

APPROVAL SHEET

Title of Dissertation: Infrastructure-less Group Data Sharing Using Smart Devices

Name of Candidate: Ahmed Amer Abdeldayem Shahin

 Doctor of Philosophy, 2017

Dissertation and Abstract Approved: ___________________________________

 Dr. Mohamed Younis

 Associate Professor

 Computer Science and Electrical Engineering

Date Approved: ________________

ABSTRACT

Title of Document: INFRASTRUCTURE-LESS GROUP DATA

SHARING USING SMART DEVICES

 Ahmed Amer Abdeldayem Shahin, Ph.D., 2017

Directed By: Mohamed Younis, Associate Professor

Department of Computer Science and

Electrical Engineering

Advances in pervasive communication technology have enabled many unconventional

applications that facilitate and improve the safety and quality of life in modern

societies. Among emerging applications is situational awareness where individuals and

first-responders receive timely alerts about serious events. Another example is

exchanging road conditions between vehicles in a peer-to-peer fashion. The increasing

popularity of smart devices and their support for multiple device-to-device (D2D)

communication standards have made them an attractive choice for realizing these

emerging applications. However, most existing protocols for data sharing among smart

devices either require an internet connection, which may not be available, could incur

extra costs, or suffer from the device’s operating system limitations. Moreover, there

is no existing solution that allows a set of devices to start sharing data dynamically

without forcing users to apply an elaborate procedure for setting up a group. These

shortcomings render existing solutions unsuitable for emergency cases and highly

dynamic applications.

In this dissertation, we fill such a technical gap and present a framework for

enabling an infrastructure-less data exchange in a cost-effective and timely manner

through the establishment of peer-to-peer links among smart devices. In addition, our

framework opts to minimize the required user interaction for setting up a connection.

Our framework consists of a suite of protocols for data exchange using Wi-Fi Direct.

First we present a protocol for Alert Dissemination using Service discovery (ADS) in

Wi-Fi Direct that is suitable for short messages. ADS uses the service discovery feature

of Wi-Fi Direct for distributing its data in a connectionless manner, thus avoiding the

setup delay in creating Wi-Fi Direct groups. In addition, we present an Efficient and

Lightweight protocol for peer-to-peer Networking of smart devices over Wi-Fi Direct

(ELN) that is suitable for sharing large amounts of data between a group of users. ELN

mainly provides a group management solution that allows dynamic memberships and

adapts for topology changes. Finally, we present an Efficient Multi-group formation

and Communication (EMC) protocol for Wi-Fi Direct that is suitable for sharing data

between many users distributed along a wide area, which cannot be covered by one

group. EMC allows potential group owners to be qualified based on certain criteria and

enable dynamic formation of groups. Moreover, EMC allows data exchange between

different Wi-Fi Direct groups. To support the implementation of EMC in Android, we

have developed an IP Subnet Negotiation Protocol for Seamless Multi-Group

Communications (ISNP). ISNP overcomes a limitation of Android’s Wi-Fi Direct

implementation that forces all the formed groups to share the same range of IP

addresses.

All the proposed protocols have been validated through implementation on

actual Android devices. In addition, the performance of our framework in large setups

is studied through simulation, where a library for Wi-Fi Direct and our protocols has

been developed and added to OMNet++. To the best of our knowledge, our framework

is the first comprehensive peer-to-peer solution for mobile devices that takes advantage

of the capabilities of Wi-Fi Direct.

INFRASTRUCTURE-LESS GROUP DATA SHARING USING SMART

DEVICES

By

Ahmed Amer Abdeldayem Shahin

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, Baltimore County, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2017

© Copyright by

Ahmed Amer Abdeldayem Shahin

2017

ii

Dedication

I dedicate this to my parents, my wife, and my kids.

iii

Acknowledgements

First, all thanks are due purely to Allah, for providing me the blessings and the strength

to complete this dissertation. Second, I would like to express my deepest appreciation

to my advisor Dr. Mohamed Younis, for his academic and personal help and support

during my PhD journey. He is always ready to provide advice, share his deep and vast

knowledge, and persistently encourage me while working. Moreover, I would like to

thank Dr. Charles Nicholas, Dr. Chintan Patel, Dr. Tinoosh Mohsenin, and Dr. Waleed

Youssef for serving on my dissertation committee and for their valuable inputs. The

thanks are also due to the members of the ESNET lab for their friendship, collegiality

and inspiration.

I would like to acknowledge my father, Amer, and my mother, Attiat, for their

continuous support, encouragement, and prayers. Furthermore, I would like to thank

my wife, Aya, for her patience, her great support, and her understanding during such

difficult time. If I am to share this PhD with anyone, it would be her. I acknowledge

also my lovely kids Yahia, Safia, and Yamen for being beside me during my study.

I would like also to acknowledge the Cultural Affairs & Missions Sector at the Egyptian

Ministry of Higher Education for financially supporting me for four years during my

study. Finally, it is difficult to individually acknowledge everyone who has helped me

to reach this degree. Therefore, I would like to thank everyone who has provided

support and encouragement during my study at the University of Maryland, Baltimore

County.

iv

Table of Contents

Dedication ... ii

Acknowledgements .. iii
Table of Contents ... iv
List of Tables .. vii
List of Figures .. viii
Chapter 1: Preliminaries and Research Problem .. 1

1.1 Introduction ... 1
1.2 Device-to-Device Technologies.. 2

1.2.1 Bluetooth ... 3
1.2.2 Wi-Fi Ad-hoc Mode .. 4

1.2.3 Wi-Fi Direct .. 4
1.3 Research Goals.. 11

1.4 Research Contribution .. 11
1.5 Organization .. 13

Chapter 2: Related Work .. 15
2.1 Data Sharing using Wi-Fi Direct .. 15

2.1.1 The applicability of Wi-Fi Direct ... 16

2.1.2 Intra-Group Data Sharing in Wi-Fi Direct .. 17
2.1.3 Inter-Group Data Sharing: .. 20

2.2 Data Sharing using other Technologies .. 21

2.2.1 Data Sharing in VANETs ... 21
2.2.2 Data Sharing in Mobile Devices/Networks .. 23

2.2.3 Data Sharing in Ad-hoc Networks .. 24

Chapter 3: Alert Dissemination Protocol Using Service Discovery in Wi-Fi Direct . 26

3.1 Problem Statement and Solution Strategy .. 26
3.2 ADS Protocol .. 28

3.2.1 Service Record .. 29
3.2.2 Local Alert Management .. 31
3.2.3 Managing Remote Alerts .. 32

3.3 ADS Implementation .. 34
3.4 Performance Analysis ... 37

3.4.1 Alert Reporting ... 37
3.4.2 Alert Pruning ... 39

3.5 Conclusions ... 40
Chapter 4: Efficient P2P Networking of Smart Devices over Wi-Fi Direct 41

4.1 ELN Approach .. 41
4.1.1 Connection Establishment Phase .. 42
4.1.2 Group Management Phase .. 44

4.2 Implementation and Validation... 50
4.2.1 Android Implementation Issues .. 51

v

4.2.2 Remote Streaming of Sensors Readings ... 52
4.2.3 Group Chatting.. 53

4.3 Performance Evaluation .. 58
4.3.1 Protocol Overhead .. 59

4.3.2 Topology changes ... 60
4.4 Conclusions ... 62

Chapter 5: Efficient Multi-Group Formation and Communication Protocol for Wi-Fi

Direct... 64
5.1 Approach Overview .. 65

5.1.1 Support of Initial Data Exchange:... 66
5.1.2 Support of Intra and Inter Group Communication 70
5.1.3 Insuring Network Connectivity... 70

5.2 EMC Protocol ... 73

5.2.1 Choosing Proposed GOs ... 74
5.2.2 Creating Groups .. 75

5.2.3 Selecting a Group to Join .. 76
5.2.4 Selecting Proxy Members ... 77

5.2.5 Teardown and restart... 78
5.3 EMC Implementation.. 80

5.3.1 Wi-Fi Direct Multi-Group Chat Application for Android 80

5.3.2 Android Framework Modifications .. 81
5.3.3 Test Cases ... 82

5.4 Performance Analysis ... 85
5.4.1 Group Formation ... 86
5.4.2 Multi-Group Communication ... 87

5.5 Conclusion .. 87

Chapter 6: IP Subnet Negotiation in Wi-Fi Direct for Seamless Multi-Group

Communications. .. 89
6.1 Problem Statement .. 90

6.2 The ISNP Protocol .. 91
6.2.1 ISNP Overview ... 91

6.2.2 Application-Level Module .. 93
6.2.3 OS-Level Module.. 97

6.3 Implementation and Testing ... 98
6.3.1 Response Time Performance .. 101
6.3.2 Subnet Conflict Evaluation ... 102
6.3.3 Integration with EMC ... 104

6.4 Conclusion .. 104

Chapter 7: Simulation Experiments .. 106
7.1 Building a Simulator for Wi-Fi Direct .. 106

7.1.1 Tools Used for the Simulator .. 107
7.1.2 Implementing the Simulator ... 107

7.2 Experiment Setup .. 111

vi

7.3 Performance Metrics ... 114
7.3.1 Connectivity .. 115
7.3.2 Response Time .. 116
7.3.3 Messaging Overhead ... 116

7.3.4 Power Consumption .. 116
7.3.5 Subnet Conflicts .. 117

7.4 Simulation Results .. 117
7.4.1 Performance of Integrated EMC ... 117
7.4.2 The Effect of Parameters .. 134

7.5 Conclusions ... 165
Chapter 8: Conclusions and Future Work ... 166

8.1 Summary of Contribution ... 166
8.2 Future Work .. 169

8.2.1 Routing Data Between Groups ... 169
8.2.2 Secure Data Sharing Between Devices ... 170

8.2.3 Incorporating Other D2D technologies ... 170
8.2.4 Extend our Work to Other Platforms .. 170

References ... 172

vii

List of Tables

Table 1-1 Comparison of different power classes in Bluetooth 3

Table 3-1 Application components and their description ... 35

Table 4-1 Application components and their description. .. 56

Table 4-2 The assumptions used in this section.. 59

Table 6-1 The specifications of the devices involved in testing 100

Table 7-1 List of the paramters used for the simulation ... 112

Table 7-2 The relation between the different performance metrics and out protocols.

... 114

Table 7-3 The mobility parmaeters used to model person movement 143

Table 7-4 The effect of paramters on Performance .. 149

viii

List of Figures

Figure 1-1 An example of a Wi-Fi Direct group .. 5

Figure 1-2 Virtual interfaces required for concurrent operation in Wi-Fi Direct 7

Figure 3-1 Example usage of ADS. .. 28

Figure 3-2 The format of the alert record stored on the device. 29

Figure 3-3 A flow chart description of the ADS protocol. ... 31

Figure 3-4 Screenshots from two devices showing local alerts (marked red) and remote

alert (marked blue) from the other device... 36

Figure 3-5 A graph showing the actions taking to report an alert. 38

Figure 4-1 The connnection establishment phase from the sender side. 43

Figure 4-2 The connnection establishment phase from the receiver side. 44

Figure 4-3 The topology for the management connections. 45

Figure 4-4 The topology for the data exchange connections. 46

Figure 4-5 The flowchart for the group management protocol. 50

Figure 4-6 A device is receiving and displaying the sensor readings. 53

Figure 4-7 Three devices are chatting togethe. ... 58

Figure 5-1 A typical topology for network after running EMC 65

Figure 5-2 The format of the DeviceInfo and the SAP records 66

Figure 5-3 Devices Ranks as seen by reachable devices .. 68

Figure 5-4 Three Wi-Fi Direct groups need to have PMs to be able to connect to each

other. Devices with dark shade denote GOs. Each group has its shape symbol. 71

Figure 5-5 An example of a cost matrix where the minimum cost assignments for each

task are colored green. .. 72

Figure 5-6 An example of a cost matrix that a certain GO could have. On the left, we

see that certain GMs can cover more than one group, thus we see in their rows the same

cost repeated. On the right, we see the missing entries in the matrix been fixed by

adding a very small value. .. 73

Figure 5-7 A state diagram of EMC ... 74

Figure 5-8 Psedue code for selecting candiate GO step. .. 75

Figure 5-9 Psedue code for creating groups step. ... 76

Figure 5-10 Psedue code for selecting groups step. .. 77

Figure 5-11 Psedue code for selecting proxy members step....................................... 78

Figure 5-12 Psedue code for teardown step. ... 79

Figure 5-13 Screen capture of two devices running EMC. ... 81

Figure 5-14 Analysis of wireless interferce observed during the test.. 83

Figure 6-1 Two adjacent Wi-Fi Direct groups sharing the same IP subnet. 89

file:///D:/Dropbox/My%20PhD%20Defense/Dissertation/PhD_Dissertation_2017_V11.docx%23_Toc480810960

ix

Figure 6-2 IP subnets for two adjacent groups after integrating ISNP with EMC 91

Figure 6-3 The integartion between the two part of ISNP and Android. 92

Figure 6-4 The new foramt of EMC's DeviceInfo record that is used by ISNP 93

Figure 6-5 Resovling conflicts on ISNP. .. 95

Figure 6-6 Pseudo code for the application part of ISNP ... 96

Figure 6-7 Screen shots of ISNP on Nexus4 and LG Optimus Fuel 99

Figure 6-8 Average response time of ISNP with device count. 101

Figure 6-9 Average response time of ISNP per device... 101

Figure 6-10 Average response time of ISNP with device count. 103

Figure 6-11 Average response time of ISNP per device... 103

Figure 7-1 The internal design of a Wi-Fi Direct Host. .. 110

Figure 7-2 An example of the static grid deployment .. 118

Figure 7-3 An example of the stationary conencted graph deplyment 119

Figure 7-4 The connectivity results from GEMC, GBAT, and GRND in case of Static

Grid topology .. 122

Figure 7-5 The response time results from GEMC, GBAT, and GRND in case of Static

Grid topology .. 123

Figure 7-6 The overhead results from GEMC, GBAT, and GRND in case of Static Grid

topology .. 124

Figure 7-7 The power consumption results from GEMC, GBAT, and GRND in case of

Static Grid topology .. 125

Figure 7-8 The connectivity results from GEMC, GBAT, and GRND in case of

Statioanry Connected Graph topology .. 128

Figure 7-9 The response time results from GEMC, GBAT, and GRND in case of

Statioanry Connected Graph topology .. 129

Figure 7-10 The overhead results from GEMC, GBAT, and GRND in case of Statioanry

Connected Graph topology ... 130

Figure 7-11 The power consumption results from GEMC, GBAT, and GRND in case

of Statioanry Connected Graph topology ... 131

Figure 7-12 The connectivity results from MUNK, FRST, and PRND in case of Static

Grid topology .. 133

Figure 7-13 The connectivity results from MUNK, FRST, and PRND in case of

Statioanry Connected Graph topology .. 134

Figure 7-14 The effect of changing TxPower on connectivity 136

Figure 7-15 The effect of changing TxPower on resopnse time. 137

Figure 7-16 The effect of changing TxPower on Overhead 138

Figure 7-17 The effect of changing TxPower on power consumption 139

Figure 7-18 The effect of changing PathLoss on connectivity 141

x

Figure 7-19 The effect of changing PathLoss on Overhead 141

Figure 7-20 The effect of changing PathLoss on power consumption 142

Figure 7-21 The effect of Mobility on connectivity ... 146

Figure 7-22 The effect of Mobility on response time ... 147

Figure 7-23 The effect of Mobility on overhead .. 148

Figure 7-24 The effect of Mobility on power consumption 149

Figure 7-25 The effect of changing TsendInterval on connectivity 151

Figure 7-26 The effect of changing TsendInterval on overhead 152

Figure 7-27 The effect of changing TsendInterval on power consumption 153

Figure 7-28 The effect of changing TdeclareGO on connectivity 155

Figure 7-29 The effect of changing TdeclareGO on overhead 156

Figure 7-30 The effect of changing TdeclareGO on power consumption 157

Figure 7-31 The effect of changing TselectGO on connectivity 158

Figure 7-32 The effect of changing TselectGO on overhead .. 158

Figure 7-33 The effect of changing TselectGO on power consumption 159

Figure 7-34 The effect of changing THeartBeatGM on connectivity 160

Figure 7-35 The effect of changing THeartBeatGM on overhead 161

Figure 7-36 The effect of changing THeartBeatGM on power consumption................... 162

Figure 7-37 The effect of changing THeartBeatGO on connectivity 163

Figure 7-38 The effect of changing THeartBeatGO on overhead 164

Figure 7-39 The effect of changing THeartBeatGO on power consumption 164

1

Chapter 1: Preliminaries and Research Problem

 This chapter provides the motivation and necessary preliminary discussion about

peer-to-peer data sharing between devices without relying on the communication

infrastructure. The chapter also highlights the main research problem which is

addressed in the dissertation and summarizes the contribution.

1.1 Introduction

 Recent advances in pervasive communication technology have been leveraged in

many unconventional applications that facilitate and improve the safety and quality of

people’s life in modern societies. An example of these applications is situational

awareness where people exchange alert information with emergency units regarding an

emerging event, such as a natural disaster [1]-[12]. Telecommunication infrastructure

such as cellular towers and Wi-Fi access points may be down at that time. Another

example is when exchanging road conditions between peer-to-peer networked vehicles

without the involvement of roadside units [13]-[18]. The wide-spread of smart portable

devices such as iPhone, iPad, Android phones, and Android tablets has made them an

attractive venue for realizing these emerging applications. These devices support

technologies such as Bluetooth, Wi-Fi ad-hoc mode and Wi-Fi Direct that enable them

to communicate without the need for infrastructure. Thus, they can perform Device-to-

Device (D2D) data exchange at an increased level of convenience. In addition, most of

these devices are equipped with sensors such as accelerometer, gyroscope, barometer,

2

light, pedometer, etc., that can provide a wealth of information about the surroundings

once their readings are aggregated.

 However, most existing protocols for data sharing among smart portable devices

either require an internet connection [19]-[23], which may not be available, may incur

extra charges, or suffer from the device’s operating system (OS) limitations. In

addition, there is no existing solution that allows a set of devices to start sharing data

dynamically without forcing the users to apply an elaborate procedure for setting up a

group. These shortcomings render existing solutions unsuitable for emergency cases

and highly dynamic environments.

1.2 Device-to-Device Technologies

 Many researchers has proposed solutions for D2D over cellular networks or Wi-Fi

networks [24]-[31]. However, these solutions require (assume) the availability of

infrastructure, such as cellular towers and access points, to allow the devices to

communicate. In certain rural areas or areas suffered from natural disasters, there may

be no coverage from neither Wi-Fi nor cellular networks. In addition, routing

communication traffic through a Wi-Fi network or a cellular network may introduce

unnecessary delays, power consumption, or costs, especially when the devices are in

the proximity of each other.

 Bluetooth, Wi-Fi Ad-hoc mode, and Wi-Fi Direct are example technologies that do

not require any infrastructure support. Most of the smart devices nowadays that have

the necessary hardware and software to support any of these technologies can

communicate directly in a way that reduces latency, cost and power consumption, and

3

thus make it possible to share data between groups of devices. An example of a

commercial solution that benefit from these technologies is Google NearBy [32], which

have a set of APIs that allow for discovering nearby devices using Wi-Fi Direct,

Bluetooth, and the acoustic signals. However, such a solution still depends on the cloud

for completing the discovery procedure and for doing the actual data transmission.

Thus, it suffers from the problems we mentioned earlier. The balance of this section

review the basic features and compares these popular technologies.

1.2.1 Bluetooth

 Bluetooth is one of the most popular technologies in smart devices. The most recent

version of the Bluetooth specification is V4.2 [33] which added Low Energy (LE)

capabilities. Bluetooth basic data rate is 3 Mbps, but there is a version of Bluetooth

called High Speed that can reach 25 Mbps by using 802.11 networks to do the actual

data transfer. The range of the Bluetooth depends on the power class of the device.

Basically, there are three power classes. Table 1-1 [1] summarizes the different power

consumptions and ranges for the different classes. Typically, mobile phones are

considered Class 2 devices.

Table 1-1 Comparison of different power classes in Bluetooth

 Range (m) Power Consumption (mW)

Class 1 100 100

Class 2 10 2.5

Class 3 1 1

 Bluetooth LE allows a device to work as a beacon to advertise data. Other Bluetooth

LE devices can receive these advertisements without the need for prior connections.

4

The most restraining features of Bluetooth are its range and bandwidth, which limit its

use for D2D communications.

1.2.2 Wi-Fi Ad-hoc Mode

 Wi-Fi Ad-hoc mode is part of the IEEE 802.11 specifications that exists along with

the infrastructure mode. In contrast to Wi-Fi Infrastructure mode, the Ad-hoc mode

allows devices to communicate without intermediate access points by forming a

dynamic peer-to-peer (P2P) network. To form the network, the devices must be

configured to use the same setup, such as SSID, operating channel, etc. Although Ad-

hoc Wi-Fi initially gained a lot of interest [35]-[41], its use has become limited

nowadays due to some shortcomings. Among the most notable shortcomings is that

Ad-hoc Wi-Fi cannot be used concurrently with normal Wi-Fi connections. Also, the

speed and range of Ad-hoc Wi-Fi are less than what can be achieved using the

infrastructure mode. In addition, current smart devices do not support it out of the box.

Certain modifications should be made to allow devices to use the Wi-Fi Ad-hoc mode.

Due to these limitations and the uneasy setup required for enabling data sharing, Wi-Fi

Ad-hoc is not suitable for D2D data sharing, especially when high speed or large scale

communications are desired.

1.2.3 Wi-Fi Direct

 Wi-Fi Direct (sometimes called Wi-Fi P2P) [35] is geared toward the same range

and bandwidth of the normal Wi-Fi networks. Depending on the technology used (e.g.,

802.11n, 802.11g, etc.), the bandwidth can reach 250 Mbps. The first version for Wi-

Fi Direct specification was published in 2009 by Wi-Fi Alliance and focused on the

5

required specifications for allowing existing 802.11 hardware to adapt the technology.

Nowadays most manufactured smart devices have support for Wi-Fi Direct; for

example, Android devices starting from version 4 (Ice Cream Sandwich) have native

support for Wi-Fi Direct. Given the range, and the speed, it is considered one of the

best solutions for carrying out D2D communication. Since in this dissertation we

employ Wi-Fi Direct as the underlying technology for D2D communication, we

provide an overview of its capabilities and operation.

1.2.3.1 Basic Operation

 Wi-Fi Direct enables forming groups for D2D data exchange without the need for

intermediate access points (APs), as shown in Figure 1-1. Typically, one of the devices

GM

Legacy Device

GMGM

Legacy Device

SAPGO SAPGO SAPGO

Figure 1-1 An example of a Wi-Fi Direct group

6

that are willing to exchange data acts as a Software Access Point (SAP) to the other

devices in the group; this device is called the group owner (GO). Other devices that

support Wi-Fi Direct associate with the GO using Wi-Fi Protected Setup (WPS), which

resembles pairing Bluetooth devices, and become group members (GMs). Several WPS

configurations such as Push Button Configuration (PBC), Label Pin, Display Pin, and

Keypad Pin can be supported depending on the device capabilities. A legacy Wi-Fi

device that does not support Wi-Fi Direct can become a GM in a group by associating

with the SAP that is created by the GO given that it knows the WPA2 credentials of

the SAP (SSID and Key).

1.2.3.2 Concurrent Operations

 Basically, Wi-Fi Direct uses the Wi-Fi transceiver on the device for its operation. If

concurrent connections are allowed, a device can use the same Wi-Fi transceiver to

connect to a Wi-Fi Direct group and a WLAN (i.e. associated with an AP) at the same

time using two different wireless channels. Thus, a device can have an internet

connection while connecting to the group. Some devices are not able to do concurrent

connections, so in such a case these devices must disconnect from any WLAN before

being able to connect to a Wi-Fi Direct group. Concurrent connections require support

from both the operating system and the Wi-Fi transceiver, for running two different

MAC entities at the same time. In addition, there should be two virtual interfaces (e.g.,

“wlan” and “p2p”) on the device associated with the same physical interface of the Wi-

Fi transceiver as shown in Figure 1-2. The “wlan” interface is used for connecting to

the WLAN and the “p2p” interface is used for connecting to the Wi-Fi Direct group.

7

Figure 1-2 Virtual interfaces required for concurrent operation in Wi-Fi Direct

1.2.3.3 Group Formation and Device Addressing

 Each Wi-Fi Direct equipped device can act as a GO or a GM. The selection of the

GO depends on the group formation mode. According to the Wi-Fi Direct specification,

there are three modes for creating Wi-Fi Direct groups, namely, standard, autonomous,

and persistent [43]. In the standard mode, the devices involved in setting up the group

negotiate among themselves to elect a GO. During the negotiation process, each device

states its desire to become a GO by embedding an integer value called the GO intent in

the “GO Negotiation Request” and “GO Negotiation Response frames”. This value

ranges from 0 to 15, where a high value reflects increased interest in serving as a GO.

The device with the highest intent value becomes the GO; a randomly selected

tiebreaker bit is used in case of a tie. In the autonomous mode, one of the devices creates

a group and declares itself as a GO; other devices connect to this group as GMs. Finally,

in persistent mode, the devices save the information of the current Wi-Fi Direct group

for future usage. If the same devices start a group again, the previous GO resumes

ownership of the group.

 Devices in Wi-Fi Direct groups have two addresses, the MAC address and the IP

address. The MAC address is assigned by the OS to the device based on the MAC

Wi-Fi CardWi-Fi Card

wlan

p2p

8

address of the Wi-Fi chip. This address is used to identify the devices while creating

the groups. The IP address is assigned to devices once they are attached to a group. A

DHCP server running by the GO is responsible for assigning an IP address to each new

device that joins its group. The IP address is used by the upper layer to identify and

connect devices by using sockets.

1.2.3.4 Service Discovery in Wi-Fi Direct

 Service discovery is a protocol that allows a device to explore what other devices

offer before attempting to connect or communicate. This allows a device to define the

scope of services that they support. For example, if three devices are in proximity to

each other and two of them support chatting and the third supports media streaming,

only the two with chatting capabilities should connect to each other.

 Wi-Fi based WLANs support service discovery, meaning that devices in the same

Wi-Fi network can define a set of offered services. If a device Di is willing to search

for a device that provides a certain service, Di sends a service discovery request.

Recipients of such a request respond back to Di if they provide the solicited service.

That way, Di gets to know the IP addresses of the potential providers of the requested

service so that it can initiate socket connections with them. We note that the devices in

a Wi-Fi network must be associated with an access point to form a WLAN to be able

to perform service discovery.

Likewise, Wi-Fi Direct also supports service discovery, but the concept is different.

The devices do not need to be in the same LAN nor have prior connections to initiate a

service discovery. The use of service discovery is optional, but if devices support it,

9

they become able to create groups based on certain services. The Service Discovery

protocol follows the Generic Advertisement Service (GAS) protocol/frame exchange

that is defined in IEEE P802.11u [44], where devices first announce their supported

services by creating service records and storing them. Each of these records reports one

of the features the device supports. For example, A device “X” that wants to connect to

“Y”, first checks its supported features by sending a service discovery request. When

device “Y” receives the request, it responds by sending its stored service records. If “X”

and “Y” have matched services, they can proceed to form a group for data exchange.

Thus, in Wi-Fi Direct, a device first performs the service discovery and then comes the

association with other devices.

1.2.3.5 Android Implementation of Wi-Fi Direct and its Limitations

 Android is one of the first operating systems that has implemented Wi-Fi Direct.

Most Android devices starting from Ice Cream Sandwich v4.0 (API Level 14) are Wi-

Fi Direct capable. Support for Wi-Fi Direct Service Discovery is added in Android

since the JellyBeans v4.1 (API Level 16) release. However, the APIs for Wi-Fi Direct

only provide basic support for connecting multiple peers in one P2P group. In general,

Wi-Fi Direct implementation in Android has some technical limitations at both

software and hardware level.

 With the current Android APIs, a peer-to-peer system in the sense that every device

can communicate with the others is not possible, since there are no APIs for informing

devices in a group about the IP addresses of the other group members. Thus, a method

of distributing IP addresses is required to allow devices to operate in a peer-to-peer

10

mode. Another problem is that although the android APIs make the IP address of the

GO easily accessible to every device in the group, no API exists that allow a device to

obtain the IP address of its own Wi-Fi Direct interface. The same applies when a device

tries to retrieve its MAC. Thus, a way of finding these addresses is required first before

attempting to distribute the list of IPs.

 Starting from JellyBeans a device can simultaneously connect to a Wi-Fi Access

Point and a Wi-Fi Direct group using the same Wi-Fi transceiver. It is not possible

though for a device to connect to more than one Wi-Fi Direct group at the same time.

This means that it is not possible to have certain scenarios like being a GM of two

groups, being a GO of two group, or being a GM in one group and a GO in another

group. One possible solution to overcome such limitation is to allow a device to be part

of a group using its “p2p” interface and to connect to another group as a legacy device

using its “WLAN” interface, given that it knows the credentials of the SAP of the other

group.

 Another implementation issue in Android is that the range of IP addresses assigned

to a group falls in the 192.168.49.x/24 range, where the GO IP address is fixed at

192.168.49.1. Thus, even if there is a way to allow multi-group membership, the

devices in different groups may not be able to reach each other due to IP address

collision.

11

1.3 Research Goals

 In emergency scenarios or natural disasters, the communication infrastructure

may be damaged or severely degraded. In these cases, an alternative mean for sharing

alerts must be established. Another application scenario is sharing data between a group

of people are camping in a rural place that does not have any network coverage. In

addition, in applications where devices are in the proximity of each other, such as in

vehicular networks, they may suffer increase in latency, power consumption, and

wireless service charges if they route their communicating through the

telecommunication infrastructure. In these scenarios, it is desirable to enable data

sharing in an easy and cost-effective manner that does not need the involvement of

network infrastructure units.

 We consider utilizing smart devices to form a network for sharing data that covers

scenarios like the formerly mentioned ones. We choose Wi-Fi Direct as the underlying

technology for enabling our work due to its distinct features, as explained earlier.

Android is one of the popular mobile operating systems that have software support for

Wi-Fi Direct. Thus, in this dissertation, we consider using Android smart devices for

implementing our work.

1.4 Research Contribution

 The main contribution of this dissertation is providing a data sharing solution

through the development of a suite of protocols for infrastructure-less data sharing

based on Wi-Fi Direct. The following highlights some of the features of the proposed

protocols:

12

 Considering the case of sharing small chunks of data or alerts in a quick manner

that is fast and is not limited by a group boundary, we have developed ADS.

ADS uses service discovery in Wi-Fi Direct to exchange data between Android

smart devices without requiring setting up any groups or having any prior

connections. The data is stored locally using service discovery records. Other

devices that are interested in such data use service discovery requests to obtain

them. The approach also manages the forwarding of data and pruning old data.

 For a small set of users who need to exchange large amounts of data, we have

developed ELN. ELN is a solution for data sharing between a set of smart

devices that can be interconnected in one group. ELN provides group

management capabilities to Wi-Fi Direct groups, a very important yet missing

feature in Wi-Fi Direct. Through ELN, a group can dynamically adapt to

topology changes such as addition or removal of peers.

 Finally, we consider the case of sharing data among large number of users that

spans a wide area, which is larger than the boundary of a group. For such a case,

we have developed EMC that dynamically creates Wi-Fi Direct groups of smart

devices based on certain criteria, such as the battery specification of such

devices. The approach then interconnects the formed groups using relay devices

to achieve large scale data sharing. EMC utilizes the service discovery in Wi-

Fi direct for distributing vital protocol specific data.

 Other contributions can be summarized as follows:

13

A. Proposing a solution for assigning different subnet to groups: To overcome the

limitation of Android’s Wi-Fi Direct implementation that forces all the formed

groups to share the same range of IP addresses, we have proposed ISNP. ISNP

allows each group to have its distinct IP subnet, thus making it possible for

groups to share data.

B. Validating the effectiveness of the proposed approaches through

implementation: We have evaluated the effectiveness of our approaches

through implementation on Android devices and made an extensive analysis of

the performance of such approaches. The results have confirmed the advantages

of our protocols in terms of achieving timely data delivery, reduced overhead,

and adaptation to topology changes.

C. Developing a simulator for Wi-Fi Direct: To the best of our knowledge, there

is no existing simulation environment for Wi-Fi Direct. We thus have

developed a simulator based on OMNeT++ [83] along with the INET

framework [84] which have several ready-made modules for the 802.11

protocol.

1.5 Organization

 This chapter has presented the motivation and necessary preliminaries for P2P data

sharing between smart devices. Chapter 2 discusses related work in the literature.

Chapter 3 covers our alert dissemination protocol that uses service discovery in Wi-Fi

Direct to distribute the alert data. Chapter 4 presents ELN, an efficient and lightweight

protocol for connecting smart devices over a Wi-Fi Direct group. Chapter 5 presents

14

EMC for dynamically creating energy aware Wi-Fi Direct groups and interconnecting

them using proxy members. Chapter 6 describes the ISNP protocol for IP subnet

negotiation Protocol. Chapter 7 describes the extensions made to OMNet++ to support

Wi-Fi Direct and to enable the implementation of our framework. The simulation

results are also presented in Chapter 7. Chapter 8 concludes the dissertation with a

summary of the contribution and outlines future research topics.

15

Chapter 2: Related Work

 In this chapter, we discuss the published work, related to the contribution of this

dissertation. Data sharing in the literature can be categorized based on the technology

used. Since we utilize Wi-Fi Direct as the underlying P2P technology in this

dissertation, we have designated a separate section for it. We have further categorized

other P2P technologies them based on the type of the targeted network, such as

vehicular networks, mobile networks, and ad-hoc networks.

2.1 Data Sharing using Wi-Fi Direct

 Motta and Pasquale [45] were among the first to point out the potential of

implementing mobile P2P systems using Wi-Fi Direct. They suggested applications

that could benefit from Wi-Fi Direct such as text messaging, dissemination of traffic

information, dissemination of emergency data, photo/video sharing during an event,

and last–mile connectivity. The authors also explained how to use a new middleware

for P2P based on JXTA, which employs distributed hash tables (DHT) to search for

peers. They were aiming to implement the proposed middleware in Android once the

Wi-Fi Direct API becomes publicly available. However, no progress has been reported

in the literature on the implementation of such middleware. Nonetheless, such a study

has motivated other researchers, e.g., [43][45], to explore the applicability of Wi-Fi

Direct. Follow-up work has introduced protocols that allow the devices in a Wi-Fi

Direct group to do true P2P data sharing [48][49]. The focus has then been shifted from

intra-group to inter-group data sharing [53]. In addition, the use of the Wi-Fi Direct

16

service discovery protocol as a mean of data exchange has been explored in [50], [51],

and [56]. A comparison with prior work is provided in the balance of this section.

2.1.1 The applicability of Wi-Fi Direct

 Conti et al. [46] explored the possibility of creating opportunistic networks over Wi-

Fi Direct by studying the latency in forming a group at the link layer. They

experimented with different number of nexus devices, ranging from two to six. Their

work is considered an extension to Camps-Mur et al. [43] who performed real

experiments using only two devices. The experiments studied the performance in the

standard, autonomous, and persistent modes of group formation. The results show that

the group formation time can vary based on the timing of frames sent between the

involved devices. They show also that attempting to connect to a group is greatly

affected by the mode of the group formation. It was concluded that connecting to

autonomous group is faster than connecting to a persistent group. Their explanation of

such conclusion is that when the devices in the persistent group starts forming the group

again, the members try to quickly connect to the group owner, which is still initializing

the required interface and other parameter, and thus it may discard the request-to-join

messages. After failure, the requesting members must wait for some time before

attempting again. This work gave realistic metrics on how fast the devices could form

and reform a group, as well as confirmed the suitability of Wi-Fi Direct for data sharing

systems. Meanwhile, the authors of [47] studied the best topology for streaming

multimedia contents between multiple devices. They conducted a performance

17

comparison between multiple strategies, like using access points, ad-hoc networks and

Wi-Fi Direct and concluded that Wi-Fi Direct is the most suitable technology.

2.1.2 Intra-Group Data Sharing in Wi-Fi Direct

 Peer management for iTrust over Wi-Fi Direct [48] is an attempt to port the iTrust

protocol over SMS system to Wi-Fi Direct. iTrust is a peer-to-peer publication, search

and retrieval system that enables peers to construct a mobile ad-hoc network for

decentralized information sharing. A peer management protocol is proposed for adding

new group members, where each peer opting to join a group should send to the GO a

NEW_PEER message, which contains only the MAC address. The group owner can

infer the IP address of the sender from the opened socket object. The group owner then

compiles a list of MAC/IP address pairs for all peers and sends it to its members.

However, no specific details were provided for how a peer departure from a group is

handled. What is mentioned is that, if the connection is broken, iTrust performs

automatic reconnection and rebuild the MAC/IP pairs. In addition, it is unclear why the

service discovery feature in Wi-Fi Direct is not exploited to limit membership to only

peers with capable services. This should have improved the efficiency of the group

operation by defining contents as service types, and allowing a device that is willing to

connect to a group to only look for devices with the required content type. In our work,

we have considered the importance of service discovery in peer-to-peer. In addition,

our work can adapt to topology changes.

18

 Park et al. [49] proposed DirectSpace, a framework for collaboration between

devices. The main goal is to provide a mean for sharing workspaces between users over

Wi-Fi Direct. The framework is composed of two services, a connection service, and a

collaboration service. The former handles the peer discovery and the

connection/disconnection operations. The collaborative service is used for resource

sharing and group management. To obtain a list of all peers in a group, the address

resolution protocol (ARP) is used to translate MAC addresses into IP addresses.

However, it is not clear how the group owner distributes this list to the members in the

group. Moreover, the usage of ARP Tables is not a safe operation, as these tables are

flushed periodically and not reliable. Also, DirectSpace did not benefit from the

currently available service discovery API in Wi-Fi Direct. Doing this would relieve the

network from associating peers that does not provide any required workspace to the

group, which would improve the overall performance. In our work, we have addressed

the service discovery part before connecting devices to the group. Unlike what the

authors do in obtaining the IP/MAC addresses pairs, we avoided using the ARP tables

and implemented ELN protocol for managing extraction and distribution of IP/MAC

addresses.

Meanwhile, Chaki, et al. [51] proposed an approach for handling the group reformation

issue in Wi-Fi Direct. It is known that when a GO disconnects from the group for any

reason, the entire group breaks. Their approach tackles such a problem by choosing a

list of Emergency GOs (EGO) whose responsibility is to restore intra-group

connectivity. No consideration was given to inter-group issues. In [52] the authors

19

proposed an algorithm, called WD2, for automatically selecting group members based

on the RSSI measurements. Thus, each device collects the RSSI reading from nearby

devices and an Intent Value (IV) is calculated based on such collected measurements.

The devices then exchange IV values. The device that has the best IV value creates the

group. Although WD2 is validated on real devices, the scope of the work is limited to

single group formation.

On the other hand, Wong et al. [56] exploited the service discovery feature of Wi-Fi

Direct to distribute the credentials (SSID, Key) of the SAP created by a Wi-Fi Direct

group to nearby devices in order to enable them to connect to such SAP. Their goal is

to create a mesh router using a Wi-Fi Direct group. During the implementation, they

found out that connecting a device to the group must be manually confirmed; however,

connecting the same device as a legacy client to the SAP of the group does not need

confirmation. Such finding has allowed them to bypass the confirmation process.

However, they did not exploit service discovery to share actual data between devices

other than the SSID and the key, unlike our ADS protocol that has such ability feature.

In addition, they did not attempt to cover multiple groups. Likewise, Menegato, et al.

[50] utilized the service discovery protocol in Wi-Fi Direct for exchanging certain

information among devices to aid them in creating clusters (groups) for data sharing.

Three algorithms were proposed for selecting cluster heads. Nonetheless, no

implementation on actual devices was attempted. In addition, their work is limited to a

single group formation without consideration of inter-group communication.

20

2.1.3 Inter-Group Data Sharing:

 Duan et al. [53] were the first to propose a method for establishing multi-group

communication in Wi-Fi Direct. They base their work on the fact that concurrent

operations are allowed in the Wi-Fi transceiver using both the “WLAN” and the “p2p”

interfaces in the same time, i.e., a device can be connected to a Wi-Fi Direct group and

a Wi-Fi network in the same time. Wi-Fi Direct supports legacy devices by letting the

GO create a software access point that legacy devices can associate with. Thus, they

connected two groups by letting the GO from the first group to connect as a legacy

client in the second group using the “WLAN” interface. The authors then experimented

with three groups and showed how to connect them together. A problem they faced was

that all groups were sharing the same subnet (192.168.49.x/24). To overcome this, they

used a combination of unicast and multicast communications. Although they have

investigated inter-group interaction in Wi-Fi Direct, they did not propose a dynamic

way to create the groups and automatically connect them. What they used for validating

their work was a manually created topology. In addition, their choice for having the

GOs to perform the legacy connection imposes constraints on how the GOs should be

far from each other and the number of groups that a certain group could reach directly.

 Laha, et al. [54] proposed a method for clustering several Wi-Fi Direct devices into

multiple groups based on LEACH [55]. The idea is to allow the devices to rotate the

GO responsibility and efficiently manage the consumption of their batteries. The

created clusters, or groups, would then exchange data, or pass it to a base station. The

authors validated such a scheme through simulation without considering the challenge

21

associated with implementation on actual Wi-Fi Direct devices. In addition, no solution

was proposed to overcome the IP subnet limitation if their work is to be implemented

on real devices.

2.2 Data Sharing using other Technologies

Supporting efficient data sharing has been investigated in the context of multiple

applications, namely distribution of alerts, warnings, or general information in VANET

[57]-[62], in networked mobile devices [63]-[66], and in first responders ad-hoc

networks [67]-[74]. Unlike published schemes, our work is not tied to a certain

application; it can be used in vehicular networks to improve road safety or in first

responder application to enable efficient handling of disasters, etc. In addition, some of

the published protocols require an existing connection or special hardware, which is

not available in most cases.

2.2.1 Data Sharing in VANETs

Doukha et al. [57] proposed a protocol for disseminating urgent alerts in VANET.

The idea is to combine the use of unicast and broadcast transmissions to achieve

network-wide distribution task with low latency. A message is sent twice, one using

unicast to the farthest node from the sender and again using broadcast to reach nearby

nodes. The node that receives the unicast message then retransmits it again using the

same method. This way they limit the number of broadcasts, as only certain nodes are

responsible of sending broadcast messages. Suriyapaiboonwattana et al. [59] also

considered reducing alert delivery latency as a design objective for their protocol.

Unlike [57], they opts to improve the rate of successful alert message delivery.

22

Basically, conventional broadcasting is enhanced by an adaptive adjustment to the

wait-time until retransmission is attempted. The number of duplicated message that are

received during the wait-time controls the next setting.

Another adaptive scheme for alert dissemination in VANET is presented in [60]. The

idea is to gather the information about the characteristics of the road in the area using

street maps and estimate the density of vehicles based on beacon frames. Both

parameters are then used to improve the message broadcasting process. Meanwhile, the

authors of [58] proposed two protocols for distributing alerts. The first deals with the

selection of the most suitable node to act as a relay for broadcasting alert. The second

protocol addresses the case of multiple hazards occurring at the same time in the road.

In such a case, the protocol finds the most effective vehicle to initiate the alert message

while taking into account the latency, interference, and reliability. In both protocols

hello message are used to gather the information about neighbors.

In [61], a protocol for disseminating local advertisements is presented. The authors

are interested in announcing local services on the road such as gas station, repair shops,

restaurants, etc. to passing vehicles. They pursue a push model and a distance based

forwarding for announcing these services. The objective is to reduce the number of

required transmission to cover a given area and to limit the medium access collisions.

To achieve such an objective, a node that received a message waits for a short period

to allow for other copies of the same message to arrive. Doing so allows the node to

know if it is the furthest from the original sender of the message. This approach favors

23

directing a distant relay to forward data from the previous sender in order to cover as

much area as possible with the fewest number of broadcasts.

 Other work, e.g. [62], proposed certain modification for the 802.11p MAC protocol

to allow efficient dissemination of emergency messages. The modifications include

muting the back-off procedure in case of sending emergency messages, and introducing

a separate queue for holding such type of messages. Although the proposed changes

enable faster transmission in case of emergency, disabling the back-off algorithm

means more collision on the channel. Thus, such protocol is suitable for simple

scenarios involving few nodes.

2.2.2 Data Sharing in Mobile Devices/Networks

Huang et al. [63] benchmarked a commercial network, AT&T Enterprise Messaging

Network (EMN), to assess its ability to disseminate alerts. They built an Alert

Dissemination engine (ADE) as a service on top of EMN. These benchmarks helped in

determining the scalability parameters of the system for a given hardware

configuration. They also experimented with splitting the alerts into smaller messages

and showed that splitting is good for decreasing the latency in disseminating alerts.

They also found that excessive splitting is not beneficial, so the number of message

segments must be kept small. It is worth noting that the scope of their work and the

results are tailored for a special network setup.

An attempt to use smart phones for creating an emergency communication service

was introduced in [64]. The authors proposed attaching of an FM transmitter module

to the phone. This module can then be utilized by an application to send an SOS

24

message encoded by Morse code to emergency responders. A message could be

forwarded by several users until it reaches the intended responders. This approach is

not suitable for every user though, as it requires a special module to be attached to the

device.

In [66] Teranishi and Shimojo proposed a system for disseminating social network

messages such as Twitter in case of losing the connection with the cloud. They used a

P2P based overlay to store and forward the messages. A device waits until another

device comes within its range and sends the messages to it. This is repeated until the

cloud is reached and the message is delivered to the social network. Although the

approach is useful for sending SOS messages via twitter in case of disasters, the alert

may not be of a much benefit, since other interested parties may not be able to reach

the cloud too.

2.2.3 Data Sharing in Ad-hoc Networks

 In [67], Thomas et al. discussed the implementation of their Smart Phone Ad-Hoc

Networks (SPAN) protocol on Android. Their goal was to allow smart phones to create

mesh networks. They also promoted the concept of off-grid communications, where

peers could talk to each other without the need for a cellular connection. Since forming

an ad-hoc network is not supported by Android, the command line utility “iwconfig”

was used to configure the connection. Because not all Android devices support

“iwconfig”, the kernel was modified for some of these devices to allow the usage of

the command. Nonetheless, this approach for P2P networking is not suitable for

contemporary users, as it requires the device to be at least rooted to use the “iwconfig”

25

command, which is not a trivial job for average users to do. Such a restriction makes

this method impractical. Our work, on the other hand, does not require any modification

to existing systems as we use Wi-Fi Direct, which is supported by the current Android

APIs. Although we had to overcome some limitations in the Android API, no rooting

is required. Thus, any application that utilizes our framework could work correctly in

stock version of Android.

Kolios et al.[68] introduced a new paradigm for alert dissemination called EnE. This

paradigm is specially designed for emergency ad-hoc networks. EnE relies on specific

link layer protocol called LC designed by the authors. The LC protocol extracts the

network topology then an LTE-Direct [75] feature in the protocol is used to locate

nearby neighbors.

Most of the work done in the context of data sharing in ad-hoc networks assumes

that certain devices are available to do the job. In sudden event, e.g., an earthquake, the

unavailability of devices in the affected area may delay the rescue operation. Our work

in contrast allows data to be shared without the need for having any special devices.

We utilize the smart portable devices that most of people carry in their pockets, which

allows faster notification and higher responsiveness to urgent situations.

26

Chapter 3: Alert Dissemination Protocol Using Service

Discovery in Wi-Fi Direct

 In this chapter, we propose a protocol for alert dissemination among smart devices

using service discovery (ADS) in Wi-Fi Direct [79]. ADS relies on the service

discovery feature of Wi-Fi Direct for distributing alerts or short messages to nearby

devices without having any prior connections and thus avoiding the setup delay in

creating Wi-Fi Direct groups. As ADS does not need any infrastructure, connections,

or groups for data exchange, it is suitable for scenarios where reducing the latency is

the most important aspect, such as emergencies. When a device Di needs to send an

alert, it creates a service announcement record and replaces the service description with

the alert data. When Di receives a request from another device Dj to list its services

(using a service discovery request), Di sends the stored record which contains the alert

data. Nearby devices, which continuously probe for services by sending discovery

requests, receive this announcement and store the record. The alert stored in the record

is forwarded to other devices using the same mechanism. In addition, we present a

mechanism for discarding inactive alerts. ADS also avoids the flooding of the network

by forwarded records. ADS is validated by implementing a hazard propagation

application for Android. The performance of the protocol in reporting alerts and

pruning unneeded ones is also analyzed.

3.1 Problem Statement and Solution Strategy

 An efficient and fast alert dissemination protocols is required in case of emergencies.

For example, the vehicles on the road may alert each other about accidents, dangerous

27

pavement cracks, traffic congestion, etc. To implement such a protocol, two

methodologies may be pursued. The first is to proactively send alerts as soon as a device

detects an event or forward it once a notification from another device is received. The

second option is to wait until receiving an inquiry or update request (i.e.

publish/subscribe model). Obviously, the latter approach is more optimized as it allows

only the interested devices to receive the alert messages. Such an approach aligns with

service discovery concept in Wi-Fi Direct.

 ADS exploits the service discovery in Wi-Fi Direct to support timely alert

dissemination in a publish/subscribe manner. The Wi-Fi Direct service discovery

frames are utilized to encapsulate the alert details. Thus, ADS requires no infrastructure

or known topology. The devices themselves can be mobile or stationary. The

advantages of this approach are: 1) it allows optimized delivery of alerts; 2) it does not

require any additional hardware; 3) it can be implemented on a large scale without extra

cost. An example usage of ADS is shown in Figure 3-1, where a hazard information

been disseminated to four smartphones. When a device detects something unusual, it

records an alert information in a service discovery record. Interested devices ask for

existing alerts by sending a service discovery request. A nearby device with stored alert

records responds by encapsulating the details of each alert details in a separate service

response frame. The ADS protocol is explained in detail in the next section.

28

Figure 3-1 Example usage of ADS.

3.2 ADS Protocol

 Our ADS protocol for alert dissemination using the service discovery of Wi-Fi Direct

is composed of two parts for: (1) managing local alerts, and (2) managing remote alerts.

As the name indicates, the distinction between local and remote alerts is based on which

device generated such an alert. A locally generated alert reflects an event that the device

has detected; thus, the device can track such an event and maintain its own record. In

addition, the local alert manager is responsible for storing alerts as service discovery

records and responding to inquiries from nearby devices. The remote alert manager

handles the dissemination of notifications about events detected by other devices. The

protocol itself does not need the devices to be connected in any way. The only

requirement is that a device applying ADS should have a Wi-Fi transceiver that

supports Wi-Fi Direct and an operating system with APIs that supports the Wi-Fi Direct

standard and its service discovery protocol. The details of ADS are provided in the

balance of this section.

Detected Hazard

1-
 A

le
rt

?
2-

 Y
es

, h
er

e
is

 th
e

in
fo

3- Alert?

6- Y
es,

here
 is

 th
e in

fo 4- Yes, here is the info

5- A
lert?

29

3.2.1 Service Record

 The ADS protocol starts by registering a common instance name for the devices that

are willing to use the protocol to receive alert. The instance name is part of the Wi-Fi

Direct service discovery protocol. Other devices in the vicinity that are not interested

in running the ADS protocol will not be engaged, as their instance name will be

different. A service discovery record is used to store each alert that a device knows

about so far. These records are exchanged with other devices for the sack of alert

dissemination. The format of the service discovery record for ADS is shown in Figure

3-2. The deviceID is a unique identifier for the device, which can be the MAC address.

The seqNo is an auto-incremented number that is used to differentiate between

subsequent records. The data field in the record stores the alert information; for

example, in hazard detection scenarios, such a data field includes the location and type

of the hazard. The isValid field is a Boolean indicator for whether the alert is still valid

(in effect). Setting this field to zero means instructing nearby devices to dismiss any

existing copy of this alert record.

 ADS Record

SERVICE DSICOVERY

HEADER

deviceID seqNo data isValid

 Uniqe Id for the

device

Uniqe idetifier for

the alert

Alert details (e.g.,

Hazard location)

Indicates whether the alert is

to be discarded

Figure 3-2 The format of the alert record stored on the device.

 ADS maintains two internal tables to store local and remote alert entries. An alert

entry contains an additional time-to-live (TTL) field that is used to prune inactive alerts

30

once these values reach zero. The TTL value is initialized to ATTL, which is determined

by the applications, e.g., typical time until an accident is cleared from the road, etc. For

local alerts, the TTL is gradually decreased, e.g., every TdecTTL seconds, once the event

ends and the isValid field in the corresponding record is set to false. The gradual

decrease of TTL, rather than the immediate removal of the event record, is to allow

other inquiring devices to update their alert entries. Meanwhile, the TTL of a remote

alert is decreased on every TdecTTL seconds with TdecTTL < ATTL, and is reset again to ATTL

if the same alert is received again. An additional field, called srcDevAddress, in each

entry in the remote alert table is provided to identify the device that sent the alert. That

field is different from the deviceID field, which notes the originator of the alert. If an

alert is to be forwarded from device to another, the srcDevAddress is changed to reflect

the last device that sent the alert, while the deviceID stays the same. The

srcDevAddress is the MAC address of the device, which can be extracted from the

service discovery frame of Wi-Fi Direct.

A detailed flowchart for the ADS protocol is shown in Figure 3-3. The management

of both local and remote alerts is discussed in the next sections.

31

Figure 3-3 A flow chart description of the ADS protocol.

3.2.2 Local Alert Management

 Upon detecting a noteworthy event, an alert entry is created and populated with the

unique ID of the device, the current sequence number, and the alert details. The record

is set to valid (isValid field is set to true) with a TTL value of ATTL. Such an alert entry

Define the service instance

Anomalies discoverd

Create an alert record

Create a new local service and
embed the local alert in it

TsendInterval passed

Discover Services

Service frame received with
the same instance name?

Extract the alert record
from the frame

seqNo > lastSeenSeqNo?
(i.e. new alert)

isValid?

Discard

Create a remote alert element with
TTL = ATTL

srcDevAddress = sender MAC address

Store the element in
the local alerts array

Create a local Alert Element with
TTL = ATTL

Store the element in the
remote alerts array

Create an alert record

Create a new local service and
embed the local alert in it

Yes

Yes

No

Yes

an alert with the
same seqNo exists?

No

srcDevAddress for alert==
srcDevAddress for existing alert?

Yes

Discard

No

Discard

No

Update stores alert
And

Rest TTL

Yes

TdecTTL passed

isValid == false?

For each element in the
local alerts array

For each element in the
remote alerts array

TTL = TTL - 1

TTL <= 0

Remove the alert
from the array

TTL = TTL - 1

TTL <= 0

Remove the alert
from the array

Yes

Yes

Yes

isValid for alert
== false?

No

Update isValid field in store alert

Yes

32

is then stored in the local alert table. Additionally, a service discovery record that has

the format shown in Figure 3-2 is created based on such alert element and stored as a

local service that the device would support. A device, which runs ADS protocol and is

within the Wi-Fi range, sends a service discovery request to learn about current alerts

in the area. Upon receiving such a request, stored service discovery frames will be sent

containing alert records along with other information that is part of the service

discovery frame (such as MAC address of the device sending the frame).

 Once the event becomes inactive, the corresponding local alert entry is invalidated,

i.e., the isValid field is set to false, in the service discovery record of that alert. Since

the alert is still stored in the device, it will be sent to any querying device to inform it

that this event is not active any more. This way other devices know about the

deactivation of the alert by noticing the isValid field, so that they can inform others as

well. After invalidating a local alert, the local management part of the protocol starts

to decrease the TTL value for such alert every TdecTTL seconds. Once the TTL value

reaches zero, the alert is removed.

3.2.3 Managing Remote Alerts

 A device applying the ADS protocol gets informed about events detected in the area

by sending service discovery requests every TsendInterval seconds. Like TdecTTL and ATTL,

the value of TsendInterval depends on the application and on how dynamic the environment

is. A device that is in range will react to the request by sending a service discovery

response indicating its supported services in the context of Wi-Fi Direct, which reflect

the stored alerts. As mentioned before, we modified the records stored in the service

33

discovery frames to include alerts information. For a received service discovery frame,

ADS extracts the alert record and processes it. First, the alert is checked by looking for

previously received seqNo from that deviceID. A hash-table that contains the last seen

seqNo from each deviceID helps in performing such check. A received alert is deemed

new if its seqNo is larger than the last seen seqNo from the same sender.

 For a new alert, the isValid field is inspected. In case the alert is invalid, the message

is discarded. After confirming its validity, an entry in the remote alert table is created.

The entry includes the data extracted from the alert record plus a TTL value set to ATTL

and a srcDevAddress field populated with the MAC address of the device that sent the

service discovery frame. ADS forwards the received alert to let other devices, which

may not have received this alert or are not in the range of the sender. The forwarding

is done in a similar manner to local alerts, i.e. by declaring a locally supported service

that contains the received remote alert record. The device then responds to service

discovery requests from other devices by announcing the locally supported services,

which contains both local and remote alert records.

 If the received alert is not new, i.e., seqNo is less than or equal to the last seen seqNo

from the sender, it means that this alert is an update to a previously received alert or it

is a dangling alert that is no longer valid. First, ADS checks remote alert table using

the seqNo. If no match is found, the alert message is discarded. Otherwise, the

srcDevAddress field of the stored alert is checked to see if it matches the MAC address

of the sender. We have two cases here: (1) the sender of the alert is the same device

that sent the previous alert, or (2) the sender of the alert is different from the previous

34

sender. In first case, ADS updates the information of the stored alert, such as the alert

details and the isValid field. If the alert is still valid, the TTL value is reset to ATTL. In

the second case, we do not update any information regarding the alert except in a special

case for the isValid field. If the isValid field of the received alert is false and the value

for stored one is true, the isValid value for the stored record is updated to speed up the

pruning of such inactive alert.

 As in the local alerts case, the ADS protocol prunes inactive remote alerts. Each

TdecTTL seconds, the TTL value of all remote alerts is reduced by one. As indicated

previously, the TTL value could be reset to ATTL again if an updated record is received.

Once the TTL value reaches zero, the remote hazard is removed completely from the

remote alert table and the declared locally supported service is removed.

3.3 ADS Implementation

 To validate the features and implementation of ADS, we have developed an Android

application for distributing alerts regarding detected hazards. A version of this

application is available at GitHub1. The implementation of our protocol allowed smart

devices to disseminate hazard alerts between each other without the need for a

connection or any infrastructure. This application is written in AndroidStudio using

Android SDK. The application targets Android API level 16 to be able to use the Wi-

Fi Direct service discovery APIs. The application is composed of the following

1 https://github.com/ashahin1/WiFiDirectServiceDiscoveryTransfer

35

components Main Activity, and Hazards Class. Table 3-1 shows a brief description for

what each component does.

Table 3-1 Application components and their description

Component Description

Main

Activity
- Performs the service discovery initializations.

- Creates a google maps object to display both local and remote alerts

(hazards) on it.

- Enables declaring local alerts (hazards) in by tapping on the map.

- Enables voiding local alerts by tapping on them on the map.

- Stores local alerts in service discovery record.

- Responds to service discovery requests by sending the stored alert records.

- Periodically decreases the TTL values for inactive local and remote alerts.

- Periodically prunes alerts with TTL values less than or equal to zero.

Hazards

Class
- Declares a hazardItem object that is composed of the srcDeviceAdress,

deviceID, seqNo, location, isValid, and TTL fields.

- Manipulates arrays of local and remote hazardItems by adding removing

and updating such items.

 The application user can tap on a displayed map to declare a local alert or hazard

(places a red marker on the map). The location of tapping on the map is used to declare

the GPS coordinates of the alert. Other users nearby receive an indication of the hazard

on their maps (blue markers on the map). We used four Android devices (two Nexus 4

phones and two Samsung Galaxy Tab 2 7.0 tablets) to test the application. In this test,

we fixed TdecTTL, TsendInterval, and ATTL to 1, 5, and 30 respectively. At the beginning, we

started the application in all devices. We tapped on each device’s map to create local

alerts (Hazards). We then confirmed that the devices started to exchange their local

alerts. Because of such successful exchange, the devices displayed the remote hazards

they received on their maps with blue markers. Finally, we removed all local hazards

on all devices and the remote hazards were removed from the other devices. Figure 3-4

36

shows two screenshots from the two devices while exchanging alerts. As we can see,

one of the devices has two local alerts marked red and the other has only one local alert.

Both devices successfully exchanged the alerts data, as we can see blue markers on

both devices indicating remote alert.

Figure 3-4 Screenshots from two devices showing local alerts (marked red) and remote alert (marked blue) from

the other device.

37

3.4 Performance Analysis

 In this section, we analyze the performance of the proposed ADS protocol. The goal

of the evaluation is to capture how fast the reporting of a new alert and the pruning of

an existing alert are. We assume in this analysis a Wi-Fi transceiver that supports the

802.11n standard. Typical transmission ranges for such a transceiver are 70m for indoor

and 250m for outdoor. For the sake of this evaluation, we assume a transmission range

of 120m. The transmission speed for 802.11n ranges from 54 Mbps to 600 Mbps. We

choose 54 Mbps, as it is the most common data rate. We also assume that the service

discovery request and the service discovery response frames to have the same length

of L bytes.

3.4.1 Alert Reporting

 Figure 3-5 shows the actions taken to report an alert. In the figure, device X is

querying a nearby device, Y, about its local alerts by sending a service discovery

request. The request should reach Y after T seconds, where T is the time needed to

deliver a service discovery frame. At that time, device X has nothing to report so it did

not send any response. Just after Δ seconds from receiving the request, device Y detects

an alert and stores it. In ADS, a device discovers alerts every TsendInterval seconds. Thus,

after TsendInterval seconds are elapsed from the first request, device X tries again. Device

Y at that time reports the alert back to X. After T more seconds, Device X receives the

alert. Therefore, an alert could take 𝑇𝑠𝑒𝑛𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 + 2𝑇 − (𝑇 + ∆) = 𝑇𝑠𝑒𝑛𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 +

𝑇 − ∆ seconds before being available to nearby devices.

38

Figure 3-5 A graph showing the actions taking to report an alert.

 The time T is composed of the propagation delay, Tp, and the transmission time, Tt.

For a wireless medium, Tp depends on the distance between the two devices. Assuming

that device X and Y are separated by a distance equals to the maximum range for Wi-

Fi,

 𝑇𝑝 =
120

𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡
=

120

3×108 = 0.4 𝜇𝑠

 Tt depends on the transmission rate, the length of the frame, thus

𝑇𝑡 =
𝐿

54 𝑀𝑏𝑝𝑠
.

 For L = 5000 byte, we will have 𝑇𝑡 =
5000×8

54000000
= 0.7 𝑚𝑠. Therefore

𝑇 = 0.4 𝜇𝑠 + 0.7 𝑚𝑠 ≅ 0.7𝑚𝑠.

 The range for Δ is 0 < ∆ ≤ 𝑇𝑠𝑒𝑛𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙. Thus, an alert could take any value

between 𝑇𝑠𝑒𝑛𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 + 0.7 𝑚𝑠, 0.7 𝑚𝑠 to be noticed by other devices. For a

rectangular area, whose diagonal is N multiples of the Wi-Fi range, to be covered by

alerts, we need a time between 𝑁(𝑇𝑠𝑒𝑛𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 + 0.7) 𝑚𝑠 and 𝑁×0.7 𝑚𝑠 to reach the

farthest device. From that, we conclude that reducing the TsendInterval value helps in

Time (sec) Device X Device Y

0 Send service discovery request

T Received the request but nothing to report

T + Δ Alert found

TsendInterval Send service discovery request

TsendInterval + T Received the request and replied instantly

TsendInterval + 2T Received the response

39

speeding up the reporting of alerts, however it cannot go below T. For very small values

of TsendInterval, the network would be overwhelmed with request and response packets.

That means the setting of TsendInterval should be selected based on the anticipated number

of devices that are in the same Wi-Fi range.

3.4.2 Alert Pruning

 The ADS protocol performs the pruning of inactive alerts with the help of the isValid

field and the TTL value for a given alert. For local alerts, an inactive alert is determined

by having a false value for the isValid field. The TTL value for an inactive local alert

is decreased every TdecTTL seconds until it reaches zero. At that time, such an alert is

pruned. As the TTL value is initiated to ATTL, it takes 𝐴𝑇𝑇𝐿×𝑇𝑑𝑒𝑐𝑇𝑇𝐿 seconds from the

deactivation time to prune a local alert.

 For remote alerts, the TTL values are decreased every TdecTTL seconds whether it is

active or inactive. The TTL value is reset back to ATTL if the alert is received again from

the same sender. Thus, a remote alert is pruned after 𝐴𝑇𝑇𝐿×𝑇𝑑𝑒𝑐𝑇𝑇𝐿 seconds from the

last time it is seen. Any alert deactivated between two service discovery periods takes

the same 𝐴𝑇𝑇𝐿×𝑇𝑑𝑒𝑐𝑇𝑇𝐿 seconds to be pruned. The value of TdecTTL should be chosen to

be smaller than TsendInterval to speed up the pruning of inactive alerts. For ATTL, we should

choose its value such that 𝐴𝑇𝑇𝐿×𝑇𝑑𝑒𝑐𝑇𝑇𝐿 is larger than TsendInterval to avoid pruning

remote alerts that are still active.

40

3.5 Conclusions

 In this chapter, we have presented ADS, a protocol for disseminating alerts or short

messages between smart devices. The protocol uses the service discovery protocol in

Wi-Fi Direct to perform the data distribution without the need for infrastructure or any

existing connections between devices. The main components of the protocol are the

local alerts management module and the remote alerts management module. The

former generates local alerts, stores them, and distributes them when requested. The

remote alerts module is responsible for querying for alerts on other devices, storing

them, and redistributing these alerts to other devices. ADS also avoids flooding the

network with many alerts, removes duplicate alerts, and prunes inactive alerts.

An application is implemented to validate the ADS protocol using level 16 of the

Android APIs. The implementation has confirmed the applicability of the ADS

protocol through testing on four smart devices. The performance of ADS is analyzed

for reporting new alerts and pruning inactive ones. The analysis has provided guidelines

to how to choose the ADS parameters to achieve low-latency reporting and update of

alerts. We developed a unified simulator for all the protocols in this dissertation, which

is presented in chapter 7. The performance of ADS in many different scenarios has

been studied and reported by the help of such simulator, as shown that chapter.

41

Chapter 4: Efficient P2P Networking of Smart Devices over Wi-

Fi Direct

 In this chapter, we present an efficient and lightweight protocol for peer-to-peer

networking of Android smart devices over Wi-Fi Direct (ELN) [76], a protocol for

allowing a small number of users to share large amounts of data. The protocol includes

a connection setup phase and a group management phase. The former enables different

devices with the same interests to form a Wi-Fi Direct group. The group management

phase provides the necessary means for handling dynamic group membership and

adapting to topology changes to allow group members to communicate with each other

in a peer-to-peer fashion. The ability of Wi-Fi Direct to preform fast data streaming

(which is a required feature for peer-to-peer systems) is validated by writing an

application that streams the accelerometer readings between two devices. ELN is

implemented by building a group chatting application on four Android devices. We

also monitored how ELN responds to different connection/disconnection scenarios.

The overhead imposed by our protocol is also calculated.

4.1 ELN Approach

 ELN is composed of a connection establishment phase and a top-layer group

management phase. The connection establishment phase allows only the devices with

the same interest to connect with each other. The group management phase allows

treating the Wi-Fi Direct topology, which is by convention a star network, as a mesh

network. ELN does so by providing a mean of distributing the peers’ IP addresses,

42

facilitating transport layer connections and managing addition and removal of peers

from the group. ELN is described in detail in the balance of this section.

4.1.1 Connection Establishment Phase

 The goal of the connection establishment phase is to allow the devices to define their

supported service types, and to filter nearby devices based on that. Thus, this phase

allows only the devices that provide the same services to connect. Before attempting

to form any Wi-Fi Direct group or connecting to an existing group, a device has to

announce its supported services. The Android APIs for Wi-Fi service discovery has an

option to include a service record along with the service type that the device can

provide. The service record is used for exchanging additional data, which is used in the

connection establishment.

 In this phase, each device adds a uniqueID and the availability status to the record.

The uniqueID is calculated once by the device and is stored for future connections. This

ID is formed by the concatenation of two randomly computed numbers. The first

number is an integer random number and the last is a float random number. The

probability of having a completely unique number is very high, as the devices

generating these random numbers are not tied to the same clock and also they are not

running at the same exact instance of time. This uniqueID is used to differentiate

between devices in case they have the same name. It is also used by the next phase for

retrieving peers records. The availability status allows connecting devices to delay or

postpone the connection to a device until that device is available. An optional

username can be included in the service record. When included, this username will be

43

used by peers as a more expressive identifier. In case of omitting the user name field,

the device name is used.

 Upon receiving a service discovery announcement from a peer, the device retrieves

the information in it and then checks for the service type that such a peer provides. If

both of this device and the connecting peer agree on the same service type, the device

continues processing the information, otherwise the announcement is discarded. The

service record is then retrieved and stored. If a username is included the device uses it

when displaying the found peer to the user, otherwise the peer’s device name is used.

The availability status allows the user to know when to attempt the connection with the

device. Flowcharts for the connection establishment phase are shown in Figure 4-1 and

Figure 4-2.

Figure 4-1 The connnection establishment phase from the sender side.

44

Figure 4-2 The connnection establishment phase from the receiver side.

4.1.2 Group Management Phase

 Once a group is formed based on service matches, the group management phase

forms peer-to-peer links among the group members at the level of the transport layer.

As part of the Wi-Fi Direct connection setup, an embedded DHCP server that runs in

the group owner assigns the IP addresses for the group members. Members in a group

may not know about other member in that group, thus the group management phase in

ELN distributes the information of the GMs to everyone in the group. We will explain

the operation of the proposed management phase in the balance of this section.

45

4.1.2.1 Layers of Connections

 The group management phase uses two layers of connections one for management

purposes and the other for data exchange purposes.

Management Connections: As the name indicates, the management connections are

for managing the group. The group owner receives peers’ information and sends the

list of peers to all members. Upon creating the Wi-Fi Direct group, the GO opens a

server socket and binds it to a predefined management port. As the GO IP address is

already known to all GMs as part of the Wi-Fi Direct APIs, every GM connects to the

server socket of the GO. The final topology of the connections at the management level

is a star topology that originates at the GO as shown in Figure 4-3.

Figure 4-3 The topology for the management connections.

Data Exchange Connections: The GMs needs to obtain a list of other peers’

information from the GO for opening data exchange connections with each other.

Meanwhile, every member in the group opens a server socket and binds it to a known

data-exchange - port. The server socket listens for incoming peer connections. When a

46

connection is accepted, a list of all open data connections is updated. The final topology

of the connections at the data exchange level is a mesh topology as shown in Figure

4-4.

Figure 4-4 The topology for the data exchange connections.

4.1.2.2 GO and GMs Interactions

 The group management protocol is a centralized one, where the GO is the entity that

orchestrates it. The GO receives heartbeat messages from members, updates its peer

list as necessary, and send the current list of peers to the other devices. These operations

are carried out using the management connections that were opened previously.

4.1.2.2.1 Heartbeat Messages

 The heartbeat messages are used to announce that the member is still alive. Each

group member sends a heartbeat message every THeartBeatGM seconds to the GO through

the opened management sockets. An example of the heartbeat message is

“2953112190.083090484,Nexus,aa:aa:aa:aa:aa:aa:aa:aa, 192.168.45.10”. It is a

comma separated string composed of the concatenation of the uniqueID,

47

devicename/username, MAC address, and IP address. If the devicename/username

contains a comma, it is padded by replacing the comma with the special characters

<<>> to avoid misinterpretation of the message. Upon receiving the message, the GO

unpads the devicename/username if necessary and stores/updates the peer information

in a special data structure.

4.1.2.2.2 Announcing the List of Available Peers

 The group owner notifies the members in the group about the peer information by

sending a message every THeartBeatGO seconds that contains the list of all known peers,

where THeartBeatGO is a multiple of THeartBeatGM to allow the GO to collect the data of more

than one GM before sending the peers list message. The list is a semicolon-concatenated

string that is composed of the heartbeat messages received from the GMs plus the

information of the GO itself. Upon receiving the list from the GO, each GM

stores/updates a peer list. It then attempts to open data-exchange connections with

unconnected peer in the list (including the GO), using the IP addresses given in the list.

A list of all open data-exchange connections is updated to reflect how many

connections are open.

4.1.2.2.3 Duplicate Connections Removal

 As the group members attempt to connect to each other as soon as they receive the

list from the GO, there is a possibility that duplicate data-exchange connections are

opened between them. To prevent this, we added a random wait time before a peer

attempts to connect to another. Then, before connecting to a peer, a GM checks if a

connection with such peer already exists or not. While this decreases the probability of

48

duplicate connections, it is still possible for duplicate connections to be established. To

avoid this problem completely, we have added a new procedure that allows removing

any redundant connections.

 The duplicate connection removal procedure runs after a peer opens connections

with other peers. Each peer iterates along the list of the data exchange connections,

finds any duplicated connection (using the IP address associated with the connection),

and removes it. To avoid removing the connection from both ends, we used the last

octet value in the IP address of the device to guarantee only one connection removal.

Each device when iterating through the list, it removes the duplicated connection only

if the last octet in the IP address of device is higher than the last octet of the IP address

of the peer associated with the connection. For example, if node A has the IP address

192.168.1.10 and node B has the IP address 192.168.1.20. The last octets for A and B

are 10 and 20 respectively. When A tries to remove a duplicated connection with B, it

finds that the last octet in these sockets is 20. Device A stops and does nothing in this

case. In the same time, B attempts to remove the duplicated socket with A. Device B

finds that its octet is greater than the octet associated with the sockets, so it closes one

of the duplicated connections. After running this step, each device will keep only one

data connection with other peers.

4.1.2.2.4 Pruning Peers

 To tell whether a peer is alive or not, a time-to-live (TTL) value is associated with

each peer in the stored peer list. The TTL value is initialized to PTTL (where PTTL is a

multiple of THeartBeatGO to allow the GMs to perform pruning and addition of peers at

49

the same step). This value is decreased periodically by all devices if the peer

information is not heard again. If the GO receives a heartbeat message from the peer,

it resets the TTL value for that peer to PTTL. If a GM sees the peer again in the list

transmitted by the GO, it resets the value to PTTL again. Once the GO determines that a

certain peer’s TTL value has reached zero, it assumes that the peer has departed the

group. The GO then disconnects from any data and management connection opened

previously with that peer and remove it from the list of peers. In the next time the GO

transmits a peer list message to its members, the removed peer will not be there. A GM

continues to decrease the TTL value for the removed peer until it reaches zero. In that

case the GM closes any data or management connections associated with that peer.

4.1.2.2.5 Restarting After GO Failure

 If one of the GMs fails or drops from the group, the GO will tell other members that

this peer is not available any more. However, in case of GO failure, the devices would

not hear the normal peer list message. They will start to decrease the TTL for the GO.

Once the TTL value for the GO reaches zero, they all disconnect from the GO. In this

case, they detect the removal of GO and they flush any peer data structure and start

over again.

A flowchart that shows the complete steps for the proposed group management

protocol for both GO and GM is shown in Figure 4-5.

50

Figure 4-5 The flowchart for the group management protocol.

4.2 Implementation and Validation

 We have developed two different Android P2P applications; during our

implementation on Android we faced certain limitation that we opted to overcome as

mentioned in the next subsection. The first application is a remote sensor streaming

A group is formed

This device is the

GO?
Yes

Open a management server socket

Connect to the management server

socket

Open a data exchange server socket

THeartBeatGM
passed?

THeartBeatGO
passed?

This device is the

GO?

Yes

No

Receive haertbeat

Is connected to

peer?

Send heartbeat

Decrease TTL for known

peers

Open a client data exchange socket

Add to/update peers list

Reset TTL value for that peer

Decrease the TTL value for other peers

Yes No

No

Yes

This device is the

GO?

Yes

Find peers with TTL <= 0

Peer found?

Remove from peers list

Close management and data

sockets

Send the peers list to all members

Yes

Yes

No

Receive peers list

A peer is not

connected
Yes

Open a client data exchange socket

Duplicated

sockets for a

peer found?

Is my last IP s

octet > peer IP s

octet

Remove one of the sockets

Reset TTL values for received peers

Find peers with TTL <= 0

No

No

Yes

Yes

No

No

Peer found?

Remove from peers list

Close management and data

sockets

Yes

No

51

application between two devices to demonstrate that Wi-Fi Direct could handle fast

data streaming. To validate ELN, we have implemented a group chatting application,

which utilizes the proposed protocol. Implementing ELN allowed only the devices that

run this application to connect to each other, multiple peers to chat together, and the

handling of addition or removal of peers seamlessly. Both applications are written in

Java using the Android SDK.

4.2.1 Android Implementation Issues

 The software support for Wi-Fi Direct in Android needs major expansion to enable

P2P networking, thus we opt to make some progress toward that goal. Among the

current shortcomings are the lack of accessibility to MAC and IP addresses for the

device and the lack of a group management protocol that can handle topology changes

and dynamic group membership. In addition, the members of a Wi-Fi Direct group

know the IP address of the group owner, however they do not know the IP addresses

of all other members in their group. Thus, a way of distributing the list of peers’ IP

addresses to every member is needed. Our proposed protocol overcomes such

limitations. However, not all shortcomings are addressed in ELN. Specifically, the

inability of a device to be associated with more than one group at the same time. The

absence of this feature in Android limits the extension of the peer-to-peer system

beyond the range of one group. Allowing multi-group communications is addressed by

our proposed EMC protocol for multi-group data sharing, discussed in Chapter 5.

52

4.2.2 Remote Streaming of Sensors Readings

 The goal of this application is to connect two Android devices and test how they

could communicate over Wi-Fi Direct. This assures how Wi-Fi Direct is suitable for

streaming data. The application collects the readings of the local accelerometer sensor

and displays them in a local sensors graph. Once a group is formed, the two devices

start to stream their local accelerometer readings to the other device. Each device listens

for incoming sensor data and displays the readings in a graph.

 The earlier version of this application was written in Eclipse then it is ported to the

AndroidStudio. The application targets Android API level 14, which is the first

implementation of Wi-Fi Direct in Android. Service discovery is not used as it is not

supported at this API level. The choice of this API level is made to allow testing how

fast and stable is the first Android implementation of Wi-Fi Direct. The application is

made available at the Google Play Store [76]. A screenshot of the application, where

one device is receiving and displaying the other device’s readings, is shown in Figure

4-6.

53

Figure 4-6 A device is receiving and displaying the sensor readings.

 The application was tested in two Samsung Galaxy Tab 2 7.0 devices. The devices

were able to connect together to exchange their accelerometer sensors’ readings. Both

of them were able to display the received data in the remote sensors graph. The

streaming and displaying of the data was very fast and runs smoothly without any

glitches.

4.2.3 Group Chatting

 The goal of this application is to validate ELN. It allows multiple devices to connect

to share chat messages. Any chat message sent from any device is sent to and displayed

54

on other devices in the group. If a new device is willing to participate in the chat

session, it simply connects to the group and ELN handles the process of announcing its

existence to current group members. The framework also opens the required sockets

for the device to send and receive chat messages.

 This application is written in AndroidStudio. It is published and available at the

Google Play Store [77]. The first level of the Android API that support Wi-Fi Direct

service discovery is API Level 16. Thus, the application targets the Android API level

16 in order to be able to run the service discovery mechanism used in the connection

setup phase of ELN. The main module in the application starts the connection setup

protocol and announces that it provides a chat service. It also searches for similar

devices that provide the same service. As part of this protocol the application creates a

service record that contains the uniqueID, the username (if the user had chosen one

from the settings, otherwise the device name is used), and the user availability (for the

sake of testing it always set to available). Once all data is collected, the service

discovery announcement starts. At the same time the module listens for any incoming

service announcements. Upon receiving a service announcement from a nearby device

that provides the chat service, the module extracts the username and displays it in a list

of discovered devices. The user can then pick one of the chat service providers and

connect to it to. If there is no active Wi-Fi Direct group, the Android framework creates

one.

 The main module follows the same flow of events as described in the group

management phase. It implements functions for finding the device own IP address,

55

compiling the device information in a csv string (i.e. the heartbeat message), producing

a peer list message (for GO only), processing the incoming management, and

displaying the incoming data (chat) messages. A helper NearByPeers class is used by

the main activity to facilitate performing the group management protocol tasks. This

class contains a list of all opened management sockets, a list of all opened data-

exchange sockets, and a peer record. Several methods are provided in this class to add

new peer record, connect to a peer, prune dead peers, and remove duplicate socket

connections. The peer record itself is another class that composed of the attributes

uniqueID, peerName, peerMacAddress, and peerIpAddress.

 In addition, the main module uses SocketManager class to handle sockets. For every

open socket, eiher a management or data socket, an object of the SocketManger class

is created and associated with that socket. Whenever a message is received in a socket,

the associated SocketManager object notifies the main module, indicates the type of

socket, e.g., a management or a data socket, and provides a copy of the object to the

main module. A ChatFragment is used by the main module to display received chat

messages and to forward them to all nearby peers. Two timers are used to execute the

periodic task defined in the management protocol like sending heartbeat, sending peer

list, pruning disconnected peers, removing duplicate socket connections, and

decreasing the TTL values for unheard from peers. Table 4-1 shows a brief description

for what each component does.

56

Table 4-1 Application components and their description.

Component Description

NearByPeers

Class
- Attributes: Management Sockets List, Data Sockets List, and Peer

Record

- Methods: Add New Peer, Connect To Peer, Prune Peers, and Remove

Duplicated Sockets

Main Activity - Performs the service discovery announcement.

- Finds nearby devices and adds them to a list.

- Connects to a device, opens/connects to the required management

sockets, and opens/connects to data exchange sockets.

- Periodically sends peer info (GM) every second/ peers list (GO) every 5

seconds.

- Periodically decreases the TTL values for peers every second.

- Periodically prunes peers every 5 seconds.

- Handles messages from management sockets and add/update peers list,

prune peers, remove duplicated socket connections, and reset TTL

values accordingly.

- Opens a data exchange connection if not already connected

SocketManager

Class
- Handles incoming data from the socket

- Notifies the main activity about the data and its type (Management/ data)

- Handles outcoming data to the socket

Chat Fragment - Handles user text input and sends the chat message to all peers.

- Displays chat messages from other peers.

Setting Activity - Allows the user to change the announced username

 The group chatting application is tested on 4 Android devices (two Samsung Galaxy

Tab 2 7.0 tablets and two Nexus 4 phones). In this test, we fixed THeartBeatGM, THeartBeatGO

, and PTTL to 1, 5, and 30, respectively. We started the application in two devices first

and connected them together. Each of the two devices was able to discover the other

one, and to display its name in the list of discovered devices. The management sockets

were created and connected. The heartbeat messages and the peer list messages flowed

as expected. The GM was able to connect to the data sockets of the GO and vice versa,

implying that the NearByPeers object was populated with the current peers. Sending

57

and receiving chat messages were going normally. We then started the application in

the third device and performed the connection setup protocol. The third device was able

to discover the GO of the current group and open socket connections (management and

data). The device was successfully added to the list of the peers at the GO. The result

was that every device was able to send a chat message to the other two. Finally, the

forth device was connected successfully and the data exchange was running normally.

Figure 4-7 shows a screenshot where three devices are chatting together. Finally, we

disconnected one of the devices from the group to see how the other devices react and

observed that they successfully removed the departing device from their NearByPeers

object and closed opened sockets for that device.

58

Figure 4-7 Three devices are chatting togethe.

4.3 Performance Evaluation

 In this section, we evaluate the performance of the proposed ELN. Mainly, we focus

on the group management phase. The goal of the evaluation is to capture the protocol

overhead, and assess the ability of the protocol to adapt to topology changes. The

assumptions used in this section are shown in Table 4-2. All the calculations performed

next are based on the worst-case scenarios.

59

Table 4-2 The assumptions used in this section.

Parameter Value

Maximum length of the heartbeat message N bits

Maximum number of members in the group, including GO M

Maximum length of peers’ list message N*M bits

4.3.1 Protocol Overhead

 The GO sends a peer list message every THeartBeatGO seconds and receives a heartbeat

message every THeartBeatGM seconds from every member. A GM sends a heartbeat

message every THeartBeatGM seconds and receives a peers’ list message every THeartBeatGO

seconds.

 Total number of message (sent and received) by the GO

=
(𝑀 − 1)

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑀
+

1

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑂
 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

 Total number of message (sent and received) at each GM

=
1

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑀

+
1

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑂

 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

 The bandwidth consumed by the protocol is the number of bits transmitted and

received per second by both GO and GM. Thus,

 Bandwidth consumption by the GO

= (
(𝑀 − 1)

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑀

×𝑁) + (
1

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑂

×𝑁×𝑀)

= (
𝑀 − 1

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑀

+
𝑀

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑂

) ×𝑁 𝑏𝑝𝑠

 Bandwidth consumption at each GM

60

= (
1

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑀

×𝑁) + (
1

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑂

×𝑁×𝑀)

= (
1

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑀

+
𝑀

𝑇𝐻𝑒𝑎𝑟𝑡𝐵𝑒𝑎𝑡𝐺𝑂

) ×𝑁 𝑏𝑝𝑠

 If we assume that N, M, THeartBeatGM, and THeartBeatGO equals 500, 20, 1, and 5,

respectively, the total bandwidth consumption at the GO = 11.5 Kbps and the total

bandwidth consumption at each GM = 2.5 Kbps. Assuming that the bandwidth for Wi-

Fi Direct is 54 Mbps, we can conclude that the overhead of the protocol is negligible.

4.3.2 Topology changes

 In this section, we assess how the protocol adapts to topology changes. In case of

connecting a new member to the group, the GO starts hearing the heartbeat message

from that member after THeartBeatGM second. This means that after THeartBeatGM second of

connecting to the group, the GO and the new GM can start data exchange. Other

members in the group knows about the addition of the new member once they receive,

from the GO, the peer list message that comes after at most THeartBeatGO seconds

(additional THeartBeatGM seconds should be taken into consideration, as the GO must wait

THeartBeatGM seconds before receiving the heartbeat from the new GM). Thus, the

previous members and the new GM can start data exchange after THeartBeatGM +

THeartBeatGO seconds in the worst case.

Let us now consider the case of removing a member from the group. Assume that the

period for decreasing the TTL value is one second. Both the GO and the GMs start

decreasing the TTL value for the disconnected peer every second, as they are not

hearing from it any more. The GO and GMs perform pruning of peers every THeartBeatGO

61

seconds and remove any peer with TTL less than zero. As long as the TTL value for

the peer is greater than zero, the GO continues to include it in the peer list message.

This causes the GMs to reset their TTL values for the disconnecting peer to PTTL as

they still hear about it. After PTTL seconds, the GO finds that the peer is already gone,

so it stops including it in the peer list. When the GMs receive the revised peer list

message from the GO, they will have a TTL value of PTTL – THeartBeatGO for the

disconnected peer (as they already started decreasing the value after receiving the last

message for GO). It takes PTTL – THeartBeatGO seconds more before the TTL value reaches

zero and the GMs remove the disconnected peer from the list of their nearby peers.

Thus, after nearly 2PTTL – THeartBeatGO seconds (PTTL seconds for the GO to notice the

disconnection and PTTL – THeartBeatGO more for the GMs), the removal of a peer will be

reflected at all peers. It is worth noting that, handling the disconnection of many peers

at once requires the same amount of time mentioned above for one peer.

 The protocol also can handle the case when a peer is not able to communicate with

others due to a temporary problem, like interference or jamming. In such a case the GO

will not hear the heartbeat message, thus it starts decreasing the TTL value for the

mentioned peer. The GMs also will Decrease the TTL value for that peer. If the peer

can communicate again within PTTL – 1 seconds, the GO will reset its TTL value. The

GMs, in that case, will also reset the TTL value within THeartBeatGO seconds of the GO

re-initialization of the TTL value for the peer. Therefore, if the channel is jammed for

a period less than PTTL seconds, the group will be able to continue its operation.

62

 If we assumed the values 1, 5, 30 for THeartBeatGM, THeartBeatGO, and PTTL, respectively,

adding new peer takes 1 and 6 seconds for the GO and GMs to handle, respectively.

Removing a peer takes 30 and 55 seconds for the GO and GMs respectively.

4.4 Conclusions

 In this chapter, we have presented, ELN, a new protocol for enabling peer-to-peer

networking over Wi-Fi Direct in Android. The main components of the protocol are a

connection establishment phase and a group management phase. The connection

establishment phase enables only the devices with the same interest to connect.

Meanwhile, the group management phase allows treating the Wi-Fi Direct topology,

which is by convention a star network, as a mesh network. ELN does so by providing

a mean of distributing the peer IP addresses, facilitating transport layer connections and

managing addition and removal of peers from the group.

 The proposed protocol can be applied to any type of applications including

audio/video streaming, dissemination of traffic information, dissemination of

emergency data, and last–mile connectivity. Two applications have been developed to

validate the proposed protocol. The first is a remote sensor streaming application

between two devices that validates the ability of Wi-Fi Direct in handling data

streaming at high rate. The second is a group chatting application. By implementing

ELN in this application, the devices that run this application could connect to each

other, multiple peers could chat together, and the handling of addition or removal of

peers was seamless. In chapter 7, we provide a unified simulator for all the protocols

in this dissertation. By using this simulator, we were able to get insights about and

63

record the performance of ELN in many different scenarios, which is discussed in

chapter 7.

64

Chapter 5: Efficient Multi-Group Formation and

Communication Protocol for Wi-Fi Direct

 In this chapter, we propose an Efficient Multi-group formation and Communication

(EMC) protocol for Wi-Fi Direct [79][81]. EMC also dynamically and efficiently

partition the devices into Wi-Fi Direct groups based on certain criteria, such as the

battery specification. The concept of ADS is utilized to allow devices to share their

information with nearby devices prior to creating the groups. A device with a higher

rank than those in its range opts to create a Wi-Fi Direct group. Once a group is created,

the group owner (GO) uses a service discovery record to distribute its credentials to

nearby devices. A device that decides to be a group member (GM) should select one of

the nearby GOs to connect to. Once a group is formed, the GO designates from its GMs

what we refer to as proxy members (PMs) that link the group to other groups. Each PM

uses its “WLAN” interface to join the group instructed by its GO. To avoid depleting

the batteries of the GOs and to adapt for changes in the groups, a teardown signal is

sent by a GO to notify the devices about restarting the EMC protocol. A typical

topology for the network after running EMC is shown in Figure 5-1. An Android chat

application is developed to validate EMC, where each device in a group can chat with

other GMs in the group as well as other groups.

65

Figure 5-1 A typical topology for network after running EMC

5.1 Approach Overview

 Enabling D2D communication in the situations where there is no available

infrastructure is highly demanded in areas that have no cellular coverage, or suffered a

massive power outrage or the occurrence of natural disaster. EMC is geared for

enabling the D2D connectivity in such application scenarios using Wi-Fi Direct. As

the topologies may not be static in the mentioned scenarios, it is necessary to extend

the protocol support of Wi-Fi Direct to allow dynamic group creation and multi-group

communication. Basically, there is no mechanism for electing a GO among multiple

devices based on certain criteria. In addition, broad dissemination of alerts needs to

extend the spatial coverage of a group, which is not feasible due to the limited

communication range. Increasing the spatial coverage requires the support of inter-

GO / SAP

GM

GM/PM

GM

GO / SAP

GM

GM/PM

GM

GO / SAP

GM

GM

GM

Link between Proxy Member and Software Access Point Group Owner and Software Access Point

Group Member and Proxy Member Group Member

66

group data sharing. Moreover, devices may be interested in receiving alerts on multiple

events and hence should be members of multiple groups. EMC overcomes such

limitations through introducing the following features:

5.1.1 Support of Initial Data Exchange:

 To enable effective GO selection, EMC defines certain information to be exchanged

between nearby devices before interconnecting them. We utilize the same idea of using

the service discovery in Wi-Fi Direct, mentioned before in ADS, to embed the

information in local service records and to transmit them to nearby devices that query

for available services. However, we do not exchange such information beyond one hop

neighbors. There are two different local service records in EMC, one called DeviceInfo

record that holds information regarding the device, and the other called SAP record,

which is transmitted only by GOs. Figure 5-2 shows sample format of these two service

records and the next subsections explains relevant entries in each record.

DeviceInfo Record

SERVICE DISCOVERY HEADER IsCharging BatteryLevel BatteryCapacity PGO

SAP Record

SERVICE DISCOVERY HEADER SSID Key

Figure 5-2 The format of the DeviceInfo and the SAP records

5.1.1.1 Battery Specifications

 An example of the information exchanged by devices that run EMC as part of the

DeviceInfo record may include 1) charging state, 2) battery level, 3) battery capacity.

A charging device with a high battery level and a large capacity is a good choice for

67

being a GO. Thus, we could employ a ranking criterion based on such information as

follows:

𝑅𝑎𝑛𝑘 = 𝑆𝑡𝑎𝑡𝑒×𝛼 +
𝐿𝑒𝑣𝑒𝑙

100
×𝛽 +

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑀𝑎𝑥𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
×𝛾

Where the State is 0 or 1 depending on the charging state, Level has a range of [0, 100]

reflecting percentage relative to the fully charged status, and the Capacity can vary

based on the device. MaxCapacity should be chosen based on the specs of several

commercially available devices. The weighting factors , , and  reflect the

importance of each term. Each device uses this mechanism to calculate the ranks of all

devices in its range to assess the possibility of becoming a GO. GMs also use such

ranking mechanism to choose the best group to join.

5.1.1.2 The Proposed GO

 Nearby devices could get the rank of each other after exchanging their battery

information. This rank is the main factor for deciding which device should serve as a

GO. However, a device could falsely think that a neighboring device has a better rank

than its own rank and concludes that such device should serve as a GO. Figure 5-3

explains such dilemma.

68

Figure 5-3 Devices Ranks as seen by reachable devices

 As shown in the figure, Device A has a rank of 10% and Device B has a rank of 20%.

Due to such ranks, Device A finds that B has a better rank, thus concludes that Device

B should be a GO and A should be a GM in the group of B. At the same time, Device

B itself sees that Device C should be a GO due to its better rank. Thus, Device B

concludes that it should be a GM in Device C’s group. The same applies to Device C

and D. Finally, the only device that becomes a GO is D and devices A, B, and C should

be GMs now. For Device C, the assignment is fine, as it has a GO, D, on its range.

Thus, Device C could now join the group of Device D. However, this is not the case for

Device A and B, as the groups they thought that they could join do not exist. Moreover,

the two devices, A and B, cannot reach Device D. Thus, they will become orphaned

members.

 To overcome the mentioned problem, we add a field called the Proposed Group

Owner (PGO) to the service discovery record (DeviceInfo record) that the devices

exchange. The PGO field is used to denote the device amongst the reachable neighbors

Device A

Rank
10%

Device A

Rank
10%

Device B

Rank
20%

Device B

Rank
20%

Device C

Rank
30%

Device C

Rank
30%

Device D

Rank
90%

Device D

Rank
90%

69

that is suggested to serve as a GO. So, a device when exchanging its battery information

with others it also tells them which device it suggests as a GO using the PGO field.

This allows the devices to know if there are other devices that have better rank that the

sender device sees that they cannot see. Returning to our previous example, Device B

tells Device A that its PGO is Device C. Now Device A knows that Device B has a better

ranked neighbor so it will not be a GO. Thus, Device A decides to become a GO (i.e.,

its PGO now is A itself). Similarly, Device C tells Device B that its PGO is Device D,

so Device B knows that C cannot assume a GO role. Thus, Device B changes its PGO

to B. After a second round of service records exchange, Device B tells Device A that its

PGO is B. Device A finds that B has a better rank so it declares B as its PGO also. The

result is that we will have two groups and two group members, thus we avoided having

orphaned members.

5.1.1.3 SAP Credentials

 To connect to an access point, a device usually needs the SSID and the Key. As the

Software Access Point (SAP) created by a GO can be treated as a normal access point,

knowing the SSID and the Key for such SAP is sufficient for a device to connect to it.

EMC embeds the SAP credentials (SSID, and Key) into a service discovery record that

we call SAP record which is shown in Figure 5-2. The SAP record is used to inform

devices about nearby groups, and to allow a proxy member to connect as a legacy client

to the group chosen by its GO. As the service records are sent in clear text, malicious

devices can steal the SAP credentials. To protect a Wi-Fi Direct group from malicious

devices that can associate with it as legacy clients, EMC encrypts that SAP Key before

70

embedding it in a service record. EMC-enabled devices only can decrypt the SAP key

in the service record.

5.1.2 Support of Intra and Inter Group Communication

 Once a group is created and populated with members, there is a need to enable intra-

group communications. To do so, we utilize our ELN protocol, described in Chapter 3,

to manage the devices in a group. Basically, the GO opens a management connection

with each new member. The list of all devices connected to the GO is distributed to the

GMs to allow them to open data connections with each other.

 We enable multi-group communication by associating qualified proxy members

(PMs) to their group using the “p2p” interface and to another group as legacy clients

using their “WLAN” interface. Unlike the work of Duan et al. in [53], which assigns

the role of PMs to the GOs themselves, EMC assigns such a role to the GMs. The GMs,

thus, serve as PMs between their original groups and the groups they are connected to

as legacy members. Such policy employed by EMC allows a group to cover a larger

area without imposing a constraint on where the GO can be, something that constitutes

a major limitation in [53]. Another Feature is that EMC creates the groups dynamically

which means that the legacy client selections are not fixed.

5.1.3 Insuring Network Connectivity

 The number of available members that can work as PMs is limited, as not all the

GMs are in the overlapping region between groups. Thus, the selection of PMs that

connect multiple groups could have a wide impact on the final connectivity of the

71

whole network. Consider the network shown in Figure 5-4, there are three groups of A,

F, and J. Each of these groups has certain GMs that are in the overlapping regions.

Figure 5-4 Three Wi-Fi Direct groups need to have PMs to be able to connect to each other. Devices with dark

shade denote GOs. Each group has its shape symbol.

 Let us consider the group of F, there are two GMs, I and G, that can connect this

group to the group of A and the group of J. We note that I can reach both A and J,

whereas G can only reach A. If F selects I as a PM for reaching the group of J and

selects G to cover the group of A, the result will be a connected network (i.e., have one

connected components). However, if F selects I as a PM for the group of A, the group

of J will not have any PM to cover it. Thus, the network will not have a complete

connectivity.

A

B

C
D

E

G

H

F

I

J

K

L

72

 Due to the importance of PMs assignment, we have employed a combinatorial

optimization algorithm called the Hungarian (Munkres) Algorithm [82] to solve the

assignment problem in polynomial time. The Hungarian method is originally used for

assigning agents to tasks by compiling a cost matrix with the columns denoting tasks

and the rows denoting agents. An example of a cost matrix is shown in Figure 5-5. The

algorithm then selects for each task an agent while minimizing the total cost. There is

another variant of the algorithm that maximizes the assignment cost also. For our work,

we refer to the tasks as groups and the agents as GMs. The cost matrix is produced

using the ranks of the devices, that we mentioned before. We are interested in

maximizing the total cost of assignment, as we favor devices with the highest ranks.

 Task1 Task2 Task3

Agent1 10 20 30

Agent2 5 10 15

Agent3 15 5 20
Figure 5-5 An example of a cost matrix where the minimum cost assignments for each task are colored green.

 To compile the cost matrix, a GO first enumerates a list of the surrounding groups

that at least one of its GMs can reach. For each group, the GO enumerates a list of the

GMs that can reach it. Using those lists the GO can prepare the cost matrix. If there is

a GM that can cover more than one group, the cost entries for these groups will have

the same cost for the given GM, as shown in Figure 5-6. However, the generated cost

matrix may not be complete, since not every group is reachable from every GMs. We

substitute for the missing entries with a very small number to indicate that we do not

73

need these entries to be selected, as shown in Figure 5-6. If one of these entries is

selected after executing the algorithm, we discard them.

 GO1 GO2 GO3 GO1 GO2 GO3

GM A 0.4 0.4

GM A 0.4 -9999999 0.4

GM B 0.5 GM B -9999999 0.5 -9999999

GM C 0.3 0.3 GM C 0.3 0.3 -9999999
Figure 5-6 An example of a cost matrix that a certain GO could have. On the left, we see that certain GMs can

cover more than one group, thus we see in their rows the same cost repeated. On the right, we see the missing

entries in the matrix been fixed by adding a very small value.

 Given the cost matrix, we apply the Hungarian algorithm to get the assignment that

maximizes the total cost. Such assignment should give the best connectivity between

groups given that there is enough number of GMs that can work as PMs.

5.2 EMC Protocol

 The EMC protocol is divided into multiple stages. The first stage is to choose GOs

among the candidate devices. The second stage is for the GOs to create groups and

distribute the credentials for SAPs. Next, the remaining devices choose which groups

they should join. Then, the GOs designates from their group members PMs that link

the members to other groups. Finally, to balance the energy consumption GOs send

teardown message to inform all devices about restarting the protocol. This stage enables

load balancing and allows the rotation of the GO role among energy-rich devices. A

state diagram that shows the various stages that a device passes through is shown in

Figure 5-7. The devices start with the deciding state and return to this state after the

teardown process.

74

Figure 5-7 A state diagram of EMC

5.2.1 Choosing Proposed GOs

 Each device starts by creating a local service record that contains its battery

information mentioned and the Proposed GO (PGO) that are mentioned in section 5.1.1.

The PGO is initialized to null at the beginning to indicate that there are no GOs that we

heard from yet.

 During this stage, a device Di sends service discovery requests to reachable devices

every TsendInterval, as mentioned previously in ADS. Upon receiving Di’s requests,

nearby devices respond by sending back the stored record that contains their battery

information and the PGO. The responses are collected and stored in a data structure

that contains the IDs, battery information, and the PGOs for neighboring devices. Di

Deciding
GOs

Selecting
Group

GM

PM

GO

Calc&Send
PM

Assignments

TdeclareGO elapsed &&
not best rank

TdeclareGO elapsed && bestRank

TselectGO elapsed

PM assignment

Teardown

Teardown receivedTeardown received

Teardown received
 from PM

TtearDown elapsed

TpxAssignment elapsed

TtearDelay elapsed

Relay
Teardown
Message

Send
Teardown
Message

75

then uses the battery information that it has received to calculate the ranks of the nearby

devices, as discussed in section 5.1.1.1, and hence updates its PGO. If no device around

has a better rank higher than itself, then PGO is updated to reflect that Di itself is the

PGO. We note that when Di compares the ranks of the nearby devices it only considers

devices that have their PGO pointing to themselves. By doing this we eliminate the

possibility of becoming orphaned as discussed in 5.1.1.2. Di stay in this stage for a

period TdeclareGO. Selecting TdeclareGO is a trade-off between collecting sufficient

information from neighbors and quickly creating groups to allow data exchange. It is

envisioned to select TdeclareGO based on the device density. A pseudo code for this step

is shown in Figure 5-8.

phase1: //Choosing Proposed GO

foreach(device in network)

 createLocalDeviceRecord();

 requestDevicesInfo();

 while (elapsedTime < TdeclareGO)

 if (DeviceRecord is received)

 store(DeviceRecord);

 calculatePGO();

 if (SAPrecord is received)

 store(SAPrecord);

 goto phase3;

 goto phase2;

end

Figure 5-8 Psedue code for selecting candiate GO step.

5.2.2 Creating Groups

 After the TdeclareGO period, the devices know who the PGOs are. A device that has

PGO pointing to itself is then autonomously creates a group and becomes its owner.

Before moving to the next stage, each GO adds a new local service record that contains

the credential, i.e., SSID and Key of the SAP, which a legacy client can use to associate

76

with the group; for simplicity, we call it SAP record. If the device finds that it has a

PGO other than itself, it declares itself as GM and proceeds to the next stage. Pseudo

code for this step is shown in Figure 5-9.

phase2: //Creating groups

foreach(device in network)

 if(PGO == device.id)

 meIsGo = true;

 if(meIsGo)

 createAutonomousGroup();

 createSAPrecord();

 goto phase4;

 else

 declareGM();

 goto phase3;

end

Figure 5-9 Psedue code for creating groups step.

5.2.3 Selecting a Group to Join

 This stage lasts for a period of at least TselectGO where each device that is not a GO

starts requesting service records from its reachable devices. Receiving a SAP record

from a device Di means that Di is a GO. The collected records are used to update the

previously populated structure to indicate for each known device its SAP record, if

exists. Once the TselectGO period is elapsed, each non-GO device selects a GO, i.e., a

device that has a SAP record, to connect to its group. Note that the SAP records are not

used to connect to the groups as legacy clients, but they are stored to be used in the

next stage of selecting PMs.

 It is important to note that the devices are not required to run EMC at the same time.

A device that starts the protocol and finds that a SAP record is available goes directly

to the current stage to select a group. That is to avoid wasting time in the stage of

77

deciding to become a GO or not. If the device is better qualified for the GO role, EMC

accommodates for that by restarting the protocol every certain period. Pseudo code for

this step is shown in Figure 5-10.

phase3: //Selecting groups

foreach(declaredGM)

 requestSAPinfos();

 while(elapsedTime < TselectGO) begin

 if(SAPrecord is received) begin

 store(SAPrecord);

 bestRank = -1;

 foreach(SAPrecord)

 rank = calculateRank(device in SAPrecord)

 if(rank > bestRank)

 bestRank = rank;

 connectToGOof(bestRank);

 openSocketConnection();

 sendToGO(stored SAPrecords);

end

Figure 5-10 Psedue code for selecting groups step.

5.2.4 Selecting Proxy Members

 After a GM joins a group, it prepares a list of all the groups (SAP records) in its

vicinity in order to be sent to its GO. Each GO after creating a group waits for TselectGO

to allow possible members to join then it stays for a period of TpxAssignment listening for

the lists of the reachable groups from its GMs. As mentioned in ELN, a GM send a

heartbeat message every THeartBeatGM. In EMC, the GMs embed the list of reachable

groups in the heartbeat messages of ELN. The received lists are then processed by the

GO and stored in a special data structure that contains for each GM what are the groups

(SAPs) it can reach along with the credentials for accessing these SAPs. In ELN, a

heartbeat message is sent from the GO to the GMs each THeartBeatGO. EMC utilizes that

time to calculate for each SAP a GM that act as a proxy member to that SAP’s group.

78

Then the GOs, in EMC, embed the assignment for chosen members in their heartbeat

messages. The selection of proxy members is based on the Hungarian (Munkres)

method as discussed in section 5.1.3. Once TpxAssignment elapses, each chosen GM reacts

by connecting to the indicated SAP as a legacy client using the credentials it already

collected in the previous step; this GM is now denoted as PM. Pseudo code for this step

is shown in Figure 5-11.

phase4: //Selecting Proxy Members

foreach(GO in network)

 while(elapsedTime < TpxAssignment)

 receiveListOfGroups();

 processReceivedLists();

 selectPMs();

 sendPMassignmentsToMembers();

 end

end

foreach(selectPM)begin

 connectToChoosenSAP(SSID, key);

end

Figure 5-11 Psedue code for selecting proxy members step.

5.2.5 Teardown and restart

 A GO is involved in every intra-group interaction and may thus deplete its energy at

a faster rate than GMs. To balance the energy load on GOs, EMC instruments periodic

teardown of groups so that groups are reformed using fresh network state. A GO waits

for a period TtearDown before starting to tear down its group by sending teardown

messages to its GMs. The selection of TtearDown is subject to trade-off between having a

balanced load on the devices and frequently incurring the group formation. EMC

compensates for timing difference and allows devices to synchronize and restart the

protocol at the same time. This is done by making each PM relay the teardown message

79

to the GO of other groups that this PM is connected to it as a legacy client. If a GO

receives the teardown message from the PM before its TtearDown period ends, it may

decide to follow through and inform its member about the teardown. Each device

receives the teardown message waits a time TtearDelay to ensure that other groups are

informed before processing the teardown. Afterwards, the devices restart the protocol.

It is worth noting that the sequential teardown of groups will make sense when they do

related tasks. The collective teardown is a means to synchronize them in their next run

for EMC to from better groups, i.e., based on an updated node status. The pseudo code

for this step is shown in Figure 5-12.

phase5: //Teardown and restart

foreach(GO in network)

 while(elapsedTime < TtearDown)

 if(PM forwarded teardownMessage)

 break;

 sendTeardownMessageToGMs();

 while(elapsedTime < TtearDelay);

 teardown();

 goto phase1;

end

foreach(GM in network)

 if(GO sent teardownMessage)

 teardown();

 goto phase1;

end

foreach(PM in network)

 if(GO sent teardownMessage)

 forward teardownMessageToSAP();

 while(elapsedTime < TtearDelay);

 teardown();

 goto phase1

Figure 5-12 Psedue code for teardown step.

80

5.3 EMC Implementation

5.3.1 Wi-Fi Direct Multi-Group Chat Application for Android

 An Android chat application is developed in AndroidStudio to validate the EMC

protocol; a version of this application is available at GitHub2. The application used the

API level 16 to allow the devices to use the service discovery in Wi-Fi Direct. The

application is not required to run on each device involved in the protocol at the same

time, but once it runs a device should be able to chat with devices in its group as well

as devices in other groups without any manual interaction. A device would be either a

GO, a GM, or a PM. A GO maintains its group using management sockets. Each device

in the group exchanges chat messages using designated data sockets. PMs use special

proxy sockets to exchange management and chat messages with other groups. Figure

5-13 shows screenshots of the app while it is running on two different devices.

Although the app works fully autonomously, we have added manual override buttons

on the top of the app to allow us to test specific parts.

2 https://github.com/ashahin1/EfficientWiFiDirectMultiGroups

81

Figure 5-13 Screen capture of two devices running EMC.

5.3.2 Android Framework Modifications

 Due to the support limitation for Wi-Fi Direct in Android, we were not able to have

the app work out of the box. As all groups share the same 192.168.49.x subnet and all

GOs share the same 192.168.49.1 IP address, there is no way to have PMs open

bidirectional socket connection with devices in their group and other groups. In [53]

this issue has been overcome by having certain members do broadcasts. We did not

find such an approach an appealing solution though and chose to modify the source

code for Android to allow the devices to have different subnets. For the sack of testing

82

the functionality of EMC, a static subnet assignment patch is applied to the Android

versions running on the devices involved in the validation. In the next Chapter, we are

proposing a subnet negotiation protocol, ISNP, that makes the assignment of subnet

dynamic and allows EMC to scale well with large number of groups. Another issue in

Android is that any request to join a group should be confirmed by the device that have

a GO device. To allow fully autonomous operation, we changed the Android source

code to allow the GO device to accept connection requests automatically.

5.3.3 Test Cases

 Tests are performed using five devices, two Nexus 4, two Samsung Galaxy Tab 2,

and one Asus Transformer tf700t. One of the Nexus 4 devices is kept with its original

ROM (Android v5.1) with no modifications. The other Nexus 4 device is reloaded with

CyanogenMod v12.1, (which is based on Android source code) after modifying it. The

Samsung devices are running the stock ROM (Android v4.2.2). Since we do not have

a complete source code for that specific Samsung model, we have disassembled the

Android framework in those devices, applied the modification, reassembled, and then

placed it back on the devices. The Asus device is kept running its stock ROM (Android

v4.2.1). All devices are capable of running Wi-Fi Direct along with the service

discovery. All tests were conducted in our research lab, where many other Wi-Fi access

points exist. During our tests, we noticed that the interference was so high that some

service discovery records were dropped. Using a Wi-Fi Analyzer app, we found that

all the Wi-Fi channels are overwhelmed as shown in Figure 5-14. However, EMC was

still able to run.

83

Figure 5-14 Analysis of wireless interferce observed during the test..

5.3.3.1 Test Case 1: Group creation

 In this test, we first used three devices (one Nexus 4 and Two Samsung Tab).

Android reported 2100 and 1750 for their battery capacity, respectively, which is

strange as the tablet should have more battery capacity than the phone (it should be a

bug in Android). We kept the devices at nearly 100% battery level. The Nexus 4 device

was intentionally plugged in an AC source. The chat app was then run in the three

devices and we monitored EMC steps on the three devices. The Nexus 4 found that its

rank is better than the other two devices, so it created a group. The two Samsung

devices discovered that another device ranked better so they waited to select a group.

As there was only one group created, the two Samsung devices chose it, which is the

group created by the Nexus 4, and connected to it. The Nexus 4 did not choose any of

the Samsung devices to serve as a PM as there is no other groups. At the end, the three

84

devices were able to chat together. After the predefined time for teardown, the Nexus

4 device asked its members to teardown. All of them then restarted the EMC protocol

again. The same results were obtained when we ran the app in the five devices, where

the Nexus 4 was the only one that was charging.

 We then tested the incremental execution of EMC in the five devices by allowing a

device to run the app then after some time another device runs it and so on. We started

by one of the Samsung tablets, which declared itself a GO and created a group, as there

were no other devices nearby. The remaining devices ran the app consecutively. The

first device found that at least one group had been already established (as it received

some SAP records), hence it started to select the best group. As there is only one group,

the device selected and joined it. The same were done by the other devices. At the end,

all five devices were able to chat together. We note that there are no PMs assignments,

as no other groups were existed. The teardown mechanism performed well in this case

and all of them restarted EMC again.

5.3.3.2 Test Case 2: Multi-Group Communication

 In the first test, we validated that the EMC protocol is able effectively handle group

creation. For the multi-group communication test, some devices should be outside of

the range of others to have them form other groups. Therefore, we needed more devices

and an open space to validate the whole steps of creating separate groups, selecting the

groups, and selecting the PMs. To overcome the device count limitation and space

constraints, we forced two devices to create two distinct groups and then tested how

the other devices choose which of these groups to join. Thus, we added some extra

85

control in the app to allow a device to bypass the first step in EMC and proceeds to

creating a group. We then used a Nexus 4 and a Samsung Tab that have been modified

so that they can have different subnets for their Wi-Fi Direct groups, and got them to

create groups. The Nexus 4 was kept charging, and thus it was the best GO,

consequently the other devices selected the group of the Nexus 4 to connect to. The

final distribution of devices was a Nexus 4 as GO with three other GMs and a Samsung

Tab as a GO with no members. As all the GM devices with the Nexus 4 have heard

from the Samsung Tab its SAP record, they knew that another group existed. After

connecting the Nexus 4 group, the three devices notified the Nexus 4 about the group

of the Samsung Tab. Once the proxy member selection period has elapsed, the Nexus

4 selected the GM Samsung Tab to serve as a PM. The GM Samsung Tab connected to

the SAP of the GO Samsung Tab and became a legacy device in its group. As a result,

the devices in the Nexus 4 group were able to chat with the GO Samsung Tab. After

finishing the teardown period, the Nexus 4 sent a teardown message that reached the

GO Samsung Tab. We noted that all devices responded by restarting the EMC protocol.

5.4 Performance Analysis

 In this section, we analyze the performance of EMC during group formation and

multi-group communication. For group formation, we are assessing how fast a group

could be formed. The multi-group formation case we analyze the time needed for two

groups to get connected and start data transfer. Such analysis gives an insight of the

suitability of EMC for data sharing scenarios that needs fast connection times. Of

86

course, with careful selection of EMC parameters it can suite wide range of

applications.

5.4.1 Group Formation

 Let us assume that all devices start EMC at the same time. A device with a high rank

declares itself as a GO and creates a group in a time TdeclareGO. Other devices in its

neighborhood enters the group selection mode. Being in this state a device waits a time

TselectGO to collect SAP records. TselectGO should be large enough to allow the reception

of SAP records from all the neighboring groups. The time needed before joining a

group is only TselectGO. This means that the time Tc a certain device needs to start data

exchange with others is

𝑇𝑐 = 𝑇𝑑𝑒𝑐𝑙𝑎𝑟𝑒𝐺𝑂 + 𝑇𝑠𝑒𝑙𝑒𝑐𝑡𝐺𝑂

 Waiting for TdeclareGO is not needed for a device that runs EMC after having groups

already created. Generally, TdeclareGO should not be too high to allow fast data

exchange; yet at same time it should be long enough to account for possible loss of

service discovery packets due to interference. The selection of TselectGO follows the

same rules as in TdeclareGO. EMC allows devices to join EMC at any time; thus, a

device with better rank in a certain area may come after group creation in such an

area. The device in this case will choose a group to join. The teardown signal that

comes after TtearDown allows better adaptation to such a situation. Thus, TtearDown

should be chosen wisely to allow better adaptation and in the same time less frequent

restarts.

87

5.4.2 Multi-Group Communication

 The GOs waits for a time TpxAssignment before sending PM assignments. Assuming

that EMC is executed at the same time by all devices, a group would be able to

exchange data with other groups after a time TpxAssignment from its creation. Thus, the

time Tp needed for achieving inter-group communication is 𝑇𝑝 = 𝑇𝑑𝑒𝑐𝑙𝑎𝑟𝑒𝐺𝑂 +

𝑇𝑝𝑥𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. The selection of TpxAssignment is not trivial though, as it should be large

enough to allow a GO to collect enough information from its members before deciding

the best PM assignments. It is worth noting that if a device runs EMC after having the

best GO in its range sent its PM assignment, it will never be assigned the PM role even

if it is a better candidate for connecting to another group. The teardown process that

comes after TtearDown accommodates such situation. The selection of TtearDown though is

a trade-off between frequent restarting of EMC and better topology adaptation.

5.5 Conclusion

 In this chapter, we have presented EMC, a protocol for creating Wi-Fi Direct groups

dynamically by electing group owners based on the device energy reserve. EMC also

enables connecting the created groups by selecting PMs to relay the data from one

group to another, thus allowing multi-group communications. A chosen PM connects

to another group using its “WLAN” interface, where it connects as a legacy client to

the SAP of that group. EMC uses the service discovery protocol in Wi-Fi Direct to: (1)

perform the distribution of the battery information that is used to rank devices along

with the Proposed GO field, where devices with the highest rank in a certain area opts

to create a group, and (2) distribute the SAP credentials of groups to their neighbors,

88

which allows PMs to connect to such SAP. To avoid depleting the battery of the GOs,

EMC restarts itself after a certain period to allow rotation of the GO role.

 An Android application is created to implement the EMC protocol. Certain

modifications are done to the source code of Android to allow the groups to be in

different subnets and to allow the automatic acceptance of connection requests. The

applicability of EMC has been validated through testing the created application on five

smart devices. The operation of EMC is analyzed to get an overview of its performance.

The analysis has provided guidelines on how to choose the EMC parameters to achieve

low-latency group creation, and battery optimization. To fine tune the parameter

settings for EMC, we have performed several simulation experiments that are reported

in chapter 7. We have also tested the performance of EMC against other approaches in

that chapter.

89

Chapter 6: IP Subnet Negotiation in Wi-Fi Direct for Seamless

Multi-Group Communications.

 In this chapter, we present IP Subnet Negotiation Protocol for Seamless Multi-Group

Communications (ISNP), which overcomes the limitation of Android that lets all the

Wi-Fi Direct created groups to share the same range of IP addresses. As shown in

Figure 6-1, such limitation causes IP address collision between devices in different

groups. ISNP integrates with EMC by taking advantage of first phase of EMC to allow

participating devices to negotiate distinct IP subnets with other devices before forming

the groups. Once the groups are created by EMC, each GO uses its proposed IP subnet

to assign IP addresses to the devices in its group.

Figure 6-1 Two adjacent Wi-Fi Direct groups sharing the same IP subnet.

 ISNP has two components, one that runs at the application level and utilized the

service discovery records of EMC to negotiate the proposed subnets and another

component that runs at the operating system (OS) level. The OS level component is

GM
192.168.49.y GO

192.168.49.1

GM
192.168.49.x

GM
192.168.49.a

GM
192.168.49.c

GM
192.168.49.b

GO

192.168.49.1

GM
192.168.49.z

90

required to force Android to replace the default fixed IP subnet with the device’s

selected one. To accommodate for the devices with locked versions of Android that

cannot be modified, ISNP allows devices with no modifications in their OS to still

participate using their application level component. Basically, a device will still be able

to propose and negotiate IP subnets with nearby devices using ISNP’s application level

module; however, such a device should be excluded from serving as GO by EMC. The

application level module of ISNP is validated by integrating it with our previous

Android application that we wrote for EMC. For the OS level module, we have

modified the source code for the devices involved in testing and then compiled and

uploaded the new version of Android on these devices.

6.1 Problem Statement

 When connecting multiple Wi-Fi Direct groups using relay nodes, the Wi-Fi Direct

implementation on Android will not make it possible for these groups to share data in

a bidirectional way. The reason for this is that the fixed assignment of GO’s IP address

and the DHCP address range cause all the groups to fall into the same IP subnet. Thus,

the devices in these groups will have collisions in their IP addresses, which will hinder

them from having bidirectional connections at the transport layer. Overcoming such

limitation provides a possibility for realizing full multi-group communications in Wi-

Fi Direct. Obviously, it is not practical to assign different subnets for devices manually.

To have a seamless group formation that can scale, a dynamic assignment of the IP

subnets for different groups is warranted. ISNP opts to fill such technical gap. Upon

91

integrating ISNP with EMC, the IP subnets of any two overlapping groups would be

different as shown in Figure 6-2.

Figure 6-2 IP subnets for two adjacent groups after integrating ISNP with EMC

6.2 The ISNP Protocol

 ISNP enables adjacent groups to have different IP subnets, which makes it possible

to have bidirectional communications between groups at the transport layer. ISNP

leverages the service discovery records of EMC to provide a connectionless negotiation

of the IP subnets; a choice that makes it very lightweight and efficient. In addition, the

integration between ISNP and EMC provides a complete data sharing solution using

Wi-Fi Direct.

6.2.1 ISNP Overview

ISNP is composed of two modules, the first runs at the application level and the

second is handled at the OS level. The application-level module utilizes the service

discovery records of EMC to allow the devices to propose IP subnets and announce

them to nearby devices. It also makes sure that conflicts in the proposed subnets are

G1

10.X1.Y1.0

 G2

10.X2.Y2.0

Proxy Member

G1: 10.X1.Y1.a

G2: 10.X2.Y2.b

92

resolved correctly. The second part assigns the proposed IP subnet for a given GO

device by making the OS replaces its default subnet with the proposed one. Fig. 3 shows

the integration of these modules of ISNP with the Android software environment,

where the application part of ISNP passes the proposed subnet to the OS part of ISNP

using the standard Android APIs (i.e. using service discovery). Such integration

facilitates the interaction between the two modules without breaking the application

code, as no special APIs are required. Moreover, if it is not possible to modify the OS

on a device, such a device would still be able to participate in ISNP using its application

code. In this case the device would be able to propose a subnet and inform other devices

about such subnet and any possible conflicts. However, such a device will not be able

to change the subnet because the OS part of ISNP is not available. Thus, this device

will not be able to assume a GO responsibility, but it can join a group as a GM.

Figure 6-3 The integartion between the two part of ISNP and Android.

For the proposed IP subnets, ISNP replaces the default subnet in Android, which is

192.168.49.0/24, by 10. 𝑋. 𝑌. 0/24 which enables flexibility in having IP subnets that

93

can range from 10.0.0.0 to 10.254.254.0. We discuss the two ISNP modules in the

balance of this section.

6.2.2 Application-Level Module

ISNP utilizes the service discovery records that EMC uses for exchanging

information between devices. ISNP introduces a modified version of the DeviceInfo

record of EMC that was shown in Figure 5-2 by adding a “SUBNET” field as shown

in Figure 6-4. This approach simplifies the IP subnet announcement process, as it is

done at the same time when the devices exchange their information. The operation of

the application level-module of ISNP is discussed in the balance of this section.

DeviceInfo Record

SERVICE DISCOVERY HEADER IsCharging BatteryLevel BatteryCapacity PGO SUBNET

Figure 6-4 The new foramt of EMC's DeviceInfo record that is used by ISNP

6.2.2.1 The Operation of the Application-Level Module

 As mentioned earlier, the subnet range chosen for ISNP is 10.X.Y.0. To reduce the

length of the DeviceInfo record, we send only the “X.Y” part of the subnet. At the

beginning of ISNP, each device Di generates a random IP subnet, as explained in

section 6.2.2.2, and stores it in the SUBNET field during the period of TdeclareGO that is

mentioned previously in section 5.2.1 of EMC. As in EMC, devices executing ISNP

continuously request services from each other each TsendInterval period; thus, Di will

receive the DeviceInfo record of other devices and provides its own in response to their

inquiries. Upon receiving a response from Dk, Di extracts the embedded DeviceInfo

record and stores it. At this point, Di checks whether the SUBNET field of any of the

94

collected DeviceInfo records is conflicting with its proposed one. In the presence of a

conflict, Di generates a new random subnet and updates its SUBNET field with it.

TdeclareGO should be large enough to accommodate for the propagation of proposed

subnets and to allow any conflict to be resolved.

Conflicts can also be detected by other devices. To elaborate, let us assume that a

device D2 falls within the communication range of two disjoint devices, D1 and D3. As

D1 and D3 cannot reach each other, if they propose the same subnet they will not know

about it. Moreover, it can happen that D1 and D3 create their own group as well and

they select D2 as a relay for these two groups. In such a case, D2 will be a PM in two

conflicting groups, which is the same problem we are trying to solve. To make sure

that this situation does not happen D2 should inform D1 and D3 about the conflict. Thus,

we add to the SUBNET field in the DeviceInfo record, in addition to the locally

proposed subnet for the device, any conflicting subnets that a device detects between

its neighbors. The final format for the SUBNET field is a comma separated values of

different subnets (e.g. X1.Y1,X2,Y2, …), where the first value is for the proposed

subnet by the device and the rest are the detected conflicts between neighbors, if any.

Figure 6-5 illustrates the operation of the application-level module through an

example. Three devices D1, D2, And D3 are in the range of each other. D1 proposed

201.23, D2 proposed 63.56 and D3 proposed 84.45. So, D1 updates its SUBNET field

to “201.23”, and D2 and D3 do the same. All of them will notice no conflict when

receiving the DeviceInfo records of the others. Assume that D4 which is in the range of

D3 and not D2, is also executing ISNP. D4 happens to choose 63.56 as its subnet. D3 in

95

this case will detect the conflict between D2 and D4 and will add this conflicting subnet

to its SUBNET field to inform them about the situation. This means that the new

SUBNET field for D3 will be “84.45, 63.56”. Upon receiving the new DeviceInfo

record from D3, both D2 and D4 propose new randomly-selected subnets.

Figure 6-5 Resovling conflicts on ISNP.

6.2.2.2 Randomly Generating Subnets

 To lower the probability of having two or more devices picking the same subset,

ISNP uses the MAC address of the Wi-Fi transceiver, which is unique among devices,

to define a seed for the random number generator of the individual devices. Basically,

each device retrieves its MAC address and then performs a bit wise addition and

shifting on the MAC address bytes to generate the seed. Since we have the subnet in

the form “X.Y”, we generate X first then Y. The numbers X and Y are randomly

generated in the range 0 to MaxX and 0 to MaxY respectively, where MaxX and MaxY

are chosen based on the number of anticipated devices. After that we concatenate both

D1
201.23

D2
63.56

D3
84.45

D4
63.56

96

of them in a string “X.Y”. In the real world, some Wi-Fi routers have their default

subnets assigned to 10.0.0.0, 10.0.1.0, 10.1.1.0, 10.1.1.0, 10.2.2.0, or 10.10.1.0. To

avoid any potential conflicts with such Wi-Fi networks, we have chosen to avoid these

addresses. A pseudo code for the application module of ISNP is shown in Figure 6-6.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Initialize IRMC ()
 startTime = System.TimeNow
 macAddress = RetreiveWifiMacAddress
 seed = GenerateSeed ();
 randomGen = NewRandom(seed)
 subnet = GetProposedSubNet()
 myDeviceInfoRec = New DeviceInfo Record
 myDeviceInfoRec.SUBNET = subnet
 Store myDeviceInfoRec as LocalService
 Periodically, DiscoverNearbyServices()
 While Sytem.TimeNow - startTime <= TdeclareGO do
 If ServiceRespose Received from Neighbor Then
 response = ServiceRespose
 While CheckConflict(respose.deviceInfoRec.SUBNET) do
 subnet = GetProposedSubNet
 myDeviceInfoRec.SUBNET = subnet
 End If
 If CheckConflictInNeighbors() Then
 myDeviceInfoRec.SUBNET = subnet + conflictedNeighorSubNet
 End If
 End While
GenerateSeed ()
 seed = 0
 For each Byte in macAddress do
 seed = seed <<8 + macAddress[curByte]
 End For
 Return seed
GetProposedSubNet ()
 sub1 = randomGen.getNext(3, MaxX)
 If sub1 = 10 Then
 sub1 = randomGen.getNext(3, MaxX)
 End If
 sub2 = randomGen.getNext(3, MaxY)
 Return sub1 + "." + sub2
CheckConflict (SUBNET)
 For each d_subnet in SUBNET do
 If d_subnet == subnet Then
 Return True
 End If
 End For
CheckConflictInNeighbors ()
 For each Neighbor do
 If Neighbor_i.subnet == Neighbor_j.subnet Then
 conflictedNeighorSubNet += Neighbor_i.subnet
 End If
 End For

Figure 6-6 Pseudo code for the application part of ISNP

97

 Given that we have MaxX and MaxY as the maximum allowed ranges for the

subnets, ISNP will have (𝑀𝑎𝑥𝑋 + 1) ×(𝑀𝑎𝑥𝑌 + 1) subnets to pick from. Let P(Si)

be the probability of selecting a certain subnet. Thus,

𝑃(𝑆𝑖) =
1

(𝑀𝑎𝑥𝑋 + 1) ×(𝑀𝑎𝑥𝑌 + 1)

6.2.3 OS-Level Module

This module of ISNP replaces certain parts of the Android OS to allow a device to

use its proposed subnet instead of the default one. Let us first discuss the flow of Wi-

Fi Direct commands that are issued from the app until getting executed. When a Wi-Fi

Direct API is called from an application, the Android invokes a service called

“wifi_service” which is responsible for translating such a request into a command for

a low-level service called “wpa_supplicant”. wpa_supplicant then deals with the Wi-

Fi drivers to perform the actual operation.

Tackling the problem of negotiating the IP subnets in the wpa_supplicant is

possible; however, it will involve a datalink layer service in negotiating a network layer

aspect and is thus not recommended. We have, therefore, decided to split the

implementation of ISNP into an application and an OS parts. The OS module of ISNP

resides in the wifi_service and intercepts any local services added by applications,

which will contain a DeviceInfo record if the application-level module of ISNP is

running. At the wifi_service module of Android, the local services are prepared and

packed by the OS in a format that is understood by the wpa_supplicant. During such

packing process, headers are added and the data is changed to a Hex string. The

98

interception of the local services by ISNP requires unpacking the records and decoding

their fields. The unpacking process reverses all what the Android OS has done to create

such a local service in order to obtain the original record that is created by the

application level module. If a DeviceInfo record is found the OS module of ISNP

proceeds to change the default IP address of the device to match the first entry in such

SUBNET field, which is the subnet proposed by the application-level module for the

current device. The remaining subnets in the SUBNET field, if found, are ignored as

they are meant for informing other devices about conflicts. ISNP then changes the

range of the DHCP server to fall in the range 10.X.Y.2 to 10.X.Y.254 for a given subnet

of “X.Y”. After that the normal operation of exchanging such DeviceInfo record with

other devices is continued.

For devices with unpatched versions of Android, the wifi_service will receive the

DeviceInfo record and treat it as any regular service discovery record. Thus, it will

exchange it with other devices nearby. The device will not attempt to inspect the record

for the SUBNET field as it does not know about such a field. Therefore, the operations

of the application part of ISNP would continue to run and the OS will not crash.

However, the proposed subnet will be ignored by the OS of the unpatched device.

6.3 Implementation and Testing

For implementing the OS-level module of ISNP, we have made the required

modifications to Android to enable dynamic IP subnet assignment. A popular custom

version of Android, Lineage OS (previously Cyanogenmod), is used for implementing

the modifications. We chose Lineage OS because of its support of wide range of

99

devices, which means that our modifications can be adopted easily by many devices.

To implement the application-level module of ISNP, the application that we developed

previously for EMC in AndroidStudio is modified to include ISNP functionality. Figure

6-7 shows screenshots of the app while it is running on two different devices.

Figure 6-7 Screen shots of ISNP on Nexus4 and LG Optimus Fuel

The application is installed in seven devices with different specifications as shown

in Table 6-1. All tests were run in our laboratory, where many Wi-Fi access points exist

100

in the building and use the same frequency band of Wi-Fi Direct; this reflects practical

scenarios in terms of medium access contention.

Table 6-1 The specifications of the devices involved in testing

Count Device Android Version RAM

1 Nexus 6 Lineage OS 6.0.1 3 GB

2 Nexus 4 Lineage OS 6.0.1 2 GB

2 Galaxy Tab 2 Stock 4.2.2 1 GB

2 LG Optimus Fuel Stock 4.4 512 MB

The two parameters of EMC, TsendInterval and TdeclareGO, need to be preconfigured to

allow optimal operation of ISNP. Recall that TsendInterval is used to determine the period

at which a device would ask other devices about their services (i.e. discover DeviceInfo

records from nearby devices), and TdeclareGO denotes the time allowed for devices to

negotiate their subnets before moving to the next step, which is handling the creation

of groups. Thus, each device sends inquiries, or negotiates and resolves conflicts,

TdeclareGO/TsendInterval times to other devices on each run of ISNP. To set a proper value

for TsendInterval, we must first measure how fast is the response from sending a request

until receiving the answer. Obviously, we do not need to send another request before

completing the first one. Thus, we evaluated the response time in different

configurations. To adjust TdeclareGO, we need to get an estimate of the number of

conflicts per run and then determine TdeclareGO to allow the devices to request

DeviceInfo records (i.e. to negotiate and resolve conflicts) several times greater than

the expected conflicts. An evaluation of such number of conflicts is conducted next,

which give an insight of how to set TdeclareGO.

101

6.3.1 Response Time Performance

In this experiment, we evaluate how fast ISNP is in reporting proposed subnets. We

have varied the number of devices from 2 to 7 to assess the impact of the density of

devices on the performance. In each case, we let the involved devices create a

DeviceInfo record and store it. Then each device requested the DeviceInfo record of

other devices. The time from sending the request until the replies of all devices in the

experiment are received is denoted as the response time. For example, if we have 2

devices in the test, then each one of them will record its response time when one record

is received. For seven devices, a device waits for receiving 6 responses before recording

its response time. We ran the experiment 5 times for each configuration (i.e., number

of involved devices) and recorded for each device its response time in each run and

then calculated the average. Figure 6-8 and Figure 6-9 show the results.

Figure 6-8 Average response time of ISNP with device

count.

Figure 6-9 Average response time of ISNP per device.

 In Figure 6-8, the average response time (in msec) is plotted against the number of

devices. This figure shows that the response time is increasing almost linearly with the

0

1000

2000

3000

4000

5000

2 3 4 5 6 7

R
es

p
o

n
se

 T
im

e
(m

s)

Number of Devices

0

1000

2000

3000

4000

5000

6000

R
es

p
o

n
se

 T
im

e
(m

s)

102

number of devices. This is expected since the number of responses that a device should

wait for grows linearly with the device population. Figure 6-9 shows the average

response time per device. The interesting observation here is that the response time is

dependent on the device itself. We can see from the figure that the response time for

the older devices, Galaxy Tab (GT1 and GT2), and the LG Optimums Fuel (LG1 and

LG2) is quite high compared to the more powerful Nexus 4 (N4-8 and N4-16).

However, the Nexus 6 (N6) is showing higher response time compared to the Nexus 4.

This unexpected result indicates that the Murata Wi-Fi chipset in Nexus 4 is more

optimized compared to the Broadcom chip on the Nexus 6. What worth noting also is

that the Galaxy Tabs that show high response times are also having a Broadcom chip.

We thus note that certain hardware is more optimized and can run Wi-Fi Direct

operations more efficiently than the other. Based on the observed response time, we

chose TsendInterval = 6 seconds as a safe period for repeatedly asking other devices for

their DeviceInfo records. Such choice is applied in the next experiment.

6.3.2 Subnet Conflict Evaluation

In this experiment, we opt to capture the relation between the number of devices and

the number of possible conflicts in the range 10.X.Y.0 of subnets used in ISNP. We

have fixed the number of devices to 7 and varied the allowed subnet range that a device

can choose from by changing the parameters of MaxX and MaxY. Although it is

possible to change the values of MaxX and MaxY individually, we chose to set both to

the same value. Also, we drew one random number only and applied it to both parts of

the proposed subnet, X and Y. We have started with setting MaxX and MaxY to 7 and

103

increased this number to 50 then 100 and so on until 350. With such configuration, we

get 8, 51, 101, …, 351 subnets respectively. We ran this experiment 10 times for each

subnet range. With each subnet range, we recorded the number of conflicts that ISNP

detected and resolved in each device. The total number of conflicts per range is plotted

in Figure 6-10, while the average number of resolved conflicts per device during each

run of the experiment is shown in Figure 6-11.

Figure 6-10 Average response time of ISNP with device

count.

Figure 6-11 Average response time of ISNP per

device.

It is noted from Figure 6-10 that the number of conflicts is very high when only

eight subnets are allowed, as 52 conflicted have been reported during the 10 runs of

ISNP in such range. The number of conflicts have decreased drastically for the other

ranges and stabilized below 10; this is very much expected due to the larger set of

subnet addresses. Meanwhile Figure 6-11 shows that in the worst-case a device has

experienced about 0.2875 conflicts per run for all experiments. This is quite low,

especially when considering the limited subnet ranges used in the experiment. It worth

noting that managing the parameters of ISNP, MaxX and MaxY, we could reach up to

0

10

20

30

40

50

60

0 100 200 300 400

N
u

m
b

er
 o

f
C

o
n

fl
ic

ts

Allowed Subnet Range
0 0.1 0.2 0.3 0.4

N4-8

N4-16

LG1

LG2

GT1

GT2

N6

Avg. Number of Conflicts

104

64511 possible subnets. Based on these results, we can choose the value of the

parameter TdeclareGO to be at least double the value of TsendInterval (i.e. TdeclareGO > 2

TsendInterval) to allow the conflicts to be detected in a timely manner.

6.3.3 Integration with EMC

We have tested also the effect of integrating ISNP with our multi-grouping protocol,

EMC, on the final network topology. Three of our test devices are patched to run ISNP

OS module. A complete run of the application with ISNP integrated with EMC is

performed where the devices start negotiating subnets using ISNP and then create

groups and share data using EMC. In this case, only the patched devices were allowed

to create groups. Upon creating the groups, we examined the IP addresses of the devices

and confirmed that the IP subnet range of each group was the same as proposed, which

confirms successful integration between the application and OS modules of ISNP. In

addition, successful bi-directional communications between the groups through EMC

were possible.

6.4 Conclusion

 In this chapter, we have presented ISNP, a protocol that facilitates the multi-group

data sharing in Wi-Fi Direct by providing a mean for assigning different subnets for

adjacent groups. ISNP integrates with EMC to provide a connectionless negotiation of

IP subnet between Wi-Fi Direct devices using the service discovery mechanism. Each

device participating in ISNP selects a random IP subnet and share it with nearby

devices. If a conflict in the chosen subnet is detected a new IP subnet is picked. To

facilitate the integration with contemporary portable devices, ISNP is composed of two

105

parts, one at the application level and another one at the Android OS level. The ISNP

flexibility allows devices that have unmodified Android OS to still participate in ISNP,

with the restriction that they should not be selected as GOs. An Android application is

used to demonstrate the ability of ISNP to efficiently assign different IP subnets to

different devices. The performance results have shown that while ISNP is robust in

terms of avoiding conflicting IP subnets, the latency of the IP subset agreement varies

significantly based on the processor capability and Wi-Fi Direct transceiver used on

the involved devices.

106

Chapter 7: Simulation Experiments

 In this chapter, we validate the scalability and performance of our proposed protocols

through simulation. Although we implemented our protocols on typical Android

phones, the simulation will enable studying the performance when many devices are

involved. To the best of our knowledge, there are no available simulator for Wi-Fi

Direct that can be used to model the interaction between a large number of devices.

Thus, we opted to implement our own simulation framework for Wi-Fi Direct; we made

it also freely available on GitHub3 for other researchers to benefit from it. This chapter

discusses the simulator, the setup of the experiments, the performance metrics, and the

obtained results.

7.1 Building a Simulator for Wi-Fi Direct

 Although quite a few network simulators are available, none of them support Wi-Fi

Direct. Thus, we needed to build our own simulator for Wi-Fi Direct by extending one

of the existing tools. Two criteria have been applied when selecting which of the

existing simulation tools to extend. First, the tool should be well structured and support

the implementation of the ANSI seven-layer protocol stack model in order to mimic

the exact behavior of devices in practice, e.g., signal propagation, collisions, layers of

the TCP/IP model, etc. The second criterion is the availability of the source code so

that modifications can be made and new modules can be integrated. Details are

provided in the following subsections.

3 https://github.com/ashahin1/inet

107

7.1.1 Tools Used for the Simulator

 Our simulator is based on OMNeT++ [83] and the INET Framework [84].

OMNeT++ is a discrete event simulator that is written in C++. It has a very powerful

simulation kernel that contains tools for starting and stopping the simulation, defining

and configuring modules, performing communications between modules, performing

statistical operations, and recording and displaying measurements. The INET

Framework (or INET for short) is a model suite for wired, wireless and mobile

networks that is built on top of OMNeT++ (i.e., it is written using the simulation

primitives provided by OMNeT++). INET has been used to implement several wireless

networks in OMNet++, such as Bluetooth (802.15.4), and Wi-Fi (802.11), with fine-

grained details, i.e., signal propagation, modulation of radio signals, power

consumption, the MAC layer, the network layer, the transport layer, and the application

layer. INET also has an extendable architecture that facilitates adding and/or replacing

existing modules. Despite having support for 802.11 networks, there is no support for

Wi-Fi Direct in INET. Thus, we used the 802.11 modules of INET as a base for adding

the Wi-Fi Direct functionality. We have also utilized Google OR-Tools [85] for the

Hungarian (Munkres) algorithm implementation and for checking the connectivity

status (number of connected components) in the resultant networks. Next, we will

explain the implementation in detail.

7.1.2 Implementing the Simulator

 Wi-Fi Direct operations on real devices are handled by the Wi-Fi network interface

card (NIC). This NIC is responsible for both infrastructure Wi-Fi and Wi-Fi Direct

108

connections. To allow these two different connections to concurrently exist, a virtual

interface for each of them is created, e.g., “wlan0” and “p2p”. To allow the NIC to

have concurrent operations from both virtual interfaces, two separate MAC entities are

used, each operates on a different channel. One of the MAC entities is used to handle

the infrastructure Wi-Fi operation of “wlan0” and track the status of the connection

through a state machine. The other entity handles the operation of Wi-Fi Direct “p2p”

with a totally different state machine. A device with such configuration can work as a

client in a WLAN and a GO/GM at the same time.

 As a simulation framework for wired and wireless networks, INET has implemented

the Wi-Fi (802.11) operation with fine-grained details, using the primitives of

OMNet++. The networking aspects has been implemented as modules that provide

functionalities related to each layer. For example, the physical layer is implemented

using bit manipulation, packet handling, and radio modules. Module composition is

pursues to implement complex functionality; for example a NIC is composed of

management, MAC, and radio modules. In INET, an 802.11 NIC can be configured as

STATION, ACCESSPOINT, or AD-HOC, where each configuration has its related

MAC aspects. A device is modeled as a module that is composed of applications,

transport layer (TCP, UDP), network layer (IPv4, IPv6), and NICs.

 We have utilized the modules of INET to create a device that support Wi-Fi Direct

operations. For Wi-Fi Direct a device should be able to do service discovery, and act

as a GO and as a GM.

109

The service discovery operations are handled in a connection less manner and have

broadcast nature. These operations can be performed without forming a group. We have

modelled such operations using an 802.11 NIC configured as AD-HOC, given that we

allow the devices to broadcast their data. The GO role is handled by creating a software

access point (SAP). Using Wi-Fi Direct, devices can connect to such SAP using a

simple invitation/acceptance mechanism. All devices (Legacy and Wi-Fi Direct

enabled) can connect using the SSID and Key. In both cases, the connected device will

be regarded as GM. Therefore, we have implemented the functionality of the GO using

an 802.11 NIC configured as ACCESSPOINT. Likewise, the GM role is modeled using

an 802.11 NIC configured as STATION. Such GM then connects to the GO using the

SSID and the Key. To allow a device to have infrastructure Wi-Fi support besides the

Wi-Fi Direct support, we have added another 802.11 NIC and configured it as

STATION.

 Based on the above discussion, we have built a host that supports Wi-Fi Direct using

5 NICs where one of them is just a loopback interface that is required by INET. The

remaining four are two 802.11 NICs (STATION), one 802.11 NIC (AD-HOC), and

one 802.11 NIC (ACCESSPOINT). To mimic the behavior of real NICs that support

Wi-Fi Direct by using two virtual interfaces, we have added logic to selectively disable

unwanted NICs so that, at most two wireless NICs will be active at the same time. For

example, a device entering service discovery would have the ad-hoc NIC active and

the other 3 wireless NICs disabled. If that device becomes a GO, its access point NIC

will be activated. At the end of the service discovery period, the ad-hoc NIC will be

110

disabled. Likewise, a GM device will have one of the station NICs active. Since the

assignment of GMs marks the end of the service discovery period, the ad-hoc NIC for

GMs will be disabled when they start their role. If a GM happen to serve as a PM, then

its other station NIC is activated. Figure 7-1 show the design of the Wi-Fi Direct host

that we utilized in the simulator.

Figure 7-1 The internal design of a Wi-Fi Direct Host.

 For implementing the service discovery operations, we have built a UDP application

in the designed host that manages the distribution of service discovery records, by

broadcasting them to reachable neighbors. Then we have utilized this application to

add ADS, EMC, and ISNP. Two other UDP applications, a DHCP client and a DHCP

111

server, are used to aid in finalizing the process of joining groups; a GM needs an IP

address to communicate with its GO. Each device has these two UDP applications, but

only one will be active at a time depending on the role of the device. For GOs, the

DHCP server configuration is updated to reflect the subnet negotiated by ISNP. The

GMs use their DHCP client application to request an IP address lease. For the intra-

group communications, we have designed two TCP applications, a server and a client,

where one of them will be active based on the role of the device. We then added ELN

to these two applications to be able to manage the group. Thus, a GO device utilizes

the TCP server to send its heartbeat messages and a GM device utilizes the TCP client

to receive them. The part of EMC that is responsible for the PM assignments is utilizing

these two TCP applications as well.

 Our simulator design fully support the communication protocol stack. For example,

there are SYN and FIN commands to open TCP connections. There are also server and

client sockets. A message sent from the application is encapsulated as it passes through

the different layers and de-capsulated at the other end. The station connects to the

access point using the 802.11 procedures defined in the standard.

7.2 Experiment Setup

 We have done two different types of experiments, one to assess the protocols

performance, which is explained in section 7.4.1, and another in section 7.4.2 to study

the effect of parameters on our protocols. We set the Wi-Fi transceiver to 802.11g,

which gives a bit rate of 54Mbps. The transmission power is set to 0.9mW, which gives

a range close to 802.11g range of almost 150m. The path loss model is set to free space.

112

We used two different type of topologies, a static grid, and a stationary connected

graph. Table 7-1 summarizes all the assumptions that we used for all the parameters,

unless otherwise stated. Every experiment is repeated 30 times with different seeds and

the average of them is obtained and plotted. We observed that with 90% confidence

level, the simulation results stay within 5% of the sample mean.

Table 7-1 List of the paramters used for the simulation

Parameter Protocol Testing Experiments Parameters Effects Experiments

Area 1Km × 1Km 500m × 500m

Devices Count 50 to 500 step 50 100

Topology Static Grid + Stationary Connected Graph

Wi-Fi Transceiver 802.11g

Transmission Power 0.9mW

Nominal Battery Capacity 4J 5J

Initial Battery Capacity Rand (2.0, 4.0)J Rand (2.5, 5.0)J

TsendInterval 2s 1s

TdeclareGO 6s 4s

TselectGO 4s 2s

THeartBeatGM 1s

THeartBeatGO 3s

TpxAssignment 4s

MaxX, MaxY 254

We implemented EMC with ISNP. As we mentioned previously on Chapter 5, EMC is

utilizing ADS for service discovery operations and ELN for intra-group management.

113

Thus, EMC has the implementation of both ADS and ELN embedded and all of their

parameters are already used. For that reason, we focused on simulating EMC, which

would also capture the performance of ADS and ELN as well. In addition, integrating

ISNP with EMC enables the implementation of the complete P2P solution, which we

refer to as Integrated EMC. For testing the performance of the Integrated EMC, we

focused on two areas: 1) the GO declaration criteria 2) the PM assignment method.

 For the GO declaration criteria, we compared the method used by the Integrated

EMC, which we call GEMC, with two baseline criteria. The first baseline that we call

GBAT is a method that we proposed in [80], where the battery information is used;

however, it does not take into consideration the orphaned members problem that we

mentioned in section 5.1.1.2. The second baseline is a random declaration of GO that

we refer to as GRND, where each device randomly decides on being a GO regardless

of the other devices. When comparing the performance of different GO declaration

criteria, we fixed everything else to the defaults of the Integrated EMC.

 The PM assignment method of the Integrated EMC, which we name MUNK, is

tested against two other baseline methods. The first we name FRST, where the GO

selects for nearby groups the first available member that can reach it. The second is a

random selection, where the GO randomly selects for a certain group one of the

members that can reach it; a method that we call PRND. The remaining operations of

the Integrated EMC are kept the same.

 For the Integrated EMC, the time TdecalreGO + TselectGO defines the period where the

service discovery operations are performed, i.e. exchanging service discovery requests

114

and responses. The group management operations begin when the service discovery

phase ends, and last for TpxAssignment + Tteardown, where the GMs exchange heartbeat

messages with the GO. We set the simulation time for all experiments to allow one full

application cycle of the Integrated EMC, i.e TsimTime = TdecalreGO + TselectGO + TpxAssignment

+ Tteardown.

7.3 Performance Metrics

 The performance metrics that we are interested in to assess the performance of our

work are connectivity, response time, protocol overhead, power consumption, and

subnet conflicts. Table 7-2 summarizes the performance metrics and how they are

related to our protocols. Next, we will explain these metrics on more details.

Table 7-2 The relation between the different performance metrics and out protocols.

Metric Related Measurements in the simulation Affects/Affected By

ELN ADS EMC ISNP

Connectivity GO Count × ×

GM Count × ×

PM Count × × ×

Orphaned Count × ×

CC Count × × ×

Response Time Service Discovery Request to Response Delay × × ×

Management End to End Delay × ×

Protocol Overhead Total Service Discovery Messages × × ×

Total Management Messages × ×

Power Consumption Total Consumed Power × × ×

115

Subnet Conflicts Resolved Conflicts × ×

Remaining Conflicts × × ×

7.3.1 Connectivity

 This metric measures the ability of our protocols for forming connected P2P

networks. For that we track the number of group owners (GO), group members (GM),

proxy members (PM), orphaned members (Orph), and connected components (CC).

A typical GO will consume more power than other devices, thus the number of GOs

should be reduced to reduce overall power consumption; however, not having enough

GOs to cover the area means disconnected network. In addition, the number of GMs

should be large enough to allow for more choices when selecting PMs. The number of

PMs is directly affecting the final connectivity of the network. Having fewer PMs

compared to the number of groups means disjoint network components, as there will

be not be enough number of proxies to connect the groups. The number of connected

components should reach one to have a totally connected network.

 Connectivity is directly related to how EMC creates groups and connects them using

proxy members. In addition, the ADS parameters affect EMC decisions in creating

groups, as they determine how the exchange of DeviceInfo and SAP records is

performed. Moreover, ELN parameters that define the way of exchanging the

management information also affect the proxy member selection.

116

7.3.2 Response Time

 For response time, we are measuring how fast different data exchange operation can

take place. The response time is also a key in tuning several parameters on our

protocols. We are interested in the speed of exchanging service records, which affects

ADS and consequently EMC and ISNP. Thus, we record the delay from sending a

service discovery request and then receiving a response. We should tune the length of

the service discovery period to accommodate for such delay. We are also interested in

the speed of exchanging management data, which is related to ELN and EMC. Thus,

we measure the end to end delay between sending a management message and then

receiving it by the other party. Having a knowledge about this delay gives a hint on

how the proxy selection period should last.

7.3.3 Messaging Overhead

 The overhead is measured in terms of the number of messages that are exchanged

during the protocol operation. Of course, a larger number means more bandwidth being

consumed and more power consumption. We are interested in measuring the number

of service discovery messages (sent and received), which is related to the ADS

parameters and consequently EMC. In addition, we are considering the number of

management messages (sent and received) that are affected by ELN parameters as well

as EMC.

7.3.4 Power Consumption

 The power consumption is crucial as it determines the lifetime of the devices. We

are interested in decreasing power consumption. The choice of ADS, EMC, and ELN

117

parameters affect the power consumption. For example, increasing the frequency of

requesting service discovery records leads to more power consumption.

7.3.5 Subnet Conflicts

 The subnet conflicts refer to how many groups are sharing the same subnet. This is

a measure of ISNP performance, where we are interested in eliminating the possibility

of having conflicts. ADS and EMC parameters that are related to service discovery

could affect such metric. The ability of having successful communication between

groups at the level of the transport layer depends on this metric. We are recording in

the simulation the number of resolved conflicts and the number of remaining conflicts,

which should be zero to indicate the success of ISNP in resolving all the detected

conflicts.

7.4 Simulation Results

 As we pointed out earlier, we have two sets of experiments; the first is to compare

the Integrated EMC with several baselines. Mainly, we test the GO selection criteria

and the PM assignment method. The second set of experiments is for capturing the

effect of changing various parameters on our proposed protocols.

7.4.1 Performance of Integrated EMC

 The performance of the Integrated EMC is validated to assess its ability to create

connected topologies while reducing the power consumption, overhead, and response

time. Two different deployment types (topologies) are used for these experiments, the

static grid, and the stationary connected graph. For the static grid configuration, we

118

divide the area into cells whose count matches the number of devices and placed one

device into each cell; thus, we have equal spaces between the devices. Figure 7-2 shows

an example of such deployment. In the stationary connected graph, we deploy the

devices randomly in the area taking into consideration that each device should have at

least one reachable neighbor. To do this, we deploy one device at a time and choose a

random position for them, within the deployment area. For each deployed device, we

check if there are other devices within its transmission range. If there are no devices

within that range a new position is chosen and we repeat the same procedure until we

find a suitable position. Figure 7-3 shows an example of this deployment type.

Figure 7-2 An example of the static grid deployment

119

Figure 7-3 An example of the stationary conencted graph deplyment

7.4.1.1 GO Declaration Criteria

 We first compare the performance of the GO selection criteria, GEMC, of the

integrated EMC, against the GBAT and the GRND baselines. For this comparison, we

changed only the part where the GOs declaration takes palace in integrated EMC and

let all other operation of the protocol to its defaults (ISNP for subnet conflict resolving,

and MUNK for PM assignment). The GO declaration is crucial in determining the

connectivity of the final peer-to-peer network. Covering the area with the least number

of groups is desirable. The locations of the GOs also matters, as they may not be

distributed evenly, which may affect the communication and the data exchange. In

120

addition, having enough members in each group makes it highly possible to have

enough PMs between a group and all its neighbors, which is a key in determining

connectivity.

7.4.1.1.1 Static Grid

 Figure 7-4 shows the resultant connectivity due to changing the GO declaration

criteria in different device densities. The number of GOs should stay the same

regardless the number of devices if the area stays the same. What we notice from the

graphs is that GEMC is providing sufficient number of GOs to cover the area compared

to GBAT and GRND, and yielding GO count that is not affected by the device density.

GRND assignment for GOs is the worst, since there is no coordination between devices

on who covers which region. We could see that the number of GOs in GRND is going

up with density. For GBAT, the number of GOs is not affected much with the density

of devices; however, it is not sufficient to give the best coverage as we will see next.

The number of GMs is related to the number of GOs and orphaned devices. No

orphaned devices were produced in case of GEMC on nearly all densities, thus all

devices that are not serving as GO role have assumed a GM role, which could be

noticed in the figure as well. Nearly the same is happing to the GRND, as the orphaned

count is negligible. However, because there are too many GOs in case of GRND, the

number of GMs becomes the lowest amongst the three approaches for all densities. The

GBAT is producing too many orphaned devices, because it does not share the proposed

GO with the nearby devices. Leaving devices out all groups affects the number of GMs,

as seen in the figure. For the PM count, GEMC is in the middle between GRND and

121

GBAT for most densities. The GM and PM counts are correlated with the number of

GOs, as we need more PMs to accommodate for the increased number of GOs.

The number of connected components is showing that both GRND and GBAT have

many disjoint segments; and that number is increasing with the growth in the device

population. For GRND, despite having many PMs, their count is not sufficient to cover

the very large number of GOs, thus the number of connected components has increased.

GBAT yields many orphaned devices, which causes the connectivity to suffer by

having many disjoint nodes. GEMC, on the other side, has managed to keep the number

of connected components low for all densities. Thus, in terms of connectivity, GEMC

can produce sufficient number of GOs to cover the area, manage the number of GMs

and PMs, avoid producing orphaned members, and obtain the best-connected network

in all densities compared to GBAT and GRND.

0

50

100

150

200

250

300

50 100 150 200 250 300 350 400 450 500

Devices Count

#Of GOs

GEMC GBAT GRND

0

100

200

300

400

500

50 100 150 200 250 300 350 400 450 500

Devices Count

#Of GMs

GEMC GBAT GRND

122

Figure 7-4 The connectivity results from GEMC, GBAT, and GRND in case of Static Grid topology

 Figure 7-5 shows that the response time in the service discovery period grows with

the number of devices, which is due to the increasing contention on the channel. GRND

has the worst values due to having too many GOs contending on sending their SAP

records. GEMC and GBAT perform nearly the same in terms of response time in the

0

20

40

60

80

100

120

140

50 100 150 200 250 300 350 400 450 500

Devices Count

#Of Orphs

GEMC GBAT GRND

0

10

20

30

40

50

60

70

80

50 100 150 200 250 300 350 400 450 500

Devices Count

#Of PMs

GEMC GBAT GRND

0

50

100

150

200

250

50 100 150 200 250 300 350 400 450 500
Devices Count

#Of Connected Components

GEMC GBAT GRND

123

service discovery period. Regarding the management messages delays, we notice that

it also increases with device density. The GBAT is getting the worst delays here,

because it has poor decisions in defining the group boundaries. GEMC outperforms

GBAT and shows ability to evenly distribute the groups. GRND, however, appears to

have less delays, but this is due to having very small boundaries for its groups, as the

number of GOs is large.

Figure 7-5 The response time results from GEMC, GBAT, and GRND in case of Static Grid topology

 From Figure 7-6, we notice that the service discovery overhead for all approaches is

increasing with density. However, GRND grows at the highest rate, due to the increased

number of GOs. Increasing the number of GOs means increasing the exchanged SAP

records between devices, thus increasing the number of service discovery messages.

GEMC and GBAT need less messages than GRND, due to the designation of fewer

GOs. The management messages are decreasing with density, which is due to the

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

D
el

ay
 (

se
c)

Devices Count

Service Discovery Req-To-Resp
Delay

GEMC GBAT GRND

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

D
el

ay
 (

se
c)

Devices Count

Mgmt end-To-End Delay

GEMC GBAT GRND

124

interference from other devices. The management messages are sent using TCP, thus

if there is an error due to interference the message will be discarded. What is recorded

by this graph is the number of correctly received messages. GEMC is producing the

highest number, which is due to the correct connectivity decision that lead to reducing

the interference effect. The other two approaches are giving lower number of messages

due to their inappropriate connectivity choices that signify the interference effects.

Figure 7-6 The overhead results from GEMC, GBAT, and GRND in case of Static Grid topology

 The power consumption is shown in Figure 7-7, where we could notice that all the

approaches consume more power when the density of devices increases. GRND gives

the worst power consumption, due to having large number of GOs, which causes the

exchange of more messages. GBAT is showing the best power consumption, but this

is due to having many orphaned nodes that are not participating in any messages

exchange. GEMC sets in the middle between the two in terms of power consumption.

0

100

200

300

400

500

600

700

800

900

50 100 150 200 250 300 350 400 450 500

Devices Count

#Of Service Discovery Msgs

GEMC GBAT GRND

0

1

2

3

4

5

6

50 100 150 200 250 300 350 400 450 500

Devices Count

#Of Mgmt Msgs

GEMC GBAT GRND

125

If we combined that with the superior connectivity that we get from GEMC, we

conclude GEMC is giving the best balance between connectivity and power

consumption.

Figure 7-7 The power consumption results from GEMC, GBAT, and GRND in case of Static Grid topology

 We also like to note that the number of detected and resolved subnet conflicts was

negligible in all cases.

 From this experiment, we conclude that GEMC is having the best balance between

connectivity, message overhead, and power consumption in case of static grid

topology. It also can adapt to the increased number of devices better than the other

approaches.

7.4.1.1.2 Stationary Connected Graph

 In Figure 7-8 we show the resultant P2P device connectivity due to changing the GO

declaration criteria in different device densities. GEMC managed to cover the area with

enough GOs in all densities compared to GBAT and GRND. The number of GOs in

0

50

100

150

200

250

300

350

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

To
ta

l P
o

w
er

 (
m

J)

Devices Count

C o n s u m e d P o w e r

GEMC GBAT GRND

126

GEMC does not change with density, given the fixed area, which is a good sign of

having a proper GO negotiation. The number of GOs produced by GBAT is not

changing much, also, with the change in density, but GBAT does not yield the best

coverage. The worst behavior is shown in case of GRND, where the number of GOs is

increasing proportional with density, which is a result of randomly selecting the GO

role independent of the other devices. GEMC and GRND can avoid producing

orphaned members in all densities. However, GBAT suffers from having many

orphaned members.

The number of GMs for the three approaches are analogical to the GO and Orphans

count. We can notice that GRND has the lowest number of GMs in all densities; there

are already many devices assumed the GO role, which means the remaining number of

devices is already low. For all densities, GBAT has lower values of GMs compared to

GEMC because GBAT has many orphan members. GEMC is best in terms of the GMs

count, which would give more room for selecting PMs that could cover the network

sufficiently. GRND designates more PMs with increased device density; however, the

PM count is not enough to interconnect the formed groups as indicated by the number

of connected components plot. GBAT is assigning the PM role to fewer devices

compared to GEMC, a result that we can correlate with the number of GOs and GMs

for both approaches. The number of connected components is best with GEMC,

because of having the correct balance between GO, GM, and PM counts. The number

of connected components is bad in both GRND and GBAT for all densities. For GRND,

the PM count is not sufficient to cover the number of GOs, thus the number of

127

connected components increases. The orphaned members produced by GBAT cause

the connectivity to suffer by having many disjoint parts. GEMC, on the other side, has

managed to keep the number of connected components low for all densities. Compared

with the static grid experiments discussed earlier, we conclude that the change of

topology did not affect the results much.

0

50

100

150

200

250

300

50 100 150 200 250 300 350 400 450 500

Devices Count

#Of GOs

GEMC GBAT GRND

0

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

Devices Count

#Of GMs

GEMC GBAT GRND

128

Figure 7-8 The connectivity results from GEMC, GBAT, and GRND in case of Statioanry Connected Graph topology

 Figure 7-9 shows that increasing the number of devices negatively affects the

response time of service discovery messages, as the contention on the channel increases

with the number of devices. GRND yields the worst behavior, because it produces the

0

20

40

60

80

100

120

140

50 100 150 200 250 300 350 400 450 500

Devices Count

#Of Orphs

GEMC GBAT GRND

0

10

20

30

40

50

60

70

50 100 150 200 250 300 350 400 450 500

Devices Count

#Of PMs

GEMC GBAT GRND

0

50

100

150

200

250

50 100 150 200 250 300 350 400 450 500

Devices Count

#Of Connected Components

GEMC GBAT GRND

129

largest number of GOs compared to GEMC and GBAT. Of course, the interference

from that many GOs is high. GEMC and GBAT shows close and better results than

GRND, as they both have lower number of GOs compared to GRND. By looking at

the response of the management messages, we see that there is an increase in the

response time when the density grows. GRND experiences less delays compared to

GEMC and GRND, as the boundaries for its groups are small, due to the large number

of GOs. GBAT is getting the worst delays here, because it has poor decisions in

defining the group boundaries. GEMC performed better than GBAT and shows ability

to evenly distribute the groups.

Figure 7-9 The response time results from GEMC, GBAT, and GRND in case of Statioanry Connected Graph

topology

 Figure 7-10 shows that for all approaches, the overhead from the discovery period

increases with the device density. GRND designates large number of GOs (thus,

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

D
el

ay
 (

se
c)

Devices Count

Service Discovery Req-To-Resp
Delay

GEMC GBAT GRND

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

D
el

ay
 (

se
c)

Devices Count

Mgmt end-To-End Delay

GEMC GBAT GRND

130

increased number of exchanges of the SAP records), thus it shows the worst result.

Compared to GRND, GEMC and GBAT are giving better results, as they are not

producing too many GOs. Regarding the management messages, we see a decrease in

their numbers when the density increases for all approaches, mainly due to radio

interference. GEMC compared to the other two approaches can better cop with such

interfaces . That is why we see increased number of management messages in GEMC.

Figure 7-10 The overhead results from GEMC, GBAT, and GRND in case of Statioanry Connected Graph topology

 The power consumption results are shown in Figure 7-11. We notice that increasing

the device density negatively affects the power consumption for the three approaches.

GRND produces many GOs that cause the exchange of more messages, thus GRND

leads to the highest power consumption. GBAT shows slightly better power

consumption compared to GEMC since it has many orphaned nodes, which do not

participate in any messages exchange. Since GEMC yields the best connectivity, as

0

200

400

600

800

1000

1200

1400

50 100 150 200 250 300 350 400 450 500

Devices Count

#Of Service Discovery Msgs

GEMC GBAT GRND

0

1

2

3

4

5

6

7

50 100 150 200 250 300 350 400 450 500

Devices Count

#Of Mgmt Msgs

GEMC GBAT GRND

131

shown in Figure 7-8, we conclude that GEMC gives the best balance between

connectivity and power consumption.

Figure 7-11 The power consumption results from GEMC, GBAT, and GRND in case of Statioanry Connected Graph

topology

 We notice that the number of detected and resolved subnet conflicts was negligible

in all cases, thus we did not find it helpful to plot it.

 We conclude that GEMC is having the best balance between connectivity, message

overhead, and power consumption in case of stationary connected graph topology

compared to GRND and GBAT.

7.4.1.2 PM Assignment Method

 In this section, we compare the PM assignment method, MUNK, of the Integrated

EMC against the FRST and PRND baselines. We changed the operation of the PM

selection part only and left all the default of Integrated EMC (GEMC for GO

declaration, and ISNP for subnet conflict resolving). The assignment of GMs to serve

0

100

200

300

400

500

600

700

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

To
ta

l P
o

w
er

 (
m

J)

Devices Count

C o n s u m e d P o w e r

GEMC GBAT GRND

132

as PMs between groups is a very challenging task. If the assignment is not done

correctly, the final network will partition. For this experiment, we are only interested

in seeing the final number of connected components, because this the only metric that

is affected by the PM selection.

7.4.1.2.1 Static Grid

 Figure 7-12 shows the number of connected components that results from running

the three different methods MUNK, FRST, and PRND. The graph shows that PRND is

the worst. The reason for that is that selecting PMs at random can cause a group that is

only reachable by a certain member to be disconnected due to assigning such a member

to another group. For the MUNK and FRST we see that they have better results

compared to PRND, but MUNK performance is slightly better than FRST. What we

also notice regarding MUNK, is that the connectivity is affected by the density. For

lower densities in the static grid, the number of connected components is higher than

one, since there are fewer devices in the area to allow full coverage. When the device

count increases to 150 or 200, we get the best coverage due to increased density.

Increasing the density of devices beyond 200 negatively affects the connectivity

because there are too many devices in the area which cause interference and loss of

some the exchanged protocol frames; recall that the management messages count that

is decreasing with density from the previous experiment. Such frame loss causes the

decision of coverage to be suboptimal.

133

Figure 7-12 The connectivity results from MUNK, FRST, and PRND in case of Static Grid topology

 From this experiment, we conclude that the density of the devices could affect the

choice of PMs, due to increased interference between devices. MUNK is showing

slightly better performance compared to FRST. PRND, on the other side, is giving the

worst connectivity results.

7.4.1.2.2 Stationary Connected Graph

 In Figure 7-13, we show the number of connected components for MUNK, FRST,

and PRND. We see that the number of connected components is increasing with density

for all the three methods. PRND is clearly the worst, as it randomly selects PMs. FRST

and MUNK yield better results than PRND, where MNUK is slightly better. For

MUNK, we get almost full connectivity with 50 devices. Increasing the number of

devices negatively affects the number of connected components since in the stationary

connected graph topology the devices are deployed close to each other. Due, to the

increased interference that is caused by the increase in density, we start to lose certain

0

2

4

6

8

10

12

14

50 100 150 200 250 300 350 400 450 500

Devices Count

#Of Connected Components

MUNK FRST PRND

134

messages (i.e. heartbeat, and SAP records) that are required to let the GOs have a better

understanding of the topology. Thus, the decisions that are taken for assigning PMs are

not the optimal ones.

Figure 7-13 The connectivity results from MUNK, FRST, and PRND in case of Statioanry Connected Graph

topology

 From this experiment, we conclude that the density of the devices could affect the

choice of PMs, due to the increase of interference between devices. When we compare

the results from this deployment type to the static grid result, we conclude that the

deployment type is also affecting the connectivity. PRND is giving the worst

connectivity results. MUNK is showing slightly better performance compared to FRST.

7.4.2 The Effect of Parameters

 Our objective in this section is to capture the effect of changing some of the

parameters on the performance of our implementation of the Integrated EMC. The

0

2

4

6

8

10

12

14

50 100 150 200 250 300 350 400 450 500

Devices Count

#Of Connected Components

MUNK FRST PRND

135

focus is on determining the values of these parameters that allow the Integrated EMC

(i.e. EMC, ADS, ELN, and ISNP) to yield best performance.

7.4.2.1 Parameters Affecting Radio Links

 We mainly focus on the transmission power (TxPower) and the path loss (PathLoss)

since they affect connectivity and overhead. In addition, we will study the effect of

mobility on our Integrated EMC implementation.

7.4.2.1.1 TxPower

 In this experiment, we have set TxPower to 0.2mW and increased to 1mW in

increments of 0.1mW. Lowering TxPower will enhance power consumption and radio

signal interference. However, setting the TxPower below a certain threshold could have

negative effect on the connectivity as shown in Figure 7-14. Basically, the number of

GOs diminishes when increasing power. Small TxPower values makes the transmission

range short and limits inter-device reachability. Similarly, the GM count is increasing

with TxPower, which is a result of the decrement of the GO count. The number of PMs

is also related to the GO count; whenever the GO count increases the PMs count

increases too to have enough coverage between groups. However, the number of

connected components indicates that the number of PMs was not enough to cover all

groups for lower values of TxPower, especially in the connected graph topology, which

explains why we start the graph with large number of disjoint components. Once the

TxPower reaches 0.8-0.9mW, the connectivity improves for both topologies. The

strange observation here is that once TxPower exceeds 0.9mW, the connectivity starts

136

to be negatively impacted again. That could be explained by the fact that having more

TxPower means more interference.

Figure 7-14 The effect of changing TxPower on connectivity

 Figure 7-15 shows how TxPower affects the response time of both the service

discovery part of EMC/ADS and the group management part of EMC/ELN. We notice

0

5

10

15

20

25

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 #
o

f
G

O
s

TxPower (mW)

Effect of TxPower on GOs Count

Static Grid

Stationary Connected Graph

70

75

80

85

90

95

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 #
o

f
G

M
s

TxPower (mW)

Effect of TxPower on GMs Count

Static Grid

Stationary Connected Graph

0

5

10

15

20

25

30

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 #
o

f
P

M
s

TxPower (mW)

Effect of TxPower on PMs Count

Static Grid

Stationary Connected Graph

0

1

2

3

4

5

6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 #
o

f
C

o
n

n
ec

te
d

 C
o

m
p

o
n

en
ts

TxPower (mW)

Effect of TxPower on Connected
Components Count

Static Grid

Stationary Connected Graph

137

that the response time is negatively affected by the range of transmission. The reason

for this is that increasing the power allows more devices to involve in message

exchange, which cause more interference and hence affect the delays.

Figure 7-15 The effect of changing TxPower on resopnse time.

 Figure 7-16 shows how the TxPower affects the overhead of both the service

discovery part and the group management part of EMC. What is noticed is that the

number of service discovery messages is increasing proportional to TxPower. This is

very much expected since having short range means less inter-device reachability and

consequently less interaction between devices. However, the management messages

decrease as TxPower grows. We can explain that by stating that the messages in the

service discovery phase are having a broadcast nature, thus they are accepted by all

reachable devices. On the other hand, the management messages are unicast messages

0

0.001

0.002

0.003

0.004

0.005

0.006

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 D
el

ay
 (

se
c)

TxPower (mW)

Effect of TxPower on Service
Discovery ReqToResp Delay

Static Grid

Stationary Connected Graph

0

0.001

0.002

0.003

0.004

0.005

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 D
el

ay
 (

se
c)

TxPower (mW)

Effect of TxPower on Mgmt
EndToEnd Delay

Static Grid

Stationary Connected Graph

138

within the group. As the number of groups is decreasing, the number of these messages

decreases as well.

Figure 7-16 The effect of changing TxPower on Overhead

 The effect of TxPower on power consumption is shown in Figure 7-17. Since the

number of reachable devices increases when growing TxPower, we got more messages

exchanged between devices. Such increase in the interactions between devices causes

the increase in power consumption. In addition, the power that the transceiver is using

to transmit is increased, which adds to the overall power consumption.

0

500

1000

1500

2000

2500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 #
o

f
M

sg
s

TxPower (mW)

Effect of TxPower on Service
Discovery Msgs

Static Grid

Stationary Connected Graph

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 #
o

f
M

sg
s

TxPower (mW)

Effect of TxPower on Mgmt Msgs

Static Grid

Stationary Connected Graph

139

Figure 7-17 The effect of changing TxPower on power consumption

 From this experiment, we could note that setting the power of transmission to 0.8 or

0.9mW would give the best results in terms of connectivity. Thus, there is a trade-off

between power consumption and connectivity.

7.4.2.1.2 PathLoss

 To capture the effect of the signal propagation model, we changed the PathLoss

parameter from the FreeSpace model, the LogNormal and the Rayleigh models, which

are more complex and deemed to be more practical. In Figure 7-18, we show the effect

of changing the PathLoss on connectivity. We can notice that the complexity of the

path loss model negatively affects the connectivity. The number of GOs decreases,

which leads to an increment in the number of GMs. The PM count and the orphaned

members have grown as well, which leads to the presence of more connected

components and consequently diminished connectivity. Such an effect is more apparent

under the Rayleigh model which model noisy environments.

0

50

100

150

200

250

300

350

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 C
o

n
su

m
ed

 P
o

w
er

TxPower (mW)

Effect of TxPower on Consumed Power

Static Grid Stationary Connected Graph

140

0

1

2

3

4

5

6

7

8

FreeSpace LogNormal Rayleigh

Effect of PathLoss on GO Count

Static Grid Stationary Connected Graph

91

92

93

94

95

96

97

FreeSpace LogNormal Rayleigh

Effect of PathLoss on GM Count

Static Grid Stationary Connected Graph

0

2

4

6

8

10

12

FreeSpace LogNormal Rayleigh

Effect of PathLoss on PM Count

Static Grid Stationary Connected Graph

0

0.1

0.2

0.3

0.4

0.5

0.6

FreeSpace LogNormal Rayleigh

Effect of PathLoss on Orph Count

Static Grid Stationary Connected Graph

141

Figure 7-18 The effect of changing PathLoss on connectivity

 The overhead for both service discovery and management is shown in Figure 7-19.

We notice from such figure that the message overhead is decreasing as we move to

PathLoss types that model noisier environment, because of having more interference.

Figure 7-19 The effect of changing PathLoss on Overhead

0

0.5

1

1.5

2

2.5

FreeSpace LogNormal Rayleigh

Effect of PathLoss on Conencted
Component Count

Static Grid Stationary Connected Graph

0

500

1000

1500

2000

2500

FreeSpace LogNormal Rayleigh

Effect of PathLoss on #of Servcie
Discovery Messages

Static Grid Stationary Connected Graph

0

1

2

3

4

5

6

FreeSpace LogNormal Rayleigh

Effect of PathLoss on #of Mgmt
Messages

Static Grid Stationary Connected Graph

142

 The power consumption is decreasing with complexity as shown in Figure 7-20. This

should be due to the decreased number of messages that reaches the other parties, which

leads to fewer responses.

Figure 7-20 The effect of changing PathLoss on power consumption

 To summarize, the path loss could negatively affect any interaction between devices

when the radio signal propagation suffers increased interference.

7.4.2.1.3 Mobility

 In this experiment, we capture the effect of mobility on the Integrated EMC. During

this experiment, we used four types of topologies, static grid, stationary connected

graph and mobility versions of them, which gives a total of four topologies. The

simulation time is set to allow the Integrated EMC to run for 30 consecutive runs, i.e.

TsimTime = 30 × (TdecalreGO + TselectGO + TpxAssignment + Tteardown). As in all other experiments,

we repeated such experiment 30 times with different seed to get the average. The

mobility model that we applied is a model that captures the movement of 100 people

0

50

100

150

200

250

300

FreeSpace LogNormal Rayleigh

Effect of PathLoss on Conumed Power

Static Grid Stationary Connected Graph

143

in an area of 500m × 500m, a space that can be envisioned as a public park or a museum.

The parameter that we set for such person mobility model are shown in Table 7-3.

 Because of the high power-consumption of the GOs, new devices could have better

ranks and serve as GOs in the next round. With this experiment, we also capture the

GO role rotation in both the static and mobile scenarios, which happens when we restart

the protocol. Such role rotation could lead to different connectivity results, especially

in the mobility case. The results of this experiment are shown below.

Table 7-3 The mobility parmaeters used to model person movement

Mobility Parameter Change of Value

Speed Exponential distribution of 1.3 meters/sec

Angle Zero with a variance of 5 degrees

Change Interval 2s with a variance of 0.25s

 Figure 7-21 shows the effect of mobility and GO role rotation on coverage. We

notice that the number of GOs and GMs is not changing widely in the case of stationary

connected graph. This is because more devices are in the range of each other in this

topology, thus the decisions stay nearly the same. However, in the static grid and the

mobility cases, we see that there is a noticeable change in the number of GOs and PMs.

The edge devices in the static grid case could be the reason for such a change, as they

may have better ranks. These edge devices do not cover as much areas as other devices,

which lead to gaps in coverage that requires more GOs to cover. For the mobility cases,

varying the device location affects the covered area, thus the GO and GM counts are

144

changing to adapt with that. We notice also that the number of orphaned devices is

affected also by mobility, due to the possibility of having devices move before

completing their role negotiation successfully. The PM count is changing with each

round of the protocol for all topologies. This is because changing the GOs affects the

group boundaries, thus changing the overlapping region between groups, which

contains the devices that can link the groups. Because of the change in PM count, the

number of connected components changes, as seen from the figure. However, we notice

that such a change is worse in case of mobility, which is expected.

4

4.5

5

5.5

6

6.5

7

7.5

8

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

#O
F

G
O

S

RUN NUMBER

Ef f ec t O f M obi l i t y on GO s C ount

Static Grid Stationary Connected Graph

Mobility Grid Mobility Connected Graph

145

91

91.5

92

92.5

93

93.5

94

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

#O
F

G
M

S

RUN NUMBER

Ef f e c t O f M o b i l i t y o n G M s C o u n t

Static Grid Stationary Connected Graph

Mobility Grid Mobility Connected Graph

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

#O
F

O
R

P
H

S

RUN NUMBER

Ef f e c t O f M o b i l i t y o n O r p h s C o u n t

Static Grid Stationary Connected Graph

Mobility Grid Mobility Connected Graph

146

Figure 7-21 The effect of Mobility on connectivity

 Figure 7-22 and Figure 7-23 show the effect of mobility on response time and

overhead. For the service discovery, the response time is enhanced in case of mobility.

Such decrease in delay could be due to the change in the device locations that leads to

spreading of the devices in a way that could boost the response time. The same applies

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

#O
F

P
M

S

RUN NUMBER

Ef f e c t O f M o b i l i t y o n P M s C o u n t

Static Grid Stationary Connected Graph

Mobility Grid Mobility Connected Graph

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

#O
F

C
C

S

RUN NUMBER

Ef f e c t O f M o b i l i t y o n C C s C o u n t

Static Grid Stationary Connected Graph

Mobility Grid Mobility Connected Graph

147

to the number of service discovery messages. When considering the management delay,

we notice that mobility version of the static grid has better responses, which could be

correlated with the decrease in the number of GMs in case of the grid. The same effect

is seen for the management messages in both mentioned cases. Regarding the stationary

connected graph and its mobile version, we notice that the mobility negatively affects

the management end-to-end delay. However, the number of management messages are

decreasing in case of mobility, because of having a fewer number of GMs, which leads

to fewer interactions within the groups.

Figure 7-22 The effect of Mobility on response time

0

0.001

0.002

0.003

0.004

0.005

d
el

ay
 (

s)

Topology

Effect of Mobility On Service
Discovery ReqToResp Delay

Static Grid

Stationary
Connected
Graph

Mobility Grid

Mobility
Connected
Graph

0

0.005

0.01

0.015

0.02

0.025
d

el
ay

 (
s)

Topology

Effect of Mobility On Mgmt
EndToEnd Delay

Static Grid

Stationary
Connected
Graph

Mobility Grid

Mobility
Connected
Graph

148

Figure 7-23 The effect of Mobility on overhead

 Figure 7-24 shows the effect of mobility on power consumption. What we see here

is that the pattern of power consumption is following the pattern of service discovery

messages which is dominating. We are not considering here the power consumed due

to moving, as we assume that the devices are carried by persons not mobile by

themselves.

0

10000

20000

30000

40000

50000

60000

#O
F

m
ES

SA
G

ES

Topology

Effect of Mobility On Service
Discovery Msgs

Static Grid

Stationary
Connected
Graph

Mobility Grid

Mobility
Connected
Graph

62

64

66

68

70

72

74

76

78

#O
F

m
ES

SA
G

ES

Topology

Effect of Mobility On Mgmt Msgs

Static Grid

Stationary
Connected
Graph

Mobility Grid

Mobility
Connected
Graph

149

Figure 7-24 The effect of Mobility on power consumption

 At last, the mobility and the changing of the GO role between devices create certain

challenges that could cause changes in coverage. The power consumption and the

message overhead has enhanced due to the redistribution of devices. However, the

delays show some mixed results. As a result of this experiment, we plan to extend our

work in the future to better accommodate the effects of mobility and role changing of

GOs.

7.4.2.2 Protocol Parameters

 Certain parameters of our protocols affect the various performance metrics as

summarized in Table 7-4. We will show the simulation results for each parameter in

the balance of this section.

Table 7-4 The effect of paramters on Performance

Parameter Protocol Performance Metric

0

1000

2000

3000

4000

5000

6000

7000

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

m
J)

Effect of Mobility On Power Consumption

Static Grid

Stationary
Connected Graph

Mobility Grid

Mobility
Connected Graph

150

Connectivity
Response

Time
Overhead

Power

Consumption

Subnet

Conflicts

TsendInterval ADS × ×× ×× ×

TdeclareGO EMC × × × ××

TselectGO EMC × × ×

THeartBeatGM ELN × ×× ×

THeartBeatGO ELN × × ×

TpxAssignment EMC ××

MaxX,

MaxY

ISNP
 ××

7.4.2.2.1 TsendInterval

 In this experiment, we are changing the interval at which devices ask for service

discovery records by 0.1s steps starting from 0.1s and going up to 1s. Reducing this

interval while at the same time fixing the period that the devices spend doing service

discovery operations means that more requests and more responses are going to be

generated. Figure 7-25, shows that the effect of TsensInterval on connectivity is minimal,

where the number of GOs, GMsand PMs stay almost the same. We found that there are

no orphaned nodes; thus, we did not plot it. Also, the number of connected components

is nearly the same. This result is expected, as changing this value directly affecting the

number of service discovery request. As the service discovery period is fixed at 4 secs

in this experiment, we will have at least 4 requests in the worst case, which is more

151

than enough to get complete information from neighbors. For the best case at TsendInterval

equals 0.1 sec, we get 40 requests, which too much.

Figure 7-25 The effect of changing TsendInterval on connectivity

6

6.2

6.4

6.6

6.8

7

7.2

7.4
0

.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

A
ve

ra
ge

 #
o

f
G

O
s

SendInterval Period (s)

Effect of SendInterval Period on GO
Count

Static Grid

Stationary Connected Graph

92.4

92.6

92.8

93

93.2

93.4

93.6

93.8

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

A
ve

ra
ge

 #
o

f
G

M
s

SendInterval Period (s)

Effect of SendInterval Period on GM
Count

Static Grid

Stationary Connected Graph

0

2

4

6

8

10

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 #
o

f
P

M
s

SendInterval Period (s)

Effect of SendInterval Period on PM
Count

Static Grid

Stationary Connected Graph

0

0.5

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 #
o

f
C

o
n

n
ec

te
d

 C
o

m
p

o
n

en
ts

SendInterval Period (s)

Effect of SendInterval Period on
Connected Component Count

Static Grid

Stationary Connected Graph

152

 On Figure 7-26, we show the effect of changing the send interval on the service

discovery overhead; the management overhead is not relevant in this case. We see that

the overhead is decreasing when we increase this interval, which is a result of having

fewer requests. In the far-left side of the graph, when the send interval is set to 0.1s, we

get the worst message overhead, as there are too many requests generated at such

interval.

Figure 7-26 The effect of changing TsendInterval on overhead

 The effect on power consumption is shown in Figure 7-27. The larger the send

interval is the less the power consumption becomes. Of course, having fewer requests

means fewer responses and less power. On the other hand, decreasing such interval

increases the number of requests, which negatively affects the power consumption.

0

1000

2000

3000

4000

5000

6000

7000

8000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 #
#o

f
SD

 M
sg

s

SendInterval Period (s)

Effect of SendInterval Period on #of Service Disovery Messages

Static Grid Stationary Connected Graph

153

Figure 7-27 The effect of changing TsendInterval on power consumption

 From this experiment, we conclude that TsendInterval should be set around the value

that leads to sufficient number of service discovery requests would yield the best

connectivity, overhead, power consumption. However, setting it too low has a bad

impact on overhead, and power consumption. The connectivity does not change with

the change of this parameter.

7.4.2.2.2 TdeclareGO

 To study the effect of TdeclareGO, we set it to 2s then changed it up to 10s in 1s

increments. This period defines the time allowed for devices to decide who will take

the GO responsibility. As the TsendInterval is 1s, the lowest value of TdeclareGO gives only

2 possible service discovery data exchanges between devices, while for the highest

value of TdeclareGO we get 10 possible exchanges. We see from Figure 7-28 that

increasing TdeclareGO value positively affects the connectivity. The number of GOs is

stabilized after having a value of 4s, which means 4 service discovery exchanges are

0

100

200

300

400

500

600

700

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1A
ve

ra
ge

 C
o

n
su

m
ed

 P
o

w
er

 (
m

J)

SendInterval Period (s)

Effect of SendInterval Period on Power Consumption

Static Grid Stationary Connected Graph

154

sufficient for getting a stable GO count that can sufficiently cover the area. The same

applies for GM count, which stabilizes at 4s. The PM count is increasing when TdeclareGO

grows and nearly stabilizes at 4s; however, it swings a little around 8s for the stationary

connected graph topology. Of course, at 4s, the devices get sufficient data exchanges

to negotiate their roles; however, increasing that interval beyond 4s will give redundant

data exchanges, thus we see the stabilization on the curves. The number of PMs directly

affects the number of connected components, so we notice that when the PM count

swings at 8s the connected components are affected. For the static grid, the number of

connected components approached one and did not change after the value of 4s. we

notice also that for values lower than 4s, there are some orphaned members, which is a

result of not having enough data exchanges at the GO Declaration period. Thus, the

proposed GO filed that is supposed to fix the orphaned members case did not have the

time to propagate.

6

6.2

6.4

6.6

6.8

7

7.2

7.4

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 #
o

f
G

O
s

DecalreGo Period (s)

Effect of GO Declaration Period on
GO Count

Static Grid

Stationary Connected Graph

92.4

92.6

92.8

93

93.2

93.4

93.6

93.8

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 #
o

f
G

M
s

DecalreGo Period (s)

Effect of GO Declaration Period on
GM Count

Static Grid

Stationary Connected Graph

155

Figure 7-28 The effect of changing TdeclareGO on connectivity

 Regarding the overhead, we see in Figure 7-29 the number of service discovery

messages is increasing with the increase in TdeclareGO; this is very much expected, as

there are more service discovery exchanges. From the figure, also, we notice that the

management messages overhead starts with a small value when the connectivity was

0

2

4

6

8

10

12

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 #
o

f
P

M
s

DecalreGo Period (s)

Effect of GO Declaration Period on
PM Count

Static Grid

Stationary Connected Graph

0

0.02

0.04

0.06

0.08

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 #
o

f
O

rp
h

s

DecalreGo Period (s)

Effect of GO Declaration Period on
Orph Count

Static Grid

Stationary Connected Graph

0

0.5

1

1.5

2

2.5

3

3.5

4

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 #
o

f
C

o
n

n
ec

te
d

 C
o

m
p

o
n

en
ts

DecalreGo Period (s)

Effect of GO Declaration Period on Connected Component Count

Static Grid Stationary Connected Graph

156

not high, afterwards it is increased and stabilized. The reason for such behavior is that,

below 4s, there are some orphaned devices and the GM count is lower than other

intervals, which means that fewer management interactions.

Figure 7-29 The effect of changing TdeclareGO on overhead

 The power consumption, as shown in Figure 7-30, is increasing because of the

increase of message overhead shown in the previous figure. We can see that the

consumption starts with a low value then a big jump happens after 3s following the

message overhead and connectivity patterns. As the connectivity, does not change

much after 4s, we recommend setting the TdeclareGO interval to a value that gives just

enough service discovery exchanges to enhance the power consumption.

0

1000

2000

3000

4000

5000

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 #
o

f
SD

 M
sg

s

DecalreGo Period (s)

Effect of GO Declaration Period on
#of Service Disovery Messages

Static Grid

Stationary Connected Graph

0

1

2

3

4

5

6

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 #
o

f
M

gm
t

M
sg

s

DecalreGo Period (s)

Effect of GO Declaration Period on
#of Mgmt Messages

Static Grid

Stationary Connected Graph

157

Figure 7-30 The effect of changing TdeclareGO on power consumption

 The conclusion from this experiment is that giving enough time for the devices in

the GO declaration period yields better results in terms of connectivity. To control the

power consumption and overhead, we need not to set this parameter too high. A value

of 4s seems sufficient in this experiment.

7.4.2.2.3 TselectGO

 This parameter defines the length of the period that the GMs take to select their

groups. This time should be large enough to allow the reception of the SAP records

from all reachable GOs. However, extending this period is not desirable in order to

expedite the start of intra-group interactions. We could notice from Figure 7-31 that the

PM and connected component count are changing only slightly with the change of the

TselectGO parameter.

0

50

100

150

200

250

300

350

400

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 C
o

n
su

m
ed

 P
o

w
er

 (
m

J)

DecalreGo Period (s)

Effect of GO Declaration Period on Power Consumption

Static Grid Stationary Connected Graph

158

Figure 7-31 The effect of changing TselectGO on connectivity

 What we see from Figure 7-32 and Figure 7-33 is that the overhead of the discovery

service period and the power consumption are increasing when TselectGO is increased.

This result is expected, as the devices exchange more service discovery records when

we extend this period, and consequently more power is consumed.

Figure 7-32 The effect of changing TselectGO on overhead

0

2

4

6

8

10

12

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 #
o

f
P

M
s

SelectGo Period (s)

Effect of SelectGo Period on PMs
Count

Static Grid

Stationary Connected Graph

0

0.5

1

1.5

2

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 #
o

f
C

o
n

n
ec

te
d

 C
o

m
p

o
n

en
ts

SelectGo Period (s)

Effect of GO Selection Period on
Connected Component Count

Static Grid

Stationary Connected Graph

0

500

1000

1500

2000

2500

3000

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 #
o

f
SD

 M
sg

s

SelectGo Period (s)

Effect of GO Selection Period on #of
Service Disovery Messages

Static Grid

Stationary Connected Graph

159

Figure 7-33 The effect of changing TselectGO on power consumption

 From this experiment, we conclude that when choosing the TselectGO value we should

minimize its length to reduce overhead and power consumption. There is no gain from

increasing the length of this period in terms of connectivity. Based on this experiment,

setting TselectGO to 2s seems to be suitable.

7.4.2.2.4 THeartBeatGM

. During this experiment, we increased THeartBeatGM from 0.1s to 1s with 0.1s in between.

Decreasing such a value, while keeping the THeartBeatGO period the same increases the

number of message from GM to GO. Figure 7-34 shows the effect of such a parameter

on connectivity. We notice that at the beginning, where the number of heartbeat

messages are the highest, the number of PMs slightly grows. Increasing THeartBeatGM

reduces the PM count; nonetheless, it is almost stable around 10 and 8 for static grid

and stationary connected graph topologies, respectively. The connected components

number is fluctuating around a value of 1.1 most of the time. It is slightly worse at

0

50

100

150

200

250

300

350

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

m
J)

SelectGo Period (s)

Effect of SelectGo Period on Power Consumption

Static Grid Stationary Connected Graph

160

larger values of THeartBeatGM. As there is not much of change in connectivity, we see that

we do not need to set this parameter too low to reduce the number of management

messages. This would enhance the power consumption, as we will see next.

Figure 7-34 The effect of changing THeartBeatGM on connectivity

 From Figure 7-35, we see that the management overhead is diminishing with larger

values of THeartBeatGM; the service discovery overhead is not relevant here. It is desirable

to reduce such overhead, so it seems that setting THeartBeatGM to 1s gives the best result.

0

2

4

6

8

10

12

14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 #
o

f
P

M
s

GMs HeartBeat Period (s)

Effect of GMs HeartBeat Period on
PM Count

Static Grid

Stationary Connected Graph

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 #
o

f
C

C
s

GMs HeartBeat Period (ms)

Effect of GMs HeartBeat
Period on CC Count

Static Grid

Stationary Connected Graph

161

Figure 7-35 The effect of changing THeartBeatGM on overhead

 The response time is not a metric that would be impacted by this parameter, thus we

did not study it. In Figure 7-36, we find that the power consumption is enhanced when

we increase the value of THeartBeatGM. At 1s we get the lowest power consumption value.

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 #
o

f
m

sg
s

GMs HeartBeat Period (s)

Effect of GMs HeartBeat Period on #of Mgmt Messages

Static Grid Stationary Connected Graph

162

Figure 7-36 The effect of changing THeartBeatGM on power consumption

 From this experiment, we notice that if we could sacrifice a little bit in the

connectivity side in favor of reducing power consumption and the overhead, then we

can set THeartBeatGM to 1s.

7.4.2.2.5 THeartBeatGO

 This parameter is a management parameter as THeartBeatGM. Thus, we are interested

here in showing the connectivity (PM and Connected Components only), management

overhead, and power consumption. THeartBeatGO defines the period that a GO waits

before sending a heartbeat message to its GMs. Recall that the proxy assignments are

sent using the heartbeat messages, thus the inability of the GO to send at least one

heartbeat message would result in a hole in the coverage; If THeartBeatGO is greater than

TpxAssignment that could happen. In this experiment, TpxAssignment is set to 4s and changed

THeartBeatGO from 2s to 6s by increasing 1s to capture its effect the performance. Figure

0

50

100

150

200

250

300

350

400

450

500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 C
o

n
su

m
ed

 P
o

w
er

GMs HeartBeat Period (s)

Effect of GMs HeartBeat Period on Power consumption

Static Grid Stationary Connected Graph

163

7-37 shows the effect of this parameter on connectivity. We notice from the figure that

when THeartBeatGO is set to 2s we get the best connectivity results in terms of PM count

and number of connected components. Increasing such a value degrades connectivity,

specially beyond 4s. If we correlate these graphs with the fact that the numbers of GOs

that we get in this experiment were 7.2 and 6.4 for grid and connected graph topologies,

respectively, we can conclude that each group were disconnected from the other after

passing the 4s mark. Thus, we should keep the value of THeartBeatGO as low as possible.

Figure 7-37 The effect of changing THeartBeatGO on connectivity

 From Figure 7-38 and Figure 7-39, we find that the protocol overhead as well as the

power consumption are high with lower values of THeartBeatGO, and start to decrease

when THeartBeatGO grows. That is consistent with the fact that the number of responses

from the GO decreases with higher values of this parameter, thus reducing the power

consumption.

0

5

10

15

20

2 3 4 5 6

A
ve

ra
ge

 #
o

f
P

M
s

GO HeartBeat Period (s)

Effect of GO HeartBeat Period on
PM Count

Static Grid

Stationary Connected Graph

0

1

2

3

4

5

6

7

8

2 3 4 5 6

A
ve

ra
ge

 #
o

f
C

C
s

GO HeartBeat Period (s)

Effect of GO HeartBeat Period on
CCs Count

Static Grid

Stationary Connected Graph

164

Figure 7-38 The effect of changing THeartBeatGO on overhead

Figure 7-39 The effect of changing THeartBeatGO on power consumption

 As a conclusion from this experiment, we should set THeartBeatGO to a value that is less

than the TpxAssignment time to give the GO the chance to send PM assignments to its

0

1

2

3

4

5

6

7

8

9

2 3 4 5 6

A
ve

ra
ge

 #
o

f
M

sg
s

GO HeartBeat Period (s)

Effect of GO HeartBeat Period on #of Mgmt Messages

Static Grid Stationary Connected Graph

0

50

100

150

200

250

300

350

400

450

2 3 4 5 6

A
ve

ra
ge

 C
o

n
su

m
ed

 p
o

w
er

 (
m

J)

GO HeartBeat Period (s)

Effect of GO HeartBeat Period on Power Consumption

Static Grid Stationary Connected Graph

165

members. A value of 2s gives the best results at the expense of having slightly higher

power consumption and overhead.

7.4.2.2.6 TpxAssignment

 In this experiment, we varied TpxAssignment from 4s to 19s. The minimum value for

TpxAssignment, which is 4s, allows one GO heartbeat message to reach the GMs. Increasing

this value enables more heartbeat messages to be sent. What we have noticed during

this experiment is that changing such value beyond 4s has no benefit at all, as the

connected components stays at the same value, which is 1.16667, for both topologies.

No other performance metric is dependent on TpxAssignment.

7.5 Conclusions

 In this chapter, we have discussed the development of a simulator for Wi-Fi Direct

and the implementation of our integrated suite of protocols (ELN, ADS, EMC, ISNP).

Two different set of experiments were performed, one to capture the performance of

the Integrated EMC and the other to test the effect of various parameters on

performance. The simulation results have shown that our approach can provide

connectivity with minimal effect on the power consumption, response time, and

overhead. The results have also provided guidelines on how to set the different

parameters to yield the best performance.

166

Chapter 8: Conclusions and Future Work

 Advances in communication technology have made data sharing part of daily

activities and enabler for many applications. However, the tight coupling between

communication links and infrastructure makes it uneasy to share data in certain

situations where the infrastructure is down or unavailable. Our focus in this dissertation

is on enabling infrastructure-less data sharing between smart devices through the

development of a framework that creates and manages P2P links between these devices.

This chapter summarizes the contribution of the dissertation and outlines the planned

future work.

8.1 Summary of Contribution

 In this dissertation, we tackle the problem of data sharing between devices without

relying on communication infrastructures by utilizing the D2D communications

technologies available on smart devices. We have developed three novel protocols to

allow the sharing of data among users using Wi-Fi Direct, a protocol for IP subnet

negotiation, and a simulator for Wi-Fi Direct. The following is a summary of the

specific research contributions:

A. Alert Dissemination Protocol Using Service Discovery in Wi-Fi Direct (ADS):

ADS is meant for sharing small chunks of data or alerts in a quick manner that

is fast and is not limited by a group boundary. ADS uses service discovery on

Wi-Fi Direct to exchange data between smart devices without requiring setting

up any groups. The devices use the service discovery records to store data

167

locally. Other devices use service discovery requests to obtain such stored data.

The approach also manages the forwarding of new data and pruning of old data.

B. An Efficient and Lightweight Protocol for P2P Networking Smart Devices over

Wi-Fi Direct (ELN): ELN is a solution for sharing large amounts of data

between a small group of devices. ELN utilizes Wi-Fi Direct to setup a group

that allows all users to share data with each other. ELN provides a group

management solution that manages the addition and removal of devices as well

as the required connections.

C. Efficient Multi-Group Formation and Communication Protocol for Wi-Fi

Direct (EMC): This solution targets the case of sharing data among large

number of users that span wide area in a power efficient way. EMC dynamically

creates Wi-Fi Direct groups of Android smart devices based on certain ciriteria.

EMC then interconnects the formed groups using relay devices to achieve large

scale data sharing. Such an approach utilizes ADS for distributing vital protocol

specific data and ELN for intra-group interactions.

D. IP Subnet Negotiation Protocol for Seamless Multi-Group Communications

(ISNP): ISNP is developed to overcome the limitation of the Wi-Fi Direct

implementation in Android that forces all the created groups to share the same

IP subnet, which leads to IP address collisions. By overcoming such limitation,

we provide the necessary support to have full inter-group connectivity at the

transport layer. ISNP has an application layer module that is integrated with

168

EMC to allow groups to negotiate their subnets. An OS module is developed to

allow the devices to force Android to use their proposed subnets.

E. A Simulator for Wi-Fi Direct: Due to the lack of availability of simulation

environments for Wi-Fi Direct, we have developed a simulator to fill such a

gap. The simulator utilizes OMNet++ that provides a powerful simulation

kernel, INET Framework that have implementation for several networking

aspects, and Google OR-Tools that provides linear assignment and connectivity

libraries.

 The performance of ELN, ADS, EMC, and ISNP is validated through

implementation on Android devices and through simulation. In addition, an extensive

analysis of the performance of such approaches has been carried out. The results have

confirmed the advantages of our protocols in terms of connectivity, response times,

protocol overhead, and power consumption.

 We envision our proposed protocols to be part of Android and other platforms to

facilitate P2P data sharing. Building communication links only is not sufficient to

enable the required data sharing, thus a routing mechanism for data is warranted.

Witnessing data breaches happening every day elevates the importance of user security

and privacy. In addition, relying on Wi-Fi Direct solely to perform communication may

not suffice; instead multiple varying technologies could be blended together to provide

a sophisticated solution for infrastructure-less data sharing. All these aspects are part

of our future-plan, as we highlight next.

169

8.2 Future Work

 As we pointed out, the aim of this dissertation research is to enable users to share-

data in an infrastructure-less manner. Our investigations have pointed out tha Wi-Fi

Direct is the most suiyable means for building communication links. To that end, we

have developed ELN, ADS, EMC, and a supporting protocol ISNP presented in

chapters 3, 4, 5, and 6, respectively. In the future, we plan to further to extend our work

by providing a data routing service that eases the data retrieval and exchange. In

addition, we plan to protect the P2P services against attacks and ensure user privacy

through adding several security measures that prevent unauthorized users from

cheating or stealing sensitive user information. We plan also to investigate

incorporating other technologies, like Bluetooth, in our data sharing solution to provide

fault tolerance for communication links. Finally, expanding our work to other

platforms, like Apple iOS, is planned in order to support a wide base of users. The

following discusses the planned future research activities.

8.2.1 Routing Data Between Groups

 Our work provides the necessary means for creating communication links between

devices to allow data sharing. Sharing data between group members is handled by the

group owner. However, having several connected groups, means that we need to route

data once we cross the group boundary. Each group has several PMs to connect it with

other groups and selecting one of them to forward the data should be handled to

guarantee successful and efficient data sharing. Thus, we plan to develop a routing

mechanism that allows forwarding the data to devices on other groups efficiently.

170

8.2.2 Secure Data Sharing Between Devices

 To ensure user privacy and counter attacks we plan to incorporate security measures.

Several parts of our work rely on negotiating certain roles between devices through

service discovery frames in Wi-Fi Direct. There frames are transmitted using plain text

and could be captured by any nearby device. In addition, a malicious device could send

crafted service discovery frames to nearby devices to get them to assume that it has the

best rank. Such device could then take GO responsibility and intercept any data

transferred through the group. Likewise, if a denial of service attack is desired, a

malicious device could convince a GO to assign it the PM role, then such device would

drop any frame forwarded to it. Thus, we plan to apply several authentication and data

integrity mechanisms to prevent unauthorized user from capturing, manipulating, or

dropping shared data.

8.2.3 Incorporating Other D2D technologies

 We would like to explore the inclusion of other D2D technologies such as Bluetooth

Low Energy to increase the robustness of our data sharing framework, especially when

the wireless channels are subject to varying levels of interference. Such an extension

would also allow devices without Wi-Fi Direct support to involve in the data sharing

process. In addition, supporting other technologies can speed up the distribution of data

between close by devices, as we will have more than one transceiver to carry the traffic.

8.2.4 Extend our Work to Other Platforms

 We hope to have our data sharing solution utilized by a large base of users. Thus, we

plan to include support for other platforms, like Apple iOS. Apple has introduced

171

MultiPeerConnectivity Framework [86] to iOS since version 7.0. Such framework

supports the discovery of services provided by nearby devices. It also supports

communicating with devices that have such discovered services through different

ways, such as messages and streaming. In iOS, the framework uses Wi-Fi networks,

Wi-Fi Direct, and Bluetooth for the underlying transport. We plan to utilize such

framework for providing a cross-platform support for our data sharing solution.

172

References

[1] Betts, B.; et al., “Improving situational awareness for first responders via mobile

computing. NASA Ames Research Center,” Smart Systems Research Laboratory, 2006.

[2] Boddhu, S. ; et al.,"Increasing situational awareness using smartphones", Proc. SPIE 8389,

Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR

III, 83891J (May 1, 2012)

[3] Foresti, G.; Farinosi, M.; Vernier, M., "Situational awareness in smart environments: socio-

mobile and sensor data fusion for emergency response to disasters." Journal of Ambient

Intelligence and Humanized Computing, April 2015, Volume 6, Issue 2, pp 239-257.

[4] Mittelstädt, S.; et al., "An Integrated In-Situ Approach to Impacts from Natural Disasters

on Critical Infrastructures," in System Sciences (HICSS), 2015 48th Hawaii International

Conference on , vol., no., pp.1118-1127, 5-8 Jan. 2015.

[5] Salfinger, A.; et al., "Crowd-Sensing Meets Situation Awareness: A Research Roadmap

for Crisis Management," in System Sciences (HICSS), 2015 48th Hawaii International

Conference on , vol., no., pp.153-162, 5-8 Jan. 2015.

[6] Huang, Q.; Xiao, Y., "Geographic situational awareness: mining tweets for disaster

preparedness, emergency response, impact, and recovery." ISPRS International Journal

of Geo-Information, vol. 4, issue 3, pp. 1549-1568, 2015.

[7] Singhal, V., Jha, A., Gairola, A., "A networking solution for disaster management to

address liaison failures in emergency response." Risk Analysis IX 47, 401, 2014.

[8] Vieweg, S.; et al., "Microblogging during two natural hazards events: what twitter may

contribute to situational awareness." Proceedings of the SIGCHI conference on human

factors in computing systems. ACM, pp. 1079-1088, 2010.

[9] Yin, J.; et al., "Using social media to enhance emergency situation awareness." IEEE

Intelligent Systems, vol. 27, issue 6, pp.52-59, 2012.

[10] Haddawy, Peter, et al., "Situation awareness in crowdsensing for disease surveillance in

crisis situations." Proceedings of the Seventh International Conference on Information

and Communication Technologies and Development (ICTD 2015). 2015.

[11] Emergency AUS application: http://emergencyaus.info

[12] UN-ASIGN application: https://asign.cern.ch

[13] Thompson, C.; et al. "Using smartphones to detect car accidents and provide situational

awareness to emergency responders." Mobile Wireless Middleware, Operating Systems,

and Applications. Springer Berlin Heidelberg, pp. 29-42, 2010.

[14] Predic, B.; Stojanovic, D.; "Enhancing driver situational awareness through crowd

intelligence." Expert Systems with Applications, vol. 42, issue. 11, pp. 4892-4909, July

2010.

173

[15] Beattie, D.; et al., "What's around the corner?: enhancing driver awareness in autonomous

vehicles via in-vehicle spatial auditory displays." Proceedings of the 8th nordic

conference on human-computer interaction: fun, fast, foundational. ACM, New York,

NY, pp. 189-198, 2014.

[16] Baines, V.; Padget, J., "A Situational Awareness Approach to Intelligent Vehicle Agents."

Modeling Mobility with Open Data. Springer International Publishing, 2015, pp. 77-103.

[17] Wymeersch, H.; et al., "Challenges for cooperative ITS: Improving road safety through

the integration of wireless communications, control, and positioning," in Computing,

Networking and Communications (ICNC), 2015 International Conference on , vol., no.,

pp.573-578, 16-19 Feb. 2015.

[18] Moradi-Pari, E.; Tahmasbi-Sarvestani, A.; Fallah, Y.P., "A Hybrid Systems Approach to

Modeling Real-Time Situation-Awareness Component of Networked Crash Avoidance

Systems," in Systems Journal, IEEE , vol.PP, no.99, pp.1-10.

[19] Liu, Z.; Hacigümüs, H.’ "Online optimization and fair costing for dynamic data sharing

in a cloud data market." Proceedings of the 2014 ACM SIGMOD international conference

on Management of data. ACM, pp. 1359-1370, 2014.

[20] Chen, F.; et al., "Cloud-assisted distributed private data sharing." Proceedings of the 6th

ACM Conference on Bioinformatics, Computational Biology and Health Informatics.

ACM, pp. 202-211, 2015.

[21] Liu, Z.; et al., "Tmds: Thin-model data sharing scheme supporting keyword search in

cloud storage." Information Security and Privacy. Springer International Publishing, pp.

115-130, 2014.

[22] Thilakanathan, D.; et al., "A platform for secure monitoring and sharing of generic health

data in the Cloud." Future Generation Computer Systems, vol.35, pp. 102-113, 2014.

[23] Liu, Q.; Wang, G.; Wu, J., "Time-based proxy re-encryption scheme for secure data

sharing in a cloud environment." Information Sciences, vol. 258pp. 355-370, 2014.

[24] Liu, J.; et al., "Device-to-device communications for enhancing quality of experience in

software defined multi-tier LTE-A networks," in Network, IEEE , vol.29, no.4, pp.46-52,

July-August 2015

[25] Pratap, A.; Misra, R., "Firefly Inspired Improved Distributed Proximity Algorithm for

D2D Communication," in Parallel and Distributed Processing Symposium Workshop

(IPDPSW), 2015 IEEE International , vol., no., pp.323-328, 25-29 May 2015

[26] Jo, M.; Maksymyuk, T.; et al., "Device-to-device-based heterogeneous radio access

network architecture for mobile cloud computing," in Wireless Communications, IEEE ,

vol.22, no.3, pp.50-58, June 2015

[27] Ye, Q.; Al-Shalash, M.; et al., "Resource Optimization in Device-to-Device Cellular

Systems Using Time-Frequency Hopping," in Wireless Communications, IEEE

Transactions on , vol.13, no.10, pp.5467-5480, Oct. 2014

174

[28] Lin, X.; Andrews, J.G.; Ghosh, A., "Spectrum Sharing for Device-to-Device

Communication in Cellular Networks," in Wireless Communications, IEEE Transactions

on , vol.13, no.12, pp.6727-6740, Dec. 2014

[29] Nishiyama, H.; Ito, M.; Kato, N., "Relay-by-smartphone: realizing multihop device-to-

device communications," in Communications Magazine, IEEE , vol.52, no.4, pp.56-65,

April 2014

[30] Andreev, S.; et al., "Cellular traffic offloading onto network-assisted device-to-device

connections," in Communications Magazine, IEEE , vol.52, no.4, pp.20-31, April 2014

[31] Al-Kanj, L.; Poor, H.V.; Dawy, Z., "Optimal Cellular Offloading via Device-to-Device

Communication Networks With Fairness Constraints," in Wireless Communications,

IEEE Transactions on , vol.13, no.8, pp.4628-4643, Aug. 2014

[32] Google Inc., “Google Nearby,” online https://developers.google.com/nearby/?hl=en

[33] Bluetooth SIG (Hrsg.): “Specification of the Bluetooth System: Covered. Core Package

version: 4.2,” December, 2014.

[34] Ortiz, P., “Replacing cellular with WiFi direct communication for a highly interactive,

high bandwidth multiplayer game,” MSc. Thesis [online] Available:

http://hdl.handle.net/1721.1/84864, MIT 2013.

[35] Krifa, A.; et al., "BitHoc: A content sharing application for wireless ad hoc networks," in

Pervasive Computing and Communications, 2009. PerCom 2009. IEEE International

Conference on , vol., no., pp.1-3, 9-13 March 2009

[36] Bruno, R.; Conti, M.; Gregori, E., "Mesh networks: commodity multihop ad hoc

networks," in Communications Magazine, IEEE , vol.43, no.3, pp.123-131, March 2005

[37] Oliveira, L.B.; et al., "Evaluation of peer-to-peer network content discovery techniques

over mobile ad hoc networks," in World of Wireless Mobile and Multimedia Networks,

2005. WoWMoM 2005. Sixth IEEE International Symposium on a , vol., no., pp.51-56,

13-16 June 2005

[38] Tsai, T.; Chen, J., "IEEE 802.11 MAC protocol over wireless mesh networks: problems

and perspectives," in Advanced Information Networking and Applications, 2005. AINA

2005. 19th International Conference on , vol.2, no., pp.60-63 vol.2, 28-30 March 2005

[39] Parata, C.; Scarpa, V.; Convertino, G., "Flex-WiFi: a mixed infrastructure and ad-hoc

IEEE 802.11 network for data traffic in a home environment," in World of Wireless,

Mobile and Multimedia Networks, 2007. WoWMoM 2007. IEEE International

Symposium on a , vol., no., pp.1-6, 18-21 June 2007

[40] Armenia, S.; et al., "Transmission of VoIP traffic in multihop ad hoc IEEE 802.11b

networks: experimental results," in Wireless Internet, 2005. Proceedings. First

International Conference on , vol., no., pp.148-155, 10-14 July 2005

175

[41] Bensaou, B.; Fang, Z., "A Fair MAC Protocol for IEEE 802.11-Based Ad Hoc Networks:

Design and Implementation," in Wireless Communications, IEEE Transactions on , vol.6,

no.8, pp.2934-2941, August 2007

[42] Wi-Fi Alliance, “P2P Technical Group, Wi-Fi Peer-to-Peer (P2P) Technical Specification

v1.2,” December 2011.

[43] Camps-Mur, D.; Garcia-Saavedra, A.; Serrano, P., "Device-to-device communications

with Wi-Fi Direct: overview and experimentation," in Wireless Communications, IEEE ,

vol.20, no.3, pp.96-104, June 2013.

[44] IEEE Standard for Information technology--Telecommunications and information

exchange between systems Local and metropolitan area networks--Specific requirements

Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications," IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007) , vol., no.,

pp.1,2793, March 29 2012.

[45] R. Motta and J. Pasquale, “Wireless P2P: Problem or opportunity,” Proceedings of the

Second IARIA Conference on Advances in P2P Systems, Florence, Italy, October 2010,

pp. 32–37.

[46] Conti, M.; et al., “Experimenting opportunistic networks with WiFi Direct,” Proceedings

of the Sixth Wireless Days Conference, Valencia, Spain, November 2013, pp. 1-6

[47] Je, Huigwang; et al., "Mobile network configuration for large-scale multimedia delivery

on a single WLAN," Network Operations and Management Symposium (APNOMS),

2014 16th Asia-Pacific, vol., no., pp.1-6, Sept. 2014

[48] Lombera, I.; et al., “Peer management for iTrust over Wi-Fi Direct,” Proc. International

Symposium on Wireless Personal Multimedia Communications, Atlantic City, NJ, Jun.

2013

[49] Park, J.; et al., “DirectSpace: A Collaborative Framework for Supporting Group

Workspaces over Wi-Fi Direct,” MUSIC 2013, pp. 55-61

[50] Botrel Menegato, Urbano, et al. "Dynamic clustering in wifi direct technology." Proc. of

the 12th ACM international symposium on Mobility management and wireless access

(MOBIWAC 2014), Montreal, Canada, May 2014.

[51] P. Chaki, M. Yasuda and N. Fujita, “Seamless Group Reformation in WiFi Peer to Peer

network using dormant backend links,” Proc. of the 12th Annual IEEE Consumer

Communications and Networking Conference (CCNC 2015), Las Vegas, NV, Jan 2015.

176

[52] Zhang, H.; Wang, Y.; Tan, C., “WD2: an improved wifi-direct group formation protocol,”

In Proceedings of the 9th ACM MobiCom workshop on Challenged networks (CHANTS

'14). ACM, New York, NY, USA, 55-60, 2014.

[53] Duan, Y.; et. al, “Wi-Fi Direct Multi-group Data Dissemination for Public Safety,” Proc.

of the World Telecommunications Congress (WTC 2014), Berlin, Germany, June 2014.

[54] A. Laha, X. Cao, W. Shen, X. Tian and Y. Cheng, "An energy efficient routing protocol

for device-to-device based multihop smartphone networks," Proc. of the IEEE

International Conference on Communications (ICC 2015), London, June 2015.

[55] W. R. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An application-specific

protocol architecture for wireless microsensor networks,” IEEE Transactions on Wireless

Communications, Vol. 1, pp. 660-670, 2002.

[56] Wong, P.; et al., “Automatic Android-based Wireless Mesh Networks.” Informatica

(Slovenia) , 38(4), 2014.

[57] Doukha, Z.; Moussaoui, S.; Haouari, N., "An efficient alert dissemination protocol in a

vehicular ad hoc network," Digital Information Management (ICDIM), 2012 Seventh

International Conference on , vol., no., pp.68,72, 22-24 Aug. 2012.

[58] Rehman, O.M.H.; Bourdoucen, H.; Ould-Khaoua, M., "Efficient alert messages

dissemination in VANETs using single-hop distributed protocols," Wireless and Mobile

Networking Conference (WMNC), 2013 6th Joint IFIP , vol., no., pp.1,4, 23-25 April

2013.

[59] Suriyapaiboonwattana, K.; Pornavalai, C.; Chakraborty, G., "An adaptive alert message

dissemination protocol for VANET to improve road safety," Fuzzy Systems, 2009. FUZZ-

IEEE 2009. IEEE International Conference on , vol., no., pp.1639,1644, 20-24 Aug.

2009

[60] Fogue, M.; Garrido, P.; Martinez, F.J.; Cano, J.; Calafate, C.T.; Manzoni, P., "An

Adaptive System Based on Roadmap Profiling to Enhance Warning Message

Dissemination in VANETs," Networking, IEEE/ACM Transactions on , vol.21, no.3,

pp.883,895, June 2013

[61] Garcia-Lozano, E.; Campo, C.; Garcia-Rubio, C.; Cortes-Martin, A.; Rodriguez-Carrion,

A.; Noriega-Vivas, P. “A Bandwidth-Efficient Service for Local Information

Dissemination in Sparse to Dense Roadways,” Sensors 2013, 13, 8612-8639.

[62] Sardar, A., “Improving Performance of IEEE 802.11 p MAC Layer for Emergency

Message Dissemination,” MS Thesis, Tamere University of Technology, Finland, 2013.

177

[63] Huang, H.; et al., "Performance Evaluation of an Alert Dissemination Engine based on

the AT&T Enterprise Messaging Network."

[64] Chen, Yu-Jia; Lin, Chia-Yu; Wang, Li-Chun, "A personal emergency communication

service for smartphones using FM transmitters," Personal Indoor and Mobile Radio

Communications (PIMRC), 2013 IEEE 24th International Symposium on , vol., no.,

pp.3450,3455, 8-11 Sept. 2013.

[65] Chen, Yu-Jia; Lin, Chia-Yu; Wang, Li-Chun, "Sensors-assisted rescue service

architecture in mobile cloud computing," Wireless Communications and Networking

Conference (WCNC), 2013 IEEE , vol., no., pp.4457,4462, 7-10 April 2013

[66] Teranishi, Y.; Shimojo, S., "MONAC: SNS message dissemination over smartphone-

based DTN and cloud," Peer-to-Peer Computing (P2P), 2011 IEEE International

Conference on , vol., no., pp.158,159, Aug. 31 2011-Sept. 2 2011

[67] Thomas J.; Robble, J., “Off grid communication with Android: Meshing the mobile

world,” https://media.blackhat.com/eu-13/briefings/Thomas/bh-eu-13-off-grid-

communication-wp.pdf

[68] Kolios, P.; et al., "Qualifying explore and exploit for efficient data dissemination in

emergency adhoc networks," Pervasive Computing and Communications Workshops

(PERCOM Workshops), 2014 IEEE International Conference on , vol., no., pp.303,307,

24-28 March 2014.

[69] Jalihal, D.; et al., "A rapidly deployable disaster communications system for developing

countries," Communications (ICC), 2012 IEEE International Conference on , vol., no.,

pp.6339,6343, 10-15 June 2012

[70] George, S.M.; et al., "DistressNet: a wireless ad hoc and sensor network architecture for

situation management in disaster response," Communications Magazine, IEEE , vol.48,

no.3, pp.128,136, March 2010

[71] Lorincz, K.; et al., "Sensor networks for emergency response: challenges and

opportunities," Pervasive Computing, IEEE , vol.3, no.4, pp.16,23, Oct.-Dec. 2004

[72] Lien, Yao-Nan; Jang, H; Tsai, T., "A MANET Based Emergency Communication and

Information System for Catastrophic Natural Disasters," Distributed Computing Systems

Workshops, 2009. ICDCS Workshops '09. 29th IEEE International Conference on , vol.,

no., pp.412,417, 22-26 June 2009

178

[73] Reina, D.G.; et al., "An Evolutionary Computational Approach for Optimizing

Broadcasting in Disaster Response Scenarios," Innovative Mobile and Internet Services

in Ubiquitous Computing (IMIS), 2013 Seventh International Conference on , vol., no.,

pp.94,100, 3-5 July 2013

[74] Reina, D. G.; et al., "Multi-objective performance optimization of a probabilistic

similarity/dissimilarity-based broadcasting scheme for mobile ad hoc networks in

disaster response scenarios." Soft Computing (2013): 1-12.

[75] Qualcomm Technologies, Inc., “LTE Direct: The Case for Device-to-Device Proximate

Discovery,” Feb. 2013, http://www.qualcomm.com/media/documents/qualcomm-

research-ltedirect-overview.

[76] Shahin, A.; Younis, M., “A framework for P2P networking of smart devices using Wi-Fi

direct,” in 2014 IEEE 25th International Symposium on Personal, Indoor and Mobile

Radio Communications - (PIMRC): Services Applications and Business (IEEE PIMRC

2014 - Services Applications and Business), Washington, DC, USA, Sep. 2014, pp.

2087–2092.

[77] Shahin, A., “WiFi Direct Sensors,” [online] Available:

https://play.google.com/store/apps/details?id=esnetlab.apps.android.wifidirectsensors

[78] Shahin, A., “WiFi Direct Group Chat,” [online] Available:

https://play.google.com/store/apps/details?id=esnetlab.apps.android.wifidirect.discover

y

[79] Shahin, A.; Younis, M., “Alert Dissemination Protocol Using Service Discovery in Wi-

Fi Direct,” Proc. IEEE Int’l Symp. Communications Software, Services and Multimedia

Applications. (ICC’15), London, UK, June. 2015.

[80] Shahin, A.; Younis, M., “Efficient Multi-Group Formation and Communication Protocol

for Wi-Fi Direct,” Proc. 40th Annual IEEE Conference on Local Computer Networks

(LCN 2015), pp. 442-445, Clearwater Beach, USA, Oct. 2015.

[81] Shahin, A.; Younis, M., “Wi-Fi Direct based Peer-to-Peer System for Smart Devices,” to

be submitted to IEEE Systems Journal.

[82] J. Munkres “Algorithms for the Assignment and Transportation Problems” J. Society for

Industrial and Applied Math. 5(1), Mar. 1957.

[83] Andras Varga et al. "OMNet++ Discrete Event Simulator," [online] Available:
https://omnetpp.org/

179

[84] Andras Varga et al. "INET Framework," [online] Available: https://inet.omnetpp.org/

[85] Google, “OR-Tools,” [online] Avialable: https://developers.google.com/optimization/

[86] Apple, “Apple Developer Documentation,” [online] Avialable:

https://developer.apple.com/reference/multipeerconnectivity

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1: Preliminaries and Research Problem
	1.1 Introduction
	1.2 Device-to-Device Technologies
	1.2.1 Bluetooth
	1.2.2 Wi-Fi Ad-hoc Mode
	1.2.3 Wi-Fi Direct
	1.2.3.1 Basic Operation
	1.2.3.2 Concurrent Operations
	1.2.3.3 Group Formation and Device Addressing
	1.2.3.4 Service Discovery in Wi-Fi Direct
	1.2.3.5 Android Implementation of Wi-Fi Direct and its Limitations

	1.3 Research Goals
	1.4 Research Contribution
	1.5 Organization

	Chapter 2: Related Work
	2.1 Data Sharing using Wi-Fi Direct
	2.1.1 The applicability of Wi-Fi Direct
	2.1.2 Intra-Group Data Sharing in Wi-Fi Direct
	2.1.3 Inter-Group Data Sharing:

	2.2 Data Sharing using other Technologies
	2.2.1 Data Sharing in VANETs
	2.2.2 Data Sharing in Mobile Devices/Networks
	2.2.3 Data Sharing in Ad-hoc Networks

	Chapter 3: Alert Dissemination Protocol Using Service Discovery in Wi-Fi Direct
	3.1 Problem Statement and Solution Strategy
	3.2 ADS Protocol
	3.2.1 Service Record
	3.2.2 Local Alert Management
	3.2.3 Managing Remote Alerts

	3.3 ADS Implementation
	3.4 Performance Analysis
	3.4.1 Alert Reporting
	3.4.2 Alert Pruning

	3.5 Conclusions

	Chapter 4: Efficient P2P Networking of Smart Devices over Wi-Fi Direct
	4.1 ELN Approach
	4.1.1 Connection Establishment Phase
	4.1.2 Group Management Phase
	4.1.2.1 Layers of Connections
	4.1.2.2 GO and GMs Interactions
	4.1.2.2.1 Heartbeat Messages
	4.1.2.2.2 Announcing the List of Available Peers
	4.1.2.2.3 Duplicate Connections Removal
	4.1.2.2.4 Pruning Peers
	4.1.2.2.5 Restarting After GO Failure

	4.2 Implementation and Validation
	4.2.1 Android Implementation Issues
	4.2.2 Remote Streaming of Sensors Readings
	4.2.3 Group Chatting

	4.3 Performance Evaluation
	4.3.1 Protocol Overhead
	4.3.2 Topology changes

	4.4 Conclusions

	Chapter 5: Efficient Multi-Group Formation and Communication Protocol for Wi-Fi Direct
	5.1 Approach Overview
	5.1.1 Support of Initial Data Exchange:
	5.1.1.1 Battery Specifications
	5.1.1.2 The Proposed GO
	5.1.1.3 SAP Credentials

	5.1.2 Support of Intra and Inter Group Communication
	5.1.3 Insuring Network Connectivity

	5.2 EMC Protocol
	5.2.1 Choosing Proposed GOs
	5.2.2 Creating Groups
	5.2.3 Selecting a Group to Join
	5.2.4 Selecting Proxy Members
	5.2.5 Teardown and restart

	5.3 EMC Implementation
	5.3.1 Wi-Fi Direct Multi-Group Chat Application for Android
	5.3.2 Android Framework Modifications
	5.3.3 Test Cases
	5.3.3.1 Test Case 1: Group creation
	5.3.3.2 Test Case 2: Multi-Group Communication

	5.4 Performance Analysis
	5.4.1 Group Formation
	5.4.2 Multi-Group Communication

	5.5 Conclusion

	Chapter 6: IP Subnet Negotiation in Wi-Fi Direct for Seamless Multi-Group Communications.
	6.1 Problem Statement
	6.2 The ISNP Protocol
	6.2.1 ISNP Overview
	6.2.2 Application-Level Module
	6.2.2.1 The Operation of the Application-Level Module
	6.2.2.2 Randomly Generating Subnets

	6.2.3 OS-Level Module

	6.3 Implementation and Testing
	6.3.1 Response Time Performance
	6.3.2 Subnet Conflict Evaluation
	6.3.3 Integration with EMC

	6.4 Conclusion

	Chapter 7: Simulation Experiments
	7.1 Building a Simulator for Wi-Fi Direct
	7.1.1 Tools Used for the Simulator
	7.1.2 Implementing the Simulator

	7.2 Experiment Setup
	7.3 Performance Metrics
	7.3.1 Connectivity
	7.3.2 Response Time
	7.3.3 Messaging Overhead
	7.3.4 Power Consumption
	7.3.5 Subnet Conflicts

	7.4 Simulation Results
	7.4.1 Performance of Integrated EMC
	7.4.1.1 GO Declaration Criteria
	7.4.1.1.1 Static Grid
	7.4.1.1.2 Stationary Connected Graph

	7.4.1.2 PM Assignment Method
	7.4.1.2.1 Static Grid
	7.4.1.2.2 Stationary Connected Graph

	7.4.2 The Effect of Parameters
	7.4.2.1 Parameters Affecting Radio Links
	7.4.2.1.1 TxPower
	7.4.2.1.2 PathLoss
	7.4.2.1.3 Mobility

	7.4.2.2 Protocol Parameters
	7.4.2.2.1 TsendInterval
	7.4.2.2.2 TdeclareGO
	7.4.2.2.3 TselectGO
	7.4.2.2.4 THeartBeatGM
	7.4.2.2.5 THeartBeatGO
	7.4.2.2.6 TpxAssignment

	7.5 Conclusions

	Chapter 8: Conclusions and Future Work
	8.1 Summary of Contribution
	8.2 Future Work
	8.2.1 Routing Data Between Groups
	8.2.2 Secure Data Sharing Between Devices
	8.2.3 Incorporating Other D2D technologies
	8.2.4 Extend our Work to Other Platforms

	References

