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,Summary- IAmbic cortical regions, including anterior cingulate cortex (ACt'), prefrontal cortex 
(PFC) and entorhinal cortex (ER('), have been implicated in the neuropathology o[" schizophrenia. 
Glutamate projection neurons connect these limbic cortical regions to each other, as well as to the 
terminal tields of the striatal,.accumbens dopamine neurons. Subsets of these glutamate projection 
neurons, and of the GABA interneurons in cortex, contain the neuropeptide cholecystokinm ((_'CK). 
In an effort to study the limbic cortical glutamate projection neurons and GABA interneurons m 
schizophrenia, we have measured CCK mRNA with in situ hybridization histochemistry in post- 
mortem samples of dorsolatcral (DL)PF(' ,  ACC and ERC of seven schizophrenics, nine non- 
psychotic suicides and seven normal controls. ( 'CK mRNA is decreased in ERC (especially layers 
iii vi) and subiculum in schizophrenics relative to controls. Cellular analysis indicates that there is 
a decrease in density of CCK mRNA in labelled neurons. In so far as ERC CCK mRNA is not 
reduced in rats treated chronically with haloperidol, this decrease in schizophrenics does not appear 
to be related to neuroleptic treatment. In contrast, in I)LPF( ' ,  where schizophrenics do not differ 
from normals, the suicide victims have elevated ( ' ( 'K mRNA (especially in layers v and ~i), and 
increased cellular density of CCK mRNA, relative to both normals and ,~hizophrenics. These 
results lend further support for the involvement of ERC and hippocampus in schizophrenia. 
suggesting that neurons that utilize CCK ma> be particularly inlportant. Similarly. an increase m 
( 'CK mRNA levels in the PFC of suicides adds to a grov, ing hod> of evidence implicating this 
structure in this pathological state. In st) far as ( ' ( 'K  is co-localized ,a. ith GABA or glutamate in 
cortical neurons, both of these neuronal populations need to be studied further in schizophrenia 
and suicide. ~ 1997 Elsevier Science l td.  

Introduction 

No discrete neuroanatomical locus of pathology has been found to account for schizo- 
phrenia. An alternative approach to elucidation of the neuropathology of schizophrenia 
has been the search for a "'network" of abnormal neural circuits (e.g. Weinberger. 1991 ). 
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One such network involves "limbic" cortex, which both receives dopamine innervation 
(HCSkfelt et al., 1974) and in turn sends projections to striatum and/or nucleus accumbens, 
modulating dopamine function in these structures (Selemon & Goldman-Rakic, 1985; 
Yeterian & Van Hoesen, 1978; Baleydier & Maugui6re, 1980; Newman & Winans, 1980; 
Sorensen &Witter,  1983). Limbic cortical regions, including DLPFC, ACC and ERC, are 
reciprocally connected (Selemon & Goldman-Rakic, 1988; Baleydier & Maugui6rc, 1980; 
Swanson & K/Shier, 1986: lnsausti et al., 1987a; Goldman-Rakic et al., 1984) and may 
modulate the same striatal subregions (Yeterian & Van Hoescn, 1978). Furthermore, 
aberrations in this "network" have been implicated by morphological, neurochemical and 
functional studies in schizophrenia (c.g. DLPFC: Akbarian et al., 1993a,1995; Fcy, 1951; 
Wcinberger et al., 1986; ACC: Benes et al., 1986, 1992a,b; Kawasaki et al., 1993; ERC: 
Falkai et al., 1988; Wolfet  al., 1995; Friston et al., 1992). 

Moreover, perhaps the site of the most convergent and replicablc findings for neuro- 
pathology in schizophrenia has been the mesial temporal lobe (e.g. Brown ct al., 1986: 
Jakob & Beckmann, 1986; Colter et al., 1987; DeLisi et al., 1988: Suddath et al., 1989; 
Casanova et al., 1990; Altshuler et al., 1990: sec Hyde & Weinbcrgcr, 1990 for review). In 
addition to ERC, there is considerable evidence for ncuropathology in hippocampus (e.g. 
Falkai & Bogerts, 1986: Bogerts, 1984; Bogerts et al., 1985, 1990: Suddath et al., 1990; 
Okada ct al., 1991; Arnold et al., 1991 ; Akbarian et al., 1993b), cspecially in the hippocampal 
outflow from subiculum to nucleus accumbens (for reviews see Gray et al., 1991; Weinberger 
& Lipska, 1995) in schizophrenia. The hippocampus and ERC have extensive reciprocal 
intcrconnections (e.g.Blackstad, 1956; Van Hoesen & Pandya, 1975: Rosene & Van Hocsen, 
1977). Thc ERC acts as the "'gateway" in and out of hippocampus, through which mul- 
timodal sensory inputs are funnelled for integration into motivational, affectivc, attentional 
and cognitive functions (e.g. as proposed by Bogerts, 1989). Indeed, a great deal of complex 
processing of hippocampal input and output has bccn shown to occur in ERC (Jones, 
1993). Pathology of these sites may explain some of the memory and cognitive problems in 
schizophrenia. 

Some of the interneurons within thcsc three limbic cortical regions (Hendry et al., 1984; 
K~hler, 1986), and projection neurons connecting them with each other as well as with 
their striatal/accumbens targets (Meyer et al., 1982a and Meyer ct al., 1982b; Burgunder & 
Young, 1990), contain the neuromodulator CCK. CCK was initially studied in schizo- 
phrenic brains because of its co-localization with dopaminc in nigrostriatal and mesolimbic 
neurons (HOkfclt et al., 1980). However, findings of decreased CCK levels in the mesial 
temporal lobe and frontal cortex of schizophrcnics (Fcrrier et al., 1983: Davidson et al.. 
1994), although not always replicated (Kieinman et al., 1983), and decreased binding to 
CCK receptors in hippocampus, parahippocampal gyrus and frontal cortex of schizo- 
phrenics (Farmery et al., 1985; Ferrier et al., 1985; Kerwin ct al., 1992), could equally well 
reflect deficits in cortical circuitry. Indeed, a more recent report of reduced mRNA tbr 
CCK in soma in temporal and frontal cortex, found with hi situ hybridization histochcmistry 
(Virgo et al. 1995), implicates cortical interneurons or efferent projections rather than 
dopamine affercnts. We have attempted here to extend this strategy to the study of ACC, 
DLPFC and ERC in schizophrenia, relative to a non-psychotic suicide control group and 
normal controls, with ht situ hybridization histochemistry tbr CCK mRNA. 
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Methods  

Postmortem human brain samples 

Postmor tem brains f rom the Neuropa tho logy  Section, Clinical Brain Disorders Branch. 
IRP, N I M H ,  of  the N I M H  Neuroscience Center  at St. Elizabeths Hospital,  were donated 
by the families o f  the deceased after autopsies were performed by the Office o f  the Medical 
Examiner (Washington,  D.C.). Coronal  blocks (I.5 cm thick) were rapidly frozen at autopsy 
by immersion in a mixture o f  isopentane and dry ice and stored at - 70 C until sectioning. 
Studies were performed on 14/2 thick coronal  sections, sectioned by cryostat ,  thaw-mounted  
and dried on gelatin-coated slides and stored with desiccant at - 70 C until in situ hybrid- 
ization. Sections were taken from a level of  Brodmann ' s  area 24 corresponding to that 
designated as 24a by Vogt et al. (1995) for ACC,  Brodmann ' s  area 9. just anterior to the 
genu of  the corpus callosum for DLPEC,  and an intermediate ERC level corresponding to 
281 (as defined by Saunders & Rosene, 1988), where characteristic laminar features o f  ERC 
become most  prominent.  

Patient cohorts  included: normal  controls  (no history of  psychiatric illness or neuroleptic 
exposure from medical examiner 's  records), schizophrenics (psychiatric diagnosis deter- 
mined by independent review of  the medical records by tx~o psychiatrists), and non- 
psychotic suicides (exclusion of  symptoms suggesting a previous psychotic disorder), for 
which the demographics  are presented in Table 1. Age and post -mortem interval (PMI)  
were similar between these groups (E2.2,,=0.27, p = 0 . 7 6 :  and F2,,~= 1.01. p = 0 . 3 8 :  respec- 
tively). No  subject had a history of  neurological illness, abnormal  gross or microscopic 
brain pathology,  or measurable levels o f  drugs o f  abuse or  neurolcptics in blood and urine 
toxicology. Informat ion  on the symptoms of  psychosis, defect (negative) symptoms,  and 
past neuroleptic history were obtained from the medical records of  the schizophrenics. 
ERC data for one normal  control  (male, black, 51 years. PMI = 10 hours) wcrc excluded 
from the analysis because the ERC block sectioned from this brain was not taken from the 
same ros t ra lcauda l  plane as that o f  the others. 

Neuroh,ptic-treated rat brain samples 

To control  for the effects o f  chronic neuroleptic treatment,  samples o f  ERC and substanlia 
nigra were examined from rats treated chronically with haloperidol decanoate.  Male 
Sprague-I)awley rats (Zivic Miller). initially weighing 140 160g. were housed in groups 
o f  two with free access to food and water, a 12 h light dark cycle, and constant  tern- 

Table I 
I)cmoho'aphics q! Putient Cohorts [or Brain Samph'~" I :sed 

Grot, p N Gender R~,ce Age PM I 

Normal controls 7 2F.5M l(.  II. 5AA 51.14- I I.I 27.8 ._ 14.~ 
Schizophrenics 7 5F.2M 3('. 4AA 57.3 ± 15.11 21.4 ± 8.11 
Suicides 9 2F,7M 7(., 1(). IAA 57.2+_23.9 36.1 +. 293 

(iroups are detined in methods. Values are mean z SD. in years for age and in hours for postmortem interval 
IPMI). F= female, M=male. C= Caucasian, ()=Oriental, l=lndonesian. AA=African American. For the 
,,chi~'ophrenic group, the mean +_ SD for duration of illness were 30 L 16.3 )ears. 
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perature (25 C). A group of 17 rats received haloperidol decanoate (McNeil Pharma- 
ceuticals, i.m. 28.5-42.25 mg/kg every three weeks [the equivalent of 1.0 mg/kg/day] for 
36 weeks as previously described (Egan et al., 1994). A control group (n=7)  received 
comparable injections of vehicle (provided by McNeil Pharmaceuticals). The rats were 
monitored for 28 weeks after the final injection, at which time the brain haloperidol 
levels averaged 61.5ng/mg tissue. The rats were then killed by intracardiac perfusion 
with phosphate buffered saline at 4 'C while under deep anesthesia. Their brains were 
quickly removed, blocked and frozen in powdered dry ice, and stored at - 7 O C .  Coronal 
sections from the midbrain block containing substantia nigra and ERC (20/~ thick) were 
sectioned by cryostat and thaw-mounted and dried onto gelatin-subbed slides. 

ht situ hybridization histochemistry 

An oligonucleotide probe (48 bases in length) (synthesized in Lab of Cell Biology, 
NIMH, and obtained from W. S. Young, IIl), complementary to bases 315 362 of rat 
preprocholecystokinin mRNA (Deschenes et al., 1984) was labelled, using terminal deoxy- 
nucleotidyl transferase and deoxyadenosine [alpha-[35S]-thio] triphosphate, at the 3' end, to 
a specific activity of 5 -  10 × l0 s cpm/lfl, according to the method described by Young 
(1992). This probe has previously been shown to label human CCK mRNA (Rance & 
Young, 1991). A 48-base "'randomer'" probe (purchased from Dupont New England 
Nuclear, Boston) was similarly labelled to serve as a control probe. 

In human slides, hybridization was carried out according to the method described by 
Chesselet et al. (1987), with modifications as described by Frohna et al. (1993), except that 
the heparin hybridization buffer (200/~1, with 4 × I06 cpm of labelled probe added, pipetted 
onto each slide), and coverslipping of slides with parafilm, were as described by Young 
(1992), and slides were incubated at 37'C overnight. Washes the following day were 
performed as described by Frohna et al. (1993). A few control sections were treated with 
the labelled randomer probe, or were pretreated with RNase as in Virgo et al. (1995), to 
evaluate the specificity of the CCK mRNA probe. In addition, some sections were treated 
with concentrations of  labclled CCK mRNA probe that ranged from 3 to 150% of  the 
probe used for the experimental slides, to establish that the concentration used was adequate 
for the levels o f m R N A  in these sections. A simpler hybridization method, as described by 
Young (1992), was used for the rat slides. 

X-omat (Kodak, Rochester, NY) film was apposed to the slides and ~4C standards for 
10 12 days and then developed. Autoradiographs were digitized with a flat-bed optical 
scanner. Quantitation of optical densities from the autoradiographs, interpolated along the 
~4C standard curve, and converted to dpm/mm -~ (Miller, 1991), was done by an observer 
blind as to psychiatric diagnosis, using an image analysis program (NIH IMAGE, Rasband, 
NIH) on a Macintosh computer. Samples were measured from human ACC layers ii'iii, v 
and vi, PFC layers i/ii, iii/iv, v and vi, and layers ii, iii, v and vi from the ERC (this scheme 
is from Saunders & Rosene [1988] and differs from Lorente de N6 [1933] in that iv is the 
lamina dessicans and iii corresponds to iii + iv of  Lorcnte de N6 [1993]). Hippocampal 
samples from dentate and subiculum were also taken from the human ERC section. Samples 
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were taken bilaterally from substantia nigra (vehicle: n = 7, drug: n = 14) and ERC (vehiclc: 
n = 6, drug: n = 17) in rat midbrain sections. 

Subsequent to film exposure to the slides, the human slides were dipped in photographic 
emulsion, allowed to expose for six weeks, developed, thionine-stained, and cover-slipped. 
for cellular image analysis. Cellular image analysis from the emulsion-dipped slides was 
done in human ERC layers ii and vi and in human DLPFC layer vi by an observer blind 
to psychiatric diagnosis. Through a Zeiss microscope connected by a CCD camera (Sierra 
Scientitic) to the Macintosh, samples were located in these layers at 10 × magnitication in 
light-field, and then visualized at 40 x magnification in dark-tield. From random samples 
of neurons (approximately 30 per layer per slide), the area and number of  silver grains were 
measured for each neuron, again using NIH IMAGE,  and the average density of silver 
grains,background area was subtracted from the density for each neuron. Neurons with a 
density of  silver grainszarea greater than tbur times background level were considered to 
be CCK mRNA-posi t ive neurons. 

Statistical analysis was by two-way ANOVA (for group and region) using Statview 
(Abacus Concepts, Berkeley, CA) plus post-hoc group contrasts by ANOVA Ik~r A( 'C,  
DLPFC and ERC, and post-hoe t-tests for individual regions, Ibr the human auto- 
radiographs. Because of earlier findings of reduccd CCK levels in temporal and frontal 
cortex of schizophrenics (Ferrier et al., 1983: Davidson et al., 1994)and of reduced m R N A  
for CCK in schizophrenic cortex (Virgo et al., 1995) one-tailed t-tests were used for these 
post-hoe tests for a predicted decrease in schizophrenics relative to normal controls and to 
suicides, while, in the absence of evidence implicating CCK in suicides, two-tailed t-tests 
were used as post-hoe tests of  differences between normals and suicides. Accordingly. for 
the cellular analysis from the human DLPFC and ERC sections, one-tailed t-tests were 
also uscd for comparisons between schizophrenics and normal controls in ERC. and tx~o- 
tailed t-tests were used for comparisons between suicides and the other two groups in 
I )LPFC.  For the human data, correlations between CCK m R N A  levels and agc and PMI 
were also calculated (with one-tailed tests). Two-way ANCOVAs (group by region v, ith 
age or PMI as the covariate) were also calculated using Statistica (Statsoft. Tulsa, OK, 
U.S.A.). The data from the rat autoradiographs were amdysed by one-~a\: ANOVA. 
Statistical significance was set at p ~< .05. 

Results 

No section labelled with randomer probe or pretreated with RNase exhibited any label- 
ling. in the saturation curve for the CCK m R N A  probe, density of  label was in the plateau 
of the curve for concentrations from 25 to 150% of that used on experimental slides. 
Clear laminar patterns of  label were evident in human AC( ' ,  DLPFC and ERC sections. 
Representative images from these regions are illustrated in Figures 1 3. 

"Fhe two-way ANOVA for all three groups and all regions yielded a statistically significant 
group effect (F,~z = 2.99. p ~< 0.05). Hence, separate two-way ANOVAs and post tu,c group 
contrasts were also run for ACC, DLPFC and ERC. in ACC there was not a signiticant 
group effect (Fz.2 = 0.05. p = 0.95), so no further analyses were performed. These results are 
presented in Figure 4. 
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F(qure 1. Autoradiograph from human  anterior cingulate cortex after exposure for 12 days to tissue hybridi/ed 
with a probe tbr cholecystokinin mRNA.  Layers ii..iii, v and vi are indicated. 

Figure 2. Autoradiograph from human dorsolateral prefrontal cortex after exposure for 10 days to tissue hybridized 
with a probe for cholecystokinin mRNA.  Layers i:ii, iii..iv, v and vi are indicated. 
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l"iqure 3. Autoradiograph from human entorhinal cortex after exposure f~3r 10 days to tissue h~hridizcd ~vith a 
probe for cholecystokinin mRNA. Fascia dcntata (D). subiculum 1SI. and cntorhinal cortex la~ers ii. iii. v and vi 

are indicated. 

l luman ER(" 

In ERC therc was an overall group effect (F25=4.28, p:=0.02). Normal controls and 
suicides did not diffcr in ERC CCK mRNA (F,~=0.70, p=0.40).  Schizophrenics had 
reduced ERC CCK mRNA relative to both normal controls (FL~= 1(I.32, p=0.002) and 
suicides (1:, ~=4.87, p=0.03).  Post-hoe group comparisons by layers indicated that there 
were significant differences from normal controls in subiculum ( t=  1.96. 11 df. p=0.04/ .  
and ERC laycrs iii ( t=  2.27, 11 df, p = 0.02), v (t = 3.48, I1 df. p =0.003) and vi (t =4.18, I1 
dr, p=0.001), and from suicides in subiculum (t= 1.72. 14 dr, p=0.05),  and ER(" layers v 
( t=  1.93. 14 df. p=0.04)  and vi (t=2.34, 14 dr, p=0.02).  Thcsc results arc presented in 
Figure 5. 

All of the schizophrenics had evidence of hallucinations and delusions, but only three of 
them had a formal thought disorder. Similarly. only three of the seven had clcar-cut cvidencc 
in thcir charts of defect symptoms. Both those schizophrenics with (Fj.,= 8.36. p =0.006) 
and without (i-'~.~ = 3.89, p = 0.05) defect symptoms, and those with (F~, = 5.08, p = 0.03) 
and without (F~.~=6.43, p=0.01)  thought disorder had decreased ER(" CCK mRNA 
relative to normal controls. 

Across all subjects, there were no significant corrclations between age and ERC ( ' ( 'K  
mRNA, but there was a significant positive correlation between PMI and CCK mRNA 
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Fiqure 4. Compar i son  of  CCK m R N A  levels in anterior cingulate cortex between normals,  schizophrenics and 
suicides. There was no statistically significant group effect (F:.z = 0.05, p = 0.95). 

in ERC layer vi (r--().61, 20 df, p<0.005).  The two-way ANCOVA for ERC between 
schizophrenics and normal controls remained statistically signiticant with age as the covari- 
ate (F~.s = 8.6 I; p = 0.005) and with PMI as the covariate (F~._, = 10.46, p = 0.002). 

We selected an ERC layer in which schizophrenics did not differ from normal controls, 
layer it, and one in which the difference was highly significant, layer vi, to evaluate differences 
between schizophrenics and normal controls in the densities of  silver grains/area of  CCK 
mRNA-labelled ncurons. One slide l¥om a normal control had uniform high background 
label, which made an evaluation impossible, and was discarded from the analysis. In 
layer it, there were no statistically significant differences between normal controls and 
schizophrenics in silver grain density o f C C K  mRNA-posi t ive cells or in percent of  sampled 
cells that were positive for CCK mRNA.  In layer vi CCK mRNA-posi t ive neurons there 
was a statistically significant reduction in density of  silver grains/area in schizophrenics 
relative to normals ( t=  1.77, 10 dr, p~<0.05), but no difference in proportions of  CCK 
mRNA-posi t ive neurons. These results are presented in Figures 6 and 7. 

Human D L P F C  

In DLPFC there was a significant group effect (F_, ~ = 8.98, p =0.0003). Normal  controls 
did not differ from schizophrenics in D L P F C  CCK m R NA (F~, = 0.01, p = 0.94). However, 
suicides had significantly elevated DLPFC CCK m R N A  relative to both normals 
(F~.~ = 12.42, p = 0.001 ) and schizophrenics (F~.~ = 12.42, p = 0.001 ). Post-hoe comparisons 
by layers indicated that these differences reached statistical significance in layer vi (t = 3.20, 
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Figure 5. C o m p a r i s o n  o f  C C K  m R N A  levels in entorhina l  cortical  sect ion bet~,een normals ,  sch izophrenics  and 
suicides. There  was  a statistically significant group effect ( b : ,  = 4.28. p = I).02 . Only  schizophrenics  differed from 

other  groups  (F, . =  10.32, p = 0.(X)2 relative to normals:  F , , - - 4 . 8 7 .  p--O.()3 rclatixe to suicides).  

14 df, p=0 .006)  and approached significance in layers v {t= 1.73. 14 dr, p=0 .10 )  and i ii 
(t = 1.69, 14 df. p = 0.12), between suicides and normals, and were significant for layers 
( t=2 .20 ,  14 df, p = 0 . 0 4 )  and vi ( t=2 .80 ,  14 df. p=0 .014)  and approached significance in 
layers iii:iv (t = 1.74, 14 df, p = 0.10). between suicides and schizophrenics. These results are 
presented in Figure 8. Because o f  our finding that DLPFC CCK m R N A  was elevated in 
suicides, the difference between schizophrenics and normals ~ as re-evaluated after exclusion 
of  the one schizophrenic who died by suicide, and still failed to attain statistical signilicance 
(Fi ~=0.09, p =0.77).  

Neither those schizohrenics with (F~.~= 1.34, p=0 .26 )  nor those without (l::, , =  1.18. 
p = 0.28) defcct symptoms had decreased DLPFC CCK m R N A  relative to normal controls. 
Neither those with (F~.~= 1.59, p=0 .22 )  nor those without thought disorder (I"L ~= 1.0l. 
p = 0.32) had a DLPFC CCK m R N A  reduction relative to normal controls. Schizophrenics 
without thought disorder had lower DLPI-:C CCK m R N A  than those with thought disorder 
(I"L, = 4.40, p < 0.05) though they did not differ from normal controls. 

Across all subjects, there were no significant correlations between PMI and DLPFC 
CCK m R N A ,  but there was a significant inverse correlation between age and DLPFC CCK 
m R N A  (r=  - 0 . 4 5 ,  21 df, p<0 .025)  in layers iii iv. The two-way A N C O V A  for DLPt-'C 
between normal controls and suicides remained statistically signilicant with age as the 
covariate ( F L, = 18.94: p < 0.0001 ) and with PM 1 as the cowtriate (F~, = 20.47: p < 0.0001 ). 

Cellular analyses from layer vi of  DLPFC indicated that suicides had greater density of  
CCK m R N A  label in CCK mRNA-pos i t ive  cells relative to normal controls ( t=  2.15, 14 
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Ft~qure 6. Comparison of cellular density of CCK mRNA in positive cells (density ~>4 times background), from 
which background density has been subtracted, in entorhinal cortex layers ii and vi, between normals and 
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Figure 8. C o m p a r i s o n  of  C C K  m R N A  levels in dorso la te ra l  p ref ronta l  cortex between normals ,  schizophrenics  
and suicides. There was a s ta t is t ical ly  significant g roup  effect (F: ,=  8.98. p = (I.0003). Only  suicides differed from 

other  g roups  ( F~ ~ = 12.42, p = 0.001 relat ive to normals :  F. , = 12.42. p = (1.(1(11 relat ive to schizophrenics) .  

df, p=0.05), whereas proportions of CCK mRNA positive cells did not differ ( t= .49. 14 
dr. p=0.64). Schizophrenics did not differ significantly from normal controls in either 
density of silver grains/area in CCK mRNA-positive cells (t=0.47, 12 df, p=0.64) or 
proportion of cells that were positive for CCK mRNA (t=0.92. 12 df, p=0.38). These 
results are portrayed in Figures 9 and 10. 

Neuroleptic-treated rats 

Chronic neuroleptic treatment in rats produced a 34% elevation in nigral CCK mRNA 
(F,.~,~=7.12, p=0.02). ERC CCK mRNA from the same neuroleptic-treated rats was 
unaffected (F~._,j =0.24, p =0.63). These results are presented in Figure 11. 

Discussion 

Our results in schizophrenia confirm and extend the findings of Virgo et al. (1995). of 
reduced temporal cortical CCK mRNA in schizophrenia. These results further implicate 
the mesial temporal lobe (see above) in schizophrenia. These reductions occur in ERC 
(layers iii vi), and subiculum, but not ACC or DLPFC. The finding from the cellular 
analysis is consistent with the possibility that this decrease is due to reduced density of 
CCK mRNA in C C K  mRNA-expressing neurons. Another possibility, which was not 
addressed by this sampling strategy, suggested by the tindings of Falkai et al. ( 1988} and 
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Fiqure 9. Comparison of cellular density of CCK mRNA in positive cells (density ~ 4 times background), from 
which background density has been subtracted, in dorsolateral prefrontal cortex layer vi. between normals, 

schizophrenics and suicides. 

Krimer et al. (1995), is that decreased neuronal counts and/or density, respectively, in ERC 
might contribute to this reduction. 

Thus, it may be that there is some selectivity for ERC, relative to ACC and DLPFC, in 
the CCK mRNA decrease in schizophrenia. Indeed, the contribution of DLPFC pathology 
to schizophrenia might be via its connections (or mis-connections) with ERC/hippocampus. 
Consistent with this possibility are the observations that ERC appears to "gate PFC 
influence on nucleus accumbens" (O'Donnell & Grace, 1995), that there is apparently not 
a direct projection in primate from DLPFC to nucleus accumbens (Selemon & Goldman- 
Rakic, 1985), and that CCK innervation of nucleus accumbens appears to derive principally 
from subiculum (Kresse et al., 1995) and not from PFC. Moreover, the correlation between 
hippocampal size and DLPFC hypofunction in schizophrenics performing the Wisconsin 
Card Sort (Weinberger et al.. 1992) suggests thal temporal lobe neuropathology might be 
responsible for DLPFC functional deficits in schizophrenia. 

A question that remains to be answered is which CCK-containing neurons in ERC 
and hippocampus might be the affected population. Two obvious candidates are GABA 
interneurons in cortical layers ii, iii, v and vi and hippocampus, where CCK and GABA 
have been shown to be co-localized (Somogyi et al., 1984) and glutamate projections 
neurons from cortex to striatum (McGeer et al., 1977; Meyer et al,, 1982b), from ERC to 
hippocampus (Storm-Mathisen. 1977; Fredens et al., 1984). other limbic cortical sites 
(Meyer et al., 1982a), and nucleus accumbens (Christie et al., 1987), and t¥om subiculum 
to nucleus accumbens (Walaas & Fonnum, 1979). 
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GABA deficits in schizophrenics have been reported in frontal and temporal cortical 
glutamate decarboxylase (GAD) activity (Sherman et al., 1991a), GAD m RNA in DLPF'C 
(Akbarian et al., 1995), temporal cortical synaptosomal GABA release (Sherman et al., 
1991 b), GABA uptake sites in amygdala and hippocampus (Simpson et al., 1989; Reynolds 
et al., 1990) and hippocampal and cortical benzodiazcpine receptor binding (Squires et al., 
1993). Receptor upregulation (which could be secondary to a presynaptic deficit) has also 
been reported in schizophrenics, for GABAA receptors in PFC and caudate (Hanada et al., 
1987), and ACC (Benes et al., 1992a) and hippocampus (Vincent et al., 1995) and for 
cortical benzodiazepine receptors (Kiuchi et al., 1989). 

Glutamate deficits have also been suggested in schizophrenia (see Deutsch et al., 1989; 
Olney & Farber, 1995 for reviews). There have been recent reports of reduced levels of 
glutamate and NAALADase, and increased levels of the glutamate antagonist NAAG, in 
PFC and hippocampus (Tsai et al., 1995), reduced temporal cortical synaptosomal glu- 
tamate release (Sherman et al., 1991b) and decreases in dendritic spines on glutamate 
cortico-cortical pyramidal neurons (Garey et al., 1995; Glantz & Lewis. 1995). Abnor- 
malities in glutamate receptors in schizophrenics include those tbr mRNA for non-NMDA 
receptors in hippocampus, and AMPA-A and -/J-B subunits of the AMPA receptor in 
hippocampus (Collinge & Curtis, 1991; Harrison et al., 1991: Eastwood et al., 1995). 
Binding to kainate receptors in hippocampus and the parahippocampal gyrus, DLPFC and 
orbitofrontal cortex (Kerwin et al., 1990; Nishikawa et al., 1983; Toru ct al., 1988; Deakin 
et al., 1989), to NMDA receptors in putamcn and the orbital gyrus (Matsunaga ct al., 1995; 
Kornhuber et al., 1989), to AMPA receptors in sulcal ERC (Noga et al., 1994) and to 
glutamate uptake sites in orbitofrontal cortex (Deakin et al., 1989) have also becn shown 
to be affected in schizophrenia. 

One possible contribution of a cortical CCK deficit to abnormal cortical function might 
derive from its neurotrophic and neuroprotective properties (e.g. Robcrts, 1990). CCK- 
positive subplate cells appear to serve a t rophic  function in the establishment of cortical 
connectivity (Chun et al., 1987). CCK has been shown to protect neurons against thc 
neurotoxic effects of glutamate and NMDA (Akaike ct al., 1991: Tamura et al., 1992). 
Alterations in primatc limbic cortical CCK into adulthood have been suggested to play a 
role in late maturational aspects of limbic cortical circuitry (Oeth & Lewis, 1993). 

A cortical CCK reduction in schizophrenia suggcsts that a CCK agonist might offer 
pharmacotherapeutic benefit in schizophrenia, a notion supportcd by a number of non- 
blinded trials with the CCK agonist ceruletide and CCK (ltoh et al., 1982; Moroji et al., 
1982; Albus et al., 1984; Yamagami et al., 1986; Nair et al., 1982; Bloom et al.. 1983), as 
well as single-blind and double-blind studies of ceruletide and CCK (van Ree et al., 1984; 
van Ree et al., 1987; Jenkins. 1984; Nair et al., 1984). Other studies, most of which were 
double-blind, have found CCK or ceruletide to be ineffective or of minimal efficacy (Peselow 
et al., 1987: Hommer et al., 1984: Mattes et al., 1985; Albus et al., 1986: Tamminga et al., 
1986; ltoh et al., 1986: Lotstra et al., 1984; Boza & Rotondo, 1985). Possible explanations 
tbr these results include preferential transport of CCK-8 out of, rather than into, CSF 
(Passaro et al., 1982) and rapid enzymatic degradation of CCK-8 (Deschodt-Lanckman & 
Bui, 1981). Finally, there are not yet available agonists specific for CCK receptor subtypes. 
The advent of more specific CCK receptor agonists, or those that enter the brain more 
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readily, resist degradation, or have a preferential effect in the regions where the CCK 
cortical neurons affected in schizophrenia synapse, might yet prove to be beneficial for 
schizophrenics. 

Cortical CCK deficits (e.g. Ferrier et al., 1983) may not involve midbrain neurons co- 
localizing dopamine and CCK (H6kfelt et al., 1980; Seroogy et al., 1989) as originally 
proposed, lndeed, it now appears that primate ventral tegmental area (Oeth & Lewis, 1992: 
Sirinathsinghji et al.. 1992) and nigral (Palacios et al., 1989) dopamine neurons may not 
even contain CCK. While the levels wcrc not quantified, Schalling et al. (1990) reported 
that there was more CCK mRNA in substantia nigra pars compacta in schizophrenics 
(visible signal in five of five) than in normals (signal in only two of five), an effect that could 
be secondary to neuroleptic treatment (see above). A more quantitative study found no 
difference in density of CCK mRNA in substantia nigra between drug-free schizophrcnics 
and normal controls (J. Meador-Woodruff, personal communication). Still, a role tbr a 
cortical CCK deticit in schizophrenia is not only compatible with, but could provide a 
basis tbr dopamine hyperfunction in schizophrenia, via the cortico-striatal and accumbens 
projections. 

Apparently contradictory reports of both tacilitatory and antagonistic effects of CCK 
on dopaminc function appear to depend upon a number of  lhctors, including an invertcd 
U dose-response function (e.g. Kfidfir ct al.. 1981 ). differences between striatum and nucleus 
accumbens (e.g. Vickroy & Bianchi, 1989), differences between rostral and caudal divisions 
(e.g. Studler el al., 1985 & Studler et al., 1986) and core and shell (e.g. Ladurelle et al., 
1994) of nucleus accumbens, and differences between effccts at type A and B CCK receptors 
(e.g. Marshall et al., 19911. Ultimately, what is most important is the effect of CCK on 
neurons that are post-synaptic to the dopamine neurons, especially since the bulk of CCK 
receptors in striatum are on intrinsic neurons, not afferents to striatum (Hays et al., 1981 ). 
Indeed. hippocampal and dopamine inputs have been shown to converge onto thc same 
neurons in nucleus accumbens (Totterdell & Smith, 1986): moreover, those hippocampal 
neurons arc CCK-receptive (Tottcrdell & Smith. 1989), thus may rclay ERC CCK effects 
as well as their own. In addition, there are a series of excitatory glutamate links from ERC 
to accumbcns that may relay effects of ERC CCK (Storm-Mathisen & Ivcrscn, 1979" 
Walaas & Fonnum, 1979: Taxt & Storm-Mathisen, 1984). The "'bottom line'" is that ( 'CK 
has excitatory effects on hippocampal pyramidal ncurons (Dodd & Kelly, 1981 ) and cortical 
neurons (Delphs & Dichter. 1985) and consistently opposes dopamine's inhibitory effects 
on ncurons in frontal cortex (Chiodo & Bunney, 1983) and nucleus accumbens (Yang & 
Mogenson, 1984: White & Wang, 1984: Wang & Ha, 1986, Yim & Mogenson, 1991, Liang 
ct al., 1991). Thus, the functional consequence of hypofunction in corticostriatal CCK 
would be to duplicate the effects of mesolimbic dopaminc hyperfunction, perhaps to some 
extent cvcn when dopamine receptors are blocked by neuroleptics. 

Sincc Virgo et al. (1995~ noted that there was a greater reduction in CCK mRNA in 
frontal cortex of patients with predominantly reality distortion deficits, and that one patient 
with predominantly negative symptoms had a temporal but not frontal delicit, we explored 
the possibility that differences in symptomatology might explain this discrepancy. Our 
finding that patients without thought disorder had lower DLPFC CCK mRNA than those 
with thought disorder is in the opposite direction to the difference reported by Virgo ctal .  
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(1995). Of course both our results and those of  Virgo et al. (1995), must be interpreted with 
caution because of the very small number of patients studied. 

Thc apparently greatcr magnitude o fCCK mRNA reduction found by Virgo et al. (1995), 
(47 -83%) compared to ours (20% in ERC layer vi) may be due to thcir use of optical 
density values relative to our use of  a calibration curve, and/or their subtraction of  RNase- 
insensitive levels from their samples. Still, onc possible discrepancy between Virgo et al. 
(1995) and our study is our lack of a finding in schizophrenia in DLPFC. This could be 
because the PFC examined by Virgo et al. (1995), was Brodmann's area 10, whereas we 
examined DLPFC (Brodmann's area 9). There is other evidence that there may be some 
neuroanatomical specificity for this deficit. Some studies of schizophrenics have failed to 
find deficits in CCK lcvels in (nonspecified) cortex (Perry et al., 1981), hippocampus, nucleus 
accumbens and striatum (Kleinman ct al., 1983) and "t¥ontal'" cortex (Ferrier et al., 1983; 
Ferrier et al., 1985). It should be noted with respect to these negative findings that the 
CCK measured in these regions includes that in intrinsic neurons (Adams &Fishcr,  1990; 
Grcenwood ct al., 1981) and terminals of afferents from midbrain (H6kfelt et al., 1980). 
However, a recent study (Takahashi ct al., 1995) has similarly failed to find changes in 
CCK mRNA at the level of  lilm autoradiography resolution in a sample that included 
Brodmann's area 9, although they did report a differencc at the cellular level, which we 
failed to find. 

While we cannot exclude thc possibility that low Icvels of  ERC CCK mRNA are sec- 
ondary to neuroleptic treatment in schizophrenics, the lack of an effect on ERC CCK 
m R N A  in rats treated chronically with neuroleptics argues against that interpretation. 
Moreovcr, when chronic neuroleptics affected CCK mRNA in rats, they caused an increase 
in substantia nigra, not a decrease, as we lbund in schizophrenics in the ERC. The finding 
in rat substantia nigra is consistent with a report by Radke ct al. (1989) that nigral lcvels 
of CCK were elevated after eight months of haloperidol treatment in rats. This effect 
appcars to require chronic exposure, as a briefer regimen (19 days) did not affect rat nigral 
CCK mRNA (Cottingham et al., 1990). Levels of CCK in othcr regions (striatum, nuclcus 
accumbens, olfactory tubercle) have been shown to be unaffected by chronic neurolcptics 
in rats (Gysling & Beinfeld, 1984). A transient reduction in rat cortical CCK levels after 
two weeks of neuroleptic treatment has becn reported, but levels had normalized by four 
weeks of  treatment (Frcy, 1983). Nevertheless. future examination of ERC CCK mRNA 
in schizophrenics in comparison to ncuroleptic-treated, non-schizophrenic controls should 
help to address this issue. 

The intcntion of the inclusion of non-psychotic suicides in this study was to serve as a 
psychiatric control group for the schizophrcnics, and the lack of an effect on ERC CCK 
mRNA in this group lends some specificity to thc finding in ERC in schizophrenics. The 
finding of  elevated DLPFC CCK mRNA in this group is consistent with other evidence 
that DLPFC function is abnormal in suicides. Elevations in binding to serotonin-2 and [t- 
adrenergic receptors (Mann et al., 1986) and reduced serotonin reuptake sites (Arango et 
al., 1995) have been found in DLPFC in suicide victims. Reductions in both binding to 
serotonin-2 receptors and GAD activity after prefrontal cortical kainate lesions (Lcysen et 
al., 1983) suggest that serotonin-2 receptors are located on GABA interneurons in PFC, 
which arc found in cortical layers ii, iiia, iv and vi (Fagg & Foster, 1983; Jones & Hendry, 
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1986). and some of which, as noted above, contain CCK. Since serotonin appears to be 
excitatory at cortical serotonin-2 receptors (Sheldon & Aghajanian, 1991), upregulation of 
neuromodulators in those neurons might be a consequence of those receptor alterations. 
Alternatively, or in addition to alterations in DLPFC interneurons, pathology in the CCK- 
containing glutamate projection neurons in layers \.' and vi of DLPFC might be involved 
in the aberrant CCK mRNA in those layers in suicides. 

In conclusion, our finding of reduced CCK mRNA levels in ERC and hippocampus in 
schizophrenia adds to the growing body of literature implicating a CCK deticit in the 
pathophysiology of schizophrenia. It also contributes to the shift in focus from the involve- 
ment of CCK co-localized with dopamine in midbrain neurons to CCK in cortical inter- 
neurons and.or efferent projections. There appears to be some neuroanatomical specificity 
to this reduction, as it was not found in ACC or DLPFC. Within the mesial temporal lobe 
the deficit was found in subiculum and in ERC layers iii vi. and appears to be due to the 
reduced density o f m R N A  in CCK mRNA-positive neurons, qhese data also lend additional 
support to the increasing evidence implicating ERC and hippocampus in the ncuro- 
pathology of schizophrenia, in so far as there is involvement of ERC layers iii vi and 
subiculum in this deficit, it suggests that outflow from ER(" and hippocampus, including 
projections to nucleus accumbens. ACC and DLPFC may be affected in schizophrenia, and 
that abnormalities in nucleus accumbens. ACC and DLPFC could be secondary to reduced 
glutamate innervation involving CCK-containing neurons. A companion stud,,. using adjac- 
ent sections (Wolf et al., 1995) has also found a decrease in neurotensin receptors in ER('  
layer ii. rettecting input to ERC, suggesting that the ER(" in schizophrenics could be 
"isolated" by abnormal input and output. Wc are continuing to attempt to more specifically 
characterize this reduction, by studying a larger population, in a more extended rostral to 
caudal sampling of ERC levels, by including a non-schizophrenic neuroleptic-treated con- 
trol group, by double-labelling for markers of both CCK and GABA or glutamate neurons. 
and by examining glutamate receptor function in the striatal, accumbens, hippocampal and 
cortical target sites of ERC efferents in schizophrenia. This knowledge may elucidate some 
of the pathophysiology of. and,or lead to new treatments for. schizophrenia. 
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