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Summary- Limbic cortical regions. including anterior cingulate cortex (ACC), prefrontal cortex
(PFC) and entorhinal cortex (ERC). have been implicated in the neuropathology of schizophrenia.
Glutamate projection neurons connect these limbic cortical regions to cach other, as well as to the
terminal fields of the striatal;accumbens dopamine neurons. Subsets of these glutamate projection
neurons, and of the GABA interncurons in cortex. contain the neuropeptide cholecystokinin (CCK ).
In an effort to study the limbic cortical glutamate projection neurons and GABA interncurons in
schizophrenia, we have measured CCK mRNA with in situ hybridization histochemistry in post-
mortem samples of dorsolateral (DL)PFC. ACC and ERC of seven schizophrenics, nine non-
psychotic suicides and seven normal controls. CCK mRNA is decreased in ERC (especially layvers
ii vi) and subiculum in schizophrenics relative to controls. Cellular analysis indicates that there is
a decrease in density of CCK mRNA in labelled neurons. In so far as ERC CCK mRNA is not
reduced in rats treated chronically with haloperidol. this decrease in schizophrenics does not appear
to be related to neuroleptic treatment. In contrast. in DLPFC. where schizophrenics do not differ
from normals. the suicide victims have elevated CCK mRNA (especially in layers v and vi), and
increased cellular density of CCK mRNA. relative to both normals and schizophrenics. These
results lend further support for the involvement of ERC and hippocampus in schizophrensa.
suggesting that ncurons that utilize CCK may be particularly important. Similarly. an increase in
CCK mRNA levels in the PFC of suicides adds to a growing body of evidence implicating this
structure in this pathological state. In so far as CCK is co-localized with GABA or glutamate in
cortical ncurons, both of these neuronal populations need to be studied further in schizophrenia
and suicide. « 1997 Elsevier Science Ltd.

Introduction
No discrete neuroanatomical locus of pathology has been found to account for schizo-
phrenia. An alternative approach to elucidation of the neuropathology of schizophrenia
has been the search for a “‘network™ of abnormal neural circuits (c.g. Weinberger. 1991).
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One such network involves “limbic™ cortex, which both receives dopamine innervation
(Hokfelt et al., 1974) and in turn sends projections to striatum and/or nucleus accumbens,
modulating dopamine function in these structures (Selemon & Goldman-Rakic, 1985;
Yeterian & Van Hoesen, 1978; Baleydier & Mauguiére, 1980; Newman & Winans, 1980:
Sorensen & Witter, 1983). Limbic cortical regions, including DLPFC, ACC and ERC. are
reciprocally connected (Selemon & Goldman-Rakic, 1988; Baleydier & Mauguiére, 1980;
Swanson & Koéhler, 1986: Insausti et al., 1987a; Goldman-Rakic et al., 1984) and may
modulate the same striatal subregions (Yeterian & Van Hoesen, 1978). Furthermore,
aberrations in this “network’ have been implicated by morphological, neurochemical and
functional studies in schizophrenia (c.g. DLPFC: Akbarian et al., 1993a4.1995; Fey, 1951;
Weinberger ct al., 1986; ACC: Benes ct al., 1986, 1992a,b; Kawasaki et al., 1993; ERC:
Falkai et al., 1988; Wolf ¢t al., 1995; Friston et al., 1992).

Moreover, perhaps the site of the most convergent and replicable findings for neuro-
pathology in schizophrenia has been the mesial temporal lobe (e.g. Brown ct al., 1986:
Jakob & Beckmann, 1986; Colter et al., 1987; DeLisi et al., 1988: Suddath et al., 1989;
Casanova et al., 1990; Altshuler ¢t al., 1990; sce Hyde & Weinberger, 1990 for review). In
addition to ERC, there is considerable evidence for ncuropathology in hippocampus (e.g.
Falkai & Bogerts, 1986; Bogerts, 1984; Bogerts et al., 1985, 1990; Suddath et al., 1990;
Okadactal., 1991; Arnold et al.. 1991; Akbarian et al., 1993b), cspecially in the hippocampal
outflow from subiculum to nucleus accumbens (for reviews see Gray et al., 1991; Weinberger
& Lipska, 1995) in schizophrenia. The hippocampus and ERC have extensive reciprocal
interconnections (e.g.Blackstad, 1956; Van Hoesen & Pandya, 1975; Rosene & Van Hoesen,
1977). The ERC acts as the “gateway’ in and out of hippocampus. through which mul-
timodal sensory inputs are funnelled for integration into motivational, affective, attentional
and cognitive functions (e.g. as proposcd by Bogerts, 1989). Indeed. a great deal of complex
processing of hippocampal input and output has been shown to occur in ERC (Jones,
1993). Pathology of these sites may explain some of the memory and cognitive problems in
schizophrenia.

Some of the interneurons within these three limbic cortical regions (Hendry et al., 1984;
Kohler, 1986), and projection neurons connecting them with cach other as well as with
their striatal/accumbens targets (Meyer et al., 1982a and Meyer ¢t al., 1982b; Burgunder &
Young. 1990), contain the neuromodulator CCK. CCK was initially studied in schizo-
phrenic brains because of its co-localization with dopamine in nigrostriatal and mesolimbic
neurons (Hokfelt et al., 1980). However, findings of decreased CCK levels in the mesial
temporal lobe and frontal cortex of schizophrenics (Ferrier et al., 1983; Davidson et al..
1994), although not always replicated (Kleinman et al., 1983), and decrcased binding to
CCK receptors in hippocampus, parahippocampal gyrus and frontal cortex of schizo-
phrenics (Farmery et al., 1985; Ferrier et al., 1985; Kerwin ct al., 1992), could equally well
reflect deficits in cortical circuitry. Indeed, a more recent report of reduced mRNA for
CCK in soma in temporal and frontal cortex, found with in situ hybridization histochemistry
(Virgo et al. 1995), implicates cortical interncurons or efferent projections rather than
dopamine afferents. We have attempted here to extend this strategy to the study of ACC,
DLPFC and ERC in schizophrenia, relative to a non-psychotic suicide control group and
normal controls, with in situ hybridization histochemistry for CCK mRNA.
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Mecthods
Postmortem human brain samples

Postmortem brains from the Neuropathology Section, Clinical Brain Disorders Branch.
IRP, NIMH, of the NIMH Neuroscience Center at St. Elizabeths Hospital, were donated
by the families of the deceased after autopsies were performed by the Office of the Medical
Examiner (Washington, D.C.). Coronal blocks (1.5 ¢m thick) were rapidly frozen at autopsy
by immersion in a mixture of isopentane and dry ice and stored at — 70 C until sectioning.
Studies were performed on 14 p thick coronal sections, sectioned by cryostat, thaw-mounted
and dried on gelatin-coated slides and stored with desiccant at — 70 C until in situ hybrid-
1ization. Sections were taken from a level of Brodmann's area 24 corresponding to that
designated as 24a by Vogt et al. (1995) for ACC. Brodmann's arca 9. just anterior to the
genu of the corpus callosum for DLPFC, and an intermediate ERC level corresponding to
281 (as defined by Saunders & Rosene. 1988). where characteristic laminar features of ERC
become most prominent.

Patient cohorts included: normal controls (no history of psychiatric illness or neuroleptic
exposure from medical examiner’s records). schizophrenics (psychiatric diagnosis deter-
mined by independent review of the medical records by two psychiatrists), and non-
psychotic suicides (exclusion of symptoms suggesting a previous psychotic disorder). for
which the demographics are presented in Table 1. Age and post-mortem interval (PM1)
were similar between these groups (F.,,=0.27, p=0.76; and I',.,=1.01. p=0.38. respec-
tively). No subject had a history of neurological illness. abnormal gross or microscopic
brain pathology. or measurable levels of drugs of abuse or neuroleptics in blood and urine
toxicology. Information on the symptoms of psychosis. defect (negative) symptoms. and
past neuroleptic history were obtained from the medical records of the schizophrenics.
ERC data for one normal control (male. black, 51 vears. PMI =10 hours) were excluded
from the analysis because the ERC block sectioned from this brain was not taken trom the
same rostral ‘caudal plane as that of the others.

Neuroleptic-treated rat brain sumples

To control for the effects of chronic neuroleptic treatment. samples of ERC and substantia
nigra were examined from rats treated chronically with haloperidol decanoate. Male
Sprague-Dawley rats (Zivic Miller). initially weighing 140 160 g. were housed in groups
of two with free access to food and water. a 12 h hght dark cycle, and constant tem-

Tabic 1

Demographics of Patient Cohorts for Brain Sumples Used

Group N Gender Race Age PMI
Norma! controls 7 2F.5M 1C. 11, 53AA NRESIR 278 - 14%
Schizophrenics 7 SF.2M 3C 4AA 5734150 214+ K0
Suicides 9 2F.M 7C. 100 1AA 57.2+239 3614293

Giroups are defined in methods. Values are mean + SD. in vears for age and in hours for postmortem interval
(PMI). F=female, M =male. C= Caucasian, (O=Oriental. I =Indonesian. AA = African American. For the
schizophrenic group, the mean + SD for duration of illness were 30 1 16.3 vears.
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perature (25 C). A group of 17 rats received haloperidol decanoate (McNeil Pharma-
ceuticals, i.m. 28.5—42.25mg/kg every three weeks [the cquivalent of 1.0 mg/kg/day] for
36 weeks as previously described (Egan et al., 1994). A control group (n=7) received
comparable injections of vehicle (provided by McNeil Pharmaceuticals). The rats were
monitored for 28 weeks after the final injection, at which time the brain haloperidol
levels averaged 61.5ng/mg tissuc. The rats were then killed by intracardiac perfusion
with phosphate buffered salinc at 4°C while under deep ancsthesia. Their brains were
quickly removed, blocked and frozen in powdered dry ice, and stored at — 70 C. Coronal
sections from the midbrain block containing substantia nigra and ERC (20 u thick) were
sectioned by cryostat and thaw-mounted and dried onto gelatin-subbed slides.

In situ hybridization histochemistry

An oligonucleotide probe (48 bascs in length) (synthesized in Lab of Cell Biology,
NIMH, and obtained from W. S. Young, III), complementary to bases 315 362 of rat
preprocholecystokinin mRNA (Deschenes et al., 1984) was labelled, using terminal deoxy-
nucleotidyl transferase and deoxyadenosine [alpha-[**S]-thio] triphosphate, at the 3" end, to
a specific activity of 5—10 x 10° ¢cpm/ul, according to the method described by Young
(1992). This probc has previously been shown to label human CCK mRNA (Rance &
Young, 1991). A 48-base “‘randomer™ probe (purchased from Dupont New England
Nuclear, Boston) was similarly labelled to serve as a control probe.

In human slides, hybridization was carried out according to the method described by
Chesselet et al. (1987), with modifications as described by Frohna ct al. (1993), except that
the heparin hybridization buffer (200 ul, with 4 x 10°cpm of labelled probe added, pipetted
onto each slide), and coverslipping of slides with parafilm, were as described by Young
(1992), and slides were incubated at 37'C overnight. Washes the following day were
performed as described by Frohna et al. (1993). A few control sections were treated with
the labelled randomer probe, or were pretrcated with RNase as in Virgo et al. (1999), to
evaluate the specificity of the CCK mRNA probe. In addition, some scctions were treated
with concentrations of labelled CCK mRNA probe that ranged from 3 to 150% of the
probe used for the experimental slides, to establish that the concentration used was adequate
for the levels of mRNA in these sections. A simpler hybridization method. as described by
Young (1992), was used for the rat slides.

X-omat (Kodak, Rochester, NY) film was apposed to the slides and "C standards for
10 12 days and then developed. Autoradiographs were digitized with a flat-bed optical
scanner. Quantitation of optical densities from the autoradiographs, interpolated along the
"C standard curve, and converted to dpm/mm* (Miller, 1991), was done by an observer
blind as to psychiatric diagnosis, using an image analysis program (NIH IMAGE, Rasband.

cegeee

NIH) on a Macintosh computer. Samples were measured from human ACC layers ii4ii, v
1s from Saunders & Rosenc [1988] and differs from Lorente de N6 [1933] in that iv is the
lamina dessicans and iii corresponds to iii + iv of Lorente de N6 [1993]). Hippocampal
samples from dentate and subiculum were also taken from the human ERC section. Samples
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were taken bilaterally from substantia nigra (vehicle: n=7, drug: n=14) and ERC (vehicle:
n=6. drug: n=17) in rat midbrain sections.

Subsequent to film exposure to the slhides. the human slides were dipped in photographic
cmulsion, allowed to expose for six weeks, developed, thionine-stained. and cover-slipped.
for cellular image analysis. Cellular image analysis from the emulsion-dipped slides was
done in human ERC layers ii and vi and in human DLPFC layer vi by an observer blind
to psychiatric diagnosis. Through a Zeiss microscope connected by a CCD camera (Sierra
Scientific) to the Macintosh, samples were located in these layers at 10 x magnification in
light-field. and then visualized at 40 x magnification in dark-field. From random sampies
of neurons (approximately 30 per layer per slide), the area and number of silver grains were
measured for each ncuron, again using NIH IMAGE. and the average density of silver
grains/background arca was subtracted from the density for cach ncuron. Neurons with a
density of silver grainssarea greater than four times background level were considered to
be CCK mRNA-positive neurons.

Statistical analysis was by two-way ANOVA (for group and region) using Statview
(Abacus Concepts. Berkeley, CA) plus post-hoc group contrasts by ANOVA for ACC.
DLPFC and ERC. and post-hoc t-tests for individual regions. for the human auto-
radiographs. Because of earlier findings of reduced CCK levels in temporal and frontal
cortex of schizophrenics (Ferrier et al., 1983; Davidson et al., 1994) and of reduced mRNA
for CCK in schizophrenic cortex (Virgo ct al.. 1995) one-tailed r-tests were used for these
post-hoc tests for a predicted decrease in schizophrenics relative to normal controls and to
suicides. while. in the absence of evidence implicating CCK in suicides. two-tailed r-tests
were used as post-hoc tests of differences between normals and suicides. Accordingly. for
the cellular analysis from the human DLPFC and ERC scctions. one-tailed r-tests were
also used for comparisons between schizophrenics and normal controls in ERC. and two-
tailed r-tests were used for comparisons between suicides and the other two groups in
DLPFC. For the human data, correlations between CCK mRNA levels and age and PMI
were also calculated (with one-tailed tests). Two-way ANCOVAs (group by region with
age or PMI as the covariate) were also calculated using Statistica (Statsoft. Tulsa, OK.
U.S.A)). The data from the rat autoradiographs were analysed by onc-way ANOVA.
Statistical significance was set at p<.05.

Results

No section labelled with randomer probe or pretreated with RNase exhibited any label-
ling. In the saturation curve for the CCK mRNA probe, density of label was in the plateau
of the curve for concentrations from 25 to 150% of that used on experimental slides.
Clear laminar patterns of label were evident in human ACC. DLPFC and ERC sections.
Representative images from these regions are illustrated in Figures | 3.

The two-way ANOVA for all three groups and all regions yielded a statistically significant
group effect (F,,.=2.99. p<0.05). Hence, separatc two-way ANOVAs and post hoc group
contrasts were also run for ACC, DLPFC and ERC. In ACC there was not a signmficant
group cffect (F.,=0.05. p=0.95). so no further analyses were performed. These results are
presented in Figure 4.
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Figure 2. Autoradiograph from human dorsolateral prefrontal cortex after exposure for 10 days to tissuc hybridized
with a probe for cholecystokinin mRNA. Layers i:ii, iii-iv, v and vi are indicated.
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Figure 3. Autoradiograph from human entorhinal cortex after exposure tor 10 days to tissue hybridized with a
probe for cholecystokinin mRNA. Fascia dentata (D). subiculum (S). and entorhinal cortex lavers ii, iii. v and vi
are indicated.

Human ERC

In ERC there was an overall group effect (F,:=4.28, p:=0.02). Normal controls and
suicides did not differ in ERC CCK mRNA (F,=0.70, p=0.40). Schizophrenics had
reduced ERC CCK mRNA relative to both normal controls (F, .= 10.32, p=0.002) and
suicides (F, =4.87, p=0.03). Posr-hoc group comparisons by lavers indicated that there
were significant differences from normal controls in subiculum (1=1.96. 11 df. p=0.04).
and ERC layers iii (1=2.27, 11 df, p=0.02). v (r=3.48, 11 df. p=0.003) and vi (=418, 11
df, p=0.001). and from suicides in subiculum (r=1.72. 14 df, p=0.05), and ERC layers v
(1=1.93, 14 df. p=0.04) and vi (r=2.34, 14 df, p=0.02). These results are presented in
Figure 5.

All of the schizophrenics had evidence of hallucinations and delusions, but only three of
them had a formal thought disorder. Similarly. only three of the seven had clear-cut evidence
in their charts of defect symptoms. Both those schizophrenics with (F, (=8.36. p=0.006)
and without (F, .=3.89, p=0.05) defect symptoms, and those with (F, ;=5.08, p=0.03)
and without (F,,=6.43, p=0.01) thought disorder had decreased ERC CCK mRNA
relative to normal controls.

Across all subjects, there were no significant correlations between age and ERC CCK
mRNA, but there was a significant positive correlation between PMI and CCK mRNA
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CCK mRNA Levels in Anterior Cingulate Cortex
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Figure 4. Comparison of CCK mRNA levels in anterior cingulate cortex between normals. schizophrenics and
suicides. There was no statistically significant group effect (F,,;=0.05, p=0.95).

in ERC layer vi (r=0.61, 20 df, p<0.005). The two-way ANCOVA for ERC between
schizophrenics and normal controls remained statistically significant with age as the covari-
ate (F, s=8.61; p=0.005) and with PMI as the covariate (F,,=10.46, p=0.002).

We selected an ERC layer in which schizophrenics did not differ from normal controls,
layer ii, and one in which the difference was highly significant, layer vi, to evaluate differences
between schizophrenics and normal controls in the densities of silver grains/area of CCK
mRNA-labelled ncurons. One slide from a normal control had uniform high background
label, which made an cvaluation impossible, and was discarded from the analysis. In
layer ii, there were no statistically significant differences between normal controls and
schizophrenics in silver grain density of CCK mRNA-positive cells or in percent of sampled
cells that were positive for CCK mRNA. In layer vi CCK mRNA-positive ncurons there
was 4 statistically significant reduction in density of silver grains;jarea in schizophrenics
relative to normals (r=1.77, 10 df, p<0.05). but no difference in proportions of CCK
mRNA-positive neurons. These results are presented in Figures 6 and 7.

Human DLPFC

In DLPFC there was a significant group effect (F,,;=28.98, p=0.0003). Normal controls
did not differ from schizophrenics in DLPFC CCK mRNA (F, ;=0.01. p =0.94). However,
suicides had significantly elevated DLPFC CCK mRNA relative to both normals
(F\1=12.42, p=0.001) and schizophrenics (F,,=12.42. p=0.001). Post-hoc comparisons
by layers indicated that these differences reached statistical significance in layer vi (r=3.20,
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CCK mRNA Levels in Entorhinal Cortex and Hippocampus
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Figure 5. Comparnison of CCK mRNA levels in entorhinal cortical section between normals, schizophrenics and
suicides. There was a statistically significant group effect (F, =428 p=0.02). Only schizophrenics differed from
other groups (F, .= 10.32, p=0.002 relative to normals: F, «—4.87. p-- 0103 relative 1o suicides).

14 df. p=0.006) and approached significance in layers v (= 1.73. 14 df, p=0.10) and i ii
(1=1.69. 14 df. p=0.12). between suicides and normals. and were significant for layers
(r=2.20. 14 df. p=0.04) and vi (r=2.80, 14 df. p=0.014) and approached significance in
layers ‘v (1= 1.74, 14 df, p=10.10). between suicides and schizophrenics. These results are
presented in Figure 8. Because of our finding that DLPFC CCK mRNA was efevated in
suicides. the difference between schizophrenics and normals was re-evaluated after exclusion
of the one schizophrenic who died by suicide. and still failed to attain statistical signiticance
(F,,=0.09. p =0.77).

Neither those schizohrenics with (F,;=1.34, p=0.26) nor those without (F,.=1.18,
p=0.28) defect symptoms had decreased DLPFC CCK mRNA relative to normal controls,
Neither those with (F,=1.59, p=0.22) nor thosce without thought disorder (F, .= 1.01,
p=0.32) had a DLPFC CCK mRNA reduction relative to normal controls. Schizophrenices
without thought disorder had lower DLPFC CCK mRNA than those with thought disorder
(F, :=4.40. p <0.05) though they did not differ from normal controls.

Across all subjects. there were no significant correlations between PMI and DLPFC
CCK mRNA, but there was 4 significant inverse correlation between age and DLPFC CCK
mMRNA (r= —0.45. 21 df. p<0.025) in layers ni-iv. The two-way ANCOVA for DLPFC
between normal controls and suicides remained statistically significant with age as the
covariate (F, ;=18.94; p<0.0001) and with PMI as the covariate (F, ,=20.47; p<0.0001).

Cellular analyses from layer vi of DLPFC indicated that suicides had greater density of
CCK mRNA label in CCK mRNA-positive cells relative to normal controls (12,15, 14
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Density of CCK mRNA in Positive Cells in ERC
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Figure 6. Comparison of cellular density of CCK mRNA in positive cells (density >4 times background), from
which background density has been subtracted, in entorhinal cortex layers ii and vi, between normals and
schizophrenics.

Proportion of CCK mRNA-Positive Neurons in ERC
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Figure 7. Comparison of proportion of CCK mRNA-positive cells (density >4 times background) among all cells
sampled. in entorhinal cortex layers ii and vi, between normals and schizophrenics.



Abnormal Cholecystokinin mRNA Levels 243

CCK mRNA Levels in Dorsolateral Prefrontal Cortex
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Figure 8. Comparison of CCK mRNA levels in dorsolateral prefrontal cortex between normals. schizophrenics
and suicides. There was a statistically significant group effect (F. ,=8.98. p = 0.0003). Only suicides differed from
other groups (I, . = 12.42, p=0.001 relative to normals: F. .= [2.42, p =L.00[ relative to schizophrenics).

df, p=0.03), whereas proportions of CCK mRNA positive cells did not differ (1= .49. 14
df. p=0.64). Schizophrenics did not differ significantly from normal controls in ecither
density of silver grains/arca in CCK mRNA-positive cells (1=0.47, 12 df, p=0.64) or
proportion of cells that were positive for CCK mRNA (1=0.92. 12 df. p=0.38). These
results are portrayed in Figures 9 and 10.

Neuroleptic-treated rats

Chronic neuroleptic treatment in rats produced a 34% clevation in nigral CCK mRNA
(Fiy=7.12, p=0.02). ERC CCK mRNA from the same neuroleptic-treated rats was
unaffected (F,,, =0.24, p =0.63). These results are presented in Figure 11.

Discussion

Our results in schizophrenia confirm and extend the findings of Virgo et al. (1995). of
reduced temporal cortical CCK mRNA in schizophrenia. These results further implicate
the mesial temporal lobe (see above) in schizophrenia. These reductions occur in ERC
(layers 1ui-vi), and subiculum, but not ACC or DLPFC. The finding from the cellular
analysis 1s consistent with the possibility that this decrease is due to reduced density of
CCK mRNA in CCK mRNA-expressing neurons. Another possibility. which was not
addressed by this sampling strategy. suggested by the findings of Falkai et al. (1988} and
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Density of CCK mRNA in Positive Cells in DLPFC
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Figure 9. Comparison of cellular density of CCK mRNA in positive cells (density <4 times background), from
which background density has been subtracted, in dorsolateral prefrontal cortex layer vi. between normals,
schizophrenics and suicides.

Krimer et al. (1995), is that decreased ncuronal counts and/or density, respectively, in ERC
might contribute to this reduction.

Thus, it may be that there is some selectivity for ERC, relative to ACC and DLPFC, in
the CCK mRNA dccrease in schizophrenia. Indced, the contribution of DLPFC pathology
to schizophrenia might be via its connections (or mis-connections) with ERC/hippocampus.
Consistent with this possibility are the observations that ERC appears to ‘“"gate PFC
influence on nucleus accumbens’ (O’Donnell & Grace, 1995), that there is apparently not
a direct projection in primate from DLPFC to nucleus accumbens (Selemon & Goldman-
Rakic, 1985), and that CCK innervation of nucleus accumbens appears to derive principally
from subiculum (Kresse et al., 1995) and not from PFC. Moreover, the correlation between
hippocampal size and DLPFC hypofunction in schizophrenics performing the Wisconsin
Card Sort (Weinberger et al.. 1992) suggests that temporal lobe necuropathology might be
responsible for DLPFC functional deficits in schizophrenia.

A question that remains to be answered 1s which CCK-containing necurons in ERC
and hippocampus might be the affected population. Two obvious candidates are GABA
have been shown to be co-localized (Somogyi et al., 1984) and glutamate projections
neurons from cortex to striatum (McGeer et al.. 1977, Meyer et al., 1982b), from ERC to
hippocampus (Storm-Mathisen, 1977; Fredens et al., 1984), other limbic cortical sites
(Meyer et al., 1982a), and nuclcus accumbens (Christie et al., 1987), and from subiculum
to nucleus accumbens (Walaas & Fonnum, 1979).
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GABA deficits in schizophrenics have been reported in frontal and temporal cortical
glutamate decarboxylase (GAD) activity (Sherman et al., 1991a), GAD mRNA in DLPFC
(Akbarian ct al., 1995), temporal cortical synaptosomal GABA release (Sherman et al.,
1991b), GABA uptake sites in amygdala and hippocampus (Simpson et al., 1989; Reynolds
et al., 1990) and hippocampal and cortical benzodiazepine receptor binding (Squires et al.,
1993). Receptor upregulation (which could be secondary to a presynaptic deficit) has also
been reported in schizophrenics, for GABA, receptors in PFC and caudate (Hanada et al.,
1987), and ACC (Bencs et al., 1992a) and hippocampus (Vincent et al., 1995) and for
cortical benzodiazepine receptors (Kiuchi et al., 1989).

Glutamate deficits have also been suggested in schizophrenia (sce Deutsch et al., 1989;
Olney & Farber, 1995 for reviews). There have been recent reports of reduced levels of
glutamate and NAALADase, and increased levels of the glutamate antagonist NAAG, in
PFC and hippocampus (Tsai et al., 1995), reduced temporal cortical synaptosomal glu-
tamate release (Sherman et al., 1991b) and decreases in dendritic spines on glutamate
cortico-cortical pyramidal neurons (Garey et al., 1995; Glantz & Lewis. 1995). Abnor-
malities in glutamate receptors in schizophrenics include those for mRNA for non-NMDA
receptors in hippocampus, and AMPA-A and -f-B subunits of the AMPA receptor in
hippocampus (Collinge & Curtis, 1991; Harrison et al., 1991; Eastwood et al., 1995).
Binding to kainate receptors in hippocampus and the parahippocampal gyrus, DLPFC and
orbitofrontal cortex (Kerwin et al., 1990; Nishikawa et al.. 1983; Toru ct al., 1988; Deakin
et al., 1989), to NMDA receptors in putamen and the orbital gyrus (Matsunaga ct al., 1995;
Kornhuber ¢t al., 1989), to AMPA receptors in sulcal ERC (Noga et al., 1994) and to
glutamate uptake sites in orbitofrontal cortex (Deakin et al., 1989) have also becn shown
to be affected in schizophrenia.

One possible contribution of a cortical CCK deficit to abnormal cortical function might
derive from its neurotrophic and neuroprotective properties (e.g. Roberts, 1990). CCK-
positive subplate cells appear to serve a trophic function in the establishment of cortical
connectivity (Chun et al., 1987). CCK has been shown (o protect neurons against the
neurotoxic effects of glutamate and NMDA (Akaike ¢t al., 1991; Tamura et al., 1992).
Alterations in primate limbic cortical CCK into adulthood have been suggested to play a
role in late maturational aspects of limbic cortical circuitry (Oeth & Lewis, 1993).

A cortical CCK reduction in schizophrenia suggests that a CCK agonist might offer
pharmacotherapeutic benefit in schizophrenia, a notion supported by a number of non-
blinded trials with the CCK agonist ceruletide and CCK (Itoh et al., 1982; Moroji et al..
1982:; Albus et al., 1984; Yamagami et al., 1986; Nair ct al., 1982; Bloom et al., 1983), as
well as single-blind and double-blind studies of ceruletide and CCK (van Ree et al., 1984,
van Ree ct al., 1987; Jenkins, 1984; Nair et al., 1984). Other studics, most of which were
double-blind, have found CCK or ceruletide to be incflective or of minimal efficacy (Peselow
ct al., 1987: Hommer et al., 1984; Mattes et al., 1985; Albus et al., 1986; Tamminga et al.,
1986; Itoh et al., 1986; Lotstra et al., 1984; Boza & Rotondo, 1985). Possible explanations
for thesc results include preferential transport of CCK-8 out of, rather than into, CSF
(Passaro ct al., 1982) and rapid enzymatic degradation of CCK-8 (Deschodt-Lanckman &
Bui, 1981). Finally, there are not yet available agonists specific for CCK receptor subtypcs.
The advent of more specific CCK receptor agonists, or those that cnter the brain more
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readily, resist degradation, or have a preferential effect in the regions where the CCK
cortical neurons affected in schizophrenia synapse, might yet prove to be beneficial for
schizophrenics.

Cortical CCK deficits (e.g. Ferrier et al., 1983) may not involve midbrain ncurons co-
localizing dopamine and CCK (Hokfelt et al.. 1980; Seroogy ct al., 1989) as originally
proposed. Indeed, it now appears that primate ventral tegmental arca (Oeth & Lewis. 1992:
Sirinathsinghji ct al., 1992) and nigral (Palacios et al., 1989) dopaminc neurons may not
even contain CCK. While the levels were not quantified. Schalling et al. (1990) reported
that there was morec CCK mRNA in substantia nigra pars compacta in schizophrenics
{visible signal in five of five) than in normals (signal in only two of five), an effect that could
be secondary to neuroleptic treatment (sce above). A more quantitative study found no
difference in density of CCK mRNA in substantia nigra between drug-free schizophrenics
and normal controls (J. Meador-Woodruff, personal communication). Still. a role for a
cortical CCK deficit in schizophrenia is not only compatible with. but could provide a
basis for dopamine hyperfunction in schizophrenia. via the cortico-striatal and accumbens
projections.

Apparently contradictory reports of both facilitatory and antagonistic effects of CCK
on dopamine function appear to depend upon a number of factors, including an inverted
U dose-response function (e.g. Kadar ct al.. 1981). differences between striatum and nucleus
accumbens (c.g. Vickroy & Bianchi. 1989), differences between rostral and caudal divisions
(e.g. Studler ct al., 1985 & Studler et al., 1986) and core and shell (e.g. Ladurelle et al.,
1994) of nucleus accumbens, and differences between effects at type A and B CCK receptors
(e.g. Marshall ct al., 1991). Ultimately, what is most important is the effect of CCK on
neurons that are post-synaptic to the dopamine neurons, especially since the bulk of CCK
receptors in striatum are on intrinsic neurons. not afferents to striatum (Hays et al.. 1981).
Indeed. hippocampal and dopamine inputs have been shown to converge onto the same
neurons in nucleus accumbens (Totterdell & Smith, 1986). moreover, those hippocampal
neurons arc CCK-receptive (Totterdell & Smith. 1989). thus may relay ERC CCK effects
as well as their own. In addition, there are a series of excitatory glutamate links from ERC
to accumbens that may relay effects of ERC CCK (Storm-Mathisen & Iversen., 1979:
Walaas & Fonnum, 1979; Taxt & Storm-Mathisen. 1984). The “bottom line™ is that CCK
has excitatory effects on hippocampal pyramidal neurons (Dodd & Kelly. 1981) and cortical
neurons (Delphs & Dichter, 1985) and consistently opposes dopaminge’s inhibitory effects
on ncurons in frontal cortex (Chiodo & Bunney, 1983) and nucleus accumbens (Yang &
Mogenson. 1984; White & Wang, 1984; Wang & Hu, 1986; Yim & Mogenson, 1991: Liang
ct al., 1991). Thus. the functional consequence of hypofunction in corticostriatal CCK
would be to duplicate the effects of mesolimbic dopamine hyperfunction, perhaps to some
extent even when dopamine receptors are blocked by neuroleptics.

Since Virgo et al. (1995) noted that there was a greater reduction in CCK mRNA in
frontal cortex of patients with predominantly reality distortion deficits, and that one patient
with predominantly negative symptoms had a temporal but not frontal deficit, we explored
the possibility that differences in symptomatology might explain this discrepancy. Our
finding that patients without thought disorder had lower DLPFC CCK mRNA than those
with thought disorder 1s in the opposite direction to the difterence reported by Virgo et al.
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(1995). Of course both our results and those of Virgo et al. (1995), must be interpreted with
caution because of the very small number of patients studied.

The apparently greater magnitude of CCK mRNA reduction found by Virgo et al. (1995),
(47 -83%) compared to ours (20% in ERC layer vi) may be due to their use of optical
density values relative to our use of a calibration curve, and/or their subtraction of RNase-
insensitive levels from their samples. Still, one possible discrepancy between Virgo et al.
(1995) and our study is our lack of a finding in schizophrenia in DLPFC. This could be
because the PFC examined by Virgo et al. (1995), was Brodmann's area 10, whereas we
examined DLPFC (Brodmann's area 9). There is other evidence that there may be some
neuroanatomical specificity for this deficit. Some studies of schizophrenics have failed to
find deficits in CCK levels in (nonspecified) cortex (Perry et al., 1981), hippocampus, nucleus
accumbens and striatum (Kleinman et al., 1983) and “frontal’ cortex (Ferrier et al., 1983;
Ferrier et al.. 1985). It should be noted with respect to these negative findings that the
CCK measured in these regions includes that in intrinsic ncurons (Adams & Fisher, 1990;
Greenwood et al., 1981) and terminals of afferents from midbrain (Hokfelt et al.. 1980).
However, a recent study (Takahashi ct al.. 1995) has similarly failed to find changes in
CCK mRNA at the level of film autoradiography resolution in a sample that included
Brodmann's area 9. although they did report a difference at the cellular level, which we
failed to find.

While we cannot exclude the possibility that low levels of ERC CCK mRNA are sec-
ondary to neuroleptic treatment in schizophrenics, the lack of an effect on ERC CCK
mRNA in rats trcated chronically with neuroleptics argues against that interpretation.
Moreover, when chronic neuroleptics affected CCK mRNA in rats, they caused an increase
in substantia nigra, not a decrease, as we found in schizophrenics in the ERC. The finding
in rat substantia nigra is consistent with a report by Radke ct al. (1989) that nigral levels
of CCK were elevated after eight months of haloperidol treatment in rats. This effect
appears to require chronic exposure, as a briefer regimen (19 days) did not affect rat nigral
CCK mRNA (Cottingham et al.. 1990). Levels of CCK in other regions (striatum, nucleus
accumbens, olfactory tubercle) have been shown to be unaffected by chronic neuroleptics
in rats (Gysling & Beinfeld, 1984). A transient reduction in rat cortical CCK levels after
two weeks of neuroleptic treatment has becn reported, but levels had normalized by four
weeks of treatment (Frey, 1983). Nevertheless. future examination of ERC CCK mRNA
in schizophrenics in comparison to ncuroleptic-treated, non-schizophrenic controls should
help to address this issuc.

The intention of the inclusion of non-psychotic suicides in this study was to serve as a
psychiatric control group for the schizophrenics, and the lack of an effect on ERC CCK
mRNA in this group lends some specificity to the finding in ERC in schizophrenics. The
finding of elevated DLPFC CCK mRNA in this group is consistent with other evidence
that DLPFC function is abnormal in suicides. Elcvations in binding to serotonin-2 and /-
adrenergic receptors (Mann et al.. 1986) and reduced serotonin reuptake sites (Arango et
al., 1995) have been found in DLPFC in suicide victims. Reductions in both binding to
serotonin-2 receptors and GAD activity after prefrontal cortical kainate lesions (Leysen et
al., 1983) suggest that scrotonin-2 receptors are located on GABA interncurons in PFC,
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1986). and some of which, as noted above. contain CCK. Since serotonin appears to be
excitatory at cortical serotonin-2 receptors (Sheldon & Aghajanian, 1991), upregulation of
ncuromodulators in those neurons might be a consequence of those receptor alterations.
Alternatively, or in addition to alterations in DLPFC interneurons, pathology in the CCK-
containing glutamate projection neurons in layers v and vi of DLPFC might be involved
in the aberrant CCK mRNA in those layers in suicides.

In conclusion, our finding of reduced CCK mRNA levels in ERC and hippocampus in
schizophrenia adds to the growing body of literature implicating a CCK deficit in the
pathophysiology of schizophrenia. It also contributes to the shift in focus from the involve-
ment of CCK co-localized with dopamine in midbrain neurons to CCK in cortical inter-
neurons and:or efferent projections. There appears to be some neuroanatomical specificity
to this reduction. as it was not found in ACC or DLPFC. Within the mesial temporal lobe
the deficit was found in subiculum and in ERC layers it vi. and appears to be due to the
reduced density of mRNA in CCK mRNA-positive neurons. These data also lend additional
support to the increasing evidence implicating ERC and hippocampus in the neuro-
pathology of schizophrenia. In so far as there is involvement of ERC layers i1 vi and
subiculum in this deficit, it suggests that outflow from ERC and hippocampus. including
projections to nucleus accumbens. ACC and DLPFC may be affected in schizophrenia. and
that abnormalities in nucleus accumbens. ACC and DLPFC could be secondary to reduced
glutamate innervation involving CCK -containing neurons. A companion study using adjac-
ent sections (Wolf et al., 1995) has also found a decrease in neurotensin receptors in ERC
layer 1. reflecting input to ERC, suggesting that the ERC in schizophrenics could be
“isolated™ by abnormal input and output. We are continuing 1o attempt to more specifically
characterize this reduction, by studying a larger population. in a more extended rostral 1o
caudal sampling of ERC levels, by including a non-schizophrenic neuroleptic-treated con-
trol group. by double-labelling for markers of both CCK and GABA or glutamate neurons,
and by examining glutamate receptor function in the striatal. accumbens, hippocampal and
cortical target sites of ERC efferents in schizophrenia. This knowledge may clucidate some
of the pathophysiology of. and-or lead to new treatments tor. schizophrenia.
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