces all the formed groups to share the same range of IP 

addresses.  

All the proposed protocols have been validated through implementation on 

actual Android devices. In addition, the performance of our framework in large setups 

is studied through simulation, where a library for Wi-Fi Direct and our protocols has 



  

been developed and added to OMNet++. To the best of our knowledge, our framework 

is the first comprehensive peer-to-peer solution for mobile devices that takes advantage 

of the capabilities of Wi-Fi Direct.  
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Chapter 1: Preliminaries and Research Problem  

    This chapter provides the motivation and necessary preliminary discussion about 

peer-to-peer data sharing between devices without relying on the communication 

infrastructure. The chapter also highlights the main research problem which is 

addressed in the dissertation and summarizes the contribution. 

1.1 Introduction 

    Recent advances in pervasive communication technology have been leveraged in 

many unconventional applications that facilitate and improve the safety and quality of 

people’s life in modern societies.  An example of these applications is situational 

awareness where people exchange alert information with emergency units regarding an 

emerging event, such as a natural disaster [1]-[12]. Telecommunication infrastructure 

such as cellular towers and Wi-Fi access points may be down at that time. Another 

example is when exchanging road conditions between peer-to-peer networked vehicles 

without the involvement of roadside units [13]-[18].  The wide-spread of smart portable 

devices such as iPhone, iPad, Android phones, and Android tablets has made them an 

attractive venue for realizing these emerging applications.  These devices support 

technologies such as Bluetooth, Wi-Fi ad-hoc mode and Wi-Fi Direct that enable them 

to communicate without the need for infrastructure. Thus, they can perform Device-to-

Device (D2D) data exchange at an increased level of convenience. In addition, most of 

these devices are equipped with sensors such as accelerometer, gyroscope, barometer, 
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light, pedometer, etc., that can provide a wealth of information about the surroundings 

once their readings are aggregated. 

    However, most existing protocols for data sharing among smart portable devices 

either require an internet connection [19]-[23], which may not be available, may incur 

extra charges, or suffer from the device’s operating system (OS) limitations. In 

addition, there is no existing solution that allows a set of devices to start sharing data 

dynamically without forcing the users to apply an elaborate procedure for setting up a 

group. These shortcomings render existing solutions unsuitable for emergency cases 

and highly dynamic environments. 

1.2 Device-to-Device Technologies 

    Many researchers has proposed solutions for D2D over cellular networks or Wi-Fi 

networks [24]-[31]. However, these solutions require (assume) the availability of 

infrastructure, such as cellular towers and access points, to allow the devices to 

communicate. In certain rural areas or areas suffered from natural disasters, there may 

be no coverage from neither Wi-Fi nor cellular networks. In addition, routing 

communication traffic through a Wi-Fi network or a cellular network may introduce 

unnecessary delays, power consumption, or costs, especially when the devices are in 

the proximity of each other.  

    Bluetooth, Wi-Fi Ad-hoc mode, and Wi-Fi Direct are example technologies that do 

not require any infrastructure support. Most of the smart devices nowadays that have 

the necessary hardware and software to support any of these technologies can 

communicate directly in a way that reduces latency, cost and power consumption, and 
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thus make it possible to share data between groups of devices.  An example of a 

commercial solution that benefit from these technologies is Google NearBy [32], which 

have a set of APIs that allow for discovering nearby devices using Wi-Fi Direct, 

Bluetooth, and the acoustic signals. However, such a solution still depends on the cloud 

for completing the discovery procedure and for doing the actual data transmission. 

Thus, it suffers from the problems we mentioned earlier. The balance of this section 

review the basic features and compares these popular technologies.  

1.2.1 Bluetooth 

    Bluetooth is one of the most popular technologies in smart devices. The most recent 

version of the Bluetooth specification is V4.2 [33] which added Low Energy (LE) 

capabilities. Bluetooth basic data rate is 3 Mbps, but there is a version of Bluetooth 

called High Speed that can reach 25 Mbps by using 802.11 networks to do the actual 

data transfer. The range of the Bluetooth depends on the power class of the device. 

Basically, there are three power classes. Table 1-1 [1] summarizes the different power 

consumptions and ranges for the different classes. Typically, mobile phones are 

considered Class 2 devices.  

Table 1-1 Comparison of different power classes in Bluetooth 

 Range (m) Power Consumption (mW) 

Class 1 100 100 

Class 2 10 2.5 

Class 3 1 1 

 

    Bluetooth LE allows a device to work as a beacon to advertise data. Other Bluetooth 

LE devices can receive these advertisements without the need for prior connections. 
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The most restraining features of Bluetooth are its range and bandwidth, which limit its 

use for D2D communications. 

1.2.2 Wi-Fi Ad-hoc Mode 

    Wi-Fi Ad-hoc mode is part of the IEEE 802.11 specifications that exists along with 

the infrastructure mode. In contrast to Wi-Fi Infrastructure mode, the Ad-hoc mode 

allows devices to communicate without intermediate access points by forming a 

dynamic peer-to-peer (P2P) network. To form the network, the devices must be 

configured to use the same setup, such as SSID, operating channel, etc. Although Ad-

hoc Wi-Fi initially gained a lot of interest [35]-[41], its use has become limited 

nowadays due to some shortcomings. Among the most notable shortcomings is that 

Ad-hoc Wi-Fi cannot be used concurrently with normal Wi-Fi connections. Also, the 

speed and range of Ad-hoc Wi-Fi are less than what can be achieved using the 

infrastructure mode. In addition, current smart devices do not support it out of the box. 

Certain modifications should be made to allow devices to use the Wi-Fi Ad-hoc mode. 

Due to these limitations and the uneasy setup required for enabling data sharing, Wi-Fi 

Ad-hoc is not suitable for D2D data sharing, especially when high speed or large scale 

communications are desired. 

1.2.3 Wi-Fi Direct 

    Wi-Fi Direct (sometimes called Wi-Fi P2P) [35] is geared toward the same range 

and bandwidth of the normal Wi-Fi networks. Depending on the technology used (e.g., 

802.11n, 802.11g, etc.), the bandwidth can reach 250 Mbps. The first version for Wi-

Fi Direct specification was published in 2009 by Wi-Fi Alliance and focused on the 
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required specifications for allowing existing 802.11 hardware to adapt the technology. 

Nowadays most manufactured smart devices have support for Wi-Fi Direct; for 

example, Android devices starting from version 4 (Ice Cream Sandwich) have native 

support for Wi-Fi Direct. Given the range, and the speed, it is considered one of the 

best solutions for carrying out D2D communication. Since in this dissertation we 

employ Wi-Fi Direct as the underlying technology for D2D communication, we 

provide an overview of its capabilities and operation. 

1.2.3.1 Basic Operation 

    Wi-Fi Direct enables forming groups for D2D data exchange without the need for 

intermediate access points (APs), as shown in Figure 1-1. Typically, one of the devices 

GM

Legacy Device

GMGM

Legacy Device

SAPGO SAPGO SAPGO

Figure 1-1 An example of a Wi-Fi Direct group 
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that are willing to exchange data acts as a Software Access Point (SAP) to the other 

devices in the group; this device is called the group owner (GO). Other devices that 

support Wi-Fi Direct associate with the GO using Wi-Fi Protected Setup (WPS), which 

resembles pairing Bluetooth devices, and become group members (GMs). Several WPS 

configurations such as Push Button Configuration (PBC), Label Pin, Display Pin, and 

Keypad Pin can be supported depending on the device capabilities. A legacy Wi-Fi 

device that does not support Wi-Fi Direct can become a GM in a group by associating 

with the SAP that is created by the GO given that it knows the WPA2 credentials of 

the SAP (SSID and Key). 

1.2.3.2 Concurrent Operations  

    Basically, Wi-Fi Direct uses the Wi-Fi transceiver on the device for its operation. If 

concurrent connections are allowed, a device can use the same Wi-Fi transceiver to 

connect to a Wi-Fi Direct group and a WLAN (i.e. associated with an AP) at the same 

time using two different wireless channels. Thus, a device can have an internet 

connection while connecting to the group. Some devices are not able to do concurrent 

connections, so in such a case these devices must disconnect from any WLAN before 

being able to connect to a Wi-Fi Direct group. Concurrent connections require support 

from both the operating system and the Wi-Fi transceiver, for running two different 

MAC entities at the same time. In addition, there should be two virtual interfaces (e.g., 

“wlan” and “p2p”) on the device associated with the same physical interface of the Wi-

Fi transceiver as shown in Figure 1-2. The “wlan” interface is used for connecting to 

the WLAN and the “p2p” interface is used for connecting to the Wi-Fi Direct group. 
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Figure 1-2 Virtual interfaces required for concurrent operation in Wi-Fi Direct 

1.2.3.3 Group Formation and Device Addressing 

    Each Wi-Fi Direct equipped device can act as a GO or a GM. The selection of the 

GO depends on the group formation mode. According to the Wi-Fi Direct specification, 

there are three modes for creating Wi-Fi Direct groups, namely, standard, autonomous, 

and persistent [43]. In the standard mode, the devices involved in setting up the group 

negotiate among themselves to elect a GO. During the negotiation process, each device 

states its desire to become a GO by embedding an integer value called the GO intent in 

the “GO Negotiation Request” and “GO Negotiation Response frames”. This value 

ranges from 0 to 15, where a high value reflects increased interest in serving as a GO. 

The device with the highest intent value becomes the GO; a randomly selected 

tiebreaker bit is used in case of a tie. In the autonomous mode, one of the devices creates 

a group and declares itself as a GO; other devices connect to this group as GMs. Finally, 

in persistent mode, the devices save the information of the current Wi-Fi Direct group 

for future usage. If the same devices start a group again, the previous GO resumes 

ownership of the group.  

    Devices in Wi-Fi Direct groups have two addresses, the MAC address and the IP 

address. The MAC address is assigned by the OS to the device based on the MAC 

Wi-Fi CardWi-Fi Card

wlan

p2p
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address of the Wi-Fi chip. This address is used to identify the devices while creating 

the groups. The IP address is assigned to devices once they are attached to a group. A 

DHCP server running by the GO is responsible for assigning an IP address to each new 

device that joins its group. The IP address is used by the upper layer to identify and 

connect devices by using sockets. 

1.2.3.4 Service Discovery in Wi-Fi Direct 

    Service discovery is a protocol that allows a device to explore what other devices 

offer before attempting to connect or communicate. This allows a device to define the 

scope of services that they support. For example, if three devices are in proximity to 

each other and two of them support chatting and the third supports media streaming, 

only the two with chatting capabilities should connect to each other.  

    Wi-Fi based WLANs support service discovery, meaning that devices in the same 

Wi-Fi network can define a set of offered services. If a device Di is willing to search 

for a device that provides a certain service, Di sends a service discovery request. 

Recipients of such a request respond back to Di if they provide the solicited service. 

That way, Di gets to know the IP addresses of the potential providers of the requested 

service so that it can initiate socket connections with them. We note that the devices in 

a Wi-Fi network must be associated with an access point to form a WLAN to be able 

to perform service discovery. 

Likewise, Wi-Fi Direct also supports service discovery, but the concept is different. 

The devices do not need to be in the same LAN nor have prior connections to initiate a 

service discovery. The use of service discovery is optional, but if devices support it, 
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they become able to create groups based on certain services. The Service Discovery 

protocol follows the Generic Advertisement Service (GAS) protocol/frame exchange 

that is defined in IEEE P802.11u [44], where devices first announce their supported 

services by creating service records and storing them. Each of these records reports one 

of the features the device supports. For example, A device “X” that wants to connect to 

“Y”, first checks its supported features by sending a service discovery request. When 

device “Y” receives the request, it responds by sending its stored service records. If “X” 

and “Y” have matched services, they can proceed to form a group for data exchange. 

Thus, in Wi-Fi Direct, a device first performs the service discovery and then comes the 

association with other devices. 

1.2.3.5 Android Implementation of Wi-Fi Direct and its Limitations 

    Android is one of the first operating systems that has implemented Wi-Fi Direct. 

Most Android devices starting from Ice Cream Sandwich v4.0 (API Level 14) are Wi-

Fi Direct capable. Support for Wi-Fi Direct Service Discovery is added in Android 

since the JellyBeans v4.1 (API Level 16) release. However, the APIs for Wi-Fi Direct 

only provide basic support for connecting multiple peers in one P2P group. In general, 

Wi-Fi Direct implementation in Android has some technical limitations at both 

software and hardware level.  

    With the current Android APIs, a peer-to-peer system in the sense that every device 

can communicate with the others is not possible, since there are no APIs for informing 

devices in a group about the IP addresses of the other group members. Thus, a method 

of distributing IP addresses is required to allow devices to operate in a peer-to-peer 
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mode. Another problem is that although the android APIs make the IP address of the 

GO easily accessible to every device in the group, no API exists that allow a device to 

obtain the IP address of its own Wi-Fi Direct interface. The same applies when a device 

tries to retrieve its MAC. Thus, a way of finding these addresses is required first before 

attempting to distribute the list of IPs. 

    Starting from JellyBeans a device can simultaneously connect to a Wi-Fi Access 

Point and a Wi-Fi Direct group using the same Wi-Fi transceiver. It is not possible 

though for a device to connect to more than one Wi-Fi Direct group at the same time. 

This means that it is not possible to have certain scenarios like being a GM of two 

groups, being a GO of two group, or being a GM in one group and a GO in another 

group. One possible solution to overcome such limitation is to allow a device to be part 

of a group using its “p2p” interface and to connect to another group as a legacy device 

using its “WLAN” interface, given that it knows the credentials of the SAP of the other 

group.  

    Another implementation issue in Android is that the range of IP addresses assigned 

to a group falls in the 192.168.49.x/24 range, where the GO IP address is fixed at 

192.168.49.1. Thus, even if there is a way to allow multi-group membership, the 

devices in different groups may not be able to reach each other due to IP address 

collision.  
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1.3 Research Goals 

         In emergency scenarios or natural disasters, the communication infrastructure 

may be damaged or severely degraded. In these cases, an alternative mean for sharing 

alerts must be established. Another application scenario is sharing data between a group 

of people are camping in a rural place that does not have any network coverage. In 

addition, in applications where devices are in the proximity of each other, such as in 

vehicular networks, they may suffer increase in latency,  power consumption, and 

wireless service charges if they route their communicating through the 

telecommunication infrastructure. In these scenarios, it is desirable to enable data 

sharing in an easy and cost-effective manner that does not need the involvement of 

network infrastructure units. 

    We consider utilizing smart devices to form a network for sharing data that covers 

scenarios like the formerly mentioned ones. We choose Wi-Fi Direct as the underlying 

technology for enabling our work due to its distinct features, as explained earlier. 

Android is one of the popular mobile operating systems that have software support for 

Wi-Fi Direct. Thus, in this dissertation, we consider using Android smart devices for 

implementing our work.  

1.4 Research Contribution 

    The main contribution of this dissertation is providing a data sharing solution 

through the development of a suite of protocols for infrastructure-less data sharing 

based on Wi-Fi Direct. The following highlights some of the features of the proposed 

protocols: 
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 Considering the case of sharing small chunks of data or alerts in a quick manner 

that is fast and is not limited by a group boundary, we have developed ADS. 

ADS uses service discovery in Wi-Fi Direct to exchange data between Android 

smart devices without requiring setting up any groups or having any prior 

connections. The data is stored locally using service discovery records. Other 

devices that are interested in such data use service discovery requests to obtain 

them. The approach also manages the forwarding of data and pruning old data. 

 For a small set of users who need to exchange large amounts of data, we have 

developed ELN. ELN is a solution for data sharing between a set of smart 

devices that can be interconnected in one group. ELN provides group 

management capabilities to Wi-Fi Direct groups, a very important yet missing 

feature in Wi-Fi Direct. Through ELN, a group can dynamically adapt to 

topology changes such as addition or removal of peers.  

 Finally, we consider the case of sharing data among large number of users that 

spans a wide area, which is larger than the boundary of a group. For such a case, 

we have developed EMC that dynamically creates Wi-Fi Direct groups of smart 

devices based on certain criteria, such as the battery specification of such 

devices. The approach then interconnects the formed groups using relay devices 

to achieve large scale data sharing. EMC utilizes the service discovery in Wi-

Fi direct for distributing vital protocol specific data.  

    Other contributions can be summarized as follows: 
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A. Proposing a solution for assigning different subnet to groups: To overcome the 

limitation of Android’s Wi-Fi Direct implementation that forces all the formed 

groups to share the same range of IP addresses, we have proposed ISNP. ISNP 

allows each group to have its distinct IP subnet, thus making it possible for 

groups to share data. 

B. Validating the effectiveness of the proposed approaches through 

implementation: We have evaluated the effectiveness of our approaches 

through implementation on Android devices and made an extensive analysis of 

the performance of such approaches. The results have confirmed the advantages 

of our protocols in terms of achieving timely data delivery, reduced overhead, 

and adaptation to topology changes. 

C. Developing a simulator for Wi-Fi Direct: To the best of our knowledge, there 

is no existing simulation environment for Wi-Fi Direct. We thus have 

developed a simulator based on OMNeT++ [83] along with the INET 

framework [84] which have several ready-made modules for the 802.11 

protocol. 

1.5 Organization 

    This chapter has presented the motivation and necessary preliminaries for P2P data 

sharing between smart devices. Chapter 2 discusses related work in the literature. 

Chapter 3 covers our alert dissemination protocol that uses service discovery in Wi-Fi 

Direct to distribute the alert data. Chapter 4 presents ELN, an efficient and lightweight 

protocol for connecting smart devices over a Wi-Fi Direct group. Chapter 5 presents 
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EMC for dynamically creating energy aware Wi-Fi Direct groups and interconnecting 

them using proxy members. Chapter 6 describes the ISNP protocol for IP subnet 

negotiation Protocol. Chapter 7 describes the extensions made to OMNet++ to support 

Wi-Fi Direct and to enable the implementation of our framework. The simulation 

results are also presented in Chapter 7. Chapter 8 concludes the dissertation with a 

summary of the contribution and outlines future research topics. 
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Chapter 2: Related Work 

    In this chapter, we discuss the published work, related to the contribution of this 

dissertation. Data sharing in the literature can be categorized based on the technology 

used. Since we utilize Wi-Fi Direct as the underlying P2P technology in this 

dissertation, we have designated a separate section for it. We have further categorized 

other P2P technologies them based on the type of the targeted network, such as 

vehicular networks, mobile networks, and ad-hoc networks. 

2.1 Data Sharing using Wi-Fi Direct 

    Motta and Pasquale [45] were among the first to point out the potential of 

implementing mobile P2P systems using Wi-Fi Direct. They suggested applications 

that could benefit from Wi-Fi Direct such as text messaging, dissemination of traffic 

information, dissemination of emergency data, photo/video sharing during an event, 

and last–mile connectivity. The authors also explained how to use a new middleware 

for P2P based on JXTA, which employs distributed hash tables (DHT) to search for 

peers. They were aiming to implement the proposed middleware in Android once the 

Wi-Fi Direct API becomes publicly available. However, no progress has been reported 

in the literature on the implementation of such middleware. Nonetheless, such a study 

has motivated other researchers, e.g., [43][45], to explore the applicability of Wi-Fi 

Direct. Follow-up work has introduced protocols that allow the devices in a Wi-Fi 

Direct group to do true P2P data sharing [48][49]. The focus has then been shifted from 

intra-group to inter-group data sharing [53]. In addition, the use of the Wi-Fi Direct 
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service discovery protocol as a mean of data exchange has been explored in [50], [51], 

and [56]. A comparison with prior work is provided in the balance of this section. 

2.1.1 The applicability of Wi-Fi Direct  

    Conti et al. [46] explored the possibility of creating opportunistic networks over Wi-

Fi Direct by studying the latency in forming a group at the link layer. They 

experimented with different number of nexus devices, ranging from two to six. Their 

work is considered an extension to Camps-Mur et al. [43] who performed real 

experiments using only two devices. The experiments studied the performance in the 

standard, autonomous, and persistent modes of group formation. The results show that 

the group formation time can vary based on the timing of frames sent between the 

involved devices. They show also that attempting to connect to a group is greatly 

affected by the mode of the group formation. It was concluded that connecting to 

autonomous group is faster than connecting to a persistent group. Their explanation of 

such conclusion is that when the devices in the persistent group starts forming the group 

again, the members try to quickly connect to the group owner, which is still initializing 

the required interface and other parameter, and thus it may discard the request-to-join 

messages. After failure, the requesting members must wait for some time before 

attempting again. This work gave realistic metrics on how fast the devices could form 

and reform a group, as well as confirmed the suitability of Wi-Fi Direct for data sharing 

systems. Meanwhile, the authors of [47] studied the best topology for streaming 

multimedia contents between multiple devices. They conducted a performance 
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comparison between multiple strategies, like using access points, ad-hoc networks and 

Wi-Fi Direct and concluded that Wi-Fi Direct is the most suitable technology. 

2.1.2 Intra-Group Data Sharing in Wi-Fi Direct 

    Peer management for iTrust over Wi-Fi Direct [48] is an attempt to port the iTrust 

protocol over SMS system to Wi-Fi Direct. iTrust is a peer-to-peer publication, search 

and retrieval system that enables peers to construct a mobile ad-hoc network for 

decentralized information sharing. A peer management protocol is proposed for adding 

new group members, where each peer opting to join a group should send to the GO a 

NEW_PEER message, which contains only the MAC address. The group owner can 

infer the IP address of the sender from the opened socket object. The group owner then 

compiles a list of MAC/IP address pairs for all peers and sends it to its members. 

However, no specific details were provided for how a peer departure from a group is 

handled. What is mentioned is that, if the connection is broken, iTrust performs 

automatic reconnection and rebuild the MAC/IP pairs. In addition, it is unclear why the 

service discovery feature in Wi-Fi Direct is not exploited to limit membership to only 

peers with capable services. This should have improved the efficiency of the group 

operation by defining contents as service types, and allowing a device that is willing to 

connect to a group to only look for devices with the required content type. In our work, 

we have considered the importance of service discovery in peer-to-peer. In addition, 

our work can adapt to topology changes. 
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    Park et al. [49] proposed DirectSpace, a framework for collaboration between 

devices. The main goal is to provide a mean for sharing workspaces between users over 

Wi-Fi Direct. The framework is composed of two services, a connection service, and a 

collaboration service. The former handles the peer discovery and the 

connection/disconnection operations. The collaborative service is used for resource 

sharing and group management. To obtain a list of all peers in a group, the address 

resolution protocol (ARP) is used to translate MAC addresses into IP addresses. 

However, it is not clear how the group owner distributes this list to the members in the 

group. Moreover, the usage of ARP Tables is not a safe operation, as these tables are 

flushed periodically and not reliable. Also, DirectSpace did not benefit from the 

currently available service discovery API in Wi-Fi Direct. Doing this would relieve the 

network from associating peers that does not provide any required workspace to the 

group, which would improve the overall performance. In our work, we have addressed 

the service discovery part before connecting devices to the group. Unlike what the 

authors do in obtaining the IP/MAC addresses pairs, we avoided using the ARP tables 

and implemented ELN protocol for managing extraction and distribution of IP/MAC 

addresses. 

Meanwhile, Chaki, et al. [51] proposed an approach for handling the group reformation 

issue in Wi-Fi Direct. It is known that when a GO disconnects from the group for any 

reason, the entire group breaks. Their approach tackles such a problem by choosing a 

list of Emergency GOs (EGO) whose responsibility is to restore intra-group 

connectivity. No consideration was given to inter-group issues. In [52] the authors 
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proposed an algorithm, called WD2, for automatically selecting group members based 

on the RSSI measurements. Thus, each device collects the RSSI reading from nearby 

devices and an Intent Value (IV) is calculated based on such collected measurements. 

The devices then exchange IV values. The device that has the best IV value creates the 

group. Although WD2 is validated on real devices, the scope of the work is limited to 

single group formation.  

On the other hand, Wong et al. [56] exploited the service discovery feature of Wi-Fi 

Direct to distribute the credentials (SSID, Key) of the SAP created by a Wi-Fi Direct 

group to nearby devices in order to enable them to connect to such SAP. Their goal is 

to create a mesh router using a Wi-Fi Direct group. During the implementation, they 

found out that connecting a device to the group must be manually confirmed; however, 

connecting the same device as a legacy client to the SAP of the group does not need 

confirmation. Such finding has allowed them to bypass the confirmation process. 

However, they did not exploit service discovery to share actual data between devices 

other than the SSID and the key, unlike our ADS protocol that has such ability feature. 

In addition, they did not attempt to cover multiple groups. Likewise, Menegato, et al. 

[50] utilized the service discovery protocol in Wi-Fi Direct for exchanging certain 

information among devices to aid them in creating clusters (groups) for data sharing. 

Three algorithms were proposed for selecting cluster heads. Nonetheless, no 

implementation on actual devices was attempted. In addition, their work is limited to a 

single group formation without consideration of inter-group communication.  
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2.1.3 Inter-Group Data Sharing:  

    Duan et al. [53] were the first to propose a method for establishing multi-group 

communication in Wi-Fi Direct. They base their work on the fact that concurrent 

operations are allowed in the Wi-Fi transceiver using both the “WLAN” and the “p2p” 

interfaces in the same time, i.e., a device can be connected to a Wi-Fi Direct group and 

a Wi-Fi network in the same time. Wi-Fi Direct supports legacy devices by letting the 

GO create a software access point that legacy devices can associate with. Thus, they 

connected two groups by letting the GO from the first group to connect as a legacy 

client in the second group using the “WLAN” interface. The authors then experimented 

with three groups and showed how to connect them together. A problem they faced was 

that all groups were sharing the same subnet (192.168.49.x/24). To overcome this, they 

used a combination of unicast and multicast communications. Although they have 

investigated inter-group interaction in Wi-Fi Direct, they did not propose a dynamic 

way to create the groups and automatically connect them. What they used for validating 

their work was a manually created topology. In addition, their choice for having the 

GOs to perform the legacy connection imposes constraints on how the GOs should be 

far from each other and the number of groups that a certain group could reach directly. 

    Laha, et al. [54] proposed a method for clustering several Wi-Fi Direct devices into 

multiple groups based on LEACH [55]. The idea is to allow the devices to rotate the 

GO responsibility and efficiently manage the consumption of their batteries. The 

created clusters, or groups, would then exchange data, or pass it to a base station. The 

authors validated such a scheme through simulation without considering the challenge 
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associated with implementation on actual Wi-Fi Direct devices. In addition, no solution 

was proposed to overcome the IP subnet limitation if their work is to be implemented 

on real devices. 

2.2 Data Sharing using other Technologies 

Supporting efficient data sharing has been investigated in the context of multiple 

applications, namely distribution of alerts, warnings, or general information in VANET 

[57]-[62], in networked mobile devices [63]-[66], and in first responders ad-hoc 

networks [67]-[74]. Unlike published schemes, our work is not tied to a certain 

application; it can be used in vehicular networks to improve road safety or in first 

responder application to enable efficient handling of disasters, etc. In addition, some of 

the published protocols require an existing connection or special hardware, which is 

not available in most cases.  

2.2.1 Data Sharing in VANETs 

Doukha et al. [57] proposed a protocol for disseminating urgent alerts in VANET. 

The idea is to combine the use of unicast and broadcast transmissions to achieve 

network-wide distribution task with low latency. A message is sent twice, one using 

unicast to the farthest node from the sender and again using broadcast to reach nearby 

nodes. The node that receives the unicast message then retransmits it again using the 

same method. This way they limit the number of broadcasts, as only certain nodes are 

responsible of sending broadcast messages. Suriyapaiboonwattana et al. [59] also 

considered reducing alert delivery latency as a design objective for their protocol. 

Unlike [57], they opts to improve the rate of successful alert message delivery. 
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Basically, conventional broadcasting is enhanced by an adaptive adjustment to the 

wait-time until retransmission is attempted. The number of duplicated message that are 

received during the wait-time controls the next setting. 

Another adaptive scheme for alert dissemination in VANET is presented in [60]. The 

idea is to gather the information about the characteristics of the road in the area using 

street maps and estimate the density of vehicles based on beacon frames. Both 

parameters are then used to improve the message broadcasting process. Meanwhile, the 

authors of [58] proposed two protocols for distributing alerts. The first deals with the 

selection of the most suitable node to act as a relay for broadcasting alert. The second 

protocol addresses the case of multiple hazards occurring at the same time in the road. 

In such a case, the protocol finds the most effective vehicle to initiate the alert message 

while taking into account the latency, interference, and reliability. In both protocols 

hello message are used to gather the information about neighbors. 

In [61], a protocol for disseminating local advertisements is presented. The authors 

are interested in announcing local services on the road such as gas station, repair shops, 

restaurants, etc. to passing vehicles. They pursue a push model and a distance based 

forwarding for announcing these services. The objective is to reduce the number of 

required transmission to cover a given area and to limit the medium access collisions.  

To achieve such an objective, a node that received a message waits for a short period 

to allow for other copies of the same message to arrive. Doing so allows the node to 

know if it is the furthest from the original sender of the message. This approach favors 
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directing a distant relay to forward data from the previous sender in order to cover as 

much area as possible with the fewest number of broadcasts.  

 Other work, e.g. [62], proposed certain modification for the 802.11p MAC protocol 

to allow efficient dissemination of emergency messages. The modifications include 

muting the back-off procedure in case of sending emergency messages, and introducing 

a separate queue for holding such type of messages. Although the proposed changes 

enable faster transmission in case of emergency, disabling the back-off algorithm 

means more collision on the channel. Thus, such protocol is suitable for simple 

scenarios involving few nodes.  

2.2.2 Data Sharing in Mobile Devices/Networks 

Huang et al. [63] benchmarked a commercial network, AT&T Enterprise Messaging 

Network (EMN), to assess its ability to disseminate alerts. They built an Alert 

Dissemination engine (ADE) as a service on top of EMN. These benchmarks helped in 

determining the scalability parameters of the system for a given hardware 

configuration. They also experimented with splitting the alerts into smaller messages 

and showed that splitting is good for decreasing the latency in disseminating alerts. 

They also found that excessive splitting is not beneficial, so the number of message 

segments must be kept small. It is worth noting that the scope of their work and the 

results are tailored for a special network setup. 

An attempt to use smart phones for creating an emergency communication service 

was introduced in [64]. The authors proposed attaching of an FM transmitter module 

to the phone. This module can then be utilized by an application to send an SOS 
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message encoded by Morse code to emergency responders. A message could be 

forwarded by several users until it reaches the intended responders. This approach is 

not suitable for every user though, as it requires a special module to be attached to the 

device.  

In [66] Teranishi and Shimojo proposed a system for disseminating social network 

messages such as Twitter in case of losing the connection with the cloud. They used a 

P2P based overlay to store and forward the messages. A device waits until another 

device comes within its range and sends the messages to it. This is repeated until the 

cloud is reached and the message is delivered to the social network. Although the 

approach is useful for sending SOS messages via twitter in case of disasters, the alert 

may not be of a much benefit, since other interested parties may not be able to reach 

the cloud too.  

2.2.3 Data Sharing in Ad-hoc Networks 

    In [67], Thomas et al. discussed the implementation of their Smart Phone Ad-Hoc 

Networks (SPAN) protocol on Android. Their goal was to allow smart phones to create 

mesh networks. They also promoted the concept of off-grid communications, where 

peers could talk to each other without the need for a cellular connection. Since forming 

an ad-hoc network is not supported by Android, the command line utility “iwconfig” 

was used to configure the connection. Because not all Android devices support 

“iwconfig”, the kernel was modified for some of these devices to allow the usage of 

the command. Nonetheless, this approach for P2P networking is not suitable for 

contemporary users, as it requires the device to be at least rooted to use the “iwconfig” 
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command, which is not a trivial job for average users to do. Such a restriction makes 

this method impractical. Our work, on the other hand, does not require any modification 

to existing systems as we use Wi-Fi Direct, which is supported by the current Android 

APIs. Although we had to overcome some limitations in the Android API, no rooting 

is required. Thus, any application that utilizes our framework could work correctly in 

stock version of Android. 

Kolios et al.[68] introduced a new paradigm for alert dissemination called EnE. This 

paradigm is specially designed for emergency ad-hoc networks. EnE relies on specific 

link layer protocol called LC designed by the authors. The LC protocol extracts the 

network topology then an LTE-Direct [75] feature in the protocol is used to locate 

nearby neighbors. 

Most of the work done in the context of data sharing in ad-hoc networks assumes 

that certain devices are available to do the job. In sudden event, e.g., an earthquake, the 

unavailability of devices in the affected area may delay the rescue operation. Our work 

in contrast allows data to be shared without the need for having any special devices. 

We utilize the smart portable devices that most of people carry in their pockets, which 

allows faster notification and higher responsiveness to urgent situations. 
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Chapter 3: Alert Dissemination Protocol Using Service 

Discovery in Wi-Fi Direct 

    In this chapter, we propose a protocol for alert dissemination among smart devices 

using service discovery (ADS) in Wi-Fi Direct [79]. ADS relies on the service 

discovery feature of Wi-Fi Direct for distributing alerts or short messages to nearby 

devices without having any prior connections and thus avoiding the setup delay in 

creating Wi-Fi Direct groups. As ADS does not need any infrastructure, connections, 

or groups for data exchange, it is suitable for scenarios where reducing the latency is 

the most important aspect, such as emergencies. When a device Di needs to send an 

alert, it creates a service announcement record and replaces the service description with 

the alert data. When Di receives a request from another device Dj to list its services 

(using a service discovery request), Di sends the stored record which contains the alert 

data. Nearby devices, which continuously probe for services by sending discovery 

requests, receive this announcement and store the record. The alert stored in the record 

is forwarded to other devices using the same mechanism. In addition, we present a 

mechanism for discarding inactive alerts. ADS also avoids the flooding of the network 

by forwarded records. ADS is validated by implementing a hazard propagation 

application for Android. The performance of the protocol in reporting alerts and 

pruning unneeded ones is also analyzed. 

3.1 Problem Statement and Solution Strategy 

    An efficient and fast alert dissemination protocols is required in case of emergencies. 

For example, the vehicles on the road may alert each other about accidents, dangerous 
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pavement cracks, traffic congestion, etc. To implement such a protocol, two 

methodologies may be pursued. The first is to proactively send alerts as soon as a device 

detects an event or forward it once a notification from another device is received. The 

second option is to wait until receiving an inquiry or update request (i.e. 

publish/subscribe model). Obviously, the latter approach is more optimized as it allows 

only the interested devices to receive the alert messages. Such an approach aligns with 

service discovery concept in Wi-Fi Direct.  

    ADS exploits the service discovery in Wi-Fi Direct to support timely alert 

dissemination in a publish/subscribe manner. The Wi-Fi Direct service discovery 

frames are utilized to encapsulate the alert details. Thus, ADS requires no infrastructure 

or known topology. The devices themselves can be mobile or stationary. The 

advantages of this approach are: 1) it allows optimized delivery of alerts; 2) it does not 

require any additional hardware; 3) it can be implemented on a large scale without extra 

cost. An example usage of ADS is shown in Figure 3-1, where a hazard information 

been disseminated to four smartphones. When a device detects something unusual, it 

records an alert information in a service discovery record. Interested devices ask for 

existing alerts by sending a service discovery request. A nearby device with stored alert 

records responds by encapsulating the details of each alert details in a separate service 

response frame. The ADS protocol is explained in detail in the next section. 
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Figure 3-1 Example usage of ADS. 

3.2 ADS Protocol 

    Our ADS protocol for alert dissemination using the service discovery of Wi-Fi Direct 

is composed of two parts for: (1) managing local alerts, and (2) managing remote alerts. 

As the name indicates, the distinction between local and remote alerts is based on which 

device generated such an alert. A locally generated alert reflects an event that the device 

has detected; thus, the device can track such an event and maintain its own record. In 

addition, the local alert manager is responsible for storing alerts as service discovery 

records and responding to inquiries from nearby devices. The remote alert manager 

handles the dissemination of notifications about events detected by other devices. The 

protocol itself does not need the devices to be connected in any way. The only 

requirement is that a device applying ADS should have a Wi-Fi transceiver that 

supports Wi-Fi Direct and an operating system with APIs that supports the Wi-Fi Direct 

standard and its service discovery protocol. The details of ADS are provided in the 

balance of this section. 
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3.2.1 Service Record 

    The ADS protocol starts by registering a common instance name for the devices that 

are willing to use the protocol to receive alert. The instance name is part of the Wi-Fi 

Direct service discovery protocol. Other devices in the vicinity that are not interested 

in running the ADS protocol will not be engaged, as their instance name will be 

different. A service discovery record is used to store each alert that a device knows 

about so far. These records are exchanged with other devices for the sack of alert 

dissemination. The format of the service discovery record for ADS is shown in Figure 

3-2. The deviceID is a unique identifier for the device, which can be the MAC address. 

The seqNo is an auto-incremented number that is used to differentiate between 

subsequent records. The data field in the record stores the alert information; for 

example, in hazard detection scenarios, such a data field includes the location and type 

of the hazard. The isValid field is a Boolean indicator for whether the alert is still valid 

(in effect). Setting this field to zero means instructing nearby devices to dismiss any 

existing copy of this alert record. 

 ADS Record 

SERVICE DSICOVERY 

HEADER 

deviceID seqNo data isValid 

 Uniqe Id for the 

device 

Uniqe idetifier for 

the alert 

Alert details (e.g., 

Hazard location) 

Indicates whether the alert is 

to be discarded  

Figure 3-2 The format of the alert record stored on the device. 

    ADS maintains two internal tables to store local and remote alert entries. An alert 

entry contains an additional time-to-live (TTL) field that is used to prune inactive alerts 
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once these values reach zero. The TTL value is initialized to ATTL, which is determined 

by the applications, e.g., typical time until an accident is cleared from the road, etc. For 

local alerts, the TTL is gradually decreased, e.g., every TdecTTL seconds, once the event 

ends and the isValid field in the corresponding record is set to false. The gradual 

decrease of TTL, rather than the immediate removal of the event record, is to allow 

other inquiring devices to update their alert entries. Meanwhile, the TTL of a remote 

alert is decreased on every TdecTTL seconds with TdecTTL < ATTL, and is reset again to ATTL 

if the same alert is received again. An additional field, called srcDevAddress, in each 

entry in the remote alert table is provided to identify the device that sent the alert. That 

field is different from the deviceID field, which notes the originator of the alert. If an 

alert is to be forwarded from device to another, the srcDevAddress is changed to reflect 

the last device that sent the alert, while the deviceID stays the same. The 

srcDevAddress is the MAC address of the device, which can be extracted from the 

service discovery frame of Wi-Fi Direct.  

A detailed flowchart for the ADS protocol is shown in Figure 3-3. The management 

of both local and remote alerts is discussed in the next sections.  
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Figure 3-3 A flow chart description of the ADS protocol. 

3.2.2 Local Alert Management 

    Upon detecting a noteworthy event, an alert entry is created and populated with the 

unique ID of the device, the current sequence number, and the alert details. The record 

is set to valid (isValid field is set to true) with a TTL value of ATTL. Such an alert entry 
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is then stored in the local alert table. Additionally, a service discovery record that has 

the format shown in Figure 3-2 is created based on such alert element and stored as a 

local service that the device would support. A device, which runs ADS protocol and is 

within the Wi-Fi range, sends a service discovery request to learn about current alerts 

in the area. Upon receiving such a request, stored service discovery frames will be sent 

containing alert records along with other information that is part of the service 

discovery frame (such as MAC address of the device sending the frame). 

    Once the event becomes inactive, the corresponding local alert entry is invalidated, 

i.e., the isValid field is set to false, in the service discovery record of that alert. Since 

the alert is still stored in the device, it will be sent to any querying device to inform it 

that this event is not active any more. This way other devices know about the 

deactivation of the alert by noticing the isValid field, so that they can inform others as 

well. After invalidating a local alert, the local management part of the protocol starts 

to decrease the TTL value for such alert every TdecTTL seconds. Once the TTL value 

reaches zero, the alert is removed. 

3.2.3 Managing Remote Alerts  

    A device applying the ADS protocol gets informed about events detected in the area 

by sending service discovery requests every TsendInterval seconds. Like TdecTTL and ATTL, 

the value of TsendInterval depends on the application and on how dynamic the environment 

is. A device that is in range will react to the request by sending a service discovery 

response indicating its supported services in the context of Wi-Fi Direct, which reflect 

the stored alerts. As mentioned before, we modified the records stored in the service 
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discovery frames to include alerts information. For a received service discovery frame, 

ADS extracts the alert record and processes it. First, the alert is checked by looking for 

previously received seqNo from that deviceID. A hash-table that contains the last seen 

seqNo from each deviceID helps in performing such check. A received alert is deemed 

new if its seqNo is larger than the last seen seqNo from the same sender.   

    For a new alert, the isValid field is inspected. In case the alert is invalid, the message 

is discarded. After confirming its validity, an entry in the remote alert table is created. 

The entry includes the data extracted from the alert record plus a TTL value set to ATTL 

and a srcDevAddress field populated with the MAC address of the device that sent the 

service discovery frame. ADS forwards the received alert to let other devices, which 

may not have received this alert or are not in the range of the sender. The forwarding 

is done in a similar manner to local alerts, i.e. by declaring a locally supported service 

that contains the received remote alert record. The device then responds to service 

discovery requests from other devices by announcing the locally supported services, 

which contains both local and remote alert records. 

    If the received alert is not new, i.e., seqNo is less than or equal to the last seen seqNo 

from the sender, it means that this alert is an update to a previously received alert or it 

is a dangling alert that is no longer valid. First, ADS checks remote alert table using 

the seqNo. If no match is found, the alert message is discarded. Otherwise, the 

srcDevAddress field of the stored alert is checked to see if it matches the MAC address 

of the sender. We have two cases here: (1) the sender of the alert is the same device 

that sent the previous alert, or (2) the sender of the alert is different from the previous 
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sender. In first case, ADS updates the information of the stored alert, such as the alert 

details and the isValid field. If the alert is still valid, the TTL value is reset to ATTL. In 

the second case, we do not update any information regarding the alert except in a special 

case for the isValid field. If the isValid field of the received alert is false and the value 

for stored one is true, the isValid value for the stored record is updated to speed up the 

pruning of such inactive alert.  

    As in the local alerts case, the ADS protocol prunes inactive remote alerts. Each 

TdecTTL seconds, the TTL value of all remote alerts is reduced by one. As indicated 

previously, the TTL value could be reset to ATTL again if an updated record is received. 

Once the TTL value reaches zero, the remote hazard is removed completely from the 

remote alert table and the declared locally supported service is removed. 

3.3 ADS Implementation 

    To validate the features and implementation of ADS, we have developed an Android 

application for distributing alerts regarding detected hazards. A version of this 

application is available at GitHub1. The implementation of our protocol allowed smart 

devices to disseminate hazard alerts between each other without the need for a 

connection or any infrastructure. This application is written in AndroidStudio using 

Android SDK. The application targets Android API level 16 to be able to use the Wi-

Fi Direct service discovery APIs. The application is composed of the following 

                                                 

1 https://github.com/ashahin1/WiFiDirectServiceDiscoveryTransfer 
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components Main Activity, and Hazards Class. Table 3-1 shows a brief description for 

what each component does.  

Table 3-1 Application components and their description 

Component Description 

Main 

Activity 
- Performs the service discovery initializations. 

- Creates a google maps object to display both local and remote alerts 

(hazards) on it. 

- Enables declaring local alerts (hazards) in by tapping on the map. 

- Enables voiding local alerts by tapping on them on the map. 

- Stores local alerts in service discovery record. 

- Responds to service discovery requests by sending the stored alert records. 

- Periodically decreases the TTL values for inactive local and remote alerts. 

- Periodically prunes alerts with TTL values less than or equal to zero. 

Hazards 

Class 
- Declares a hazardItem object that is composed of the srcDeviceAdress, 

deviceID, seqNo, location, isValid, and TTL fields. 

- Manipulates arrays of local and remote hazardItems by adding removing 

and updating such items. 

    The application user can tap on a displayed map to declare a local alert or hazard 

(places a red marker on the map). The location of tapping on the map is used to declare 

the GPS coordinates of the alert. Other users nearby receive an indication of the hazard 

on their maps (blue markers on the map). We used four Android devices (two Nexus 4 

phones and two Samsung Galaxy Tab 2 7.0 tablets) to test the application. In this test, 

we fixed TdecTTL, TsendInterval, and ATTL to 1, 5, and 30 respectively. At the beginning, we 

started the application in all devices. We tapped on each device’s map to create local 

alerts (Hazards). We then confirmed that the devices started to exchange their local 

alerts. Because of such successful exchange, the devices displayed the remote hazards 

they received on their maps with blue markers. Finally, we removed all local hazards 

on all devices and the remote hazards were removed from the other devices. Figure 3-4 
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shows two screenshots from the two devices while exchanging alerts. As we can see, 

one of the devices has two local alerts marked red and the other has only one local alert. 

Both devices successfully exchanged the alerts data, as we can see blue markers on 

both devices indicating remote alert. 

 

 

Figure 3-4 Screenshots from two devices showing local alerts (marked red) and remote alert (marked blue) from 

the other device. 
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3.4 Performance Analysis 

    In this section, we analyze the performance of the proposed ADS protocol. The goal 

of the evaluation is to capture how fast the reporting of a new alert and the pruning of 

an existing alert are. We assume in this analysis a Wi-Fi transceiver that supports the 

802.11n standard. Typical transmission ranges for such a transceiver are 70m for indoor 

and 250m for outdoor. For the sake of this evaluation, we assume a transmission range 

of 120m. The transmission speed for 802.11n ranges from 54 Mbps to 600 Mbps. We 

choose 54 Mbps, as it is the most common data rate. We also assume that the service 

discovery request and the service discovery response frames to have the same length 

of L bytes.  

3.4.1 Alert Reporting 

    Figure 3-5 shows the actions taken to report an alert. In the figure, device X is 

querying a nearby device, Y, about its local alerts by sending a service discovery 

request. The request should reach Y after T seconds, where T is the time needed to 

deliver a service discovery frame. At that time, device X has nothing to report so it did 

not send any response. Just after Δ seconds from receiving the request, device Y detects 

an alert and stores it. In ADS, a device discovers alerts every TsendInterval seconds. Thus, 

after TsendInterval seconds are elapsed from the first request, device X tries again. Device 

Y at that time reports the alert back to X. After T more seconds, Device X receives the 

alert. Therefore, an alert could take 𝑇𝑠𝑒𝑛𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 + 2𝑇 − (𝑇 + ∆) = 𝑇𝑠𝑒𝑛𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 +

𝑇 − ∆ seconds before being available to nearby devices.  
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Figure 3-5 A graph showing the actions taking to report an alert. 

    The time T is composed of the propagation delay, Tp, and the transmission time, Tt. 

For a wireless medium, Tp depends on the distance between the two devices. Assuming 

that device X and Y are separated by a distance equals to the maximum range for Wi-

Fi, 

 𝑇𝑝 =
120

𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡
=

120

3×108 = 0.4 𝜇𝑠  

    Tt depends on the transmission rate, the length of the frame, thus  

𝑇𝑡 =
𝐿

54 𝑀𝑏𝑝𝑠
. 

    For L = 5000 byte, we will have 𝑇𝑡 =
5000×8

54000000
= 0.7 𝑚𝑠. Therefore  

𝑇 = 0.4 𝜇𝑠 + 0.7 𝑚𝑠 ≅ 0.7𝑚𝑠. 

    The range for Δ is 0 < ∆ ≤ 𝑇𝑠𝑒𝑛𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙. Thus, an alert could take any value 

between 𝑇𝑠𝑒𝑛𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 + 0.7 𝑚𝑠, 0.7 𝑚𝑠 to be noticed by other devices. For a 

rectangular area, whose diagonal is N multiples of the Wi-Fi range, to be covered by 

alerts, we need a time between 𝑁(𝑇𝑠𝑒𝑛𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 + 0.7) 𝑚𝑠 and 𝑁×0.7 𝑚𝑠 to reach the 

farthest device. From that, we conclude that reducing the TsendInterval value helps in 

Time (sec) Device X Device Y 

0 Send service discovery request 
 

T  Received the request but nothing to report 

T + Δ  Alert found 

TsendInterval Send service discovery request  

TsendInterval + T  Received the request and replied instantly 

TsendInterval + 2T Received the response  
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speeding up the reporting of alerts, however it cannot go below T. For very small values 

of TsendInterval, the network would be overwhelmed with request and response packets. 

That means the setting of TsendInterval should be selected based on the anticipated number 

of devices that are in the same Wi-Fi range. 

3.4.2 Alert Pruning 

    The ADS protocol performs the pruning of inactive alerts with the help of the isValid 

field and the TTL value for a given alert. For local alerts, an inactive alert is determined 

by having a false value for the isValid field. The TTL value for an inactive local alert 

is decreased every TdecTTL seconds until it reaches zero. At that time, such an alert is 

pruned. As the TTL value is initiated to ATTL, it takes 𝐴𝑇𝑇𝐿×𝑇𝑑𝑒𝑐𝑇𝑇𝐿 seconds from the 

deactivation time to prune a local alert. 

    For remote alerts, the TTL values are decreased every TdecTTL seconds whether it is 

active or inactive. The TTL value is reset back to ATTL if the alert is received again from 

the same sender. Thus, a remote alert is pruned after 𝐴𝑇𝑇𝐿×𝑇𝑑𝑒𝑐𝑇𝑇𝐿 seconds from the 

last time it is seen. Any alert deactivated between two service discovery periods takes 

the same 𝐴𝑇𝑇𝐿×𝑇𝑑𝑒𝑐𝑇𝑇𝐿 seconds to be pruned. The value of TdecTTL should be chosen to 

be smaller than TsendInterval to speed up the pruning of inactive alerts. For ATTL, we should 

choose its value such that 𝐴𝑇𝑇𝐿×𝑇𝑑𝑒𝑐𝑇𝑇𝐿 is larger than TsendInterval to avoid pruning 

remote alerts that are still active. 
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3.5 Conclusions 

    In this chapter, we have presented ADS, a protocol for disseminating alerts or short 

messages between smart devices. The protocol uses the service discovery protocol in 

Wi-Fi Direct to perform the data distribution without the need for infrastructure or any 

existing connections between devices. The main components of the protocol are the 

local alerts management module and the remote alerts management module. The 

former generates local alerts, stores them, and distributes them when requested. The 

remote alerts module is responsible for querying for alerts on other devices, storing 

them, and redistributing these alerts to other devices. ADS also avoids flooding the 

network with many alerts, removes duplicate alerts, and prunes inactive alerts.  

An application is implemented to validate the ADS protocol using level 16 of the 

Android APIs. The implementation has confirmed the applicability of the ADS 

protocol through testing on four smart devices. The performance of ADS is analyzed 

for reporting new alerts and pruning inactive ones. The analysis has provided guidelines 

to how to choose the ADS parameters to achieve low-latency reporting and update of 

alerts. We developed a unified simulator for all the protocols in this dissertation, which 

is presented in chapter 7. The performance of ADS in many different scenarios has 

been studied and reported by the help of such simulator, as shown that chapter. 
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Chapter 4: Efficient P2P Networking of Smart Devices over Wi-

Fi Direct 

    In this chapter, we present an efficient and lightweight protocol for peer-to-peer 

networking of Android smart devices over Wi-Fi Direct (ELN) [76], a protocol for 

allowing a small number of users to share large amounts of data. The protocol includes 

a connection setup phase and a group management phase. The former enables different 

devices with the same interests to form a Wi-Fi Direct group. The group management 

phase provides the necessary means for handling dynamic group membership and 

adapting to topology changes to allow group members to communicate with each other 

in a peer-to-peer fashion. The ability of Wi-Fi Direct to preform fast data streaming 

(which is a required feature for peer-to-peer systems) is validated by writing an 

application that streams the accelerometer readings between two devices. ELN is 

implemented by building a group chatting application on four Android devices. We 

also monitored how ELN responds to different connection/disconnection scenarios. 

The overhead imposed by our protocol is also calculated. 

4.1 ELN Approach 

    ELN is composed of a connection establishment phase and a top-layer group 

management phase. The connection establishment phase allows only the devices with 

the same interest to connect with each other. The group management phase allows 

treating the Wi-Fi Direct topology, which is by convention a star network, as a mesh 

network. ELN does so by providing a mean of distributing the peers’ IP addresses, 
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facilitating transport layer connections and managing addition and removal of peers 

from the group. ELN is described in detail in the balance of this section. 

4.1.1 Connection Establishment Phase 

    The goal of the connection establishment phase is to allow the devices to define their 

supported service types, and to filter nearby devices based on that. Thus, this phase 

allows only the devices that provide the same services to connect.   Before attempting 

to form any Wi-Fi Direct group or connecting to an existing group, a device has to 

announce its supported services. The Android APIs for Wi-Fi service discovery has an 

option to include a service record along with the service type that the device can 

provide. The service record is used for exchanging additional data, which is used in the 

connection establishment.  

    In this phase, each device adds a uniqueID and the availability status to the record. 

The uniqueID is calculated once by the device and is stored for future connections. This 

ID is formed by the concatenation of two randomly computed numbers. The first 

number is an integer random number and the last is a float random number. The 

probability of having a completely unique number is very high, as the devices 

generating these random numbers are not tied to the same clock and also they are not 

running at the same exact instance of time. This uniqueID is used to differentiate 

between devices in case they have the same name. It is also used by the next phase for 

retrieving peers records. The availability status allows connecting devices to delay or 

postpone the connection to a device until that device is available.   An optional 

username can be included in the service record. When included, this username will be 
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used by peers as a more expressive identifier. In case of omitting the user name field, 

the device name is used. 

    Upon receiving a service discovery announcement from a peer, the device retrieves 

the information in it and then checks for the service type that such a peer provides. If 

both of this device and the connecting peer agree on the same service type, the device 

continues processing the information, otherwise the announcement is discarded. The 

service record is then retrieved and stored. If a username is included the device uses it 

when displaying the found peer to the user, otherwise the peer’s device name is used. 

The availability status allows the user to know when to attempt the connection with the 

device. Flowcharts for the connection establishment phase are shown in Figure 4-1 and 

Figure 4-2. 

 

Figure 4-1 The connnection establishment phase from the sender side. 
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Figure 4-2 The connnection establishment phase from the receiver side. 

4.1.2 Group Management Phase 

    Once a group is formed based on service matches, the group management phase 

forms peer-to-peer links among the group members at the level of the transport layer.    

As part of the Wi-Fi Direct connection setup, an embedded DHCP server that runs in 

the group owner assigns the IP addresses for the group members. Members in a group 

may not know about other member in that group, thus the group management phase in 

ELN distributes the information of the GMs to everyone in the group. We will explain 

the operation of the proposed management phase in the balance of this section.  
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4.1.2.1 Layers of Connections 

    The group management phase uses two layers of connections one for management 

purposes and the other for data exchange purposes.  

Management Connections:  As the name indicates, the management connections are 

for managing the group. The group owner receives peers’ information and sends the 

list of peers to all members. Upon creating the Wi-Fi Direct group, the GO opens a 

server socket and binds it to a predefined management port. As the GO IP address is 

already known to all GMs as part of the Wi-Fi Direct APIs, every GM connects to the 

server socket of the GO. The final topology of the connections at the management level 

is a star topology that originates at the GO as shown in Figure 4-3. 

 

Figure 4-3 The topology for the management connections. 

Data Exchange Connections:  The GMs needs to obtain a list of other peers’ 

information from the GO for opening data exchange connections with each other. 

Meanwhile, every member in the group opens a server socket and binds it to a known 

data-exchange - port. The server socket listens for incoming peer connections. When a 
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connection is accepted, a list of all open data connections is updated. The final topology 

of the connections at the data exchange level is a mesh topology as shown in Figure 

4-4. 

 

Figure 4-4 The topology for the data exchange connections. 

4.1.2.2 GO and GMs Interactions 

    The group management protocol is a centralized one, where the GO is the entity that 

orchestrates it. The GO receives heartbeat messages from members, updates its peer 

list as necessary, and send the current list of peers to the other devices. These operations 

are carried out using the management connections that were opened previously. 

4.1.2.2.1 Heartbeat Messages 

    The heartbeat messages are used to announce that the member is still alive. Each 

group member sends a heartbeat message every THeartBeatGM seconds to the GO through 

the opened management sockets. An example of the heartbeat message is 

“2953112190.083090484,Nexus,aa:aa:aa:aa:aa:aa:aa:aa, 192.168.45.10”. It is a 

comma separated string composed of the concatenation of the uniqueID, 
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devicename/username, MAC address, and IP address. If the devicename/username 

contains a comma, it is padded by replacing the comma with the special characters 

<<>> to avoid misinterpretation of the message. Upon receiving the message, the GO 

unpads the devicename/username if necessary and stores/updates the peer information 

in a special data structure. 

4.1.2.2.2 Announcing the List of Available Peers 

    The group owner notifies the members in the group about the peer information by 

sending a message every THeartBeatGO seconds that contains the list of all known peers, 

where THeartBeatGO is a multiple of THeartBeatGM to allow the GO to collect the data of more 

than one GM before sending the peers list message. The list is a semicolon-concatenated 

string that is composed of the heartbeat messages received from the GMs plus the 

information of the GO itself. Upon receiving the list from the GO, each GM 

stores/updates a peer list. It then attempts to open data-exchange connections with 

unconnected peer in the list (including the GO), using the IP addresses given in the list. 

A list of all open data-exchange connections is updated to reflect how many 

connections are open. 

4.1.2.2.3 Duplicate Connections Removal 

    As the group members attempt to connect to each other as soon as they receive the 

list from the GO, there is a possibility that duplicate data-exchange connections are 

opened between them. To prevent this, we added a random wait time before a peer 

attempts to connect to another. Then, before connecting to a peer, a GM checks if a 

connection with such peer already exists or not. While this decreases the probability of 
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duplicate connections, it is still possible for duplicate connections to be established. To 

avoid this problem completely, we have added a new procedure that allows removing 

any redundant connections.   

    The duplicate connection removal procedure runs after a peer opens connections 

with other peers. Each peer iterates along the list of the data exchange connections, 

finds any duplicated connection (using the IP address associated with the connection), 

and removes it. To avoid removing the connection from both ends, we used the last 

octet value in the IP address of the device to guarantee only one connection removal. 

Each device when iterating through the list, it removes the duplicated connection only 

if the last octet in the IP address of device is higher than the last octet of the IP address 

of the peer associated with the connection. For example, if node A has the IP address 

192.168.1.10 and node B has the IP address 192.168.1.20. The last octets for A and B 

are 10 and 20 respectively. When A tries to remove a duplicated connection with B, it 

finds that the last octet in these sockets is 20. Device A stops and does nothing in this 

case.  In the same time, B attempts to remove the duplicated socket with A. Device B 

finds that its octet is greater than the octet associated with the sockets, so it closes one 

of the duplicated connections. After running this step, each device will keep only one 

data connection with other peers. 

4.1.2.2.4 Pruning Peers 

    To tell whether a peer is alive or not, a time-to-live (TTL) value is associated with 

each peer in the stored peer list. The TTL value is initialized to PTTL (where PTTL is a 

multiple of THeartBeatGO to allow the GMs to perform pruning and addition of peers at 
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the same step). This value is decreased periodically by all devices if the peer 

information is not heard again. If the GO receives a heartbeat message from the peer, 

it resets the TTL value for that peer to PTTL. If a GM sees the peer again in the list 

transmitted by the GO, it resets the value to PTTL again. Once the GO determines that a 

certain peer’s TTL value has reached zero, it assumes that the peer has departed the 

group. The GO then disconnects from any data and management connection opened 

previously with that peer and remove it from the list of peers. In the next time the GO 

transmits a peer list message to its members, the removed peer will not be there. A GM 

continues to decrease the TTL value for the removed peer until it reaches zero. In that 

case the GM closes any data or management connections associated with that peer.  

4.1.2.2.5 Restarting After GO Failure 

    If one of the GMs fails or drops from the group, the GO will tell other members that 

this peer is not available any more. However, in case of GO failure, the devices would 

not hear the normal peer list message. They will start to decrease the TTL for the GO. 

Once the TTL value for the GO reaches zero, they all disconnect from the GO. In this 

case, they detect the removal of GO and they flush any peer data structure and start 

over again. 

A flowchart that shows the complete steps for the proposed group management 

protocol for both GO and GM is shown in Figure 4-5. 
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Figure 4-5 The flowchart for the group management protocol. 

4.2 Implementation and Validation 

    We have developed two different Android P2P applications; during our 

implementation on Android we faced certain limitation that we opted to overcome as 

mentioned in the next subsection. The first application is a remote sensor streaming 
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application between two devices to demonstrate that Wi-Fi Direct could handle fast 

data streaming. To validate ELN, we have implemented a group chatting application, 

which utilizes the proposed protocol. Implementing ELN allowed only the devices that 

run this application to connect to each other, multiple peers to chat together, and the 

handling of addition or removal of peers seamlessly. Both applications are written in 

Java using the Android SDK. 

4.2.1 Android Implementation Issues 

    The software support for Wi-Fi Direct in Android needs major expansion to enable 

P2P networking, thus we opt to make some progress toward that goal. Among the 

current shortcomings are the lack of accessibility to MAC and IP addresses for the 

device and the lack of a group management protocol that can handle topology changes 

and dynamic group membership. In addition, the members of a Wi-Fi Direct group 

know the IP address of the group owner, however they do not know the IP addresses 

of all other members in their group. Thus, a way of distributing the list of peers’ IP 

addresses to every member is needed. Our proposed protocol overcomes such 

limitations. However, not all shortcomings are addressed in ELN. Specifically, the 

inability of a device to be associated with more than one group at the same time. The 

absence of this feature in Android limits the extension of the peer-to-peer system 

beyond the range of one group. Allowing multi-group communications is addressed by 

our proposed EMC protocol for multi-group data sharing, discussed in Chapter 5. 
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4.2.2 Remote Streaming of Sensors Readings 

    The goal of this application is to connect two Android devices and test how they 

could communicate over Wi-Fi Direct. This assures how Wi-Fi Direct is suitable for 

streaming data. The application collects the readings of the local accelerometer sensor 

and displays them in a local sensors graph. Once a group is formed, the two devices 

start to stream their local accelerometer readings to the other device. Each device listens 

for incoming sensor data and displays the readings in a graph. 

    The earlier version of this application was written in Eclipse then it is ported to the 

AndroidStudio. The application targets Android API level 14, which is the first 

implementation of Wi-Fi Direct in Android. Service discovery is not used as it is not 

supported at this API level. The choice of this API level is made to allow testing how 

fast and stable is the first Android implementation of Wi-Fi Direct. The application is 

made available at the Google Play Store [76]. A screenshot of the application, where 

one device is receiving and displaying the other device’s readings, is shown in Figure 

4-6. 
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Figure 4-6 A device is receiving and displaying the sensor readings. 

    The application was tested in two Samsung Galaxy Tab 2 7.0 devices. The devices 

were able to connect together to exchange their accelerometer sensors’ readings. Both 

of them were able to display the received data in the remote sensors graph. The 

streaming and displaying of the data was very fast and runs smoothly without any 

glitches. 

4.2.3 Group Chatting 

    The goal of this application is to validate ELN. It allows multiple devices to connect 

to share chat messages. Any chat message sent from any device is sent to and displayed 



 

 

54 

 

on other devices in the group. If a new device is willing to participate in the chat 

session, it simply connects to the group and ELN handles the process of announcing its 

existence to current group members. The framework also opens the required sockets 

for the device to send and receive chat messages. 

    This application is written in AndroidStudio. It is published and available at the 

Google Play Store [77]. The first level of the Android API that support Wi-Fi Direct 

service discovery is API Level 16. Thus, the application targets the Android API level 

16 in order to be able to run the service discovery mechanism used in the connection 

setup phase of ELN. The main module in the application starts the connection setup 

protocol and announces that it provides a chat service. It also searches for similar 

devices that provide the same service. As part of this protocol the application creates a 

service record that contains the uniqueID, the username (if the user had chosen one 

from the settings, otherwise the device name is used), and the user availability (for the 

sake of testing it always set to available). Once all data is collected, the service 

discovery announcement starts. At the same time the module listens for any incoming 

service announcements. Upon receiving a service announcement from a nearby device 

that provides the chat service, the module extracts the username and displays it in a list 

of discovered devices. The user can then pick one of the chat service providers and 

connect to it to. If there is no active Wi-Fi Direct group, the Android framework creates 

one. 

    The main module follows the same flow of events as described in the group 

management phase. It implements functions for finding the device own IP address, 
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compiling the device information in a csv string (i.e. the heartbeat message), producing 

a peer list message (for GO only), processing the incoming management, and 

displaying the incoming data (chat) messages. A helper NearByPeers class is used by 

the main activity to facilitate performing the group management protocol tasks. This 

class contains a list of all opened management sockets, a list of all opened data-

exchange sockets, and a peer record. Several methods are provided in this class to add 

new peer record, connect to a peer, prune dead peers, and remove duplicate socket 

connections. The peer record itself is another class that composed of the attributes 

uniqueID, peerName, peerMacAddress, and peerIpAddress.  

    In addition, the main module uses SocketManager class to handle sockets. For every 

open socket, eiher a management or data socket, an object of the SocketManger class 

is created and associated with that socket. Whenever a message is received in a socket, 

the associated SocketManager object notifies the main module, indicates the type of 

socket, e.g., a management or a data socket, and provides a copy of the object to the 

main module. A ChatFragment is used by the main module to display received chat 

messages and to forward them to all nearby peers.  Two timers are used to execute the 

periodic task defined in the management protocol like sending heartbeat, sending peer 

list, pruning disconnected peers, removing duplicate socket connections, and 

decreasing the TTL values for unheard from peers. Table 4-1 shows a brief description 

for what each component does. 
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Table 4-1 Application components and their description. 

Component Description 

NearByPeers 

Class 
- Attributes: Management Sockets List, Data Sockets List, and Peer 

Record 

- Methods: Add New Peer, Connect To Peer, Prune Peers, and Remove 

Duplicated Sockets 

Main Activity - Performs the service discovery announcement. 

- Finds nearby devices and adds them to a list. 

- Connects to a device, opens/connects to the required management 

sockets, and opens/connects to data exchange sockets. 

- Periodically sends peer info (GM) every second/ peers list (GO) every 5 

seconds. 

- Periodically decreases the TTL values for peers every second. 

- Periodically prunes peers every 5 seconds. 

- Handles messages from management sockets and add/update peers list, 

prune peers, remove duplicated socket connections, and reset TTL 

values accordingly. 

- Opens a data exchange connection if not already connected 

SocketManager 

Class 
- Handles incoming data from the socket 

- Notifies the main activity about the data and its type (Management/ data) 

- Handles outcoming data to the socket 

Chat Fragment - Handles user text input and sends the chat message to all peers. 

- Displays chat messages from other peers. 

Setting Activity - Allows the user to change the announced username 

 

    The group chatting application is tested on 4 Android devices (two Samsung Galaxy 

Tab 2 7.0 tablets and two Nexus 4 phones). In this test, we fixed THeartBeatGM, THeartBeatGO 

, and PTTL to 1, 5, and 30, respectively. We started the application in two devices first 

and connected them together. Each of the two devices was able to discover the other 

one, and to display its name in the list of discovered devices. The management sockets 

were created and connected. The heartbeat messages and the peer list messages flowed 

as expected. The GM was able to connect to the data sockets of the GO and vice versa, 

implying that the NearByPeers object was populated with the current peers. Sending 
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and receiving chat messages were going normally. We then started the application in 

the third device and performed the connection setup protocol. The third device was able 

to discover the GO of the current group and open socket connections (management and 

data). The device was successfully added to the list of the peers at the GO. The result 

was that every device was able to send a chat message to the other two. Finally, the 

forth device was connected successfully and the data exchange was running normally. 

Figure 4-7 shows a screenshot where three devices are chatting together. Finally, we 

disconnected one of the devices from the group to see how the other devices react and 

observed that they successfully removed the departing device from their NearByPeers 

object and closed opened sockets for that device. 
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Figure 4-7 Three devices are chatting togethe. 

4.3 Performance Evaluation 

    In this section, we evaluate the performance of the proposed ELN. Mainly, we focus 

on the group management phase. The goal of the evaluation is to capture the protocol 

overhead, and assess the ability of the protocol to adapt to topology changes. The 

assumptions used in this section are shown in Table 4-2. All the calculations performed 

next are based on the worst-case scenarios.  
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Table 4-2 The assumptions used in this section. 

Parameter Value 

Maximum length of the heartbeat message  N bits 

Maximum number of members in the group, including GO M 

Maximum length of peers’ list message  N*M bits 

4.3.1 Protocol Overhead 

    The GO sends a peer list message every THeartBeatGO seconds and receives a heartbeat 

message every THeartBeatGM seconds from every member. A GM sends a heartbeat 

message every THeartBeatGM seconds and receives a peers’ list message every THeartBeatGO 

seconds. 

   Total number of message (sent and received) by the GO  

=
(𝑀 − 1)

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑀
+

1

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑂
        𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

   Total number of message (sent and received) at each GM 

=
1

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑀

+
1

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑂

          𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

    The bandwidth consumed by the protocol is the number of bits transmitted and 

received per second by both GO and GM. Thus,  

   Bandwidth consumption by the GO 

= (
(𝑀 − 1)

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑀

×𝑁) + (
1

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑂

×𝑁×𝑀)

= (
𝑀 − 1

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑀

+
𝑀

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑂

) ×𝑁 𝑏𝑝𝑠

   Bandwidth consumption at each GM 
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= (
1

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑀

×𝑁) + (
1

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑂

×𝑁×𝑀)

= (
1

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑀

+
𝑀

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑂

) ×𝑁 𝑏𝑝𝑠

    If we assume that N, M, THeartBeatGM, and THeartBeatGO equals 500, 20, 1, and 5, 

respectively, the total bandwidth consumption at the GO = 11.5 Kbps and the total 

bandwidth consumption at each GM = 2.5 Kbps. Assuming that the bandwidth for Wi-

Fi Direct is 54 Mbps, we can conclude that the overhead of the protocol is negligible. 

4.3.2 Topology changes 

    In this section, we assess how the protocol adapts to topology changes. In case of 

connecting a new member to the group, the GO starts hearing the heartbeat message 

from that member after THeartBeatGM second. This means that after THeartBeatGM second of 

connecting to the group, the GO and the new GM can start data exchange. Other 

members in the group knows about the addition of the new member once they receive, 

from the GO, the peer list message that comes after at most THeartBeatGO seconds 

(additional THeartBeatGM seconds should be taken into consideration, as the GO must wait 

THeartBeatGM seconds before receiving the heartbeat from the new GM). Thus, the 

previous members and the new GM can start data exchange after THeartBeatGM + 

THeartBeatGO seconds in the worst case.  

Let us now consider the case of removing a member from the group. Assume that the 

period for decreasing the TTL value is one second. Both the GO and the GMs start 

decreasing the TTL value for the disconnected peer every second, as they are not 

hearing from it any more. The GO and GMs perform pruning of peers every THeartBeatGO 
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seconds and remove any peer with TTL less than zero. As long as the TTL value for 

the peer is greater than zero, the GO continues to include it in the peer list message. 

This causes the GMs to reset their TTL values for the disconnecting peer to PTTL as 

they still hear about it. After PTTL seconds, the GO finds that the peer is already gone, 

so it stops including it in the peer list. When the GMs receive the revised peer list 

message from the GO, they will have a TTL value of PTTL – THeartBeatGO for the 

disconnected peer (as they already started decreasing the value after receiving the last 

message for GO). It takes PTTL – THeartBeatGO seconds more before the TTL value reaches 

zero and the GMs remove the disconnected peer from the list of their nearby peers. 

Thus, after nearly 2PTTL – THeartBeatGO seconds (PTTL seconds for the GO to notice the 

disconnection and PTTL – THeartBeatGO more for the GMs), the removal of a peer will be 

reflected at all peers. It is worth noting that, handling the disconnection of many peers 

at once requires the same amount of time mentioned above for one peer. 

    The protocol also can handle the case when a peer is not able to communicate with 

others due to a temporary problem, like interference or jamming. In such a case the GO 

will not hear the heartbeat message, thus it starts decreasing the TTL value for the 

mentioned peer. The GMs also will Decrease the TTL value for that peer. If the peer 

can communicate again within PTTL – 1 seconds, the GO will reset its TTL value. The 

GMs, in that case, will also reset the TTL value within THeartBeatGO seconds of the GO 

re-initialization of the TTL value for the peer. Therefore, if the channel is jammed for 

a period less than PTTL seconds, the group will be able to continue its operation. 
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    If we assumed the values 1, 5, 30 for THeartBeatGM, THeartBeatGO, and PTTL, respectively, 

adding new peer takes 1 and 6 seconds for the GO and GMs to handle, respectively. 

Removing a peer takes 30 and 55 seconds for the GO and GMs respectively. 

4.4 Conclusions 

    In this chapter, we have presented, ELN, a new protocol for enabling peer-to-peer 

networking over Wi-Fi Direct in Android. The main components of the protocol are a 

connection establishment phase and a group management phase. The connection 

establishment phase enables only the devices with the same interest to connect. 

Meanwhile, the group management phase allows treating the Wi-Fi Direct topology, 

which is by convention a star network, as a mesh network. ELN does so by providing 

a mean of distributing the peer IP addresses, facilitating transport layer connections and 

managing addition and removal of peers from the group. 

    The proposed protocol can be applied to any type of applications including 

audio/video streaming, dissemination of traffic information, dissemination of 

emergency data, and last–mile connectivity. Two applications have been developed to 

validate the proposed protocol. The first is a remote sensor streaming application 

between two devices that validates the ability of Wi-Fi Direct in handling data 

streaming at high rate. The second is a group chatting application. By implementing 

ELN in this application, the devices that run this application could connect to each 

other, multiple peers could chat together, and the handling of addition or removal of 

peers was seamless.  In chapter 7, we provide a unified simulator for all the protocols 

in this dissertation. By using this simulator, we were able to get insights about and 
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record the performance of ELN in many different scenarios, which is discussed in 

chapter 7. 
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Chapter 5: Efficient Multi-Group Formation and 

Communication Protocol for Wi-Fi Direct 

    In this chapter, we propose an Efficient Multi-group formation and Communication 

(EMC) protocol for Wi-Fi Direct [79][81]. EMC also dynamically and efficiently 

partition the devices into Wi-Fi Direct groups based on certain criteria, such as the 

battery specification. The concept of ADS is utilized to allow devices to share their 

information with nearby devices prior to creating the groups. A device with a higher 

rank than those in its range opts to create a Wi-Fi Direct group. Once a group is created, 

the group owner (GO) uses a service discovery record to distribute its credentials to 

nearby devices. A device that decides to be a group member (GM) should select one of 

the nearby GOs to connect to. Once a group is formed, the GO designates from its GMs 

what we refer to as proxy members (PMs) that link the group to other groups. Each PM 

uses its “WLAN” interface to join the group instructed by its GO. To avoid depleting 

the batteries of the GOs and to adapt for changes in the groups, a teardown signal is 

sent by a GO to notify the devices about restarting the EMC protocol. A typical 

topology for the network after running EMC is shown in Figure 5-1. An Android chat 

application is developed to validate EMC, where each device in a group can chat with 

other GMs in the group as well as other groups. 
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Figure 5-1 A typical topology for network after running EMC 

5.1 Approach Overview 

    Enabling D2D communication in the situations where there is no available 

infrastructure is highly demanded in areas that have no cellular coverage, or suffered a 

massive power outrage or the occurrence of natural disaster. EMC is geared for 

enabling the D2D connectivity in such application scenarios using Wi-Fi Direct.   As 

the topologies may not be static in the mentioned scenarios, it is necessary to extend 

the protocol support of Wi-Fi Direct to allow dynamic group creation and multi-group 

communication. Basically, there is no mechanism for electing a GO among multiple 

devices based on certain criteria. In addition, broad dissemination of alerts needs to 

extend the spatial coverage of a group, which is not feasible due to the limited 

communication range. Increasing the spatial coverage requires the support of inter-
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group data sharing. Moreover, devices may be interested in receiving alerts on multiple 

events and hence should be members of multiple groups. EMC overcomes such 

limitations through introducing the following features: 

5.1.1 Support of Initial Data Exchange:  

    To enable effective GO selection, EMC defines certain information to be exchanged 

between nearby devices before interconnecting them. We utilize the same idea of using 

the service discovery in Wi-Fi Direct, mentioned before in ADS, to embed the 

information in local service records and to transmit them to nearby devices that query 

for available services. However, we do not exchange such information beyond one hop 

neighbors. There are two different local service records in EMC, one called DeviceInfo 

record that holds information regarding the device, and the other called SAP record, 

which is transmitted only by GOs. Figure 5-2 shows sample format of these two service 

records and the next subsections explains relevant entries in each record. 

DeviceInfo Record 

SERVICE DISCOVERY HEADER IsCharging BatteryLevel BatteryCapacity PGO 

SAP Record 

SERVICE DISCOVERY HEADER SSID Key 

Figure 5-2 The format of the DeviceInfo and the SAP records 

5.1.1.1 Battery Specifications 

    An example of the information exchanged by devices that run EMC as part of the 

DeviceInfo record may include 1) charging state, 2) battery level, 3) battery capacity. 

A charging device with a high battery level and a large capacity is a good choice for 
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being a GO. Thus, we could employ a ranking criterion based on such information as 

follows: 

𝑅𝑎𝑛𝑘 =  𝑆𝑡𝑎𝑡𝑒×𝛼 +
𝐿𝑒𝑣𝑒𝑙

100
×𝛽 +

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑀𝑎𝑥𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
×𝛾 

Where the State is 0 or 1 depending on the charging state, Level has a range of [0, 100] 

reflecting percentage relative to the fully charged status, and the Capacity can vary 

based on the device. MaxCapacity should be chosen based on the specs of several 

commercially available devices. The weighting factors , , and  reflect the 

importance of each term. Each device uses this mechanism to calculate the ranks of all 

devices in its range to assess the possibility of becoming a GO. GMs also use such 

ranking mechanism to choose the best group to join. 

5.1.1.2 The Proposed GO 

    Nearby devices could get the rank of each other after exchanging their battery 

information. This rank is the main factor for deciding which device should serve as a 

GO. However, a device could falsely think that a neighboring device has a better rank 

than its own rank and concludes that such device should serve as a GO. Figure 5-3 

explains such dilemma.  
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Figure 5-3 Devices Ranks as seen by reachable devices 

    As shown in the figure, Device A has a rank of 10% and Device B has a rank of 20%. 

Due to such ranks, Device A finds that B has a better rank, thus concludes that Device 

B should be a GO and A should be a GM in the group of B. At the same time, Device 

B itself sees that Device C should be a GO due to its better rank. Thus, Device B 

concludes that it should be a GM in Device C’s group. The same applies to Device C 

and D. Finally, the only device that becomes a GO is D and devices A, B, and C should 

be GMs now. For Device C, the assignment is fine, as it has a GO, D, on its range. 

Thus, Device C could now join the group of Device D. However, this is not the case for 

Device A and B, as the groups they thought that they could join do not exist. Moreover, 

the two devices, A and B, cannot reach Device D. Thus, they will become orphaned 

members. 

    To overcome the mentioned problem, we add a field called the Proposed Group 

Owner (PGO) to the service discovery record (DeviceInfo record) that the devices 

exchange. The PGO field is used to denote the device amongst the reachable neighbors 
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that is suggested to serve as a GO. So, a device when exchanging its battery information 

with others it also tells them which device it suggests as a GO using the PGO field. 

This allows the devices to know if there are other devices that have better rank that the 

sender device sees that they cannot see. Returning to our previous example, Device B 

tells Device A that its PGO is Device C. Now Device A knows that Device B has a better 

ranked neighbor so it will not be a GO. Thus, Device A decides to become a GO (i.e., 

its PGO now is A itself). Similarly, Device C tells Device B that its PGO is Device D, 

so Device B knows that C cannot assume a GO role. Thus, Device B changes its PGO 

to B. After a second round of service records exchange, Device B tells Device A that its 

PGO is B. Device A finds that B has a better rank so it declares B as its PGO also. The 

result is that we will have two groups and two group members, thus we avoided having 

orphaned members. 

5.1.1.3 SAP Credentials 

    To connect to an access point, a device usually needs the SSID and the Key. As the 

Software Access Point (SAP) created by a GO can be treated as a normal access point, 

knowing the SSID and the Key for such SAP is sufficient for a device to connect to it. 

EMC embeds the SAP credentials (SSID, and Key) into a service discovery record that 

we call SAP record which is shown in Figure 5-2. The SAP record is used to inform 

devices about nearby groups, and to allow a proxy member to connect as a legacy client 

to the group chosen by its GO. As the service records are sent in clear text, malicious 

devices can steal the SAP credentials. To protect a Wi-Fi Direct group from malicious 

devices that can associate with it as legacy clients, EMC encrypts that SAP Key before 
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embedding it in a service record. EMC-enabled devices only can decrypt the SAP key 

in the service record.  

5.1.2 Support of Intra and Inter Group Communication 

    Once a group is created and populated with members, there is a need to enable intra-

group communications. To do so, we utilize our ELN protocol, described in Chapter 3, 

to manage the devices in a group. Basically, the GO opens a management connection 

with each new member. The list of all devices connected to the GO is distributed to the 

GMs to allow them to open data connections with each other. 

    We enable multi-group communication by associating qualified proxy members 

(PMs) to their group using the “p2p” interface and to another group as legacy clients 

using their “WLAN” interface. Unlike the work of Duan et al. in [53], which assigns 

the role of PMs to the GOs themselves, EMC assigns such a role to the GMs. The GMs, 

thus, serve as PMs between their original groups and the groups they are connected to 

as legacy members. Such policy employed by EMC allows a group to cover a larger 

area without imposing a constraint on where the GO can be, something that constitutes 

a major limitation in [53]. Another Feature is that EMC creates the groups dynamically 

which means that the legacy client selections are not fixed. 

5.1.3 Insuring Network Connectivity 

    The number of available members that can work as PMs is limited, as not all the 

GMs are in the overlapping region between groups. Thus, the selection of PMs that 

connect multiple groups could have a wide impact on the final connectivity of the 
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whole network. Consider the network shown in Figure 5-4, there are three groups of A, 

F, and J. Each of these groups has certain GMs that are in the overlapping regions. 

 

Figure 5-4 Three Wi-Fi Direct groups need to have PMs to be able to connect to each other. Devices with dark 

shade denote GOs. Each group has its shape symbol. 

    Let us consider the group of F, there are two GMs, I and G, that can connect this 

group to the group of A and the group of J. We note that I can reach both A and J, 

whereas G can only reach A. If F selects I as a PM for reaching the group of J and 

selects G to cover the group of A, the result will be a connected network (i.e., have one 

connected components). However, if F selects I as a PM for the group of A, the group 

of J will not have any PM to cover it. Thus, the network will not have a complete 

connectivity. 
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    Due to the importance of PMs assignment, we have employed a combinatorial 

optimization algorithm called the Hungarian (Munkres) Algorithm [82] to solve the 

assignment problem in polynomial time. The Hungarian method is originally used for 

assigning agents to tasks by compiling a cost matrix with the columns denoting tasks 

and the rows denoting agents. An example of a cost matrix is shown in Figure 5-5. The 

algorithm then selects for each task an agent while minimizing the total cost. There is 

another variant of the algorithm that maximizes the assignment cost also. For our work, 

we refer to the tasks as groups and the agents as GMs. The cost matrix is produced 

using the ranks of the devices, that we mentioned before. We are interested in 

maximizing the total cost of assignment, as we favor devices with the highest ranks. 

  Task1 Task2 Task3 

Agent1 10 20 30 

Agent2 5 10 15 

Agent3 15 5 20 
Figure 5-5 An example of a cost matrix where the minimum cost assignments for each task are colored green. 

    To compile the cost matrix, a GO first enumerates a list of the surrounding groups 

that at least one of its GMs can reach. For each group, the GO enumerates a list of the 

GMs that can reach it. Using those lists the GO can prepare the cost matrix. If there is 

a GM that can cover more than one group, the cost entries for these groups will have 

the same cost for the given GM, as shown in Figure 5-6. However, the generated cost 

matrix may not be complete, since not every group is reachable from every GMs. We 

substitute for the missing entries with a very small number to indicate that we do not 
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need these entries to be selected, as shown in Figure 5-6. If one of these entries is 

selected after executing the algorithm, we discard them. 

  GO1 GO2 GO3     GO1 GO2 GO3 

GM A 0.4   0.4 

 

GM A 0.4 -9999999 0.4 

GM B   0.5   GM B -9999999 0.5 -9999999 

GM C 0.3 0.3     GM C 0.3 0.3 -9999999 
Figure 5-6 An example of a cost matrix that a certain GO could have. On the left, we see that certain GMs can 

cover more than one group, thus we see in their rows the same cost repeated. On the right, we see the missing 

entries in the matrix been fixed by adding a very small value. 

    Given the cost matrix, we apply the Hungarian algorithm to get the assignment that 

maximizes the total cost. Such assignment should give the best connectivity between 

groups given that there is enough number of GMs that can work as PMs. 

5.2 EMC Protocol 

    The EMC protocol is divided into multiple stages. The first stage is to choose GOs 

among the candidate devices. The second stage is for the GOs to create groups and 

distribute the credentials for SAPs. Next, the remaining devices choose which groups 

they should join. Then, the GOs designates from their group members PMs that link 

the members to other groups. Finally, to balance the energy consumption GOs send 

teardown message to inform all devices about restarting the protocol. This stage enables 

load balancing and allows the rotation of the GO role among energy-rich devices. A 

state diagram that shows the various stages that a device passes through is shown in 

Figure 5-7. The devices start with the deciding state and return to this state after the 

teardown process.  
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Figure 5-7 A state diagram of EMC 

5.2.1 Choosing Proposed GOs 

    Each device starts by creating a local service record that contains its battery 

information mentioned and the Proposed GO (PGO) that are mentioned in section 5.1.1. 

The PGO is initialized to null at the beginning to indicate that there are no GOs that we 

heard from yet.  

    During this stage, a device Di sends service discovery requests to reachable devices 

every TsendInterval, as mentioned previously in ADS. Upon receiving Di’s requests, 

nearby devices respond by sending back the stored record that contains their battery 

information and the PGO. The responses are collected and stored in a data structure 

that contains the IDs, battery information, and the PGOs for neighboring devices. Di 
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then uses the battery information that it has received to calculate the ranks of the nearby 

devices, as discussed in section 5.1.1.1, and hence updates its PGO. If no device around 

has a better rank higher than itself, then PGO is updated to reflect that Di itself is the 

PGO. We note that when Di compares the ranks of the nearby devices it only considers 

devices that have their PGO pointing to themselves. By doing this we eliminate the 

possibility of becoming orphaned as discussed in 5.1.1.2. Di stay in this stage for a 

period TdeclareGO. Selecting TdeclareGO is a trade-off between collecting sufficient 

information from neighbors and quickly creating groups to allow data exchange. It is 

envisioned to select TdeclareGO  based on the device density. A pseudo code for this step 

is shown in Figure 5-8. 

phase1: //Choosing Proposed GO 

foreach(device in network)  

  createLocalDeviceRecord(); 

  requestDevicesInfo(); 

  while (elapsedTime < TdeclareGO)  

    if (DeviceRecord is received) 

      store(DeviceRecord); 

      calculatePGO(); 

    if (SAPrecord is received)  

      store(SAPrecord); 

      goto phase3; 

  goto phase2; 

end 

Figure 5-8 Psedue code for selecting candiate GO step. 

5.2.2 Creating Groups 

    After the TdeclareGO period, the devices know who the PGOs are. A device that has 

PGO pointing to itself is then autonomously creates a group and becomes its owner. 

Before moving to the next stage, each GO adds a new local service record that contains 

the credential, i.e., SSID and Key of the SAP, which a legacy client can use to associate 
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with the group; for simplicity, we call it SAP record. If the device finds that it has a 

PGO other than itself, it declares itself as GM and proceeds to the next stage. Pseudo 

code for this step is shown in Figure 5-9. 

phase2: //Creating groups 

foreach(device in network)       

  if(PGO == device.id) 

    meIsGo = true;     

  if(meIsGo)  

    createAutonomousGroup(); 

    createSAPrecord(); 

    goto phase4; 

  else  

    declareGM(); 

    goto phase3; 

end 

Figure 5-9 Psedue code for creating groups step. 

5.2.3 Selecting a Group to Join 

    This stage lasts for a period of at least TselectGO where each device that is not a GO 

starts requesting service records from its reachable devices. Receiving a SAP record 

from a device Di means that Di is a GO. The collected records are used to update the 

previously populated structure to indicate for each known device its SAP record, if 

exists. Once the TselectGO period is elapsed, each non-GO device selects a GO, i.e., a 

device that has a SAP record, to connect to its group. Note that the SAP records are not 

used to connect to the groups as legacy clients, but they are stored to be used in the 

next stage of selecting PMs.  

    It is important to note that the devices are not required to run EMC at the same time. 

A device that starts the protocol and finds that a SAP record is available goes directly 

to the current stage to select a group. That is to avoid wasting time in the stage of 
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deciding to become a GO or not. If the device is better qualified for the GO role, EMC 

accommodates for that by restarting the protocol every certain period. Pseudo code for 

this step is shown in Figure 5-10. 

phase3: //Selecting groups 

foreach(declaredGM)  

  requestSAPinfos(); 

  while(elapsedTime < TselectGO) begin 

    if(SAPrecord is received) begin 

      store(SAPrecord); 

  bestRank = -1; 

  foreach(SAPrecord)  

    rank = calculateRank(device in SAPrecord) 

    if(rank > bestRank) 

      bestRank = rank;       

  connectToGOof(bestRank); 

  openSocketConnection(); 

  sendToGO(stored SAPrecords); 

end 

Figure 5-10 Psedue code for selecting groups step. 

5.2.4 Selecting Proxy Members 

    After a GM joins a group, it prepares a list of all the groups (SAP records) in its 

vicinity in order to be sent to its GO. Each GO after creating a group waits for TselectGO 

to allow possible members to join then it stays for a period of TpxAssignment listening for 

the lists of the reachable groups from its GMs. As mentioned in ELN, a GM send a 

heartbeat message every THeartBeatGM. In EMC, the GMs embed the list of reachable 

groups in the heartbeat messages of ELN. The received lists are then processed by the 

GO and stored in a special data structure that contains for each GM what are the groups 

(SAPs) it can reach along with the credentials for accessing these SAPs. In ELN, a 

heartbeat message is sent from the GO to the GMs each THeartBeatGO. EMC utilizes that 

time to calculate for each SAP a GM that act as a proxy member to that SAP’s group. 
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Then the GOs, in EMC, embed the assignment for chosen members in their heartbeat 

messages. The selection of proxy members is based on the Hungarian (Munkres) 

method as discussed in section 5.1.3. Once TpxAssignment  elapses, each chosen GM reacts 

by connecting to the indicated SAP as a legacy client using the credentials it already 

collected in the previous step; this GM is now denoted as PM. Pseudo code for this step 

is shown in Figure 5-11. 

phase4: //Selecting Proxy Members 

foreach(GO in network)  

  while(elapsedTime < TpxAssignment) 

    receiveListOfGroups(); 

    processReceivedLists(); 

    selectPMs(); 

    sendPMassignmentsToMembers(); 

  end  

end 

foreach(selectPM)begin 

  connectToChoosenSAP(SSID, key); 

end 

 

Figure 5-11 Psedue code for selecting proxy members step. 

5.2.5 Teardown and restart 

    A GO is involved in every intra-group interaction and may thus deplete its energy at 

a faster rate than GMs. To balance the energy load on GOs, EMC instruments periodic 

teardown of groups so that groups are reformed using fresh network state.  A GO waits 

for a period TtearDown before starting to tear down its group by sending teardown 

messages to its GMs. The selection of TtearDown is subject to trade-off between having a 

balanced load on the devices and frequently incurring the group formation. EMC 

compensates for timing difference and allows devices to synchronize and restart the 

protocol at the same time. This is done by making each PM relay the teardown message 
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to the GO of other groups that this PM is connected to it as a legacy client. If a GO 

receives the teardown message from the PM before its TtearDown period ends, it may 

decide to follow through and inform its member about the teardown. Each device 

receives the teardown message waits a time TtearDelay to ensure that other groups are 

informed before processing the teardown. Afterwards, the devices restart the protocol.  

It is worth noting that the sequential teardown of groups will make sense when they do 

related tasks. The collective teardown is a means to synchronize them in their next run 

for EMC to from better groups, i.e., based on an updated node status. The pseudo code 

for this step is shown in Figure 5-12. 

phase5: //Teardown and restart 

foreach(GO in network) 

  while(elapsedTime < TtearDown) 

    if(PM forwarded teardownMessage) 

      break; 

  sendTeardownMessageToGMs(); 

  while(elapsedTime < TtearDelay); 

  teardown(); 

  goto phase1; 

end 

foreach(GM in network)  

  if(GO sent teardownMessage)  

    teardown(); 

    goto phase1; 

end 

foreach(PM in network)  

  if(GO sent teardownMessage) 

    forward teardownMessageToSAP(); 

  while(elapsedTime < TtearDelay); 

  teardown(); 

  goto phase1 

Figure 5-12 Psedue code for teardown step. 
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5.3 EMC Implementation 

5.3.1 Wi-Fi Direct Multi-Group Chat Application for Android 

    An Android chat application is developed in AndroidStudio to validate the EMC 

protocol; a version of this application is available at GitHub2. The application used the 

API level 16 to allow the devices to use the service discovery in Wi-Fi Direct. The 

application is not required to run on each device involved in the protocol at the same 

time, but once it runs a device should be able to chat with devices in its group as well 

as devices in other groups without any manual interaction. A device would be either a 

GO, a GM, or a PM. A GO maintains its group using management sockets. Each device 

in the group exchanges chat messages using designated data sockets. PMs use special 

proxy sockets to exchange management and chat messages with other groups. Figure 

5-13 shows screenshots of the app while it is running on two different devices. 

Although the app works fully autonomously, we have added manual override buttons 

on the top of the app to allow us to test specific parts. 

                                                 

2 https://github.com/ashahin1/EfficientWiFiDirectMultiGroups 
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Figure 5-13 Screen capture of two devices running EMC. 

5.3.2 Android Framework Modifications 

    Due to the support limitation for Wi-Fi Direct in Android, we were not able to have 

the app work out of the box. As all groups share the same 192.168.49.x subnet and all 

GOs share the same 192.168.49.1 IP address, there is no way to have PMs open 

bidirectional socket connection with devices in their group and other groups. In [53] 

this issue has been overcome by having certain members do broadcasts. We did not 

find such an approach an appealing solution though and chose to modify the source 

code for Android to allow the devices to have different subnets. For the sack of testing 
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the functionality of EMC, a static subnet assignment patch is applied to the Android 

versions running on the devices involved in the validation. In the next Chapter, we are 

proposing a subnet negotiation protocol, ISNP, that makes the assignment of subnet 

dynamic and allows EMC to scale well with large number of groups. Another issue in 

Android is that any request to join a group should be confirmed by the device that have 

a GO device. To allow fully autonomous operation, we changed the Android source 

code to allow the GO device to accept connection requests automatically. 

5.3.3 Test Cases 

    Tests are performed using five devices, two Nexus 4, two Samsung Galaxy Tab 2, 

and one Asus Transformer tf700t.  One of the Nexus 4 devices is kept with its original 

ROM (Android v5.1) with no modifications. The other Nexus 4 device is reloaded with 

CyanogenMod v12.1, (which is based on Android source code) after modifying it. The 

Samsung devices are running the stock ROM (Android v4.2.2). Since we do not have 

a complete source code for that specific Samsung model, we have disassembled the 

Android framework in those devices, applied the modification, reassembled, and then 

placed it back on the devices. The Asus device is kept running its stock ROM (Android 

v4.2.1). All devices are capable of running Wi-Fi Direct along with the service 

discovery. All tests were conducted in our research lab, where many other Wi-Fi access 

points exist. During our tests, we noticed that the interference was so high that some 

service discovery records were dropped. Using a Wi-Fi Analyzer app, we found that 

all the Wi-Fi channels are overwhelmed as shown in Figure 5-14. However, EMC was 

still able to run. 
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Figure 5-14 Analysis of wireless interferce observed during the test.. 

5.3.3.1 Test Case 1: Group creation 

    In this test, we first used three devices (one Nexus 4 and Two Samsung Tab). 

Android reported 2100 and 1750 for their battery capacity, respectively, which is 

strange as the tablet should have more battery capacity than the phone (it should be a 

bug in Android). We kept the devices at nearly 100% battery level. The Nexus 4 device 

was intentionally plugged in an AC source. The chat app was then run in the three 

devices and we monitored EMC steps on the three devices. The Nexus 4 found that its 

rank is better than the other two devices, so it created a group. The two Samsung 

devices discovered that another device ranked better so they waited to select a group. 

As there was only one group created, the two Samsung devices chose it, which is the 

group created by the Nexus 4, and connected to it. The Nexus 4 did not choose any of 

the Samsung devices to serve as a PM as there is no other groups. At the end, the three 
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devices were able to chat together. After the predefined time for teardown, the Nexus 

4 device asked its members to teardown. All of them then restarted the EMC protocol 

again. The same results were obtained when we ran the app in the five devices, where 

the Nexus 4 was the only one that was charging.  

    We then tested the incremental execution of EMC in the five devices by allowing a 

device to run the app then after some time another device runs it and so on. We started 

by one of the Samsung tablets, which declared itself a GO and created a group, as there 

were no other devices nearby. The remaining devices ran the app consecutively. The 

first device found that at least one group had been already established (as it received 

some SAP records), hence it started to select the best group. As there is only one group, 

the device selected and joined it. The same were done by the other devices. At the end, 

all five devices were able to chat together. We note that there are no PMs assignments, 

as no other groups were existed. The teardown mechanism performed well in this case 

and all of them restarted EMC again. 

5.3.3.2 Test Case 2: Multi-Group Communication 

    In the first test, we validated that the EMC protocol is able effectively handle group 

creation. For the multi-group communication test, some devices should be outside of 

the range of others to have them form other groups. Therefore, we needed more devices 

and an open space to validate the whole steps of creating separate groups, selecting the 

groups, and selecting the PMs. To overcome the device count limitation and space 

constraints, we forced two devices to create two distinct groups and then tested how 

the other devices choose which of these groups to join. Thus, we added some extra 
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control in the app to allow a device to bypass the first step in EMC and proceeds to 

creating a group. We then used a Nexus 4 and a Samsung Tab that have been modified 

so that they can have different subnets for their Wi-Fi Direct groups, and got them to 

create groups. The Nexus 4 was kept charging, and thus it was the best GO, 

consequently the other devices selected the group of the Nexus 4 to connect to. The 

final distribution of devices was a Nexus 4 as GO with three other GMs and a Samsung 

Tab as a GO with no members. As all the GM devices with the Nexus 4 have heard 

from the Samsung Tab its SAP record, they knew that another group existed. After 

connecting the Nexus 4 group, the three devices notified the Nexus 4 about the group 

of the Samsung Tab. Once the proxy member selection period has elapsed, the Nexus 

4 selected the GM Samsung Tab to serve as a PM. The GM Samsung Tab connected to 

the SAP of the GO Samsung Tab and became a legacy device in its group. As a result, 

the devices in the Nexus 4 group were able to chat with the GO Samsung Tab. After 

finishing the teardown period, the Nexus 4 sent a teardown message that reached the 

GO Samsung Tab. We noted that all devices responded by restarting the EMC protocol. 

5.4 Performance Analysis 

    In this section, we analyze the performance of EMC during group formation and 

multi-group communication. For group formation, we are assessing how fast a group 

could be formed. The multi-group formation case we analyze the time needed for two 

groups to get connected and start data transfer. Such analysis gives an insight of the 

suitability of EMC for data sharing scenarios that needs fast connection times. Of 
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course, with careful selection of EMC parameters it can suite wide range of 

applications. 

5.4.1 Group Formation 

    Let us assume that all devices start EMC at the same time. A device with a high rank 

declares itself as a GO and creates a group in a time TdeclareGO. Other devices in its 

neighborhood enters the group selection mode. Being in this state a device waits a time 

TselectGO to collect SAP records. TselectGO should be large enough to allow the reception 

of SAP records from all the neighboring groups. The time needed before joining a 

group is only TselectGO. This means that the time Tc a certain device needs to start data 

exchange with others is 

𝑇𝑐 = 𝑇𝑑𝑒𝑐𝑙𝑎𝑟𝑒𝐺𝑂 + 𝑇𝑠𝑒𝑙𝑒𝑐𝑡𝐺𝑂 

    Waiting for TdeclareGO is not needed for a device that runs EMC after having groups 

already created. Generally, TdeclareGO should not be too high to allow fast data 

exchange; yet at same time it should be long enough to account for possible loss of 

service discovery packets due to interference. The selection of TselectGO follows the 

same rules as in TdeclareGO. EMC allows devices to join EMC at any time; thus, a 

device with better rank in a certain area may come after group creation in such an 

area. The device in this case will choose a group to join. The teardown signal that 

comes after TtearDown allows better adaptation to such a situation. Thus, TtearDown 

should be chosen wisely to allow better adaptation and in the same time less frequent 

restarts. 
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5.4.2 Multi-Group Communication 

    The GOs waits for a time TpxAssignment  before sending PM assignments. Assuming 

that EMC is executed at the same time by all devices, a group would be able to 

exchange data with other groups after a time TpxAssignment from its creation. Thus, the 

time Tp needed for achieving inter-group communication is 𝑇𝑝 =  𝑇𝑑𝑒𝑐𝑙𝑎𝑟𝑒𝐺𝑂 +

𝑇𝑝𝑥𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. The selection of TpxAssignment  is not trivial though, as it should be large 

enough to allow a GO to collect enough information from its members before deciding 

the best PM assignments. It is worth noting that if a device runs EMC after having the 

best GO in its range sent its PM assignment, it will never be assigned the PM role even 

if it is a better candidate for connecting to another group. The teardown process that 

comes after TtearDown accommodates such situation. The selection of TtearDown though is 

a trade-off between frequent restarting of EMC and better topology adaptation.     

5.5 Conclusion 

    In this chapter, we have presented EMC, a protocol for creating Wi-Fi Direct groups 

dynamically by electing group owners based on the device energy reserve.  EMC also 

enables connecting the created groups by selecting PMs to relay the data from one 

group to another, thus allowing multi-group communications. A chosen PM connects 

to another group using its “WLAN” interface, where it connects as a legacy client to 

the SAP of that group. EMC uses the service discovery protocol in Wi-Fi Direct to: (1) 

perform the distribution of the battery information that is used to rank devices along 

with the Proposed GO field, where devices with the highest rank in a certain area opts 

to create a group, and (2) distribute the SAP credentials of groups to their neighbors, 
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which allows PMs to connect to such SAP. To avoid depleting the battery of the GOs, 

EMC restarts itself after a certain period to allow rotation of the GO role. 

    An Android application is created to implement the EMC protocol. Certain 

modifications are done to the source code of Android to allow the groups to be in 

different subnets and to allow the automatic acceptance of connection requests. The 

applicability of EMC has been validated through testing the created application on five 

smart devices. The operation of EMC is analyzed to get an overview of its performance. 

The analysis has provided guidelines on how to choose the EMC parameters to achieve 

low-latency group creation, and battery optimization. To fine tune the parameter 

settings for EMC, we have performed several simulation experiments that are reported 

in chapter 7. We have also tested the performance of EMC against other approaches in 

that chapter. 
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Chapter 6: IP Subnet Negotiation in Wi-Fi Direct for Seamless 

Multi-Group Communications. 

    In this chapter, we present IP Subnet Negotiation Protocol for Seamless Multi-Group 

Communications (ISNP), which overcomes the limitation of Android that lets all the 

Wi-Fi Direct created groups to share the same range of IP addresses. As shown in 

Figure 6-1, such limitation causes IP address collision between devices in different 

groups. ISNP integrates with EMC by taking advantage of first phase of EMC to allow 

participating devices to negotiate distinct IP subnets with other devices before forming 

the groups. Once the groups are created by EMC, each GO uses its proposed IP subnet 

to assign IP addresses to the devices in its group. 

 

Figure 6-1 Two adjacent Wi-Fi Direct groups sharing the same IP subnet. 

    ISNP has two components, one that runs at the application level and utilized the 

service discovery records of EMC to negotiate the proposed subnets and another 

component that runs at the operating system (OS) level. The OS level component is 
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required to force Android to replace the default fixed IP subnet with the device’s 

selected one.  To accommodate for the devices with locked versions of Android that 

cannot be modified, ISNP allows devices with no modifications in their OS to still 

participate using their application level component. Basically, a device will still be able 

to propose and negotiate IP subnets with nearby devices using ISNP’s application level 

module; however, such a device should be excluded from serving as GO by EMC. The 

application level module of ISNP is validated by integrating it with our previous 

Android application that we wrote for EMC. For the OS level module, we have 

modified the source code for the devices involved in testing and then compiled and 

uploaded the new version of Android on these devices. 

6.1 Problem Statement  

    When connecting multiple Wi-Fi Direct groups using relay nodes, the Wi-Fi Direct 

implementation on Android will not make it possible for these groups to share data in 

a bidirectional way. The reason for this is that the fixed assignment of GO’s IP address 

and the DHCP address range cause all the groups to fall into the same IP subnet. Thus, 

the devices in these groups will have collisions in their IP addresses, which will hinder 

them from having bidirectional connections at the transport layer. Overcoming such 

limitation provides a possibility for realizing full multi-group communications in Wi-

Fi Direct. Obviously, it is not practical to assign different subnets for devices manually. 

To have a seamless group formation that can scale, a dynamic assignment of the IP 

subnets for different groups is warranted. ISNP opts to fill such technical gap. Upon 
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integrating ISNP with EMC, the IP subnets of any two overlapping groups would be 

different as shown in Figure 6-2. 

 

Figure 6-2 IP subnets for two adjacent groups after integrating ISNP with EMC 

6.2 The ISNP Protocol 

    ISNP enables adjacent groups to have different IP subnets, which makes it possible 

to have bidirectional communications between groups at the transport layer. ISNP 

leverages the service discovery records of EMC to provide a connectionless negotiation 

of the IP subnets; a choice that makes it very lightweight and efficient. In addition, the 

integration between ISNP and EMC provides a complete data sharing solution using 

Wi-Fi Direct. 

6.2.1 ISNP Overview 

ISNP is composed of two modules, the first runs at the application level and the 

second is handled at the OS level. The application-level module utilizes the service 

discovery records of EMC to allow the devices to propose IP subnets and announce 

them to nearby devices. It also makes sure that conflicts in the proposed subnets are 
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resolved correctly. The second part assigns the proposed IP subnet for a given GO 

device by making the OS replaces its default subnet with the proposed one. Fig. 3 shows 

the integration of these modules of ISNP with the Android software environment, 

where the application part of ISNP passes the proposed subnet to the OS part of ISNP 

using the standard Android APIs (i.e. using service discovery). Such integration 

facilitates the interaction between the two modules without breaking the application 

code, as no special APIs are required. Moreover, if it is not possible to modify the OS 

on a device, such a device would still be able to participate in ISNP using its application 

code. In this case the device would be able to propose a subnet and inform other devices 

about such subnet and any possible conflicts. However, such a device will not be able 

to change the subnet because the OS part of ISNP is not available. Thus, this device 

will not be able to assume a GO responsibility, but it can join a group as a GM. 

 

Figure 6-3 The integartion between the two part of ISNP and Android. 

For the proposed IP subnets, ISNP replaces the default subnet in Android, which is 

192.168.49.0/24, by 10. 𝑋. 𝑌. 0/24 which enables flexibility in having IP subnets that 
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can range from 10.0.0.0 to 10.254.254.0. We discuss the two ISNP modules in the 

balance of this section.  

6.2.2 Application-Level Module 

ISNP utilizes the service discovery records that EMC uses for exchanging 

information between devices. ISNP introduces a modified version of the DeviceInfo 

record of EMC that was shown in Figure 5-2 by adding a “SUBNET” field as shown 

in Figure 6-4. This approach simplifies the IP subnet announcement process, as it is 

done at the same time when the devices exchange their information. The operation of 

the application level-module of ISNP is discussed in the balance of this section. 

DeviceInfo Record 

SERVICE DISCOVERY HEADER IsCharging BatteryLevel BatteryCapacity PGO SUBNET 

Figure 6-4 The new foramt of EMC's DeviceInfo record that is used by ISNP 

6.2.2.1 The Operation of the Application-Level Module 

    As mentioned earlier, the subnet range chosen for ISNP is 10.X.Y.0. To reduce the 

length of the DeviceInfo record, we send only the “X.Y” part of the subnet. At the 

beginning of ISNP, each device Di generates a random IP subnet, as explained in 

section 6.2.2.2, and stores it in the SUBNET field during the period of TdeclareGO that is 

mentioned previously in section 5.2.1 of EMC.  As in EMC, devices executing ISNP 

continuously request services from each other each TsendInterval period; thus, Di will 

receive the DeviceInfo record of other devices and provides its own in response to their 

inquiries. Upon receiving a response from Dk, Di extracts the embedded DeviceInfo 

record and stores it. At this point, Di checks whether the SUBNET field of any of the 
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collected DeviceInfo records is conflicting with its proposed one. In the presence of a 

conflict, Di generates a new random subnet and updates its SUBNET field with it. 

TdeclareGO should be large enough to accommodate for the propagation of proposed 

subnets and to allow any conflict to be resolved. 

Conflicts can also be detected by other devices. To elaborate, let us assume that a 

device D2 falls within the communication range of two disjoint devices, D1 and D3. As 

D1 and D3 cannot reach each other, if they propose the same subnet they will not know 

about it. Moreover, it can happen that D1 and D3 create their own group as well and 

they select D2 as a relay for these two groups. In such a case, D2 will be a PM in two 

conflicting groups, which is the same problem we are trying to solve. To make sure 

that this situation does not happen D2 should inform D1 and D3 about the conflict. Thus, 

we add to the SUBNET field in the DeviceInfo record, in addition to the locally 

proposed subnet for the device, any conflicting subnets that a device detects between 

its neighbors. The final format for the SUBNET field is a comma separated values of 

different subnets (e.g. X1.Y1,X2,Y2, …), where the first value is for the proposed 

subnet by the device and the rest are the detected conflicts between neighbors, if any. 

Figure 6-5 illustrates the operation of the application-level module through an 

example. Three devices D1, D2, And D3 are in the range of each other. D1 proposed 

201.23, D2 proposed 63.56 and D3 proposed 84.45. So, D1 updates its SUBNET field 

to “201.23”, and D2 and D3 do the same. All of them will notice no conflict when 

receiving the DeviceInfo records of the others. Assume that D4 which is in the range of 

D3 and not D2, is also executing ISNP. D4 happens to choose 63.56 as its subnet. D3 in 
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this case will detect the conflict between D2 and D4 and will add this conflicting subnet 

to its SUBNET field to inform them about the situation. This means that the new 

SUBNET field for D3 will be “84.45, 63.56”. Upon receiving the new DeviceInfo 

record from D3, both D2 and D4 propose new randomly-selected subnets. 

 

Figure 6-5 Resovling conflicts on ISNP. 

6.2.2.2 Randomly Generating Subnets  

    To lower the probability of having two or more devices picking the same subset, 

ISNP uses the MAC address of the Wi-Fi transceiver, which is unique among devices, 

to define a seed for the random number generator of the individual devices. Basically, 

each device retrieves its MAC address and then performs a bit wise addition and 

shifting on the MAC address bytes to generate the seed. Since we have the subnet in 

the form “X.Y”, we generate X first then Y. The numbers X and Y are randomly 

generated in the range 0 to MaxX and 0 to MaxY respectively, where MaxX and MaxY 

are chosen based on the number of anticipated devices. After that we concatenate both 

D1
201.23

D2
63.56

D3
84.45

D4
63.56
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of them in a string “X.Y”. In the real world, some Wi-Fi routers have their default 

subnets assigned to 10.0.0.0, 10.0.1.0, 10.1.1.0, 10.1.1.0, 10.2.2.0, or 10.10.1.0. To 

avoid any potential conflicts with such Wi-Fi networks, we have chosen to avoid these 

addresses. A pseudo code for the application module of ISNP is shown in Figure 6-6.   

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

Initialize IRMC () 
  startTime = System.TimeNow 
  macAddress = RetreiveWifiMacAddress 
  seed = GenerateSeed (); 
  randomGen = NewRandom(seed) 
  subnet = GetProposedSubNet() 
  myDeviceInfoRec = New DeviceInfo Record 
  myDeviceInfoRec.SUBNET = subnet 
  Store myDeviceInfoRec as LocalService   
  Periodically, DiscoverNearbyServices() 
  While Sytem.TimeNow - startTime <= TdeclareGO do 
    If ServiceRespose Received from Neighbor Then 
      response = ServiceRespose 
      While CheckConflict(respose.deviceInfoRec.SUBNET) do 
        subnet = GetProposedSubNet 
        myDeviceInfoRec.SUBNET = subnet 
    End If 
    If CheckConflictInNeighbors() Then 
      myDeviceInfoRec.SUBNET = subnet + conflictedNeighorSubNet 
    End If 
  End While 
GenerateSeed () 
  seed = 0 
  For each Byte in macAddress do 
    seed = seed <<8 + macAddress[curByte] 
  End For 
  Return seed 
GetProposedSubNet () 
  sub1 = randomGen.getNext(3, MaxX) 
  If sub1 = 10 Then 
    sub1 = randomGen.getNext(3, MaxX) 
  End If 
  sub2 = randomGen.getNext(3, MaxY) 
  Return sub1 + "." + sub2 
CheckConflict (SUBNET) 
  For each d_subnet in SUBNET do 
    If d_subnet == subnet Then 
      Return True 
    End If 
  End For 
CheckConflictInNeighbors () 
  For each Neighbor do 
    If Neighbor_i.subnet == Neighbor_j.subnet Then 
      conflictedNeighorSubNet += Neighbor_i.subnet 
    End If 
  End For 

Figure 6-6 Pseudo code for the application part of ISNP 
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    Given that we have MaxX and MaxY as the maximum allowed ranges for the 

subnets, ISNP will have (𝑀𝑎𝑥𝑋 + 1) ×(𝑀𝑎𝑥𝑌 + 1) subnets to pick from. Let P(Si) 

be the probability of selecting a certain subnet. Thus,   

𝑃(𝑆𝑖) =
1

(𝑀𝑎𝑥𝑋 + 1) ×(𝑀𝑎𝑥𝑌 + 1)
 

6.2.3 OS-Level Module 

This module of ISNP replaces certain parts of the Android OS to allow a device to 

use its proposed subnet instead of the default one.  Let us first discuss the flow of Wi-

Fi Direct commands that are issued from the app until getting executed. When a Wi-Fi 

Direct API is called from an application, the Android invokes a service called 

“wifi_service” which is responsible for translating such a request into a command for 

a low-level service called “wpa_supplicant”. wpa_supplicant then deals with the Wi-

Fi drivers to perform the actual operation.  

Tackling the problem of negotiating the IP subnets in the wpa_supplicant is 

possible; however, it will involve a datalink layer service in negotiating a network layer 

aspect and is thus not recommended. We have, therefore, decided to split the 

implementation of ISNP into an application and an OS parts. The OS module of ISNP 

resides in the wifi_service and intercepts any local services added by applications, 

which will contain a DeviceInfo record if the application-level module of ISNP is 

running. At the wifi_service module of Android, the local services are prepared and 

packed by the OS in a format that is understood by the wpa_supplicant. During such 

packing process, headers are added and the data is changed to a Hex string. The 
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interception of the local services by ISNP requires unpacking the records and decoding 

their fields. The unpacking process reverses all what the Android OS has done to create 

such a local service in order to obtain the original record that is created by the 

application level module. If a DeviceInfo record is found the OS module of ISNP 

proceeds to change the default IP address of the device to match the first entry in such 

SUBNET field, which is the subnet proposed by the application-level module for the 

current device. The remaining subnets in the SUBNET field, if found, are ignored as 

they are meant for informing other devices about conflicts. ISNP then changes the 

range of the DHCP server to fall in the range 10.X.Y.2 to 10.X.Y.254 for a given subnet 

of “X.Y”. After that the normal operation of exchanging such DeviceInfo record with 

other devices is continued. 

For devices with unpatched versions of Android, the wifi_service will receive the 

DeviceInfo record and treat it as any regular service discovery record. Thus, it will 

exchange it with other devices nearby. The device will not attempt to inspect the record 

for the SUBNET field as it does not know about such a field. Therefore, the operations 

of the application part of ISNP would continue to run and the OS will not crash. 

However, the proposed subnet will be ignored by the OS of the unpatched device.  

6.3 Implementation and Testing  

For implementing the OS-level module of ISNP, we have made the required 

modifications to Android to enable dynamic IP subnet assignment. A popular custom 

version of Android, Lineage OS (previously Cyanogenmod), is used for implementing 

the modifications. We chose Lineage OS because of its support of wide range of 
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devices, which means that our modifications can be adopted easily by many devices. 

To implement the application-level module of ISNP, the application that we developed 

previously for EMC in AndroidStudio is modified to include ISNP functionality. Figure 

6-7 shows screenshots of the app while it is running on two different devices.  

 

Figure 6-7 Screen shots of ISNP on Nexus4 and LG Optimus Fuel 

The application is installed in seven devices with different specifications as shown 

in Table 6-1. All tests were run in our laboratory, where many Wi-Fi access points exist 
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in the building and use the same frequency band of Wi-Fi Direct; this reflects practical 

scenarios in terms of medium access contention. 

Table 6-1 The specifications of the devices involved in testing 

Count Device Android Version RAM 

1 Nexus 6 Lineage OS 6.0.1 3 GB 

2 Nexus 4 Lineage OS 6.0.1 2 GB 

2 Galaxy Tab 2 Stock 4.2.2 1 GB 

2 LG Optimus Fuel Stock 4.4 512 MB 

  

The two parameters of EMC, TsendInterval and TdeclareGO, need to be preconfigured to 

allow optimal operation of ISNP. Recall that TsendInterval  is used to determine the period 

at which a device would ask other devices about their services (i.e. discover DeviceInfo 

records from nearby devices), and TdeclareGO denotes the time allowed for devices to 

negotiate their subnets before moving to the next step, which is handling the creation 

of groups. Thus, each device sends inquiries, or negotiates and resolves conflicts, 

TdeclareGO/TsendInterval  times to other devices on each run of ISNP. To set a proper value 

for TsendInterval, we must first measure how fast is the response from sending a request 

until receiving the answer. Obviously, we do not need to send another request before 

completing the first one. Thus, we evaluated the response time in different 

configurations. To adjust TdeclareGO, we need to get an estimate of the number of 

conflicts per run and then determine TdeclareGO to allow the devices to request 

DeviceInfo records (i.e. to negotiate and resolve conflicts) several times greater than 

the expected conflicts. An evaluation of such number of conflicts is conducted next, 

which give an insight of how to set TdeclareGO. 
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6.3.1 Response Time Performance 

In this experiment, we evaluate how fast ISNP is in reporting proposed subnets. We 

have varied the number of devices from 2 to 7 to assess the impact of the density of 

devices on the performance. In each case, we let the involved devices create a 

DeviceInfo record and store it. Then each device requested the DeviceInfo record of 

other devices. The time from sending the request until the replies of all devices in the 

experiment are received is denoted as the response time. For example, if we have 2 

devices in the test, then each one of them will record its response time when one record 

is received. For seven devices, a device waits for receiving 6 responses before recording 

its response time. We ran the experiment 5 times for each configuration (i.e., number 

of involved devices) and recorded for each device its response time in each run and 

then calculated the average. Figure 6-8 and Figure 6-9 show the results. 

 

Figure 6-8 Average response time of ISNP with device 

count. 

 

Figure 6-9 Average response time of ISNP per device. 

 In Figure 6-8, the average response time (in msec) is plotted against the number of 

devices. This figure shows that the response time is increasing almost linearly with the 
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number of devices. This is expected since the number of responses that a device should 

wait for grows linearly with the device population. Figure 6-9 shows the average 

response time per device. The interesting observation here is that the response time is 

dependent on the device itself. We can see from the figure that the response time for 

the older devices, Galaxy Tab (GT1 and GT2), and the LG Optimums Fuel (LG1 and 

LG2) is quite high compared to the more powerful Nexus 4 (N4-8 and N4-16). 

However, the Nexus 6 (N6) is showing higher response time compared to the Nexus 4. 

This unexpected result indicates that the Murata Wi-Fi chipset in Nexus 4 is more 

optimized compared to the Broadcom chip on the Nexus 6. What worth noting also is 

that the Galaxy Tabs that show high response times are also having a Broadcom chip. 

We thus note that certain hardware is more optimized and can run Wi-Fi Direct 

operations more efficiently than the other. Based on the observed response time, we 

chose TsendInterval = 6 seconds as a safe period for repeatedly asking other devices for 

their DeviceInfo records. Such choice is applied in the next experiment.  

6.3.2 Subnet Conflict Evaluation 

In this experiment, we opt to capture the relation between the number of devices and 

the number of possible conflicts in the range 10.X.Y.0 of subnets used in ISNP. We 

have fixed the number of devices to 7 and varied the allowed subnet range that a device 

can choose from by changing the parameters of MaxX and MaxY. Although it is 

possible to change the values of MaxX and MaxY individually, we chose to set both to 

the same value. Also, we drew one random number only and applied it to both parts of 

the proposed subnet, X and Y. We have started with setting MaxX and MaxY to 7 and 



 

 

103 

 

increased this number to 50 then 100 and so on until 350. With such configuration, we 

get 8, 51, 101, …, 351 subnets respectively. We ran this experiment 10 times for each 

subnet range. With each subnet range, we recorded the number of conflicts that ISNP 

detected and resolved in each device. The total number of conflicts per range is plotted 

in Figure 6-10, while the average number of resolved conflicts per device during each 

run of the experiment is shown in Figure 6-11.  

 

Figure 6-10 Average response time of ISNP with device 

count. 

 

Figure 6-11 Average response time of ISNP per 

device. 

It is noted from Figure 6-10 that the number of conflicts is very high when only 

eight subnets are allowed, as 52 conflicted have been reported during the 10 runs of 

ISNP in such range. The number of conflicts have decreased drastically for the other 

ranges and stabilized below 10; this is very much expected due to the larger set of 

subnet addresses. Meanwhile Figure 6-11 shows that in the worst-case a device has 

experienced about 0.2875 conflicts per run for all experiments. This is quite low, 

especially when considering the limited subnet ranges used in the experiment. It worth 

noting that managing the parameters of ISNP, MaxX and MaxY, we could reach up to 
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64511 possible subnets. Based on these results, we can choose the value of the 

parameter TdeclareGO to be at least double the value of TsendInterval (i.e. TdeclareGO > 2 

TsendInterval) to allow the conflicts to be detected in a timely manner.  

6.3.3 Integration with EMC 

We have tested also the effect of integrating ISNP with our multi-grouping protocol, 

EMC, on the final network topology. Three of our test devices are patched to run ISNP 

OS module. A complete run of the application with ISNP integrated with EMC is 

performed where the devices start negotiating subnets using ISNP and then create 

groups and share data using EMC. In this case, only the patched devices were allowed 

to create groups. Upon creating the groups, we examined the IP addresses of the devices 

and confirmed that the IP subnet range of each group was the same as proposed, which 

confirms successful integration between the application and OS modules of ISNP. In 

addition, successful bi-directional communications between the groups through EMC 

were possible.  

6.4 Conclusion 

    In this chapter, we have presented ISNP, a protocol that facilitates the multi-group 

data sharing in Wi-Fi Direct by providing a mean for assigning different subnets for 

adjacent groups. ISNP integrates with EMC to provide a connectionless negotiation of 

IP subnet between Wi-Fi Direct devices using the service discovery mechanism. Each 

device participating in ISNP selects a random IP subnet and share it with nearby 

devices. If a conflict in the chosen subnet is detected a new IP subnet is picked. To 

facilitate the integration with contemporary portable devices, ISNP is composed of two 
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parts, one at the application level and another one at the Android OS level. The ISNP 

flexibility allows devices that have unmodified Android OS to still participate in ISNP, 

with the restriction that they should not be selected as GOs. An Android application is 

used to demonstrate the ability of ISNP to efficiently assign different IP subnets to 

different devices. The performance results have shown that while ISNP is robust in 

terms of avoiding conflicting IP subnets, the latency of the IP subset agreement varies 

significantly based on the processor capability and Wi-Fi Direct transceiver used on 

the involved devices. 
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Chapter 7: Simulation Experiments 

    In this chapter, we validate the scalability and performance of our proposed protocols 

through simulation. Although we implemented our protocols on typical Android 

phones, the simulation will enable studying the performance when many devices are 

involved. To the best of our knowledge, there are no available simulator for Wi-Fi 

Direct that can be used to model the interaction between a large number of devices. 

Thus, we opted to implement our own simulation framework for Wi-Fi Direct; we made 

it also freely available on GitHub3 for other researchers to benefit from it. This chapter 

discusses the simulator, the setup of the experiments, the performance metrics, and the 

obtained results. 

7.1 Building a Simulator for Wi-Fi Direct 

    Although quite a few network simulators are available, none of them support Wi-Fi 

Direct. Thus, we needed to build our own simulator for Wi-Fi Direct by extending one 

of the existing tools. Two criteria have been applied when selecting which of the 

existing simulation tools to extend. First, the tool should be well structured and support 

the implementation of the ANSI seven-layer protocol stack model in order to mimic 

the exact behavior of devices in practice, e.g., signal propagation, collisions, layers of 

the TCP/IP model, etc. The second criterion is the availability of the source code so 

that modifications can be made and new modules can be integrated. Details are 

provided in the following subsections. 

                                                 

3 https://github.com/ashahin1/inet 
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7.1.1 Tools Used for the Simulator 

    Our simulator is based on OMNeT++ [83] and the INET Framework [84]. 

OMNeT++ is a discrete event simulator that is written in C++. It has a very powerful 

simulation kernel that contains tools for starting and stopping the simulation, defining 

and configuring modules, performing communications between modules, performing 

statistical operations, and recording and displaying measurements. The INET 

Framework (or INET for short) is a model suite for wired, wireless and mobile 

networks that is built on top of OMNeT++ (i.e., it is written using the simulation 

primitives provided by OMNeT++). INET has been used to implement several wireless 

networks in OMNet++, such as Bluetooth (802.15.4), and Wi-Fi (802.11), with fine-

grained details, i.e.,   signal propagation, modulation of radio signals, power 

consumption, the MAC layer, the network layer, the transport layer, and the application 

layer. INET also has an extendable architecture that facilitates adding and/or replacing 

existing modules. Despite having support for 802.11 networks, there is no support for 

Wi-Fi Direct in INET. Thus, we used the 802.11 modules of INET as a base for adding 

the Wi-Fi Direct functionality. We have also utilized Google OR-Tools [85] for the 

Hungarian (Munkres) algorithm implementation and for checking the connectivity 

status (number of connected components) in the resultant networks. Next, we will 

explain the implementation in detail. 

7.1.2 Implementing the Simulator 

    Wi-Fi Direct operations on real devices are handled by the Wi-Fi network interface 

card (NIC). This NIC is responsible for both infrastructure Wi-Fi and Wi-Fi Direct 
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connections. To allow these two different connections to concurrently exist, a virtual 

interface for each of them is created, e.g., “wlan0” and “p2p”. To allow  the NIC to 

have concurrent operations from both virtual interfaces, two separate MAC entities are 

used, each operates on a different channel. One of the MAC entities is used to handle 

the infrastructure Wi-Fi operation of “wlan0” and track the status of the connection 

through a state machine. The other entity handles the operation of Wi-Fi Direct “p2p” 

with a totally different state machine.  A device with such configuration can work as a 

client in a WLAN and a GO/GM at the same time. 

    As a simulation framework for wired and wireless networks, INET has implemented 

the Wi-Fi (802.11) operation with fine-grained details, using the primitives of 

OMNet++. The networking aspects has been implemented as modules that provide 

functionalities related to each layer. For example, the physical layer is implemented 

using bit manipulation, packet handling, and radio modules. Module composition is 

pursues to implement complex functionality; for example a NIC is composed of 

management, MAC, and radio modules. In INET, an 802.11 NIC can be configured as 

STATION, ACCESSPOINT, or AD-HOC, where each configuration has its related 

MAC aspects. A device is modeled as a module that is composed of applications, 

transport layer (TCP, UDP), network layer (IPv4, IPv6), and NICs. 

    We have utilized the modules of INET to create a device that support Wi-Fi Direct 

operations. For Wi-Fi Direct a device should be able to do service discovery, and act 

as a GO and as a GM.  
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The service discovery operations are handled in a connection less manner and have 

broadcast nature. These operations can be performed without forming a group. We have 

modelled such operations using an 802.11 NIC configured as AD-HOC, given that we 

allow the devices to broadcast their data. The GO role is handled by creating a software 

access point (SAP). Using Wi-Fi Direct, devices can connect to such SAP using a 

simple invitation/acceptance mechanism. All devices (Legacy and Wi-Fi Direct 

enabled) can connect using the SSID and Key. In both cases, the connected device will 

be regarded as GM. Therefore, we have implemented the functionality of the GO using 

an 802.11 NIC configured as ACCESSPOINT. Likewise, the GM role is modeled using 

an 802.11 NIC configured as STATION. Such GM then connects to the GO using the 

SSID and the Key. To allow a device to have infrastructure Wi-Fi support besides the 

Wi-Fi Direct support, we have added another 802.11 NIC and configured it as 

STATION. 

    Based on the above discussion, we have built a host that supports Wi-Fi Direct using 

5 NICs where one of them is just a loopback interface that is required by INET. The 

remaining four are two 802.11 NICs (STATION), one 802.11 NIC (AD-HOC), and 

one 802.11 NIC (ACCESSPOINT). To mimic the behavior of real NICs that support 

Wi-Fi Direct by using two virtual interfaces, we have added logic to selectively disable 

unwanted NICs so that, at most two wireless NICs will be active at the same time. For 

example, a device entering service discovery would have the ad-hoc NIC active and 

the other 3 wireless NICs disabled. If that device becomes a GO, its access point NIC 

will be activated. At the end of the service discovery period, the ad-hoc NIC will be 
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disabled. Likewise, a GM device will have one of the station NICs active. Since the 

assignment of GMs marks the end of the service discovery period, the ad-hoc NIC for 

GMs will be disabled when they start their role. If a GM happen to serve as a PM, then 

its other station NIC is activated. Figure 7-1 show the design of the Wi-Fi Direct host 

that we utilized in the simulator. 

 

Figure 7-1 The internal design of a Wi-Fi Direct Host. 

     For implementing the service discovery operations, we have built a UDP application 

in the designed host that manages the distribution of service discovery records, by 

broadcasting them to reachable neighbors. Then we have utilized this application to 

add ADS, EMC, and ISNP. Two other UDP applications, a DHCP client and a DHCP 
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server, are used to aid in finalizing the process of joining groups; a GM needs an IP 

address to communicate with its GO. Each device has these two UDP applications, but 

only one will be active at a time depending on the role of the device. For GOs, the 

DHCP server configuration is updated to reflect the subnet negotiated by ISNP. The 

GMs use their DHCP client application to request an IP address lease. For the intra-

group communications, we have designed two TCP applications, a server and a client, 

where one of them will be active based on the role of the device. We then added ELN 

to these two applications to be able to manage the group. Thus, a GO device utilizes 

the TCP server to send its heartbeat messages and a GM device utilizes the TCP client 

to receive them. The part of EMC that is responsible for the PM assignments is utilizing 

these two TCP applications as well. 

    Our simulator design fully support the communication protocol stack. For example, 

there are SYN and FIN commands to open TCP connections. There are also server and 

client sockets. A message sent from the application is encapsulated as it passes through 

the different layers and de-capsulated at the other end. The station connects to the 

access point using the 802.11 procedures defined in the standard. 

7.2 Experiment Setup 

    We have done two different types of experiments, one to assess the protocols 

performance, which is explained in section 7.4.1, and another in section 7.4.2 to study 

the effect of parameters on our protocols. We set the Wi-Fi transceiver to 802.11g, 

which gives a bit rate of 54Mbps. The transmission power is set to 0.9mW, which gives 

a range close to 802.11g range of almost 150m. The path loss model is set to free space. 
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We used two different type of topologies, a static grid, and a stationary connected 

graph. Table 7-1 summarizes all the assumptions that we used for all the parameters, 

unless otherwise stated. Every experiment is repeated 30 times with different seeds and 

the average of them is obtained and plotted. We observed that with 90% confidence 

level, the simulation results stay within 5% of the sample mean. 

Table 7-1 List of the paramters used for the simulation 

Parameter Protocol Testing Experiments Parameters Effects Experiments 

Area 1Km × 1Km 500m × 500m 

Devices Count 50 to 500 step 50 100 

Topology Static Grid + Stationary Connected Graph 

Wi-Fi Transceiver  802.11g 

Transmission Power 0.9mW 

Nominal Battery Capacity 4J 5J 

Initial Battery Capacity Rand (2.0, 4.0)J Rand (2.5, 5.0)J 

TsendInterval 2s 1s 

TdeclareGO 6s 4s 

TselectGO 4s 2s 

THeartBeatGM 1s 

THeartBeatGO 3s 

TpxAssignment 4s 

MaxX, MaxY 254 

 

We implemented EMC with ISNP. As we mentioned previously on Chapter 5, EMC is 

utilizing ADS for service discovery operations and ELN for intra-group management. 
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Thus, EMC has the implementation of both ADS and ELN embedded and all of their 

parameters are already used. For that reason, we focused on simulating EMC, which 

would also capture the performance of ADS and ELN as well. In addition, integrating 

ISNP with EMC enables the implementation of the complete P2P solution, which we 

refer to as Integrated EMC. For testing the performance of the Integrated EMC, we 

focused on two areas: 1) the GO declaration criteria 2) the PM assignment method.  

    For the GO declaration criteria, we compared the method used by the Integrated 

EMC, which we call GEMC, with two baseline criteria. The first baseline that we call 

GBAT is a method that we proposed in [80], where the battery information is used; 

however, it does not take into consideration the orphaned members problem that we 

mentioned in section 5.1.1.2. The second baseline is a random declaration of GO that 

we refer to as GRND, where each device randomly decides on being a GO regardless 

of the other devices. When comparing the performance of different GO declaration 

criteria, we fixed everything else to the defaults of the Integrated EMC. 

    The PM assignment method of the Integrated EMC, which we name MUNK, is 

tested against two other baseline methods. The first we name FRST, where the GO 

selects for nearby groups the first available member that can reach it. The second is a 

random selection, where the GO randomly selects for a certain group one of the 

members that can reach it; a method that we call PRND.  The remaining operations of 

the Integrated EMC are kept the same. 

    For the Integrated EMC, the time TdecalreGO + TselectGO defines the period where the 

service discovery operations are performed, i.e. exchanging service discovery requests 
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and responses. The group management operations begin when the service discovery 

phase ends, and last for TpxAssignment + Tteardown, where the GMs exchange heartbeat 

messages with the GO. We set the simulation time for all experiments to allow one full 

application cycle of the Integrated EMC, i.e TsimTime = TdecalreGO + TselectGO + TpxAssignment 

+ Tteardown. 

7.3 Performance Metrics 

    The performance metrics that we are interested in to assess the performance of our 

work are connectivity, response time, protocol overhead, power consumption, and 

subnet conflicts. Table 7-2 summarizes the performance metrics and how they are 

related to our protocols. Next, we will explain these metrics on more details. 

Table 7-2 The relation between the different performance metrics and out protocols. 

Metric Related Measurements in the simulation Affects/Affected By 

ELN ADS EMC ISNP 

Connectivity GO Count  × ×  

GM Count  × ×  

PM Count × × ×  

Orphaned Count  × ×  

CC Count × × ×  

Response Time Service Discovery Request to Response Delay  × × × 

Management End to End Delay ×  ×  

Protocol Overhead Total Service Discovery Messages  × × × 

Total Management Messages ×  ×  

Power Consumption Total Consumed Power × × ×  
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Subnet Conflicts Resolved Conflicts  ×  × 

Remaining Conflicts  × × × 

 

7.3.1 Connectivity 

    This metric measures the ability of our protocols for forming connected P2P 

networks. For that we track the number of group owners (GO), group members (GM), 

proxy members (PM), orphaned members (Orph), and connected components (CC).    

A typical GO will consume more power than other devices, thus the number of GOs 

should be reduced to reduce overall power consumption; however, not having enough 

GOs to cover the area means disconnected network. In addition, the number of GMs 

should be large enough to allow for more choices when selecting PMs. The number of 

PMs is directly affecting the final connectivity of the network. Having fewer PMs 

compared to the number of groups means disjoint network components, as there will 

be not be enough number of proxies to connect the groups. The number of connected 

components should reach one to have a totally connected network.  

    Connectivity is directly related to how EMC creates groups and connects them using 

proxy members. In addition, the ADS parameters affect EMC decisions in creating 

groups, as they determine how the exchange of DeviceInfo and SAP records is 

performed. Moreover, ELN parameters that define the way of exchanging the 

management information also affect the proxy member selection. 
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7.3.2 Response Time 

    For response time, we are measuring how fast different data exchange operation can 

take place. The response time is also a key in tuning several parameters on our 

protocols. We are interested in the speed of exchanging service records, which affects 

ADS and consequently EMC and ISNP. Thus, we record the delay from sending a 

service discovery request and then receiving a response. We should tune the length of 

the service discovery period to accommodate for such delay. We are also interested in 

the speed of exchanging management data, which is related to ELN and EMC. Thus, 

we measure the end to end delay between sending a management message and then 

receiving it by the other party. Having a knowledge about this delay gives a hint on 

how the proxy selection period should last. 

7.3.3 Messaging Overhead 

    The overhead is measured in terms of the number of messages that are exchanged 

during the protocol operation. Of course, a larger number means more bandwidth being 

consumed and more power consumption. We are interested in measuring the number 

of service discovery messages (sent and received), which is related to the ADS 

parameters and consequently EMC. In addition, we are considering the number of 

management messages (sent and received) that are affected by ELN parameters as well 

as EMC. 

7.3.4 Power Consumption 

    The power consumption is crucial as it determines the lifetime of the devices. We 

are interested in decreasing power consumption. The choice of ADS, EMC, and ELN 
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parameters affect the power consumption. For example, increasing the frequency of 

requesting service discovery records leads to more power consumption.  

7.3.5 Subnet Conflicts 

    The subnet conflicts refer to how many groups are sharing the same subnet. This is 

a measure of ISNP performance, where we are interested in eliminating the possibility 

of having conflicts. ADS and EMC parameters that are related to service discovery 

could affect such metric. The ability of having successful communication between 

groups at the level of the transport layer depends on this metric. We are recording in 

the simulation the number of resolved conflicts and the number of remaining conflicts, 

which should be zero to indicate the success of ISNP in resolving all the detected 

conflicts. 

7.4 Simulation Results 

    As we pointed out earlier, we have two sets of experiments; the first is to compare 

the Integrated EMC with several baselines. Mainly, we test the GO selection criteria 

and the PM assignment method. The second set of experiments is for capturing the 

effect of changing various parameters on our proposed protocols. 

7.4.1 Performance of Integrated EMC 

    The performance of the Integrated EMC is validated to assess its ability to create 

connected topologies while reducing the power consumption, overhead, and response 

time. Two different deployment types (topologies) are used for these experiments, the 

static grid, and the stationary connected graph. For the static grid configuration, we 
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divide the area into cells whose count matches the number of devices and placed one 

device into each cell; thus, we have equal spaces between the devices. Figure 7-2 shows 

an example of such deployment. In the stationary connected graph, we deploy the 

devices randomly in the area taking into consideration that each device should have at 

least one reachable neighbor. To do this, we deploy one device at a time and choose a 

random position for them, within the deployment area. For each deployed device, we 

check if there are other devices within its transmission range. If there are no devices 

within that range a new position is chosen and we repeat the same procedure until we 

find a suitable position. Figure 7-3 shows an example of this deployment type. 

 

Figure 7-2 An example of the static grid deployment 
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Figure 7-3 An example of the stationary conencted graph deplyment 

7.4.1.1 GO Declaration Criteria 

    We first compare the performance of the GO selection criteria, GEMC, of the 

integrated EMC, against the GBAT and the GRND baselines. For this comparison, we 

changed only the part where the GOs declaration takes palace in integrated EMC and 

let all other operation of the protocol to its defaults (ISNP for subnet conflict resolving, 

and MUNK for PM assignment). The GO declaration is crucial in determining the 

connectivity of the final peer-to-peer network. Covering the area with the least number 

of groups is desirable. The locations of the GOs also matters, as they may not be 

distributed evenly, which may affect the communication and the data exchange. In 
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addition, having enough members in each group makes it highly possible to have 

enough PMs between a group and all its neighbors, which is a key in determining 

connectivity. 

7.4.1.1.1 Static Grid 

    Figure 7-4 shows the resultant connectivity due to changing the GO declaration 

criteria in different device densities. The number of GOs should stay the same 

regardless the number of devices if the area stays the same. What we notice from the 

graphs is that GEMC is providing sufficient number of GOs to cover the area compared 

to GBAT and GRND, and yielding GO count that is not affected by the device density. 

GRND assignment for GOs is the worst, since there is no coordination between devices 

on who covers which region. We could see that the number of GOs in GRND is going 

up with density.  For GBAT, the number of GOs is not affected much with the density 

of devices; however, it is not sufficient to give the best coverage as we will see next. 

The number of GMs is related to the number of GOs and orphaned devices. No 

orphaned devices were produced in case of GEMC on nearly all densities, thus all 

devices that are not serving as GO role have assumed a GM role, which could be 

noticed in the figure as well. Nearly the same is happing to the GRND, as the orphaned 

count is negligible. However, because there are too many GOs in case of GRND, the 

number of GMs becomes the lowest amongst the three approaches for all densities. The 

GBAT is producing too many orphaned devices, because it does not share the proposed 

GO with the nearby devices. Leaving devices out all groups affects the number of GMs, 

as seen in the figure. For the PM count, GEMC is in the middle between GRND and 
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GBAT for most densities. The GM and PM counts are correlated with the number of 

GOs, as we need more PMs to accommodate for the increased number of GOs.  

The number of connected components is showing that both GRND and GBAT have 

many disjoint segments; and that number is increasing with the growth in the device 

population. For GRND, despite having many PMs, their count is not sufficient to cover 

the very large number of GOs, thus the number of connected components has increased. 

GBAT yields many orphaned devices, which causes the connectivity to suffer by 

having many disjoint nodes. GEMC, on the other side, has managed to keep the number 

of connected components low for all densities. Thus, in terms of connectivity, GEMC 

can produce sufficient number of GOs to cover the area, manage the number of GMs 

and PMs, avoid producing orphaned members, and obtain the best-connected network 

in all densities compared to GBAT and GRND. 
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Figure 7-4 The connectivity results from GEMC, GBAT, and GRND in case of Static Grid topology 

    Figure 7-5 shows that the response time in the service discovery period grows with 

the number of devices, which is due to the increasing contention on the channel. GRND 

has the worst values due to having too many GOs contending on sending their SAP 

records. GEMC and GBAT perform nearly the same in terms of response time in the 
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service discovery period. Regarding the management messages delays, we notice that 

it also increases with device density. The GBAT is getting the worst delays here, 

because it has poor decisions in defining the group boundaries. GEMC outperforms 

GBAT and shows ability to evenly distribute the groups. GRND, however, appears to 

have less delays, but this is due to having very small boundaries for its groups, as the 

number of GOs is large.  

  

Figure 7-5 The response time results from GEMC, GBAT, and GRND in case of Static Grid topology 

    From Figure 7-6, we notice that the service discovery overhead for all approaches is 

increasing with density. However, GRND grows at the highest rate, due to the increased 

number of GOs. Increasing the number of GOs means increasing the exchanged SAP 

records between devices, thus increasing the number of service discovery messages. 

GEMC and GBAT need less messages than GRND, due to the designation of fewer 

GOs. The management messages are decreasing with density, which is due to the 
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interference from other devices. The management messages are sent using TCP, thus 

if there is an error due to interference the message will be discarded. What is recorded 

by this graph is the number of correctly received messages. GEMC is producing the 

highest number, which is due to the correct connectivity decision that lead to reducing 

the interference effect. The other two approaches are giving lower number of messages 

due to their inappropriate connectivity choices that signify  the interference effects.  

  

Figure 7-6 The overhead results from GEMC, GBAT, and GRND in case of Static Grid topology 

    The power consumption is shown in Figure 7-7, where we could notice that all the 

approaches consume more power when the density of devices increases. GRND gives 

the worst power consumption, due to having large number of GOs, which causes the 

exchange of more messages. GBAT is showing the best power consumption, but this 

is due to having many orphaned nodes that are not participating in any messages 

exchange. GEMC sets in the middle between the two in terms of power consumption. 
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If we combined that with the superior connectivity that we get from GEMC, we 

conclude GEMC is giving the best balance between connectivity and power 

consumption. 

 

Figure 7-7 The power consumption results from GEMC, GBAT, and GRND in case of Static Grid topology 

    We also like to note that the number of detected and resolved subnet conflicts was 

negligible in all cases. 

    From this experiment, we conclude that GEMC is having the best balance between 

connectivity, message overhead, and power consumption in case of static grid 

topology. It also can adapt to the increased number of devices better than the other 

approaches. 

7.4.1.1.2 Stationary Connected Graph 

    In Figure 7-8 we show the resultant P2P device connectivity due to changing the GO 

declaration criteria in different device densities. GEMC managed to cover the area with 

enough GOs in all densities compared to GBAT and GRND. The number of GOs in 
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GEMC does not  change with density, given the fixed area, which is a good sign of 

having a proper GO negotiation. The number of GOs produced by GBAT is not 

changing much, also, with the change in density, but GBAT does not yield the best 

coverage. The worst behavior is shown in case of GRND, where the number of GOs is 

increasing proportional with density, which is a result of randomly selecting the GO 

role independent of the other devices. GEMC and GRND can avoid producing 

orphaned members in all densities. However, GBAT suffers from having many 

orphaned members.  

The number of GMs for the three approaches are analogical to the GO and Orphans 

count. We can notice that GRND has the lowest number of GMs in all densities; there 

are already many devices assumed the GO role, which means the remaining number of 

devices is already low. For all densities, GBAT has lower values of GMs compared to 

GEMC because GBAT has many orphan members. GEMC is best in terms of the GMs 

count, which would give more room for selecting PMs that could cover the network 

sufficiently. GRND designates more PMs with increased device density; however, the 

PM count is not enough to interconnect the formed groups as indicated by the number 

of connected components plot. GBAT is assigning the PM role to fewer devices 

compared to GEMC, a result that we can correlate with the number of GOs and GMs 

for both approaches. The number of connected components is best with GEMC, 

because of having the correct balance between GO, GM, and PM counts. The number 

of connected components is bad in both GRND and GBAT for all densities. For GRND, 

the PM count is not sufficient to cover the number of GOs, thus the number of 
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connected components increases. The orphaned members produced by GBAT cause 

the connectivity to suffer by having many disjoint parts. GEMC, on the other side, has 

managed to keep the number of connected components low for all densities. Compared 

with the static grid experiments discussed earlier, we conclude that the change of 

topology did not affect the results much. 
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Figure 7-8 The connectivity results from GEMC, GBAT, and GRND in case of Statioanry Connected Graph topology 

     Figure 7-9 shows that increasing the number of devices negatively affects the 

response time of service discovery messages, as the contention on the channel increases 

with the number of devices. GRND yields the worst behavior, because it produces the 
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largest number of GOs compared to GEMC and GBAT. Of course, the interference 

from that many GOs is high. GEMC and GBAT shows close and better results than 

GRND, as they both have lower number of GOs compared to GRND. By looking at 

the response of the management messages, we see that there is an increase in the 

response time when the density grows. GRND experiences less delays compared to 

GEMC and GRND, as the boundaries for its groups are small, due to the large number 

of GOs. GBAT is getting the worst delays here, because it has poor decisions in 

defining the group boundaries. GEMC performed better than GBAT and shows ability 

to evenly distribute the groups.  

  

Figure 7-9 The response time results from GEMC, GBAT, and GRND in case of Statioanry Connected Graph 

topology 

    Figure 7-10 shows that for all approaches, the overhead from the discovery period 

increases with the device density. GRND designates large number of GOs (thus, 
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increased number of exchanges of the SAP records), thus it shows the worst result. 

Compared to GRND, GEMC and GBAT are giving better results, as they are not 

producing too many GOs. Regarding the management messages, we see a decrease in 

their numbers when the density increases for all approaches, mainly due to radio 

interference. GEMC compared to the other two approaches can better cop with such 

interfaces . That is why we see increased number of management messages in GEMC. 

  

Figure 7-10 The overhead results from GEMC, GBAT, and GRND in case of Statioanry Connected Graph topology 

    The power consumption results are shown in Figure 7-11. We notice that increasing 

the device density negatively affects the power consumption for the three approaches. 

GRND produces many GOs that cause the exchange of more messages, thus GRND 

leads to the highest power consumption. GBAT shows slightly better power 

consumption compared to GEMC since it has many orphaned nodes, which do not 

participate in any messages exchange. Since GEMC yields the best connectivity, as 
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shown in Figure 7-8, we conclude that GEMC gives the best balance between 

connectivity and power consumption. 

 

Figure 7-11 The power consumption results from GEMC, GBAT, and GRND in case of Statioanry Connected Graph 

topology 

    We notice that the number of detected and resolved subnet conflicts was negligible 

in all cases, thus we did not find it helpful to plot it. 

    We conclude that GEMC is having the best balance between connectivity, message 

overhead, and power consumption in case of stationary connected graph topology 

compared to GRND and GBAT.  

7.4.1.2 PM Assignment Method 

    In this section, we compare the PM assignment method, MUNK, of the Integrated 

EMC against the FRST and PRND baselines. We changed the operation of the PM 

selection part only and left all the default of Integrated EMC (GEMC for GO 

declaration, and ISNP for subnet conflict resolving). The assignment of GMs to serve 
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as PMs between groups is a very challenging task. If the assignment is not done 

correctly, the final network will partition. For this experiment, we are only interested 

in seeing the final number of connected components, because this the only metric that 

is affected by the PM selection. 

7.4.1.2.1 Static Grid 

    Figure 7-12 shows the number of connected components that results from running 

the three different methods MUNK, FRST, and PRND. The graph shows that PRND is 

the worst. The reason for that is that selecting PMs at random can cause a group that is 

only reachable by a certain member to be disconnected due to assigning such a member 

to another group. For the MUNK and FRST we see that they have better results 

compared to PRND, but MUNK performance is slightly better than FRST. What we 

also notice regarding MUNK, is that the connectivity is affected by the density. For 

lower densities in the static grid, the number of connected components is higher than 

one, since there are fewer devices in the area to allow full coverage. When the device 

count increases to 150 or 200, we get the best coverage due to increased density. 

Increasing the density of devices beyond 200 negatively affects the connectivity 

because there are too many devices in the area which cause interference and loss of 

some the exchanged protocol frames; recall that the management messages count that 

is decreasing with density from the previous experiment. Such frame loss causes the 

decision of coverage to be suboptimal.  
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Figure 7-12 The connectivity results from MUNK, FRST, and PRND in case of Static Grid topology 

    From this experiment, we conclude that the density of the devices could affect the 

choice of PMs, due to increased interference between devices. MUNK is showing 

slightly better performance compared to FRST. PRND, on the other side, is giving the 

worst connectivity results. 

7.4.1.2.2 Stationary Connected Graph 

    In Figure 7-13, we show the number of connected components for MUNK, FRST, 

and PRND. We see that the number of connected components is increasing with density 

for all the three methods. PRND is clearly the worst, as it randomly selects PMs. FRST 

and MUNK yield better results than PRND, where MNUK is slightly better. For 

MUNK, we get almost full connectivity with 50 devices. Increasing the number of 

devices negatively affects the number of connected components since in the stationary 

connected graph topology the devices are deployed close to each other. Due, to the 

increased interference that is caused by the increase in density, we start to lose certain 
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messages (i.e. heartbeat, and SAP records) that are required to let the GOs have a better 

understanding of the topology. Thus, the decisions that are taken for assigning PMs are 

not the optimal ones. 

 

Figure 7-13 The connectivity results from MUNK, FRST, and PRND in case of Statioanry Connected Graph 

topology 

    From this experiment, we conclude that the density of the devices could affect the 

choice of PMs, due to the increase of interference between devices. When we compare 

the results from this deployment type to the static grid result, we conclude that the 

deployment type is also affecting the connectivity. PRND is giving the worst 

connectivity results. MUNK is showing slightly better performance compared to FRST. 

7.4.2 The Effect of Parameters 

    Our objective in this section is to capture the effect of changing some of the 

parameters on the performance of our implementation of the Integrated EMC. The 
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focus is on determining the values of these parameters that allow the Integrated EMC 

(i.e. EMC, ADS, ELN, and ISNP) to yield best performance.  

7.4.2.1 Parameters Affecting Radio Links 

    We mainly focus on the transmission power (TxPower) and the path loss (PathLoss) 

since they affect connectivity and overhead. In addition, we will study the effect of 

mobility on our Integrated EMC implementation.  

7.4.2.1.1 TxPower 

    In this experiment, we have set TxPower to 0.2mW and increased to 1mW in 

increments of 0.1mW. Lowering TxPower will enhance power consumption and radio 

signal interference. However, setting the TxPower below a certain threshold could have 

negative effect on the connectivity as shown in Figure 7-14. Basically, the number of 

GOs diminishes when increasing power. Small TxPower values makes the transmission 

range short and limits inter-device reachability. Similarly, the GM count is increasing 

with TxPower, which is a result of the decrement of the GO count. The number of PMs 

is also related to the GO count; whenever the GO count increases the PMs count 

increases too to have enough coverage between groups. However, the number of 

connected components indicates that the number of PMs was not enough to cover all 

groups for lower values of TxPower, especially in the connected graph topology, which 

explains why we start the graph with large number of disjoint components. Once the 

TxPower reaches 0.8-0.9mW, the connectivity improves for both topologies. The 

strange observation here is that once TxPower exceeds 0.9mW, the connectivity starts 
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to be negatively impacted again. That could be explained by the fact that having more 

TxPower means more interference. 

  

  

Figure 7-14 The effect of changing TxPower on connectivity 

    Figure 7-15 shows how TxPower affects the response time of both the service 

discovery part of EMC/ADS and the group management part of EMC/ELN. We notice 
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that the response time is negatively affected by the range of transmission. The reason 

for this is that increasing the power allows more devices to involve in message 

exchange, which cause more interference and hence affect the delays.  

  

Figure 7-15 The effect of changing TxPower on resopnse time. 

    Figure 7-16 shows how the TxPower affects the overhead of both the service 

discovery part and the group management part of EMC. What is noticed is that the 

number of service discovery messages is increasing proportional to TxPower. This is 

very much expected since having short range means less inter-device reachability and 

consequently less interaction between devices. However, the management messages 

decrease as TxPower grows. We can explain that by stating that the messages in the 

service discovery phase are having a broadcast nature, thus they are accepted by all 

reachable devices. On the other hand, the management messages are unicast messages 
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within the group. As the number of groups is decreasing, the number of these messages 

decreases as well. 

  

Figure 7-16 The effect of changing TxPower on Overhead 

    The effect of TxPower on power consumption is shown in Figure 7-17. Since the 

number of reachable devices increases when growing TxPower, we got more messages 

exchanged between devices. Such increase in the interactions between devices causes 

the increase in power consumption. In addition, the power that the transceiver is using 

to transmit is increased, which adds to the overall power consumption.  

0

500

1000

1500

2000

2500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 #
o

f 
M

sg
s

TxPower (mW)

Effect of TxPower on Service 
Discovery Msgs

Static Grid

Stationary Connected Graph

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 #
o

f 
M

sg
s

TxPower (mW)

Effect of TxPower on Mgmt Msgs

Static Grid

Stationary Connected Graph



 

 

139 

 

 

Figure 7-17 The effect of changing TxPower on power consumption 

    From this experiment, we could note that setting the power of transmission to 0.8 or 

0.9mW would give the best results in terms of connectivity. Thus, there is a trade-off 

between power consumption and connectivity. 

7.4.2.1.2 PathLoss 

     To capture the effect of the signal propagation model, we changed the PathLoss 

parameter from the FreeSpace model, the LogNormal and the Rayleigh models, which 

are more complex and deemed to be more practical. In Figure 7-18, we show the effect 

of changing the PathLoss on connectivity. We can notice that the complexity of the 

path loss model negatively affects the connectivity. The number of GOs decreases, 

which leads to an increment in the number of GMs. The PM count and the orphaned 

members have grown as well, which leads to the presence of more connected 

components and consequently diminished connectivity. Such an effect is more apparent 

under the Rayleigh model which model noisy environments.  
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Figure 7-18 The effect of changing PathLoss on connectivity 

    The overhead for both service discovery and management is shown in Figure 7-19. 

We notice from such figure that the message overhead is decreasing as we move to 

PathLoss types that model noisier environment, because of having more interference. 

  

Figure 7-19 The effect of changing PathLoss on Overhead 
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    The power consumption is decreasing with complexity as shown in Figure 7-20. This 

should be due to the decreased number of messages that reaches the other parties, which 

leads to fewer responses. 

 

Figure 7-20 The effect of changing PathLoss on power consumption 

    To summarize, the path loss could negatively affect any interaction between devices 

when the radio signal propagation suffers increased interference.  
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in an area of 500m × 500m, a space that can be envisioned as a public park or a museum. 

The parameter that we set for such person mobility model are shown in Table 7-3. 

   Because of the high power-consumption of the GOs, new devices could have better 

ranks and serve as GOs in the next round. With this experiment, we also capture the 

GO role rotation in both the static and mobile scenarios, which happens when we restart 

the protocol. Such role rotation could lead to different connectivity results, especially 

in the mobility case. The results of this experiment are shown below. 

Table 7-3 The mobility parmaeters used to model person movement 

Mobility Parameter Change of Value 

Speed Exponential distribution of 1.3 meters/sec 

Angle Zero with a variance of 5 degrees 

Change Interval 2s with a variance of 0.25s 

  

    Figure 7-21 shows the effect of mobility and GO role rotation on coverage. We 

notice that the number of GOs and GMs is not changing widely in the case of stationary 

connected graph. This is because more devices are in the range of each other in this 

topology, thus the decisions stay nearly the same. However, in the static grid and the 

mobility cases, we see that there is a noticeable change in the number of GOs and PMs. 

The edge devices in the static grid case could be the reason for such a change, as they 

may have better ranks. These edge devices do not cover as much areas as other devices, 

which lead to gaps in coverage that requires more GOs to cover. For the mobility cases, 

varying the device location affects the covered area, thus the GO and GM counts are 
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changing to adapt with that. We notice also that the number of orphaned devices is 

affected also by mobility, due to the possibility of having devices move before 

completing their role negotiation successfully. The PM count is changing with each 

round of the protocol for all topologies. This is because changing the GOs affects the 

group boundaries, thus changing the overlapping region between groups, which 

contains the devices that can link the groups. Because of the change in PM count, the 

number of connected components changes, as seen from the figure. However, we notice 

that such a change is worse in case of mobility, which is expected. 
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Figure 7-21 The effect of Mobility on connectivity 

    Figure 7-22 and Figure 7-23 show the effect of mobility on response time and 

overhead. For the service discovery, the response time is enhanced in case of mobility. 

Such decrease in delay could be due to the change in the device locations that leads to 
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to the number of service discovery messages. When considering the management delay, 

we notice that mobility version of the static grid has better responses, which could be 

correlated with the decrease in the number of GMs in case of the grid. The same effect 

is seen for the management messages in both mentioned cases. Regarding the stationary 

connected graph and its mobile version, we notice that the mobility negatively affects 

the management end-to-end delay. However, the number of management messages are 

decreasing in case of mobility, because of having a fewer number of GMs, which leads 

to fewer interactions within the groups. 

  

Figure 7-22 The effect of Mobility on response time 
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Figure 7-23 The effect of Mobility on overhead 

    Figure 7-24 shows the effect of mobility on power consumption. What we see here 

is that the pattern of power consumption is following the pattern of service discovery 

messages which is dominating. We are not considering here the power consumed due 

to moving, as we assume that the devices are carried by persons not mobile by 
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Figure 7-24 The effect of Mobility on power consumption 

    At last, the mobility and the changing of the GO role between devices create certain 

challenges that could cause changes in coverage. The power consumption and the 

message overhead has enhanced due to the redistribution of devices. However, the 

delays show some mixed results. As a result of this experiment, we plan to extend our 

work in the future to better accommodate the effects of mobility and role changing of 

GOs. 

7.4.2.2 Protocol Parameters  

    Certain parameters of our protocols affect the various performance metrics as 

summarized in Table 7-4. We will show the simulation results for each parameter in 

the balance of this section. 

Table 7-4 The effect of paramters on Performance 
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Connectivity 
Response 

Time 
Overhead 

Power 

Consumption 

Subnet 

Conflicts 

TsendInterval ADS ×  ×× ×× × 

TdeclareGO EMC ×  × × ×× 

TselectGO EMC ×  × ×  

THeartBeatGM ELN ×  ×× ×  

THeartBeatGO ELN ×  × ×  

TpxAssignment EMC ××     

MaxX, 

MaxY 

ISNP 
    ×× 

 

7.4.2.2.1 TsendInterval 

    In this experiment, we are changing the interval at which devices ask for service 

discovery records by 0.1s steps starting from 0.1s and going up to 1s. Reducing this 

interval while at the same time fixing the period that the devices spend doing service 

discovery operations means that more requests and more responses are going to be 

generated. Figure 7-25, shows that the effect of TsensInterval on connectivity is minimal, 

where the number of GOs, GMsand PMs stay almost the same. We found that there are 

no orphaned nodes; thus, we did not plot it. Also, the number of connected components 

is nearly the same. This result is expected, as changing this value directly affecting the 

number of service discovery request. As the service discovery period is fixed at 4 secs 

in this experiment, we will have at least 4 requests in the worst case, which is more 
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than enough to get complete information from neighbors. For the best case at TsendInterval 

equals 0.1 sec, we get 40 requests, which too much.  

  

  

 

Figure 7-25 The effect of changing TsendInterval on connectivity 
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    On Figure 7-26, we show the effect of changing the send interval on the service 

discovery overhead; the management overhead is not relevant in this case. We see that 

the overhead is decreasing when we increase this interval, which is a result of having 

fewer requests. In the far-left side of the graph, when the send interval is set to 0.1s, we 

get the worst message overhead, as there are too many requests generated at such 

interval. 

 

Figure 7-26 The effect of changing TsendInterval on overhead 

    The effect on power consumption is shown in Figure 7-27. The larger the send 

interval is the less the power consumption becomes. Of course, having fewer requests 

means fewer responses and less power. On the other hand, decreasing such interval 

increases the number of requests, which negatively affects the power consumption. 
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Figure 7-27 The effect of changing TsendInterval on power consumption 

    From this experiment, we conclude that TsendInterval should be set around the value 

that leads to sufficient number of service discovery requests would yield the best 

connectivity, overhead, power consumption. However, setting it too low has a bad 

impact on overhead, and power consumption. The connectivity does not change with 

the change of this parameter. 
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2 possible service discovery data exchanges between devices, while for the highest 

value of TdeclareGO we get 10 possible exchanges. We see from Figure 7-28 that 
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sufficient for getting a stable GO count that can sufficiently cover the area. The same 

applies for GM count, which stabilizes at 4s. The PM count is increasing when TdeclareGO 

grows and nearly stabilizes at 4s; however, it swings a little around 8s for the stationary 

connected graph topology. Of course, at 4s, the devices get sufficient data exchanges 

to negotiate their roles; however, increasing that interval beyond 4s will give redundant 

data exchanges, thus we see the stabilization on the curves. The number of PMs directly 

affects the number of connected components, so we notice that when the PM count 

swings at 8s the connected components are affected. For the static grid, the number of 

connected components approached one and did not change after the value of 4s. we 

notice also that for values lower than 4s, there are some orphaned members, which is a 

result of not having enough data exchanges at the GO Declaration period. Thus, the 

proposed GO filed that is supposed to fix the orphaned members case did not have the 

time to propagate. 
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Figure 7-28 The effect of changing TdeclareGO on connectivity 
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there are more service discovery exchanges. From the figure, also, we notice that the 

management messages overhead starts with a small value when the connectivity was 

0

2

4

6

8

10

12

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 #
o

f 
P

M
s

DecalreGo Period (s)

Effect of GO Declaration Period on 
PM Count

Static Grid

Stationary Connected Graph

0

0.02

0.04

0.06

0.08

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 #
o

f 
O

rp
h

s

DecalreGo Period (s)

Effect of GO Declaration Period on 
Orph Count

Static Grid

Stationary Connected Graph

0

0.5

1

1.5

2

2.5

3

3.5

4

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 #
o

f 
C

o
n

n
ec

te
d

 C
o

m
p

o
n

en
ts

DecalreGo Period (s)

Effect of GO Declaration Period on Connected Component Count

Static Grid Stationary Connected Graph



 

 

156 

 

not high, afterwards it is increased and stabilized. The reason for such behavior is that, 

below 4s, there are some orphaned devices and the GM count is lower than other 

intervals, which means that fewer management interactions. 

  

Figure 7-29 The effect of changing TdeclareGO on overhead 

    The power consumption, as shown in Figure 7-30, is increasing because of the 

increase of message overhead shown in the previous figure. We can see that the 

consumption starts with a low value then a big jump happens after 3s following the 

message overhead and connectivity patterns. As the connectivity, does not change 

much after 4s, we recommend setting the TdeclareGO interval to a value that gives just 

enough service discovery exchanges to enhance the power consumption. 
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Figure 7-30 The effect of changing TdeclareGO on power consumption 
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Figure 7-31 The effect of changing TselectGO on connectivity 

    What we see from Figure 7-32 and Figure 7-33 is that the overhead of the discovery 

service period and the power consumption are increasing when TselectGO is increased. 

This result is expected, as the devices exchange more service discovery records when 

we extend this period, and consequently more power is consumed. 

 

Figure 7-32 The effect of changing TselectGO on overhead     
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Figure 7-33 The effect of changing TselectGO on power consumption 

    From this experiment, we conclude that when choosing the TselectGO value we should 

minimize its length to reduce overhead and power consumption. There is no gain from 

increasing the length of this period in terms of connectivity. Based on this experiment, 

setting TselectGO to 2s seems to be suitable. 

7.4.2.2.4 THeartBeatGM 

. During this experiment, we increased THeartBeatGM from 0.1s to 1s with 0.1s in between. 

Decreasing such a value, while keeping the THeartBeatGO period the same increases the 

number of message from GM to GO. Figure 7-34 shows the effect of such a parameter 

on connectivity. We notice that at the beginning, where the number of heartbeat 

messages are the highest, the number of PMs slightly grows. Increasing THeartBeatGM 

reduces the PM count; nonetheless, it is almost stable around 10 and 8 for static grid 

and stationary connected graph topologies, respectively. The connected components 

number is fluctuating around a value of 1.1 most of the time. It is slightly worse at 
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larger values of THeartBeatGM. As there is not much of change in connectivity, we see that 

we do not need to set this parameter too low to reduce the number of management 

messages. This would enhance the power consumption, as we will see next. 

  

Figure 7-34 The effect of changing THeartBeatGM on connectivity 

    From Figure 7-35, we see that the management overhead is diminishing with larger 

values of THeartBeatGM; the service discovery overhead is not relevant here. It is desirable 

to reduce such overhead, so it seems that setting THeartBeatGM to 1s gives the best result. 
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Figure 7-35 The effect of changing THeartBeatGM on overhead 

    The response time is not a metric that would be impacted by this parameter, thus we 

did not study it. In Figure 7-36, we find that the power consumption is enhanced when 

we increase the value of THeartBeatGM. At 1s we get the lowest power consumption value. 
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Figure 7-36 The effect of changing THeartBeatGM on power consumption 

    From this experiment, we notice that if we could sacrifice a little bit in the 

connectivity side in favor of reducing power consumption and the overhead, then we 

can set THeartBeatGM to 1s. 

7.4.2.2.5 THeartBeatGO 

    This parameter is a management parameter as THeartBeatGM. Thus, we are interested 

here in showing the connectivity (PM and Connected Components only), management 

overhead, and power consumption. THeartBeatGO defines the period that a GO waits 

before sending a heartbeat message to its GMs. Recall that the proxy assignments are 

sent using the heartbeat messages, thus the inability of the GO to send at least one 

heartbeat message would result in a hole in the coverage; If THeartBeatGO is greater than 

TpxAssignment that could happen. In this experiment, TpxAssignment is set to 4s and changed 

THeartBeatGO from 2s to 6s by increasing 1s to capture its effect the performance. Figure 
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7-37 shows the effect of this parameter on connectivity. We notice from the figure that 

when THeartBeatGO is set to 2s we get the best connectivity results in terms of PM count 

and number of connected components. Increasing such a value degrades connectivity, 

specially beyond 4s. If we correlate these graphs with the fact that the numbers of GOs 

that we get in this experiment were 7.2 and 6.4 for grid and connected graph topologies, 

respectively, we can conclude that each group were disconnected from the other after 

passing the 4s mark. Thus, we should keep the value of THeartBeatGO as low as possible. 

  

Figure 7-37 The effect of changing THeartBeatGO on connectivity 

    From Figure 7-38 and Figure 7-39, we find that the protocol overhead as well as the 

power consumption are high with lower values of THeartBeatGO, and start to decrease 

when THeartBeatGO grows. That is consistent with the fact that the number of responses 

from the GO decreases with higher values of this parameter, thus reducing the power 

consumption. 
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Figure 7-38 The effect of changing THeartBeatGO on overhead 

 

Figure 7-39 The effect of changing THeartBeatGO on power consumption 

    As a conclusion from this experiment, we should set THeartBeatGO to a value that is less 
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members. A value of 2s gives the best results at the expense of having slightly higher 

power consumption and overhead. 

7.4.2.2.6 TpxAssignment 

    In this experiment, we varied TpxAssignment from 4s to 19s. The minimum value for 

TpxAssignment, which is 4s, allows one GO heartbeat message to reach the GMs. Increasing 

this value enables more heartbeat messages to be sent. What we have noticed during 

this experiment is that changing such value beyond 4s has no benefit at all, as the 

connected components stays at the same value, which is 1.16667, for both topologies. 

No other performance metric is dependent on TpxAssignment. 

7.5 Conclusions 

    In this chapter, we have discussed the development of a simulator for Wi-Fi Direct 

and the implementation of our integrated suite of protocols (ELN, ADS, EMC, ISNP). 

Two different set of experiments were performed, one to capture the performance of 

the Integrated EMC and the other to test the effect of various parameters on 

performance. The simulation results have shown that our approach can provide 

connectivity with minimal effect on the power consumption, response time, and 

overhead. The results have also provided guidelines on how to set the different 

parameters to yield the best performance.  
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Chapter 8: Conclusions and Future Work 

    Advances in communication technology have made data sharing part of daily 

activities and enabler for many applications. However, the tight coupling between 

communication links and infrastructure makes it uneasy to share data in certain 

situations where the infrastructure is down or unavailable. Our focus in this dissertation 

is on enabling infrastructure-less data sharing between smart devices through the 

development of a framework that creates and manages P2P links between these devices. 

This chapter summarizes the contribution of the dissertation and outlines the planned 

future work. 

8.1 Summary of Contribution 

    In this dissertation, we tackle the problem of data sharing between devices without 

relying on communication infrastructures by utilizing the D2D communications 

technologies available on smart devices. We have developed three novel protocols to 

allow the sharing of data among users using Wi-Fi Direct, a protocol for IP subnet 

negotiation, and a simulator for Wi-Fi Direct. The following is a summary of the 

specific research contributions: 

A. Alert Dissemination Protocol Using Service Discovery in Wi-Fi Direct (ADS): 

ADS is meant for sharing small chunks of data or alerts in a quick manner that 

is fast and is not limited by a group boundary. ADS uses service discovery on 

Wi-Fi Direct to exchange data between smart devices without requiring setting 

up any groups. The devices use the service discovery records to store data 
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locally. Other devices use service discovery requests to obtain such stored data. 

The approach also manages the forwarding of new data and pruning of old data. 

B. An Efficient and Lightweight Protocol for P2P Networking Smart Devices over 

Wi-Fi Direct (ELN): ELN is a solution for sharing large amounts of data 

between a small group of devices. ELN utilizes Wi-Fi Direct to setup a group 

that allows all users to share data with each other. ELN provides a group 

management solution that manages the addition and removal of devices as well 

as the required connections. 

C. Efficient Multi-Group Formation and Communication Protocol for Wi-Fi 

Direct (EMC): This solution targets the case of sharing data among large 

number of users that span wide area in a power efficient way. EMC dynamically 

creates Wi-Fi Direct groups of Android smart devices based on certain ciriteria. 

EMC then interconnects the formed groups using relay devices to achieve large 

scale data sharing. Such an approach utilizes ADS for distributing vital protocol 

specific data and ELN for intra-group interactions. 

D. IP Subnet Negotiation Protocol for Seamless Multi-Group Communications 

(ISNP): ISNP is developed to overcome the limitation of the Wi-Fi Direct 

implementation in Android that forces all the created groups to share the same 

IP subnet, which leads to IP address collisions. By overcoming such limitation, 

we provide the necessary support to have full inter-group connectivity at the 

transport layer. ISNP has an application layer module that is integrated with 
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EMC to allow groups to negotiate their subnets. An OS module is developed to 

allow the devices to force Android to use their proposed subnets. 

E. A Simulator for Wi-Fi Direct: Due to the lack of availability of simulation 

environments for Wi-Fi Direct, we have developed a simulator to fill such a 

gap. The simulator utilizes OMNet++ that provides a powerful simulation 

kernel, INET Framework that have implementation for several networking 

aspects, and Google OR-Tools that provides linear assignment and connectivity 

libraries. 

    The performance of ELN, ADS, EMC, and ISNP is validated through 

implementation on Android devices and through simulation. In addition, an extensive 

analysis of the performance of such approaches has been carried out. The results have 

confirmed the advantages of our protocols in terms of connectivity, response times, 

protocol overhead, and power consumption.  

    We envision our proposed protocols to be part of Android and other platforms to 

facilitate P2P data sharing. Building communication links only is not sufficient to 

enable the required data sharing, thus a routing mechanism for data is warranted. 

Witnessing data breaches happening every day elevates the importance of user security 

and privacy. In addition, relying on Wi-Fi Direct solely to perform communication may 

not suffice; instead multiple varying technologies could be blended together to provide 

a sophisticated solution for infrastructure-less data sharing. All these aspects are part 

of our future-plan, as we highlight next. 
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8.2 Future Work 

    As we pointed out, the aim of this dissertation research is to enable users to share-

data in an infrastructure-less manner. Our investigations have pointed out tha Wi-Fi 

Direct is the most suiyable means for building communication links. To that end, we 

have developed ELN, ADS, EMC, and a supporting protocol ISNP presented in 

chapters 3, 4, 5, and 6, respectively. In the future, we plan to further to extend our work 

by providing a data routing service that eases the data retrieval and exchange. In 

addition, we plan to protect the P2P services against attacks and ensure user privacy 

through adding several security measures that prevent unauthorized users from 

cheating or stealing sensitive user information. We plan also to investigate 

incorporating other technologies, like Bluetooth, in our data sharing solution to provide 

fault tolerance for communication links. Finally, expanding our work to other 

platforms, like Apple iOS, is planned in order to support a wide base of users. The 

following discusses the planned future research activities.  

8.2.1 Routing Data Between Groups 

    Our work provides the necessary means for creating communication links between 

devices to allow data sharing. Sharing data between group members is handled by the 

group owner. However, having several connected groups, means that we need to route 

data once we cross the group boundary. Each group has several PMs to connect it with 

other groups and selecting one of them to forward the data should be handled to 

guarantee successful and efficient data sharing. Thus, we plan to develop a routing 

mechanism that allows forwarding the data to devices on other groups efficiently.  
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8.2.2 Secure Data Sharing Between Devices 

    To ensure user privacy and counter attacks we plan to incorporate security measures. 

Several parts of our work rely on negotiating certain roles between devices through 

service discovery frames in Wi-Fi Direct. There frames are transmitted using plain text 

and could be captured by any nearby device. In addition, a malicious device could send 

crafted service discovery frames to nearby devices to get them to assume that it has the 

best rank. Such device could then take GO responsibility and intercept any data 

transferred through the group. Likewise, if a denial of service attack is desired, a 

malicious device could convince a GO to assign it the PM role, then such device would 

drop any frame forwarded to it. Thus, we plan to apply several authentication and data 

integrity mechanisms to prevent unauthorized user from capturing, manipulating, or 

dropping shared data. 

8.2.3 Incorporating Other D2D technologies 

    We would like to explore the inclusion of other D2D technologies such as Bluetooth 

Low Energy to increase the robustness of our data sharing framework, especially when 

the wireless channels are subject to varying levels of interference. Such an extension 

would also allow devices without Wi-Fi Direct support to involve in the data sharing 

process. In addition, supporting other technologies can speed up the distribution of data 

between close by devices, as we will have more than one transceiver to carry the traffic. 

8.2.4 Extend our Work to Other Platforms 

    We hope to have our data sharing solution utilized by a large base of users. Thus, we 

plan to include support for other platforms, like Apple iOS. Apple has introduced 
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MultiPeerConnectivity Framework [86] to iOS since version 7.0. Such framework 

supports the discovery of services provided by nearby devices. It also supports 

communicating with devices that have such discovered services through different 

ways, such as messages and streaming. In iOS, the framework uses Wi-Fi networks, 

Wi-Fi Direct, and Bluetooth for the underlying transport. We plan to utilize such 

framework for providing a cross-platform support for our data sharing solution. 
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