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Abstract 14 

Living organism is an intelligent system coded by hierarchically-organized information to 15 

perform precisely-controlled biological functions. Biophysical models are important tools to 16 

uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a 17 

previously engineered synthetic malonyl-CoA switch (Xu et al, PNAS 2014), we have 18 

formulated nine differential equations to unravel the design principles underlying an ideal 19 

metabolic switch to improve fatty acids production in E. coli. By interrogating the 20 

physiologically accessible parameter space, we have determined the optimal controller 21 

architecture to configure both the metabolic source pathway and metabolic sink pathway. We 22 

determined that low protein degradation rate, medium strength of metabolic inhibitory constant, 23 

high metabolic source pathway induction rate, strong binding affinity of the transcriptional 24 

activator toward the metabolic source pathway, weak binding affinity of the transcriptional 25 

repressor toward the metabolic sink pathway, and a strong cooperative interaction of 26 

transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target 27 

molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-28 

folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory 29 

constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate 30 

is the driving force to allow the system deviate from its equilibrium state and permits 31 

bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level 32 

for both the metabolic source and metabolic sink pathways. The computational framework may 33 

facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal 34 

controller architecture of the metabolic source/sink pathways, as well as leverage autonomous 35 

oscillation as a powerful tool to engineer cell function. 36 

Key words: autonomous oscillation, metabolic switches, biophysical models, controller 37 

architecture, metabolic engineering, synthetic biology 38 

  39 
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Introduction 40 

In recent years, there is an influx of applying dynamic control theory to optimize metabolic 41 

pathways for production of various chemicals (Venayak, Anesiadis et al. 2015, Xu 2018, Xia, 42 

Ling et al. 2019). The marriage of intelligent control with synthetic biology have fruited a large 43 

volume of experimental and computational works that allow us to embrace a “dynamic” 44 

perspective to engineer cell metabolism (Zhang, Carothers et al. 2012, Xu, Li et al. 2014, Gupta, 45 

Reizman et al. 2017). The notion of “metabolic homeostasis” is a result of the dynamic interplay 46 

of the various biomolecules inside the cell (Xu 2018, Lv, Qian et al. 2019). Take the glycolytic 47 

pathway as an example, oscillating metabolic flux could arise due to the feedback inhibition of 48 

the phosphofructokinase by cellular energy levels (specifically, ATP, ADP and AMP) (Sel'kov 49 

1968, Bier, Bakker et al. 2000, Chandra, Buzi et al. 2011, Gustavsson, van Niekerk et al. 2014). 50 

Another classical example is the Lac operon, hysteresis and multiple steady states could arise 51 

due to the positive feedback loop of the intake of the inducer (IPTG or lactose) by lactose 52 

permease encoded by LacY (Yildirim and Mackey 2003, Santillán, Mackey et al. 2007, 53 

Stamatakis and Mantzaris 2009). Inspired by this phenomena, early synthetic biology effort is 54 

spent extensively on constructing artificial genetic circuits by mimicking the electrical 55 

counterparts of the physical word (Andrianantoandro, Basu et al. 2006). Combing with 56 

mathematical modeling, a collection of classical work has emerged in the early 2000s, including 57 

the well-known toggle switch (CHEN and BAILEY 1994, Gardner, Cantor et al. 2000), 58 

repressilator (Elowitz and Leibler 2000) and metabolator (Fung, Wong et al. 2005) et al. These 59 

seminal works have encouraged us to employ biophysical models to quantitatively unravel and 60 

test the complicated molecular interactions underlying many perplexing biological problems, 61 

which marks the birth of synthetic biology. 62 

With about one decade, the post-term impact of synthetic biology starts yielding fruits in the 63 

metabolic engineering field (Keasling 2010). From a control perspective, metabolic enzyme 64 

could be the “actuator” that performs chemical conversion (i.e. kinase phosphorylation, 65 

chromatin deacetylation) or the “transducer” that generates secondary messenger (i.e. cAMP or 66 

acetyl-CoA) (Smolke and Silver 2011, Michener, Thodey et al. 2012). Moving beyond the logic 67 

circuits engineering (AND, OR, NOT, NOR gates et al) (Tamsir, Tabor et al. 2011, Wang, 68 

Kitney et al. 2011, Moon, Lou et al. 2012), metabolic engineers have been able to harness 69 

various regulatory mechanisms, including repression (Liu, Xiao et al. 2015), activation (Doong, 70 
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Gupta et al. 2018), attenuation (Benzinger and Khammash 2018) or RNA silencing (Yang, Lin et 71 

al. 2018), to rewire carbon flux and dynamically control cell metabolism. A number of control 72 

architectures (Oyarzún and Stan 2013, Liu, Xiao et al. 2015, Oyarzún and Chaves 2015, 73 

Venayak, Anesiadis et al. 2015, Chaves and Oyarzún 2019) have emerged and been applied to 74 

relieve metabolic burden (Ceroni, Boo et al. 2018), eliminate intermediate toxicity (Xu, Li et al. 75 

2014), decouple cell growth from metabolite production (Bothfeld, Kapov et al. 2017, Doong, 76 

Gupta et al. 2018), eliminate metabolic heterogeneity (Xiao, Bowen et al. 2016, Rugbjerg, 77 

Myling-Petersen et al. 2018, Rugbjerg, Sarup-Lytzen et al. 2018, Wang and Dunlop 2019). The 78 

interdisciplinary connection among control theory, genetic principles, ecological and evolutional 79 

rules open a new venue for us to design and engineer precisely controlled genetic-metabolic 80 

circuits to reprogram biological functions (Calles, Goñi-Moreno et al. 2019). Engineering such 81 

decision-making functions to rewire the genetic (information) flow to redirect/optimize 82 

metabolic flux will enable us to deliver intelligent microbes for a broad range of applications, 83 

ranging from biocomputation, bioremediation, biosensing, biosynthesis to therapeutics (Nikel, 84 

Chavarría et al. 2016, Gao, Xu et al. 2019, Grozinger, Amos et al. 2019). 85 

One of the essential tasks for metabolic engineers is to dynamically allocate carbon flux, so that 86 

the limited cellular resources could be harnessed to maximize the production of the target 87 

molecules (Xu, Bhan et al. 2013, Wan, Marsafari et al. 2019). Considering that the cell’s goal is 88 

to proliferate, there is always a tradeoff or conflicts between cell growth and metabolite 89 

overproduction. This will require us to equip the cells with various sensors to detect a broad 90 

range of environmental cues, cellular stimuli or metabolite intermediates (Zhang, Jensen et al. 91 

2015, Wan, Marsafari et al. 2019), in such a way the cell can autonomously adjust gene 92 

expression or cell metabolism to compensate the loss or eliminate the surplus of enzyme activity. 93 

To achieve this, a number of control architectures, including the incoherent feedforward loop 94 

(Dunlop, Keasling et al. 2010, Harrison and Dunlop 2012), the invertor gate (Liu, Xiao et al. 95 

2015), the metabolic toggle switch (Soma, Tsuruno et al. 2014) and the metabolic valve 96 

(Solomon and Prather 2011), have been implemented to improve the cellular tolerance to 97 

biofuels, or improve chemical production. 98 

One of the highly studied dynamic control system is centering around the malonyl-CoA node 99 

(Xu, Li et al. 2014, Fehér, Libis et al. 2015, Albanesi and de Mendoza 2016, David, Nielsen et al. 100 

2016). Malonyl-CoA is the essential metabolic building blocks for synthesizing advanced 101 
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biofuels (Xu, Gu et al. 2013), lipids (Qiao, Wasylenko et al. 2017, Xu, Qiao et al. 2017), 102 

polyketides (Zhou, Qiao et al. 2010, Liu, Marsafari et al. 2019), oleochemicals (Xu, Qiao et al. 103 

2016), flavonoids (Xiu, Jang et al. 2017) and cannabinoids (Luo, Reiter et al. 2019) et al. High 104 

level of malonyl-CoA benefits the production of these metabolites (Yang, Kim et al. 2018) but 105 

also inhibits cell growth (Xu, Li et al. 2014, Liu, Xiao et al. 2015). Up to date, the FapR-derived 106 

malonyl-CoA sensor has been successfully applied to mammalian cell (Ellis and Wolfgang 2012), 107 

E. coli (Xu, Wang et al. 2014, Yang, Kim et al. 2018) and yeast (Li, Si et al. 2015, David, 108 

Nielsen et al. 2016). In particular, a recent development of the malonyl-CoA oscillator (Xu, Li et 109 

al. 2014) has garnered significant attractions and allows us to study the optimal configurations of 110 

the controller architecture (Fig. 1). By integrating genetic and metabolic circuits, we have been 111 

able to experimentally construct and validate a malonyl-CoA oscillatory switch that was 112 

engineered to improve fatty acids production in E. coli (Xu, Li et al. 2014). Experimentally, we 113 

have engineered malonyl-CoA-responsive promoters that could be upregulated or down-114 

regulated by FapR, and the activation or the repression could be abolished by malonyl-CoA. This 115 

dual direction ON-OFF control mimics the amino acid feedforward and feedback regulation that 116 

are naturally occurring in many bacteria.  117 

One essential question is how to effectively configure the regulatory architecture of the 118 

metabolic source pathway and the metabolic sink pathway. To unravel the design principles 119 

underlying the malonyl-CoA switch, we set about to establish a biophysical model (system of 120 

ODE equations) and interrogated a broad range of parameter spaces, including the protein 121 

degradation rate (D), malonyl-CoA inhibitory constant (1/K1) and malonyl-CoA source pathway 122 

induction rate (β2). We also determined the optimal regulatory architecture for both the malonyl-123 

CoA source pathway (ACCase) and the malonyl-CoA sink pathway (FAS), defined by the FapR-124 

UAS dissociation constant (K4), FapR-fapO dissociation constant (K3) as well as the FapR-fapO 125 

Hill cooperativity coefficient (n). Our aim in this work is to understand how autonomous 126 

oscillation may contribute to optimal metabolite (fatty acids) production in strain engineering. 127 

The computational framework may facilitate us to design and engineer predictable genetic-128 

metabolic switches, quest for the optimal controller architecture of the metabolic source/sink 129 

pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function. 130 
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 131 

Fig. 1. A malonyl-CoA switch to dynamically control fatty acids biosynthesis. (A) Autonomous 132 

ON-OFF control of malonyl-CoA. FapR activates pGAP promoter and upregulates the 133 

transcription of the malonyl-CoA source pathway (ACC) which generates malonyl-CoA; FapR 134 

represses T7 promoter and shuts down the transcription of the malonyl-CoA sink pathway (FAS) 135 

which consumes malonyl-CoA. The FapR bindings sites on the ACC operon is an upstream 136 

activation sequence (UAS). The FapR binding sites on the FAS operon is the fapO operator. 137 

Malonyl-CoA is the effector molecule (ligand) that antagonizes the activity of FapR. (B) Four 138 

possible genetic configurations of malonyl-CoA controller, which could be explored by changing 139 

the sign of the Hill coefficients (n and p) listed in Eqn. 4 and Eqn. 5. The black arrow with red 140 

cross indicates either transcriptional activation or repression.  141 

Computational method and system equations 142 

Assumptions to develop the system equations 143 

To simplify the biochemical and genetic events, we made eight assumptions to extract the basics 144 

of the genetic-metabolic circuits (Fig. 1): (a) We assume the number of DNA binding sites, 145 

specifically, FapO and UAS, far exceeds the number of transcriptional factor FapR in the system. 146 

Therefore, the repression rate of FAS or the activation rate of ACC are independent of the 147 

number of FapO and UAS in the system. (b) Glycolytic pathway (9 reactions) could be lumped 148 

into one single reaction to forming acetyl-CoA from glucose by PDH. (c) Fatty acids 149 

biosynthesis could be lumped into one single reaction to forming fatty acids (FA) from malonyl-150 

CoA by FAS. (d) Malonyl-CoA depletion rate due to the formation of malonyl-CoA-FapR 151 

complex is negligible in the mass balance equation of malonyl-CoA (Eqn. 7). (e) The total 152 
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enzyme or FapR concentration are approximately equivalent to the free enzyme or free FapR 153 

concentrations. (f) For non-regulated protein production (i.e. FapR and PDH), the production rate 154 

is cell growth-associated, therefore the production rate is proportional to the cell growth rate. (g) 155 

For regulated protein production (i.e. FAS and ACC), the production rate consists of both leaky 156 

expression (which is growth-associated) and regulated expression (which is non growth-157 

associated) in the mass balance equations.  (h) The cytosol is a homogenous and well-mixed 158 

system without mass transfer or diffusion limitations, where D could be interpreted as the 159 

dilution rate for CSTR or degradation constant for batch culture. 160 

Formulation of the kinetic rate and mass balance equations 161 

We formulated the kinetic rate models (Table 1) on the basis of Michaelis-Mention equation for 162 

enzyme-substrate equations, Monod kinetics (Xu 2020) with metabolite (Malonyl-CoA) 163 

inhibition for cell growth, Hill-type equations for enzyme kinetics and metabolite-TF binding. 164 

Specifically,  Eqn. 1 describes the specific growth rate, which follows Monod growth with 165 

glucose as limiting nutrients and malonyl-CoA as inhibitory factor; Eqn. 2 describes the mass 166 

balance for cell growth; Eqn. 3 describes the growth-associated production of FapR and the 167 

depletion of FapR due to the formation of FapR-Malonyl-CoA complex; Eqn. 4 describes the 168 

growth-associated production (leaky expression) of FAS and the regulated expression of FAS 169 

repressed by FapR; Eqn. 5 describes the growth-associated production (leaky expression) of 170 

ACC and the regulated expression of ACC activated by FapR; Eqn. 6 describes the production 171 

rate of fatty acids (FA) from malonyl-CoA; Eqn. 7 describes the mass balance for malonyl-CoA, 172 

accounting for both the malonyl-CoA source (ACC) pathway and the malonyl-CoA sink (FAS) 173 

pathway; Eqn. 8 describes the mass balance for acetyl-CoA, accounting for both the acetyl-CoA 174 

source (PDH) pathway and the acetyl-CoA sink (ACC) pathway; Eqn. 9 describes the PDH 175 

production rate which is proportional to the cell growth rate; and Eqn. 10 describes the mass 176 

balance for glucose, accounting for the consumption rate due to cell growth and acetyl-CoA 177 

production. For all the mass balance equations (Eqn. 2 to Eqn. 10), we also considered the 178 

dilution or degradation terms. Biomass and cell concentration in the feeding stream of the system 179 

were designated as S0 and X0.  180 

Table 1. Equations used to define the autonomous oscillatory genetic-metabolic circuits. 181 

Equation No. Equations used in this work 
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Computational methods 182 

Matlab R2017b was used as the computational package on a Windows 7 professional operation 183 

system. The CPU processor is Intel Core i3-6100 with 3.70 GHz. The installed memory (RAM) 184 

is 4.0 GHz. Matlab symbolic language package coupled with LaTex makeup language were used 185 

to compile the equations (Table 1). ODE45 solver was used to simulate and predict the system 186 

behavior. Matlab plot function was used to output the solutions and graphs. Matlab codes will be 187 

shared upon request. Biological parameters for Fig. 2 to Fig. 10 could be found in the 188 

supplementary files. Most of the parameters were assigned on the basis of BioNumbers database 189 

(Milo, Jorgensen et al. 2009). Jacobian matrices were evaluated according to a reported 190 

numerical method (Auralius Manurung (2020). Calculate Jacobian of a function numerically at a 191 

given condition (https://www.github.com/auralius/numerical-jacobian)).  192 

Initial states determine the final states for dynamic system. In this work, the initial conditions 193 

were taken on the basis of physiologically accessible dataset of biochemical systems. Most of the 194 

numbers were consistent with biochemical engineering textbooks, including Shuler & Kargi, 195 

Bioprocess engineering; and Blanch & Clark, Biochemical Engineering et al. These initial 196 

conditions come with SI unit and is provided in the SI file. 197 

Results and Discussion 198 

Effect of protein/metabolite degradation rate (dilution rate) on system dynamic behavior 199 

To understand the system dynamics, we probed a number of parameter space to generate the 200 

dynamic pattern that meets our design and control criteria. A list of parameters could be found in 201 

the supplementary files. We first investigated how protein/metabolite degradation rate impacts 202 

the system dynamics (Fig. 2). For all the simulations, we used six species, including regulator 203 

protein FapR, fatty acid synthase (FAS), acetyl-CoA carboxylase (ACCase), target product fatty 204 

acids (FA), intermediates malonyl-CoA (MalCoA) and acetyl-CoA (AcCoA), to represent the 205 

system. 206 
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Under the prescribed parameter conditions (supplementary files) with protein degradation rates 207 

ranging from 0.15 to 0.60 (the unit is inverse of time), we evaluated the trajectory of the 208 

numerical solutions of the system ODE equations (Table 1). For relatively high degradation rate 209 

(D ≥ 0.2), we observed that the system solutions are approximately behaving like a damped 210 

oscillator (Fig. 2). On the other hand, the low degradation rate (or longer residence time, i.e. D = 211 

0.15 in Fig. 2) allows the system to oscillate stably with fixed frequency and amplitude, leading 212 

to the highest fatty acids production (Fig. 2). For example, fatty acids production at low protein 213 

degradation rate (D = 0.15) is about 10-folds higher than the fatty acids production at high 214 

protein degradation rate (D = 0.6). This is not counterintuitive as low degradation rate allows the 215 

protein catalysts stay longer in the system (Gao, Hou et al. 2019). And the stable oscillation 216 

indicates that the designed control scheme could perform alternating ON-OFF control of the 217 

malonyl-CoA source pathway and malonyl-CoA sink pathway. Interestingly, the fatty acids 218 

production pattern is closely related with the malonyl-CoA sink pathway (FAS), but doesn’t 219 

correlate well with the activity of the malonyl-CoA source pathway (ACC). This is rooted in our 220 

initial assumptions that sufficient malonyl-CoA will inhibit cell growth. As a result, the 221 

intermediate acetyl-CoA and malonyl-CoA displays distinct oscillating pattern, with the stable 222 

oscillation (D = 0.15) leading to better control. 223 
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 224 

Fig. 2. Effect of protein/metabolite degradation rate (dilution rate) on system dynamic behavior. 225 

Protein degradation rates have been labelled with different color. Low degradation rate (D = 0.15) 226 

leads to relatively stable oscillation. High degradation rate (D ≥ 0.2) leads to damped oscillation. 227 

The units are arbitrary units. Parameters could be found in the supplementary file. 228 

We also explored whether we could further improve fatty acids production by using even smaller 229 

degradation rate (i.e. D = 0.1, Fig. 3). Interestingly, decreasing the degradation rate to 0.1 allows 230 

FapR to quickly accumulate in the system from t = 20. We could notice that a spike of fatty acids 231 

production at t = 20, but the entire control system collapses (D = 0.1, Fig. 3) at t > 20, due to the 232 

overdosed FapR repressing the expression of the malonyl-CoA sink pathway (FAS). 233 

Accompanying with increased FapR, the malonyl-CoA source pathway (ACCase) was also 234 

overdosed (D = 0.1, Fig. 3) due to the activating action of FapR toward the expression of 235 

ACCase. However, malonyl-CoA was not accumulated in the system due to the antagonist effect 236 

of FapR toward malonyl-CoA. Taken together, the low degradation rate (D = 0.1) allows the cell 237 

to only build biomass, but generates little final products (Fatty acids in this study). In summary, 238 

the range of degradation rate of the sensor protein (FapR) and the malonyl-CoA source pathway 239 

(ACCase) determines whether the designed control scheme will work or fail. 240 
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 241 

Fig. 3. Effect of protein/metabolite degradation rate on system dynamic behavior. Protein 242 

degradation rates have been labelled with different color. Low degradation rate (D = 0.10) leads 243 

to a collapsed system: too much FapR represses the expression of FAS, activates the expression 244 

of ACC and quickly antagonize the resulting malonyl-CoA at t > 20. 245 

Phase-plane represents the solution constraints between the interacting components, at different 246 

parameter conditions (such as dilution rate or binding affinity) (Xu 2020). We further performed 247 

a phase-plane analysis to interrogate the solutions of above ODEs (Fig. 4). On the FAS-FapR 248 

phase plane, the system is attracted to periodic limit cycle of clockwise motion. The horizontal 249 

(x-axis) projection of the elliptic cycle forms a negative slope with FapR (x-axis), indicating that 250 

FapR represses the expression of FAS. On the ACCase-FapR phase planes (Fig. 4), the system is 251 

attracted to periodic limit cycle of counterclockwise motion. The horizontal (x-axis) projection 252 

of the elliptic cycle forms a positive slope with FapR, indicating that FapR activates the 253 

expression of ACCase. Similarly, on the MalCoA-FapR phase plane (Fig. 4), the system is 254 

attracted to periodic limit cycle of counterclockwise motion. The horizontal (x-axis) projection 255 

of the elliptic cycle forms a negative slope with FapR, indicating that FapR acts as an antagonist 256 
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for malonyl-CoA. Under D = 0.15, we observed that the system leads to stable oscillation (Fig. 257 

S1).  258 

To analytically identify the steady state, we need to derive the Jacobina matrix and analyze the 259 

eigenvalue of the Jacobian matrix at each of the steady states. If all the eigenvalues are negative 260 

or the real parts of all eigenvalues are negative (for imaginary eigenvalues), this will be a stable 261 

steady state. Graphically, steady states represent time-invariant solutions along the time-axis. 262 

The trajectory of stable steady states will asymptotically or periodically converge to a fixed point 263 

or travel on an orbit (a limit cycle). By analyzing the Jacobian matrices, two pure imaginary 264 

eigenvalues with zero real parts were arrived (Supplementary Notes 1), indicating a stable 265 

oscillation under D = 0.15.  The phase portraits allow us to understand the motion of system 266 

dynamic behavior, it may also serve as diagnosis for troubleshooting the design-build-test cycle 267 

in genetic circuit engineering.  268 

 269 

Fig. 4. The phase-plane correlations for FAS-FapR, ACCase-FapR and MalCoA-FapR. FAS-270 

FapR phase plane shows periodic limit cycle of clockwise motion. ACCase-FapR and MalCoA-271 

FapR phase planes show periodic limit cycle of counterclockwise motions.  272 

Effect of malonyl-CoA dissociation constant (K1) on system dynamic behavior 273 

We next investigated how the malonyl-CoA dissociation constant (K1) impacts the system 274 

dynamics (Fig. 5). The malonyl-CoA dissociation constant (K1) describes the inhibitory strength 275 

of malonyl-CoA to cell growth: small dissociation constant (K1) indicates a high binding affinity 276 

and high inhibitory strength. A number of dissociation constants ranging from 0.10 to 4.0 (in the 277 

units of concentration) were investigated (Fig. 5). As expected, strong inhibition (K1 = 0.10) will 278 

sequestrate the cell at a low growth rate and lead to constant expression of FapR, FAS and 279 
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ACCase (Fig. 5), indicating that the expression of FAS and ACCase are independent of the 280 

control scheme. As the inhibition becomes weaker (K1 = 0.50 and 1.00), the solution of the 281 

system ODEs oscillates with increased amplitude, albeit the frequency of the oscillation remains 282 

unchanged. A perfect ON and OFF control of FAS and ACCase expression is taking place when 283 

a medium strength of inhibition (K1 = 2.0) is used. This medium strength of inhibition confers 284 

the system to oscillate stably with improved fatty acids production (Fig. 5), albeit the fatty acids 285 

increase is less than 50%. When the dissociation constant takes a larger number (K1 = 4.0), the 286 

systems behave like a damped oscillation that is approximately approaching to the optimal 287 

design scheme (K1 = 2.0). This analysis indicates that a medium strength of dissociation constant 288 

(K1) should be used. In practice, one can always use adaptive lab evolution to screen 289 

conditionally tolerant phenotype that meets the K1 selection criteria. 290 

Similarly, we could perform a phase-plane analysis (Fig. 6). The phase-planes suggest that the 291 

optimal control scheme (K1 = 2.0, the purple cycles) only permits a very narrowed space of FAS, 292 

ACCase and MaloCoA solutions. Interestingly, for low malonyl-CoA dissociation constant (K1= 293 

0.5), the system exhibits a looping behavior on the FAS-FA and MalCoA-FA phase plane. 294 

Plotting the steady state solutions of fatty acids, FAS and malonyl-CoA, we observed looping 295 

pattern of solutions in the 3-D space, this may also imply a hysteretic state of the system (Aris, 296 

Borhani et al. 2019) (Supplementary Notes 2 and 3).  It simply means that strong malonyl-CoA 297 

inhibition (i.e. K1= 0.3 or 0.5) will lead to multiplicity of steady states (Fig. 6 and Fig. 7), which 298 

is a critical factor to evaluate the dynamics of the system behavior. 299 

Literature reports that feedback inhibition of free fatty acid on FAS complex plays a major role 300 

in regulating FA synthesis. Specifically, it is generally believed that acyl-ACPs or acyl-CoAs 301 

will feedback inhibit acetyl-CoA carboxylase in E. coli (Davis and Cronan 2001). Since acyl-302 

CoA/ACP could be hydrolyzed to free fatty acids by acyl-CoA thioesterase tesA (which is 303 

constitutively overexpressed in the published paper PNAS 2014), we believe the feedback 304 

inhibition of acyl-CoA/ACP on FAS complex could be minimized when tesA was overexpressed. 305 

In this synthetic system, the malonyl-CoA inhibitory effect on FAS was translated to the 306 

malonyl-CoA inhibitory effect on cell growth: cell growth is associated with how much of 307 

membrane lipids (phospholipids synthesized from acyl-CoAs/acyl-ACPs) were made. Therefore, 308 

the malonyl-CoA/ACP feedback inhibitory effect on FAS (cell growth) plays a critical role to 309 

determine the system dynamics. 310 
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 311 

 312 

Fig. 5. Effect of malonyl-CoA dissociation constant (K1) on system dynamic behavior. Malonyl-313 

CoA dissociation constants (K1) have been labelled with different color. Low dissociation 314 

constants (K1 = 0.5, 1.0 and 2.0) lead to stable oscillation. High dissociation constant (K1 = 4.0) 315 

leads to damped oscillation. Medium strength of malonyl-CoA inhibition (K1 = 2.0) favors fatty 316 

acids production. 317 

 318 

Fig. 6. The phase-plane portraits for FA-FAS, FA-ACCase and FA-MalCoA. Low malonyl-CoA 319 

dissociation constant (K1= 0.5, orange line), which corresponds to strong malonyl-CoA 320 
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inhibition, leads to multiplicity of steady states pattern between FAS-FA and MalCoA-FA input-321 

output relationships. 322 

 323 

 324 

Fig. 7. The 3-D phase-plane portraits for fatty acids, FAS and malonyl-CoA, with malonyl-CoA 325 

inhibition constant (K1) varying from 0.1 to 1.5. A specific trajectory for K1 = 0.3 is added to the 326 

above solution space, marked in blue color. Other parameters used here are the same as the 327 

parameters used in Fig. 5. 328 

Effects of FapR-UAS interaction on system dynamics 329 

We next explored how the gene expression of the malonyl-CoA source pathway (ACCase) 330 

impacts the system dynamics. According to the original design and Eqn.5, expression of ACCase 331 

is governed by the FapR-UAS interactions. The system equation for ACCase (Eqn. 5) accounts 332 

for both the growth-associated leaky expression (α3) and the FapR-activated regulatory 333 

expression (β2, p and K4). In all our simulations, we assume stringent regulation and the leaky 334 

expression is negligible (α2 = α3 = 0.05). We will specifically investigate how the ACCase 335 

induction rate (β2) and the FapR-UAS dissociation constant (K4) impact the system dynamics 336 

(Fig. 8 and Fig. 9).  337 
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 338 

Fig. 8. Effect of ACCase induction rate (β2) on system dynamics. ACCase induction rates (β2) 339 

have been labelled with different color. High ACCase induction rate (i.e. β2 = 4.0) leads to a 340 

quickly damped oscillation and favors fatty acid accumulation. 341 

We investigated a number of ACCase induction rates (β2, in the units of concentration per time), 342 

ranging from 0.50 to 4.0 (Fig. 8). As the ACCase induction rate increases (β2) from 0.50 to 4.0, 343 

the expression of malonyl-CoA source pathway (ACCase) is upregulated, leading to improved 344 

fatty acids production (Fig. 8). For example, the fatty acids production is increased up to 2-fold 345 

when the ACCase induction rate (β2) increases from 0.5 (blue line, Fig. 8) to 4.0 (purple line, Fig. 346 

8). On the other hand, the amount of regulator protein FapR decreases with increasing ACCase 347 

induction rate (β2) (Fig. 8), possibly due to the antagonist effect of malonyl-CoA. However, this 348 

monotonic correlation was not found for the species MalCoA and AcCoA, due to the 349 

complicated autoregulation of malonyl-CoA in the control system. Furthermore, under low 350 

ACCase induction rates (i.e. β2 = 0.5, 1.0 and 2.0), the oscillation damped periodically with 351 

decreasing amplitude. Under high ACCase induction rate (i.e. β2 = 4.0), the oscillation damped 352 

quickly to reach its steady state (Fig. 8). This result indicates that a high ACCase induction rate 353 

(β2) is essential for the proper function of the control scheme. 354 
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As FapR is the activator for the ACC operon, and the DNA binding site for FapR is a UAS 355 

(upstream activation sequence). We next investigated how the FapR-UAS dissociation constant 356 

(K4) impacts the system dynamics (Fig. 9). A smaller FapR-UAS dissociation constant (K4) 357 

indicates a tighter binding between FapR and UAS (the inverse of the dissociation constant 358 

quantifies the binding affinity). As the binding between FapR and UAS becomes tighter (K4 359 

decreases from 8.0 to 1.0), the expression of the malonyl-CoA source pathway (ACCase) is 360 

strongly activated, leading to increased fatty acids production (Fig. 9). For example, the fatty 361 

acids production is increased up to 2.2-fold when the FapR-UAS dissociation constant (K4) 362 

decreases from 8.0 (purple line, Fig. 9) to 1.0 (blue line, Fig. 9). Under high FapR-UAS binding 363 

affinity (K4 = 1.0), the oscillation damped quickly to reach its steady state; under low FapR-UAS 364 

binding affinity (K4 = 4.0 or 8.0), the oscillation retains periodic pattern with fixed frequency and 365 

amplitude. This result indicates that a tighter FapR-UAS binding is the critical factor to achieve 366 

the desired control scheme. 367 

 368 

Fig. 9. Effect of FapR-UAS dissociation constant (K4) on system dynamics. Tighter FapR-UAS 369 

binding is advantageous to fatty acids production. 370 
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Effect of FapR-fapO interaction on system dynamics 371 

We also attempted to understand how the gene expression of the malonyl-CoA sink pathway 372 

(FAS) impacts the system dynamics. By design, FapR is the repressor that is specifically bound 373 

to fapO and represses the expression of the malonyl-CoA sink pathway (FAS). The system 374 

equation for FAS (Eqn. 4) accounts for both the growth-associated leaky expression (α2) and the 375 

FapR-repressed regulatory expression (β1, n and K3). Transcriptional factor (FapR) and DNA 376 

binding site (fapO) interactions are typically defined by the binding affinity (inverse of the 377 

dissociation constant) and the Hill cooperativity coefficient. By probing the physiologically 378 

accessible parameter space, we will investigate how the FapR-fapO dissociation constant (K3) 379 

impact the system dynamics (Fig. 10). 380 

We investigated a number of FapR-fapO dissociation constant (K3), spanning from 0.50 to 8.0 381 

(Fig. 10). A smaller FapR-fapO dissociation constant indicates a tighter binding between FapR 382 

and fapO, thus the FapR-fapO complex will function as a stronger roadblock to prevent FAS 383 

transcription. As the binding between FapR and fapO becomes tighter (K3 decreases from 8.0 to 384 

0.5), the expression of the malonyl-CoA sink pathway (FAS) is strongly repressed (Fig. 10), 385 

leading to decreased fatty acid accumulation. For example, the fatty acids production at low 386 

FapR-fapO dissociation constant (K3 = 0.50, blue curve) is less than 1/7 of the fatty acid 387 

production at high FapR-fapO dissociation constant (K3 = 8.0, green curve) (Fig. 10). With 388 

weaker FapR-fapO binding (K3 = 4.0 and 8.0), the ODE solutions for ACCase, MalCoA and 389 

AcCoA oscillate with fixed frequency and amplitude, indicating the functionality of the ON-OFF 390 

control toward both the malonyl-CoA source pathway (ACCase) and the malonyl-CoA sink 391 

pathway (FAS). However, with tighter FapR-fapO binding (K3 = 0.5 and 1.0), the oscillation 392 

collapses at relatively short period of time, indicating a faulted control scheme. This result 393 

suggests that a weak binding between FapR and fapO (or a large FapR-fapO dissociation 394 

constant) is the most important design criteria to achieve the desired ON-OFF control scheme. 395 



20 

 

 396 

Fig. 10. Effect of FapR-fapO dissociation constant (K3) on system dynamics. A weak binding 397 

between FapR and fapO (or a large FapR-fapO dissociation constant, i.e. K3 = 8.0) significantly 398 

improves fatty acid production, up to 7-fold. 399 

Exploring the optimal controller architecture 400 

The Hill cooperativity coefficient is a critical factor determining the input-output relationship of 401 

biological signal transduction. Recent studies demonstrate that lots of nonlinear and complicated 402 

biological functions are arising from the cooperative assembly of biological molecules (Bashor, 403 

Patel et al. 2019, Shaw, Yamauchi et al. 2019), including DNA, RNA and proteins. As such, we 404 

will investigate how the FapR-FapO Hill cooperativity coefficient (n) impacts the system 405 

dynamics (Fig. 11). We choose a number of FapR-fapO Hill cooperativity coefficients, ranging 406 

from -4 to 4. It should be noted that, our original mass balance equations (Eqn. 4 and Eqn. 5) 407 

only account for the fact that FapR represses the expression of FAS and FapR activates the 408 

expression of ACC, which corresponds to a positive Hill coefficient (n > 0 and p > 0).  409 

The sign of the Hill coefficient is related with the genetic configuration of the controller (Fig. 410 

1B). For example, a positive Hill coefficient (n) in the malonyl-CoA sink pathway (FAS) 411 
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indicates that FapR represses the transcriptional activity of FAS expression; while a negative 412 

Hill coefficient (n) in the malonyl-CoA sink pathway (FAS) indicates that FapR activates the 413 

transcriptional activity of FAS expression (Equation 4). Similarly, a positive Hill coefficient (p) 414 

in the malonyl-CoA source pathway (ACC) indicates that FapR activates the transcriptional 415 

activity of ACC expression; while a negative Hill coefficient (p) in the malonyl-CoA source 416 

pathway (ACC) indicates that FapR represses the transcriptional activity of ACC expression 417 

(Equation 5). By changing the sign of the Hill coefficients for the malonyl-CoA sink pathway 418 

(FAS) and the malonyl-CoA source pathway (ACC), we could explore the ‘optimal controller’ 419 

structure in this study (Fig. 1B). Here we consider both positive Hill coefficients (n = 2.0 and 4.0) 420 

and negative Hill coefficients (n = -2.0 and -4.0) as well as no cooperation (n = 0). By comparing 421 

either the activating or repressing effect of FapR, we may interrogate the topology of the optimal 422 

controller architecture that leads to maximal fatty acids production. 423 

 424 

Fig. 11. Effect of FapR-fapO Hill cooperativity coefficient (n) on system dynamics. Strong 425 

repression (n = 4) leads to stable oscillation and drives the cell to make more fatty acids. 426 

As the FapR-fapO Hill cooperativity coefficient (n) increases from -4.0 to 4.0, the regulatory 427 

action of FapR towards the malonyl-CoA sink pathway (FAS) shifts from activation to 428 
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repression. As a result, a significant increase in the FAS, ACCase expression and fatty acids 429 

production are observed (Fig. 11). For example, almost 5-fold increase of fatty acids is obtained 430 

when the FapR-fapO Hill cooperativity coefficient (n) increases from -4.0 (blue line, strong 431 

activation) to 4.0 (green line, strong repression). Under strong FapR activation (n = -4.0), 432 

counterintuitively, the expression of FAS is instead downregulated (Fig. 11). This could be 433 

linked to the unbalanced induction rate (β) between the malonyl-CoA source pathway (ACCase, 434 

β2 = 2.0) and the malonyl-CoA sink pathway (FAS, β1 = 0.5). Even with highly cooperative 435 

activation of FAS by FapR (n = -4.0, blue line), the low induction rate of the malonyl-CoA sink 436 

pathway (FAS) makes the expression of FAS unable to catch up with the expression of ACCase 437 

(malonyl-CoA source pathway). As a result, malonyl-CoA will build up but stay unchanged in 438 

the system (blue line in Fig. 11) to inhibit cell growth, which will result in even lower level of 439 

FapR (activator for FAS expression when n = -4, blue line) and therefore exacerbate the 440 

expression of FAS. On the contrary, highly cooperative repression of FAS by FapR (n = 4, green 441 

line) will make malonyl-CoA level oscillate, which forms the driving force to dynamically link 442 

and control the expression of the malonyl-CoA source pathway (ACCase) and the malonyl-CoA 443 

sink pathway (FAS). This analysis indicates that a control architecture consisting of upregulated 444 

metabolic source and downregulated metabolic sink is an essential design criterion to build 445 

adaptive genetic-metabolic circuits. In addition, the stable oscillation of the metabolic 446 

intermediate (i.e., malonyl-CoA) forms the driving force to exert the ON-OFF dynamic control 447 

toward complex metabolic function in the cell. 448 

Conclusions 449 

With the better understanding of cellular regulation, metabolic engineers have been able to 450 

engineer both the chemistry (the mass flow) and the control modules (the information flow) 451 

inside the cell to design intelligent cell factories with improved performance. Moving beyond 452 

thermodynamic and stoichiometric constraints, living organisms could be viewed as a smart 453 

system consisting of sensor (ligand binding domain of transcriptional factors), transducers 454 

(DNA-binding domain of transcriptional factors, kinase or enzyme et al) and actuators (RNA 455 

polymerases). Along this direction, cellular regulation and feedback control mechanisms have 456 

been exploited to construct genetic/metabolic circuits that could sense/respond to environment, 457 

achieve adaptive metabolic function and reshape cell fate for diverse biotechnological and 458 

medical applications. As chemical engineers have done to program machine language and 459 
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control the mass and energy flow in a chemical plant, a synthetic biologist could rewrite the 460 

genetic software and encode logic functions in living cells to control cellular activity.  461 

Biophysical and biochemical models are important tools to quantitatively understand genetic 462 

circuit dynamics, metabolic network constraints, cell-cell communications (Dai, Lee et al. 2019) 463 

and microbial consortia interactions (Kong, Meldgin et al. 2018, Tsoi, Wu et al. 2018). Based on 464 

a previously engineered malonyl-CoA switch, nine differential equations were formulated (Table 465 

1) and employed to unravel the design principles underlying a perfect metabolite switch. While 466 

the models present in the current study were simple, they provide sufficient kinetic information 467 

to predict the dynamic behavior of the published work. By interrogating the physiologically 468 

accessible parameter space, we have determined the optimal control architecture to configure 469 

both the malonyl-CoA source pathway and the malonyl-CoA sink pathway. We also investigated 470 

a number of biological parameters that strongly impact the system dynamics, including the 471 

protein degradation rate (D), malonyl-CoA inhibitory constant (1/K1), malonyl-CoA source 472 

pathway induction rate (β2), FapR-UAS dissociation constant (K4), FapR-fapO dissociation 473 

constant (K3) as well as the FapR-fapO Hill cooperativity coefficient (n). We identified that low 474 

protein degradation rate (D), medium strength of malonyl-CoA inhibitory constant (1/K1), high 475 

malonyl-CoA source pathway induction rate (β2), strong FapR-UAS binding affinity (1/K4), 476 

weak FapR-fapO binding affinity (1/K3) and a strong cooperative repression of malonyl-CoA 477 

sink pathway (FAS) by FapR (n) benefits the accumulation of the target molecule (fatty acids). 478 

The fatty acids production could be increased from 50% to 10-folds with the different set of 479 

parameters. Under certain conditions (i.e. strong malonyl-CoA inhibitory constant 1/K1), the 480 

system will display multiplicity of steady states. Stable oscillation of malonyl-CoA is the driving 481 

force to make the system perform the ON-OFF control and automatically adjust the expression of 482 

both the malonyl-CoA source (ACCase) and malonyl-CoA sink (FAS) pathways. 483 

In this work, we have chosen a number of biophysical parameters to discuss the possible output 484 

of the malonyl-CoA switch. Genetically, these parameters could be altered by web-lab 485 

experiments, including protein engineering or degenerated repressor binding sites to change the 486 

biding affinity between the interacting components et al. The computational framework present 487 

here may facilitate us to design and engineer predictable genetic-metabolic switches, configure 488 

the optimal controller architecture of the metabolic source/sink pathways, as well as reprogram 489 

metabolic function for various applications. 490 
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Appendix: Symbols and variables used in this work 498 

� specific growth rate 499 

�max maximum specific growth rate 500 

#� cell growth-associated FapR production rate constant (constitutive expression) 501 

#& cell growth-associated FAS production rate constant (leaky expression) 502 

#* cell growth-associated ACC production rate constant (leaky expression) 503 

#- cell growth-associated PDH production rate constant (constitutive expression) 504 

(� non cell growth-associated FAS production rate (regulated expression) 505 

(& non cell growth-associated ACC production rate (regulated expression) 506 

�� Malonyl-CoA inhibitory (dissociation) constant 507 

�& Mal-CoA and FapR saturation constant 508 

�* dissociation rate constant of free FapR toward fapO in the FAS operon (to repress FAS transcription) 509 

�- dissociation rate constant of free FapR toward UAS in the ACC operon (to activate ACC transcription) 510 

�2 acetyl-CoA saturation (Michaelis) constant toward ACC 511 

�8 glucose saturation (Michaelis) constant toward glycolytic pathway 512 

�� Monod constant for glucose 513 

�% Malonyl-CoA saturation (Michaelis) constant toward FAS 514 

$� FapR-inactivating rate constant due to the formation of MalCoA-FapR complex 515 
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$& FA (fatty acids) production rate constant from Mal-CoA catalyzed by FAS 516 

$* malonyl-CoA production rate constant from acetyl-CoA catalzyed by ACC 517 

$- acetyl-CoA production rate constant from glycolysis catalzyed by PDH 518 

S glucose concentration 519 

�� glucose concentration in the feeding stream 520 

� dilution rate or degradation rate 521 

�� biomass concentration in the feeding stream 522 

3PS1 malonyl-CoA to fatty acids conversion yield 523 

3XS glucose to biomass conversion yield 524 

3PS2 glucose to acetyl-CoA conversion yield 525 

m malonyl-CoA-FapR (ligand-TF) Hill cooperativity coefficient 526 

n FapR-FapO nucleoprotein complex Hill cooperativity coefficient 527 

p FapR-UAS  nucleoprotein complex Hill cooperativity coefficient 528 

q malonyl-CoA-FAS (substrate-enzyme) Hill cooperativity coefficient 529 

r acetyl-CoA-ACC (substrate-enzyme) Hill cooperativity coefficient 530 

u glucose-PDH (substrate-enzyme, artificial reaction) Hill cooperativity coefficient 531 

  532 
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• Metabolic engineer can engineer both the chemistry and control modules in the cell 
• 9 differential equations used to define a previously engineered malonyl-CoA switch 
• Optimal control architecture of metabolic source and sink pathways were determined 
• Models were used to unravel the design principles underlying an ideal metabolic switch 
• Stable oscillation of metabolic intermediates permits alternating ON-OFF genetic control 
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