
Technical Report TR-CS-01-18

Query Routing and Processing in Mobile Ad-hoc Environments
Filip Perich, Sasikanth Avancha, Anupam Joshi,

Yelena Yesha, Karuna Joshi

Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County

1000 Hilltop Circle
Baltimore, MD 21250

5 November 2001

Abstract

In existing mobile information access systems, mobile devices are typically viewed as consumers of information,
with information providers resident on the wired network. With the advent of short-range ad-hoc connectivity based
on Bluetooth like systems, an alternative scenario arises where mobile devices gather and exchange information from
not just wired sources, but also their environment and one another. Each device is both a source and a consumer
of information/data. In this paper we describe new challenges that this scenario presents to the distributed database
framework, and present the design of a framework for serendipitous querying and query response in an ad-hoc mo-
bile environment. We also describe an implementation of this system on mobile devices connected over Bluetooth
networks, and present experimental results.

I. INTRODUCTION

The constant enhancements in capabilities of palmtop, embedded and wearable devices, together with the
advent of pervasive connectivity and nanosensors represent a new paradigm for the way we, as software
developers and builders, think about interaction among devices. Some of the pervasive connectivity is
due to the infrastructure based on 2.5/3G cellular networks. In such environments, mobile devices are
typically viewed as consumers of information, with information providers resident on the wired network.
In such systems the traditional client–server interaction is an appropriate model perhaps with the “client”
database being extremely lightweight [4] or having a (partial) replicate of the main database on the wired
side [34]. An alternative approach will be necessary with the spread of short–range narrow-band systems
such as Bluetooth [33], which allow for devices in a “vicinity” to spontaneously network with one another.
Mobile devices will become more autonomous, dynamic and adaptive with respect to their environment.
They will become both sources and consumers of information, and cooperate with other devices in their
vicinity in order to pursue their individual and collective tasks. For instance, a car can ask those traveling
in the opposite direction if they know of a gas station within ten miles. Of course, this could be done by
the car relaying its GPS coordinates to some centralized server over an infrastructure-supported wireless
network. However, this approach may be expensive, both in terms of monetary cost and the accessibility of
the infrastructure. In such an ad-hoc environment, the neighborhood of any entity can be extremely volatile.
For instance, when a person walking in a mall queries other shoppers for the best deals in jewelry, she may
obtain different results based on the time she places the query. As every entity is potentially changing its
location with respect to others, it may not be possible for it to pre-determine the set of information sources
(catalogs) in its vicinity at any given point of time. For querying in such a scenario, we need to create a
robust infrastructure in which independent devices existing in a particular location can and will discover,
inter-operate, and cooperate with other devices in their vicinity in an as-needed and as-desired basis.

Current research in mobile computing has generally been limited to allowing applications built for the
wired world (e.g., WWW, databases etc.) to run in wireless domains using proxy based approaches ([3],
[12], [25], [24]). However, the enabling of peer–peer interaction between entities in ad-hoc environments
poses additional challenges that must also be addressed.

To further motivate the need for this framework in an ad-hoc environment, let us consider the following
scenario. It is 5:40 in the afternoon, and Bob’s working day at his new job is just ending. As he is getting
ready to leave the office, his phone rings. It is his new friend Jane asking him to meet her at the local
shopping mall. Bob agrees to meet her, and notifies his palmtop about the decision. In addition, Bob asks
the palmtop to find directions to the mall, as he has never been there before. While he is walking through
the building toward the parking lot and ultimately toward his car, the palmtop is able to connect to the
office network infrastructure and fetch the appropriate directions through a DReggie-like service/information
broker [8]. Once in the car, Bob reads and follows the instructions. However, he feels that the traffic is not
moving fast enough; he would like to get to his destination quicker. He instructs his palmtop, which can
now connect to the cars around him or passing him, to ask them whether they know about a faster route to

the mall. The palmtop contacts its neighbors and returns with an alternative map, which is longer but which
avoids the afternoon traffic jam that is building up on the current route. Bob therefore takes the different
roads and arrives at the mall’s entrance twenty minutes before the expected time. He decides to use the extra
time by checking out the local stores to see if he can get a good deal on some small gift for Jane. It is forty
minutes later and Jane finally arrives. After exchanging greetings, they decide to walk to a quiet place for
dinner. Bob asks his palmtop to suggest available restaurants and lets Jane pick one. She chooses the closest
Italian restaurant, which indicates it has an available table with no waiting period. Thus, they get seated
immediately and spend several hours while eating and chatting. In the meantime, Bob’s palmtop learns that
it will stay in the given location for a while and it starts to autonomously interact with other devices in its
vicinity. For instance, it could share traffic condition related information it might have cached while Bob
was driving over too the mall. It could also obtain and cache business cards of other people in the mall by
matching Bob’s profile with theirs. After the meeting with Jane, Bob walks down to the garage and drives
back to his apartment.

In this example, we can see that Bob’s palmtop is heavily utilizing the locally available resources as well
as changing its interaction mode based on the particular context to satisfy any implicit or explicit query that
Bob may pose. The palmtop utilizes the knowledge of Bob’s interests and preferences (i.e., facts and rules)
that were either explicitly provided by Bob or that it has learned during its life span. It uses this knowledge
to determine the appropriate actions it may have to execute to satisfy a given request. For example, the
palmtop is capable of deducing that when its current location is Bob’s office, it is more efficient to contact
the local DReggie-like broker. On the other hand, when it’s current location is Bob’s car and moreover the
car is moving on a highway, it deduces that a presence of any “local” information provider encompasses only
a very short duration, and thus does not waste its resources by caching unnecessary information. Finally,
while Bob is walking through the mall, the palmtop is able to cache the local advertisements and combines
them with Bob’s preferences in anticipation of his future movements.

In the following sections, we will illustrate the challenges posed by such ad-hoc environments, our pro-
posed solution and results from experiments. In section II we discuss other existing work in the area of
distributed data management in mobile networks. Section III presents the challenges and problems of dis-
tributed data management in ad-hoc networks. We present details of the framework that addresses these
problems in section IV. In section V, we describe systems level details of the implementation of this frame-
work. We present experimental results in section VI and conclude the paper in section VII.

II. BACKGROUND AND RELATED WORK

The problem of management of data in a distributed environment has been well researched, both in terms
of fixed infrastructure (e.g., the WWW) and infrastructure-based wireless networks (e.g., Mobile IP and
PCS). The work on distributed and federated databases is well-known in the community, so in this section
we present previous work related to data management in wireless networks.

Within a mobile database environment, cached data on mobile clients can take the form of materialized
views. In order to efficiently maintain such materialized views while taking into consideration discon-
nected operations, Lauzac and Chrysanthis [28] present a mechanism within the fixed network they call
“view holder”, that maintains versions of views required by a particular mobile host. They also propose an
extension to SQL that enables the programming of the view holders by the mobile clients based on their
preferences and capabilities and discuss it’s implementation. Kottkamp and Zukunft [26] have presented
optimization techniques of query processing in mobile database systems of queries that include location
information. They present a cost model for query optimization incorporating mobility specific factors like
energy and connectivity. They have also examined different localization strategies for mobile users. Using a
newly developed simulation model, they show that no single localization strategy performs acceptably under
all conditions and identify the critical factors for adapting a query processing subsystem to the employed

location management strategy. Bukhres et al [6] propose an enhancement to the infrastructure-based mobile
network model of Mobile Hosts (MHs) connected over a wireless virtual subnet and Mobile Support Sta-
tions (MSSs) connected to a wired static network. They recommend the addition of a mailbox, which serves
as a central repository for the MHs. This mailbox will be maintained by the cellular provider and will be
duplicated in all the MSSs so that the MH can access it both locally and remotely. Pitoura [31] presents a
replication schema based on augmenting the mobile database interface with operations with weaker consis-
tency guarantees. A implementation of the schema is presented by distinguishing copies into quasi and core;
protocols for enforcing the schema are introduced. The paper also evaluates the performance of the weak
consistency schema for various networking conditions. Demers et al [13] present the system architecture of
the Bayou System which is a platform of replicated, highly available, variable-consistency, mobile databases
on which to build collaborative applications. The emphasis is on supporting application -specific conflict
detection and resolution and on providing application-controlled inconsistency.

We note that in most of the papers discussed above, the wireless networks are supported by the fixed,
wireline infrastructure. Most of the query optimization techniques proposed in this body of work require the
support of wireline networks. Both [26] and [6] use the concept of a MH being in one of two modes, local
mode (within the home network) or nomadic mode (outside the home network).

Our work, on the other hand, assumes no support for MHs from the fixed infrastructure. In fact, our focus
is on networks formed spontaneously by MHs as and when required. These networks may be formed either
with other MHs or with fixed nodes via a MSS. Querying and processing data in such ad-hoc networks is
not only useful but also required. When the MH requires instantaneous information (e.g. traffic updates or
bad weather warnings), it may be more easily accessible from other “local” MHs than a fixed node. In our
work, a mobile device is always is nomadic mode, as defined by [26] and [6]. This implies that the necessity
of maintaining duplicate location information no longer exists.

We now present other relevant work in data access in mobile systems not directly related to our work.
Mazumdar and Chrysanthis [30] present a system called PRO-MOTION that helps achieve consistency in
mobile databases through the use of localization. Guy et al [19] discuss an optimistically replicated file
system designed for use in mobile computers. The file system, called Rumor, uses a peer model that al-
lows opportunistic update propagation among any sites replicating files. This work describes the design and
implementation of the Rumor file system, and feasibility of using peer optimistic replication to support mo-
bile computing. Holliday et al [22] present the notion of a distributed database made up entirely of mobile
components. To handle frequent disconnections, authors have developed a disconnection and reconnection
procedure to allow normal processing on the connected components. This paper discusses a protocol based
on epidemic communication to support such a system while ensuring one-copy serializability. Holliday
et al [21] have also investigated an epidemic update protocol that guarantees consistency and serializabil-
ity in spite of a write-anywhere capability and conduct simulation experiments to evaluate this protocol.
They present experimental results supporting this approach as an alternative to eager update protocols for
a distributed database environment where serializability is needed. Loke and Zaslavsky [29] have describe
two ideas for mobile agent based distributed workflow enactment: an algebra of agent itineraries and its
correspondence to workflow specifications, and a mobile agent control center for managing agents enact-
ing workflows. Acharya et al [1] present a broadcast-based mechanism for disseminating information in a
wireless environment. To improve performance for non-uniformly accessed data, and to efficiently utilize
the available bandwidth, the central idea is that servers are repeatedly broadcasting data to multiple clients
at various frequencies. The authors superimpose multiple disks of different sizes and speeds to create an
arbitrarily fine-grained memory hierarchy, and study client cache management policies to maximize perfor-
mance. Infostations [16] is a system concept proposed to support “many time, many where” wireless data
services including voice mail. It allows mobile terminals to communicate to Infostations with variable data
transmission rate to obtain the optimized throughput. The main idea is to use efficient caching techniques

to hoard as much data as possible when connected to services within an island of high bandwidth coverage,
and use the cached information when unable to contact the services directly.

III. CHALLENGES OF DATA MANAGEMENT IN AD-HOC ENVIRONMENTS

If the entities in the ad-hoc environment are treated as information repositories, we can describe this
model as a type of mobile distributed databases, albeit a far more complex one than the conventional client-
proxy-server model. We can illustrate this by classifying our environment in terms of four orthogonal axes,
i.e., autonomy, distribution, heterogeneity, and mobility ([32], [14]). The system is highly autonomous since
there is no centralized control on the individual databases that clients maintain. It is also heterogeneous; we
only assume that entities can “speak” to each other in some neutral format. The system is clearly distributed
– parts of data reside on different computers, and there is some replication as entities cache data/metadata.
However, this is not just a situation with replicated data; a large degree of mobility is ipso facto inherent
to the system. The important difference between our scenario and the ones in traditional mobile distributed
databases therefore lies in the fact that our model further relaxes the requirement that some nodes must be
fixed in a network. Instead, in the ad-hoc environment every entity can change its location and no fixed set of
entities is “always” accessible. Note that this is distinct from disconnection management that infrastructure
based systems deal with. In those systems, disconnections of mobile devices from the network are viewed
as temporary events and when reconnected, any ongoing transactions between the mobile and the server
will simply continue from where they left off before the disconnection or be rolled back. Thus, in addition
to various issues of traditional distributed databases, the ad-hoc environment imposes the following new
challenges.

A. Data sources available vary with location and time.

As entities move, their neighborhood changes dynamically. Hence, depending on the specific location
and time a particular query is given, the originator may obtain different answers or none at all. For example,
when Bob’s palmtop in the car asks its neighborhood for an alternative route, it obtains most likely a different
answer from a passing school bus than from a traffic light. Moreover, the originating entity cannot depend
on a global catalog that would be able to route its query to the proper location. The only information
always guaranteed to an entity is that residing on it. There is no guarantee that the device will be able to
access information that resides on neighboring devices under high mobility conditions. This is due to the
fact that current wireless networking technologies cannot support stable connections under such conditions.
However, each entity can at least describe and advertise its capabilities (i.e., data sources and particular data
instances it knows about) to its neighbors [9], [10], [18]. Therefore, to allow each entity to continue to
interact with others in a dynamically changing environment, each device should have the option not only to
store the necessary metadata information about its own capabilities, but also cache the metadata (and perhaps
data) obtained from neighbors in its current vicinity. Moreover, some entities may decide to open their local
catalog to the public to allow other entities in their neighborhood to utilize the cataloged information.

B. The query may be explicit or implicit.

In our framework, all entities should be capable of posing both explicit and implicit queries whenever
desired. However, for pervasive systems to succeed in general, much of the interaction between the devices
need to happen in the background. This implies that some interaction occurs without an explicit human
intervention [7]. The ad-hoc environment, therefore, requires that some entities are able to accept queries
from humans and propagate them in the ad-hoc network. Other entities in the environment are required to
have access to individual rule-based profiles, which determine the future actions of these entities. This, for
example, allows a user to ask her handheld device for the closest Indian restaurant and get answers which the
device had obtained and cached, when it passed by other devices, because the user’s profile indicated that

she prefers Indian food. In addition, this allows the handheld device to inform its user about the presence of
a police officer it has learned of, anytime the user is speeding on a highway.

C. Since information sources are not cataloged a priori, schema translations cannot be done beforehand.

Some entities in the ad-hoc environment may have a limited capability, which prohibit them from exe-
cuting a resource-expensive schema translation. Moreover, some entities may not even desire to perform
reasoning or otherwise interact with information they do not understand in the first place. They may be sat-
isfied with the results of interaction with only those information providers whose schema they completely
understand. In some other cases, an entity may store the information that it may not understand at a given
point in time in the hope that a translator becomes available in the future, and the information then becomes
useful. Finally, it may also be the case that an entity attempts to immediately discover a translator and ex-
ecute the translation as soon as possible in order to complete the ongoing task. In our implementation we
consider three cases. First, an entity utilizes only such information and interacts with only such information
providers that it completely understands. Second, the entity stores additional information that it may not
understand at a given point in time in the hope that a translator will become available in the future, and the
information will then become useful. Lastly, the entity tries to find a translator, and executes the process of
translation as soon as possible, to accomplish the current task, during which the unrecognized information
was obtained.

D. Cooperation amongst information sources cannot be guaranteed.

Clearly the issues of privacy and trust will be very important for an ad-hoc environment, where random
entities interact in random transactions. In particular, there are three main issues that must be considered.
First, there may be an entity that has reliable information but refuses to make it available to others. Second,
there may exist an entity in the ad-hoc environment that is willing to share information; however that infor-
mation may be unreliable. Lastly, when an entity makes information available to another entity, questions
regarding protection of future changes and sharing of that information arise. To answer the need for pri-
vacy and security of data and information providers, one may suggest that a solution to this problem is the
introduction of a Public Key Infrastructure (PKI), wherein each entity is assigned an x509.3 certificate and
trust relationships [7] are established. This could allow the entity to sign all of its messages. If the receiving
entity has the public key associated with the sender, then it will also allow the receiver to verify the validity
of the message. However, in an ad-hoc environment, the Certificate Authority may be unreachable to verify
that a certificate is correct. This brings into question the validity of the certificate itself. Of course, to solve
this problem we may choose to impose a limitation on the framework that only one Certificate Authority is
required for the entire environment. Even so, the usage of the Certificate Revocation List makes the current
PKI insufficient for ad-hoc environments. Hence, any variations of PKI, such as XMLSig [15], will also be
inapplicable for the similar reasons. Thus, the ad-hoc environment requires a more flexible security infras-
tructure that does not necessarily rely on a third party to verify both authentication and authorization of each
entity in the environment. For our initial framework design we have, thus, not addressed the issue.

IV. DESIGN OF THE PROPOSED FRAMEWORK

Our framework is designed to handle serendipitous querying and data management efficiently and scal-
ably in mobile ad-hoc environments. The framework consists of multiple instances of two main components,
the Information Manager that we call InforMa and the information provider. Figure 1 shows an overview
of the framework and the interaction between various entities in the framework. We describe InforMa in
greater detail in section IV-A and the information provider ontology in section IV-B.

We believe that a framework such as ours should be able to satisfy any query, regardless of its complex-
ity. However, we also argue that in a highly ad-hoc environment, irrespective of device capabilities (e.g.,

� ������� �
	��� ���
��� � � � 	��������

� ������� �
	��� ���
��� ���� � � ���

� ��������� 	

� ������� � 	��� ���
�!� ���" � � �"	����
� ��#���	���$ �
� � ��	���	%��	

&'��(��� ��)
� ������� � 	��� ���

*!+ (� ��������,
- � ��� � � ��	�$ �

.'# � �
- � ��� � � ��	�$ �

/�0�1 - 2�2�3
- � ��� � � ��	�$ �

Fig. 1. Entity Details and Interaction in the Proposed Framework

memory size, computing power, battery life), it may be inefficient for devices to pose complex queries since
the environment changes rapidly. Instead, the devices in our framework are expected to pose simple queries
only. By simple queries, we mean that these queries can be answered either by searching through a set of
facts or by making simple decisions. For example, a query presented to a logical database could be answered
by evaluating ground truths and their derivatives only. Similarly, in a RDBMS, queries could be answered
by performing simple operations on tables containing the information as facts. On the other hand complex
queries are those that can only be answered by using, for instance, a reasoning engine based on a logic pro-
gramming language such as Prolog or a RDBMS that performs complex join operations on multiple tables
in order to answer the query. Answers to complex queries can only be obtained by analyzing relationships,
like inheritance and transitivity, between many facts.

A. InforMa Design

Every entity in our framework is autonomous, i.e., its actions can be independent of those of its human
user/owner, as far as interacting with other devices is concerned. Every entity is able to initiate an action
solely based on the current contextual information and some rules. These rules, we assume, were either
specified a priori or were learned during the entity’s execution life. Finally, since all entities in ad-hoc
environments are treated equally from the networking perspective, we carry this notion of equality to the
level of entity functionality. Therefore, in the framework each entity possesses the following characteristics:
4 Every entity manages a subset of the world knowledge repository that it can provide to itself and possibly
to others. Naturally, this subset may be inconsistent with the knowledge of other entities and may even be
empty.
4 Every entity implements InforMa, which is a local metadata repository that includes schema definitions
for locally available information providers and particular facts such as queries and answers for local and non-
local information providers. Therefore, InforMa stores advertised schema for local information providers
and also for those that it believes the entity can reach by communicating with other entities in its vicinity. In
addition, InforMa stores facts that were produced locally or that were obtained from others. For example,
when the entity has a local weather information provider and it furthermore knows that it is raining, InforMa
includes metadata to reflect that knowledge. The schema for information providers is represented in the

DARPA Agent Markup Language (DAML) [20]. In addition, instances of information such as queries
and answers, is also described in DAML. The DAML project is an effort spearheaded by DARPA and the
W3C focused on standardizing DAML as the language to use to describe information available on any data
source, in order that the information may be understood and used by any class of computers, without human
intervention. DAML is being developed as an extension to the Resource Description Framework (RDF) [27]
and the Extensible Markup Language (XML) [5]. XML is a structured language that allows information to
be more accurately described using tags, thus removing ambiguities in the information. However, XML has
a limited capability to describe the relationships (schemas or ontologies) with respect to objects. The use of
ontologies provides a very powerful way to describe objects and their relationships to other objects. RDF
is a data model that is capable of describing relationships between objects. Every RDF object is either a
class or a property of a class. This objected-oriented model together with the descriptions of relationships
allows for logical inferring of other relationships that may not be explicitly described. DAML is designed to
improve the descriptive capabilities of RDF. For example, DAML introduces the concept of Restriction on
a property. This allows specification of constraints on cardinalities of the values of an object. DAML also
uses strong data typing, described by XML-Schema [17], to allow object values to be restricted to a specific
data type.
Based on the model in which InforMa interacts with other entities in its vicinity, we can differentiate among
the following four categories of InforMa instances:
1. In the most simple form, InforMa maintains required information only about information providers

present locally on the device. Every entity in the ad-hoc environment is required to implement this version
of InforMa. We believe that this version would be most suitable for resource-limited devices. In addition,
this particular form of InforMa is most suitable for entities whose environment changes rapidly. This is the
case of Bob’s palmtop when Bob is driving and asks it for information about a quicker route to the mall.
There is no need for the palmtop to remember information disseminated by other entities in its vicinity, as
most of it becomes invalid within a short period of time. Instead, the palmtop tries to contact its current
neighbors only whenever necessary.
In this case, InforMa stores the advertisements for its local information providers only. Thus, any time a
query is posed, InforMa is contacted to provide an answer. InforMa first attempts to determine whether
any local information provider is capable of answering the query and contact it. Otherwise, InforMa tries
to locate some other public InforMa and requests its assistance. Finally, when all previous attempts fail,
InforMa attempts to contact all of its neighbors to ask them for their help. However, once the query is
satisfied, InforMa may choose to forget any information obtained from the other entities, in order to save
memory.
2. As an extension to the first version, InforMa may decide to temporarily store the foreign information

in the hope that a future query may be answered by reusing it. In this category, knowledge available to
InforMa still remains restricted to the entity. For example, when Bob asks his palmtop for local restaurant
information, the palmtop can assume that a related query may be posed in near future and thus decide to
store the list of available restaurants, their menus and waiting time information.
3. Typically, for more resource-rich devices, InforMa may decide not only to store information related to

local information providers and the ones obtained while answering local queries, but also accept information
that was disseminated by other entities in its vicinity. Therefore, InforMa is now more capable and efficient
in satisfying queries that originate from its home entity. So, for example, while Bob is walking in the mall,
his palmtop may receive various advertisements from the stores Bob passes by and store them to answer
future queries.
4. Finally, the most capable InforMa instance makes its knowledge available to all entities in its vicinity

by accepting their query requests and by actively advertising its knowledge. This is the case when an entity
concludes that it will be present at some location for a relatively long duration of time, as is the case of

Bob’s palmtop while he and Jane are having a dinner. While in the restaurant, the palmtop may decide to
share its metadata knowledge about available information repositories with other entities in its vicinity.

The above design of InforMa allows our framework to provide peer-peer interaction among various types
of devices regardless of their information and resource limitations.

B. Information Providers

In this section we describe the other component of our framework – the information provider. We discuss
what it means for an entity to be an information provider and describe the interaction of an information with
InforMa.

An entity in our framework is an information provider when it possesses the capability to accept a query
and generate an appropriate response based on the body of knowledge under its control. The body of
knowledge under the information provider’s control consists mainly of facts. These facts could be associated
with practically anything in the world, for example the location of gasoline service stations in a certain
area and price of gasoline at each station. We can now see that any entity in our framework can provide
information about more than one class of knowledge. Thus, for example, an entity might be both a “gas
station information provider” and a “weather information provider”. We note that it is not required for
every entity in our framework to be an information provider. Some devices may be too resource-limited or
otherwise restricted to be able to store or share any information at all. These devices simply use information
advertised by peers in their environment.

Information providers register themselves with the local instance of InforMa by default. Thus, every In-
forMa can now share metadata about information providers with InforMa’s. Information providers may also
register themselves with remote InforMa’s or the latter can learn and cache metadata about these providers
from peer InforMa’s. In this manner, both information about information providers and the information
under the control of every information provider is disseminated to all parts of the ad-hoc environment.
We believe that this dissemination mechanism allows for the greatest possible flexibility in managing and
sharing the information as fast as possible.

The schema for every information provider must be understood by other entities in the environment. If
this is not true, then the information is useless. It is theoretically possible that the schema of all information
providers is described in a different language. In this worst-case scenario, the existence of a schema transla-
tor becomes paramount. We can easily see that this is not a scalable solution and that the translator quickly
becomes a bottleneck, preventing smooth exchange of information. We have, therefore, decided to use a
common language to describe the schema for any information provider and chosen DAML for this purpose.
We have described the schema for information providers and its management in section V-B.

V. IMPLEMENTATION DETAILS

We have implemented a prototype of the framework on a Bluetooth ad-hoc network, using the Bluetooth
protocol stack developed by Axis Communications Inc. [23] and Bluetooth modules developed by Ericsson.
We envision that future prototypes of our framework will be implemented on other ad-hoc network tech-
nologies as well. The current versions of the Bluetooth specifications and hardware impose some restrictions
that smooth prevent transmission of large amounts data under certain conditions. These restrictions may be
eliminated in future versions of the hardware and the specifications. In this section we briefly discuss these
restrictions and our solutions to them. We also discuss the application level details including the information
provider ontology and interaction between various components of the framework.

A. Network Level Details

The design of InforMa, as described above, requires that every device be capable of broadcasting mes-
sages to other devices in the network. One of the primary limitations of Bluetooth is the lack of a broadcast

mechanism to transmit arbitrary messages. Broadcasting in Bluetooth is restricted to messages used for
device discovery. In order to exchange application level messages, a device must first establish a link level
connection with its peers. In addition, every communicating device must either be a master or a slave. Thus,
simultaneous link level connections cannot be established between a pair of devices.

To solve the problem described above, we have used the connect-transmit-disconnect procedure. Thus,
for example, if InforMa on device A needs to query its peer on device B, then device A establishes a link
layer connection, transmits the required data for which it receives an acknowledgment and immediately
disconnects. Once InforMa on device B is ready with the response, then device B waits for a very small
period of time (to avoid race conditions) before following the same procedure to transmit the response.
Although this solution might be inefficient if the devices are relatively immobile, it is very efficient under
conditions of high mobility.

Another issue relevant to our design is the link level Maximum Transmission Unit (MTU) size specified by
Bluetooth. This value is set to 672 bytes by default due to a limited buffer size of 800 bytes on the Bluetooth
modules. Per Bluetooth specifications, this size allows two Baseband packets of the largest possible size (341
bytes) along with headers to be sent to the module simultaneously. However, this restriction on the MTU
implies that packets larger than 672 bytes must be segmented before they can be sent to the module. The Link
Layer Control and Adaptation Protocol (L2CAP) layer of the Bluetooth stack is responsible for segmentation
and reassembly of packets. However, per the specifications, it only ensures that packets between 341 and
672 bytes large are segmented into two Baseband packets. Packets larger than 672 bytes are thrown away
with an error message. The relevance of this issue to our design will become clearer when we describe the
application level details in the next section.

The obvious solution to this problem is to use a standard transport protocol like UDP to perform the
appropriate segmentation. However, the use of such standard transport protocols presupposes the existence
of a specific network protocol like IP. Now, in order to transmit application data using UDP/IP or TCP/IP
over Bluetooth is to establish a PPP connection between the devices. The PPP can only be used after a
link layer connection has been established between the two devices; in Bluetooth this can be done using
the RFCOMM protocol. Thus, the use of a standard transport protocol has introduced four extra layers
between the application and the Bluetooth stack. This leads to an obvious degradation in performance of the
application.

We solved the problem by using the Service Discovery Protocol (SDP) layer of the Bluetooth stack as
the transport protocol. The SDP layer is placed above the L2CAP layer in the stack. Within the SDP
layer, we have introduced a segmentation and reassembly procedure to ensure that large application-level
data packets are transmitted successfully across the Bluetooth connection [2]. The SDP in Bluetooth is a
simple protocol designed to enable devices in a Bluetooth network to query each other for services. Every
service and all attributes of the service are assigned a Universally Unique Identifier (UUID). The main
advantage of this granularity of description of services is that queries and responses are very small, thus
saving valuable bandwidth. The main disadvantage of SDP, from the point of view of InforMa, is that
no semantic information about services can be provided in queries and responses. Reasoning over service
related information is not possible. Thus, we have used SDP only for simple queries and responses, and to
act as the transport protocol for InforMa. Of course, SDP can be enhanced to perform matching based on
semantic information as described in [2]; however, we have opted to keep the service discovery lightweight.

B. Application Level Details

The most important component of the framework at the application level is the set of ontologies that
describe the various types of information providers. We focused our efforts on developing ontologies for
information providers that would be most useful for devices in moving vehicles (e.g., Bob’s palmtop in
our initial scenario). Common, well-known information providers useful to such devices are emergency

related (e.g., police, medical, and fire department vehicles/buildings), traffic and road condition related,
weather related and maintenance related (e.g., gas station, towing service etc.). For purposes of proving
our system, we have designed and implemented the ontology for gas station information providers. This
ontology is based on and very similar to the DAML-S ontology [11], which attempts to comprehensively
describe services for the WWW. DAML-S is an extension of the DARPA Agent Markup Language (DAML).

In order to allow our framework to satisfy any generic query, we have decided to adopt a simplified version
of DAML-S representation of processes, service models and particular information. Using the DAML-S
like description, we are able to match queries with information provider registration information as well
as with particular answer instances. A device can, therefore, describe itself by defining the appropriate
service models it implements, the process models that provide the information, and the required inputs to be
provided.

All messages that are exchanged among InforMa instances and among information providers/consumers
are based on the Service ontology. This ontology defines the core of all messages by defining the rela-
tionships among the inputs, outputs and process model the service is supporting. The advertisement and
registration ontologies then further extend the core by adding the necessary descriptions of entities that
provide the described information. Finally, the query and response ontologies extend the core to identify
requesters as well as the responders. For example, the Gas Station ontology, which is a particular instance
of process model, defines that its input is a location, and output is the location of closest gas station and the
particular prices for each gas grade.

InforMa uses all the information encoded in the DAML metadata to find the appropriate answer or at least
a information provider that could potentially answer the query. In our framework, each InforMa first tries
to find a valid non-expired answer. If it fails to find some answer, it tries to match for local information
provider, a remote information provider, or at least some other InforMa that could have a richer cache. The
matching is then done by finding the appropriate process model, and validating all inputs and outputs when
necessary. We have implemented the current framework using graph and search techniques; however, it is
possible more capable InforMa entities may also utilize more powerful reasoning techniques using Prolog
engines.

In figure 2 below, we show an example of the Gas Station ontology and in figure 3, an example of the
registration message sent by an information provider of gas station information. Figure 4 shows an example
both a query and the corresponding response.

In our implementation, the gas station information provider, on start up, first sends a registration request
to the local InforMa, thus registering itself. Every information provider is identified by a locally unique
identifier. InforMa adds this information provider to its list of local and remote information providers.
InforMa now knows to route any query related to gas station information to this provider, using the identifier
information. On receiving a query, the provider attempts to answer it and sends back its response to the local
InforMa which routes it back to the source. Renewal of registration information at a remote InforMa is the
sole responsibility of the information provider. InforMa will simply remove the information related to the
provider from its table, once the provider’s lifetime has expired.

Every InforMa has a limited cache in which it stores registration information, queries and answers for a
short period of time. Now, depending on its mode of operation, the cache size, the arrival rates of registration
information and queries, and the lifetime of the registration information, InforMa may or may not be able
to answer a certain query. In order to increase the chances of responding positively to a certain query and
also to decrease response time, InforMa caches responses to previous queries. In addition, the frequency of
queries directed to particular information providers determines whether or not information about them will
be retained in InforMa’s cache or not. Thus, for example, if the gas station information provider registers
itself with some remote InforMa, but receives no queries, then that InforMa may replace it with a more heav-
ily used information provider, even though the former’s lifetime may not have expired. We have established

<?xml version='1.0' encoding='ISO-8859-1'?>
<rdf:RDF
 xmlns:rdf= "&rdf;#"
 xmlns:rdfs= "&rdfs;#"
 xmlns:daml= "&daml;#"
 xmlns:service= "&service;#"
 xmlns:process= "&process;#"
 xmlns:place= "&place;#"
 xmlns:mogatu= "&m;#"
 xmlns= "&gas;#">

 <rdfs:Class rdf:ID="Gas">
 <rdfs:subClassOf rdf:resource="&m;#ProcessModel" />
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#sourceLocation"/>
 <daml:cardinality>1</daml:cardinality>
 </daml:Restriction>
 </rdfs:subClassOf>
 </rdfs:Class>

 <daml:Property rdf:ID="sourceLocation">
 <rdfs:subPropertyOf rdf:resource="&m;#inputs"/>
 <daml:domain rdf:resource="Gas" />
 <daml:range rdf:resource="&place;#Place"/>
 </daml:Property>

 <daml:Property rdf:ID="closestLocation">
 <rdfs:subPropertyOf rdf:resource="&m;#outputs"/>
 <daml:domain rdf:resource="Gas" />
 <daml:range rdf:resource="&place;#Place"/>
 </daml:Property>

 <daml:Property rdf:ID="gasInformation">
 <rdfs:subPropertyOf rdf:resource="&m;#outputs"/>
 <daml:domain rdf:resource="Gas" />
 <daml:range rdf:resource="GasInformation" />
 </daml:Property>

 <rdfs:Class rdf:ID="GasInformation">
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#price"/>
 <daml:cardinality>1</daml:cardinality>
 </daml:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#grade"/>
 <daml:cardinality>1</daml:cardinality>
 </daml:Restriction>
 </rdfs:subClassOf>
 </rdfs:Class>

 <daml:Property rdf:ID="price">
 <daml:domain rdf:resource="GasInformation" />
 </daml:Property>

 <daml:Property rdf:ID="grade">
 <daml:domain rdf:resource="GasInformation" />
 <daml:range rdf:resource="GasGrade" />
 </daml:Property>

 <daml:Class rdf:ID="GasGrade">
 <daml:oneOf rdf:parseType="daml:collection">
 <GasGrade rdf:ID="LowGrain" />
 <GasGrade rdf:ID="MediumGrain" />
 <GasGrade rdf:ID="PremiumGrain" />
 <GasGrade rdf:ID="87oct" />
 <GasGrade rdf:ID="89oct" />
 <GasGrade rdf:ID="91oct" />
 <GasGrade rdf:ID="93oct" />
 <GasGrade rdf:ID="95oct" />
 <GasGrade rdf:ID="Diesel" />
 </daml:oneOf>
 </daml:Class>

</rdf:RDF>

Fig. 2. Gas Station Ontology

a priority-based scheme to allow InforMa to determine what information to retain and what to discard. In
this scheme, local information providers have the highest priority, followed by remote information providers
and finally answers to previous queries. This forms the basis for the cache-replacement policy in InforMa.

In addition to supporting registration of information providers, our framework also supports the concept
of solicitation of information about information providers. Thus, InforMa on a device sends out solicitation
requests to its peers, periodically. If a new information provider is discovered in this process, InforMa
caches the information if it can. The Bluetooth device addresses of the 1-hop neighbors are available to
InforMa due to the neighbor discovery procedure executed by every device on start up. One important point
to emphasize here is that solicitation of information providers from remote InforMa’s is restricted to 1-hop
neighbors. This prevents unnecessary flooding of this information across the network.

It is possible for a query to travel multiple hops in our framework. Every InforMa knows either the final
destination of a particular message or a route to it. It obtains this information as follows: if a query or

<?xml version='1.0' encoding='ISO-8859-1'?>
<rdf:RDF
 xmlns:rdf= "&rdf;#"
 xmlns:rdfs= "&rdfs;#"
 xmlns:daml= "&daml;#"
 xmlns:service= "&service;#"
 xmlns:process= "&process;#"
 xmlns:place= "&place;#"
 xmlns:mogatu= "&m;#"
 xmlns:gas= "&gas;#">

 <m:ServiceRegistration>
 <m:presents>
 <m:Process>
 <m:processID>4</m:processID>
 <m:InforMaID>0:0 </m:InforMaID>
 <m:processName>
 Gas Station Locator
 </m:processName>
 <m:lifetime>-1</m:lifetime>
 <m:type>provider</m:type>
 </m:Process>
 </m:presents>
 <m:implements>
 <m:ProcessModel rdf:about="gas#Gas" />
 </m:implements>
 <m:inputs>
 <daml:Bag>
 <place:Place />
 </daml:Bag>
 </m:inputs>
 </m:ServiceRegistration>
</rdf:RDF>
 Fig. 3. Gas Station Location Registration Message

registration arrives on the Bluetooth interface on the local device from a remote device, InforMa stores the
address of the remote device in its routing table. If, on the other hand, it receives a forwarded query or
registration request from a remote device, it notes in its routing table that the source of the message can be
reached through the forwarder, unless it already knows how to reach the source. To facilitate this routing
mechanism, we ensure that every message contains the Bluetooth device address of the source.

VI. EXPERIMENTS

In this section we describe the experiments conducted to verify the correct functioning of the framework
and also to quantify the performance of InforMa under certain conditions. The variables in the performance
related experiments include InforMa cache size, arrival rate of queries, arrival rate of registration information
and the number of hops that a query must traverse before it can be answered.

A. Experiment 1

In this experiment, we have attempted to measure both the performance of InforMa in terms of processing
time and the overall Round Trip Time (RTT) for the query/match/response procedures to execute. This
experiment was conducted on two Bluetooth-enabled laptops. The Bluetooth stack is set up on systems and

<?xml version='1.0' encoding='ISO-8859-1'?>
<rdf:RDF
 xmlns:rdf= "&rdf;#"
 xmlns:rdfs= "&rdfs;#"
 xmlns:daml= "&daml;#"
 xmlns:service= "&service;#"
 xmlns:process= "&process;#"
 xmlns:place= "&place;#"
 xmlns:mogatu= "&m;#"
 xmlns:gas= "&gas;#">

 <m:ServiceRequest rdf:ID="55">
 <m:requestedBy>
 <m:Entity>
 <m:processID>3</m:processID>
 <m:InforMaID>0:.0.2</m:InforMaID>
 </m:Entity>
 </m:requestedBy>
 <m:implements>
 <m:ProcessModel rdf:about="&gas;#Gas" />
 </m:implements>
 <m:inputs>
 <place:Place>
 <place:ZIP>21250</place:ZIP>
 </place:Place>
 </m:inputs>
 </m:ServiceRequest>
</rdf:RDF>

<?xml version='1.0' encoding='ISO-8859-1'?>
<rdf:RDF
 xmlns:rdf= "&rdf;#"
 xmlns:rdfs= "&rdfs;#"
 xmlns:daml= "&daml;#"
 xmlns:service= "&service;#"
 xmlns:process= "&process;#"
 xmlns:place= "&place;#"
 xmlns:mogatu= "&m;#"
 xmlns:gas= "&gas;#">

 <m:ServiceResponse>
 <m:implements>
 <m:ProcessModel rdf:about="&gas;#Gas" />
 </m:implements>
 <m:inResponseTo>
 <m:ServiceRequest rdf:ID="55">
 <m:requestedBy>
 <m:Entity>
 <m:processID>3</m:processID>
 <m:InforMaID>0:0.2</m:InforMaID>
 </m:Entity>
 </m:requestedBy>
 </m:ServiceRequest>
 </m:inResponseTo>
 <m:inputs>
 <place:Place>
 <place:ZIP>21250</place:ZIP>
 </place:Place>
 </m:inputs>
 <m:outputs>
 <daml:Bag>
 <place:Place rdf:ID="UMBC">
 <place:Street1>1000 Hilltop Circle</place:Street1>
 <place:Longitude>1</place:Longitude>
 <place:Latitude>1</place:Latitude>
 <place:ZIP>21250</place:ZIP>
 </place:Place>
 <gas:Price>1.29</gas:Price>
 </daml:Bag>
 </m:outputs>
 </m:ServiceResponse>
</rdf:RDF>

Fig. 4. Gas Station Location Query and Response Messages

the InforMa process is also started. We assume that 10 information providers have already registered with
InforMa, one of which is the “gas station information provider”. The cache size in InforMa is set to 64
entries. A client program one of the devices queries the other for the gas station information provider via
the Bluetooth module. The InforMa on the “server” receives the query, parses it, determines if it has the
answer and if not passes on the query to the “gas station information provider”. The provider parses the
query, matches it with its own knowledge and returns the response to InforMa, which returns this via its
Bluetooth module to the client. We repeated the query/match/response sequence 1000 times and obtained
average values for the RTT as 4.56 s and 0.003 s for InforMa processing time.

B. Experiment 2

In this experiment, we further attempt to quantify the performance of InforMa by varying the cache size
from 2 entries to 64 entries. The cache is always assumed to be full. This implies that every time new

1 2 4 8 16 32 64
0

0.5

1

1.5

2

2.5

x 10
4

R
es

po
ns

e
Ti

m
e

(m
ic

ro
se

co
nd

s)

Cache Size (# of entries)

Fig. 5. Response Time of InforMa with varying Cache Size (boxplot)

1 2 4 8 16 32 64
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Cache Size (# of entries)

R
es

po
ns

e
T

im
e

(m
ic

ro
se

co
nd

s)

Fig. 6. Response Time of InforMa with varying Cache Size (Average Time)

registration information arrives at InforMa it must choose a victim provider to replace in the cache. Coupled
with periodic or random arrivals of queries, this scenario would lead to a increase in InforMa’s response
time despite the increase in cache size. As in the previous experiment, the query from the client is for the
“gas station information provider”. The rest of the query/response procedure is the same as that described
above. The main idea behind this experiment is to determine the effect of cache size on InforMa’s processing
time under high load conditions – periodic registrations coupled with queries for information. We repeated
the query/match/response sequence 1000 times. Figure 5 shows a boxplot of the cache size versus response
time. Figure 6 shows a plot of the average response time of InforMa. As expected, response time of InforMa
increases with increase in cache size. However, it is clear from both graphs that this increase is sub-linear.
Although the cache size has increased 64-fold, the response time has only increased about 9 times. We

should also note that the unit of time in this case is 5 s. Even for the largest chosen cache size (64 entries),
we have observed that the response time is negligible compared to the overall RTT.

C. Experiment 3

In addition to the above experiments, we have also evaluated an existential case when multiple devices
need to cooperate in order to satisfy a particular query. In this experiment, the owner of one device in the ad-
hoc environment instructs it to find the closest gas station based on the current location. We have simulated
this request by initiating the client program, which acts as a user interface, to send a DAML encoded query
to its local InforMa (located on-device). Once InforMa receives the request, it parses the DAML message to
convert it into an internally understandable object. It matches the information against the DAML metadata
for all information providers and answers it has cached. For this particular experiment, the cache is filled
with 10 registered information providers, and one remote provider matches the query. InforMa determines
the best route to the remote provider’s home device, and forwards the request over Bluetooth to it. Once the
remote InforMa receives the query, it repeats the matching process to determine that it has a local provider
that can satisfy the request. It contacts the GasLocator provider and sends it the request. The GasLocator
generates an appropriate answer, and sends it back to its local InforMa after reversing the sender/location
addresses. Its local InforMa then forwards the answer to the final destination, which in turn forwards the
answer to the client program to display it.

VII. CONCLUSIONS AND FUTURE WORK

In this work we have presented and discussed the need for a robust framework that enables data ex-
change and querying in mobile ad-hoc environments. Existing mobile information access systems require
the support of wired infrastructure, thus restricting the flexibility of information exchange among peer mo-
bile devices. We have described in detail the additional challenges to the distributed database framework
that arise in the ad-hoc scenario. First, the availability of data sources varies with location and time. Sec-
ond, queries may be both user-explicit or implicit. Next, as information sources are not cataloged a priori,
schema translations cannot be done beforehand. Lastly, cooperation amongst information sources cannot be
guaranteed due to various security and privacy reasons. We have designed and implemented a framework
prototype that addresses these challenges and issues through the use of a standardized semantic language
to that helps mobile devices to share information. The primary component of our framework is InforMa –
a powerful information manager that allows applications to query and obtain responses from their dynami-
cally changing vicinity. We have conducted experiments to validate the correctness of our design and also
to evaluate the system, and particularly InforMa, in terms of response time.

In subsequent improved versions of our framework, we will incorporate other wireless communication
technologies like IEEE 802.11b. In addition, we will enhance InforMa matching capabilities via the use of
a Prolog-based reasoning engine. In this paper, the main focus has been on addressing the issues concerned
with querying and processing, which are similar to read-only mode operations in information access systems.
When devices other than the original providers are allowed to update the information, consistency and
coherence issues arise, which we also plan to address in future version of the framework. We also plan to
introduce modules to enable the design of transaction management systems in mobile ad-hoc environments.
The developed framework will thus serve a base for transaction management systems that support multiple
parties and involve parallel execution of multiple protocols, such as micropayments.

REFERENCES

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast Disks: Data Management for Asymmetric Communication
Environments. In Proc. of the ACM SIGMOD Conference, May 1995.

[2] Sasikanth Avancha, Anupam Joshi, and Timothy Finin. Enhancing the Bluetooth Service Discovery Protocol. Technical
report, August 2001. TR-CS-01-08.

[3] Harini Bharadvaj, A. Joshi, and Sansanee Auephanwiriyakyl. An Active Transcoding Proxy to Support Mobile Web Access.
In Proc. of the IEEE Symposium on Reliable Distributed Systems, October 1998.

[4] C. Bobineau, L. Bouganim, P. Pucheral, and P. Valduriez. PicoDBMS: Scaling down Database Techniques for the Smartcard.
In Proc. of the 26th International Conference on Very Large Databases, 2000.

[5] T. Bray, J. Paoli, and C. Sperberg-MacQueen. Extensible Markup Language. http://www.w3.org/TR/1998/
REC-xml19980210, 1998.

[6] O. Bukhres, S. Morton, P. Zhang, E. Vanderdijs, C. Crawley, J. Platt, and M. Mossman. A Proposed Mobile Architecture for
Distributed Database Environment. Technical report, Indiana University, Purdue University, 1997.

[7] Andrej Cedilnik, Lalana Kagal, Filip Perich, Jeff Undercoffer, and Anupam Joshi. A secure infrastructure for service discovery
and access in pervasive computing. Technical report, August 2001. TR-CS-01-12.

[8] Dipanjan Chakraborty, Filip Perich, Sasikanth Avancha, and Anupam Joshi. DReggie: Semantic Service Discovery for M-
Commerce Applications. In Workshop on Reliable and Secure Applications in Mobile Environment, 687:9�; Symposium on
Reliable Distributed Systems, October 2001.

[9] Harry Chen, Dipanjan Chakraborty, Liang Xu, Anupam Joshi, and Tim Finin. Service Discovery in the Future Electronic
Markets. In Proc. of the AAAI 2000 Workshop on Knowledge Based Electronic Markets, 2000.

[10] Harry Chen, Anupam Joshi, and Tim Finin. Dynamic Service Discovery for Mobile Computing: Intelligent Agents meet Jini
in the Aether. Baltzer Science Journal on Cluster Computing, 4(4), October 2001.

[11] The DAML Services Coalition. DAML-S: Semantic markup for web services. http://www.daml.org/services/.
[12] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz. An Architecture for a Secure Service Discovery Service. In Fifth

Annual International Conference on Mobile Computing and Networks (MobiCom ’99), pages 24 – 35, Seattle, 1999.
[13] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and B. Welch. The Bayou Architecture: Support for Data Sharing

among Mobile Users. In Proc. IEEE Workshop on Mobile Computing Systems & Applications, 1994.
[14] M. Dunham and A. Helal. Mobile computing and databases: Anything new? ACM SIGMOD Record, 24(4), December 1995.
[15] D. Eastlake, J. Reagle, and ed. D. Solo. XML-Signature Syntax and Processing. http://www.w3.org/TR/2001/

PR-xmldsig-core-20010820/, 2001.
[16] D. Goodman, J. Borras, N. Mandayam, and R.Yates. INFOSTATIONS : A New System Model for Data and Messaging

Services. In Proc. of IEEE VTC’97, volume 2, pages 969–973, 1997.
[17] XML Schema Working Group. XML Schema. http://www.w3c.org/XML/Schema, 2000.
[18] E. Guttman, C. Perkins, J. Veizades, and M. Day. RFC 2068: Service Location Protocol, version 2, 1999. ftp://ftp.isi.edu/in-

notes/rfc2608.txt.
[19] R. Guy, P. Reiher, D. Ratner, M. Gunter, W. Ma, and G. Popek. Rumor: Mobile Data Access Through Optimistic Peer-to-Peer

Replication. In ER Workshops, pages 254–265, 1998.
[20] J. Hendler. DARPA Agent Markup Language. http://www.daml.org, 2000.
[21] J. Holliday, D. Agarwal, and A. Abbadi. Database Replication Using Epidemic Communication. In Euro-Par, 2000.
[22] J. Holliday, D. Agarwal, and A. Abbadi. Exploiting Planned Disconnections in Mobile Environments. In RIDE, 2000.
[23] Axis Communications Inc. OpenBT: An open source bluetooth stack for Linux, 2001. http://sourceforge.net/projects/openbt/.
[24] R. John. UPnP, Jini and Salutaion - A look at some popular coordination framework for future network devices. Technical

report, California Software Labs, 1999.
[25] Anupam Joshi. On proxy agents, mobility and web access. ACM/Baltzer Journal of Mobile Networks and Applications, 2000.
[26] H. Kottkamp and O. Zukunft. Location-Aware Query Processing in Mobile Database Systems. In Proc. of the ACM Symposium

on Applied Computing, Feb. 1998.
[27] O. Lassila and R. Swick. Resource Description Framework. http://www.w3.org/TR/1999/REC/

rdf-syntax-19990222, 1999.
[28] S. Lauzac and P. Chrysanthis. Utilizing Versions of Views within a Mobile Environment. In Proc. of the Ninth Int’l Workshop

on Database and Expert Systems and Applications, pages 408–413, Aug. 1998.
[29] S. Loke and A. Zaslavsky. Towards Distributed Workflow Enactment with Itineraries and Mobile Agent Management. In

E-Commerce Agents, pages 283–294, 2001.
[30] S. Mazumdar and P. Chrysanthis. Achieving Consistency in Mobile Databases through Localization in PRO-MOTION. In

Proc. of the 2nd DEXA Int’l Workshop on Mobility in Databases and Distributed Systems, pages 82–89, Florence, Italy,
September 1999.

[31] E. Pitoura. A Replication Schema to Support Weak Connectivity in Mobile Information Systems. In Proc. of the 7th Interna-
tional Conference on Database and Expert Systems Applications, 1996.

[32] M. Satyaranayanan. Digest of proceedings: Workshop on mobile computing systems and applications - december 1994.
Bulletin of the Technical Committee on Operating Systems and Application Environments, 7(1):5 – 12, December 1995.

[33] The Bluetooth SIG. The Bluetooth Specifications. http://www.bluetooth.com/.
[34] Carl Tait, Hui Lei, Swarup Acharya, and Henry Chang. Intelligent file hoarding for mobile computers. In Proc. of the First

ACM International Conference on Mobile Computing and Networking - MobiCom’95, 1995.

