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ABSTRACT

Statistical relationships between higher-order moments of probability density functions (PDFs) are used

to analyze top-of-atmosphere radiance measurements made by the Atmospheric Infrared Sounder (AIRS)

and radiance calculations from the ECMWF Re-Analysis (ERA) and the Modern-Era Retrospective

Analysis for Research and Applications (MERRA) over a 10-yr period. The statistical analysis used in this

paper has previously been applied to sea surface temperature, and here the authors show that direct satellite

radiance observations of atmospheric variability also exhibit stochastic forcing characteristics. The authors

have chosen six different AIRS channels based on the sensitivity of their measured radiances to a variety of

geophysical properties. In each of these channels, the authors have found evidence of correlated additive

and multiplicative (CAM) stochastic forcing. In general, channels sensitive to tropospheric humidity and

surface temperature show the strongest evidence of CAM forcing, while those sensitive to stratospheric

temperature and ozone exhibit the weakest forcing. Radiance calculations from ERA and MERRA agree

well with AIRS measurements in the Gaussian part of the PDFs but show some differences in the tails,

indicating that the reanalyses may bemissing some extrema there. The CAM forcing is investigated through

numerical simulation of simple stochastic differential equations (SDEs). The authors show how mea-

surements agree better with weaker CAM forcing, achieved by reducing the multiplicative forcing or by

increasing the spatial correlation of the added noise in the case of an SDE with one spatial dimension. This

indicates that atmospheric models could be improved by adjusting nonlinear terms that couple long and

short time scales.

1. Introduction

TheAtmospheric Infrared Sounder (AIRS) is the first

of a new generation of low-noise hyperspectral sounders

that are now regularly making global twice-daily top-of-

atmosphere (TOA) infrared radiance measurements of

Earth’s atmosphere for weather prediction (Aumann

et al. 2003) and physical retrievals (Susskind et al. 2003).

AIRS has been operational since September 2002 and

has 2378 spectral channels spanning 3.7–15.4mm. These

channels are sensitive to a wide range of geophysical

properties of the atmosphere, including temperature,

moisture, amounts of a number of trace gases, aerosols,

and water and ice clouds (Aumann et al. 2003). While

some channels have failed over time, most of them have

been shown to be highly stable with very little un-

corrected spectral or radiometric drift (Pan et al. 2015).

Traditionally, radiances measured by infrared in-

struments have either been directly assimilated into
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numerical weather prediction (NWP) models or been

used as inputs to retrieval schemes (McNally et al.

2006; Susskind et al. 2003). In either case, geophysical

fields are determined, but uncertainty estimates are a

complicated combination of retrieval errors and

measurement errors. While older infrared sounders

had a handful of broad channels spanning about

10 cm21, the new instruments have thousands of high-

resolution [’(0.5–1) cm21] low-noise channels. This

means that one can carefully select channels with

narrower weighting functions and that are primarily

impacted by atmospheric temperature and one trace

gas (Aumann et al. 2003). In this paper, instead of

studying the geophysical retrievals, we carefully select

channels that are only impacted by one trace gas and

study the first 10 yr of AIRS radiances under clear-sky

conditions. The particular value of these radiometri-

cally stable datasets in radiance space is their in-

dependence from errors in retrievals or model data,

which separates them from both retrieved geophysical

fields and reanalyses. It is generally agreed that cli-

mate signals require longer datasets (at least 25 yr;

Leroy et al. 2008), but the existing record is enough to

study sources of short-time-scale climate variability.

Stochastic forcing (which is the fast change unresolved

by a model and approximated as noise, e.g., surface

wind fluctuations in an NWP model) and short-period

variability by definition take place on time scales

shorter than changes of the mean atmospheric state,

so the shorter AIRS data record should be sufficient to

observe them. This has been demonstrated using

ocean models with stochastic forcing over periods of

several years in which variations in seasonal cycles are

recreated (Frankignoul and Müller 1979).
One recently employed approach for studying at-

mospheric and ocean variability has been to analyze

events in terms of the non-Gaussian shape of the

probability density function (PDF) of a dataset (Sura

2011). These events can be modeled stochastically

because of the large range of temporal and spatial

scales involved in the physical processes occurring in

Earth’s atmosphere–ocean system. This may be an

appropriate approach to analyzing long-term AIRS

radiance observations because they are sensitive to

atmospheric properties that evolve on a wide range of

scales. For example, ocean surface temperatures are

expected to vary relatively gradually, whereas cloud

and moisture vary over shorter spatial and temporal

scales. Sura and Sardeshmukh (2008) showed that sea

surface temperature (SST) PDFs exhibited non-

Gaussian behavior and tail extrema because of sto-

chastic forcing from surface winds. Channels sensitive

to stratospheric temperature, on the other hand, are

unlikely to show as much non-Gaussian behavior be-

cause stratospheric forcing occurs on longer time

scales (on the order of years; Waugh and Hall 2002),

and stochastic forcing generally occurs on shorter time

scales. Analyzing atmospheric satellite observations

for stochastic forcing helps point to what kinds of

measurements can be used to track extrema in the

atmosphere, and comparisons with reanalysis data

help us to analyze how well models are capturing

these events.

In this paper, we choose to include only clear AIRS

fields of view because clouds affect radiances in channels

sensitive to lower atmospheric temperature, gas con-

stituents, and clouds by significantly reducing the

brightness temperature. Thus, PDFs that include clouds

will have very long negative tails and are guaranteed to

always be highly non-Gaussian. The existence of clouds

will result in significant negative skewness and may not

represent what we would define as an extremum (e.g., an

infrequent atmospheric state that is at least two standard

deviations from the mean).

When we directly analyze the clear-sky radiance

measurements for carefully chosen channels (i.e., each

channel is mainly related to a single physical quantity)

rather than first carrying out physical retrievals, the

information content is not affected by assumed

background fields or retrieval errors. Thus, we are

looking at an uncontaminated climate signal. A sec-

ond goal is to compare the statistical characteristics of

AIRS measurements with those derived using a for-

ward model in conjunction with reanalyses from the

European Center for Medium Range Forecasts

(ECMWF), ERA-Interim (Dee et al. 2011), and also

from NASA Goddard’s Modern Era Retrospective

Analysis for Research and Applications (MERRA;

Rienecker et al. 2011). This is done by interpolating

the analyses to the latitude and longitude for each

AIRS observation and using the nearest-in-time re-

analysis. We then apply the Stand-Alone AIRS Ra-

diative Transfer Algorithm (SARTA; Strow et al.

2003), which maps meteorological profiles to clear-sky

top of the atmosphere radiances, which we convert to

the equivalent brightness temperature (BT). We use

the NASA Goddard AIRS/Aqua level-1B calibration

subset (AIRXBCAL) to discriminate for clear scenes

(Li 2008), and we apply the clear-sky forward model to

ERA and MERRA profiles (without using reanalysis

cloud fields) for these AIRS cloud-free scenes to map

the ERA and MERRA profiles to BT. Comparisons

between the calculated and observed radiances allow

us to diagnose how well ERA and MERRA are cap-

turing some of the extrema. Note that Schreier et al.

(2014) have also used AIRS data and ERA reanalyses
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to analyze PDFs of cloud properties, but these were

done using retrieved products rather than the radiance

observations.

2. Data

The data analyzed in this work are the AIRS radi-

ances from September 2003 through August 2013 along

with radiances calculated from ERA and MERRA

reanalyses at the same times and locations. We discuss

the characteristics of the AIRS channels that we have

chosen to analyze as well as the reanalysis fields.

a. AIRS observations

TheAIRS channels used in this paper (along with their

spectral wavenumbers and which physical variables they

are sensitive to) are channel ID 54 (662 cm21, upper

stratospheric temperature), 359 (754 cm21, midtropo-

spheric temperature), 1055 (1024 cm21, stratospheric

ozone), 1291 (1231 cm21, surface temperature), 1475

(1344 cm21, lower tropospheric humidity), and 1614

[1420 cm21, upper tropospheric–lower stratospheric

(UT–LS) humidity]. Channels 54 and 359 are also sensi-

tive to carbon dioxide amounts, but for this paper, we

assume the CO2 amounts do not change enough on the

10-yr scale to impact the relationships between moments

of the PDFs.We have tested this by increasing CO2 in the

ERA analyses by 2.2ppmyr21 and found that there are

minimal changes to the skewness–kurtosis and PDF plots

(not shown here). We will further describe the spectral

characteristics of these channels in the next section.

Radiometric accuracy of the AIRS instrument BT is

estimated at about 0.2K (Aumann et al. 2003). Forward

model errors for theAIRS channels used in this paper are

determined by comparison with the kCompressed At-

mospheric Radiative Transfer Algorithm(kCARTA;

DeSouza-Machado et al. 1997), which gives estimated

RMS errors that range from 0.024K for 662 cm21 to

0.101K for 1024 cm21.

b. Spectral sensitivity

In this section, we describe how the BT varies with

temperatures and gas constituents for each channel

analyzed in detail in this paper. Figure 1 shows an

FIG. 1. Calculated BT (black) for a standard atmosphere in the tropics, with Jacobians for ozone

(blue), water vapor (red), stratospheric temperature (green), tropospheric temperature (magenta),

surface temperature (cyan), and UT–LS water vapor (yellow). Frequencies of five of the channels

analyzedhere are shownby vertical barswith the same color as the Jacobian lines. The temperature

Jacobians have beenmultiplied by a factor of 10 and theUT–LSwater vapor has beenmultiplied by

5 to make themmore visible, and the BTs have 250K subtracted from the actual values. Jacobians

are analytically computed for aU.S. standard atmosphere using kCARTA(monochromatic line by

line, and then convolved toAIRS). For each layer, they aremultiplied by the layer amounts so that

the units are simply in kelvins.
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AIRS BT spectrum simulated for an ocean scene using

the US Standard Atmosphere with CO2 adjusted to

385 ppmv (see McClatchey et al. 1972). The black

curve shows the simulated TOA radiance, converted

to equivalent BT in kelvins. For convenience, we

offset that curve by subtracting 250 K. The 800–

1200-cm21 region measures BTs of about 288K, which

would be close to the surface temperature (reduced by

emissivity being slightly below unity and some column

water absorption). The strong absorption bands are evi-

dent: 650–800cm21 (CO2 absorption), 1000cm21

(ozone), and 1300–1650cm21 (water vapor). Not shown

in the plot are AIRS channels measuring radiances in the

2100–2800 cm21 range.

Jacobians are calculated analytically for each layer,

multiplied by the layer amounts, so that the units are

simply in kelvins. Temperature Jacobians are simply

the analytic Jacobians, d(BT)/dT. The blue curve

shows how the simulated BT spectrum (black curve)

would change if column ozone were increased. Note

that it peaks in the 1000–1100-cm21 region, and we

chose AIRS channel 1055 (1024 cm21) as a proxy for

ozone. The red curve shows how the simulations would

change if water vapor (H2O) were increased. Note

there is a small lowering effect in the window region,

but the dominant effect is in the water vapor band

(1300–1600 cm21), where we have chosen AIRS chan-

nels 1475 (1344 cm21, lower tropospheric humidity)

and 1614 (1420 cm21, UT–LS humidity).

The green and magenta curves show how the simula-

tions would change if the stratospheric and tropospheric

temperatures were to increase by 1K (we havemultiplied

the effect by 10 for clarity). One sees the effect is a net

increase—the stratospheric temperature channels are in

the 650–700-cm21 region, the tropospheric temperature

sounding channels are roughly in the 700–800-cm21 re-

gion, while the boundary layer channels are in the

window region.

Finally, the cyan curve (multiplied by 10) shows how

the simulations would increase if the surface tempera-

ture were to increase by 1K. Though not clearly seen in

the figure, AIRS channel 1291 (1231 cm21) is mostly

sensitive to the surface and only weakly to the water

vapor column.

What is evident from examining these curves, con-

structed using only a small subset of trace gas constitu-

ents that AIRS is sensitive to, is that for any one AIRS

channel, there can be much cross contamination from

other constituents and/or temperatures. This clarifies

why we need to carefully choose the channels we wish to

use for our studies. An additional example (though not

plotted here) is the change if CO2 were to vary, which

would also affect the 650–800-cm21 region.

c. Height sensitivity

Here we describe how varying the constituents

changes the simulated BT as a function of height.

Figure 2 shows three such panels, with the Jacobians

shown with the height on the vertical axis [in units of

pressure (mb)] and the BT sensitivity in K on the

horizontal axis.

Figure 2a shows the sensitivity to a 1-K change in

temperature. The 662-cm21 channel shows a strong de-

pendence on stratospheric temperature and no sensi-

tivity to the lower atmosphere, while the 754-cm21

channel shows much reduced sensitivity in the upper

atmosphere but more sensitivity in the lower tropo-

sphere. Figure 2b shows sensitivity to ozone amounts

using the 1024-cm21 channel. As in the other plots, it is

quite wide but has a peak above 100mb in the strato-

sphere. The change in each layer is proportional to the

ozone amount in that layer. Finally, Fig. 2c shows sen-

sitivity to water vapor amounts for the 1344-cm21

(sensitive to lower tropospheric humidity) and the

1420-cm21 (UT–LS humidity) channels. The change in

each layer is proportional to the water vapor amount in

that layer.

The Jacobians in Fig. 2 spanmany pressure layers, and

the numbers on the horizontal axis are quite small;

Typical AIRS channel noise is on the same order, about

0.1–0.2K. For any one spectrum, these combine to

produce uncertainties on the order of 1K–10%humidity

for any one layer during a geophysical retrieval. How-

ever, since we are using an ensemble of thousands of

radiance observations (unaffected by geophysical re-

trievals) over 10 yr per (latitude–longitude) grid box, we

can make definitive statements about the moments of

the PDFs, especially as the AIRS channels used here

were carefully selected to minimize contamination from

multiple gas constituents. The specific numbers shown in

these spectral and height Jacobian plots would change if

other geophysical profiles are used, but the underlying

principles would remain the same.

d. Reanalysis geophysical fields

ERA uses a spectral model with a 256 3 512 hori-

zontal grid and 60 model levels, and a four-dimensional

variational (4D-Var) assimilation algorithm with 12-h

assimilation windows. MERRA employs a finite-

volume atmospheric model (Lin and Rood 1997) and

the Gridpoint Statistical Interpolation analysis system

(Wu et al. 2002) with a 1803 540 horizontal grid and 72

model levels. Both of these systems assimilate radi-

ances from a wide range of satellites, including AIRS

and other hyperspectral instruments. They also

assimilate a variety of ground- and aircraft-based in situ
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observations, and error statistics are generated from

observation minus forecast comparisons with radio-

sonde data. A detailed discussion of these comparisons

can be found in both Dee et al. (2011) and Rienecker

et al. (2011). Our purpose here is to present an alter-

native way to compare the geophysical fields from re-

analyses with AIRS directly in radiance space using

non-Gaussian statistical analysis.

At any location, the state of the atmosphere depends

on external forcing variables such as season (solar in-

put); internal variables such as CO2 concentration,

clouds, and aerosols; and boundary conditions like

proximity to land and oceanmasses and local orography.

In general, atmospheric temperature is seen to be rela-

tively uniform over larger areas when compared with

moisture, so we expect less variability in channels that

are primarily sensitive to stratospheric temperature

(Laing and Evans 2011); see for example the plots

shown in Tian et al. (2013). Ozone variability is larger in

the troposphere though there is much more in the

stratosphere. Sea surface temperature (since we are using

observations over oceans only) has already been shown

by Sura (2011) to have significant stochastic forcing, and

clouds are not important here because of our restriction

to clear-sky scenes. Finally, tropospheric humidity is

highly variable (particularly in the lower troposphere;

Laing and Evans 2011), so there is also a good possibility

of seeing stronger stochastic forcing in channels sensitive

to moisture. This forcing is the result of the complex

hydrological cycle that involves precipitation, evapora-

tion, and transport of moisture and clouds.

Given observational andmodeled data, an initial state

can be assimilated into an NWP model and the future

state of the atmosphere forecast by stepping the con-

servation equations forward in time. Even if one is in-

terested only in hourly forecasts over a limited spatial

FIG. 2. Jacobians for each of the chosen channels with respect to the relevant physical quantity, including

(a) 662 cm21 (sensitive to temperature in the stratosphere) and 754 cm21 (temperature in the troposphere);

(b) 1024 cm21 (ozone); and (c) 1344 cm21 (lower tropospheric water vapor) and 1420 cm21 (UT–LS vapor).
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domain (vs global forecasts over a week or so), not all

the microphysics, such as cloud formation and turbu-

lence, can be captured on all spatial and temporal scales.

The subgrid processes that are often included using pa-

rameterization implies that approximations made in the

numerical models lead to reduced accuracy or variabil-

ity of the forecasts (Gottwald et al. 2016). This could be

improved via stochastic modeling of the observed vari-

ations (Sura andHannachi 2015). Direct observations of

geophysical variables are impossible at all locations and

times, and one avenue of progress could be through the

understanding of the statistics and variability of millions

of daily TOA radiance observations, which are directly

related to geophysical fields, as explained in the previous

section.

3. Methodology

In this section, we discuss the SARTA forward model

used to calculate radiances from ERA and MERRA

along with the stochastic analysis techniques used here.

a. SARTA

SARTA (Strow et al. 2003) used in this paper nu-

merically solves the equation of radiative transfer (Liou

2002; Goody and Yung 1989) by dividing the atmo-

sphere into 97 slabs between the surface (1013 hPa) and

top of the atmosphere (TOA; 0.005mb, roughly 80 km).

The slabs are of 0.25-km thickness at the surface, about

0.35 km thick at 15 km and about 3 km thick at TOA.

The version of SARTA used in this paper only performs

simulated radiative transfer for the 2378 AIRS finite

width (rather than monochromatic) channels using

specified temperature and trace gas profiles, as it has

been optimized for that instrument.

As shown in section 2, the AIRS instrument channels

are sensitive to ozone, water vapor, and carbon dioxide

in the atmosphere. The optical depths computed by

SARTA use line parameters from the high-resolution

transmission molecular absorption (HITRAN) 2008

database (Rothman et al. 2009) with an appropriate line

shape [Voigt for most gases, line mixing for CO2, and

specialized line shapes together with a slight modifica-

tion of theMT_CKD1.0 (Mlawer et al. 2012) continuum

forWV]. SARTA has been extensively validated (Strow

et al. 2006). Since AIRS spans 650–2780 cm21 (or 3.6 to

15.5mm), the fundamental and hot vibrational–

rotational bands that the AIRS channels are sensitive

to are the bending CO2 n2 15-mmband (roughly spanning

640–800 cm21), theozonen1 10-umband (1000–1100cm21),

the WV n2 6.7mm band (1300–1700 cm21), and the

stretching CO2 n3 4-mm band (2200–2400 cm21;

Strow and Reuter 1988; Mohan 1979; Toth 1991).

The peak of a channel’s weighting function depends

on the total optical depth �N

n51tn. When it is low, the

surface term dominates over the emission term; that

channel is then mostly sensitive to surface temperature,

emissivity, and to a far lesser extent, column water op-

tical depth. The broad region spanning 800–1300 cm21

(excluding 1000–1100 cm21) referred to as the thermal

infrared window is mostly sensitive only to the surface.

Conversely, if we choose a channel where the total

optical depth is much larger than 1, then the trans-

mission from surface to TOA e2�
N
n51tn becomes negli-

gible, as does the contribution from the lower

atmosphere—the dominant contribution comes from

the middle and upper atmosphere. Spectral regions

exhibiting this behavior are the bands mentioned

above. Weighting functions are further discussed in

Liou (2002) and Goody and Yung (1989).

The total optical depth for a particular layer and

channel tn(n) depends on the layer temperature, as well

as on the optical depth of the constituent gases. While

varying the layer temperature will, in general, vary the

optical depth, typically only one or a handful of gases

impact any one AIRS channel. For example, in the

640–800-cm21 region, carbondioxide is themain absorber,

and changing its concentration will noticeably raise or

lower the outgoing radiances. Changing ozone and water

vapor amounts would also show a change in radiances in

this spectral region but on a much smaller scale.

Conversely, varying methane concentrations would

not have any impact in this region but insteadwould impact

other regions such as the 1305-cm21 region.

b. Stochastic forcing and non-Gaussian PDFs

Stochastic analysis involves the division of the physi-

cal process into fast (i.e., rapidly decorrelating) and slow

(i.e., slowly decorrelating) modes. The slow modes are

governed by deterministic damping or forcing, whereas

the fast modes are represented as noise (e.g., Sura 2011).

Note that without a pronounced spectral gap, this de-

composition cannot bemade unambiguously, so stochastic

models of atmospheric dynamics and phenomena have to

be seen as approximations of the real system (Sura and

Hannachi 2015). Generally, using the notation of Sura

(2011, 2013),we consider the dynamics of ann-dimensional

system whose state vector x is governed by the stochastic

differential equation (SDE)

dx/dt5A(x)1B(x)h(t) , (1)

where the slow deterministic processes are described by

the vector A(x) and the product of the matrix B(x) and

the noise vectorh. Thus,B(x)h represents the stochastic
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approximation to the fast processes. The stochastic

components hi are assumed to be independent Gaussian

white-noise processes: hhi(t)i and hhi(t)hi(t
0)i5 d(t2 t 0),

where h�i denotes the time average (or, assuming er-

godicity, an ensemble average), and d is Dirac’s delta

function. In general, the time-evolved x in Eq. (1) will

have non-Gaussian statistics and is, therefore, well

suited to study extrema. In particular, the state-

dependent (multiplicative) stochastic forcing B(x)h

has been shown to be one possible scenario that leads to

non-Gaussian PDFs even for a linear deterministic

termA(x); Sura andSardeshmukh (2008) andSardeshmukh

and Sura (2009) demonstrated that certain types of ob-

served atmospheric and oceanic non-Gaussian statistics

(500-hPa geopotential height and 300-hPa relative vor-

ticity are examples) are consistent with linear stochasti-

cally forced dynamics with correlated additive and

multiplicative (CAM) noise forcing. CAM forcing is de-

fined for a stochastic systemwhere the random forcing has

two terms, one that ismultiplied by the state vector and the

other that is added to the state vector.

In general, the evolution of the PDF p(x, t) of the

stochastic process in Eq. (1) is governed by the corre-

sponding Fokker–Planck Eq. (2) (Sura and Sardeshmukh

2008). For many practical time series analysis applica-

tions (like the present analysis of AIRS data), the mul-

tivariate SDE Eq. (1) is simplified to a univariate system

dx/dt5 A(x)1 B(x)h(t), resulting in the Fokker–Planck

equation (Sura 2011)

›p(x, t)

›t
52

›

›x
A

eff
p(x, t)1

1

2

›2

›x2
B2p(x, t), (2)

where Aeff is an effective drift (change in the average

value of a random process) and is the sum of de-

terministic and noise-induced drifts. Sura and Barsugli

(2002) show how the parameters in Eq. (2) can be esti-

mated from a dataset.

In the univariate linear casewithCAMnoise [A(x)5Ax

and B(x) Bx 1 g, where A is now a positive damping

rate andB and g are CAM noise constants] the Fokker–

Planck equation [Eq. (2)] has been shown to result in

several statistical properties that can be used to test

whether a particular dataset contains this kind of forc-

ing. These include a relationship between the excess

kurtosisK5 hx 0i/s42 3 and skewness S5 hx 0i3/s3 for a

variable x0 (with zero mean and standard deviation s;

Sura 2011):

K $
3

2
S2 2 r , (3)

and the existence of what are called power-law tails of

the PDFs,

p(x0)} jx0j2a , (4)

where 2 # r # 0 is a small adjustment that results from

errors incurred from the reduction of the multivariate

SDE Eq. (1) to a scalar equation. Nonzero r is the result

of nonlocal effects. Equation (4) holds for large values of

jx0j relative to s (i.e., the tail). These two relationships

provide the means to determine whether the variability

in clear-sky AIRS radiance measurements for a partic-

ular channel could be modeled by assuming CAM sto-

chastic forcing. Both of them are connected to clear-sky

extrema in the system. Kurtosis is a measure of the

weight of the tails (or extremes) of the PDF, and

skewness is the asymmetry of the PDF. Thus, we

expect a power-law tail to occur where there is high

excess kurtosis (beyond Gaussian) and where a large

skewness gives significantly more weight to one side.

The power-law tails will therefore more likely be found

in channels (and regions) where the excess kurtosis is

large and on the side of the PDF that has a relatively

fatter and longer tail (due to skewness). Thus, larger

kurtosis and skewness means that there should be re-

gions with longer tails and, therefore, more extrema.

As explained by Sura (2011) and Sura and Sardeshmukh

(2008), CAM forcing is a necessary condition for these

non-Gaussian statistics when the noise itself is Gaussian,

and forGaussian PDFs, both excess kurtosis and skewness

are zero. However, in general, we cannot say that nonzero

skewness and excess kurtosis are proof that there is

multiplicative noise. We can only say that the observed

relationship between skewness and kurtosis plus the

power-law behavior are both consistent with the CAM

model. Note that for the remainder of the paper, we will

use the terms kurtosis and excess kurtosis interchange-

ably, always to mean excess kurtosis.

The focus of this paper is to test whether these re-

lationships apply to the AIRS radiance measurements

and what it tells us about the physical processes that

have been measured during the first 10yr of the in-

strument’s operation (September 2002–August 2012).We

will also build two stochastic models to compare with the

AIRS data to help demonstrate what forcing character-

istics could achieve similar statistical results. Note that

Brindley et al. (2015) have shown that radiance mea-

surements from the Infrared Atmospheric Sounding In-

terferometer (IASI; Clerbaux et al. 2007) are useful for

studying spatial scales of interannual variability, while our

approach is to employ the PDF tools developed by Sura.

We end this section with a brief explanation of how

restricting to clear-sky radiances would impact mea-

sured PDFs. Skewness has a special significance to

hyperspectral radiance measurements, because the left

MAY 2017 DE SOUZA -MACHADO ET AL . 1469



side of the PDF contains all of the low temperatures in

BT space. These indicate cloudy conditions (because

cloud-top temperatures usually are much colder than

surface temperatures), which cause the PDFs for AIRS

channels whose weighting functions peak in the tropo-

sphere and at the surface to be skewed toward the left

side. If we include cloudy conditions in the dataset, all of

the channels will have a large negative skewness every-

where, and the analysis will be corrupted by themultitude

of complex cloud conditions. The inclusion of cloudy

scenes would therefore guarantee highly non-Gaussian

statistics, independent of whether climate variability is

really non-Gaussian. Thus, we choose to restrict the ob-

servations to clear conditions (as defined by the AIRS

cloud filter, which comes from the AIRXBCAL Dis-

tributed Active Archive Center dataset), although the

cloud filtering is not perfect, and it is possible some colder

cloudy scenes are contained in a set of clear measure-

ments. However, if we restrict the analysis further to

positive anomalies, then only very nearly cloud-free

measurements are included. We also limit the observa-

tions used here to those over oceans because of the dif-

ficulty in determining clear conditions over land.

c. Stochastic models

We have constructed two simple stochastic models to

help interpret the analysis of AIRS data in terms of

stochastic forcing. The first model is a scalar SDE with

CAM forcing (Sura 2011). It is a reduction of Eq. (1) to

a scalar form, as described in section 3b:

dx/dt52Ax1Exh1 gh , (5)

where x is a scalar function of time only and A is a

constant so that the deterministic term is just a dam-

ped linear function of the spatial dimension, y. The

stochastic forcing term from Eq. (1) is here repre-

sented by Exh 1 gh, where the first term represents

the multiplicative forcing, and the second is the ad-

ditive forcing. Because we are only concerned with

overall statistics rather than details of the evolution,

we solve the system using the Euler–Maruyama time-

stepping scheme (Kloeden and Platen 1992; Higham

2001). The second model is a one-dimensional (1D; in

space) system with the same forcing as in Eq. (5), but

now we allow the forcing to be spatially correlated

(Sura 2011):

›x/›t52Ax1EHx1 gh . (6)

The multiplicative noise is now represented by a di-

agonal matrix, H 5 Ih, where h is a vector and is now

spatially correlated with the exponential correlation r:

r5 exp

"
2
1

2

(Dy)2

(L
c
)2

#
, (7)

where Lc is the correlation length scale. Spatially cor-

related noise terms have long been used in data as-

similation systems (e.g., Tangborn 2004) and allow for a

rapid decay in correlation with distance. For example,

we would expect temperature, humidity, or ozone

values to have a smaller correlation at greater dis-

tances. For simplicity, we keep the constants A, E, and

g as scalars, although they could also be defined as

matrices. This system is also solved using Euler–

Maruyama time stepping. We will present the statis-

tics for some solutions to these two systems in order to

show possible explanations for the structure found in

AIRS observations.

4. Results

a. AIRS observations compared with reanalysis
calculations

In this section, we present the results of analyzing

PDFs constructed from 10 yr of AIRS level-1B data in

terms of their non-Gaussian behavior. In particular,

we plot the skewness versus kurtosis for each of the

channels described earlier, along with the PDF for a

grid box having relatively large skewness and kurtosis.

The results are discussed in terms of the sensitivity of

each channel to atmospheric properties. We also

demonstrate how some of the results can be compared

with the simple stochastic equations of section 3c as a

way to further understand the nature of the atmo-

spheric forcing.

FIG. 3. The log10 of the number of observations in each grid box

(when .500).
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The 10 yr of clear-sky, nighttime AIRS data are di-

vided into 48 bins, resulting in a latitude–longitude grid of

45 3 90. The daily mean, skewness, and kurtosis of all

the observations for each grid box are calculated. Only

grid boxes with more than 500 observations (see the

observation counts per grid box in Fig. 3) are included

so as to eliminate grid boxes that are not statistically

significant (these occurred near the poles, where there

were relatively few clear-sky observations). The effect

of the annual cycle is reduced by focusing on Northern

FIG. 4. Excess kurtosis vs skewness for wavenumbers 662 cm21 (sensitive to temperature in the stratosphere) and

754 cm21 (temperature in the troposphere) for (top) AIRS observations and calculated from (middle) ERA and

(bottom)MERRAfor 10 yr ofDJF data. The green curve represents the solution toK5 (3/2)S2. In each plot, we also

calculate the fraction of grid boxes above and below that curve: for AIRS observations, (a) 0.1 above and 0.9 below

and (b) 0.04 above and 0.96 below; for ERA, (c) 0.37 above and 0.63 below and (d) 0.18 above and 0.82 below; and for

MERRA, (e) 0.32 above and 0.68 below and (f) 0.19 above and 0.81 below.
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Hemisphere winter (DJF) measurements over the 10 yr

of data. The mean has also been removed from the

dataset. The long-term trends for this period have not

been removed as they were found to be insignificant

relative to the short-term variability, so that removing

them had no noticeable impact on the results

presented here.

Figures 4–6 show excess kurtosis versus skewness us-

ing AIRS observations or model calculations in-

terpolated to the AIRS observation locations. All of the

channels show some degree of non-Gaussian behavior,

as indicated by the fact that they have nonzero skewness

and kurtosis. Further, the skewness-versus-kurtosis

plots exhibit the general relationship K $ (3/2)S2 2 r

FIG. 5. As in Fig. 4, but for wavenumbers 1024 cm21 (ozone) and 1231 cm21 (surface temperature); the fractions

are now, for AIRS observations, (a) 0.12 above and 0.88 below and (b) 0.33 above and 0.67 below; for ERA, (c) 0.91

above and 0.09 below and (d) 0.38 above and 0.62 below; and for MERRA, (e) 0.08 above and 0.92 below and

(f) 0.30 above and 0.70 below.
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expected from the stochastic CAM model. A positive

value for r is a result of the reduction of Eq. (1), with

spatially correlated random forcing, to a scalar SDE

(Sura 2011). That this K $ (3/2)S2 relationship is not

exact is also an indication that the AIRS channels

studied here have only weak CAM forcing. Note that

we indicate the fraction of grid boxes with kurtosis

values above this (green) line in the caption of each of

the figures. Another feature that is common to these

channels is that most of the latitude–longitude bins

result in skewness and excess kurtosis values that are

relatively small (#1.0). For example, observations

sensitive to stratospheric temperature (662 cm21;

Fig. 4) have values of skewness mostly between21 and

1 and excess kurtosis between 21.0 and 1.0. But a

smaller number of latitude–longitude bins show excess

FIG. 6. As in Fig. 4, but for 1344 cm21 (lower troposphericwater vapor) and 1420 cm21; the fractions are now, forAIRS

observations, (a) 0.04 above and 0.96 belowand (b) 0.15 above and 0.85 below; forERA, (c) 0.20 above and 0.80 belowand

(d) 0.13 above and 0.87 below; and for MERRA, (e) 0.19 above and 0.81 below and (f) 0.15 above and 0.85 below.
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kurtosis that exceeds (3/2)S2 with significantly larger

skewness values. Thus, there are some regions where

strong CAM noise forcing exists. This result is not

surprising given that the stratosphere is fairly quies-

cent, and the temperature field does not contain sig-

nificant small-scale structures. These figures also show

that the skewness–kurtosis (S–K) relationships for

AIRS observations and ERA and MERRA calcula-

tions are quite similar, implying that the analyses cap-

ture the higher-order variability of stratospheric

temperature up to 1mb reasonably well.

Overall, the AIRS channels analyzed here exhibit a

variety of statistics, which depend on which part of the

atmosphere they are sensitive to. Some are weighted

more toward negative skewness [754 cm21 (tropospheric

temperature), 1024 cm21 (ozone), and 1231 cm21 (sur-

face)], seen in Figs. 4 and 5. Other channels are weighted

toward positive skewness [662 cm21 (stratospheric

temperature) and 1420 cm21 (UT–LS H2O)], seen in

Figs. 5 and 6. BT from 1344 cm21 (lower tropospheric

H2O), Fig. 6, is fairly evenly balanced between positive

and negative.

The skewness here is due to the combined variability

of ozone and temperature within the stratosphere. The

kurtosis values in this channel aremostly below the (3/2)S2

curve, meaning we have not found strongly non-

Gaussian hot side tails. In addition, the calculations

made by a clear-sky RTA produce PDFs containing the

same negative skewness as the AIRS observations, so

we can conclude that it does not originate from cloud

contamination.

The two channels whose skewness/kurtosis differ

the most from each other are stratospheric ozone

(1024 cm21) and surface temperature and water vapor

(1231 cm21), both shown in Fig. 5. The excess kurtosis

for the former is mostly below the (3/2)S2 curve, in-

dicating the weakest CAM forcing of the six channels

analyzed. This is unsurprising given that stratospheric

ozone has relatively low variability, except in the polar

regions, which are mostly not included with these data.

In the latter (1231 cm21), much more of the grid boxes

have excess kurtosis above the (3/2)S2 curve (though still

less than half), suggesting the strongest CAM forcing of

the six channels. This is in line with the Sura (2011)

FIG. 7. Skewness maps for 10 yr of DJF BT data for

1420 cm21 (UT water vapor) for (a) observations,

(b) ERA calculations, and (c) MERRA calculations.

Data includes only nighttime, clear scenes over oceans.

Grid boxes with ,500 observations are removed.
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analysis of sea surface temperature, though this channel

is also weakly sensitive to column water.

We can also use these results to point to where changes

in the frequency of extrema will be the greatest. When

CAM forcing is large, then the nonlinear term in Eq. (5)

will be larger, leading to larger changes in the stochastic

variables. Thus, for example, we would expect more

changes in the occurrence of extrema in surface temper-

ature than in stratospheric ozone. In the next section, we

will investigate the structure of these skewness–kurtosis

plots further by simulating both scalar and multidimen-

sional SDEs to determine when Eq. (3) holds and what

we can learn about climate forcing from them.

It can be helpful to understand the relationship be-

tween skewness and kurtosis by plotting maps of the

spatial structures of both, for bothAIRS observations as

well as ERA and MERRA calculations, shown in Fig. 7

(skewness) and Fig. 8 (kurtosis) for the UT–LS band

(1420 cm21). For all the channels analyzed here, skew-

ness for observations and calculations show similar

spatial structures. The kurtosis plots indicate that loca-

tions for positive skewnessmatch well with high-kurtosis

regions, but some of the negative skewness regions do

not correlate well with high-kurtosis regions (e.g., north

of Australia). This can also be seen in the scatterplot for

1420 cm21 (Figs. 6b,d,f), which shows that the negative

skewness side is primarily below the S 2/2 curve. These

maps also point to which grid boxes (e.g., large skewness

and/or kurtosis) are most likely to contain non-Gaussian

PDFs, extrema, and the resulting power-law tails.

Physically, this just means that cold extrema are less

likely than hot extrema. And for clear-sky observations,

this can have implications for SST, lower tropospheric

temperature, and humidity. For example, in this dataset,

high-SST extrema are more likely than low-temperature

extrema.

We have also plotted the quantity K 5 1.5S2 for

1420 cm21 (Fig. 9, observations only), which shows

where kurtosis is above the 1.5S2 curve. It can be seen

that this relationship is relatively random globally, and it

is difficult to pick out any region where positive values

are more likely.

We have searched through the PDFs for each channel

and each grid box for regions with power-law tails by

FIG. 8. Excess kurtosis maps for 10 yr of DJF BT

data for AIRS channel 1420 cm21 (UT water vapor)

for (a) observations, (b) ERA calculations, and

(c) MERRA calculations. Data includes only nighttime,

clear scenes over oceans. Grid boxes with ,500 obser-

vations are removed.
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plotting every grid box where skewness is greater than

0.2 (so that only positive skewness is considered) and

excess kurtosis is greater than (3/2)S2 (to increase the

probability of CAM forcing). In this way, we consider

only positive tails so that any possibility of cloud con-

tamination is removed. With these restrictions, we

found a number of grid boxes where non-Gaussian tails

are seen in the AIRS observations. For example,

Fig. 10a shows the PDFs for AIRS in one grid box for

1231 cm21 (sensitive to surface temperature). But these

tails do not closely follow a power-law form [Eq. (4)].

This is possibly due to the relatively small number of

observations in each grid box (see Fig. 3), so that the

numbers are too small to obtain a statistically signifi-

cant slope in the tails. The calculated clear-sky BT from

ERA and MERRA generally resulted in extreme re-

gions with even less clearly defined tails (Fig. 10b,c).

This may indicate some differences in extrema in the

reanalyses, or it could be an artifact of the relatively

small size of the datasets. We have tested this by car-

rying out a bootstrap (Efron 1979) uncertainty analysis

with 1000 iterations applied to the AIRS PDF in

Fig. 10a for 1231 cm21. The result in Fig. 11 shows the

mean PDF along with the mean 6 the standard de-

viation from the 1000 bootstrap calculations. This

shows that the uncertainty is small for most of the PDF

but larger (100%) for the cold tail and (20%) for the

hot tail. Since we are focusing on the latter, we can

reasonably expect that the hot side non-Gaussian form

is robust.

It is also helpful to plot the PDFs in terms of total

observation count, so we have also done this for the

AIRS observations and ERA andMERRA calculations

for the same grid box as shown in Fig. 10. These are

shown in Fig. 12 on a linear scale, from which we have

found that the total number of observations in the hot

tail (beyond 2s from the PDF maximum) is 64 for the

AIRS observations, 83 for ERA calculations, and about

13 forMERRA calculations. Comparing the exact times

of these observations, we find that the event times for

AIRS and ERA are the same for 59 observations in the

tail, while the overlap between AIRS and MERRA is

12. This means there is significant overlap for extrema

between AIRS and ERA and between AIRS and

MERRA. It is interesting to note that while ERA

overestimates (relative to AIRS) the number of hot tail

extrema, MERRA significantly underestimates them.

The solution to the problem of relatively large un-

certainties requires a larger number of observations. We

have found that combining grid boxes together to get

larger datasets generally results in more complicated

PDFs with multiple peaks. Reducing the uncertainties is

therefore best achieved by a larger dataset, namely, the

continued operation of AIRS (now more than 14 years)

and combining them with observations from IASI

and CrIS.

b. Numerical simulations of SDEs

In this section, we describe the statistical results from

numerical experiments of the stochastic systems in Eqs.

(5) and (6). Our goal here is to understand what possible

types of forcing can result in the plots found for both

AIRS observations and calculations from reanalyses.

We have carried out a variety of experiments to de-

termine cases where non-Gaussian statistics occur for

these systems. We present here a subset of those ex-

periments that used damping parameter A5 2.6 and an

additive stochastic forcing parameter g 5 0.85. A non-

dimensional time step ofDt5 0.1 is used in both systems,

while the multidimensional system uses a domain of

length L 5 1 with 551 grid points. The PDFs are com-

puted from an ensemble of 3000 runs from the scalar

system, whereas they are computed at each grid point in

the vector system. Figure 13 shows the excess kurtosis

versus skewness for an ensemble of simulations of the

scalar system in Eq. (5), with multiplicative forcing pa-

rameter E 5 1.05 (Fig. 13a) and E 5 0.1 (Fig. 13b). The

former show that when the multiplicative forcing is on

the same order as the additive forcing, then we get the

expected S–K relationship in Eq. (3). The latter shows

that when, on the other hand, the multiplicative forcing

is only about 8% of the additive forcing, then some of

the ensemble solutions drop below the (3/2)S2 curve. So,

one possible mechanism for the S–K relationships found

for the AIRS channels is that these observations (and

the reanalyses mapped onto the same observation

space) have only weak multiplicative stochastic forcing.

FIG. 9. Map of K 5 1.5S2 for 10 yr of DJF BT observations.
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Solutions to the stochastic system in Eq. (6) with one

spatial dimension are shown in Fig. 14. Both solutions

use E 5 1.1 so that there is significant multiplicative

stochastic forcing (relative to additive forcing), while the

spatial correlation of the forcing varies fromLc5 0.0001

(Fig. 14a) to Lc 5 0.05 (Fig. 14b). With essentially no

spatial correlation (in the former), the kurtosis–skewness

relationship is similar to the scalar case with E 5 1.1 in

that the excess kurtosis is above the (3/2)S2 curve.

When the correlation is increased to include several

grid points, excess kurtosis at some of the grid points

with large skewness drops below the (3/2)S2 curve. This

behavior, which differs from the scalar case when

multiplicative forcing is much weaker, is predicted

analytically (Sura 2011).

We can connect these simulations with the skewness-

versus-kurtosis plots of Figs. 4–6 considering what

kinds of physical processes might lead to these results

and how they might cause the kinds of forcing used in

the simulations. For example, when the additive and

multiplicative forcing in Eqs. (5) and (6) are roughly

equal with sufficient magnitude, then the skewness-

versus-kurtosis relationship stays entirely above the

K5 (3/2)S2 curve. When the forcing is not in balance,

the kurtosis not only drops below the curve, but the

values of both skewness and kurtosis are much

smaller. We see from Figs. 4–6 that all of the channels,

for both observations and calculations, have points

both above and below the curve. And we also see that

there is some variation in the maximum values of

skewness and kurtosis, with the largest values occur-

ring for 1231 cm21 (surface temperature; Figs. 5b,d,f).

Ozone observations and calculations are mostly be-

low the S–K curve, possibly indicating less balance in

the forcing.

The spatial correlation of the forcing is another sig-

nificant outcome of these experiments. This can occur

during large-scale storms or along a front (though these

would occur for mostly cloudy scenes). The fact that we

have restricted to clear-sky scenes means that there is

probably greater horizontal correlation in the observa-

tions than would be found in the complete dataset. And

as noted earlier, stratospheric processes are more likely

to be correlated over longer distances. And because we

are using satellite-based measurements that are sensi-

tive to processes over a range of atmospheric levels,

FIG. 10. PDFs (blue line) for (a) AIRS radiances for

1231 cm21 (surface temperature) and (b) calculations

using ERA-Interim and (c) calculations usingMERRA

at (348E, 388S) for 10 yr of DJF BT data. A Gaussian

PDF (red line) with the same mean and standard de-

viation as the actual data is also plotted. The mean is

indicated by the solid vertical line, while 61 standard

deviation is given by a dashed line. The number of

observations (and calculations) in this grid box is 5690.

Note that the gaps in the blue line for ERA calculations

are due to BT bins with no observations. The blue curve

for MERRA ends at a lower BT for the same reason.
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spatial correlation of forcing can be expected to be sig-

nificant. While these similarities cannot be treated as

proof that the different types of stochastic forcing occur

for the different geophysical fields, the similarities are

consistent with the results from the simulated stochastic

systems.

5. Conclusions

After filtering for clear-sky scenes, we have computed

PDFs of BT for 6 channels sensitive to different atmo-

spheric trace gas constituents from 10 yr of AIRS in-

strument observations, along with those calculated from

ERA and MERRA reanalyses using a fast clear-sky

radiative transfer model. We have tested for possible

CAM forcing by determining whether scatterplots

of kurtosis versus skewness follow the relationship

K$ 1.5S22 r. Scatterplots for both the observations and

calculations show evidence that CAM forcing of the

physical processes observed by these channels is occur-

ring. Generally, channels sensitive to tropospheric

properties show smaller values of r in Eq. (3) than do

channels sensitive to the stratosphere. Simulations of

simple scalar and one-dimensional SDEs show some

possible origins of these statistical results, including

weak CAM forcing or spatially correlated forcing. Both

of these seem plausible, because each channel has si-

multaneous contributions from a range of atmospheric

levels and trace gas profiles, not all of which are likely

to be stochastically forced. And because the forcing at

different levels of the atmosphere may well be linked

through convective motion, we could expect that the

forcing would have some degree of vertical spatial

correlation. Horizontal spatial correlation could also

be enhanced in the data used here because we have

limited the observations to clear scenes only, thereby

limiting the variety of types of forcing. But the fact that

the AIRS 1231 cm21 (surface temperature) channel gives

the most similar results to the many previous stochastic

forcing studies cited here indicates that much of the

differences are because we are simply looking at dif-

ferent physical variables, which have different forcing

characteristics. These can all lead to a shift downward

in the kurtosis, as represented by the parameter r in

Eq. (3) because higher-order moments are dominated

by the diagonal (or self-correlation) part of covariance.

So, if the spatial correlations are longer, then the di-

agonal term becomes less important (Sardeshmukh

and Sura 2009).

The PDF plots show the existence of extreme tails,

which is an indication that AIRS is observing the non-

Gaussian nature of atmospheric variability over the

10-yr period studied. We have focused on a search for

hot side tails (temperature greater than the mean) to

avoid any chance of cloud contamination and found that

FIG. 11. PDF uncertainty for AIRS radiances for 1231 cm21 us-

ing 1000 bootstrap calculations. The solid line is the mean PDF,

while the dash–dotted lines are for the mean 6 the standard de-

viation. The axes are numbered as in Fig. 10.

FIG. 12. PDFs for the same data as in Fig. 10, but showing the total number of observations in each temperature bin and plotted on a linear

scale for (a) AIRS, (b) ECMWF, and (c) MERRA.
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hot side tails occur in channels sensitive to tropospheric

humidity and temperature. Ozone and temperature in

the stratosphere had shorter non-Gaussian tails (not

shown), likely because of the longer length scales which

can be more easily resolved. BT calculations from ERA

and MERRA reanalyses reproduced some of the tails

but not as consistently. This result is particularly in-

teresting as it shows this approach can be used as a way

to assess overall how well reanalyses are capturing ex-

trema in the atmosphere. But because of the relatively

small size of the current 10-yr dataset from AIRS, a

more complete analysis of this will require us to wait for

combined satellite datasets. The inclusion of cloudy

scenes will also greatly increase the size of the dataset

(Wong and Teixeira 2016).

In this work, we have focused on the PDFs over a 10-yr

period and have not addressed the issue of changes to

them over time. The techniques applied here can help

lead to better understanding of extrema and how long-

term satellite observation records can be used to this end.

Analyzing different AIRS channels shows that the

strength of stochastic forcing depends on which part of

the atmosphere and what trace gases we are looking at.

So, while the fact that AIRS observations are essentially

convolutions of different physical properties from the

surface to TOA makes the analysis more complicated, it

can still lead us to be able to make some conclusions

about where and how extrema are occurring.

FIG. 13. Excess kurtosis vs skewness for an ensemble of 3000

simulations of Eq. (5) with A5 2.6, g5 0.85, and (a) E5 1.05 and

(b) E 5 0.1. The thick black line is the K 5 (3/2)S2 curve.

FIG. 14. Excess kurtosis vs skewness for the 1D stochastic system

in Eq. (6) withA5 2.6, g5 0.85, E5 1.05, and (a) Lc 5 0.0001 and

(b) Lc 5 0.05. The thick black line is the K 5 (3/2)S2 curve. This

system was discretized with 551 grid points, and the statistics were

calculated using each of the grid points from a single simulation

run. Each dot represents the statistics over the simulation time for

each grid point.
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The AIRS radiance record is the best candidate for

climate studies, especially when combined with succes-

sor instruments such as IASI and the Cross-Track In-

frared Sounder (CrIS; Bloom 2001). Combined, the

observational record from these instruments could ex-

tend well beyond 20 yr. As there is a demonstrated need

by the numerical weather prediction (NWP) community

for these instruments, follow-on missions are likely

to continue for many years, thereby extending the

climate record.

These data can eventually lead us to a better un-

derstanding of climate change in a couple of ways. The

PDFs calculated here are, in fact, changing in time and

are not really stationary. The Fokker–Planck equation

describes PDF evolution, and the relevant statistics can

be calculated from the AIRS dataset. We can also cal-

culate changes to the PDF tails over the course of the

existing data, which will be extended by IASI and CrIS.

Extreme events are generally expected to change more

rapidly than mean values of atmospheric properties, so

focusing on the tail regions should lead to further insight

into what parts of the atmosphere are evolving most

rapidly. The results here point to which channels (and,

therefore, which geophysical variables) are most likely

to change as the result of stochastic forcing.
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