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Abstract

In this paper we consider the scenario where continuous microdata have been noise infused

using a differentially private Laplace mechanism for the purpose of statistical disclosure control.

We assume the original data are independent and identically distributed, having distribution within

a parametric family of continuous distributions. We employ a modification of the standard Laplace

mechanism that allows the range of the original data to be unbounded. We propose methodology

to analyze the noise infused data using multiple imputation. This approach allows the data user to

analyze the released data as if it were original, i.e., not noise infused, and then to obtain inference

that accounts for the noise infusion mechanism using standard multiple imputation combining

formulas. Methodology is presented for univariate data, and some simulation studies are presented

to evaluate the performance of the proposed method. An extension of the proposed methodology

to multivariate data is also presented.
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1 Introduction

Research on privacy preserving statistical databases is essential for addressing the following sit-

uation. A data producer constructs a dataset X (for example, by conducting a survey) which

contains useful information about the relevant population, and it is desirable for this information

to be released. However, privacy and confidentiality concerns prevent the dataset X from be-

ing released. (In some settings a distinction is made between privacy and confidentiality [Nayak,

Zhang, and Adeshiyan, 2015], but here we will consider these terms to be synonymous.) To resolve

these competing objectives, a transformation (often randomized) is constructed from X to Z, and

the dataset Z is released, instead of X. The goal is to construct this transformation such that

by releasing Z, the two objectives are satisfied: (1) individual’s privacy is protected; and (2) the

released dataset is useful for drawing inference on the relevant population. Statistical disclosure

control methodology refers to the methodology used to make the transformation from X to Z.

Differential privacy (Dwork et al., 2006, 2017) is a mathematical definition for quantifying the

privacy protection provided by the transformation from X to Z. The definition of differential

privacy is designed to control the effect of any one individual’s information on the released data.

One may refer, for example, to Wasserman and Zhou (2010), Dwork and Roth (2014), Vadhan

(2016), and Dwork et al. (2017) for discussion on the interpretation of differential privacy, as well

as for some standard transformations (such as the Laplace mechanism and exponential mechanism)

that satisfy differential privacy. Differential privacy possesses desirable properties such as closure

under composition, closure under postprocessing, and group privacy (Dwork et al., 2017), and

the approach has gained considerable popularity in recent years. Differential privacy has also been

applied in practice, see for example, Machanavajjhala et al. (2008), Erlingsson, Pihur, and Korolova

(2014), and Differential Privacy Team, Apple (2017).

In this paper we propose methodology that uses a differentially private noise infusion mechanism

to protect the data, and multiple imputation to facilitate valid data analysis. An advantage of

using multiple imputation is that data users can analyze the released, multiply imputed data as if

it were original data, and then apply simple multiple imputation combination formulas to obtain

valid inference that accounts for the extra variability due to the noise infusion. The methodology
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presented in this paper can be summarized as follows. One first applies random noise infusion to

transform from X to Z in such a way that differential privacy is attained. Then one sets up a

missing data problem, where the noise infused data Z are viewed as the observed data, and the

original data X are viewed as the missing data. Based on the “observed” data Z, the “missing”

data X are multiply imputed to obtain x∗(1), . . . ,x∗(m), m > 1. Then the multiply imputed data

x∗(1), . . . ,x∗(m) are released. Because the transformation from X to Z is differentially private, it

follows from the result on closure under postprocessing (Dwork et al. (2017), we also present a similar

property in our setting in Result 1) that the overall transformation from X to x∗(1), . . . ,x∗(m) is

also differentially private under the parametric scenario that we will describe in Section 2. For

drawing inference on the underlying population, the data user can then analyze each dataset x∗(j)

as if it were the original data, and then apply multiple imputation combining formulas to obtain

valid inference based on the entire released data {x∗(1), . . . ,x∗(m)}. Thus this approach enables

the data user to obtain valid inference using standard methods and software, in conjunction with

simple combination formulas.

In this paper we use Laplace random noise to make a transformation from X to Z that satisfies

differential privacy, however, we employ a modification to the standard Laplace mechanism. The

standard Laplace mechanism (Proposition 3.3 of Dwork et al., 2017) assumes that the L1 Sensitivity

(Definition 3.1 of Dwork et al., 2017) of the chosen query is finite. The query refers to the function

of X that will be noise infused via Laplace additive noise. In this paper we assume the query is

X itself, and we assume that the original data are independent and identically distributed (iid),

having continuous distribution within a parametric family. The sample space (or support) of many

common parametric models is not bounded (e.g. normal, lognormal, exponential), and hence the

L1 sensitivity of X is not finite. We consider a modification to the usual Laplace mechanism that

uses the notion of truncation to enable differential privacy to be attained even if the sample space

of the original data is not bounded (Result 3). A similar version of the Laplace mechanism that

uses truncation is discussed by Duchi et al. (2018).

Synthetic data methodology (Raghunathan, Reiter, and Rubin, 2003; Reiter, 2003; Reiter, 2005;

Drechsler, 2011) is a well established form of statistical disclosure control methodology that also
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uses concepts of multiple imputation for missing data (Rubin, 1987) to enable valid inference to

be drawn on the underlying population using the released data. The methodology proposed in

this paper differs from established synthetic data methods, because the proposed method takes

the explicit step of infusing noise using a differentially private mechanism before applying multiple

imputation. The output of our methodology is a set of m > 1 multiply imputed datasets, which,

to a user, would appear the same as the output of synthetic data methodology. As discussed by

Rubin (1993), an advantage of synthetic data is that data users can analyze the released data using

standard statistical procedures (in conjunction with multiple imputation combination formulas

that are simple to apply). The proposed methodology shares this advantage, because the methods

that the data user can apply for drawing inference are nearly the same (we propose to use the

combination formulas of Rubin (1987) and Li, Raghunathan, and Rubin (1991) for missing data,

instead of the formulas of Raghunathan, Reiter, and Rubin (2003), Reiter (2003), or Reiter (2005)

for synthetic data, due to the nature of the missing data and imputation process) as those used

for synthetic data. However, the extra step of infusing noise before applying multiple imputation

allows the noise level to be controlled, and differential privacy to be attained at a desired privacy-

loss budget. As with synthetic data, the most complicated part of the proposed methodology is

carrying out the imputation, and this would be performed by the data producer, and not the data

user. Furthermore, algorithms for generating these imputed values are developed in this paper.

In some settings differential privacy can be attained using synthetic data methodology via a

specialized choice of the prior distribution in the Bayesian model specification; however, in such

settings it has been shown that the usual combination formulas may not be applicable (Charest,

2010). The methodology proposed in this paper uses ideas from our earlier work (Klein and

Sinha, 2013) where we considered noise multiplication for privacy protection, and then applied

multiple imputation for data analysis. There we suggested that the initial step of applying noise

multiplication may be advantageous because it allowed explicit control over the level of noise infused

into the released data. In this paper, we take direct advantage of this control over the level of noise,

in fact, by infusing noise in such a way that differential privacy is satisfied, and then developing

appropriate imputation procedures under this type of noise infusion.
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The outline of the paper is as follows. In Section 2 we present the general setup, and some

basic definitions and results concerning differential privacy that are used in the paper. Following

Wasserman and Zhou (2010), we present these definitions and results using a statistical framework.

In Section 3 we introduce the standard Laplace mechanism, and the modification to the Laplace

mechanism using truncation, as applied in our setting. In Section 4 we derive methodology for

applying multiple imputation to impute the original data, based on data that have been noise

infused using the modified Laplace mechanism; and we review the combination formulas used for

drawing inference. Specifically, in Section 4.1 we derive some basic distributional results, including a

sampling algorithm that will be needed; in Section 4.2 we discuss how the distributional results can

be applied for direct likelihood based analysis based on Z; in Section 4.3 we apply the distributional

results to develop procedures for carrying out multiple imputation; and in Section 4.4 we discuss

how to use the multiply imputed data to draw inference. Section 5 presents some numerical results;

specifically Section 5.1 presents an application of the proposed methodology when the original

data are normally distributed; and Section 5.2 presents some simulation studies to assess the finite

sample properties of the proposed methodology in this case. In Section 6 we extend the proposed

methodology to multivariate data. Section 7 contains some concluding remarks. Appendix A

presents some integration formulas that are useful for using the EM algorithm for likelihood based

data analysis in the normal case of Section 5.1

2 General Setup

Suppose the original data are X1, . . . , Xn
iid∼ f(x|θ), where f(x|θ) is the probability density function

(pdf) of a continuous distribution and θ = (θ1, . . . , θp) is an unknown parameter such that θ ∈

Θ ⊆ Rp. Suppose each Xi ∈ X where X ⊆ R denotes the support of the pdf f(x|θ) such that

f(x|θ) > 0 if x ∈ X , and f(x|θ) = 0 if x /∈ X . We assume that the original data X1, . . . , Xn

are sensitive and cannot be released. Instead, the original data are modified, using a randomized

mechanism, to create a sanitized dataset, denoted by Z1, . . . , Zñ, that may then be released. Here

ñ and n can be unequal and each Zi ∈ R. Let X = (X1, . . . , Xn) and Z = (Z1, . . . , Zñ). The

randomized mechanism used to create the sanitized dataset induces a conditional distribution for
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Z, given X = x.

Let B(R) be the class of Borel sets in R, let B(Rñ) be the class of Borel sets in Rñ, and let

X n = X × · · · × X ⊆ Rn be the n-fold Cartesian product. For two vectors a = (a1, . . . , an) and

b = (b1, . . . , bn) in X n, define δ(a, b) = |{i : ai 6= bi}|, where for a set A having a finite number of

elements, |A| is the number of elements in A. We now state the definition of ε-differential privacy

due to Dwork et al. (2006, 2017), which is a condition imposed on the conditional distribution of

Z, given X. The conditional distribution of Z, given X, is also referred to as the data release

mechanism (Wasserman and Zhou, 2010). As discussed by Dwork et al. (2006, 2017), the definition

of differential privacy requires the notion of neighboring datasets, where a dataset is an element of

X n. For a given distance function, two datasets are called neighbors if and only if their distance

equals 1. Following Wasserman and Zhou (2010), the definition stated below is based on the notion

where a, b ∈ X n are neighbors if and only if δ(a, b) = 1.

Definition 1. For a given ε ≥ 0, the conditional distribution of Z, given X, is said to satisfy

ε-differential privacy if

P (Z ∈ A |X = a) ≤ eεP (Z ∈ A |X = b) (1)

for all A ∈ B(Rñ) and all a, b ∈ X n such that δ(a, b) = 1.

Remark 1. Observe that in ε-differential privacy, small values of ε provide more privacy, while

large values provide less privacy. The quantity ε is referred to as the privacy-loss budget.

Remark 2. It is said that the randomized transformation (or randomized mechanism) used to

transform from X to Z satisfies ε-differential privacy, if under this transformation, the conditional

distribution of Z, given X, satisfies ε-differential privacy.

The following lemma presents an equivalent characterization of ε-differential privacy based on

expectation.

Lemma 1. Let ε ≥ 0. The following statements are equivalent.

(a) The conditional distribution of Z, given X, satisfies ε-differential privacy.
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(b) E[h(Z) |X = a] ≤ eεE[h(Z) |X = b] for all nonnegative functions h that are measurable

from (Rñ,B(Rñ)) to (R,B(R)), and all a, b ∈ X n such that δ(a, b) = 1.

Proof. (b) implies (a): Suppose that statement (b) holds. Let A ∈ B(Rñ), and let a, b ∈ X n

such that δ(a, b) = 1. It follows from (b) that E[IA(Z) |X = a] ≤ eεE[IA(Z) |X = b], which is

equivalent to P (Z ∈ A |X = a) ≤ eεP (Z ∈ A |X = b), and hence (a) follows.

(a) implies (b): Suppose that statement (a) holds. Let h be a nonnegative measurable function

from (Rñ,B(Rñ)) to (R,B(R)), and let a, b ∈ X n such that δ(a, b) = 1. We need to show that

E[h(Z) |X = a] ≤ eεE[h(Z) |X = b]. (2)

Case 1: Suppose that h is a simple nonnegative function, meaning that h can be written as

h(z) =
∑r

i=1 ciIAi(z), z ∈ Rñ, where A1, . . . , Ar are disjoint sets in B(Rñ), and c1, . . . , cr ∈ [0,∞).

Then

E[h(Z) |X = a] =

r∑
i=1

ciP (Z ∈ Ai |X = a) and E[h(Z) |X = b] =

r∑
i=1

ciP (Z ∈ Ai |X = b).

It follows from (a) that

P (Z ∈ Ai |X = a) ≤ eεP (Z ∈ Ai |X = b) for all i = 1, . . . , r,

which implies,
r∑
i=1

ciP (Z ∈ Ai |X = a) ≤ eε
r∑
i=1

ciP (Z ∈ Ai |X = b),

and hence (2) holds.

Case 2: We now relax the assumption that h is a simple nonnegative function, assuming only

that h is a nonnegative measurable function from (Rñ,B(Rñ)) to (R,B(R)). Let {hN} be an

increasing sequence of simple, nonnegative, measurable functions from (Rñ,B(Rñ)) to (R,B(R))

such that h(z) = limN→∞ hN (z) for all z ∈ Rñ (the existence of such a sequence of functions

follows, for example, from Theorem 13.5 on page 185 of Billingsley, 1995 or Theorem 1.5.5 on page
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40 of Ash and Doléans-Dade, 2000). It follows from Case 1 that

E[hN (Z) |X = a] ≤ eεE[hN (Z) |X = b] for all N ∈ N,

and it follows from the Monotone Convergence Theorem (see for example, Theorem 16.2 on page

208 of Billingsley, 1995, or Theorem 1.6.2 on page 46 of Ash and Doléans-Dade, 2000) that

lim
N→∞

E[hN (Z) |X = a] = E[h(Z) |X = a] and lim
N→∞

E[hN (Z) |X = b] = E[h(Z) |X = b].

Therefore

E[h(Z) |X = a] = lim
N→∞

E[hN (Z) |X = a] ≤ eε lim
N→∞

E[hN (Z) |X = b] = eεE[h(Z) |X = b],

and hence (2) holds. �

In the sequel, we will make use of the following result; we note that the result on closure under

postprocessing (Proposition 2.4) of Dwork et al. (2017), and Part 2 of Lemma 2.6 of Wasserman

and Zhou (2010) are both similar to this result

Result 1. Suppose that the conditional distribution of Z, given X, satisfies ε-differential privacy,

and let Y be a random vector in Rs such that Y and X are conditionally independent, given Z.

Then the conditional distribution of Y , given X, also satisfies ε-differential privacy.

Proof. Note that this proof makes use of Lemma 1. Let a, b ∈ X n such that δ(a, b) = 1, and let

A ∈ B(Rs) where B(Rs) is the class of Borel sets in Rs. We have the following:

P (Y ∈ A |X = a) = E {P (Y ∈ A |X = a,Z) |X = a}

= E {P (Y ∈ A |Z) |X = a}

≤ eεE {P (Y ∈ A |Z) |X = b}

= eεE {P (Y ∈ A |X = b,Z) |X = b}

= eεP (Y ∈ A |X = b),
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where both the equality on line 2 and the equality on line 4 follow from the fact that Y and X

are conditionally independent, given Z; and the inequality on line 3 follows from Lemma 1, upon

taking h(z) = P (Y ∈ A |Z = z), and the fact that the conditional distribution of Z, given X,

satisfies ε-differential privacy. Hence we have shown

P (Y ∈ A |X = a) ≤ eεP (Y ∈ A |X = b)

for all A ∈ B(Rs) and all a, b ∈ X n such that δ(a, b) = 1. That is, the conditional distribution of

Y , given X, satisfies ε-differential privacy. �

3 Standard and Modified Laplace Mechanism

From now on ñ, the sample size of the sanitized dataset Z, will be taken as equal to n, the

sample size of the original dataset X. Let Lap(µ, σ) denote the Laplace distribution having pdf

hLap(w) = 1
2σ exp{−|w − µ|/σ}, −∞ < w < ∞, −∞ < µ < ∞, 0 < σ < ∞. Recall that if

W ∼ Lap(µ, σ), then E(W ) = µ and Var(W ) = 2σ2. Also recall that if r1, r2 ∈ R, then

∣∣|r1| − |r2|
∣∣ ≤ |r1 − r2|, (3)

which is a consequence of the triangle inequality: |r1 + r2| ≤ |r1|+ |r2| (Bartle and Sherbert, 2000,

page 31). The following is a standard data release mechanism that satisfies ε-differential privacy,

referred to as the Laplace mechanism. While this result is well known (see, for example, Proposition

3.3 of Dwork et al., 2017, or Theorem 3.6 of Dwork and Roth, 2014), below we state the Laplace

mechanism as it applies to our scenario.

Result 2. (Standard Laplace Mechanism) Let ε > 0 and let ∆ = sup{|α − β| : α, β ∈ X}. If

∆ ∈ (0,∞), and

Zi = Xi +Ri, i = 1, . . . , n, where R1, . . . , Rn
iid∼ Lap (0,∆/ε) , (4)

then conditional distribution of Z, given X, satisfies ε-differential privacy.
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Proof. The conditional pdf of Zi, given Xi = xi, is

gZ|X(zi|xi) =
ε

2∆
exp

{
− ε

∆
|zi − xi|

}
,

and the conditional pdf of Z, givenX = x, is gZ|X(z|x) =
∏n
i=1 gZ|X(zi|xi). Let z = (z1, . . . , zn) ∈

Rn, and let a = (a1, . . . , an) ∈ X n and b = (b1, . . . , bn) ∈ X n be such that δ(a, b) = 1. We will

show that
gZ|X(z|a)

gZ|X(z|b) ≤ eε. Because δ(a, b) = 1 there exists a value ` ∈ {1, . . . , n} such that a` 6= b`

and ai = bi if i 6= `. Thus we have

gZ|X(z|a)

gZ|X(z|b)
=

∏n
i=1 gZ|X(zi|ai)∏n
i=1 gZ|X(zi|bi)

=
gZ|X(z`|a`)

∏
{i:i 6=`} gZ|X(zi|ai)

gZ|X(z`|b`)
∏
{i:i 6=`} gZ|X(zi|bi)

=
gZ|X(z`|a`)
gZ|X(z`|b`)

=
exp

{
− ε

∆ |z` − a`|
}

exp
{
− ε

∆ |z` − b`|
} ,

and

exp
{
− ε

∆ |z` − a`|
}

exp
{
− ε

∆ |z` − b`|
} = exp

{ ε
∆

(
|z` − b`| − |z` − a`|

)}
≤ exp

{ ε
∆
|a` − b`|

}
≤ exp

{ ε
∆

∆
}

= eε,

where the first inequality above followed from (3), and the second inequality followed from the fact

that ∆ = sup{|α− β| : α, β ∈ X} ∈ (0,∞). Thus we have shown that

gZ|X(z|a) ≤ eεgZ|X(z|b) for all z ∈ Rn and all a, b ∈ X n such that δ(a, b) = 1,

which implies

P{Z ∈ A |X = a} ≤ eεP{Z ∈ A |X = b} for all A ∈ B(Rn) and all a, b ∈ X n such that δ(a, b) = 1,

and hence the conditional distribution of Z, given X, satisfies ε-differential privacy. �

For many choices of the original data distribution f(x|θ), the sample space X is not a bounded

set and hence sup{|α − β| : α, β ∈ X} = ∞. For example if f(x|θ) is the normal pdf, then

X = R and sup{|α − β| : α, β ∈ R} = ∞; if f(x|θ) is the lognormal pdf, then X = (0,∞) and

sup{|α− β| : α, β ∈ (0,∞)} =∞. If sup{|α− β| : α, β ∈ X} =∞, then the Laplace mechanism as

stated in Result 2 cannot be applied. To obtain ε-differential privacy using Laplace additive noise
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without requiring that sup{|α− β| : α, β ∈ X} is finite, we consider the following modified version

of the Laplace mechanism. A similar mechanism is discussed by Duchi et al. (2018).

Result 3. (Modified Laplace Mechanism) Let ε > 0, and let L,U ∈ R be such that L < U . If

Zi =


L+Ri, if Xi < L,

Xi +Ri, if L ≤ Xi ≤ U,

U +Ri, if Xi > U,

 , i = 1, . . . , n, where R1, . . . , Rn
iid∼ Lap

(
0,
U − L
ε

)
, (5)

then the conditional distribution of Z, given X, satisfies ε-differential privacy.

Proof. The conditional pdf of Zi, given Xi = xi, is

gZ|X(zi|xi) =



1
2ce
−|zi−L|/c, if xi < L

1
2ce
−|zi−xi|/c, if L ≤ xi ≤ U

1
2ce
−|zi−U |/c, if xi > U

=
1

2c

{
I(−∞,L)(xi)e

−|zi−L|/c + I[L,U ](xi)e
−|zi−xi|/c + I(U,∞)(xi)e

−|zi−U |/c
}
,

where c = (U − L)/ε, and IA is the indicator function for the set A. The conditional pdf of Z,

given X = x, is gZ|X(z|x) =
∏n
i=1 gZ|X(zi|xi).

Let z = (z1, . . . , zn) ∈ Rn, and let a = (a1, . . . , an) ∈ X n and b = (b1, . . . , bn) ∈ X n be such

that δ(a, b) = 1. We will show that
gZ|X(z|a)

gZ|X(z|b) ≤ eε. Because δ(a, b) = 1 there exists a value

` ∈ {1, . . . , n} such that a` 6= b` and ai = bi if i 6= `. Thus we have

gZ|X(z|a)

gZ|X(z|b)
=

∏n
i=1 gZ|X(zi|ai)∏n
i=1 gZ|X(zi|bi)

=
gZ|X(z`|a`)

∏
{i:i 6=`} gZ|X(zi|ai)

gZ|X(z`|b`)
∏
{i:i 6=`} gZ|X(zi|bi)

=
gZ|X(z`|a`)
gZ|X(z`|b`)

=
I(−∞,L)(a`)e

−|z`−L|/c + I[L,U ](a`)e
−|z`−a`|/c + I(U,∞)(a`)e

−|z`−U |/c

I(−∞,L)(b`)e−|z`−L|/c + I[L,U ](b`)e−|z`−b`|/c + I(U,∞)(b`)e−|z`−U |/c
.

Case 1: Suppose a` ∈ (−∞, L) and b` ∈ (−∞, L). Then,

gZ|X(z|a)

gZ|X(z|b)
=
e−|z`−L|/c

e−|z`−L|/c
= 1 < eε.
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Case 2: Suppose a` ∈ (−∞, L) and b` ∈ [L,U ]. Then,

gZ|X(z|a)

gZ|X(z|b)
=
e−|z`−L|/c

e−|z`−b`|/c
= exp

{
c−1
(
|z` − b`| − |z` − L|

)}
≤ exp

{
c−1|L− b`|

}
≤ exp

{
c−1|L− U |

}
= eε,

where the first inequality follows from (3), and the second inequality follows because b` ∈ [L,U ].

Case 3: Suppose a` ∈ (−∞, L) and b` ∈ (U,∞). Then,

gZ|X(z|a)

gZ|X(z|b)
=
e−|z`−L|/c

e−|z`−U |/c
= exp

{
c−1
(
|z` − U | − |z` − L|

)}
≤ exp

{
c−1|L− U |

}
= eε,

where the inequality follows from (3).

Case 4: Suppose a` ∈ [L,U ] and b` ∈ (−∞, L). Then,

gZ|X(z|a)

gZ|X(z|b)
=
e−|z`−a`|/c

e−|z`−L|/c
= exp

{
c−1
(
|z` − L| − |z` − a`|

)}
≤ exp

{
c−1|a` − L|

}
≤ exp

{
c−1|U − L|

}
= eε,

where the first inequality follows from (3), and the second inequality follows because a` ∈ [L,U ].

Case 5: Suppose a` ∈ [L,U ] and b` ∈ [L,U ]. Then,

gZ|X(z|a)

gZ|X(z|b)
=
e−|z`−a`|/c

e−|z`−b`|/c
= exp

{
c−1
(
|z` − b`| − |z` − a`|

)}
≤ exp

{
c−1|a` − b`|

}
≤ exp

{
c−1|U − L|

}
= eε,

where the first inequality follows from (3), and the second inequality follows because a` ∈ [L,U ]

and b` ∈ [L,U ].

Case 6: Suppose a` ∈ [L,U ] and b` ∈ (U,∞). Then,

gZ|X(z|a)

gZ|X(z|b)
=
e−|z`−a`|/c

e−|z`−U |/c
= exp

{
c−1
(
|z` − U | − |z` − a`|

)}
≤ exp

{
c−1|a` − U |

}
≤ exp

{
c−1|L− U |

}
= eε,

where the first inequality follows from (3), and the second inequality follows because a` ∈ [L,U ].

Case 7: Suppose a` ∈ (U,∞) and b` ∈ (−∞, L). Then,

gZ|X(z|a)

gZ|X(z|b)
=
e−|z`−U |/c

e−|z`−L|/c
= exp

{
c−1
(
|z` − L| − |z` − U |

)}
≤ exp

{
c−1|U − L|

}
= eε,
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where the inequality follows from (3).

Case 8: Suppose a` ∈ (U,∞) and b` ∈ [L,U ]. Then,

gZ|X(z|a)

gZ|X(z|b)
=
e−|z`−U |/c

e−|z`−b`|/c
= exp

{
c−1
(
|z` − b`| − |z` − U |

)}
≤ exp

{
c−1|U − b`|

}
≤ exp

{
c−1|U − L|

}
= eε,

where the first inequality follows from (3), and the second inequality follows because b` ∈ [L,U ].

Case 9: Suppose a` ∈ (U,∞) and b` ∈ (U,∞). Then,

gZ|X(z|a)

gZ|X(z|b)
=
e−|z`−U |/c

e−|z`−U |/c
= 1 < eε.

By combining the results of Cases 1-9, we have shown that

gZ|X(z|a) ≤ eεgZ|X(z|b) for all z ∈ Rn and all a, b ∈ X n such that δ(a, b) = 1,

which implies

P{Z ∈ A |X = a} ≤ eεP{Z ∈ A |X = b} for all A ∈ B(Rn) and all a, b ∈ X n such that δ(a, b) = 1,

and hence the conditional distribution of Z, given X, satisfies ε-differential privacy. �

4 Methodology for Multiple Imputation Based Inference

Throughout this section we work under the notation of Section 1 with ñ = n, and we let Z1, . . . , Zn

be defined as in Result 3.
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4.1 Joint, Marginal, and Conditional Distributions

The conditional pdf of Zi, given Xi = xi, is

gZ|X(zi|xi) =



1
2ce
−|zi−L|/c, if xi < L

1
2ce
−|zi−xi|/c, if L ≤ xi ≤ U

1
2ce
−|zi−U |/c, if xi > U

= I(−∞,L)(xi)
e−|zi−L|/c

2c
+ I[L,U ](xi)

e−|zi−xi|/c

2c
+ I(U,∞)(xi)

e−|zi−U |/c

2c
,

where c = (U − L)/ε, and IA is the indicator function for the set A. The joint pdf of (Xi, Zi) is

gX,Z(xi, zi|θ) = gZ|X(zi|xi)f(xi|θ)

= I(−∞,L)(xi)
e−|zi−L|/c

2c
f(xi|θ) + I[L,U ](xi)

e−|zi−xi|/c

2c
f(xi|θ) + I(U,∞)(xi)

e−|zi−U |/c

2c
f(xi|θ).

The marginal pdf of Zi is

gZ(zi|θ) =

∫
R
gX,Z(w, zi|θ)dw

=

∫
R

{
I(−∞,L)(w)

e−
|zi−L|
c

2c
f(w|θ) + I[L,U ](w)

e−
|zi−w|
c

2c
f(w|θ) + I(U,∞)(w)

e−
|zi−U|
c

2c
f(w|θ)

}
dw.

and therefore,

gZ(zi|θ) =
e−|zi−L|/c

2c

∫ L

−∞
f(w|θ)dw +

1

2c

∫ U

L
e−|zi−w|/cf(w|θ)dw +

e−|zi−U |/c

2c

∫ ∞
U

f(w|θ)dw

=
e−|zi−L|/c

2c
F (L|θ) +

1

2c

∫ U

L
e−|zi−w|/cf(w|θ)dw +

e−|zi−U |/c

2c
[1− F (U |θ)],

where F (w|θ) =
∫ w
−∞ f(t|θ)dt is the cumulative distribution function (cdf) of a random variable

whose pdf is f(x|θ). Hence the marginal pdf of Zi is

gZ(zi|θ) =
e−|zi−L|/c

2c
F (L|θ) +

1

2c

∫ U

L
e−|zi−w|/cf(w|θ)dw +

e−|zi−U |/c

2c
[1− F (U |θ)]. (6)

14



The conditional pdf of Xi, given Zi = zi, is

gX|Z(xi|zi,θ) =
gX,Z(xi, zi|θ)

gZ(zi|θ)

=
I(−∞,L)(xi)

e−|zi−L|/c

2c f(xi|θ) + I[L,U ](xi)
e−|zi−xi|/c

2c f(xi|θ) + I(U,∞)(xi)
e−|zi−U|/c

2c f(xi|θ)

e−|zi−L|/c

2c F (L|θ) + 1
2c

∫ U
L e−|zi−w|/cf(w|θ)dw + e−|zi−U|/c

2c [1− F (U |θ)]
,

and hence the conditional pdf of Xi, given Zi = zi, can be expressed as

gX|Z(xi|zi,θ) =
f(xi|θ)

{
I(−∞,L)(xi)e

−|zi−L|/c + I[L,U ](xi)e
−|zi−xi|/c + I(U,∞)(xi)e

−|zi−U |/c
}

e−|zi−L|/cF (L|θ) +
∫ U
L e−|zi−w|/cf(w|θ)dw + e−|zi−U |/c[1− F (U |θ)]

. (7)

Result 4. For given values of z ∈ R and θ ∈ Θ, the following algorithm produces a random

variable X∗ having the density gX|Z(x∗|z,θ), where gX|Z is the pdf defined in Equation (7). Define

K(x, z) =
I(−∞,L)(x)e−|z−L|/c + I[L,U ](x)e−|z−x|/c + I(U,∞)(x)e−|z−U |/c

I(−∞,L)(z)e−|z−L|/c + I[L,U ](z) + I(U,∞)(z)e−|z−U |/c

and proceed as follows.

1. Generate V and X independently such that V ∼ Uniform(0, 1) and X ∼ f(x|θ).

2. If V ≤ K(X, z) then accept X and deliver X∗ = X. Otherwise reject X and return to Step 1.

The expected number of iterations of Steps 1 and 2 required to obtain X∗ is

M(z,θ) = C(z,θ)
{
I(−∞,L)(z)e

−|z−L|/c + I[L,U ](z) + I(U,∞)(z)e
−|z−U |/c

}
,

where C(z,θ) =
{
e−|z−L|/cF (L|θ) +

∫ U
L e−|z−w|/cf(w|θ)dw + e−|z−U |/c[1− F (U |θ)]

}−1
.

Proof. This algorithm is an accept-reject algorithm (Devroye, 1986; Ripley, 1987; Robert and

Casella, 2005) where the target density is gX|Z(x|z,θ), the instrumental density is f(x|θ), and

M(z,θ) is the bounding constant such that

gX|Z(x|z,θ) ≤M(z,θ)f(x|θ) for all x ∈ R. (8)

To fill in the details, first let us show that the inequality (8) holds. If x /∈ X , then gX|Z(x|z,θ) = 0
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and f(x|θ) = 0, and hence gX|Z(x|z,θ) ≤M(z,θ)f(x|θ). Let x ∈ X , then we have:

gX|Z(x|z,θ)

f(x|θ)
= C(z,θ)

{
I(−∞,L)(x)e−|z−L|/c + I[L,U ](x)e−|z−x|/c + I(U,∞)(x)e−|z−U |/c

}

≤


C(z,θ)e−|z−L|/c, if z < L,

C(z,θ), if L ≤ z ≤ U,

C(z,θ)e−|z−U |/c, if z > U,

= C(z,θ)
{
I(−∞,L)(z)e

−|z−L|/c + I[L,U ](z) + I(U,∞)(z)e
−|z−U |/c

}
= M(z,θ),

and hence gX|Z(x|z,θ) ≤M(z,θ)f(x|θ). Thus we have proven that inequality (8) holds. Note that

the pdf gX|Z(x|z,θ) can be expressed as

gX|Z(x|z,θ) = C(z,θ)f(x|θ)
{
I(−∞,L)(x)e−|z−L|/c + I[L,U ](x)e−|z−x|/c + I(U,∞)(x)e−|z−U |/c

}
.

Hence upon observing that

gX|Z(x|z,θ)

M(z,θ)f(x|θ)
=
C(z,θ)f(x|θ)

{
I(−∞,L)(x)e−|z−L|/c + I[L,U ](x)e−|z−x|/c + I(U,∞)(x)e−|z−U |/c

}
C(z,θ)f(x|θ)

{
I(−∞,L)(z)e−|z−L|/c + I[L,U ](z) + I(U,∞)(z)e−|z−U |/c

}
=
I(−∞,L)(x)e−|z−L|/c + I[L,U ](x)e−|z−x|/c + I(U,∞)(x)e−|z−U |/c

I(−∞,L)(z)e−|z−L|/c + I[L,U ](z) + I(U,∞)(z)e−|z−U |/c

= K(x, z),

the result readily follows by applying the accept-reject algorithm (see for example, Robert and

Casella, 2005, pages 47-53) with gX|Z(x|z,θ) as the target density, f(x|θ) as the instrumental

density, and M(z,θ) as the bounding constant such that inequality (8) holds. �

Remark 3. The pdf of the conditional distribution of Xi, given Zi = zi, can be expressed in the
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form of a mixture distribution. To do so, let

h1(xi|θ) =


I(−∞,L)(xi)f(xi|θ)

F (L|θ) , if F (L|θ) > 0,

0, if F (L|θ) = 0,

h2(xi|zi,θ) =


I[L,U ](xi)e

−|zi−xi|/cf(xi|θ)∫ U
L e−|zi−w|/cf(w|θ)dw

, if
∫ U
L e−|zi−w|/cf(w|θ)dw > 0

0, if
∫ U
L e−|zi−w|/cf(w|θ)dw = 0,

h3(xi|θ) =


I(U,∞)(xi)f(xi|θ)

1−F (U |θ) , if F (U |θ) < 1,

0, if F (U |θ) = 1,

and

π1(zi,θ) =
e−|zi−L|/cF (L|θ)

e−|zi−L|/cF (L|θ) +
∫ U
L e−|zi−w|/cf(w|θ)dw + e−|zi−U |/c[1− F (U |θ)]

,

π2(zi,θ) =

∫ U
L e−|zi−w|/cf(w|θ)dw

e−|zi−L|/cF (L|θ) +
∫ U
L e−|zi−w|/cf(w|θ)dw + e−|zi−U |/c[1− F (U |θ)]

,

π3(zi,θ) =
e−|zi−U |/c[1− F (U |θ)]

e−|zi−L|/cF (L|θ) +
∫ U
L e−|zi−w|/cf(w|θ)dw + e−|zi−U |/c[1− F (U |θ)]

.

Note that π1(zi,θ) ≥ 0, π2(zi,θ) ≥ 0, π3(zi,θ) ≥ 0, and π1(zi,θ) + π2(zi,θ) + π3(zi,θ) = 1, and

the pdf of the conditional distribution of Xi, given Zi = zi, can be expressed in the following form:

gX|Z(xi|zi,θ) = π1(zi,θ)h1(xi|θ) + π2(zi,θ)h2(xi|zi,θ) + π3(zi,θ)h3(xi|θ). (9)

Observe that π1(zi,θ) > 0 =⇒ h1(xi|θ) is a pdf; π2(zi,θ) > 0 =⇒ h2(xi|zi,θ) is a pdf;

π3(zi,θ) > 0 =⇒ h3(xi|θ) is a pdf; and therefore the expression for the pdf gX|Z in Equation (9)

has the form of a mixture distribution.
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4.2 A Look At Likelihood Based Data Analysis

By Equation (6) it follows that the likelihood function for θ based the observed sanitized data

Z = z is

LZ(θ|z) =
n∏
i=1

gZ(zi|θ)

=

n∏
i=1

{
e−|zi−L|/c

2c
F (L|θ) +

1

2c

∫ U

L
e−|zi−w|/cf(w|θ)dw +

e−|zi−U |/c

2c
[1− F (U |θ)]

}
. (10)

The likelihood function for θ based on the observed original X = x is

LX(θ|x) =

n∏
i=1

f(xi|θ). (11)

If the original data X were observed, then analysis for θ can be conducted under the likelihood

function (11). Generally, if f(x|θ) is a standard parametric model, then likelihood based analysis

under (11) can be conducted in a straightforward manner using readily available software. However,

since the sanitized data Z are observed instead ofX, the likelihood function is (10), which obviously

differs from the original data likelihood function (11). One way to compute the maximum likelihood

estimate (MLE) of θ under the likelihood function (10), is by means of the EM algorithm (Dempster,

Laird, and Rubin, 1977; Little and Rubin, 2002). To apply the EM algorithm in this scenario, we

setup a missing data problem with X as the missing data, Z as the observed data, and hence

(X,Z) as the complete data. Then the complete data likelihood function is

LX,Z(θ|x, z) =
n∏
i=1

gX,Z(xi, zi|θ) =
n∏
i=1

gZ|X(zi|xi)f(xi|θ) ∝
n∏
i=1

f(xi|θ) = LX(θ|x).

Therefore, with θ(t) denoting an estimate of θ at iteration t, the E step of an EM algorithm for

computing the MLE of θ under (10), is to compute

Q(θ|θ(t)) =

∫
Xn

`X(θ|x)

n∏
i=1

gX|Z(xi|zi,θ(t))dx,
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where `X(θ|x) = logLX(θ|x) =
∑n

i=1 log f(xi|θ). The M step of the EM algorithm is to compute

θ(t+1) such that Q(θ(t+1)|θ(t)) ≥ Q(θ|θ(t)) for all θ ∈ Θ. Depending on the choice of f(x|θ), the E

and/or M steps may have a closed form.

4.3 Using the Sanitized Data to Multiply Impute the Original Data

Instead of a direct likelihood based approach, we now consider an alternative approach based on

multiple imputation (Rubin, 1987). Under the multiple imputation based approach, the observed

Z = z will be used to create multiply imputed versions of the original data X, that we denote

by x∗(1), . . . ,x∗(m), where m > 1. An advantage of this approach is that each imputed data set

x∗(j) can be analyzed as if it were the original data (analysis can be based on the simple likelihood

function (11), instead of the more complicated likelihood (10)), and the overall inference is then

obtained using standard multiple imputation combination formulas.

We setup a missing data problem (Little and Rubin, 2002) with X as the missing data, Z as

the observed data, and hence (X,Z) as the complete data (as we did in the preceding section when

discussing the EM algorithm). In order to apply the multiple imputation methodology of Rubin

(1987), we will impute the missing data X under a Bayesian model, and to do so, we place a prior

density pθ(θ) on θ. The missing data X are multiply imputed by taking m > 1 random draws

from the posterior predictive distribution of X, given Z = z. A general procedure for drawing

(x∗,θ∗) from the joint posterior distribution of (X,θ), given Z = z, is given in Algorithm 1.

Algorithm 1. Draw (x∗,θ∗) from the joint posterior distribution of (X,θ), given Z = z.

1. Draw θ∗ = (θ∗1, . . . , θ
∗
p) from the posterior distribution of θ, given Z = z.

2. Draw x∗ = (x∗1, . . . , x
∗
n) from the conditional distribution of X, given Z = z,θ = θ∗.

Return (x∗,θ∗) as a draw from the posterior distribution of (X,θ), given Z = z.

Observe that in Step 1 of Algorithm 1, we sample from the posterior distribution of θ, given
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Z = z, and the pdf of this distribution is

pθ|Z(θ|z) ∝ pθ(θ)LZ(θ|z)

= pθ(θ)

n∏
i=1

{
e−|zi−L|/c

2c
F (L|θ) +

1

2c

∫ U

L
e−|zi−w|/cf(w|θ)dw +

e−|zi−U |/c

2c
[1− F (U |θ)]

}
. (12)

In some cases, depending on the choice of the original data distribution f(x|θ), and prior dis-

tribution pθ(θ), a computationally efficient method for taking a random draw from the posterior

density of θ, given Z = z, may not be readily available because the pdf in Equation (12) may

have a complicated form (involving integrals that may not have closed form expressions). We can

bypass direct sampling from the posterior distribution of θ, given Z = z, by using the data aug-

mentation algorithm (Tanner and Wong, 1987; Little and Rubin, 2002). The data augmentation

algorithm is equivalent to a Gibbs Sampler, and it is an approach that uses Markov chain Monte

Carlo (MCMC) to approximately sample from the posterior distribution of (X,θ), given Z = z.

A data augmentation algorithm for generating a Markov chain whose stationary distribution is the

posterior distribution of (X,θ), given Z = z, is presented in Algorithm 2.

Algorithm 2. General form of a data augmentation/Gibbs sampling algorithm for generating a
Markov chain whose stationary distribution is the posterior distribution of (X,θ), given Z = z.
Algorithm 3 (below) provides specific details on how this procedure can be implemented in practice.

Set an initial value θ(0) ∈ Θ.
Set a large natural number T .
Set t = 0.
While t < T , do the following

{
1. Draw x(t+1) = (x

(t+1)
1 , . . . , x

(t+1)
n ) from the conditional distribution of X, given θ = θ(t),Z = z.

2. Draw θ(t+1) = (θ
(t+1)
1 , . . . , θ

(t+1)
p ) from the posterior distribution of θ, given X = x(t+1),Z = z.

3. Update t = t+ 1.}
Return (x(1),θ(1)), (x(2),θ(2)), . . . , (x(T ),θ(T )).

Step 1 of Algorithm 2 requires sampling from the conditional distribution of X, given Z = z

and θ = θ(t). The conditional pdf of X, given Z = z and θ is

gX|Z(x|z,θ) =
n∏
i=1

gX|Z(xi|zi,θ),
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where gX|Z(xi|zi,θ) is the pdf defined in Equation (7). Recall that Result 4 provides a general

algorithm for drawing a random variable having the pdf (7). Hence Step 1 of Algorithm 2 can be

implemented as follows.

1. Use Result 4 to draw x
(t+1)
i ∼ gX|Z(x|zi,θ(t)) for each i = 1, . . . , n. Hence obtain x(t+1) =

(x
(t+1)
1 , . . . , x

(t+1)
n ).

Step 2 of Algorithm 2 requires sampling from the posterior distribution of θ, given X = x(t+1) and

Z = z. The posterior pdf of θ, given X = x and Z = z, is

pθ|X,Z(θ|x, z) ∝ pθ(θ)
n∏
i=1

gX,Z(xi, zi|θ) = pθ(θ)
n∏
i=1

{gZ|X(zi|xi)f(xi|θ)} ∝ pθ(θ)
n∏
i=1

f(xi|θ), (13)

and hence, letting pθ|X(θ|x) denote the posterior density of θ, given X = x, we have

pθ|X(θ|x) = pθ|X,Z(θ|x, z) ∝ pθ(θ)
n∏
i=1

f(xi|θ).

That is, the posterior distribution of θ, given X and Z, is the same as the posterior distribution of

θ, given X. Because pθ|X(θ|x) is the usual posterior density of θ, given the original data X = x, it

will usually be known how to take a random draw from this distribution. Hence Step 2 of Algorithm

2 can be implemented as follows.

2. Draw θ(t+1) = (θ
(t+1)
1 , . . . , θ

(t+1)
p ) ∼ pθ|X(θ|x(t+1)) where pθ|X(θ|x(t+1)) is the posterior density

of θ, given X = x(t+1).

Thus the general procedure of Algorithm 2 can be implemented using the specific steps shown in

Algorithm 3.

There are two standard ways in which Algorithm 3 can be applied to obtain m approximate

draws from the posterior distribution of (X,θ), given Z = z (see, for example, Hu, Mitra, and

Reiter (2013) for a general discussion on the use of MCMC for multiple imputation). The two ways

of using Algorithm 3 are as follows.

(a) Run Algorithm 3 a total of m times, independently, to generate m independent Markov chains

that have converged, and take the final value from each chain.
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Algorithm 3. Specific details on how the general data augmentation method of Algorithm 2 can
be implemented in practice.

Set an initial value θ(0) ∈ Θ.
Set a large natural number T .
Set t = 0.
While t < T , do the following

{
1. Use Result 4 to draw x

(t+1)
i ∼ gX|Z(x|zi,θ(t)) for each i = 1, . . . , n. Hence obtain x(t+1) =

(x
(t+1)
1 , . . . , x

(t+1)
n ).

2. Draw θ(t+1) = (θ
(t+1)
1 , . . . , θ

(t+1)
p ) ∼ pθ|X(θ|x(t+1)) where pθ|X(θ|x(t+1)) is the posterior density

of θ, given X = x(t+1); that is, pθ|X(θ|x(t+1)) ∝ pθ(θ)
∏n
i=1 f(x

(t+1)
i |θ).

3. Update t = t+ 1.}
Return (x(1),θ(1)), (x(2),θ(2)), . . . , (x(T ),θ(T )).

(b) Run Algorithm 3 a single time to generate a single Markov chain, and after the chain has

converged, take m draws from the converged part of the chain. The m draws should be

far enough apart from each other within the chain so that the draws are approximately

independent.

Remark 4. The multiply imputed values of X, namely x∗(1), . . . ,x∗(m), can be generated using

either Algorithm 1, 2, or 3. Each of these algorithms uses the observed value Z = z, but not the

observed value X = x. Therefore, we may conclude that (x∗(1), . . . ,x∗(m)) is conditionally inde-

pendent of X, given Z. Because the conditional distribution of Z given X satisfies ε-differential

privacy, Result 1 implies that the conditional distribution of (x∗(1), . . . ,x∗(m)), given X, also sat-

isfies ε-differential privacy. Regarding the conditional independence of (x∗(1), . . . ,x∗(m)) and X,

given Z, we have two additional comments.

(a) Algorithms 2 and 3 require an initial value θ(0). The initial value θ(0) can be a function of Z,

but it should not be a function of X, so that the required conditional independence between

(x∗(1), . . . ,x∗(m)) and X, given Z, holds.

(b) We are working under the paradigm where the original data are known to be iid from a

distribution within the parametric family F = {f(x|θ) : θ ∈ Θ}, and it is only the parameter

θ that is unknown and must be estimated from the observed data. The Algorithms 1, 2, or 3

do not use X, but instead use Z along with the knowledge that the original data are iid from
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a distribution within the parametric family F , to generate multiply imputed values of X.

4.4 Data Analysis Using Multiple Imputation Combination Formulas

Suppose that a data analyst observes the multiply imputed data x∗(1), . . . ,x∗(m), and wants to

draw inference on the unknown parameter θ, or on a function of θ. Below we review the inferential

procedures of Rubin (1987) for a scalar-valued estimand, and the procedures of Rubin (1987) and

Li, Raghunathan, and Rubin (1991) for a vector-valued estimand. In addition to Rubin (1987) and

Li, Raghunathan, and Rubin (1991), one may also refer to Rubin (1996), Schafer (1997), Little and

Rubin (2002) and Reiter and Raghunathan (2007) for more information on these procedures, and

for additional procedures.

Scalar-Valued Estimand. Suppose that Q = Q(θ) is the scalar-valued parameter of interest.

Let Q̂(X) be an estimator of Q(θ) based on the original data X, and let V̂ (X) be an estimator of

the variance of Q̂(X), also based on the original data X. Let Q∗j = Q̂(x∗(j)) and V ∗j = V̂ (x∗(j)) be

the values of Q̂ and V̂ when computed on the jth imputed dataset x∗(j) for j = 1, . . . ,m. Define

the following

Q̄m =
1

m

m∑
j=1

Q∗j , V̄m =
1

m

m∑
j=1

V ∗j , Bm =
1

m− 1

m∑
j=1

(Q∗j − Q̄m)2.

Then Q̄m is an estimator of Q, and the variance of Q̄m is estimated by Tm = V̄m +
(
1 + 1

m

)
Bm.

The distribution of (Q̄m−Q)/
√
Tm is approximated by a t distribution with w = (m−1)(1 + r−1

m )2

degrees of freedom where rm = (1 +m−1)BmV̄
−1
m . Hence, to obtain a test of significance for Q, or

a confidence interval, one can use (Q̄m −Q)/
√
Tm along with its approximate t distribution.

Vector-Valued Estimand. Suppose that Q = Q(θ) is the k × 1 dimensional vector-valued

parameter of interest. Let Q̂(X) be a k × 1 dimensional estimator of Q(θ) based on the original

data X, and let V̂ (X) be a k × k dimensional estimator of the covariance matrix of Q̂(X), also

based on the original data X. Let Q∗j = Q̂(x∗(j)) and V ∗j = V̂ (x∗(j)) be the values of Q̂ and V̂
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when computed on the jth imputed dataset x∗(j) for j = 1, . . . ,m. Define the following

Q̄m =
1

m

m∑
j=1

Q∗j , V̄m =
1

m

m∑
j=1

V ∗j , Bm =
1

m− 1

m∑
j=1

(Q∗j − Q̄m)(Q∗j − Q̄m)′.

Then Q̄m is an estimator of Q, and the covariance matrix of Q̄m is estimated by Tm = V̄m +(
1 + 1

m

)
Bm. Define the quantity

Sm =
(Q̄m −Q)′V̄ −1

m (Q̄m −Q)

k(1 + rm)

where rm = (1 +m−1)tr(BmV̄
−1
m )/k. The distribution of Sm is approximated by an Fk,w distribu-

tion with

w =


4 + [k(m− 1)− 4]

[
1 + r−1

m

(
1− 2

k(m−1)

)]2
, if k(m− 1) > 4,

(m− 1)
(
k+1

2

)
(1 + r−1

m )2, if k(m− 1) ≤ 4.

Hence, to obtain a test of significance for Q, or a confidence ellipsoid, one can use Sm along with

its approximate F distribution.

5 Simulation Studies Under the Normal Model

In this section we present simulation results to evaluate finite sample properties of the proposed

method in the case that f(x|θ) is the normal model. In Section 5.1 we present details to illustrate

how the proposed methodology can be applied under the normal model, and in Section 5.2 we

summarize some results of the simulation study.

5.1 Application to the Normal Model

Suppose f(x|θ) is the normal pdf with mean µ and variance σ2, that is,

f(x|θ) =
1

(2πσ2)1/2
exp

[
− 1

2σ2
(x− µ)2

]
, x ∈ R, µ ∈ R, σ2 ∈ (0,∞),
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and hence θ = (µ, σ2), X = R, Θ = R×(0,∞). We specify the following conjugate prior distribution

for (µ, σ2) (see, for example, Gelman et al., 2014),

µ |σ2 ∼ N
(
λ0,

σ2

κ0

)
, σ2 ∼ τ0

χ2
ν0

, (14)

where λ0 ∈ R, κ0 ∈ (0,∞), ν0 ∈ (0,∞), τ0 ∈ (0,∞) are parameters of the prior distribution. Under

this specification, the prior density on (µ, σ2) is

pθ(µ, σ2) =

{(
2πσ2

κ0

)−1/2

exp
[
− κ0

2σ2
(µ− λ0)2

]}{( τ0
2

)ν0/2
Γ
(
ν0
2

) (σ2)−(ν0/2)−1 exp
[
− τ0

2σ2

]}
,

for µ ∈ R and σ2 ∈ (0,∞). Then the posterior distribution of (µ, σ2), given X = x, can be

represented as follows:

µ |σ2,X = x ∼ N
(
λn,

σ2

κn

)
, σ2 |X = x ∼ τn

χ2
νn

, (15)

where λn = κ0λ0+nx̄
κ0+n , κn = κ0 +n, τn = τ0 + (n− 1)s2

x + κ0n
κ0+n(x̄−λ0)2, νn = ν0 +n, x̄ = 1

n

∑n
i=1 xi,

and s2
x = 1

n−1

∑n
i=1(xi − x̄)2. Hence the posterior density of (µ, σ2), given X = x, is

pθ|X(µ, σ2|x) =

{(
2πσ2

κn

)−1/2

exp
[
− κn

2σ2
(µ− λn)2

]}{( τn
2

)νn/2
Γ
(
νn
2

) (σ2)−(νn/2)−1 exp
[
− τn

2σ2

]}
,

for µ ∈ R and σ2 ∈ (0,∞). Drawing a random sample from the posterior distribution of (µ, σ2),

given X = x, is readily accomplished using the representation in (15), and hence Algorithm 3 is

readily applied to obtain x∗(1), . . . ,x∗(m) as discussed in Section 4.3. For the starting value θ(0)

needed to run Algorithm 3, one use the MLE of θ based on Z. As discussed in Section 4.2, the

MLE of θ based on Z can be computed using the EM algorithm. In this case, the log-likelihood
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function for θ based on X = x is

`X(θ|x) = −n
2

log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(xi − µ)2

= −n
2

log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

x2
i +

µ

σ2

n∑
i=1

xi −
nµ2

2σ2

and the E step of the EM algorithm is to compute

Q(θ|θ(t)) =

∫
Rn
`X(θ|x)

n∏
i=1

gX|Z(xi|zi,θ(t))dx

=

∫
Rn

{
−n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

x2
i +

µ

σ2

n∑
i=1

xi −
nµ2

2σ2

}
n∏
i=1

gX|Z(xi|zi,θ(t))dx

= −n
2

log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

ψ2(zi,θ
(t)) +

µ

σ2

n∑
i=1

ψ1(zi,θ
(t))− nµ2

2σ2
,

where

ψ1(zi,θ
(t)) =

∫ ∞
−∞

wgX|Z(w|zi,θ(t))dw

=
e−|zi−L|/c

∫ L
−∞wf(w|θ(t))dw +

∫ U
L wf(w|θ(t))e−|zi−w|/cdw + e−|zi−U |/c

∫∞
U wf(w|θ(t))dw

e−|zi−L|/cF (L|θ(t)) +
∫ U
L e−|zi−w|/cf(w|θ(t))dw + e−|zi−U |/c[1− F (U |θ(t))]

,

and

ψ2(zi,θ
(t)) =

∫ ∞
−∞

w2gX|Z(w|zi,θ(t))dw

=
e−|zi−L|/c

∫ L
−∞w

2f(w|θ(t))dw +
∫ U
L w2f(w|θ(t))e−|zi−w|/cdw + e−|zi−U |/c

∫∞
U w2f(w|θ(t))dw

e−|zi−L|/cF (L|θ(t)) +
∫ U
L e−|zi−w|/cf(w|θ(t))dw + e−|zi−U |/c[1− F (U |θ(t))]

.

By maximizing Q(θ|θ(t)) with respect to θ, we obtain the following equations which define the

sequence of EM iterations:

µ(t+1) =
1

n

n∑
i=1

ψ1(zi,θ
(t)), (σ2)(t+1) =

1

n

[
{
n∑
i=1

ψ2(zi,θ
(t))} − n(µ(t+1))2

]
.

Here the integrals that appear in ψ1(zi,θ
(t)) and ψ2(zi,θ

(t)) can be expressed in closed form, up to
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the standard normal cdf; the relevant formulas appear in Appendix A.

Remark 5. Observe that in this case we are using a proper prior distribution for θ. If an improper

prior distribution is used, then one must be careful, because even if the posterior distribution of θ

based on the original data X, is proper, the posterior distribution of θ based on the noise infused

data Z may be improper. Consider the normal example with improper prior pθ(µ, σ2) ∝ 1/σ2,

−∞ < µ <∞, 0 < σ2 <∞. Then the posterior distribution of (µ, σ2), given the original data X,

is proper if n > 1 (see, for example, Equation (20) of Klein and Sinha, 2013). Applying (12) we

obtain the posterior pdf of (µ, σ2), given the noise infused data Z, as follows:

pθ|Z(µ, σ2|z)

∝ 1

σ2

n∏
i=1

{e−|zi−L|/c
2c

Φ
(L− µ

σ

)
+

1

2c

∫ U

L

e−|zi−w|/c

σ
φ
(w − µ

σ

)
dw +

e−|zi−U |/c

2c

[
1− Φ

(U − µ
σ

)]}
,

where φ(x) = (2π)−1/2 exp(−x2/2) and Φ(x) =
∫ x
−∞ φ(w)dw, are the standard normal pdf and cdf,

respectively. Observe that

1

σ2

[
Φ
(L− µ

σ

)]n n∏
i=1

{e−|zi−L|/c
2c

}
=

1

σ2

n∏
i=1

{e−|zi−L|/c
2c

Φ
(L− µ

σ

)}
≤ 1

σ2

n∏
i=1

{e−|zi−L|/c
2c

Φ
(L− µ

σ

)
+

1

2c

∫ U

L

e−|zi−w|/c

σ
φ
(w − µ

σ

)
dw +

e−|zi−U |/c

2c

[
1− Φ

(U − µ
σ

)]}
,

and

∫ ∞
0

∫ ∞
−∞

1

σ2

[
Φ
(L− µ

σ

)]n
dµ d(σ2) =

∫ ∞
0

∫ ∞
−∞

(σ2)−1/2[Φ(w)]ndw d(σ2) =∞,

and hence the posterior pdf pθ|Z(µ, σ2|z) is not proper.

5.2 Simulation Results

We now present numerical evaluations to study the finite sample properties of the proposed method-

ology under the normal scenario of Section 5.1. The simulation results are displayed in Tables 1,

2, and 3, and we set µ = 0, σ2 = 1 in all cases, and the parameters in the prior distribution are
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set to λ0 = 1, κ0 = 0.1, τ0 = 10, ν0 = 5. Each of these tables shows results when the parameter

of interest is the mean µ, and also when the parameter of interest is the variance σ2; and each

table also shows results for each ε ∈ {1, 2, 3, 4, 5}, and each [L,U ] = {[−3, 3], [−4, 4]}. Tables 1,

2, and 3 show results for (the number of imputations) m = 10, 30, and 50, respectively. For each

setting the tables display Monte Carlo estimates (multiplied by 100), based on 2500 iterations, of

root mean squared error of the estimator (RMSE), bias of the estimator (Bias), standard deviation

of the estimator (SD), average of the standard deviation estimator over the simulation runs (ŜD),

empirical coverage probability of the nominal 0.95 confidence interval (Cvg), and average length of

this confidence interval over the simulation runs (EL).

We use the methodology of Section 4.4 to obtain an estimator for the parameter of interest,

along with an associated standard deviation estimator, and confidence interval. Let µ̂x = x̄ and

σ̂2
x = 1

n

∑n
i=1(xi − x̄)2 = n−1

n s2
x, i.e., µ̂x and σ̂2

x are the MLEs of µ and σ2 based on the original

data. In applying the methodology of Section 4.4, when the parameter of interest is Q(θ) = µ,

we take Q̂(x) = x̄, V̂ (x) = σ̂2
x/n; and when the parameter of interest is Q(θ) = σ2, we take

Q̂(x) = σ̂2
x, V̂ (x) = 2(σ̂2

x)2/n. Furthermore, we use Algorithm 3 to generate the multiply imputed

data x∗(1), . . . ,x∗(m). For the initial value θ(0) needed to run Algorithm 3, we use the MLE of θ

based on Z, which we compute via the EM algorithm. We used the statistical computing software

R (R Core Team, 2018) to obtain the simulation results. The EM algorithm and Algorithm 3

are the most computationally intensive parts of the simulation. Using Rcpp (Eddelbuettel and

Francois, 2011; Eddelbuettel, 2013; Eddelbuettel and Balamuta, 2017) we implemented the EM

algorithm, Algorithm 3, and the Modified Laplace Mechanism (5) in C++, and called the C++

implementations from R. Within each iteration of the simulation we ran Algorithm 3 a single time

with a burn-in of 1000 iterations, and subsequently we sampled every 100th iteration until we

obtained the desired number of m imputed values. For the EM algorithm we stopped when either

a maximum number of 1000 iterations was reached, or the convergence criterion {[µ(t) − µ(t+1)]2 +

[(σ2)(t) − (σ2)(t+1)]2}1/2 ≤ 10−4 was satisfied.

The following is a summary of the simulation results of Tables 1, 2, and 3.

1. When the parameter of interest is µ: We observe that Cvg tends to be close to the nominal value
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of 95%, Bias is close to 0, and ŜD is close to SD. In this sense, we are able to obtain inference

for µ that is approximately valid in all the scenarios considered, even those with smaller ε. We

also note that ŜD is close to SD, indicating that the multiple imputation standard deviation

estimator
√
Tm is an approximately unbiased estimator for the standard deviation of Q̄m. As

expected, for given values of n, L, U , and m, we observe in the tables that RMSE, SD, ŜD, and

EL tend to decrease as ε increases; and as ε gets larger the amount of decrease in these quantities

reduces. We also observe that for given values of n, ε, L, and U , the quantities RMSE, SD, ŜD,

and EL tend to decrease as m increases; though there are some exceptions, and the amount of

decrease reduces as m increases.

2. When the parameter of interest is σ2: We observe that for the smaller values of ε considered,

Cvg tends to exceed the nominal value of 95%, ŜD is greater than SD, and the Bias is also not

approximately equal to 0. In Table 1 (m = 10), when n = 5000, ε = 1 we also see that Cvg is

90.44% and 87.12% in the [L,U ] = [−3, 3] and [L,U ] = [−4, 4] cases, respectively; in these same

scenarios when m = 30 or m = 50 the value of Cvg is more than 95%. In the Tables, we observe

that Cvg tends to get closer to 95%, and Bias gets closer to 0, as ε increases. When Cvg exceeds

95%, we observe that ŜD is greater than SD, indicating that the multiple imputation standard

deviation estimator is positively biased for the standard deviation of Q̄m. We also observe that

when the sample size increases from n = 1000 to n = 5000, Bias and Cvg appear to get closer

to 0 and 95%, respectively, and also ŜD is closer to SD.

3. On the choice of L and U : Looking at the Modified Laplace Mechanism in (5), recall that in

addition to ε, this data release mechanism also has the tuning parameters L and U . Result

3 shows that the conditional distribution of Z, given X, under this mechanism satisfies ε-

differential privacy, irrespective of the choice of L and U . We observe that if [L,U ] is too narrow

then most of the Zi values will equal L+Ri or U +Ri, which seems to cause a large amount of

information loss in the data compared to a wider choice of [L,U ] which would give more Zi values

equal to Xi +Ri. However, the variance of the noise variable Ri is 2[(U −L)/ε]2, and thus if the

interval [L,U ] is too wide, then the variance of Ri will be large, which seems to cause a large

amount of information loss in the data compared to a narrower choice of [L,U ] which would give
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a smaller variance for Ri. Thus it appears to be undesirable to choose [L,U ] to be too narrow,

and it also appears undesirable to choose [L,U ] to be too wide. In the simulation studies we have

considered the cases [L,U ] = [−3, 3] and [L,U ] = [−4, 4], and the original data are distributed

as N(0, 1) so that P (Xi ∈ [−3, 3]) ≈ 0.99730 and P (Xi ∈ [−4, 4]) ≈ 0.99994. Clearly under

both of these choices, most of the original values are in the interval [L,U ]. We observe in the

Tables that inference tends to be less accurate in the [L,U ] = [−4, 4] cases compared to the

corresponding [L,U ] = [−3, 3]. Thus in the simulation scenarios, the interval [−3, 3] contains

most of the original data, and while [−4, 4] covers even more, the increase in variance of Ri

seems to offset any benefit.

4. Comparison with original data inference: In this setting, with X1, . . . , Xn iid as N(0, 1), X̄ =

n−1
∑n

i=1Xi, σ
2
X = n−1

∑n
i=1(Xi− X̄)2, we note that 100× [Var(X̄)]1/2 = 100× 1/

√
n ≈ 3.16 if

n = 1000, ≈ 1.41 if n = 5000; and 100× [Var(σ2
X)]1/2 = 100×

√
2(n− 1)/n2 ≈ 4.47 if n = 1000,

≈ 2.00 if n = 5000. One can compare these values with the values of SD given in the tables

to assess the amount of increase in standard deviation due to the combination of the Modified

Laplace Mechanism (5), and multiple imputation based methodology.

6 Extension to Multivariate Data

In this section we extend the proposed methodology to the case of multivariate data. Suppose

the original data consist of q-dimensional random vectors X1, . . . ,Xn
iid∼ f(x|θ). As in Section

2, assume f(x|θ) is the pdf of a continuous distribution and θ = (θ1, . . . , θp) ∈ Θ ⊆ Rp is an

unknown parameter. In this setting, each Xi = (Xi1, . . . , Xiq) ∈ X , where X ⊆ Rq is the support

of f(x|θ) such that f(x|θ) > 0 if x ∈ X , and f(x|θ) = 0 if x /∈ X . Let Z1, . . . ,Zñ denote the

sanitized dataset, where each Zi = (Zi1, . . . , Ziq) ∈ Rq. Let B(Rqñ) be the class of Borel sets in

Rqñ, and X n = X × · · · ×X ⊆ Rqn be the n-fold Cartesian product. Let X = (X1, . . . ,Xn) and

Z = (Z1, . . . ,Zñ). For two vectors a = (a1, . . . ,an) = ((a11, . . . , a1q), . . . , (an1, . . . , anq)) ∈ X n and

b = (b1, . . . , bn) = ((b11, . . . , b1q), . . . , (bn1, . . . , bnq)) ∈ X n, define δ(a, b) = |{i : ai 6= bi}|. Below

we state the definition of ε-differential privacy (Dwork et al., 2006, 2017), as it applies in the present
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multivariate scenario. As before, we follow Wasserman and Zhou (2010), treating a, b ∈ X n as

neighbors if and only if δ(a, b) = 1.

Definition 2. For a given ε ≥ 0, the conditional distribution of Z, given X, is said to satisfy

ε-differential privacy if

P (Z ∈ A |X = a) ≤ eεP (Z ∈ A |X = b) (16)

for all A ∈ B(Rqñ) and all a, b ∈ X n such that δ(a, b) = 1.

Lemma 1 and Result 1 continue to hold in the multivariate scenario, with the obvious adjust-

ments. Below we state a version of the Laplace mechanism (Dwork and Roth, 2014; Dwork et al.,

2017) for the present multivariate scenario. We state the Laplace mechanism below in such a way

that the random noise variables are independent, but not identically distributed.

Result 5. (Standard Laplace Mechanism for Multivariate Data) For each j = 1, . . . , q, let εj > 0

and ∆j = sup{|αj − βj | : α = (α1, . . . , αq) ∈ X ,β = (β1, . . . , βq) ∈ X}. If ∆j ∈ (0,∞) for all

j = 1, . . . , q, and

Zij = Xij +Rij , (17)

where Rij ∼ Lap (0,∆j/εj), independently, for j = 1, . . . , q and i = 1, . . . , n, then conditional

distribution of Z, given X, satisfies ε-differential privacy with ε =
∑q

j=1 εj .

Proof. The conditional pdf of Zi, given Xi = xi, is

gZ|X(zi|xi) =

q∏
j=1

εj
2∆j

exp

{
− εj

∆j
|zij − xij |

}
,

and the conditional pdf of Z, given X = x, is gZ|X(z|x) =
∏n
i=1 gZ|X(zi|xi).

Let z = (z1, . . . ,zn) = ((z11, . . . , z1q), . . . , (zn1, . . . , znq)) ∈ Rqn, and let a = (a1, . . . ,an) =

((a11, . . . , a1q), . . . , (an1, . . . , anq)) ∈ X n and b = (b1, . . . , bn) = ((b11, . . . , b1q), . . . , (bn1, . . . , bnq)) ∈

X n be such that δ(a, b) = 1. We will show that
gZ|X(z|a)

gZ|X(z|b) ≤ exp(
∑q

j=1 εj). Because δ(a, b) = 1

there exists a value ` ∈ {1, . . . , n} such that a` 6= b` and ai = bi if i 6= `. Thus we have

gZ|X(z|a)

gZ|X(z|b)
=

∏n
i=1 gZ|X(zi|ai)∏n
i=1 gZ|X(zi|bi)

=
gZ|X(z`|a`)

∏
{i:i 6=`} gZ|X(zi|ai)

gZ|X(z`|b`)
∏
{i:i 6=`} gZ|X(zi|bi)

=
gZ|X(z`|a`)
gZ|X(z`|b`)

,
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and

gZ|X(z`|a`)
gZ|X(z`|b`)

=

q∏
j=1

exp
{
− εj

∆j
|z`j − a`j |

}
exp

{
− εj

∆j
|z`j − b`j |

}
=

q∏
j=1

exp

{
εj
∆j

(
|z`j − b`j | − |z`j − a`j |

)}

≤
q∏
j=1

exp

{
εj
∆j
|a`j − b`j |

}
≤

q∏
j=1

exp

{
εj
∆j

∆j

}
= exp(

q∑
j=1

εj),

where the first inequality above followed from (3), and the second inequality followed from the fact

that ∆j = sup{|αj − βj | : α,β ∈ X} ∈ (0,∞) for all j = 1, . . . , q. Thus we have shown that

gZ|X(z|a) ≤ exp(

q∑
j=1

εj)gZ|X(z|b) for all z ∈ Rqn and all a, b ∈ X n such that δ(a, b) = 1,

which implies that the conditional distribution of Z, given X, satisfies ε-differential privacy with

ε =
∑q

j=1 εj . �

Remark 6. In Result 5, the Laplace random variables Rij , i = 1, . . . , n, j = 1, . . . , q are indepen-

dent, but not identically distributed; instead, the noise variable Rij is scaled to Xij according to

Rij ∼ Lap (0,∆j/εj), leading to (
∑q

j=1 εj)-differential privacy. In Result 5 one can instead draw

Rij
iid∼ Lap

(
0, ε−1

∑q
j=1 ∆j

)
, j = 1, . . . , q, i = 1, . . . , n, in which case the conditional distribution

of Z, given X, will satisfy ε-differential privacy. In this version with Rij
iid∼ Lap

(
0, ε−1

∑q
j=1 ∆j

)
,

one would only specify a single value ε > 0, instead of the q positive values ε1, . . . , εq.

As in the univariate scenario, for many choices of the original data distribution f(x|θ), the

sample space X is such that ∆j is not finite for all j = 1, . . . , q, and hence the Laplace Mechanism

in Result 5 cannot be applied. For example if f(x|θ) is the multivariate normal pdf, then X = Rq,

and hence ∆j = ∞ for j = 1, . . . , q. We now consider a modification of Result 5, analogous to

the Modified Laplace Mechanism of Result 3, enabling ε-differential privacy to be obtained in the

multivariate scenario without requiring that ∆j is finite for all j = 1, . . . , q.

Result 6. (Modified Laplace Mechanism for Multivariate Data) For each j = 1, . . . , q, let εj > 0,
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and let Lj , Uj ∈ R be such that Lj < Uj . If

Zij =


Lj +Rij , if Xij < Lj ,

Xij +Rij , if Lj ≤ Xij ≤ Uj ,

Uj +Rij , if Xij > Uj ,

 , j = 1, . . . , q, i = 1, . . . , n, (18)

where Rij ∼ Lap (0, (Uj − Lj)/εj) independently for j = 1, . . . , q and i = 1, . . . , n, then the condi-

tional distribution of Z, given X, satisfies ε-differential privacy with ε =
∑q

j=1 εj .

Proof. The conditional pdf of Zij , given Xij = xij , is

gj,Z|X(zij |xij) =



1
2cj
e−|zij−Lj |/cj , if xij < Lj

1
2cj
e−|zij−xij |/cj , if Lj ≤ xij ≤ Uj

1
2cj
e−|zij−Uj |/cj , if xij > Uj

=
1

2cj

{
I(−∞,Lj)(xij)e

−|zij−Lj |/cj + I[Lj ,Uj ](xij)e
−|zij−xij |/cj + I(Uj ,∞)(xij)e

−|zij−Uj |/cj
}
,

where cj = (Uj −Lj)/εj , and IA is the indicator function for the set A. The conditional pdf of Zi,

given Xi = xi, is gZ|X(zi|xi) =
∏q
j=1 gj,Z|X(zij |xij), and the conditional pdf of Z, given X = x,

is gZ|X(z|x) =
∏n
i=1 gZ|X(zi|xi) =

∏n
i=1

∏q
j=1 gj,Z|X(zij |xij).

Let z = (z1, . . . ,zn) = ((z11, . . . , z1q), . . . , (zn1, . . . , znq)) ∈ Rqn, and let a = (a1, . . . ,an) =

((a11, . . . , a1q), . . . , (an1, . . . , anq)) ∈ X n and b = (b1, . . . , bn) = ((b11, . . . , b1q), . . . , (bn1, . . . , bnq)) ∈

X n be such that δ(a, b) = 1. We will show that
gZ|X(z|a)

gZ|X(z|b) ≤ exp(
∑q

j=1 εj). Because δ(a, b) = 1

there exists a value ` ∈ {1, . . . , n} such that a` 6= b` and ai = bi if i 6= `. Thus we have

gZ|X(z|a)

gZ|X(z|b)
=

∏n
i=1 gZ|X(zi|ai)∏n
i=1 gZ|X(zi|bi)

=
gZ|X(z`|a`)

∏
{i:i 6=`} gZ|X(zi|ai)

gZ|X(z`|b`)
∏
{i:i 6=`} gZ|X(zi|bi)

=
gZ|X(z`|a`)
gZ|X(z`|b`)

=

∏q
j=1 gj,Z|X(z`j |a`j)∏q
j=1 gj,Z|X(z`j |b`j)

=

q∏
j=1

I(−∞,Lj)(a`j)e
−|z`j−Lj |/cj + I[Lj ,Uj ](a`j)e

−|z`j−a`j |/cj + I(Uj ,∞)(a`j)e
−|z`j−Uj |/cj

I(−∞,Lj)(b`j)e
−|z`j−Lj |/cj + I[Lj ,Uj ](b`j)e

−|z`j−b`j |/cj + I(Uj ,∞)(b`j)e
−|z`j−Uj |/cj

.

For each j ∈ {1, . . . , q}, by examining Cases 1-9 in an analogous way as in the proof of Result 3
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(i.e. Case 1: a`j ∈ (−∞, Lj) and b`j ∈ (−∞, Lj); Case 2: a`j ∈ (−∞, Lj) and b`j ∈ [Lj , Uj ]; etc.)

we can establish that

I(−∞,Lj)(a`j)e
−|z`j−Lj |/cj + I[Lj ,Uj ](a`j)e

−|z`j−a`j |/cj + I(Uj ,∞)(a`j)e
−|z`j−Uj |/cj

I(−∞,Lj)(b`j)e
−|z`j−Lj |/cj + I[Lj ,Uj ](b`j)e

−|z`j−b`j |/cj + I(Uj ,∞)(b`j)e
−|z`j−Uj |/cj

≤ exp(εj).

Hence,

q∏
j=1

I(−∞,Lj)(a`j)e
−|z`j−Lj |/cj + I[Lj ,Uj ](a`j)e

−|z`j−a`j |/cj + I(Uj ,∞)(a`j)e
−|z`j−Uj |/cj

I(−∞,Lj)(b`j)e
−|z`j−Lj |/cj + I[Lj ,Uj ](b`j)e

−|z`j−b`j |/cj + I(Uj ,∞)(b`j)e
−|z`j−Uj |/cj

≤ exp(

q∑
j=1

εj),

and therefore we have shown that

gZ|X(z|a) ≤ exp(

q∑
j=1

εj) gZ|X(z|b) for all z ∈ Rqn and all a, b ∈ X n such that δ(a, b) = 1.

Thus the conditional distribution of Z, given X, satisfies ε-differential privacy with ε =
∑q

j=1 εj .

�

For the rest of this section, let ñ = n, and let Z be defined as in Result 6. The conditional pdf

of Zij , given Xij = xij , is

gj,Z|X(zij |xij) =



1
2cj
e−|zij−Lj |/cj , if xij < Lj

1
2cj
e−|zij−xij |/cj , if Lj ≤ xij ≤ Uj

1
2cj
e−|zij−Uj |/cj , if xij > Uj

= I(−∞,Lj)(xij)
e−|zij−Lj |/cj

2cj
+ I[Lj ,Uj ](xij)

e−|zij−xij |/cj

2cj
+ I(Uj ,∞)(xij)

e−|zij−Uj |/cj

2cj
,

where cj = (Uj −Lj)/εj , and IA is the indicator function for the set A. The conditional pdf of Zi,

given Xi = xi, is

gZ|X(zi|xi) =

q∏
j=1

{
I(−∞,Lj)(xij)

e−|zij−Lj |/cj

2cj
+ I[Lj ,Uj ](xij)

e−|zij−xij |/cj

2cj
+ I(Uj ,∞)(xij)

e−|zij−Uj |/cj

2cj

}
.
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The joint pdf of (Xi,Zi) is

gX,Z(xi, zi|θ) = f(xi|θ)gZ|X(zi|xi)

= f(xi|θ)

q∏
j=1

I(−∞,Lj)(xij)
e
−
|zij−Lj |

cj

2cj
+ I[Lj ,Uj ](xij)

e
−
|zij−xij |

cj

2cj
+ I(Uj ,∞)(xij)

e
−
|zij−Uj |

cj

2cj

 .

The marginal pdf of Zi is

gZ(zi|θ) =

∫
Rq
gX,Z(w, zi|θ)dw

=

∫
Rq
f(w|θ)

q∏
j=1

I(−∞,Lj)(wj)
e
−
|zij−Lj |

cj

2cj
+ I[Lj ,Uj ](wj)

e
−
|zij−wj |

cj

2cj
+ I(Uj ,∞)(wj)

e
−
|zij−Uj |

cj

2cj

 dw.

The conditional pdf of Xi, given Zi = zi, is

gX|Z(xi|zi,θ) =
gX,Z(xi, zi|θ)

gZ(zi|θ)
(19)

=
f(xi|θ)

∏q
j=1

{
I(−∞,Lj)(xij)

e
−
|zij−Lj |

cj

2cj
+ I[Lj ,Uj ](xij)

e
−
|zij−xij |

cj

2cj
+ I(Uj ,∞)(xij)

e
−
|zij−Uj |

cj

2cj

}
∫
Rq f(w|θ)

∏q
j=1

{
I(−∞,Lj)(wj)

e
−
|zij−Lj |

cj

2cj
+ I[Lj ,Uj ](wj)

e
−
|zij−wj |

cj

2cj
+ I(Uj ,∞)(wj)

e
−
|zij−Uj |

cj

2cj

}
dw

=
f(xi|θ)

∏q
j=1

{
I(−∞,Lj)(xij)e

−
|zij−Lj |

cj + I[Lj ,Uj ](xij)e
−
|zij−xij |

cj + I(Uj ,∞)(xij)e
−
|zij−Uj |

cj

}
∫
Rq f(w|θ)

∏q
j=1

{
I(−∞,Lj)(wj)e

−
|zij−Lj |

cj + I[Lj ,Uj ](wj)e
−
|zij−wj |

cj + I(Uj ,∞)(wj)e
−
|zij−Uj |

cj

}
dw

.

Result 7. For given values of z ∈ Rq and θ ∈ Θ, the following algorithm produces a random

vector X∗ having the density gX|Z(x∗|z,θ), where gX|Z is the pdf defined in Equation (19). Define

K(x, z) =

∏q
j=1

{
I(−∞,Lj)(xj)e

−
|zj−Lj |
cj + I[Lj ,Uj ](xj)e

−
|zj−xj |
cj + I(Uj ,∞)(xj)e

−
|zj−Uj |
cj

}
∏q
j=1

{
I(−∞,Lj)(zj)e

−
|zj−Lj |
cj + I[Lj ,Uj ](zj) + I(Uj ,∞)(zj)e

−
|zj−Uj |
cj

}
and proceed as follows.

1. Generate V and X independently such that V ∼ Uniform(0, 1) and X ∼ f(x|θ).
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2. If V ≤ K(X, z) then accept X and deliver X∗ = X. Otherwise reject X and return to Step 1.

The expected number of iterations of Steps 1 and 2 required to obtain X∗ is

M(z,θ) = C(z,θ)

q∏
j=1

{
I(−∞,Lj)(zj)e

−|zj−Lj |/cj + I[Lj ,Uj ](zj) + I(Uj ,∞)(zj)e
−|zj−Uj |/cj

}
,

where

1

C(z,θ)
=

∫
Rq
f(w|θ)

q∏
j=1

{
I(−∞,Lj)(wj)e

−
|zj−Lj |
cj + I[Lj ,Uj ](wj)e

−
|zj−wj |

cj + I(Uj ,∞)(wj)e
−
|zj−Uj |
cj

}
dw.

Proof. This algorithm is an accept-reject algorithm (Devroye, 1986; Ripley, 1987; Robert and

Casella, 2005) where the target density is gX|Z(x|z,θ), the instrumental density is f(x|θ), and

M(z,θ) is the bounding constant such that

gX|Z(x|z,θ) ≤M(z,θ)f(x|θ) for all x ∈ Rq. (20)

To fill in the details, first let us show that the inequality (20) holds. If x /∈ X , then gX|Z(x|z,θ) = 0

and f(x|θ) = 0, and hence gX|Z(x|z,θ) ≤M(z,θ)f(x|θ). Let x ∈ X , then

gX|Z(x|z,θ)

f(x|θ)
= C(z,θ)

q∏
j=1

{
I(−∞,Lj)(xj)e

−
|zj−Lj |
cj + I[Lj ,Uj ](xj)e

−
|zj−xj |
cj + I(Uj ,∞)(xj)e

−
|zj−Uj |
cj

}
;

and for each j = 1, . . . , q,

I(−∞,Lj)(xj)e
−
|zj−Lj |
cj + I[Lj ,Uj ](xj)e

−
|zj−xj |
cj + I(Uj ,∞)(xj)e

−
|zj−Uj |
cj

≤


e−|zj−Lj |/cj , if zj < Lj ,

1, if Lj ≤ zj ≤ Uj ,

e−|zj−Uj |/cj , if zj > Uj ,

= I(−∞,Lj)(zj)e
−
|zj−Lj |
cj + I[Lj ,Uj ](zj) + I(Uj ,∞)(zj)e

−
|zj−Uj |
cj ;
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and therefore,

gX|Z(x|z,θ)

f(x|θ)
≤ C(z,θ)

q∏
j=1

{
I(−∞,Lj)(zj)e

−
|zj−Lj |
cj + I[Lj ,Uj ](zj) + I(Uj ,∞)(zj)e

−
|zj−Uj |
cj

}
= M(z,θ);

and hence gX|Z(x|z,θ) ≤ M(z,θ)f(x|θ). Thus we have proven that inequality (20) holds. Note

that the pdf gX|Z(x|z,θ) can be expressed as

gX|Z(x|z,θ)

= C(z,θ)f(x|θ)

q∏
j=1

{
I(−∞,Lj)(xj)e

−
|zj−Lj |
cj + I[Lj ,Uj ](xj)e

−
|zj−xj |
cj + I(Uj ,∞)(xj)e

−
|zj−Uj |
cj

}
.

Hence upon observing that

gX|Z(x|z,θ)

M(z,θ)f(x|θ)

=
C(z,θ)f(x|θ)

∏q
j=1

{
I(−∞,Lj)(xj)e

−
|zj−Lj |
cj + I[Lj ,Uj ](xj)e

−
|zj−xj |
cj + I(Uj ,∞)(xj)e

−
|zj−Uj |
cj

}
C(z,θ)f(x|θ)

∏q
j=1

{
I(−∞,Lj)(zj)e

−
|zj−Lj |
cj + I[Lj ,Uj ](zj) + I(Uj ,∞)(zj)e

−
|zj−Uj |
cj

}

=

∏q
j=1

{
I(−∞,Lj)(xj)e

−
|zj−Lj |
cj + I[Lj ,Uj ](xj)e

−
|zj−xj |
cj + I(Uj ,∞)(xj)e

−
|zj−Uj |
cj

}
∏q
j=1

{
I(−∞,Lj)(zj)e

−
|zj−Lj |
cj + I[Lj ,Uj ](zj) + I(Uj ,∞)(zj)e

−
|zj−Uj |
cj

}
= K(x, z),

the result readily follows by applying the accept-reject algorithm (see for example, Robert and

Casella, 2005, pages 47-53) with gX|Z(x|z,θ) as the target density, f(x|θ) as the instrumental

density, and M(z,θ) as the bounding constant such that inequality (20) holds. �

Using the distributional results above, the likelihood based data analysis and imputation meth-

ods can be derived in a completely analogous way as how these results were derived in Sections

4.2 and 4.3, respectively. For the multivariate version of Algorithm 3, one would use Result 7 in

place of Result 4 in step 1; but otherwise, extending each of the Algorithms 1, 2, and 3 to the mul-

tivariate scenario requires only the obvious modifications to account for vector-valued Xi, instead
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of real-valued Xi. The methods described in Section 4.4 can be applied for data analysis based

on the multiply imputed data. The (multivariate version of) Result 1 can be used to conclude

that the conditional distribution of the multiply imputed data x∗(1), . . . ,x∗(m), given X, satisfies

ε-differential privacy under the assumed parametric scenario.

7 Conclusion

In this paper we have proposed methodology to randomly transform an original dataset X to Z

using the modified Laplace mechanism as stated in Result 3. We have shown that the modified

version of the Laplace mechanism using truncation enables ε-differential privacy to be obtained

without requiring the sample space of the original data to be bounded. We then propose to setup

a missing data problem with X as the missing data, and Z as the observed data, and hence to

multiply impute X, based on Z, thus obtaining x∗(1), . . . ,x∗(m). Because the imputation process

(Algorithm 1, 2, or 3) only uses Z, but not X, it follows that (x∗(1), . . . ,x∗(m)) is conditionally

independent of X, given Z. Therefore, by Result 1, we may conclude that the conditional distribu-

tion of x∗(1), . . . ,x∗(m), given X, satisfies ε-differential privacy. By releasing the multiply imputed

data x∗(1), . . . ,x∗(m), data users are able to obtain valid inference for the unknown parameter Q(θ)

(scalar or vector) using standard statistical methods in conjunction with easily applicable multiple

imputation combining formulas as explained in Section 4.4. Indeed, an advantage of this approach

is the ability to attain ε-differential privacy, while enabling data users to obtain valid inference us-

ing easily applied multiple imputation combining formulas. The data user does not need to apply

complicated or specialized inferential methodology to account for the noise mechanism, which, as

discussed by Rubin (1993), is an advantage of using multiple imputation. In fact, upon observing

x∗(1), . . . ,x∗(m), the data user does not even require knowledge about the noise infusion mechanism

in Result 3 to obtain valid inference using the multiple imputation combining formulas; for example,

the data user does not require the values of ε, L, and U to analyze x∗(1), . . . ,x∗(m). The most com-

plicated part of the proposed methodology is generating the imputed values of x∗(1), . . . ,x∗(m), and

generating these values would be the job of the data producer, and not the data user. Furthermore,

algorithms for generating these imputed values are provided in Section 4.3.
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Throughout we have worked under the assumption that the original data X, prior to collec-

tion, are known to be independent and identically distributed (iid) from a distribution within the

parametric family F = {f(x|θ) : θ ∈ Θ}, and it is only the parameter θ that is unknown and

must be estimated from the data. We mention two comments regarding this parametric modeling

assumption.

1. As discussed in Remark 4, the imputation procedures (Algorithms 1, 2, and 3) make use of the

knowledge that the original data are iid from a distribution within F , but do not make explicit

use of X, to generate the imputed values. Because the parametric family F is known in advance

of data collection, and these Algorithms make use of Z, but not X, we are able to conclude

that (x∗(1), . . . ,x∗(m)) is conditionally independent of X, given Z. Therefore Result 1 implies

that the conditional distribution of (x∗(1), . . . ,x∗(m)), given X, satisfies ε-differential privacy.

However, if the parametric family F was not known a priori, but instead the imputer used X

to model the parametric family F , and then applied the imputation procedures of Section 4.3

using F ; then such a use of X to inform about F , could cause (x∗(1), . . . ,x∗(m)) and X, to be

conditionally dependent, given Z. If (x∗(1), . . . ,x∗(m)) andX are conditionally dependent, given

Z, then Result 1 no longer applies, and we cannot conclude that the conditional distribution of

(x∗(1), . . . ,x∗(m)), given X, satisfies ε-differential privacy.

2. In practice there is, of course, the possibility that the parametric family F is misspecified by

the imputer and/or the data analyst. Such misspecification can lead to invalid inference, and

we refer to Meng (1994) and Robins and Wang (2000) for further discussion.

The two points above indicate the role of the parametric modeling assumption in this paper.

As future research one could study ways of relaxing the parametric assumption, perhaps through

semi-parametric or non-parametric modeling approaches. Under the proposed methodology, one

could also study the effects of model selection on differential privacy, and the effects of model

misspecification on inference
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Appendix A Integrals for EM Algorithm Under Normal Model

In the case of a normal population as in Section 5.1, the integrals appearing in the EM iterations for

maximum likelihood estimation can be evaluated in closed form, up the the standard normal cdf.

In this appendix we provide the expressions for these integrals. Let φ(x) = (2π)−1/2 exp(−x2/2)

and Φ(x) =
∫ x
−∞ φ(u)du, be the standard normal pdf and cdf, respectively, and let Φ̃(x) = 1−Φ(x).

We have the following:

∫ L

−∞

w

σ
φ
(w − µ

σ

)
dw = µΦ

(L− µ
σ

)
− σφ

(L− µ
σ

)
,∫ ∞

U

w

σ
φ
(w − µ

σ

)
dw = µΦ̃

(U − µ
σ

)
+ σφ

(U − µ
σ

)
,∫ L

−∞

w2

σ
φ
(w − µ

σ

)
dw = µ2Φ

(L− µ
σ

)
− 2σµφ

(L− µ
σ

)
+ σ2

[
Φ
(L− µ

σ

)
−
(L− µ

σ

)
φ
(L− µ

σ

)]
,∫ ∞

U

w2

σ
φ
(w − µ

σ

)
dw = µ2Φ̃

(L− µ
σ

)
+ 2σµφ

(U − µ
σ

)
+ σ2

[
Φ̃
(U − µ

σ

)
+
(U − µ

σ

)
φ
(U − µ

σ

)]
,

∫ U

L

1

σ
φ
(w − µ

σ

)
e−
|z−w|
c dw

=


ez/ce

−
[
µ
c
− σ2

2c2

]
[Φ(U∗)− Φ(L∗)] , z ≤ L,

e−z/ce

[
µ
c

+ σ2

2c2

]
[Φ(z∗∗)− Φ(L∗∗)] + ez/ce

−
[
µ
c
− σ2

2c2

]
[Φ(U∗)− Φ(z∗)] , L < z < U,

e−z/ce

[
µ
c

+ σ2

2c2

]
[Φ(U∗∗)− Φ(L∗∗)] , U ≤ z,
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∫ U

L

w

σ
φ
(w − µ

σ

)
e−|z−w|/cdw

=



ez/ce
−
[
µ
c
− σ2

2c2

] {(
µ− σ2

c

)
[Φ(U∗)− Φ(L∗)] + σ [φ(L∗)− φ(U∗)]

}
, z ≤ L,

e−z/ce

[
µ
c

+ σ2

2c2

] {(
µ+ σ2

c

)
[Φ(z∗∗)− Φ(L∗∗)] + σ [φ(L∗∗)− φ(z∗∗)]

}
+ ez/ce

−
[
µ
c
− σ2

2c2

] {(
µ− σ2

c

)
[Φ(U∗)− Φ(z∗)] + σ [φ(z∗)− φ(U∗)]

}
, L < z < U,

e−z/ce

[
µ
c

+ σ2

2c2

] {(
µ+ σ2

c

)
[Φ(U∗∗)− Φ(L∗∗)] + σ [φ(L∗∗)− φ(U∗∗)]

}
, U ≤ z,

∫ U

L

w2

σ
φ

(
w − µ
σ

)
e−|z−w|/cdw

=



ez/ce
−
[
µ
c
− σ2

2c2

]{(
µ− σ2

c

)2
[Φ(U∗)− Φ(L∗)] + 2σ

(
µ− σ2

c

)
[φ(L∗)− φ(U∗)]

+σ2
[
L∗φ(L∗)− U∗φ(U∗) + Φ(U∗)− Φ(L∗)

]}
, if z ≤ L,

e−z/ce

[
µ
c

+ σ2

2c2

]{(
µ+ σ2

c

)2
[Φ(z∗∗)− Φ(L∗∗)] + 2σ

(
µ+ σ2

c

)
[φ(L∗∗)− φ(z∗∗)]

+σ2
[
L∗∗φ(L∗∗)− z∗∗φ(z∗∗) + Φ(z∗∗)− Φ(L∗∗)

]}

+ ez/ce
−
[
µ
c
− σ2

2c2

]{(
µ− σ2

c

)2
[Φ(U∗)− Φ(z∗)] + 2σ

(
µ− σ2

c

)
[φ(z∗)− φ(U∗)]

+σ2
[
z∗φ(z∗)− U∗φ(U∗) + Φ(U∗)− Φ(z∗)

]}
, if L < z < U,

e−z/ce

[
µ
c

+ σ2

2c2

]{(
µ+ σ2

c

)2
[Φ(U∗∗)− Φ(L∗∗)] + 2σ

(
µ+ σ2

c

)
[φ(L∗∗)− φ(U∗∗)]

+σ2
[
L∗∗φ(L∗∗)− U∗∗φ(U∗∗) + Φ(U∗∗)− Φ(L∗∗)

]}
, if U ≤ z,

where

L∗ =
L− µ
σ

+
σ

c
, U∗ =

U − µ
σ

+
σ

c
, z∗ =

z − µ
σ

+
σ

c
,

L∗∗ =
L− µ
σ
− σ

c
, U∗∗ =

U − µ
σ
− σ

c
, z∗∗ =

z − µ
σ
− σ

c
.
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Erlingsson Ú., Pihur, V., Korolova A. (2014). RAPPOR: Randomized Aggregatable Privacy-

Preserving Ordinal Response. Proceedings of the 2014 ACM SIGSAC Conference on Computer

and Communications Security: 1054-1067.

Gelman A., Carlin J.B., Stern H.S., Dunson D.B., Vehtari A., Rubin D.B. (2014). Bayesian Data

Analysis. Third Edition. Chapman and Hall/CRC, New York.

Hu J., Mitra R, Reiter J. (2013). Are Independent Parameter Draws Necessary for Multiple Impu-

tation? The American Statistician. 67(3), 143-149.

Klein M., Sinha B. (2013). Statistical Analysis of Noise-Multiplied Data Using Multiple Imputation.

Journal of Official Statistics. 29(3): 425-465.

Li K.H., Raghunathan T.E., Rubin D.B. (1991). Large-Sample Significance Levels From Multiply

Imputed Data Using Moment-Based Statistics and an F Reference Distribution. Journal of the

American Statistical Association. 86(416): 1065-1073.

Little R.A., Rubin D.B. (2002). Statistical Analysis With Missing Data. Second Edition. John

Wiley and Sons, Inc, New Jersey.

Machanavajjhala A., Kifer D., Abowd J., Gehrke J., Vilhuber L. (2008). Privacy: Theory meets

Practice on the Map. Proceedings of the 2008 IEEE 24th International Conference on Data

Engineering: 277-286.

Meng X.-L. (1994). Multiple-Imputation Inferences with Uncongenial Sources of Input. Statistical

Science. 9(4): 538-573.

43



Nayak T.K., Zhang C., Adeshiyan S.A. (2015). Emerging Applications of Randomized Response

Concepts and Some Related Issues. Model Assisted Statistics and Applications. 10(4); 335-344.

R Core Team. (2018). A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Raghunathan T.W., Reiter J.P., Rubin D.B. (2003). Multiple Imputation for Statistical Disclosure

Limitation. Journal of Official Statistics. 19(1): 1-16.

Reiter J.P. (2003). Inference for Partially Synthetic, Public Use Microdata Sets. Survey Methodol-

ogy. 29(2): 181-188.

Reiter J.P. (2005). Significance Tests for Multi-Component Estimands from Multiply Imputed,

Synthetic Microdata. Journal of Statistical Planning and Inference. 131(2): 365-377.

Reiter J.P., Raghunathan T.E. (2007). The Multiple Adaptations of Multiple Imputation. Journal

of the American Statistical Association. 102(480): 1462-1471.

Ripley B.D. (1987). Stochastic Simulation. John Wiley and Sons, Inc, New York.

Robert C.P., Casella G. (2005). Monte Carlo Statistical Methods, Second Edition. Springer, New

York.

Robins J.M., Wang N. (2000). Inference for Imputation Estimators. Biometrika. 87(1): 113-124.

Rubin D.B. (1987). Multiple Imputation for Nonresponse in Surveys. John Wiley and Sons, Inc,

New Jersey.

Rubin D.B. (1993). Discussion: Statistical Disclosure Limitation. Journal of Official Statistics. 9(2):

461-468.

Rubin D.B. (1996). Multiple Imputation After 18+ Years. Journal of the American Statistical

Association. 91(434): 473-489.

Schafer J.L. (1997). Analysis of Incomplete Multivariate Data. Chapman and Hall/CRC, New York.

44



Tanner M.A., Wong W.H. (1987). The Calculation of Posterior Distributions by Data Augmenta-

tion. Journal of the American Statistical Association. 82(398): 528-540.

Vadhan S. (2016) The Complexity of Differential Privacy. URL https://privacytools.seas.

harvard.edu/publications/complexity-differential-privacy.

Wasserman L., Zhou S. (2010). A Statistical Framework for Differential Privacy. Journal of the

American Statistical Association. 105(489): 375-389.

45



T
ab

le
1:

S
im

u
la

ti
on

re
su

lt
s

u
n

d
er
N

(µ
=

0,
σ

2
=

1)
w

it
h
m

=
10

.

P
ar

am
et

er
of

in
te

re
st

is
µ

P
ar

am
et

er
of

in
te

re
st

is
σ

2

R
M

S
E

B
ia

s
S

D
Ŝ
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