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Abstract

Living organism is an intelligent system coded hgrérchically-organized information to
perform precisely-controlled biological functionBiophysical models are important tools to
uncover the design rules underlying complex gerattabolic circuit interactions. Based on a
previously engineered synthetic malonyl-CoA swittku et al, PNAS 2014), we have
formulated nine differential equations to unravieeé tdesign principles underlying an ideal
metabolic switch to improve fatty acids production E. coli. By interrogating the
physiologically accessible parameter space, we hdstermined the optimal controller
architecture to configure both the metabolic soyathway and metabolic sink pathway. We
determined that low protein degradation rate, madstrength of metabolic inhibitory constant,
high metabolic source pathway induction rate, gireanding affinity of the transcriptional
activator toward the metabolic source pathway, wbelkding affinity of the transcriptional
repressor toward the metabolic sink pathway, andtrang cooperative interaction of
transcriptional repressor toward metabolic sinkpaty benefit the accumulation of the target
molecule (fatty acids). The target molecule (fattyd) production is increased from 50% to 10-
folds upon application of the autonomous metabsiictch. With strong metabolic inhibitory
constant, the system displays multiple steady st&tmble oscillation of metabolic intermediate
is the driving force to allow the system deviatenir its equilibrium state and permits
bidirectional ON-OFF gene expression control, whaclhlonomously compensates enzyme level
for both the metabolic source and metabolic sintkyays. The computational framework may
facilitate us to design and engineer predictableetie-metabolic switches, quest for the optimal
controller architecture of the metabolic sourcd/spathways, as well as leverage autonomous

oscillation as a powerful tool to engineer celldtian.

Key words: autonomous oscillation, metabolic switches, bygital models, controller

architecture, metabolic engineering, syntheticdagl
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Introduction

In recent years, there is an influx of applying aymc control theory to optimize metabolic
pathways for production of various chemicals (ValayAnesiadis et al. 2015, Xu 2018, Xia,
Ling et al. 2019). The marriage of intelligent aahtwith synthetic biology have fruited a large
volume of experimental and computational works thdw us to embrace a “dynamic”
perspective to engineer cell metabolism (Zhangptbars et al. 2012, Xu, Li et al. 2014, Gupta,
Reizman et al. 2017). The notion of “metabolic hostasis” is a result of the dynamic interplay
of the various biomolecules inside the cell (Xu 0llv, Qian et al. 2019). Take the glycolytic
pathway as an example, oscillating metabolic floxld arise due to the feedback inhibition of
the phosphofructokinase by cellular energy levee¢ifically, ATP, ADP and AMP) (Sel'kov
1968, Bier, Bakker et al. 2000, Chandra, Buzi eR@l 1, Gustavsson, van Niekerk et al. 2014).
Another classical example is the Lac operon, hgsterand multiple steady states could arise
due to the positive feedback loop of the intakethef inducer (IPTG or lactose) by lactose
permease encoded HyacY (Yildirim and Mackey 2003, Santillan, Mackey et. 2007,
Stamatakis and Mantzaris 2009). Inspired by thiesnpimena, early synthetic biology effort is
spent extensively on constructing artificial geoetircuits by mimicking the electrical
counterparts of the physical word (AndrianantoandBasu et al. 2006). Combing with
mathematical modeling, a collection of classicatkvioas emerged in the early 2000s, including
the well-known toggle switch (CHEN and BAILEY 199GGardner, Cantor et al. 2000),
repressilator (Elowitz and Leibler 2000) and metatow (Fung, Wong et al. 2008) al. These
seminal works have encouraged us to employ biopalsnodels to quantitatively unravel and
test the complicated molecular interactions undeglymany perplexing biological problems,

which marks the birth of synthetic biology.

With about one decade, the post-term impact ofh&ftitt biology starts yielding fruits in the
metabolic engineering field (Keasling 2010). Frontantrol perspective, metabolic enzyme
could be the “actuator” that performs chemical easion (i.e. kinase phosphorylation,
chromatin deacetylation) or the “transducer” thaherates secondary messenger (i.e. CAMP or
acetyl-CoA) (Smolke and Silver 2011, Michener, Tépet al. 2012). Moving beyond the logic
circuits engineering (AND, OR, NOT, NOR gatesal) (Tamsir, Tabor et al. 2011, Wang,
Kitney et al. 2011, Moon, Lou et al. 2012), metabangineers have been able to harness

various regulatory mechanisms, including represgiam Xiao et al. 2015), activation (Doong,
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Gupta et al. 2018), attenuation (Benzinger and Khagsh 2018) or RNA silencing (Yang, Lin et
al. 2018), to rewire carbon flux and dynamicallyntol cell metabolism. A number of control
architectures (Oyarzan and Stan 2013, Liu, Xiaoalet2015, Oyarziun and Chaves 2015,
Venayak, Anesiadis et al. 2015, Chaves and Oya?019) have emerged and been applied to
relieve metabolic burden (Ceroni, Boo et al. 20&8)ninate intermediate toxicity (Xu, Li et al.
2014), decouple cell growth from metabolite product{Bothfeld, Kapov et al. 2017, Doong,
Gupta et al. 2018), eliminate metabolic heteroggnéXiao, Bowen et al. 2016, Rugbjerg,
Myling-Petersen et al. 2018, Rugbjerg, Sarup-Lyteeal. 2018, Wang and Dunlop 2019). The
interdisciplinary connection among control theaggnetic principles, ecological and evolutional
rules open a new venue for us to design and engpeeisely controlled genetic-metabolic
circuits to reprogram biological functions (Call€spfi-Moreno et al. 2019). Engineering such
decision-making functions to rewire the geneticfaiimation) flow to redirect/optimize
metabolic flux will enable us to deliver intelligemicrobes for a broad range of applications,
ranging from biocomputation, bioremediation, biaseg, biosynthesis to therapeutics (Nikel,
Chavarria et al. 2016, Gao, Xu et al. 2019, Graz@ingmos et al. 2019).

One of the essential tasks for metabolic enginisets dynamically allocate carbon flux, so that
the limited cellular resources could be harnessednéximize the production of the target
molecules (Xu, Bhan et al. 2013, Wan, Marsafaalef019). Considering that the cell’s goal is
to proliferate, there is always a tradeoff or citdl between cell growth and metabolite
overproduction. This will require us to equip thellg with various sensors to detect a broad
range of environmental cues, cellular stimuli ortabelite intermediates (Zhang, Jensen et al.
2015, Wan, Marsafari et al. 2019), in such a wag tell can autonomously adjust gene
expression or cell metabolism to compensate theedogliminate the surplus of enzyme activity.
To achieve this, a number of control architecturesluding the incoherent feedforward loop
(Dunlop, Keasling et al. 2010, Harrison and Dunkffi?), the invertor gate (Liu, Xiao et al.
2015), the metabolic toggle switch (Soma, Tsuruhcale 2014) and the metabolic valve
(Solomon and Prather 2011), have been implemerdetnprove the cellular tolerance to

biofuels, or improve chemical production.

One of the highly studied dynamic control systentestering around the malonyl-CoA node
(Xu, Li et al. 2014, Fehér, Libis et al. 2015, Atlesi and de Mendoza 2016, David, Nielsen et al.

2016). Malonyl-CoA is the essential metabolic butd blocks for synthesizing advanced
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biofuels (Xu, Gu et al. 2013), lipids (Qiao, Wasite et al. 2017, Xu, Qiao et al. 2017),
polyketides (Zhou, Qiao et al. 2010, Liu, Marsafkrial. 2019), oleochemicals (Xu, Qiao et al.
2016), flavonoids (Xiu, Jang et al. 2017) and cédmads (Luo, Reiter et al. 2019} al. High
level of malonyl-CoA benefits the production of $kemetabolites (Yang, Kim et al. 2018) but
also inhibits cell growth (Xu, Li et al. 2014, LiXjao et al. 2015). Up to date, the FapR-derived
malonyl-CoA sensor has been successfully appliedammalian cell (Ellis and Wolfgang 2012),
E. coli (Xu, Wang et al. 2014, Yang, Kim et al. 2018) amhst (Li, Si et al. 2015, David,
Nielsen et al. 2016). In particular, a recent depglent of the malonyl-CoA oscillator (Xu, Li et
al. 2014) has garnered significant attractionsallwivs us to study the optimal configurations of
the controller architecturd=(g. 1). By integrating genetic and metabolic circuit® have been
able to experimentally construct and validate aomgtCoA oscillatory switch that was
engineered to improve fatty acids productiorkircoli (Xu, Li et al. 2014). Experimentally, we
have engineered malonyl-CoA-responsive promoteet tould be upregulated or down-
regulated by FapR, and the activation or the reyomascould be abolished by malonyl-CoA. This
dual direction ON-OFF control mimics the amino a@ddforward and feedback regulation that

are naturally occurring in many bacteria.

One essential question is how to effectively camigg the regulatory architecture of the
metabolic source pathway and the metabolic sinkvpay. To unravel the design principles
underlying the malonyl-CoA switch, we set aboutesiablish a biophysical model (system of
ODE equations) and interrogated a broad range ddnpeter spaces, including the protein
degradation rate), malonyl-CoA inhibitory constant (Kf) and malonyl-CoA source pathway
induction rate £,). We also determined the optimal regulatory asdtitre for both the malonyl-
CoA source pathway (ACCase) and the malonyl-Cok pathway (FAS), defined by the FapR-
UAS dissociation constanKy), FapR-fapO dissociation constai) as well as the FapR-fapO
Hill cooperativity coefficient f). Our aim in this work is to understand how autoonas
oscillation may contribute to optimal metabolitat{y acids) production in strain engineering.
The computational framework may facilitate us tsige and engineer predictable genetic-
metabolic switches, quest for the optimal controdechitecture of the metabolic source/sink

pathways, as well as leverage autonomous oscillasoa powerful tool to engineer cell function.
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131

132 Fig. 1. A malonyl-CoA switch to dynamically control fatacids biosynthesis. (A) Autonomous
133  ON-OFF control of malonyl-CoA. FapR activates pGAdomoter and upregulates the
134  transcription of the malonyl-CoA source pathway (BGwvhich generates malonyl-CoA; FapR
135 represses T7 promoter and shuts down the transeript the malonyl-CoA sink pathway (FAS)

136  which consumes malonyl-CoA. The FapR bindings sttesthe ACC operon is an upstream
137  activation sequence (UAS). The FapR binding siteshe FAS operon is the fapO operator.
138  Malonyl-CoA is the effector molecule (ligand) threttagonizes the activity of FapR. (B) Four
139  possible genetic configurations of malonyl-CoA cohier, which could be explored by changing
140 the sign of the Hill coefficientsn(andp) listed in Eqn. 4 and Eqgn. 5. The black arrow wed

141  cross indicates either transcriptional activatiomepression.
142  Computational method and system equations

143 Assumptionsto develop the system equations

144  To simplify the biochemical and genetic events,mage eight assumptions to extract the basics
145  of the genetic-metabolic circuit§ig. 1): (a) We assume the number of DNA binding sites,
146  specifically, FapO and UAS, far exceeds the nunobb&nranscriptional factor FapR in the system.
147  Therefore, the repression rate of FAS or the attimarate of ACC are independent of the
148  number of FapO and UAS in the systeb). Glycolytic pathway (9 reactions) could be lumped
149 into one single reaction to forming acetyl-CoA frogiucose by PDH. d Fatty acids
150  biosynthesis could be lumped into one single readi forming fatty acids (FA) from malonyl-
151  CoA by FAS. () Malonyl-CoA depletion rate due to the formatioh malonyl-CoA-FapR
152 complex is negligible in the mass balance equatibmalonyl-CoA (Eqn. 7).d) The total
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enzyme or FapR concentration are approximatelyvetpnt to the free enzyme or free FapR
concentrationsff For non-regulated protein production (i.e. Fapi@ RDH), the production rate

is cell growth-associated, therefore the productaig is proportional to the cell growth ratg) (

For regulated protein production (i.e. FAS and ACiB¢ production rate consists of both leaky
expression (which is growth-associated) and regdlagxpression (which is non growth-
associated) in the mass balance equatioh3. Tlje cytosol is a homogenous and well-mixed
system without mass transfer or diffusion limitasp whereD could be interpreted as the

dilution rate for CSTR or degradation constantifatch culture.
Formulation of the kinetic rate and mass balance equations

We formulated the kinetic rate modelable 1) on the basis of Michaelis-Mention equation for
enzyme-substrate equations, Monod kinetics (Xu RO02@h metabolite (Malonyl-CoA)
inhibition for cell growth, Hill-type equations fanzyme kinetics and metabolite-TF binding.
Specifically, Eqn. 1 describes the specific growdhbe, which follows Monod growth with
glucose as limiting nutrients and malonyl-CoA akiliitory factor; Eqn. 2 describes the mass
balance for cell growth; Eqn. 3 describes the gneagsociated production of FapR and the
depletion of FapR due to the formation of FapR-MgleCoA complex; Egn. 4 describes the
growth-associated production (leaky expressionfA%& and the regulated expression of FAS
repressed by FapR; Eqn. 5 describes the growtleiassd production (leaky expression) of
ACC and the regulated expression of ACC activatedréipR; Eqn. 6 describes the production
rate of fatty acids (FA) from malonyl-CoA; Eqn. &stribes the mass balance for malonyl-CoA,
accounting for both the malonyl-CoA source (ACC)hpaay and the malonyl-CoA sink (FAS)
pathway; Eqn. 8 describes the mass balance foyla€eh, accounting for both the acetyl-CoA
source (PDH) pathway and the acetyl-CoA sink (A@@jhway; Eqn. 9 describes the PDH
production rate which is proportional to the calbwth rate; and Eqgn. 10 describes the mass
balance for glucose, accounting for the consumptaie due to cell growth and acetyl-CoA
production. For all the mass balance equations .(2qto Egn. 10), we also considered the
dilution or degradation terms. Biomass and cellcemtration in the feeding stream of the system

were designated & andXo.

Table 1. Equations used to define the autonomous osaijlaenetic-metabolic circuits.

Equation No. Equations used in this work
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Computational methods

Matlab R2017b was used as the computational packageWindows 7 professional operation
system. The CPU processor is Intel Core i3-6100 ®i7¥0 GHz. The installed memory (RAM)
is 4.0 GHz. Matlab symbolic language package calipli¢h LaTex makeup language were used
to compile the equations (Table 1). ODE45 solves wsed to simulate and predict the system
behavior. Matlab plot function was used to outjat $olutions and graphs. Matlab codes will be
shared upon request. Biological parameters for Bigo Fig. 10 could be found in the
supplementary files. Most of the parameters wesegyasd on the basis of BioNumbers database
(Milo, Jorgensen et al. 2009). Jacobian matricesewevaluated according to a reported
numerical method (Auralius Manurung (2020). Caltul2acobian of a function numerically at a

given condition (https://www.github.com/auraliusimerical-jacobian)).

Initial states determine the final states for dyiasystem. In this work, the initial conditions
were taken on the basis of physiologically accésslhtaset of biochemical systems. Most of the
numbers were consistent with biochemical engingetextbooks, including Shuler & Kargi,
Bioprocess engineering; and Blanch & Clark, Bioclwai Engineeringet al. These initial

conditions come with Sl unit and is provided in Bidfile.
Results and Discussion

Effect of protein/metabolite degradation rate (dilution rate) on system dynamic behavior

To understand the system dynamics, we probed a euofoparameter space to generate the
dynamic pattern that meets our design and contitelria. A list of parameters could be found in
the supplementary files. We first investigated hawtein/metabolite degradation rate impacts
the system dynamicdig. 2). For all the simulations, we used six specieslutiing regulator
protein FapR, fatty acid synthase (FAS), acetyl-@a#boxylase (ACCase), target product fatty
acids (FA), intermediates malonyl-CoA (MalCoA) aadetyl-CoA (AcCoA), to represent the

system.
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Under the prescribed parameter conditions (suppiéane files) with protein degradation rates
ranging from 0.15 to 0.60 (the unit is inverse whd), we evaluated the trajectory of the
numerical solutions of the system ODE equatidrab(e 1). For relatively high degradation rate
(D > 0.2), we observed that the system solutions apeoapnately behaving like a damped
oscillator Fig. 2). On the other hand, the low degradation ratéajager residence time, i.B. =
0.15 inFig. 2) allows the system to oscillate stably with fifeelquency and amplitude, leading
to the highest fatty acids productidaig. 2). For example, fatty acids production at low prote
degradation rateD( = 0.15) is about 10-folds higher than the fattydagproduction at high
protein degradation rat®(= 0.6). This is not counterintuitive as low degton rate allows the
protein catalysts stay longer in the system (Gaoy Mt al. 2019). And the stable oscillation
indicates that the designed control scheme couttbqme alternating ON-OFF control of the
malonyl-CoA source pathway and malonyl-CoA sinkhpaty. Interestingly, the fatty acids
production pattern is closely related with the mgleCoA sink pathway (FAS), but doesn’t
correlate well with the activity of the malonyl-Ca®urce pathway (ACC). This is rooted in our
initial assumptions that sufficient malonyl-CoA Wihhibit cell growth. As a result, the
intermediate acetyl-CoA and malonyl-CoA displaystidict oscillating pattern, with the stable

oscillation O = 0.15) leading to better control.
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Fig. 2. Effect of protein/metabolite degradation ratdufibn rate) on system dynamic behavior.
Protein degradation rates have been labelled \ifittreint color. Low degradation rat® & 0.15)
leads to relatively stable oscillation. High degrtain rate D > 0.2) leads to damped oscillation.

The units are arbitrary units. Parameters coultbbed in the supplementary file.

We also explored whether we could further impraatgyfacids production by using even smaller
degradation rate.é. D = 0.1,Fig. 3). Interestingly, decreasing the degradation @a@.1 allows
FapR to quickly accumulate in the system friom20. We could notice that a spike of fatty acids
production at = 20, but the entire control system collap$es(0.1,Fig. 3) att > 20, due to the
overdosed FapR repressing the expression of theonylaCoA sink pathway (FAS).
Accompanying with increased FapR, the malonyl-CaAiree pathway (ACCase) was also
overdosed @ = 0.1, Fig. 3) due to the activating action of FapR toward tkxeression of
ACCase. However, malonyl-CoA was not accumulatetthénsystem due to the antagonist effect
of FapR toward malonyl-CoA. Taken together, the ttegradation ratd) = 0.1) allows the cell
to only build biomass, but generates little finaebgucts (Fatty acids in this study). In summary,
the range of degradation rate of the sensor pr@kgipR) and the malonyl-CoA source pathway

(ACCase) determines whether the designed conthanse will work or fail.
11
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Fig. 3. Effect of protein/metabolite degradation rate system dynamic behavior. Protein
degradation rates have been labelled with diffeceidr. Low degradation rat®(= 0.10) leads
to a collapsed system: too much FapR repressesxpitession of FAS, activates the expression

of ACC and quickly antagonize the resulting male@GgA att > 20.

Phase-plane represents the solution constraintgbatthe interacting components, at different
parameter conditions (such as dilution rate or inig@ffinity) (Xu 2020). We further performed
a phase-plane analysis to interrogate the solutdbrabove ODEsKig. 4). On the FAS-FapR
phase plane, the system is attracted to periodiiit Gycle of clockwise motion. The horizontal
(x-axis) projection of the elliptic cycle forms agative slope with FapR (x-axis), indicating that
FapR represses the expression of FAS. On the ACEsge phase planeBi(. 4), the system is
attracted to periodic limit cycle of counterclock&imotion. The horizontal (x-axis) projection
of the elliptic cycle forms a positive slope withagR, indicating that FapR activates the
expression of ACCase. Similarly, on the MalCoA-Fapkase planeHg. 4), the system is
attracted to periodic limit cycle of counterclock&imotion. The horizontal (x-axis) projection

of the elliptic cycle forms a negative slope witapR, indicating that FapR acts as an antagonist
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for malonyl-CoA. UndeD = 0.15, we observed that the system leads toestaddillation (Fig.
S1).

To analytically identify the steady state, we néedlerive the Jacobina matrix and analyze the
eigenvalue of the Jacobian matrix at each of thadst states. If all the eigenvalues are negative
or the real parts of all eigenvalues are negafeifhaginary eigenvalues), this will be a stable
steady state. Graphically, steady states reprdsantinvariant solutions along the time-axis.
The trajectory of stable steady states will asyiqeatly or periodically converge to a fixed point
or travel on an orbit (a limit cycle). By analyziige Jacobian matrices, two pure imaginary
eigenvalues with zero real parts were arrived (&mpentary Notes 1), indicating a stable
oscillation undeD = 0.15. The phase portraits allow us to undedstiwe motion of system
dynamic behavior, it may also serve as diagnosisrémbleshooting the design-build-test cycle

in genetic circuit engineering.

4 FAS-FapR phase plane LiL\CCase-FapR phase plane 20MaICoA-FapR phase plane
——D=015| ¢ -
c ——D=020| 2 3.5 XS]
23 = D=030| &+ g Qk
o ——D=040| € c 15 =
< p=o050| O 3 8
3! D=060| § g \
(@]
Q o 25 N\
5; » 'g 10
©
<1 < S 5 o)
L O ©
< =
0 1.5 5
1 1.5 2 2.5 1 1.5 2 2.5 1 1.5 2 2.5
FapR FapR FapR

Fig. 4. The phase-plane correlations for FAS-FapR, ACTag¥R and MalCoA-FapR. FAS-
FapR phase plane shows periodic limit cycle of kohdse motion. ACCase-FapR and MalCoA-
FapR phase planes show periodic limit cycle of texatockwise motions.

Effect of malonyl-CoA dissociation constant (K;) on system dynamic behavior

We next investigated how the malonyl-CoA dissoomaticonstant K;) impacts the system
dynamics Fig. 5). The malonyl-CoA dissociation constakt) describes the inhibitory strength
of malonyl-CoA to cell growth: small dissociatioorsstant K;) indicates a high binding affinity
and high inhibitory strength. A number of dissocatconstants ranging from 0.10 to 4.0 (in the
units of concentration) were investigat&dg 5). As expected, strong inhibitiok{ = 0.10) will
sequestrate the cell at a low growth rate and teadonstant expression of FapR, FAS and
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ACCase Fig. 5), indicating that the expression of FAS and ACCase independent of the
control scheme. As the inhibition becomes weakéar £ 0.50 and 1.00), the solution of the
system ODEs oscillates with increased amplitudeeitithe frequency of the oscillation remains
unchanged. A perfect ON and OFF control of FAS AGdCase expression is taking place when
a medium strength of inhibitiorK{ = 2.0) is used. This medium strength of inhibitmonfers
the system to oscillate stably with improved fattyds productionKig. 5), albeit the fatty acids
increase is less than 50%. When the dissociatiostant takes a larger numbé&t = 4.0), the
systems behave like a damped oscillation that [@egmately approaching to the optimal
design schemeKq = 2.0). This analysis indicates that a mediumnsgfite of dissociation constant
(K1) should be used. In practice, one can always wwapti@e lab evolution to screen

conditionally tolerant phenotype that meetskheelection criteria.

Similarly, we could perform a phase-plane analyBig. 6). The phase-planes suggest that the
optimal control schemeKg = 2.0, the purple cycles) only permits a very oaed space of FAS,
ACCase and MaloCoA solutions. Interestingly, fowlmalonyl-CoA dissociation constan{&
0.5), the system exhibits a looping behavior on F#&S-FA and MalCoA-FA phase plane.
Plotting the steady state solutions of fatty ack&S and malonyl-CoA, we observed looping
pattern of solutions in the 3-D space, this mayp aisply a hysteretic state of the system (Aris,
Borhani et al. 2019) (Supplementary Notes 2 andIBsimply means that strong malonyl-CoA
inhibition (i.e.K;= 0.3 or 0.5) will lead to multiplicity of steadyases Fig. 6 and Fig. 7), which

is a critical factor to evaluate the dynamics & #lystem behavior.

Literature reports that feedback inhibition of ffiaéty acid on FAS complex plays a major role
in regulating FA synthesis. Specifically, it is geally believed that acyl-ACPs or acyl-CoAs
will feedback inhibit acetyl-CoA carboxylase i coli (Davis and Cronan 2001). Since acyl-
CoA/ACP could be hydrolyzed to free fatty acids &gyl-CoA thioesteraséesA (which is
constitutively overexpressed in the published papBIAS 2014), we believe the feedback
inhibition of acyl-CoA/ACP on FAS complex could benimized whertesA was overexpressed.
In this synthetic system, the malonyl-CoA inhibytoeffect on FAS was translated to the
malonyl-CoA inhibitory effect on cell growth: cefrowth is associated with how much of
membrane lipids (phospholipids synthesized from-@oAs/acyl-ACPs) were made. Therefore,
the malonyl-CoA/ACP feedback inhibitory effect oA% (cell growth) plays a critical role to

determine the system dynamics.
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Fig. 5. Effect of malonyl-CoA dissociation consta#;) on system dynamic behavior. Malonyl-
CoA dissociation constant¥K{) have been labelled with different color. Low disstion
constantsk; = 0.5, 1.0 and 2.0) lead to stable oscillatiorghiHdissociation constankK{= 4.0)
leads to damped oscillation. Medium strength ofamglCoA inhibition ;= 2.0) favors fatty

acids production.
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Fig. 7. The 3-D phase-plane portraits for fatty acidsSFd malonyl-CoA, with malonyl-CoA
inhibition constantk(;) varying from 0.1 to 1.5. A specific trajectoryrfig; = 0.3 is added to the
above solution space, marked in blue color. Otleeampeters used here are the same as the

parameters used in Fig. 5.
Effects of FapR-UAS interaction on system dynamics

We next explored how the gene expression of theomy&lICoA source pathway (ACCase)
impacts the system dynamics. According to the palgdesign and Eqn.5, expression of ACCase
is governed by the FapR-UAS interactions. The systquation for ACCase (Egn. 5) accounts
for both the growth-associated leaky expressiog) @nd the FapR-activated regulatory
expression/f;, p andK,). In all our simulations, we assume stringent taon and the leaky
expression is negligibleaf = a3 = 0.05). We will specifically investigate how teCCase
induction rate £) and the FapR-UAS dissociation constafi) (impact the system dynamics
(Fig. 8 andFig. 9).
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Fig. 8. Effect of ACCase induction rat@g,§ on system dynamics. ACCase induction rate¥ (
have been labelled with different color. High AC€asduction rate (i.ef, = 4.0) leads to a

quickly damped oscillation and favors fatty acidanulation.

We investigated a number of ACCase induction rgtgdn the units of concentration per time),
ranging from 0.50 to 4.0F{(g. 8). As the ACCase induction rate increasgs from 0.50 to 4.0,
the expression of malonyl-CoA source pathway (A@&Tas upregulated, leading to improved
fatty acids productionHig. 8). For example, the fatty acids production is iased up to 2-fold
when the ACCase induction ragg)increases from 0.5 (blue linig. 8) to 4.0 (purple lineFig.
8). On the other hand, the amount of regulator pndt@pR decreases with increasing ACCase
induction rate £) (Fig. 8), possibly due to the antagonist effect of male@glA. However, this
monotonic correlation was not found for the specMalCoA and AcCoA, due to the
complicated autoregulation of malonyl-CoA in thentol system. Furthermore, under low
ACCase induction rates (.82 = 0.5, 1.0 and 2.0), the oscillation damped pécaity with
decreasing amplitude. Under high ACCase inductaia (i.e.f; = 4.0), the oscillation damped
quickly to reach its steady statéidq. 8). This result indicates that a high ACCase indurctiate

(B2) is essential for the proper function of the cohscheme.
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As FapR is the activator for the ACC operon, anel EINA binding site for FapR is a UAS
(upstream activation sequence). We next investightev the FapR-UAS dissociation constant
(Ks4) impacts the system dynamicBig. 9). A smaller FapR-UAS dissociation constai)(
indicates a tighter binding between FapR and UAf® (hverse of the dissociation constant
guantifies the binding affinity). As the binding tbeen FapR and UAS becomes tightky (
decreases from 8.0 to 1.0), the expression of takmgl-CoA source pathway (ACCase) is
strongly activated, leading to increased fatty sagdoduction Fig. 9). For example, the fatty
acids production is increased up to 2.2-fold whiea FapR-UAS dissociation constad,)
decreases from 8.0 (purple lirffigg. 9) to 1.0 (blue lineFig. 9). Under high FapR-UAS binding
affinity (K4 = 1.0), the oscillation damped quickly to reachsiteady state; under low FapR-UAS
binding affinity (K4 = 4.0 or 8.0), the oscillation retains periodittean with fixed frequency and
amplitude. This result indicates that a tighter RdpAS binding is the critical factor to achieve

the desired control scheme.
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Fig. 9. Effect of FapR-UAS dissociation constaKi) on system dynamics. Tighter FapR-UAS

binding is advantageous to fatty acids production.
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Effect of FapR-fapO interaction on system dynamics

We also attempted to understand how the gene esipresf the malonyl-CoA sink pathway
(FAS) impacts the system dynamics. By design, FapiRe repressor that is specifically bound
to fapO and represses the expression of the ma@o¥l sink pathway (FAS). The system
equation for FAS (Egn. 4) accounts for both theangheassociated leaky expressien)(and the
FapR-repressed regulatory expressién @ and K3). Transcriptional factor (FapR) and DNA
binding site (fapO) interactions are typically eefl by the binding affinity (inverse of the
dissociation constant) and the Hill cooperativiyefficient. By probing the physiologically
accessible parameter space, we will investigate teamapR-fapO dissociation constalds)(

impact the system dynamidsig. 10).

We investigated a number of FapR-fapO dissociatmmstant K3), spanning from 0.50 to 8.0
(Fig. 10). A smaller FapR-fapO dissociation constant ingisaa tighter binding between FapR
and fapO, thus the FapR-fapO complex will functasia stronger roadblock to prevent FAS
transcription. As the binding between FapR and fap@omes tighteiKz decreases from 8.0 to
0.5), the expression of the malonyl-CoA sink pathW8AS) is strongly repressedrif. 10),
leading to decreased fatty acid accumulation. F@mgple, the fatty acids production at low
FapR-fapO dissociation constarz(= 0.50, blue curve) is less than 1/7 of the faityd
production at high FapR-fapO dissociation cons{&at = 8.0, green curve)F(g. 10). With
weaker FapR-fapO bindindk§ = 4.0 and 8.0), the ODE solutions for ACCase, M&Cand
AcCoA oscillate with fixed frequency and amplitudegicating the functionality of the ON-OFF
control toward both the malonyl-CoA source pathwWAZCase) and the malonyl-CoA sink
pathway (FAS). However, with tighter FapR-fapO hingd(K; = 0.5 and 1.0), the oscillation
collapses at relatively short period of time, iradiog a faulted control scheme. This result
suggests that a weak binding between FapR and fapG large FapR-fapO dissociation

constant) is the most important design criteriadbieve the desired ON-OFF control scheme.
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Fig. 10. Effect of FapR-fapO dissociation constalg)(on system dynamics. A weak binding
between FapR and fapO (or a large FapR-fapO desociconstant, i.eKs = 8.0) significantly

improves fatty acid production, up to 7-fold.
Exploring the optimal controller architecture

The Hill cooperativity coefficient is a critical ¢eor determining the input-output relationship of
biological signal transduction. Recent studies destrate that lots of nonlinear and complicated
biological functions are arising from the cooperatassembly of biological molecules (Bashor,
Patel et al. 2019, Shaw, Yamauchi et al. 2019)judiocg DNA, RNA and proteins. As such, we
will investigate how the FapR-FapO Hill cooperafvicoefficient @) impacts the system
dynamics Fig. 11). We choose a number of FapR-fapO Hill coopergtigoefficients, ranging
from -4 to 4. It should be noted that, our origin@ss balance equations (Eqn. 4 and Egn. 5)
only account for the fact that FapR represses Kmgession of FAS and FapR activates the

expression of ACC, which corresponds to a positilecoefficient (n > 0 andp > 0).

The sign of the Hill coefficient is related withetlgenetic configuration of the controlld¥ig.

1B). For example, a positive Hill coefficienh)(in the malonyl-CoA sink pathway (FAS)

20



412
413
414
415
416
417
418
419
420
421
422
423

424

425
426

427
428

indicates that FapRepresses the transcriptional activity of FAS expression;ileha negative
Hill coefficient (n) in the malonyl-CoA sink pathway (FAS) indicatémtt FapRactivates the
transcriptional activity of FAS expression (Equati). Similarly, a positive Hill coefficientpf

in the malonyl-CoA source pathway (ACC) indicatbatt FapRactivates the transcriptional
activity of ACC expression; while a negative Hibefficient @) in the malonyl-CoA source
pathway (ACC) indicates that Fapfpresses the transcriptional activity of ACC expression
(Equation 5). By changing the sign of the Hill da@énts for the malonyl-CoA sink pathway
(FAS) and the malonyl-CoA source pathway (ACC), aeeld explore the ‘optimal controller’
structure in this studyHg. 1B). Here we consider both positive Hill coefficiefits= 2.0 and 4.0)
and negative Hill coefficientsi(= -2.0 and -4.0) as well as no cooperatios 0). By comparing
either the activating or repressing effect of FapR may interrogate the topology of the optimal

controller architecture that leads to maximal fatyds production.
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Fig. 11. Effect of FapR-fapO Hill cooperativity coefficierfn) on system dynamics. Strong

repressionr{ = 4) leads to stable oscillation and drives tHetoemake more fatty acids.

As the FapR-fapO Hill cooperativity coefficient)(increases from -4.0 to 4.0, the regulatory
action of FapR towards the malonyl-CoA sink pathw@AS) shifts from activation to
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repression. As a result, a significant increaséha FAS, ACCase expression and fatty acids
production are observe#i@. 11). For example, almost 5-fold increase of fattydads obtained
when the FapR-fapO Hill cooperativity coefficiemt) (increases from -4.0 (blue line, strong
activation) to 4.0 (green line, strong repressidofder strong FapR activatiom = -4.0),
counterintuitively, the expression of FAS is instedownregulatedHig. 11). This could be
linked to the unbalanced induction ra® between the malonyl-CoA source pathway (ACCase,
p2 = 2.0) and the malonyl-CoA sink pathway (FA%,= 0.5). Even with highly cooperative
activation of FAS by FapRh(= -4.0, blue line), the low induction rate of timalonyl-CoA sink
pathway (FAS) makes the expression of FAS unabtatch up with the expression of ACCase
(malonyl-CoA source pathway). As a result, malo@glA will build up but stay unchanged in
the system (blue line iRig. 11) to inhibit cell growth, which will result in evelower level of
FapR (activator for FAS expression when= -4, blue line) and therefore exacerbate the
expression of FAS. On the contrary, highly coopeeatepression of FAS by FapR € 4, green
line) will make malonyl-CoA level oscillate, whidorms the driving force to dynamically link
and control the expression of the malonyl-CoA seuyathway (ACCase) and the malonyl-CoA
sink pathway (FAS). This analysis indicates thabatrol architecture consisting of upregulated
metabolic source and downregulated metabolic sinkn essential design criterion to build
adaptive genetic-metabolic circuits. In additiome tstable oscillation of the metabolic
intermediate (i.e., malonyl-CoA) forms the drivifce to exert the ON-OFF dynamic control

toward complex metabolic function in the cell.
Conclusions

With the better understanding of cellular regulationetabolic engineers have been able to
engineer both the chemistry (the mass flow) andcirol modules (the information flow)
inside the cell to design intelligent cell factarieith improved performance. Moving beyond
thermodynamic and stoichiometric constraints, bviorganisms could be viewed as a smart
system consisting of sensor (ligand binding domaintranscriptional factors), transducers
(DNA-binding domain of transcriptional factors, &se or enzymet al) and actuators (RNA
polymerases). Along this direction, cellular regwa and feedback control mechanisms have
been exploited to construct genetic/metabolic dscthat could sense/respond to environment,
achieve adaptive metabolic function and reshapk fat# for diverse biotechnological and

medical applications. As chemical engineers haveedtm program machine language and
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control the mass and energy flow in a chemical tplansynthetic biologist could rewrite the

genetic software and encode logic functions imlivcells to control cellular activity.

Biophysical and biochemical models are importamisdo quantitatively understand genetic
circuit dynamics, metabolic network constraintd|-cell communications (Dai, Lee et al. 2019)
and microbial consortia interactions (Kong, Meldgiral. 2018, Tsoi, Wu et al. 2018). Based on
a previously engineered malonyl-CoA switch, niniéedential equations were formulated (Table
1) and employed to unravel the design principlededying a perfect metabolite switch. While
the models present in the current study were sinpéy provide sufficient kinetic information
to predict the dynamic behavior of the publishedkvd@y interrogating the physiologically
accessible parameter space, we have determinedptieal control architecture to configure
both the malonyl-CoA source pathway and the mal@oA sink pathway. We also investigated
a number of biological parameters that strongly aotpthe system dynamics, including the
protein degradation rateD], malonyl-CoA inhibitory constant (Ki), malonyl-CoA source
pathway induction ratepf), FapR-UAS dissociation constaris], FapR-fapO dissociation
constant K3) as well as the FapR-fapO Hill cooperativity cazéint (n). We identified that low
protein degradation rat®), medium strength of malonyl-CoA inhibitory constg1K,), high
malonyl-CoA source pathway induction raig)( strong FapR-UAS binding affinity (K4),
weak FapR-fapO binding affinity (4) and a strong cooperative repression of malony-Co
sink pathway (FAS) by FapR) benefits the accumulation of the target mole¢tdéy acids).
The fatty acids production could be increased f&086 to 10-folds with the different set of
parameters. Under certain conditions (i.e. strorajonyl-CoA inhibitory constant Kh), the
system will display multiplicity of steady stat&table oscillation of malonyl-CoA is the driving
force to make the system perform the ON-OFF comindl automatically adjust the expression of
both the malonyl-CoA source (ACCase) and malonyhGmk (FAS) pathways.

In this work, we have chosen a number of biophygiesameters to discuss the possible output
of the malonyl-CoA switch. Genetically, these paetens could be altered by web-lab
experiments, including protein engineering or degated repressor binding sites to change the
biding affinity between the interacting componeetsl. The computational framework present
here may facilitate us to design and engineer ptalolie genetic-metabolic switches, configure
the optimal controller architecture of the metabaource/sink pathways, as well as reprogram

metabolic function for various applications.
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Appendix: Symbolsand variables used in thiswork

u

/imax

(441

specific growth rate

maximum specific growth rate

cell growth-associated FapR production rate comgtanstitutive expression)

cell growth-associated FAS production rate corigtaaky expression)

cell growth-associated ACC production rate cortgfi@aaky expression)

cell growth-associated PDH production rate corg@mstitutive expression)

non cell growth-associated FAS production ratgyl&ed expression)

non cell growth-associated ACC production ratgffeted expression)

Malonyl-CoA inhibitory (dissociation) constant

Mal-CoA and FapR saturation constant

dissociation rate constant of free FapR towar®fapthe FAS operon (to repress FAS transcription)
dissociation rate constant of free FapR toward WA®e ACC operon (to activate ACC transcription)
acetyl-CoA saturation (Michaelis) constant towAfCiC

glucose saturation (Michaelis) constant towardgllytic pathway

Monod constant for glucose

Malonyl-CoA saturation (Michaelis) constant tow&#aS

FapR-inactivating rate constant due to the foromatif MalCoA-FapR complex
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516 k, FA (fatty acids) production rate constant from MalA catalyzed by FAS
517  kj malonyl-CoA production rate constant from acetylACmtalzyed by ACC

518  kyu acetyl-CoA production rate constant from glycolysasalzyed by PDH

519 S glucose concentration

520 S, glucose concentration in the feeding stream
521 D dilution rate or degradation rate

522 X, biomass concentration in the feeding stream

523 Ypsy  malonyl-CoA to fatty acids conversion yield
524  Yyg glucose to biomass conversion yield
525 Yps;  glucose to acetyl-CoA conversion yield

526 M malonyl-CoA-FapR (ligand-TF) Hill cooperativity efficient

527 n FapR-FapO nucleoprotein complex Hill cooperatigibgfficient

5286 p FapR-UAS nucleoprotein complex Hill cooperativityefficient

529 ( malonyl-CoA-FAS (substrate-enzyme) Hill cooperiyicoefficient

530 r acetyl-CoA-ACC (substrate-enzyme) Hill cooperayivdoefficient

531 U glucose-PDH (substrate-enzyme, artificial reaqgtigii cooperativity coefficient
532
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Metabolic engineer can engineer both the chemistry and control modules in the cell

9 differential equations used to define a previously engineered malonyl-CoA switch
Optimal control architecture of metabolic source and sink pathways were determined
Models were used to unravel the design principles underlying an ideal metabolic switch
Stable oscillation of metabolic intermediates permits aternating ON-OFF genetic control
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