

TOWSON UNIVERSITY

OFFICE OF GRADUATE STUDIES

EXACT MATRIX COMPUTATION BY MULTIPLE P-ADIC

ARITHMETIC

by

Xin Kai Li

A Dissertation

Presented to the Faculty of the Graduate School

of Towson University

in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF SCIENCE

Department of Computer and Information Sciences

TOWSON UNIVERSITY

Towson, Maryland, 21252

December 2015

iii

 Dedicated

To

My Family

iv

Table of Contents

Page

Abstract ... vi

Acknowledgement ... viii

List of Tables ... x

List of Figures .. xi

Chapter 1 Introduction.. 1

1.1. Fraction Number System... 3
1.2. Finite P-adic Number System ... 5
1.3. Multiple-modulus Rational System .. 7
1.4. Multiple P-adic Rational System ... 8
1.5. Overview of this Dissertation Research .. 9

1.5.1. Periodicity of the P-adic Expansion .. 10
1.5.2. Hensel Code Overflow Detection ... 10
1.5.3. Multiple P-adic Data Type .. 11
1.5.4. Overflow Detection for Multiple P-adic Data Type ... 12
1.5.5. Proactive Self – defense Algorithm ... 13

Chapter 2 P-adic Arithmetic .. 15

2.1. Overview .. 15
2.2. P-adic Arithmetic ... 17

2.2.1. Addition/Subtraction ... 17
2.2.2. Multiplication/Division ... 18

Chapter 3 Implementation with P-adic Arithmetic ... 20

3.1. Periodicity of the P-adic Expansion .. 20
3.2. Finite P-adic Number System (Hensel Code) .. 33
3.3. Dixon-Krishnamurthy Algorithm .. 37

3.3.1. Algorithm Implementation Process .. 37
3.3.2. P-adic Arithmetic Using Long- digit Method ... 41
3.3.3. Predict P-adic Expansion r for Complex Matrix System 41

3.4. Hensel Code Overflow Detection ... 43
3.4.1. Overflow Detection Method ... 44
3.4.2. Practical Consideration ... 51

v

3.5. Compare Rational Number System with Finite P-adic Number System 55

Chapter 4 Multiple P-adic Data Type .. 59

4.1. Extended Chinese Remainder Theorem .. 60
4.1.1. Extended Chinese Remainder Theorem to Rational Number 61
4.1.2. Implementation of the Extended Chinese Remainder Theorem with P-adic
Arithmetic ... 64
4.1.3. Combining P-adic Arithmetic with the Extended Chinese Remainder
Theorem .. 65
4.1.4. Practical Considerations for the Implementation of Multiple P-adic
Algorithm .. 68

4.2. The Main Properties of Multiple P-Adic Data Type .. 71
4.2.1. Error-free Computing in Rational Number Field ... 71
4.2.2. Integer Calculations Taking Full Use of Computer Architecture 72
4.2.3. Natural Parallel Structure Taking Full Use of Multi-core System 74
4.2.4. Easy for Task Allocation in Cloud Environment .. 75
4.2.5. Practical Considerations in a Cloud Environment .. 75

4.3. Overflow Detection for Multiple P-adic Data Type ... 80
4.3.1. Overflow Detection Method ... 82
4.3.2. Practical Consideration ... 87

Chapter 5 Implementation ... 91

5.1. Mathematics Background ... 91
5.1.1. Moore – Penrose Inverse .. 91
5.1.2. Polynomial Method to Calculate 𝑒𝐴𝑡 ... 91

5.2. Implementation of Multiple P-adic Arithmetic on Matrix Calculation 95
5.3 Using Multiple P-adic Data Type in the Security Field .. 98

5.3.1. Data Self-correction Property ... 99
5.3.2. Linear Calculation Encryption Property ... 100
5.3.3. Implementation of the Algorithm on HPC .. 101

References ... 108

Appendix A .. 113

Appendix B .. 116

Curriculum Vita ... 123

vi

Abstract

Exact Matrix Computation by Multiple P-adic Arithmetic

Xinkai Li

Most of the algorithms are assumed to use exact computation. But in practice, the

machine floating point arithmetic is implemented on these algorithms which causes many

problems. The existing method is to use a link list representing arbitrary size of integer or

decimal numbers, which is extremely time consuming for a larger size matrix calculation.

This dissertation research is to focus on finding an effective way to do exact large matrix

calculation. We built a finite P-adic number system and found a method to detect

overflow. Based on this method and Dixon – Krishnamurthy’s theory we established

Dixon – Krishnamurthy algorithm to implement finite P-adic number system on linear

and nonlinear matrix calculation. Dixon – Krishnamurthy algorithm transfers the classic

symbolic calculation into integer calculation, significantly improving the calculation

efficiency. Furthermore, based on the multiple modulus rational system and finite P-adic

number system, we constructed a Multiple P-adic Data Type. The multiple P-adic Data

Type can easily transform the finite P-adic calculation process into parallel calculation

process without modification on math algorithms. With enough independent CPU

resources, the calculation time is significantly decreased.

We developed a computational library based on Multiple P-adic Data Type and the object

oriented program using C/C++. Computational algorithms have been developed using the

vii

data type for the calculation of matrix inverse, Lower Hessenberg form transformation,

Wilkinson form transformation, Frobenius form transformation, post processing from all

the transformations, reflexive general matrix inverse, Moore-Penrose inverse, calculation

of Laplace’s method for FTA (Fundamental Theorem of Algebra), Bézoutian formulation

of the Resultant and etc. Furthermore, based on the properties of the Multiple P-adic Data

Structure, we have developed an efficient proactive self – defense algorithm, which can

detect and recover compromised computational data.

viii

Acknowledgement

I would like to give my sincere thanks to all of the people who have helped me during my

graduate studies at Towson University.

First and foremost, I would like to thank my advisor, Dr. Chao Lu, for his guidance in my

research. He is a wonderful mentor and has always been supportive, inspiring and patient

with me. I am also thankful for his encouragement during my difficult times. Without

him, completing my degree would have been impossible.

I would also like to thank Dr. Jon Sjogren for his support on the research project, without

him our research would be impossible. His insightful and inspiring comments through

emails and during meetings proved helpful.

I would also like to thank Jun Tao, Mu Zhao and Yanfeng Zhu for their generous help

during my research. I learned a lot from them in both my academic studies and life.

I would also thank Dr. Wei Yu and Dr. Ge Han for their support and helpful discussions.

Along with Hanlin Zhang, Linqiang Ge, Guobin Xu, Zhijiang Chen, and Ying Zheng for

their friendship and helpful discussion and comments. Many thanks also to all other

members of the Department of Computer Science for their friendship.

My appreciation also goes to my dissertation committee members: Dr. Ramesh Karne, Dr.

Alex Wijesinha, and Dr. Marius Zimand for their time and suggestions to improve my

dissertation.

ix

Last but not least, I would like to thank my family, Xin Li, Jonathan, Peter, Yi Song,

Fangzhou Li, my parents and my in-laws for their love, support, and understanding. My

love to them is beyond words, time, and distance.

Xinkai Li

Towson Maryland

November, 2015

x

List of Tables

Page

Table 2.1 P-adic Sequence Coding Process ... 16

Table 3.1 D – K Algorithm Accuracy Comparing Flow Chart .. 42

Table 4.1 Prime Set Length equals to 3 .. 86

xi

List of Figures

Page
Figure 1.1 Arbitrary Integer Structure .. 3

Figure 1.2 Fraction Number Calculation Flow Chart ... 3

Figure 1.3 P-adic Calculation Process .. 5

Figure 1.4 Multiple P-adic Data Structure .. 8

Figure 2.1 Bachman Algorithm .. 15

Figure 3.1 Euclidean Algorithm ... 36

Figure 3.2 Dixon – Krishnamurthy Algorithm Overview Flowchart 40

Figure 3.3 D– K Algorithm Improved Flow Chart .. 42

Figure 3.4 k = 1, the primes versus the percentage of errors 48

Figure 3.5 k = 3, the primes versus the percentage of errors 48

Figure 3.6 Fix prime p =3, the verification part k versus the percentage of

errors ... 49

Figure 3.7 Fix prime p = 17, the verification part k versus the percentage of

errors ... 50

Figure 3.8 Hilbert matrix inverse 5 x 5 .. 53

Figure 3.9 Efficiency Comparison for Additions ... 57

Figure 3.10 Efficiency Comparison for Multiplications ... 58

Figure 4.1 Extended Chinese Remainder Theorem .. 62

xii

Figure 4.2 Extend CRT Parallel Implementation Chart ... 64

Figure 4.3 Extended CRT combined with P-adic arithmetic for parallel

implementation ... 65

Figure 4.4. Multiple P-adic Arithmetic Implementation Flow Chart 70

Figure 4.5 Compare with Matlab ... 77

Figure 4.6 Compare with Mathematica ... 79

Figure 4.7 Compare with Mathematica ... 80

Figure 4.8 Error Percentage for Three Comparing Method 87

Figure 5.1. Moore-Penrose Inverse .. 96

Figure 5.2 Polynomial method to calculate 𝑒𝐴𝑡... 97

Figure 5.3 Speed up rate for s equal to 4, 8 and 12 .. 98

Figure 5.4 Speed up rate for s equal to 4, 5 and 8 .. 99

Figure 5.5 Implementation Results .. 102

Figure 5.6 Implementation Results .. 105

Figure 5.7 Implementation Results .. 106

Figure 5.8 Implementation Results ... 107

Figure 5.9 Implementation Results ... 108

1

Chapter 1

Introduction

Most of the algorithms are assumed to use exact computation. But in practice, the

machine floating-point arithmetic is implemented on these algorithms causing many

problems, usually called “robustness issues” [1]. For example, when applying Gaussian

elimination, equal or not-equal zero will be determined for judging singular or

nonsingular situation. Floating point arithmetic can only give a precision range which

depends on the number of bits for the designated data format. This will hide some

potential problem. When the determined element is beyond the accuracy range, an

incorrect determination will be made. The truncation error of the floating point will be

accumulated which can cause troubles. See the following example taken from [2] for the

calculation of 𝑒𝐴,

𝐴 = [
−182 91.5
−244 123

].

Using double-precision floating point data type, taking the series method,

𝑒𝐴 = 1 +
𝐴

1!
+
𝐴2

2!
+
𝐴3

3!
+ ⋯.

 Only up to 175 iteration terms can be implemented as the following:

𝑒𝐴 ≅ [
2.35836𝑒 + 009 −1.18517𝑒 + 009
3.16045𝑒 + 009 −1.59221𝑒 + 009

].

2

If the iteration is larger than 175, the result will be meaningless as,

[
−1. #𝐼𝑁𝐷 −1. #𝐼𝑁𝐷
−1. #𝐼𝑁𝐷 −1. #𝐼𝑁𝐷

].

Actually, there are other ways to calculate 𝑒𝐴,

𝐴 = [
1 3
2 4

] [
1 0
0 −60

] [
1 3
2 4

]
−1

and

𝑒𝐴 = [
1 3
2 4

] [𝑒
1 0
0 𝑒60

] [
1 3
2 4

]
−1

The result with iteration 175 or more will be:

𝑒𝐴 ≅ [
−5.4366 4.0774
−10.8731 8.1548

]

If we use symbolic number system as we did for the Exact Scientific Computational

Library (ESCL), with 175 iteration the rational result will be:

𝑒𝐴 ≅ [

−499031…

917917…

827387…

826155…
−336858…

309808…

442180…

542230…

](Full size in appendix A)

In decimal number representation will be (the same as the above):

𝑒𝐴 ≅ [
−5.4366 4.0774
−10.8731 8.1548

]

Furthermore, some algorithms have zero tolerance for errors, such as the Moore-Penrose

Inverse [3], 𝐴+ means the Moore-Penrose Inverse of A

𝐴 = [
1 1
1 1

], 𝐴𝜀 = [
1 1
1 1 + 𝜀

]

3

𝐴+ =
1

4
[
1 1
1 1

], 𝐴𝜀
+ = [

1 +
1

𝜀
−
1

𝜀

−
1

𝜀

1

𝜀

]

In that algorithm lim
𝜀→0

𝐴𝜀
+ ↛ 𝐴+.

There are a number of ways for doing exact computing, which are fraction number

system, finite P-adic number system (Hensel code), multiple-modulus rational systems,

multiple P-adic rational system, and etc.

1.1. Fraction Number System

Fraction number system is to use link list to represent arbitrary size of integers and based

on that to build fraction number to realize rational number computation.

The arbitrary integers (symbolic) will be established as,

Last digits of the

integer

First digits of the

integer

Second digits of

the integer
Sign

.

Figure 1.1 Arbitrary Integer Structure

The integer can be as large as possible and the only limitation is the size of the memory.

The fraction number can be represented with two arbitrary integers, numerator and

denominator. The fraction number system calculation can be implemented as,

Fraction

Numbers
Arithmetic

operation
Simplification Fraction

Result

Figure 1.2 Fraction Number Calculation Flow Chart

4

Simplification is an importation process of the fraction number calculation. After an

arithmetic operation, the greatest common divisor (GCD) should be found and divided by

numerator and denominator. The complexity of this simplification process can grow very

fast. The two importation elements affecting the calculation are the calculation efficiency

of the basic arithmetic operation between two link lists and the efficiency of the

simplification. The first element is affected by the architecture of the computer CPU. The

second element is affected by algorithm convergence effectiveness. Extended Euclidean

Algorithm is a good choice to find the GCD [4]. NTL library [5] supplied arbitrary size

integers and based on that we established our fraction number system.

The fraction number system is not hard for software development. There will be no

overflow problem, if there is enough memory. For small size of calculation, it will have a

very good performance. But this data is not effective enough for large calculations. At

first, the link list is not an effective data structure, and during the calculation process

there are too many functional calls. Also the simplification process cost is too much.

When the calculation size is large and the intermediate rational number will be too

complex, then the cost on calculation is unacceptable. Meanwhile the size of the

intermediate rational number is unpredictable, the memory (heap) overflow problem

could possibly occur during the calculation process.

5

1.2. Finite P-adic Number System [6]

All rational numbers can be uniquely represented as [7],

𝑄(𝑃) = 𝑎−𝑚𝑃
−𝑚 +⋯+ 𝑎−1𝑃

−1 + 𝑎0 + 𝑎1𝑃
1 +⋯+ 𝑎𝑛𝑃

𝑛 +⋯, 𝑎𝑖 ∈ [0, 𝑃 − 1] =

∑ 𝑎𝑖𝑃
𝑖∞

𝑖=−𝑚 ,

𝑎𝑖 ∈ [0, 𝑃 − 1], 𝑃 is a prime number.

Based on this theorem, all the rational numbers can be transformed to a sequence of finite

integers. With Krishnamurthy’s theory [7, 8], finite length of integer sequence can be

used to represent rational numbers and do all the arithmetic operations. Based on this

theory, we established the P-aidc number system. The original calculation process is as

the following:

Determine the initial

P-adic series length r

Code rational number to

P-adic series with length r

Arithmetic operation

Get the P-adic series

result

Figure 1.3 P-adic Calculation Process

In this process, according to the input rational

numbers and the calculation algorithm, the P-adic

sequence length r is determined. Then rational

numbers are transformed to P-adic sequences and P-

adic arithmetic is implemented to get the P-adic

sequence results. An important issue is how to

identify the initial value of P-adic sequence r. The

time complex for P-adic arithmetic is O(𝑟2). The

other issue is how to check Hensel code overflow.

6

Hensel code of the P–adic expansion can realize error free computation for rational

numbers [8]. Hensel (1908) introduced the P–adic arithmetic [9]. Bachman (1964) gave a

computational algorithm for transforming a rational number into P–adic expansion [10].

Young and Gregory (1973) suggested a residue arithmetic procedure for error free

computing [11]. Krishnamurthy, Rao and Subramanian (1974) defined the finite length

P-adic arithmetic named Hensel code [8]. Dixon [12] and Miola [13] (1982) both found

separately an efficient computational algorithm to reconstruct rational numbers from P–

adic expansion, based on extended Euclid’s algorithm. For this algorithm, Kornerup and

Gregory (1983) gave a more complete explanation about Farey fractions theory [14]. Koc

(2002) pointed out four research directions on Hensel code. One of them is the detection

of overflow and underflow [15]. Hensel code can be used to develop a new word-based

computer data structure [16]. But for Hensel code, if the word length is not sufficient for

the rational number it represents, the transformed rational number will be meaningless.

One of the aspects of this problem is to predict the required word length. Rao (1976) [17]

and Dixon (1982) [12] both gave ways to predict the length of the P-adic expansion for

specific matrix calculation. We have developed a method [6] for Hensel code overflow

detection. The method can realize overflow detection by the prime P and the Hensel code

itself. Using this method, a few digits of the Hensel code will be sacrificed.

Finite P-adic number system can be easily implemented on 32 or 64 bits CPU

architecture machines. The sequence length is determined before the calculation. Array

data structure can be used to build the class of the P-adic number system, which is more

effective than the link list data structure comparing the fraction number system. During

the calculation process, fewer function calls and most of the operations are integer

7

operations which can decrease the calculation time cost. While for finite P-adic number

system, if the P-adic sequence length is not sufficient, the Hensel code overflow problem

possibly occurs and the calculation results will be useless. And for multiplication and

division operations of P-adic arithmetic, the time complex is O(𝑛2).

1.3. Multiple-modulus Rational System [8]

Multiple-modulus rational system is to extend residue number system (RNS) to rational

number field. The main idea is to represent a rational number ∝ with integer set

𝑟~{𝑟1, 𝑟2, ⋯ , 𝑟𝑠}, which come from ∝ moduli prime base set {𝑝1, 𝑝2, ⋯ 𝑝𝑠} . The

calculation arithmetic is based on RNS arithmetic. Multiple-modulus rational system can

be implemented with parallel computation. For each prime 𝑝𝑖, the calculation process is

independent.

RNS was introduced by Garner in 1959 [18]. In 1967, Newman gave a way of solving

linear equation 𝐴𝑥 = 𝑏 by Chinese Remainder Theorem [19]. This looks as a try to

extend RNS to rational number field. Meanwhile, Jo Ann Howell and Robert T. Gregory

also made a progress on using RNS to solve linear algebraic equations in 1969 [20, 21].

Rao, Subramanian and Krishnamurthy introduced the way to solve Moore-Penrose

inverse by residue arithmetic [17].

For each prime channel, the calculation is independent from the others. Parallel

computation will be easily implemented on the computation process. The time cost will

be significantly decreasing when operating on a huge calculation. Overflow problem (as

Hensel code overflow problem) is still an issue. However, when the overflow problem

occurs, the results can be kept at the intermediate stages. These results will be reused for

8

generating the final results. When using the multiple-modulus rational system, a lot of

prime numbers will be chosen on the base set. But if the intermediate rational number’s

denominator is the dividend of any prime in the prime set, the channel with that prime

will be terminated. And it is hard to compare with zero or one.

1.4. Multiple P-adic Rational System [22]

Multiple P-adic rational system is the combination of finite P-adic arithmetic (Hensel

code) and multiple-modulus rational system. A rational number ∝ will be represented by

the following structure,

∝∶ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑎00 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑎01 ⋯ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑎0𝑘⏟
𝑚𝑜𝑑𝑢𝑙𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑜𝑓 𝑝0

⋯ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑛0 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑛1 ⋯ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑛𝑘⏟
𝑚𝑜𝑑𝑢𝑙𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑜𝑓 𝑝𝑛

𝑝~{𝑝1, 𝑝2, ⋯ 𝑝𝑛} is the prime base set.

𝑎𝑖~{𝑎𝑖1, 𝑎𝑖2, ⋯ , 𝑎𝑖𝑘} is the finite 𝑝𝑖-adic sequence.

Figure 1.4 Multiple P-adic Data Structure

Each finite 𝑝𝑖-adic sequence is an independent calculation process with P-adic arithmetic.

John F. Morrison introduced the concept of multiple P-adic algorithm and named it with

parallel P-adic computation in 1988 [23]. In 1993, Carla Limongelli and Hans Wolfgang

Loidl gave the arithmetic on parallel P-adic algorithm [24]. Meanwhile, Koc had

published a paper about parallel P-adic algorithm for linear system [25]. According to the

multiple P-adic rational system, we developed a multiple P-adic data structure which can

realize parallel rational calculation.

9

There are many other algorithms that can realize rational computation, such as slash

number system, which was established from the finite continue fraction expansion of

fraction number. My research is to focus on P-adic direction.

Multiple P-adic rational system have the advantages of P-adic number system and RNS.

It can realize parallel computation at each prime channel and can compare with zero or

one.

1.5. Overview of this Dissertation Research

The goal of this dissertation is to find an effective way to do exact large matrix

calculation. During the research process, we first built a fraction number system which

cost too much time for large matrix calculation. And then we try to establish a periodic P-

adic number system, while the length of the period of multiplication of two period P-adic

sequence is too large to be acceptable during the practical implementation. Then we built

a finite P-adic number system and found a method to detect overflow situations. Based on

this method and Dixon-Krishnamurthy’s theory we established Dixon-Krishnamurthy

algorithm to implement finite P-adic number system on linear and nonlinear matrix

calculation. However, the complexity of P-adic number system is 𝑂(𝑙2) with the P-adic

sequence length l. During the practical implementation, even a small size of matrix

operation need a long length of P-adic sequence. The computation cost is not as effective

as we expected. So we constructed multiple P-adic rational system based on the multiple-

modulus rational system and finite P-adic number system. During this process, we found

the extended Chinese Remainder Theorem and gave an effective way to do overflow

detection. The multiple P-adic rational system can easily transform finite P-adic

calculation process into parallel calculation process without modification on math

10

algorithm. With enough independent CPU resources, the calculation time cost is

significantly decreased. Furthermore, based on the property of the Multiple P-adic Data

Structure, we have developed an efficient proactive self – defense algorithm.

1.5.1. Periodicity of the P-adic Expansion

It is known that a real number is rational if and only if its decimal expansion is periodic.

Similarly, a P-adic number is rational if and only if its P-adic expansion is periodic. So

we represent a rational number ∝ with the form

𝛼 =. 𝐴0⋯𝐴𝑠𝑎0⋯𝑎𝑛−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑎0⋯𝑎𝑛−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the periodic part.

If the periods of two entry P-adic sequences are m and n, for addition/subtraction

operation, the maximum length of periodic part is 𝐿𝐶𝑀(𝑛,𝑚) ; for multiplication

operation, the maximum length of periodic part is 𝐿𝐶𝑀(𝑚, 𝑛) × (𝑃𝐺𝐶𝐷(𝑚,𝑛) − 1). The

mathematical proof process details will be displayed in Chapter 2 section2.3.

1.5.2. Hensel Code Overflow Detection

Hensel code can be used to develop a new word-based computer data structure [16]. But

for Hensel code, if the word length is not sufficient for the rational number it represents,

the transformed rational number will be meaningless. One of the aspects of this problem

is to predict the required word length. Rao (1976) [17] and Dixon (1982) [12] both gave

ways to predict the length of the P-adic expansion for specific matrix calculation. But for

some cases, it is hard to predict properly when the matrix calculation process is overly

complex. Hensel code is one kind of code, in which a finite P–adic expansion is mapped

11

to the Farey Rationals [14, 31]. A Hensel code expansion can be identified as to whether

it is overflow, just by the prime p and the Hensel code itself. We have developed an easy

method for detecting the Hensel code overflow, resulting in some Hensel code digits

being sacrificed.

1.5.3. Multiple P-adic Data Type

During the past few years, we have been working on P-adic theory and its

implementation. Based on the Chinese Remainder Theorem and Hensel code, a new data

type has been established to realize a rational calculation called Multiple P-adic Data

Type [12, 16, 17]. With this data type, all rational number operations are converted to

integer calculations, and the fast integer multiplication of modern computer architectures

can be fully used. This data type can be significantly effective in the parallel and cloud

computing environment due to its independent computation at each node during the

calculation process. Furthermore, the existing C++ programs can be converted to run

with this data type with no (or minimal) changes to the source code. We have developed

a computational library based on the data type and the object oriented program using

C/C++. Computational algorithms have been developed using the data type for the

calculation of matrix inverse, Lower Hessenberg form transformation, Wilkinson form

transformation, Frobenius form transformation, post processing from all the

transformations, reflexive general matrix inverse, Moore-Penrose inverse, 𝑒𝐴𝑡clculation,

Laplace’s method for FTA (Fundamental Theorem of Algebra), Bézoutian formulation of

the Resultant, and etc.

12

1.5.4. Overflow Detection for Multiple P-adic Data Type

P-adic Arithmetic (Hensel code) can be used for rational number computation to avoid

rounding (truncation) errors. But during the implementation process, it usually needs an

enormous length of the P-adic sequence digits to maintain the accuracy of the results.

That will obviously decrease the efficiency of the calculation. Multiple P-adic data type

[22] can realize parallel calculation among multiple CPU cores and each calculation

process is independent. This can significantly decrease the calculation time, when there

are sufficient CPU cores. The Multiple P-adic data type is based on the Chinese

remainder theorem and Hensel code. In 1981, John F. Morrison [23] introduced the

concept of Multiple P-adic algorithm, which is based on the multiple-modulus arithmetic

proposed by D. Matula and C. Gregory [28]. In 1993, Carla Limongelli and Hans

Wofgang Loidl [4] gave the description of arithmetic for multiple P-adic sequences. Koc

[25] had published a series of papers about Parallel P-adic algorithm for linear systems.

The Multiple P-adic data type has the same overflow problem with Hensel code. If the

total length of the Multiple P-adic sequence (a more accurate description is the product

of 𝑝𝑖
𝑟, 𝑝𝑖 means the prime base and 𝑟 means the 𝑝𝑖-adic sequence length) is not sufficient

enough, the converted rational number will be meaningless. This situation is called

overflow problem. We have developed an overflow detection method to check whether

the overflow problem happened during the single P-adic (Hensel code) sequence

calculation process [6]. The method can identify whether the overflow situation happened

just by the prime P and the sequence digits themselves. But with this method some digits

should be sacrificed as identification parts. This method can still be used on Multiple P-

adic overflow detection. However according to the property of the Multiple P-adic data

13

type, we have improved the previous method. And with this improved method we will

sacrifice fewer digits as verification parts and meanwhile greatly decrease the error rates

for detecting results.

1.5.5. Proactive Self – defense Algorithm

To protect the distributed high performance computing (HPC) systems from attacks, we

need to consider two defense levels: data and system. At the data level, we develop pre-

defined data self-correction methods to detect and recover compromised computational

data. At the system level, we implement monitoring and detection tools to discover

exploitable vulnerabilities proactively and to make the HPC systems robust against

cyber-attacks. An efficient proactive self-defense algorithm was developed based on

multiple P-adic data structure, in which ADU (Application Data Unit) [39] attacks

occurred, and how to enable the computation process to detect data being compromised

and still deliver the correct results. The operation process implemented with multiple P-

adic data type can be separated into several parallel sub-processes. Each sub-process can

be allocated in different nodes of a HPC system and each sub-process is operated

independently by computing nodes. If some sub-processes have been compromised and

the data is distorted, algorithms [35] can be leveraged to identify the abnormality. Further,

if the number of sub-processes with errors does not pass a given threshold, the sub-

processes with errors can be identified and the correct results can still be obtained [36]. If

this data type is implemented on huge integer or rational number computing, the

operation time cost will be efficient. Both linear and non-linear calculation processes can

be applied with multiple P-adic data type instances. The algorithm for data self-

correction comes from the redundant residue number system (RRNS) [34]. Using the

14

multiple P-adic data type, we define a prime set𝑝~{𝑝1, 𝑝2, ⋯ , 𝑝𝑘}. With k primes, we can

make sure to avoid the overflow situation [38]. Nonetheless, during the implementation,

we set 𝑝~{𝑝1, 𝑝2, ⋯ , 𝑝𝑘, 𝑝𝑘+1, ⋯ 𝑝𝑛} , where the {𝑝𝑘+1, ⋯ 𝑝𝑛 } part is the redundant

portion. According to Mandelbaum’s theory [36, 40, 41], if
𝑛−𝑘

2
 or less sub-processes are

changed/compromised due to attacks, we can identify the compromised sub-processes

and still get the correct results. The main idea is to compare the decoded values from all

the combinations of 𝐶𝑛
𝑘 among the nodes. The details will be given in section 5.3 as well

as examples to explain how the algorithm works.

15

Chapter 2

P-adic Arithmetic

2.1. Overview

Usually we are familiar with the 10-base number system, but in our everyday life, we

also use 60- base (seconds & hours) and 12- base (dozen of eggs) number systems. For

computer science professionals, we get used to the binary number system. Numbers can

be represented by different formats. P-adic is to represent rational number by the prime

base system with integer sequence. For example, if we choose 3 as the prime base P,

7 = 𝑃0 + 2𝑃1 + 0𝑃2 + 0𝑃3 +⋯

75 = 0𝑃0 + 𝑃1 + 2𝑃2 + 2𝑃3 + 0𝑃4⋯

It is not hard to transform a positive integer into P-adic sequence, but how to represent a

negative number and how to represent a fraction number? The algorithm has been given

by Bachman [10] as follows,

Figure 2.1 Bachman Algorithm

For 𝛼 =
𝑎

𝑏
𝑃𝑛 , 𝑎, 𝑏, 𝑛 ∈ 𝕫, 𝑏 ≠ 0, 𝐺𝐶𝐷(𝑎, 𝑏), 𝐺𝐶𝐷(𝑎, 𝑃), 𝐺𝐶𝐷(𝑏, 𝑃) = 1, 𝑖 = 0

Step 1. mod iP a 

Step 2.   /ia P   , 𝑖 = 𝑖 + 1, go to Step 1 to get ia

Continue Step 1 and Step 2, to get P-adic sequence

Finally,
0

n i i

i i n

i i n

P a P a P
 



 

   

16

Tips: / mod , 1a b P b  is calculated by this: find mod 1c b P  , the answer equals

to modc a P .

The P-adic sequence for
𝑎

𝑏
𝑃𝑛 will have the form as the following [15]:

1 2 1 0 1 2

0 1 2

0 1 2

. 0

 . 0

 .000 0

n na a a a a a a for n

a a a for n

a a a for n

   





Conventionally, we write P-adic sequence as,

1

0

 point = n

point means the position of

i n i na a

a

  

.

Here is the process for conversing
1

5
 to 3-adic sequences as given in Table 2.1,

Input fraction Module Fraction For next Loop

Loop 1 1/5 1/5 mod 3 = 2 (1/5 – 2) / 3 = -3/5

Loop 2 -3/5 -3/5 mod 3 = 0 (-3/5 – 0) / 3 = -1/5

Loop 3 -1/5 -1/5 mod 3 = 1 (-1/5 – 1) / 3 = -2/5

Loop 4 -2/5 -2/5 mod 3 = 2 (-2/5 – 2) / 3 = -4/5

Loop 5 -4/5 -4/5 mod 3 = 1 (-4/5 – 1) / 3 = -3/5

...…

Table 2.1: P-adic Sequence Coding Process

All rational numbers can be represented as,

𝑄(𝑃) = 𝑎−𝑚𝑃
−𝑚 +⋯+ 𝑎−1𝑃

−1 + 𝑎0 + 𝑎1𝑃
1 +⋯+ 𝑎𝑛𝑃

𝑛 +⋯, 𝑎𝑖 ∈ [0, 𝑃 − 1]

17

Can be written as,

𝛼 = ∑ 𝑎𝑖𝑃
𝑖

∞

𝑖=−𝑚

𝑎𝑖 ∈ [0, 𝑃 − 1]; 𝑚, 𝑛 ∈ 𝕫; 𝑃 is a prime number.

Then note 𝑄(𝑃) = 𝑎−𝑚⋯𝑎0⋯ point = −𝑚

2.2. P-adic Arithmetic [7] [15]

The P-adic arithmetic is quite similar to the decimal arithmetic. They both need to carry

digits from low to high. In the decimal number system, such as 365, the lower digits are

written from right to left. While for P-adic number system, such as
1

6
= .1404040…

where P = 5, the lower digits are written from left to right. The calculation process will

have some difference.

2.2.1. Addition/Subtraction

The addition of P-adic numbers is similar to the binary numeral addition. The difference

is modulo P.

The addition process is calculating from left to right. Here is an example of computing

1/ 6 1/ 2 2 / 3  for P = 5:

1
.140404040

6


1
.32222222...

2


18

In the addition operation process, the position of the point should be kept in alignment.

.140404040

.322222222

.413131313

We can check that

2
.413131313...

3


Subtraction is also an addition process. First we use recursive ways to get the opposite

sequences subtracted then do an addition:

       
.

2.2.2. Multiplication/ Division

The multiplication of P-adic numbers is also similar to binary multiplication. The

difference is also that P-adic multiplication is calculating from left to right.

The point of the multiplication result equals to point1 + point2. (point1 and point2 means

the value of point for multiplicand/dividend P-adic sequence and multiplicator/divisor P-

adic sequence)

Here is an example of
2 1 1

3 6 9
  , where P = 5:

2
.413131313

3


1
.140404040

6


19

The multiplication operations can be showed following,

 .4131313131313 · · ·

 × .1404040404040 · · ·

 --

 4131313131313 · · ·

 123131313131 · · ·

 00000000000 · · ·

 1231313131 · · ·

 000000000 · · ·

 12313131 · · ·

 0000000 · · ·

 123131 · · ·

 00000 · · ·

 1231 · · ·

 000 · · ·

 12 · · ·

 + 0· · ·

 .4201243201243 · · ·

(This example came from Koc[15].)

Check the P-adic expansion of 1/9, they are the same,

1
.4201243201243.....

9


Division can also be done by multiplication process. First we use recursive method to get

the inverse of dividend then do a multiplication.

The point for division equals to point1 - point2.

P-adic sequence is infinite. It is not possible to use this theory directly in computers.

Computer architecture is a finite system. The way of using P-adic arithmetic is to find a

way of using finite P-adic sequence to represent fraction numbers. There are two ways

for doing that: periodicity of the P-adic sequence and finite P-adic arithmetic (Hensel

code).

20

Chapter 3

Implementation with P-adic Arithmetic

3.1 Periodicity of the P-adic Expansion

It is known that a real number is rational if and only if its decimal expansion is periodic.

Similarly, a P-adic number is rational if and only if its P-adic expansion is periodic.

Consequently, since we are primarily interested in the P-adic expansions of rational

numbers, we will be dealing only with P-adic expansions which are periodic. The

expansion eventually repeats to the right. That is, if α is a rational number, then it has a

repeating pattern of 𝑎𝑖𝑃
𝑗 in its P-adic expansion, i.e., it is of the form

𝛼 =. 𝐴0⋯𝐴𝑠𝑎0⋯𝑎𝑛−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

with periodic length n. It can give the sufficient number of digits for exact computation

[26]. Let us observe what happens after the arithmetic operations of two P-adic

sequences, and discuss the periodicity of a resulted P-adic sequence from arithmetic

operation in P-adic field.

From the Table 2.1, the values on loop 1 and loop 5 of Fraction for next loop are both -

3/5. This means there will have the period circle. The periodicity of 1/5 on 3-adic is 4:

. 20121̅̅ ̅̅ ̅̅ ̅.

21

As described in Koc[15], the series

2 31 p p p   

converges to
1

1 p
 in the p-adic norm. Now, as an example, consider the power series

expansion

2 3 4 5 62 3 3 3p p p p p p        

2 2 42 (3)(1)p p p p     

Since 2 41 p p   converges to
2

1

(1)p
, we have

2

2

3
2

1

p p

p



 

 .

Shan gave the decoding formula in [26] [27].

For a P-adic sequence . 𝐴1…𝐴𝑠𝑎1…𝑎𝑛 , the decoding process is,

𝛼 = 𝐴1 × 𝑃
0 + 𝐴2 × 𝑃

1 +⋯+ 𝐴𝑠 × 𝑃
𝑠−1 + (𝑎1 × 𝑃

0 + 𝑎2 × 𝑃
1 +⋯+ 𝑎𝑛 × 𝑃

𝑛−1)

×
𝑃𝑠

1 − 𝑃𝑛

P is the prime for the P-adic expansion.

For example:

 0 0 1 2 3

4

3 1
.20121 2 3 0 3 1 3 2 3 1 3

1 3 5
           


.

22

The property of periodicity of P-adic sequence makes it possible to use a finite sequence

to represent a fraction number. But there are still issues for implementing the P-adic

arithmetic in practice. We need to find an algorithm to determine the period length for the

result of the P-adic arithmetic operations. Based on the algorithm, we can choose how

long the entry P-adic sequence length should be for the calculation process. Through

Shan’s [26, 27] theory, we get the theorem as the following:

If the periods of two entry P-adic sequences are m and n, for addition/subtraction

operation, the maximum length of periodic part is 𝐿𝐶𝑀(𝑛,𝑚) ; for multiplication

operation, the maximum length of periodic part is 𝐿𝐶𝑀(𝑚, 𝑛) × (𝑃𝐺𝐶𝐷(𝑚,𝑛) − 1).

The proof process is as the following:

Addition/Subtraction [27]

Assume that we have two P-adic sequences (𝑠 < 𝑡)

𝑎 =. 𝐴0⋯𝐴𝑠𝑎0⋯𝑎𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑏 =.𝐵0⋯𝐵𝑡𝑏0⋯𝑏𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅

Line up these two sequences and set 𝑎𝑡−𝑠+1 = 𝑐1, we get

1 2 1 1 1 2

1 1 1 2

...

s t s n n n

t m m m

A A A a a c c c c

B B b b b b

 



Let’s consider the right side of the vertical stroke line. Suppose two integer x, y satisfy

the condition that 𝑥 ≠ 𝑦 and 𝑐𝑥 + 𝑏𝑥 = 𝑐𝑦 + 𝑏𝑦.

∵ 𝑐𝑖 and 𝑏𝑗 can be any numbers

23

∴ In the worst case, we must make sure that

𝑥 = 𝑘1 × 𝑛 + 𝑖 = 𝑘2 ×𝑚 + 𝑗

𝑦 = 𝑘3 × 𝑛 + 𝑖 = 𝑘4 ×𝑚 + 𝑗

 𝑥 − 𝑦 = (𝑘1 − 𝑘3) × 𝑛 = (𝑘2 − 𝑘4) × 𝑚

This means x - y must be exactly divisible by n and m, the smallest integer which satisfies

this requirement is the least common multiple of n and m.

Conclusion: In addition/subtraction, the maximum length of periodic part is: 𝐿𝐶𝑀(𝑛,𝑚).

Multiplication

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

1 2 3

. .

. . . .0...0

. . . .0...0 .0...0 .0...0

s n t m

t

s n t s n m

t s t

s n t s m n m

a b A A a a B B b b

A A a a B B A A a a b b

A A a a B B A A b b a a b b

  

   

     

It’s obviously that the result of Part 1 and Part 2 has a periodic part of n and m digits

respectively. According to the previous conclusion we get from addition, the resulted P-

adic sequence for (Part 1 + Part 2) has a periodic part of 𝐿𝐶𝑀(𝑛,𝑚) digits.

Part 3:

1 1

2 2

1 1

2 2

1 1

54

.0...0 .0...0

(.) (1) (.) (1)

(.) (.) (1) (1)

s t

n m

n n m m s t

n m

s t n n m m

n m

a a b b

a a p p p b b p p p p

a a b b p p p p p p p

  

  



            

            

24

Part 4 is a constant and Part 5 is the one we need to focus on.

2 2

1 1 1 1

(1) (1)

.10...010...0 .10...010...0

n n m m

n n m m

p p p p p p 

   

        

 

To determine the periodic length of multiplication is to find the period of Part 5, it also

means to find the period of the following result:

For easy understanding, here is a specific example of m=6, n=4:

m

n

.10000...10000....

.10000...10000....

--

n=4

n=4

n=4

n=4

10000010000010000010000010000010000010000

 1000001000001000001000001000001000001

 100000100000100000100000100000100

 10000010000010000010000010000

n=4

n=4

n=4

 1000001000001000001000001

 100000100000100000100

 10000010000010000

n=4

n=4

 1000001000001

 100000100

n=4

 10000

 1

25

We can view the result by the number of blocks as the following:

(6,4) (6,4)

100000100000 100000100000 100000100000 100000100000 100000100000

 10000010 000010000010 000010000010 000010000010 00

 1000 001000001000 001000001000 001000001000

LCM LCM

0010000010

001000001000

 100000100000 100000100000 100000100000

 10000010 000010000010 000010000010

 1000 001000001000 00

100000100000

000010000010

1000001000 001000001000

 100000100000

100000100000 100000100000

 10000010 000010000010 000010000010

 1000 001000001000 001000001000

 100000100000 100000100000

 10000010 000010000010

 1000 001000001000

 100000100000

 10000010

 1000

From the graph, there are only two kinds of number blocks, which are:

(6,4)

100000100000

 10000010

 1000

LCM

A 

(6,4)

100000100000

000010000010

001000001000

LCM

B 

26

The heights of 𝐴 and 𝐵 are
𝐿𝐶𝑀(𝑚,𝑛)

𝑛
= 3. The result can be shown by 𝐴 and 𝐵 as the

following:

A B B B B B B B

A B B B B B B

A B B B B B

A B B B B

A B B B

A B B

A B

A

We can move the position of 𝐴 for better analysis, while not change the final answer as

the following:

A A A A A A A A

B B B B B B B

B B B B B B

B B B B B

B B B B

B B B

B B

B

If we want to define the periodic length of Part 5, we can get that from determining the

periodic length of two parts:

Part A is 𝐴 𝐴 𝐴 𝐴 𝐴 𝐴 𝐴 𝐴 , whose periodic length is the length of 𝐴 , equaling to

𝐿𝐶𝑀(𝑚, 𝑛).

27

Part B is

B B B B B B B

B B B B B B

B B B B B

B B B B

B B B

B B

B ,

whose periodic length will be 𝐿𝐶𝑀(𝑚, 𝑛) × (𝑃𝐺𝐶𝐷(𝑚,𝑛) − 1).

Thus, the total periodic length will be:

𝐿𝐶𝑀(𝑚, 𝑛) × (𝑃𝐺𝐶𝐷(𝑚,𝑛) − 1).

Proof:

Assume 𝑚 ≥ 𝑛, 𝑚, 𝑛 ∈ 𝑁

For the two P-adic sequences:

m

n

: 10000...10000....

: 10000...10000....

m

n

The multiplication is following:

m

n

 10000...10000....

 10000...10000....

--

28

(,)

1000...1000...1000......1000...1000...1000......1000...1000...1000......

 1000...1000...1000......1000...1000...1000..

LCM m n

m m m m m m m m m

n

m m m m m

n

....1000...1000...1000......

 1000...1000...1000......1000...1000...1000......1000...1000...1000......

m m m m

m m m m m m m m m

n

 1000...1000...1000......1000...1000...1000......1000...1000...1000......

m m m m m m m m m

n

Following the above example, we can transform the result into number blocks,

Part A:

(,) (,) (,) (,) (,)

10.. 10.. 10.. 10.. 10.. 10..
 10.. 10.. 10.. 10.. 10.. 10..

 10.. 10.. 10.. 10.. 10.. 10

LCM m n LCM m n LCM m n LCM m n LCM m n

A A A A A A

(,) (,) (,) (,)

10.. 10.. 10..
 10.. 10.. 10..

.. 10.. 10.. 10..

LCM m n LCM m n LCM m n LCM m n

A A A

Part B:

(,) (,) (,) (,) (,) (,) (,)

(,) (,) (,) (,) (,) (,)

(,) (,) (,) (,) (,)

(,) (,) (,) (,)

LCM m n LCM m n LCM m n LCM m n LCM m n LCM m n LCM m n

LCM m n LCM m n LCM m n LCM m n LCM m n LCM m n

LCM m n LCM m n LCM m n LCM m n LCM m n

LCM m n LCM m n LCM m n LCM m n

L

B B B B B B B

B B B B B B

B B B B B

B B B B

B

(,) (,) (,)

(,) (,)

(,)

CM m n LCM m n LCM m n

LCM m n LCM m n

LCM m n

B B

B B

B

29

(,)

1..0..1..
(,)

0..0..1..

0..0..1..

LCM m n

LCM m n
B

n






 




For the Part B, after the sum, it will become a natural number sequence for the basic

elements 𝐵 , as the following:

2 3 4B B B B

Theorem 3.1.1. For a natural number sequence, if it is transformed into a P-adic field,

and the carry is from left to right, the resulting sequence will be periodic and the periodic

length is P – 1.

A specific example in 5-adic field:

Natural number sequence N 𝑺𝟎 𝑺𝟏 𝑺𝟐 𝑺𝟑

1 1

2 2

3 3

4 4

5 0 5

6 2 4 0

7 3 4 0

8 4 4 0

9 0 4 5

10 2 8 0

11 3 8 0

12 4 8 0

… … … …

4n+1 0 4(n-1) 5

4n+2 2 4n 0

4n+3 3 4n 0

4n+4 4 4n 0

… … … …

30

By generalizing this on any P-adic field, the table will be the following:

Natural number sequence N 𝑺𝟎 𝑺𝟏 𝑺𝟐 𝑺𝟑

1 1

2 2

3 …

… P-

1

P 0 P

P+1 2 P-1 0

P+2 3 P-1 0

… … … …

2P-2 P-

1

P-1 0

2P-1 0 P-1 P

2P 2 2(P-1) 0

2P+1 3 2(P-1) 0

… … … …

nP-n P-

1

(n-1)(P-

1)

0

nP-n+1 0 (n-1)(P-

1)

P

nP-n+2 2 n(P-1) 0

nP-n+3 3 n(P-1) 0

… … … …

nP-n+P-1 P-

1

n(P-1) 0

… … … …

From the above table, it is shown that the natural number 𝑁 = 𝑆0 + 𝑆1 + 𝑆2 + 𝑆3. 𝑆0 is

limited. It is not hard to find that after P-adic transform, 𝑆1 will have the period of P-1,

and 𝑆2 + 𝑆3 will become 0 sequences. Thus, the period of the natural sequence will be P

– 1.

31

Theorem 3.1.2. For a natural number sequence of x , which is also built by number

sequences with digit length l and within periodic length r , if it is transformed into a P-

adic field, and the carry is from left to right, the resulting sequence will be periodic and

the periodic length is 𝑙 × (𝑃𝑟 − 1).

Let us show this by an example: Convert the sequence

111122223333444455556666… into 3-adic field:

Here: 𝑙 = 4, 𝑟 = 1, 𝑃 = 3

𝑙 × (𝑃𝑟 − 1) = 4 × 2 = 8

We can verify this by converting the number 111122223333444455556666… into 3-

adic sequence: .1111222201112222 , which has the periodic length 8.

Another example, covert the sequence 1010202030304040… into 2-adic field:

Here: 𝑙 = 4, 𝑟 = 2, 𝑃 = 2

𝑙 × (𝑃𝑟 − 1) = 4 × 2 = 12

Verification: covert the number 1010202030304040… into 2-adic

sequence .1010010111110 , which has the periodic length 12.

The proof of Theorem 2 will be similar with the proof of Theorem 1.

From Theorem 2, if the period within 𝐵 is 𝐶𝐵, we can get the period of Part B directly

as 𝐿𝐶𝑀(𝑚, 𝑛) × (𝑃𝐶𝐵 − 1).

32

Next step is to find the 𝐶𝐵:

The elements 𝐵 can be divided into less length structures 𝑥𝑖𝑗⏞
𝐺𝐶𝐷(𝑚,𝑛)

, where(1 ≤ 𝑖 ≤

𝐿𝐶𝑀(𝑚,𝑛)

𝐺𝐶𝐷(𝑚,𝑛)
, 1 ≤ 𝑗 ≤

𝐿𝐶𝑀(𝑚,𝑛)

𝑛
), which is the largest number sequence that can be divided

into the basic elements of the 𝐵 .

(,) (,) (,) (,)
11 21

(,) (,) (,) (,)

(,) (,) (,)(,)

.. ..

1..0..1.. 1.. 0.. 1..

0.. 1.. 0..0..1..1..

0.. 0.. 1..0..0..1..

LCM m n GCD m n GCD m n GCD m n
L

LCM m n GCD m n GCD m n GCD m n

GCD m n GCD m n GCD m nLCM m n

x x x

B   

(,)
1

(,)

12 22 (,)
2

(,)

(,) (,) (,) (,)
1 2

(,)

..

..

...

..

CM m n

GCD m n

LCM m n

GCD m n

LCM m n LCM m n LCM m n LCM m n

n n GCD m n n

x x x

x x x

The reason for choosing 𝑥𝑖𝑗⏞
𝐺𝐶𝐷(𝑚,𝑛)

as basic structure of 𝐵 is the following:

The height of the elements 𝐵 is
𝐿𝐶𝑀(𝑚,𝑛)

𝑛
, within element 𝐵 , for each column

𝐺𝐶𝐷(𝑚, 𝑛) ×
𝐿𝐶𝑀(𝑚,𝑛)

𝑛
= 𝑚, which means ∑ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑖𝑗) = 𝑚

𝐿𝐶𝑀(𝑚,𝑛)

𝑛

𝑗=1
, where m is the

period length of the first P-adic sequence. For the same i, 𝑥𝑖𝑗⏞
𝐺𝐶𝐷(𝑚,𝑛)

will be the different

parts from dividing same period of first P-adic sequence.

It can be shown that:

1 2 (,) 1 2 (,)() (),i i LCM m n j j LCM m n
i j

n n

Sum x x x Sum x x x i j       

From above, the period within elements 𝐵 is 𝐺𝐶𝐷(𝑚, 𝑛).

33

Then, 𝐶𝐵 = 𝐺𝐶𝐷(𝑚, 𝑛), and the period of Part B is 𝐿𝐶𝑀(𝑚, 𝑛) × (𝑃𝐺𝐶𝐷(𝑚,𝑛) − 1).

The total period of (Part A + Part B) is:

𝑀(𝐿𝐶𝑀(𝑚, 𝑛), 𝐿𝐶𝑀(𝑚, 𝑛) × (𝑃𝐺𝐶𝐷(𝑚,𝑛) − 1)) = 𝐿𝐶𝑀(𝑚, 𝑛) × (𝑃𝐺𝐶𝐷(𝑚,𝑛) − 1) .

∵ The length of (Part 1 + Part 2) is 𝐿𝐶𝑀(𝑚, 𝑛), Part 4 is a constant and Part 5 is

𝐿𝐶𝑀(𝑚, 𝑛) × (𝑃𝐺𝐶𝐷(𝑚,𝑛) − 1).

∴ The total length of (Part 1 + Part 2 + Part 4 + Part 5) is

𝐿𝐶𝑀(𝐿𝐶𝑀(𝑚, 𝑛), 𝐿𝐶𝑀(𝑚, 𝑛) × (𝑃𝐺𝐶𝐷(𝑚,𝑛) − 1)) = 𝐿𝐶𝑀(𝑚, 𝑛) × (𝑃𝐺𝐶𝐷(𝑚,𝑛) − 1).

 The total period for multiplication is

𝐿𝐶𝑀(𝑚, 𝑛) × (𝑃𝐺𝐶𝐷(𝑚,𝑛) − 1).

The length of periodicity for multiplication is too large. For 32-bits, the prime P is chosen

as 46337 and 64-bits as 2147483647. By the formula of 𝐿𝐶𝑀(𝑚, 𝑛) × (𝑃𝐺𝐶𝐷(𝑚,𝑛) − 1),

it is impossible to set the sequence length.

3.2. Finite P-adic Number System (Hensel Code)

Hensel code was introduced by Krishnamurthy [8][32]. The idea is to use finite P-adic

sequence to represent the fraction number. According to the theory:

For a rational number
𝑏

𝑎
 , 𝐺𝐶𝐷(𝑎, 𝑏) = 1 , if P-adic sequence length r satisfying

max (𝑎, 𝑏) ≤ √
𝑃𝑟−1

2
, first r length of the P-adic sequence of this rational number can be

34

uniquely used to represent this rational number. And the P-adic sequence can be

conversed back to the original rational number.

The Krishnamurthy’s idea is to reflect the finite P-adic sequence in Farey rationals [32].

The following quotation part is coming from [17] and it will give great help on

understanding Krishnamurthy’s conversion algorithm.

The notation|𝑥|𝑝, |𝑋|𝑝 will be used to denote the residue of integer x and matrix X with

respect to positive integer p, via

mod

mod

p

p

x x p

X X p





 Hence if 0 < 𝑎 < 𝑝, then there exists a unique integer b, 0 < 𝑏 < 𝑝 such that

1modab p

The integer b is called the inverse of a modulo p and is denoted by |𝑎|𝑝
−1. This permits us

to have a unique representation for integers in the range
−(𝑝−1)

2
 to

(𝑝−1)

2
.

The following function value maps the residue of a, 0 ≤ 𝑎 < 𝑝 , to the corresponding

positive or negative integer

 
 

 

1
 if

2

 otherwise

p
a a

value a

p a

 


 
  

 Bound Ax b means that during the calculation of Ax b the largest denominator or

numerator will show out.

35

In the P-adic representation
1 2 3 ra a a a e , e means the position of radix point.

 
0

r
i

i

i

I m a p




r means the length of the P-adic expansion.

A rational number
a

b
 0 ,0b p a p    can therefore be represented in the form

1p p
ba  1 mod

p p

b
ba p

a


 
 

 
, if ka is known, then the rational number can be converted

back by:

1

1
 ,

p p
kaba ka kb p

ka
  ” [17]

The Krishnamurthy’s algorithm is as the following [7]:

Step1. Change all the rational numbers into P-adic series and record 𝑚1, which is the

LCM of all the denominators. Make sure the series length r satisfying

 
1

2

rp
Bound Ax b


  .

Step2. Using P-adic & Hensel codes arithmetic to get the solution of Ax = b, record 𝑚2

which is the product of P-adic expansions and used as divisor during the calculation

process.

Step3. 1 2k m m , make sure  1 2 max , rm m numerators denominators p  . Then we can

use the way mentioned before to convert P-adic series into rational number.

36

Step4. Convert the output entries to fraction numbers using:

  
  

mod r

ce

c

value I m m p
p

value I m







In 1982, Dixon [12] introduced an algorithm to reflect the finite P-adic sequence in

Continued Fraction. The algorithm is based on Euclidean algorithm. Miola also

mentioned it [13]. Koc did a summary [25]. For a finite p-adic sequence .𝑎1𝑎2⋯𝑎𝑖,

Figure 3.1 Euclidean Algorithm

There is also a condition given from Dixon. Define
𝑎

𝑏
, 𝐺𝐶𝐷(𝑎, 𝑏) = 1 and 𝛿 =

𝑚𝑎𝑥 (𝑎, 𝑏), if 𝛿 satisfies 𝛿 ≤ 𝜆√𝑝𝑟 (𝜆 = 0.618⋯ is a root of 𝜆2 + 𝜆 − 1 = 0), r means

the p-adic sequence length, we can use the decoding algorithm to get the rational number

back.

Euclidean Algorithm

𝑥 =∑𝑎𝑖𝑝
𝑖

𝑟

𝑖=0

𝑢−1 = 𝑝
𝑟, 𝑢0 = 𝑥

𝑣−1 = 0, 𝑣0 = 1

Begin 𝑖 = 0

While 𝑢𝑖 < 𝑝
𝑟/2

𝑞𝑖 = ⌊𝑢𝑖−1/𝑢𝑖⌋

𝑢𝑖+1 = 𝑢𝑖−1 − 𝑞𝑖𝑢𝑖

𝑣𝑖+1 = 𝑣𝑖−1 + 𝑞𝑖𝑣𝑖

End

Rational Number 𝛼 =
(−1)𝑖𝑢𝑖

𝑣𝑖

37

For finite P-adic number system, Krishnamurthy’s theory supplied a good idea to

separate the data structure from the math algorithm. While Dixon’s theory gave a better

idea to convert finite P-adic sequence back to rational number. We combined these

theories and supply an algorithm called Dixon-Krishnamurthy Algorithm (D-K

algorithm).

3.3. Dixon-Krishnamurthy Algorithm [16]

Dixon- Krishnamurthy algorithm (D- K algorithm) is based on Dixon and Krishnamurthy

theory. D- K algorithm includes conversion between rational number and P-adic

sequence, length r prediction and overflow detection. D- K algorithm is a data structure

algorithm. Other math algorithm can directly use this algorithm, with little changing.

3.3.1. Algorithm Implementation Process

In computer representations, there are different types of integers, such as short, int, long,

and double. Each type has its own range. For example, the range of short is

[−32768, 32767]. If there is a number larger than 32767, during the computing process,

errors will come. The solution is using other type with larger range, such as long. The

range of long is [−2147483648, 2147483647]. Similarly, there are data types for P-

adic number setting. And the rage set is decided by both the selected prime and number

sequence length r. It is proved that the Hensel code is unique, as long as the absolute

value of the numerator or denominator does not exceed √(𝑝𝑟 − 1)/2. For example,

when𝑝 = 2 & 𝑟 = 5, √
(𝑝𝑟−1)

2
= 3.93, the rage of number can be used is

38

3 2 1 2 3

1 1 1 1 1

3 1 1 3
0

2 2 2 2

2 1 1 2
0

3 3 3 3

 
  
 
  
 
 
  
   .

If the number out of this range is needed, the 𝑝 & 𝑟 setting should be changed.

Step 1. Predict Expansion Length r.

As Dixon’s theory: 𝛿 ≤ 𝜆√𝑝𝑟, 𝛿 means the largest integer among denominators and

numerators would show out during the calculation process, (𝜆 = 0.618⋯ is a root

of 𝜆2 + 𝜆 − 1 = 0),

 

 

2log /

log
r

p

 


When meeting some matrix computation systems, which can predict the bound, this

formula supplies a way to predict the length of the P-adic sequence.

For example, to predict the r for calculating inverse for n by n matrix A, by Hadamard’s

inequality, as given in [19].Assume m is the largest integer among the numerators and

denominators in matrix A, the largest integer 𝛿 during the calculation process will be less

than the product of the Euclidean lengths of its row vectors. 𝛿 ≤ 𝑛
𝑛

2𝑚𝑛,

so 𝑟 =
2 log(𝑛

𝑛
2𝑚𝑛/𝜆)

log𝑝
.

For the prediction issue, we will discuss more on the following chapters.

39

Step 2. Convert All Rational Numbers into P-adic Expansions

After defining 𝑃 & 𝑟, all the rational numbers will be converted into Hensel codes

by 𝑃 & 𝑟. Use P-adic arithmetic to do calculation. Then the Hensel code result will be

given.

Step 3. Result Verification and Convert back into Rational Numbers

Theorem 3.3.1 Using D- K Algorithm, for matrix calculations, if there are only addition,

subtraction, multiplication or division operations, the P-adic sequence result by using

length 𝑟 (𝑟 ≥ 2), will be equal to the first r sequence of the P-adic sequence result by

using length 𝑟 + 𝑘 (𝑘 ≥ 0), only if during calculation process, no P-adic sequence is

used as dividend which has the form of all zero in sequence (convert to rational number

will has form of 𝑝𝑟/𝑥 . (p is the Prime used by P-adic sequence, 𝑥 ∈ ℤ, 𝑥 ≠ 0, 𝑥 ≠

0 mod 𝑝)).

The proof process will be described on the overflow detection section.

The result verification is based on the following simple idea: for a rational number 𝑎/b, if

the length R is enough for P-adic sequence, then the conversation from P-adic sequence

R and R+1 should be the same rational number. (This verification cannot make sure the

accuracy exactly, but for practical implementation it is good enough).

The Euclidean algorithm will be used to convert P-adic expansions back into rational

numbers.

40

Input Fraction

Number Matrix

P-adic Series Coding:

Converse fraction

numbers into P-adic

series

Main Matrix System Calculation

Process:

Use long P-adic arithmetic and

the matrix algorithms to get the

result.

Roughly Estimate

P-adic Series

length r

verify

P-adic Series

Decoding: Converse

P-adic series into

fraction numbers.

If wrong

Adjust r

If right

Figure 3.2 Dixon – Krishnamurthy Algorithm Overview Flowchart

41

3.3.2. P-adic Arithmetic Using Long- digit Method

When D- K algorithm is implemented on computer, the computer resource is limited.

The prime P and length r is also limited. We have proved that: if we keep the prime P of

the P-adic series satisfying
2 & 2P m r m P    (m means the largest integer of kind

of computer data type, r means the length of the P-adic expansions). We can keep the

arithmetic of addition, subtraction, multiplication and division under the long integer

variables, which will greatly improve the efficiency at the practice level.

For the 32-bit computer architecture, for int data type the P is chosen as 46337, r <

2147437310. For the 64-bit computer architecture, for int data type the P is chosen

2147483647, r < 9223372036854775807.

The proof process is given in Appendix B.

3.3.3. Predict P-adic Expansion r for Complex Matrix System

If a matrix calculation system is too complex to predict the bound integer, we will do

another calculation process for D- K algorithm. We will try to make a relationship

between data size and P-adic expansion length r. The process will be changed to as

Figure 3.3.

42

Matrix Caculation

Roughly Estimate

P-adic Series

length r

verify

Output result

If wrong

Adjust r

If right

Figure 3.3 D– K Algorithm Improved Flow Chart

Actually, we need to choose a bigger r as the matrix size gets bigger, the choice of r can

be determined by running experiments. The following is an example for calculating 1000

Moore-Penrose inverse, at the different length and to get the accuracy, where we select:

P = 2147483647.

The range of the denominator or numerator on the input matrix is random from -50 to 50.

Matrix size
r = 40,

the accuracy

r = 45,

the accuracy

r = 50,

the accuracy

10 100% 100% 100%

15 100% 100% 100%

20 1.20% 84.30% 100%

 Table 3.1 D – K Algorithm Accuracy Comparing Flow Chart

43

3.4. Hensel Code Overflow Detection

Definition: Let β be a rational number and 𝑎−𝑛, 𝑎−𝑛+1, ⋯ , 𝑎−1, 𝑎0, ⋯ , 𝑎𝑘, ⋯ be its P-adic

expansion. Then the finite segment 𝑎−𝑛, 𝑎−𝑛+1,⋯ , 𝑎−1, 𝑎0, ⋯ , 𝑎𝑘, where r = n + k + 1 is

called the Hensel code of β and is denoted by 𝐻(𝑝, 𝑟, 𝛽) =

(𝑎−𝑛𝑎−𝑛+1⋯𝑎−1𝑎0⋯𝑎𝑘, 𝑖)[7]. Where p is the prime, r is the length of P-adic sequence,

and i is the position of the dot.

Some examples:

𝐻(7,4, −1/3) = (.2222,0)

𝐻(7,4,1/21) = (.5444,−1)

If r and p are fixed, any rational number
𝑏

𝑎
, 𝐺𝐶𝐷(𝑎, 𝑏) = 1, will have a unique Hensel

code representation, if it satisfies 0 < |𝑎, 𝑏| ≤ √(𝑝𝑟 − 1)/2 [8].

Hensel code overflow: For Hensel code 𝐻 (𝑝, 𝑟,
a

b
) , GCD(a, b) = 1 , when it

satisfies|𝑎, 𝑏| > √(𝑝𝑟 − 1)/2, the rational number, which the Hensel code represents,

cannot be uniquely recovered by the inverse transformation. In this situation, we call it

Hensel code overflow.

Notation: 𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑥, 𝑖)𝑎𝑛𝑑 𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑋, 𝑖) will be used to donate decoding Hensel

code x and Hensel code matrix X into rational number and rational number matrix by first

i digits.

44

For example, we take prime p = 7,

𝑥 = (.363000,0)

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑥, 4) = −2/25

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑥, 6) = 192

𝑋 =

(.1000000,0) (.4333333,0) (.5444444,0)
(.4333333,0) (.5444444,0) (.2515151,0)
(.5444444,0) (.2515151,0) (.3145214,0)

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑋, 4) =
9 −36 30
−36 −2/25 3/40
30 3/40 −3/40

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑋, 7) =
9 −36 30
−36 192 180
30 180 180

3.4.1 Overflow Detection Method

We give a method to detect the Hensel code overflow problem, just by using the prime p

and Hensel code itself. In this method, each Hensel code should have a verification part k.

This part will be sacrificed on Hensel code overflow detection. For Hensel code x with P-

adic sequence length i + k, if Decoding(x, i) ≠ Decoding(x, i+k), then Hensel code

overflow happened.

For example of Hensel code x, where

𝑥 = (. 𝑎0𝑎1⋯𝑎𝑖𝑎𝑖+1⋯𝑎𝑖+𝑘, 0)

45

will be treated as

𝑥 = (𝑎0𝑎1⋯𝑎𝑖 𝑎𝑖⋯𝑎𝑖+𝑘⏟
𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑡

, 0).

Overflow happened, if:

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑥, 𝑖) ≠ 𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑥, 𝑖 + 𝑘).

Overflow did not happen, if:

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑥, 𝑖) = 𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑥, 𝑖 + 𝑘).

For example: By taking prime p = 7, Hensel codes

x = (.64121144213620046103, 0),

y = (.1033421534, 0).

We take the last 3 digits as verification part,

Decoding(x, 17) = 1/33333,

Decoding(x, 20) = 1/33333.

But, Decoding(y, 7) = -45/53,

which is not equal to

Decoding(y, 10) = 908/1545.

By our method, we take x as 1/33333. And for y we experienced an overflow problem.

46

PROOF

The proof of the method will contain two parts:

Part 1. Overflow happens:𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑥, 𝑖) ≠ 𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑥, 𝑖 + 𝑘).

Before the proof of part 1, let us introduce theorem 3.4.1.1.

Theorem 3.4.1.1. For any rational number
𝑎

𝑏
(𝐺𝐶𝐷(𝑎, 𝑏) = 1), given any prime P, the P-

adic sequence𝑎0𝑎1⋯𝑎𝑘⋯ of the rational number satisfies that

lim
𝑖→∞

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔((𝑎0𝑎1⋯𝑎𝑘⋯ ,0), 𝑖) =
𝑎

𝑏

For example, take the prime p=7, and a rational number 1/143, its Hensel code 𝑥 =

(.51035550652456560502,0)

Decoding(x, 2) = -1/4

Decoding(x, 3) = 12

Decoding(x, 4) = 17/30

Decoding(x, 5) = 118/67

Decoding(x, 6) = 1/143

Decoding(x, 7) = 1/143

Decoding(x, 8) = 1/143

⋯

47

Proof: It is well known that any rational number
𝑎

𝑏
(𝐺𝐶𝐷(𝑎, 𝑏) = 1)will have unique

Hensel code representation, if it satisfies0 < |𝑎, 𝑏| ≤ √(𝑝𝑟 − 1)/2.The theorem 1 can be

directly proved from the above statement. Thus part 1 of theorem 1 is proved.

 Part 2. Overflow doesn’t happen: 𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑥, 𝑖) = 𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑥, 𝑖 + 𝑘)

This part cannot be proved. The statement, strictly speaking, should be that there is a high

likelihood, say 99.999999% or more, (experiment shows that when prime P is large

enough, or k is long enough, it can be 100%), that overflow doesn’t happen, when

Decoding (x, i) = Decoding (x, i + k).

In order to prove Part 2, we make the following guess.

Guess: For any rational number
𝑎

𝑏
(𝐺𝐶𝐷(𝑎, 𝑏) = 1) , given any prime p, with the

condition|𝑎, 𝑏| > √(𝑝𝑟 − 1)/2, the P-adic sequence 𝑎0𝑎1⋯𝑎𝑟⋯𝑎𝑟+𝑘⋯ of the rational

number satisfies:

a. With the increase of prime p, the probability of

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔((𝑎0𝑎1⋯𝑎𝑟⋯𝑎𝑟+𝑘⋯ ,0), 𝑟) =

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔((𝑎0𝑎1⋯𝑎𝑟⋯𝑎𝑟+𝑘⋯ ,0), 𝑟 + 𝑘) decreases.

b. If prime p is fixed, then with the increase of k, the probability

of𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔((𝑎0𝑎1⋯𝑎𝑟⋯𝑎𝑟+𝑘⋯ ,0), 𝑟) =

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔((𝑎0𝑎1⋯𝑎𝑟⋯𝑎𝑟+𝑘⋯ ,0), 𝑟 + 𝑘) decreases.

We cannot prove the guess, but we designed experiments to show the property.

48

Experiment 3.4.1.1, each time, the prime p is fixed. We randomly take 1000 rational

numbers,
𝑎

𝑏
(𝐺𝐶𝐷(𝑎, 𝑏) = 1), |𝑎, 𝑏| ≤ 10100 . When |𝑎, 𝑏| > √(𝑝𝑟 − 1)/2, we compare

whether Decoding(H(P, i+k, a/b), i) ≠ Decoding(H(p, i+k, a/b), i+k), i+k ≤ r. If it

happens, which means that it is a possible mistake in our judgment, and we record it as

one error. The following diagrams show that when k = 1 and k = 3, the primes versus the

percentage of errors.

Figure 3.4 k = 1, the primes versus the percentage of errors; Vertical axis:

Error percentage; Horizontal axis: Prime value

When verification part k = 1, and prime p > 100,000, the percentage of

errors goes down to 0.

0.0000%

10.0000%

20.0000%

30.0000%

40.0000%

50.0000%

60.0000%

3
2
5
1

5
4
7

1
0
4
9

1
5
5
9

6
5
5
3

1
1
5
5
1

1
6
5
5
3

2
1
5
5
9

2
6
5
5
7

3
1
5
4
7

3
6
5
5
9

4
1
5
4
9

4
6
5
5
9

5
1
5
6
3

1
0
1
5
6
1

1
5
1
5
6
1

2
0
1
5
5
7

2
5
1
5
6
7

3
0
1
5
3
1

3
5
1
5
6
3

4
0
1
5
6
7

4
5
1
5
5
3

5
0
1
5
6
3

verification part k=1, the error percentage

49

Figure 3.5 k = 3, the primes versus the percentage of errors; Vertical axis:

error percentage; Horizontal axis: prime value

When verification part k = 3, the percentage of errors goes down to 0 much earlier. When

prime p=600 or larger, the percentage of errors is close to 0.

We also did experiments with prime p =2147483647 fixed, and choose random rational

numbers
𝑎

𝑏
(𝐺𝐶𝐷(𝑎, 𝑏) = 1), |𝑎, 𝑏| ≤ 103000 . For large rational number (a/b) with

|𝑎, 𝑏| ≤ 103000, we choose up to 700 elements for P-adic sequence, which translate to

around 700 comparison tests for each rational number, and we tested more than 2000

very large random rational numbers. The percentage of errors is 0 with verification part

k=1 for all the tests.

Experiment 3.4.1.2, in this experiment, the prime p is fixed, we try to compute the error

rate versus verification part k. Each time, we randomly take 1000 rational

numbers
𝑎

𝑏
(𝐺𝐶𝐷(𝑎, 𝑏) = 1), |𝑎, 𝑏| ≤ 10100 . When |𝑎, 𝑏| > √(𝑝𝑟 − 1)/2 , we compare

whether Decoding(H(P, i+k, a/b), i) ≠ Decoding(H(P, i+k, a/b), i+k), i+k ≤ r. If it

happens, which means that it is a possible mistake for our judgment, and we record it as

one error.

0.0000%

2.0000%

4.0000%

6.0000%

8.0000%

10.0000%

12.0000%

14.0000%

16.0000%

18.0000%

3

2
5

1

5
0

3

7
5

1

9
9

7

1
2

4
9

1
4

9
9

1
7

5
3

2
0

0
3

2
2

5
1

2
5

9
3

7
5

9
1

1
2

5
8

9

1
7

5
9

9

2
2

5
7

3

2
7

5
8

3

3
2

5
8

7

3
7

5
9

1

4
2

5
8

9

4
7

5
9

9

verification part k=3, the error Percentage

50

Figure 1.6 Fix prime p =3, the verification part k versus the percentage of errors;

Vertical axis: error percentage; Horizontal axis: the value of k

When the prime is p =3, as verification part k >18, the percentage of errors goes to 0.

Figure 3.7 Fix prime p = 17, the verification part k versus the percentage of errors;

Vertical axis: error percentage; Horizontal axis: the value of k

0.0000%

10.0000%

20.0000%

30.0000%

40.0000%

50.0000%

60.0000%

1 3 5 7 9 1113151719212325272931333537394143454749

prime p= 3, the error percentage

0.0000%

2.0000%

4.0000%

6.0000%

8.0000%

10.0000%

12.0000%

1 3 5 7 9 1113151719212325272931333537394143454749

prime p=17, the error percentage

51

When we take the prime p =17, as verification pare k > 6, the percentage of errors goes to

0.

3.4.2. Practical Consideration

Our goal is to use Hensel code arithmetic on exact matrix calculation. We have

developed an algorithm called the Dixon-Krishnamurthy algorithm [14, 16] (D–K

algorithm). This algorithm can do any rational matrix computation using Hensel code

arithmetic. Here is an example of using D–K algorithm and Hensel code overflowing

detection method for matrix inverse calculation.

𝑥 =

1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

We take the prime p=7, we choose the length of Hensel code r = i + k, (i = 6, k = 1)

     

     

     

     

 

 c

.1000000,0 .4333333,0 .5444444,0

.4333333,0 .5444444,0 .2515151,0

.5444444,0 .2515151,0 .3145214,0

.2100000,0 .6166666,0 .2400000,0

 .6166666,0 .36300

Hensel ode

Inverse

x

 
 

 
 
 

    

     

     

00,0 .2236666,0

.2400000,0 .2236666,0 .5430000,0

 ,6 ,7

 No Hensel code overflow

9 36 30

 36 192 180

30 180 180

Overflow detection

Decoding

Decoding Inv s Decoding Inv s

 
 
 
 
 

 

 


 

 





52

Theorem 3.4.2.1 Use P-adic arithmetic for rational matrix calculation, choose r (r ≥ 1) as

P-adic sequence length to get the result 𝑅1; for the same calculation process, choose r + k

(k ≥ 0) as P-adic sequence length to get the result 𝑅2; the first r elements on each P-adic

sequence of 𝑅2 are equal to the corresponding r elements of the P-adic sequence of 𝑅1, if

during both the calculation processes, no P-adic sequences with elements of all zeros are

used as dividend.

Since the P-adic arithmetic [7] calculates from left to right, by the P-adic arithmetic rules,

this theorem can be easily proved.

From Theorem 3.4.2.1, there is an interesting property when we use D–K algorithm with

this method.

Property: If the length r is not long enough for a matrix calculation, we cannot get all the

correct answers in the whole matrix, but we can identify which elements in the matrix are

correct.

Taking the inverse of Hilbert Matrix [5x5] as an example, if the prime 𝑝 = 751 ,

verification part 𝑘 = 3, and length 𝑟 = 6, using Gaussian elimination to get the results as

the following:

25 300 1050 1400 630

300 4800 18900 16291/15757 12600

1050 18900 6929 / 5336 4196 /14407 15751/ 7470

1400 16591/15757 4196 /14407 3147 /14407 12947 / 7091

630 12600 15751/ 7470 3147 /14407 15749 / 9605

 

   

  

   

  

We do not know whether overflow has happened during the calculation process. By using

our method, we can identify the correct elements in the matrix as the following:

53

25 300 1050 1400 630

300 4800 18900 12600

1050 18900

1400

630 12600

error

error error error

error error error error

error error error

 

  







For a Hilbert matrix 𝐻𝑖𝑗, we can directly get the matrix inverse [14]:

𝛼𝑖𝑗 = (−1)
𝑖+𝑗(𝑖 + 𝑗 − 1) (

𝑛 + 𝑖 − 1

𝑛 − 𝑗
)

(
𝑛 + 𝑗 − 1

𝑛 − 𝑖
) (
𝑖 + 𝑗 − 2

𝑖 − 1
)
2

From the above formula, the right answer for the inverse of Hilbert Matrix [5x5] should

be the following:

25 300 1050 1400 630

300 4800 18900 26880 12600

1050 18900 79380 117600 56700

1400 26880 117600 179200 88200

630 12600 56700 88200 44100

 

  

 

  

 

Comparing the matrix inverse results, we can find that the matrix inverse has an overflow

problem, but correct entries of the resulting matrix can be identified.

54

Figure 3.8 Hilbert matrix inverse 5 x 5; Vertical axis: value of r – k;

Horizontal axis: value of Hilbert matrix inverse 5 x 5, ordered from small

to large

In Figure 3.8, the prime 𝑝 = 751, the actual length is r-k, which r is the total length used

for calculation, and k is the verification part length, (r-k) means the effective length

needed for the Hensel code conversion. The example in this diagram is the exact

representation of the rational numbers from the right answers of the inverse of Hilbert

Matrix [5x5].

In this diagram, the horizontal axis shows the exact rational number results of the inverse

of Hilbert matrix [5x5], and the vertical axis shows the length r-k (k is the verification

part), which satisfies |𝑎, 𝑏| ≤ √(𝑝𝑟−𝑘 − 1)/2 , from rational number result

𝑎

𝑏
(𝐺𝐶𝐷(𝑎, 𝑏) = 1). The diagram shows that the longer length r-k, the more right answers

we can identify. If the length r-k>4, then we will get all the answers correctly.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-1
1
7
6
0
0

-1
1
7
6
0
0

-8
8
2
0
0

-8
8
2
0
0

-1
8
9
0
0

-1
8
9
0
0

-1
2
6
0
0

-1
2
6
0
0

-1
4
0
0

-1
4
0
0

-3
0
0

-3
0
0

2
5

6
3
0

6
3
0

1
0
5
0

1
0
5
0

4
8
0
0

2
6
8
8
0

4
4
1
0
0

5
6
7
0
0

5
6
7
0
0

7
9
3
8
0

1
7
9
2
0
0

2
6
8
8
0
0

Hilbert matrix inverse 5x5

55

Experiment 3.4.2.1. In our following experiments, prime p=2147483647 is fixed (which

is the largest prime we can use on 64-bits computer architecture) and verification part k=1.

We generate random square rational matrix 30x30, each element
𝑎

𝑏
(𝐺𝐶𝐷(𝑎, 𝑏) = 1)

satisfies |𝑎, 𝑏| ≤ 200. We do matrix inverse on the generated matrix with both the NTL-

RationalNumber package and the P–adic arithmetic package. The RationalNumber

package is based on NTL library [14], which can dynamically represent integers of any

size. The NTL-RationalNumber package can realize exactly rational number calculation

too. We compare the results from both packages. If one element from the P–adic package

passes Hensel code overflow detection, but it is not equal to the element from the NTL-

RationalNumber package, an error happened. We also use the NTL-RationalNumber

package for comparison to test the correctness of our P–adic arithmetic.

We have taken 200 random matrices and did 960000 comparisons. The error rate is 0. We

have developed a software package [10, 15] to do matrix calculation by D-K algorithm

and the Hensel code overflow detection method. This software has been well tested on

matrix calculations so far, and the performance is good.

3.5. Compare Rational Number System with Finite P-adic Number

System

If we choose a large prime p = 2147483647 and sequence length r = 4 for P-adic

sequence, then P-adic sequences will need 4 units to represent each rational number

regardless of the size of the number. When the size of the rational number is large, it does

the same amount of operations. When the size of the number is relatively small, Rational

56

Number System will need fewer units to represent the number, and then do fewer

operations. Here are two extreme examples:

a) If the number is 9 (one digit only), Rational Number System represents it with one

unit, while P-adic sequences will need 4 units.

b) If the number is 123456789123456789, Rational Number System needs 18 units,

while P-adic sequences still only need 4 units. If we do calculation uses

123456789123456789, Rational Number System should do operations with 18

units, while P-adic sequences only need 4 units.

Rational Number System carries out exact calculation by rational number arithmetic,

which means Rational Number System represent numerator and denominator separately.

The calculations for addition and multiplication are as the following:

Notation: GCD (a, b) means Greatest Common Divisor of a and b.

Addition process:

    
  

1 2 2 1 1 2 2 1 1 21 2 1 2 2 1

1 2 1 2 1 2 1 2 2 1 1 2

/ ,

/ ,

a b a b GCD a b a b b ba a a b a b

b b b b b b GCD a b a b b b

 
  


.

Multiplication processes:

 

 
1 2 1 2 1 21 2 1 2

1 2 1 2 1 2 1 2 1 2

/ ,

/ ,

a a GCD a a b ba a a a

b b b b b b GCD a a b b
  

.

57

During the rational number arithmetic process, the GCD (numerator, denominator) must

be found. This process costs a lot of time. The Euclidean algorithm is used to find GCD

in our computation, and we find that it is the most efficient algorithm.

The following charts are the experimental results of testing the calculation time for both

Rational Number System and Finite P-adic Number System. We did 100,000 times of

operations for rational numbers from 99/98 to 9999…9/99999…98.

For the P-adic sequence, we choose prime P = 2147483647, length r = 30, then √
𝑃𝑟−1

2
≈

6.73 × 10139, which means that the denominators and numerators must be smaller than

6.73 × 10139. During the multiplication calculation process, we have to make sure that

all numbers are smaller than√6.73 × 10139 , that translates to 1069 . In the following

charts, we calculated up to 10’s power of 60, which guarantees the arithmetic process not

overflowing the range of P –adic sequence. The horizontal axis represents the time (in

seconds) for both data type. The vertical axis represents the number of digits of

denominators and/or numerators.

Figure 3.9 Efficiency Comparison for Additions

0

0.2

0.4

0.6

0.8

1

1.2

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59

Se
co

n
d

s

Addition
NTL-RationalNumber
P-adic Sequence(30)

58

For additions, P-adic method is always faster than NTL method for all sizes due to no

GCD calculation is needed during the computational process.

Figure 3.5.2. Efficiency Comparison for Multiplications

For multiplications, NTL method is faster for small sizes less than 50, P-adic method is

faster for large sizes (> 50 digits) due to the symbolic representation of all digits for NTL

method, the GCD calculation gets really slow for rational numbers with more digits

during the computational process.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59

Se
co

n
d

s
Multiplication

NTL-RationalNumber

P-adic Sequence(30)

59

Chapter 4

Multiple P-adic Data Type

We have been developing P-adic Exact Scientific Computational Library (ESCL) for

rational matrix operations. Based on Krishnamurthy [7, 17] and Dixon [12] theories, we

have established a finite P-adic sequence calculation system [6, 16, 27 and 42]. But there

is a problem that for certain complex matrix operations, even with small matrix sizes, the

new method requires a long P-adic sequence to guarantee against overflow [6]. The

longer the P-adic sequences are, the longer the calculation will take, and computational

efficiency becomes an issue. One solution to this problem is to adopt parallel computing.

It is difficult to realize parallel computation directly in P-adic arithmetic due to its data

structure. If we combine the multiple modulus rational systems [33] and the P-adic

arithmetic, then parallel computation can be realized, which was called multiple P-adic

arithmetic by Morrison [23]. A similar idea was also mentioned by Limongelli, Loidl [24]

and Koc [25]. This chapter will be focused on parallel implementation of multiple P-adic

arithmetic applied to rational matrices using P-adic exact computation. Overflow

detection will also be addressed. Finally, comparison tests and experimental results will

be presented.

60

4.1. Extended Chinese Remainder Theorem

Recalling the Theorem (Chinese remainder theorem) [17, 19], if 𝑟~{𝑟1, 𝑟2, ⋯ , 𝑟𝑠} is the

residue representation of an integer 𝑟 with respect to moduli {𝑝1, 𝑝2, ⋯ 𝑝𝑠} , where,

𝐺𝐶𝐷(𝑝𝑖, 𝑝𝑗) = 1 for i ≠ j , define 𝑝 = ∏ 𝑝𝑖
𝑠
𝑖=1 and 𝑝𝑖

′ by
𝑝

𝑝𝑖
𝑝𝑖
′ ≡ 1 𝑚𝑜𝑑 𝑝𝑖 , then the

solution of the system is given by

𝑟 ≡∑
𝑝

𝑝𝑖
𝑝𝑖
′𝑟𝑖

𝑠

𝑖=1

 mod 𝑝

If the given condition is |𝑟| <
1

2
𝑝, the value of r can be identified by:

𝑟 = {
𝑟 if 𝑟 ≤ (𝑝 − 1)/2

−(𝑝 − 𝑟) otherwise

For example:

𝑟 ≡ 2 mod 3

𝑟 ≡ 3 mod 4

𝑟 ≡ 4 mod 5

According to the Chinese remainder theorem,

𝑝 = 60

𝑝1
′ = 2

𝑝2
′ = 3

𝑝3
′ = 3

𝑟 ≡ 59 𝑚𝑜𝑑 60

61

If given condition |𝑟| <
1

2
𝑝,

𝑟 = −1

4.1.1. Extended Chinese Remainder Theorem to Rational Numbers [33]

The Chinese remainder theorem deals with integers. It shows how to transform a large

integer into a sequence of small integers. There is also a way to transform a fractional

number with a large numerator and/or denominator into a sequence of small integers.

This method has been named as multiple module number systems [33], which we like to

call it the extended Chinese remainder theorem.

a. How to calculate rational module

For a rational number
𝑏

𝑎
 with 𝐺𝐶𝐷(𝑎, 𝑏) = 1, the calculation of

𝑏

𝑎
 𝑚𝑜𝑑 𝑝 (𝑝 ≥ 0, 𝑝 ∈ Z)

is defined as

𝑟 = 𝑏𝑎′ mod 𝑝 (𝑎𝑎′ mod 𝑝 ≡ 1)

b. How to decode from the extended Chinese remainder theorem [11]

If 𝑟~{𝑟1, 𝑟2, ⋯ , 𝑟𝑠} is the residue representation of a rational number r with respect to

moduli {𝑝1, 𝑝2, ⋯ 𝑝𝑠} where 𝐺𝐶𝐷(𝑝𝑖, 𝑝𝑗) = 1 for 𝑖 ≠ 𝑗, then the decoding algorithm is

given as in Figure 4.1.

62

Figure 4.1 Extended Chinese Remainder Theorem

c. How to identify the bound of the representation of a fraction number from the

extended Chinese remainder theorem

Define𝑟 =
𝑎

𝑏
, 𝐺𝐶𝐷(𝑎, 𝑏) = 1and 𝛿 = 𝑚𝑎𝑥 (𝑎, 𝑏), according to Dixon’s theory that if 𝛿

satisfies 𝛿 ≤ 𝜆√𝑝 (𝜆 = 0.618⋯ is a root of 𝜆2 + 𝜆 − 1 = 0), we can use the decoding

algorithm to get the rational number back.

For example, we choose 𝑟 =
1

7
 and 𝑝1 = 3, 𝑝2 = 4, 𝑝3 = 5 to check the decoding process:

𝑟 ≡ 1 mod 3

𝑟 ≡ 3 mod 4

𝑟 ≡ 3 mod 5

Decoding algorithm

Step 1: Chinese remainder theorem

 𝑝 = ∏ 𝑝𝑖
𝑠
𝑖=1

 For 𝑖 = 1 to 𝑠
 Using extended Euclidean algorithm

 to find 𝑝𝑖
′ by

𝑝

𝑝𝑖
𝑝𝑖
′ ≡ 1 𝑚𝑜𝑑 𝑝𝑖

 End

 𝑟̅ = ∑
𝑝

𝑝𝑖
𝑝𝑖
′𝑟𝑖

𝑠
𝑖=1 𝑚𝑜𝑑 𝑝

Step 2: Euclidean algorithm

𝑢−1 = 𝑝, 𝑢0 = 𝑟̅
 𝑣−1 = 0,𝑣0 = 1

 𝑖 = −1

While 𝑢𝑖 < √𝑝

 𝑞𝑖 = ⌊𝑢𝑖−1/𝑢𝑖⌋
 𝑢𝑖+1 = 𝑢𝑖−1 − 𝑞𝑖𝑢𝑖
 𝑣𝑖+1 = 𝑣𝑖−1 + 𝑞𝑖𝑣𝑖
 𝑖 + +
 End

Rational solution:

 𝑟 = ((−1)𝑖𝑢𝑖/𝑣𝑖)

63

Step 1:

Using the Chinese remainder theorem, we get,

𝑝 = 60, 𝑟̅ = 43

Step 2:

 By the Euclidean algorithm, we get,

𝑢−1 = 60, 𝑣−1 = 0

𝑢0 = 43, 𝑣0 = 1

𝑢1 = 17, 𝑣1 = 1

𝑢2 = 9, 𝑣2 = 3

𝑢3 = 8, 𝑣3 = 4

𝑢4 = 1, 𝑣4 = 7

The rational solution is,

𝑟 =
1

7

64

4.1.2. Implementation of the Extended Chinese Remainder Theorem with P-adic

Arithmetic

By the nature of the extended Chinese remainder theorem, it can be implemented on

parallel computers. The idea can be demonstrated as follows:

Rational number entries

M
o

d
u

le
 b

y
 P

1

M
o

d
u

le
 b

y
 P

2

M
o

d
u

le
 b

y
 P

3

…
…

M
o

d
u

le
 b

y
 P

n

M
a
th

e
m

a
tic

 a
lg

o
rith

m

C
a
lc

u
la

te
 in

 G
F

(P
1

)

C
a
lc

u
la

te
 in

 G
F

(P
2

)

C
a
lc

u
la

te
 in

 G
F

(P
3

)

…
…

C
a
lc

u
la

te
 in

 G
F

(P
n
)

Decoding back to rational number

Figure 4.2 Extend CRT Parallel Implementation Chart

65

But in practice, there is a disadvantage of direct application. For a rational number
𝑏

𝑎
 and

a prime 𝑝, if 𝑎 and 𝑝 are not relatively prime, we cannot get the result of
𝑏

𝑎
 mod 𝑝. The

way to solve this problem is to combine Hensel code calculation systems with the

extended Chinese remainder theorem.

4.1.3. Combining P-adic Arithmetic with the Extended Chinese Remainder

Theorem

P-adic arithmetic can be combined with the extended Chinese remainder theorem to do

exact computing. It was called multiple P-adic algorithm [23]. In each GF(𝑝𝑖) we can use

finite P-adic sequence to do calculation, the flow chart is the following:

Rational number entries
C

ode to finite P
1-adic

C
ode to finite P

2-adic

C
ode to finite P

n-adic

…
…

P
-adic arithm

etic in G
F

(P
1)

P
-adic arithm

etic in G
F

(P
2)

P
-adic arithm

etic in G
F

(P
n)

…
…

Decoding back to rational number

M
athem

atic algorithm

Figure 4.3 Extended CRT combined with P-adic arithmetic for parallel implementation

66

The decoding process:

If 𝑥~{𝑥1, 𝑥2, ⋯ 𝑥𝑠} , 𝑥𝑖 is the Hensel code P-adic sequence with

𝑥𝑖~{𝑎𝑖0, 𝑎𝑖1, ⋯ , 𝑎𝑖𝑛; point position} respect to prime set {𝑝1, 𝑝2, ⋯ , 𝑝𝑠}.

The residue representation 𝑟~{𝑟1, 𝑟2, ⋯ , 𝑟𝑠} can be given as:

𝑟𝑖 = 𝑝
𝑝𝑜𝑖𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛∑𝑎𝑖𝑗𝑝

𝑗

𝑛

𝑗=0

where 𝑝~{𝑝1
𝑛, 𝑝2

𝑛, ⋯ , 𝑝𝑠
𝑛}.

For example, if we choose the prime set as {2147483647, 2147483629, 2147483587}

(the largest prime numbers smaller than square root of 2 to 64 power, 64-bit CPU

architecture, 𝑝𝑖 ≤ 2147483647), we wish to obtain the reflexive general inverse of

matrix A, given in the following example. For each GF(𝑝) calculation, we choose the P-

adic length as 2. The computation process is the following:

The entry rational matrix,

𝐴 = [
1 2
1/3 1/4
5 6

]

After modulo operations by 𝑝1, 𝑝2, 𝑝3, we have the following P-adic matrices,

𝑝1 = 2147483647,

AP1 = [
. 1, 0 . 2, 0

. 1431655765, 1431655764 . 536870912, 1610612735
. 5, 0 . 6, 0

]

67

𝑝2 = 2147483629

AP2 = [
. 1, 0 . 2, 0

. 1431655753, 1431655752 . 1610612722, 1610612721
. 5, 0 . 6, 0

]

𝑝3 = 2147483587

AP3 = [
. 1, 0 . 2, 0

. 1431655725, 1431655724 . 536870897, 1610612690
. 5, 0 . 6, 0

]

Parallel calculation of each 𝑝𝑖 under P-adic arithmetic to get the reflexive general inverse,

the results:

𝑝1 = 2147483647

𝑔 − 𝐼𝑛𝑣𝑒𝑟𝑠𝑒(𝐴)𝑃1

= [
. 1717986917, 858993458 . 1288490193, 1717986917 . 0, 0
. 1288490189, 1717986917 . 429496727, 1288490188 . 0, 0

]

𝑝2 = 2147483629

𝑔 − 𝐼𝑛𝑣𝑒𝑟𝑠𝑒(𝐴)𝑃2 = [
. 858993451, 1288490177 . 1717986908, 429496725 . 0, 0
. 1717986904, 429496725 . 1288490175, 858993451 . 0, 0

]

𝑝3 = 2147483587

𝑔 − 𝐼𝑛𝑣𝑒𝑟𝑠𝑒(𝐴)𝑃3

= [
. 1717986869, 858993434 . 1288490157, 1717986869 . 0, 0
. 1288490153, 1717986869 . 429496715, 1288490152 . 0, 0

]

68

Decoding from the extended Chinese remainder theorem is the following:

𝑔 − 𝐼𝑛𝑣𝑒𝑟𝑠𝑒(𝐴) = [
−3/5 24/5 0
4/5 −12/5 0

].

4.1.4. Practical Considerations for the Implementation of Multiple P-adic Algorithm

4.1.4.1. Advantages of multiple modulus arithmetic

 There are three advantages of multiple P-adic algorithm as stated below.

a. Avoid the denominator problem

For rational number
𝑏

𝑎
 and prime 𝑝 , if 𝑎 and 𝑝 are not relatively prime, we cannot

calculate
𝑏

𝑎
 mod 𝑝 . Because 𝑝 is a prime, if 𝑎 and 𝑝 are not relatively prime, 𝑎 =

𝑥𝑝𝑦, 𝑥, 𝑦 ∈ 𝑁. We can still get the finite P-adic sequence of
𝑏

𝑎
, just the point position will

be equal to 𝑦.

b. Increase the representation range

With {𝑝1, 𝑝2, ⋯ , 𝑝𝑠} , 𝑝 = ∏ 𝑝𝑖
𝑠
𝑖=1 , for multiple module arithmetic, the bound for the

representation of denominator and/or numerator will be 𝜆√𝑝 (𝜆 = 0.618⋯ is a root of

𝜆2 + 𝜆 − 1 = 0). While for multiple P-adic algorithm with each P-adic length is 𝑟, the

bound will be 𝜆√𝑝′, 𝑝′ = ∏ 𝑝𝑖
𝑟𝑠

𝑖=1 .

c. Parallel data structure

One of the important issues of finite P-adic arithmetic is to choose the P-adic sequence

length 𝑟. If the initial 𝑟 is not long enough, Hensel code overflow will happen [6]. The P-

69

adic sequence length 𝑟 needs to be increased and the calculated results have to be

discarded. On the other hand, for the multiple P-adic algorithm, when overflow happens,

the calculated results can be kept. One should merely choose another prime 𝑝𝑖 to continue

the calculation, then combine the previously calculated results to convert back to the

rational number by the extended Chinese remainder theorem.

By the “natural” structure of the extended Chinese remainder theorem, multiple P-adic

arithmetic can be realized through parallel computation.

4.1.4.2. Choosing a prime

How to choose the prime set {𝑝1, 𝑝2, ⋯ , 𝑝𝑠}? According to the theory, for a fixed 𝑠 value,

the larger 𝑝𝑖 you choose, the larger the bound that will result. But for computer

architectures with 32 bit or 64 bit CPUs, when using the existing integer classes, the

largest pi should be chosen with respect to 46337 or 2147483647 to assure overflow

protection [16]. This means that for a 32-bit CPU architecture, 𝑝𝑖 ≤ 46337, while for a

64-bit CPU architecture, 𝑝𝑖 ≤ 2147483647.

4.1.4.3. Parallel programming

The modern computer architecture utilizes multiple cores in the CPU. The parallel

tasking design can significantly improve the efficiency of any computation. The multiple

P-adic arithmetic has the natural property to realize parallel computation. The

programming design can be described by the flowing flow chart:

70

Rational number entries

Roughly

decide P set

G
enerate P

1-adic sequece by length

r

G
enerate P

n-adic sequece by length

r

…
...

…
...

G
enerate P

(n+
1)-adic sequece by

length r

G
enerate P

(n+
s)-adic sequece by length

r

M
athem

atic algorithm

C
alculate by P

-adic arithm
etic in

G
F

(P
1)

C
alculate by P

-adic arithm
etic in

G
F

(P
n)

…
...

…
...

C
alculate by P

-adic arithm
etic in

G
F

(P
n+

1)

C
alculate by P

-adic arithm
etic in

G
F

(P
n+

s)

Overflow

detection

No overflow happened

Overflow happened

Add more Pi

on P set

Print rational number results

Figure 4.4. Multiple P-adic Arithmetic Implementation Flow Chart

71

The number of tasks, which will be the same as s from {𝑝1, 𝑝2, ⋯ , 𝑝𝑠}, can be chosen

with respect to the number of CPU cores to improve the efficiency.

4.2. The Main Properties of Multiple P-Adic Data Type

4.2.1. Error-free Computing in Rational Number Field

Each rational number is represented by a finite sequence of integers. The integers’ values

are the module results of prime numbers, which can be chosen by developers and also

depend on the CPU architectures. The arithmetic calculation process is in a rational

number field, thus there will be no truncation error. The arithmetic is transformed to

integer arithmetic and module operations.

The structure of the data type can be explained as the following:

𝑏

𝑎
∶ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 00 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 01 ⋯ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 0𝑘⏟

𝑚𝑜𝑑𝑢𝑙𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑜𝑓 𝑃0

 ⋯ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑛0 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑛1 ⋯ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑛𝑘⏟
𝑚𝑜𝑑𝑢𝑙𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑜𝑓 𝑃𝑛

For example, form prime number set [257, 251, 241], then,

1

10234567
∶ 179 235⏟
𝑚𝑜𝑑𝑢𝑙𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑜𝑓 257

6 193⏟
𝑚𝑜𝑑𝑢𝑙𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑜𝑓 251

229 114⏟
𝑚𝑜𝑑𝑢𝑙𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑜𝑓 241

The integer sequence for
1

10234567
 is:

179, 235; 6, 193; 229, 114.

The size of the prime number set and the length for the integer sequence can be self-

defined. The size of the prime number set can affect the efficiency of parallel computing.

The detailed explanation will be introduced in the natural parallel ability section. Because

72

the arithmetic operation is in a rational number field as integers, there will be no

truncation error. For example of the calculation of
1

2
+
1

3
 with the prime set[257,251,241],

1

2
: 129,128; 126,125; 121, 120

1

3
: 86, 171; 84,167; 161, 160

+

129 128 126 125 121 120
86 171 84 167 161 160
215 42 210 41 41 40

The sequence: 215,42; 210,41; 41,40 is transformed to
5

6

4.2.2. Integer Calculations Taking Full Use of Computer Architecture

Usually, the rational calculation is using arbitrary length integers to represent the

numerator and denominator. For example, we use one character (1 byte) to represent each

digit of an integer and then link the data structure to realize the arbitrary length of the

integer. For example, when calculating 1234567 + 7654321

+

1 2 3 4 5 6 7
7 6 5 4 3 2 1
8 8 8 8 8 8 8

Including the carry-out operations, there will be 16 possible character operations. While

using the Multiple P-adic Data Type, and choosing [46337] as the prime set, the

calculation process will be

+

29805 26 0
8716 165 0
38521 191 0

73

There are only 3 additions and 3 module operations.

For rational operation, the numerator and denominator will cost more due to the reasons

shown below:

Addition process:

𝑎1
𝑏1
+
𝑎2
𝑏2
=
𝑎1𝑏2 + 𝑎2𝑏1

𝑏1𝑏2

=
(𝑎1𝑏2 + 𝑎2𝑏1)/𝐺𝐶𝐷((𝑎1𝑏2 + 𝑎2𝑏1), 𝑏1𝑏2)

𝑏1𝑏2/𝐺𝐶𝐷((𝑎1𝑏2 + 𝑎2𝑏1), 𝑏1𝑏2)

Multiplication process:

𝑎1
𝑏1
×
𝑎2
𝑏2
=
𝑎1𝑎2
𝑏1𝑏2

=
𝑎1𝑎2/𝐺𝐶𝐷(𝑎1𝑎2, 𝑏1𝑏2)

𝑏1𝑏2/𝐺𝐶𝐷(𝑎1𝑎2, 𝑏1𝑏2)

During these calculation processes, 𝐺𝐶𝐷(𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟, 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟) must be found

and extra calculation steps will be needed. However, for Multiple P-adic Data Type there

will be no difference between fractions and integers.

The Multiple P-adic Data Type can be easily implemented on 32 and 64-bit platforms.

The only difference is to choose the right prime number set. On the 32-bit platform, the

maximum prime is 𝑃 = 46337, the largest prime numbers smaller or equal to 46337 can

be used, while on the 64-bit platform, the maximum prime will be 𝑃 = 2147483647, the

largest prime numbers smaller or equal to 2147483647 can be used.

74

4.2.3. Natural Parallel Structure Taking Full Use of Multi-core System

According to the features of the Multiple P-adic Data Type, parallel computing can be

implemented on any algorithm with basic arithmetic operations and do not depend on the

specific algorithm. The parallel structure depends on the size of the chosen prime set. For

example, we calculate (
1

17
− 1) ×

1

2
 with prime set[257, 251,241],

1

17
: 121,60; 192,14; 156,212

1: 1,0; 1,0; 1,0

1

2
: 129,128; 126,125; 121,120

257 𝐿𝑖𝑛𝑒 𝑃𝑟𝑜𝑐𝑒𝑠𝑠

−

121 60
1 0

120 60

×
129 128

60 30

251 𝐿𝑖𝑛𝑒 𝑃𝑟𝑜𝑐𝑒𝑠𝑠

−

192 14
1 0

191 14

×
126 125

221 132

241 𝐿𝑖𝑛𝑒 𝑃𝑟𝑜𝑐𝑒𝑠𝑠

−

156 212
1 0

155 212

×
121 120

198 226⏟
3 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑 𝑃𝑟𝑜𝑐𝑒𝑠𝑠

After the 3 separated computing processes, we can get the final

result: −
8

17
: 60,30; 221,132; 198,226.

Most of the linear processes can directly use this data type to realize parallel computing

without modification at the mathematical algorithm level. We have implemented this data

type to calculate matrix inverse, Moore-Penrose inverse (General Inverse) and 𝑒𝐴𝑡.

75

4.2.4. Easy for Task Allocation in Cloud Environment

Using the Multiple P-adic Data Type, the total work load is homogeneously allocated

into small parts which is as many as the size of the prime set. It will be easier for making

task allocations in a cloud environment. Furthermore in the symbolic (numerator-

denominator) rational number calculation process, as the size of the arbitrary length

number grows, the memory cost will increase quickly, while the Multiple P-adic Data

Type will not have that kind of problem. The memory cost for each key will not grow

during the calculation process. It is easy to estimate the memory cost before the

calculation.

4.2.5. Practical Considerations in a Cloud Environment

Using Multiple P-adic Data Type, each module is independent of others, so that each can

be computed on a different cluster node and can be done not necessarily at the same time.

At each cluster node, a parallel algorithm can also be implemented during the matrix

calculation process on multi CPU cores. If the matrix size is too large, the block

algorithm can be freely implemented in the calculation process. The efficient formula for

calculation time is the following:

𝑇𝑜𝑡𝑎𝑙 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝐶𝑜𝑠𝑡

= 𝐵𝑎𝑠𝑖𝑐 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝐶𝑜𝑠𝑡

× ⌈
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑃𝑈 𝑈𝑠𝑒𝑑
⌉

Basic Integer Calculation Time means the time cost on one node calculation by one

module prime (64bits integer type or 32bits integer type). Calculation Complexity means

76

the necessary prime set length with no overflow happening. Of course, the total time cost

must also include the communication cost between nodes and the host at the beginning

and the end of each node calculation.

The implementation process is the following:

1) Analyze the work load. According to the matrix size, the complexity of the number and

the matrix calculation algorithms, the size of prime set s and the length of the P-adic

sequence r will be decided. For a specific matrix transform, there will be a specific

algorithm chosen or created for the work load evaluation. For example, to calculate 𝐴𝑥 =

𝑏, Hadamard’s inequality will be used: 2𝑚𝑎𝑥 (𝑛
𝑛

2𝑀(𝐴)𝑛, 𝑛(𝑛 − 1)
𝑛−1

2 𝑀(𝐴)𝑛−1𝑀(𝑏)) ≤

𝜆√∏ 𝑝𝑖
𝑟𝑠

𝑖=1 , where 𝜆 = 0.618⋯ is a root of 𝜆2 + 𝜆 − 1 = 0, 𝑀(𝑋) means the largest

value of denominator or numerator among elements in matrix X, s means the number of

cluster node assigned, and r usually can represent the calculation efficiency. The smaller

r means less calculation time and less memory usage for a cluster node, while the smaller

r requires larger s, which means to assign more cluster nodes.

2) Work load separation. The original matrix data and a specific prime from a prime set

will be sent to different cluster nodes. In each node, the original matrix elements will be

module by the prime and generate P-adic sequence with length equals to r. Then the

matrix transformation will be calculated. During this process, parallel and block

algorithms can be freely implemented.

3) Generate the final result. All the temporary results will be collected from various

nodes in the cloud by the master (host). The final rational result will be generated on the

host machine. The Hensel code overflow detection will be used for verification. If

77

overflow does not happen, we get the final result. Otherwise, keep the temporary results

and choose a different prime set, then go to step 1).

A. Compare with the MATLAB Symbolic Toolbox

This new data type can significantly shorten the calculation time by using more CPU-

cores. We have compared the calculation time for matrix inverses with the symbolic

toolbox in MATLAB, the experimental results are given in Figure 4.2.1. The computer

used is the Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz for the experiment. This CPU

has 8 CPU cores.

The following results (Figure 4.2.1) show the calculation time of the inverse of

𝐻𝑖𝑙𝑏𝑒𝑟𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 × 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 𝑚𝑎𝑡𝑟𝑖𝑥.

Figure 4.5 Vertical axis: Calculation time (seconds); Horizontal axis: Matrix size (N x N)

The MATLAB code is following:

0

200

400

600

800

1000

1200

1400

5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Matlab Symbolic

Multiple P-adic Data Type

78

for n = 5:100

A = hilb(n);

B = sym(A);

B = B * B;

n

tic

inv(B);

t1(n) = toc;

toc

end

During the calculation process, Matlab uses only one core of CPU to do the calculation,

while our data type takes full use of all the 8 cores.

B. Compare with the Mathematic Symbolic Toolbox

We have compared the calculation time for Moore-Penrose inverses with symbolic

toolbox in Mathematica 8, the experimental results are given in Figure 4.2.2 and Figure

4.2.3.

Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz is used to do the experiment. This CPU has

8 CPU cores. The following results (Fig. 3) show the calculation time of the inverse of

𝐻𝑖𝑙𝑏𝑒𝑟𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 × 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 𝑚𝑎𝑡𝑟𝑖𝑥.

Figure 4.6 Vertical axis: calculation time (seconds); Horizontal axis: matrix size (N x N)

0

5

10

15

20

25

30

35

40

45

50

5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Mathematica Symbolic

Multiple P-adic Data Type

79

The Mathematica code is following:

Array[f,100];

For[i=5,i<105,i++,s =

HilbertMatrix[i]*HilbertMatrix[i];f[i-4] =

Timing[Inverse[s];][[1]];Print[f[i-4]]]

The following results (Figure 4.2.3) show the calculation time of the Moore-Penrose

inverse of 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 × 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 𝑚𝑎𝑡𝑟𝑖𝑥.

Figure 4.7 Vertical axis: calculation time (seconds); Horizontal axis: matrix size

The Mathematica code is following:

Array[f,100];

For[i=5,i<105,i++,s =

HilbertMatrix[i]*HilbertMatrix[i];f[i-4] =

Timing[PseudoInverse[s];][[1]];Print[f[i-4]]]

During the calculation process, Mathematica uses 4 cores of the CPU, while our data type

takes full use of all the 8 cores of the CPU. If the input matrix is more complex, the

advantage of this new data type is more obvious. This observation can be shown by

0

200

400

600

800

1000

1200

1400

1600

5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Mathematica Symbolic

Multiple P-adic Data Type

80

comparing Figure 4.6 and Figure 4.7 Calculating the Moore-Penrose Inverse is more

complex than general matrix inverse.

4.3. Overflow Detection for Multiple P-adic Data Type

Multiple P-adic data type overflow: for a rational number
𝑎

𝑏
, when it satisfies |𝑎, 𝑏| >

𝜆√𝑝 (𝜆 = 0.618⋯ is a root of 𝜆2 + 𝜆 − 1 = 0), the rational number which the Multiple

P-adic data represents, cannot be uniquely recovered by the inverse transformation. In

this situation, the overflow problem happens.

Notation: Decoding(x, 𝑝𝑖, k) will be used to donate the decoding of Multiple P-adic data

sequence x into a rational number and the last k digits of 𝑝𝑖-adic sequence will be used as

identification digits and these digits will not be used on the decoding process. Decoding(x)

means to decode the full size of Multiple P-adic data to rational number with no

verification part. 𝑋 will be used to the donate matrix of Multiple P-adic data.

For example, we take a prime set [257, 251, 241]

𝑥 = (131; 239; 133)

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑥) = 1/1234

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑥, 241, 1) = −209/122

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑥, 251, 1) = −50/237

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑥, 257, 1) = −49/25

𝑋 = [
(1; 1; 1) (150; 21; 221)

(140; 100; 145) (131; 239; 133)
]

81

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑋) = [
1 1/12

1/123 1/1234
]

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑋, 241, 1) = [
1 1/12

1/123 −209/122
]

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑋, 251, 1) = [
1 1/12

1/123 −50/237
]

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝑋, 257, 1) = [
1 1/12

1/123 −49/25
]

No matter the Hensel code or the Multiple P-adic data type, if the range of the calculation

results cannot be predicted, it is hard to avoid an overflow problem completely. Also

there is no way to guarantee 100 percent of finding out whether the overflow problem is

happening, it simply depends on the prime set and data sequences. The method given in

the Hensel code overflow detection or the Multiple P-adic overflow detection can only

give extremely high likelihood of detection, say 99.999999% or more.

The reason for the overflow problem happening is a possibility of a rational number

having the same digits on the first part of the sequence with another different rational

number. For example, the rational number
𝑎

𝑏
, the data sequence is (𝑎1, 𝑎2, ⋯ 𝑎𝑘, ⋯ 𝑎𝑠)

while for rational number
𝑑

𝑐
, the data sequence is(𝑎1, 𝑎2, ⋯ 𝑎𝑘, 𝑏1⋯𝑏𝑠−𝑘) . From the

bound condition, the sufficient digits for representing
𝑎

𝑏
 is s and the sufficient digits for

representing
𝑑

𝑐
 is (𝑘 − 1) 𝑤ℎ𝑒𝑟𝑒 ((𝑘 − 1) < 𝑠). If you choose k digits as a calculation

sequence length and 1 digits as verification part, you may identify
𝑑

𝑐
 as the resulting

rational number, but can also possible be
𝑎

𝑏
.

82

4.3.1. Overflow Detection Method

The rate of making mistakes can be decreased by choosing a larger prime for the prime

set or increasing the length of the verification part. For Multiple P-adic data type, we can

also increase the verification times to decrease the rate of making mistakes. For prime set

𝑝𝑖 of Multiple P-adic data type, with the same length of verification part, each time

chooses a different set of 𝑝𝑖-adic sequences to supply verification parts. The decoding

results will be possible different when the overflow situation happened.

Based on the property above, the new method to detect the Multiple P-adic data type

overflow detection problem is similar to the Hensel code overflow detection, only using a

prime 𝑝𝑖 and data sequences. In this method, we randomly pick up a prime 𝑝𝑖 and choose

k digits of the 𝑝𝑖-adic as the verification part. For Multiple P-adic data x, if Decoding(x,

𝑝𝑖 , j) ≠ Decoding(x) (0 ≤ 𝑖 ≤ s, 0 ≤ 𝑗 ≤ 𝑘) , then Multiple P-adic data overflow

happened.

For example of Multiple P-adic data x, where

𝑥 = (𝑎00, 𝑎01⋯ ;𝑎10, 𝑎11⋯;⋯ ; 𝑎𝑠0, 𝑎𝑠1⋯)

Will be treated as

𝑥 = (𝑎00, 𝑎01⋯;𝑎10, 𝑎11⋯;⋯ ;

𝑎𝑖0, 𝑎𝑖1⋯ 𝑎𝑖(𝑘−𝑗)⋯𝑎𝑖𝑘⏟
𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑡

;⋯ ; 𝑎𝑠0, 𝑎𝑠1⋯)

83

Overflow happened, if:

 Decoding(x, 𝑝𝑖, j)≠ Decoding(x)

Overflow did not happen, if:

Decoding(x, 𝑝𝑖, j)= Decoding(x)

For example, by taking prime set [257, 251, 241]

𝑥 = (150; 21; 221)

𝑦 = (91; 173; 85)

For x,

Decoding(x) = 1/12

Decoding(x, 241, 1) = 1/12

Decoding(x, 251, 1) = 1/12

Decoding(x, 257, 1) = 1/12

For y,

Decoding(y) = 14/3

Decoding(y, 241, 1) = -209/9

Decoding(y, 251, 1) = -43/8

Decoding(y, 257, 1) = 14/3

84

By this method, we take x as 1/12. For y we experienced an overflow problem.

Experiment 4.3.1. Each time, the prime set {𝑝1,⋯ 𝑝𝑠} is fixed, 𝑝𝑖 is a continuous series

of prime numbers. For each prime set, we randomly generate rational

number
𝑎

𝑏
(𝐺𝐶𝐷(𝑎, 𝑏) = 1), |𝑎, 𝑏| ≤ 1030. The size of prime set is 3. When Decoding(x,

𝑝𝑖, 1)= Decoding(x), but Decoding(x)≠
𝑎

𝑏
, it is recorded as one error.

In Table 4.3.1, the 𝑷𝟎 column represents the value of the first prime in prime set. The

Exp Nums column are the numbers of generating random fractions which caused 3000

errors. Total Errors mean the amount of errors during the Exp Nums of experiments.

The digits i column is the total number of experiments in which the ith decoding process

generated errors. After finishing all the decoding processes in the experiment. i equals to

1, which means that each experiment in all the decoding processes generate error results,

which will make the overflow detection method fail.

Take first row as example, 𝑷𝟎 = 46337 means the prime set is {46337, 46327, 46309}

which is a decreasing continuous series of prime numbers. Exp Nums = 33576299 means

after generating 33576299 random samples, there are 3000 of them occurring overflow

problem. 3 = 2305 means there are 2305 samples from the 3000 overflow samples have

the property following:

 Decoding(samples, 46337, 1) ≠ Decoding(samples, 46327, 1) ≠ Decoding(samples,

46309, 1) but one of them equals to Decoding(samples)

85

2 = 54 means there are 54 samples from the 3000 overflow samples have the property

following:

Two of the Decoding(samples, 𝑝𝑖, 1) equals to Decoding(samples), but not equal to the

third one.

1 = 641 means there are 641 samples from the 3000 overflow samples have the property

following:

Decoding(samples, 46337, 1) = Decoding(samples, 46327, 1) = Decoding(samples,

46309, 1) = Decoding(samples)

𝑷𝟎 Exp

Nums

3 2 1 Total

Errors

46337 33576299 2305 54 641 3000

41011 29918912 2285 55 660 3000

35603 26366287 2266 59 675 3000

30493 22655982 2233 66 701 3000

25309 18367716 2227 66 707 3000

20287 14477520 2278 60 662 3000

15331 11435596 2305 60 635 3000

10597 7929831 2289 62 649 3000

6073 4320387 2272 84 644 3000

1907 1347864 2306 59 635 3000

Table 4.1. Prime Set Length equals to 3

From Table 4.1, with the value of the prime set increases, the number of experiments

decreases, which means that the error rate increases. The error rate means the possibility

of the detection method fails. Using Table 1, we generate the following graph shown in

Fig. 4.8. Horizontal axis is the error rate. The vertical axis means the first prime 𝑃0 of the

86

prime set. Comparing once means during the comparing process (Decoding(x, 𝑝𝑖, 1)=

Decoding(x)), i randomly chooses one value. Comparing twice means during the

comparing process, i randomly choose the value twice. Full comparing means during the

comparing process, i chooses all the possible values.

Figure 4.8 Error Percentage for Three Comparing Method; Vertical axis: error percentage;

Horizontal axis: the first prime of prime sett

From the graph, we can find the error rate decreasing with the comparing times

increasing. A large prime set value also can decrease the error rate. The Comparing

Twice line is almost overlapping the Full Comparing line. During the practical

implementation process, comparing twice is a good choice to balance the error rate and

efficiency.

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

0.12%

1907 6073 10597 15331 20287 25309 30493 35603 41011 46337

Comparing Once

Comparing Twice

Full Comparing

87

4.3.2. Practical Consideration

We compare the new method to the old method to find a more accurate ways to detect the

overflows. During the practical implementation, the following ways also should be

considered,

a. Improve the value of the prime set. The largest prime for 32-bits and 64-bits

are 46337 and 2147483647. When choose prime close to 2147483247, even

verification part is 1, the mistake rate is significantly low.

b. Increasing the length of the verification part. When choose prime close to

46337, the verification part is better to use 5 or more.

c. Increasing the size of the prime set. On this way, increase the P-adic

sequences for each prime in prime set also works. Even we cannot exactly

predict the ranges of the final results, a general prediction should be done for

choosing the property size of a prime set and digits of the P-adic sequence.

d. Randomly choose two different prime for Comparing Twice. When the size of

prime set is small, Full Comparing can be applied which is the best way to

avoid detection mistakes. While consider the balance for efficiency,

Comparing Twice is a better choice.

When an overflow problem happens, the results can be kept as temporary results.

Another prime set which includes prime with different values from the primes in original

prime set will be chosen and do the calculation again. The new results will be combined

with temporary results to be detected. If the combined results pass the detection, the

88

results will be recorded as final results, otherwise repeat the last 2 steps. Further research

will be done concerning how to choose a new prime set. The implementation process will

be taken as Figure 4.1.3.

For example, choose prime set [17, 13, 11] and P-adic sequence is 2 to do matrix inverse

for

𝑥 = [

1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

]

The calculation process is following:

x
𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑃−𝑎𝑑𝑖𝑐 𝑐𝑜𝑑𝑒
→

[

(1,0; 1,0; 1,0) (9,8; 7,6; 6,5) (6,11; 9,8; 4,7) (13,12; 10,9; 3,8)
(9,8; 7,6; 6,5) (6,11; 9,8; 4,7) (13,12; 10,9; 3,8) (7,3; 8,2; 9,8)
(6,11; 9,8; 4,7) (13,12; 10,9; 3,8) (7,3; 8,2; 9,8) (3,14; 11,10; 2,9)
(13,12; 10,9; 3,8) (7,3; 8,2; 9,8) (3,14; 11,10; 2,9) (5,7; 2,11; 8,4)

]

𝐼𝑛𝑣𝑒𝑟𝑠𝑒
→ 𝑦

[

(16,0; 3,1; 5,1) (16,9; 10,3; 1,0) (2,14; 6,5; 9,10) (13,8; 3,2; 3,9)
(16,9; 10,3; 1,0) (10,2; 4,1; 1,10) (3,11; 4,0; 6,7) (14,13; 3,12; 8,9)
(2,14; 6,5; 9,10) (3,11; 4,0; 6,7) (3,7; 6,4; 1,6) (16,7; 12,1; 2,3)
(13,8; 3,2; 3,9) (14,13; 3,12; 8,9) (16,7; 12,1; 2,3) (12,11; 5,7; 6,1)

]

We use prime 11 and 𝑘 = 2 as verification part, the verification results is following:

[

𝑃𝑎𝑠𝑠 𝑃𝑎𝑠𝑠 𝐹𝑎𝑖𝑙𝑒𝑑 𝑃𝑎𝑠𝑠
𝑃𝑎𝑠𝑠 𝐹𝑎𝑖𝑙𝑒𝑑 𝐹𝑎𝑖𝑙𝑒𝑑 𝐹𝑎𝑖𝑙𝑒𝑑
𝐹𝑎𝑖𝑙𝑒𝑑 𝐹𝑎𝑖𝑙𝑒𝑑 𝐹𝑎𝑖𝑙𝑒𝑑 𝐹𝑎𝑖𝑙𝑒𝑑
𝑃𝑎𝑠𝑠 𝐹𝑎𝑖𝑙𝑒𝑑 𝐹𝑎𝑖𝑙𝑒𝑑 𝐹𝑎𝑖𝑙𝑒𝑑

]

89

So, we choose additional prime set[23,19]

x
𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑃−𝑎𝑑𝑖𝑐 𝑐𝑜𝑑𝑒
→

[

(1,0; 1,0) (12,11; 10,9) (8,15; 13,12) (6,17; 5,14)
(12,11; 10,9) (8,15; 13,12) (6,17; 5,14) (14,4; 4,15)
(8,15; 13,12) (6,17; 5,14) (14,4; 4,15) (4,19; 16,15)
(6,17; 5,14) (14,4; 4,15) (4,19; 16,15) (10,16; 11,13)

]

𝐼𝑛𝑣𝑒𝑟𝑠𝑒
→ 𝑦

[

(16,0; 16,0) (18,17; 13,12) (10,10; 12,12) (21,16; 12,11)
(18,17; 13,12) (4,6; 3,6) (14,20; 17,9) (1,4; 8,12)
(10,10; 12,12) (14,20; 17,9) (17,5; 1,18) (9,1; 18,6)
(21,16; 12,11) (1,4; 8,12) (9,1; 18,6) (17,6; 7,14)

]

We combine the temporary and additional results to:

𝑦11 = (16,0; 16,0; 16,0; 3,1; 5,1)

𝑦12 = (18,17; 13,12; 16,9; 10,3; 1,0)

y13 = (10,10; 12,12; 2,14; 6,5; 9,10)

y14 = (21,16; 12,11; 13,8; 3,2; 3,9)

y21 = (18,17; 13,12; 16,9; 10,3; 1,0)

y22 = (4,6; 3,6; 10,2; 4,1; 1,10)

y23 = (14,20; 17,9; 3,11; 4,0; 6,7)

y24 = (1,4; 8,12; 14,13; 3,12; 8,9)

y31 = (10,10; 12,12; 2,14; 6,5; 9,10)

90

y32 = (14,20; 17,9; 3,11; 4,0; 6,7)

y33 = (17,5; 1,18; 3,7; 6,4; 1,6)

y34 = (9,1; 18,6; 16,7; 12,1; 2,3)

y41 = (21,16; 12,11; 13,8; 3,2; 3,9)

y42 = (1,4; 8,12; 14,13; 3,12; 8,9)

y43 = (9,1; 18,6; 16,7; 12,1; 2,3)

y44 = (17,6; 7,14; 12,11; 5,7; 6,1)

The prime set for combined results is [23, 19, 17, 13, 11] using prime 11 and 𝑘 = 2 as a

verification part, the verification results are:

[

𝑃𝑎𝑠𝑠 𝑃𝑎𝑠𝑠 𝑃𝑎𝑠𝑠 𝑃𝑎𝑠𝑠
𝑃𝑎𝑠𝑠 𝑃𝑎𝑠𝑠 𝑃𝑎𝑠𝑠 𝑃𝑎𝑠𝑠
𝑃𝑎𝑠𝑠 𝑃𝑎𝑠𝑠 𝑃𝑎𝑠𝑠 𝑃𝑎𝑠𝑠
𝑃𝑎𝑠𝑠 𝑃𝑎𝑠𝑠 𝑃𝑎𝑠𝑠 𝑃𝑎𝑠𝑠

]

And the final results is

[

16 −120 240 −140
−120 1200 −2700 1680
240 −2700 6480 −4200
−140 1680 −4200 2800

]

91

Chapter 5

Implementation

5.1. Mathematics Background

5.1.1. Moore – Penrose Inverse

This algorithm is based on the Hermite theory [7], it is expressed as,

𝐴+ = 𝐴𝑡(𝐴𝐴𝑡𝐴𝐴𝑡)𝑅
−𝐴𝐴𝑡

𝐴+means the Moore-Penrose inverse of A (of order 𝑚 × 𝑛). 𝑀𝑅
− of 𝑀 = 𝐴𝐴𝑡𝐴𝐴𝑡 means

the reflexive g-inverse of 𝑀.

5.1.2. Polynomial Method to Calculate 𝒆𝑨𝒕

5.1.2.1 Definition of 𝑒𝐴𝑡

𝑒𝐴𝑡 = 𝐼 + 𝑡𝐴 +
𝑡2𝐴2

2!
+ ⋯

According to the definition, if 𝐴 = 𝑊−1𝐶𝑊

𝑒𝐴𝑡 = 𝑊−1𝐼𝑊 +𝑊−1𝑡𝐶𝑊 +
𝑊−1𝑡2𝐶2𝑊

2
+⋯ = 𝑊−1𝑒𝑡𝐶𝑊

92

5.1.2.2 Companion Matrix [43]

The companion matrix of the polynomial

𝑐(𝑧) = 𝑧𝑛 −∑𝑐𝑘𝑧
𝑘

𝑛−1

𝑘=0

is defined as

𝐶 =

[

0 1 0 ⋯ 0
0 0 1 ⋯ 0
0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
𝑐0 𝑐1 𝑐2 ⋯ 𝑐𝑛−1]

5.1.2.3. Poor-Man Method [11, 44]

Sjogren described the “Poor-Man” method in his Matlab code [44] based on Danilevskii

algorithm (1937) in the book of Gregory and Young [11], which can compute the

Frobenius form of a matrix over a field M. For any matrix 𝐴 ∈ 𝑀𝑛×𝑛 there exists an

invertible W over M, such that

𝑊−1𝐶𝑊 = 𝐺 =

[

𝐶𝑔1

𝐶𝑔2
⋱

𝐶𝑔𝑖]

∈ 𝑀𝑛×𝑛

G is the Frobenius canonical form of A, also called the rational canonical form. Each

diagonal block is the companion matrix with form as,

93

𝐶𝑓 =

[

0 −𝑓0
1 0 −𝑓1

⋱ ⋱ ⋮
1 0 −𝑓𝑛−2

1 −𝑓𝑛−1]

Algorithm description [11, 45]:

1. Transform a 𝑛 × 𝑛 matrix A into Lower Hessenberg form H, and get the

transforming matrix T,

𝑇−1𝐴𝑇 = 𝐻

2. Convert the lower Hessenberg matrix H to Frobenius form according to the

formula of Wilkinson[4],

𝐶−1𝑊𝐶 = 𝐹

3. Form a diagonal matrix D that is supposed to transform the matrix so that the sub-

diagonal consists of 1s,

𝐷−1𝐹𝐷 = 𝐺

After the three transforming steps, we get the Frobenius canonical form G, invertible

matrix W and its inverse matrix𝑊−1, for which𝑊−1 = 𝐷−1𝐶−1𝑇−1, W=TCD. In some

cases, this transformation does not result in a “block companion” matrix. There are some

non-diagonal elements in G outside the blocks.

94

5.1.2.4. Polynomial Method

As in Mastascusa [46], Polynomial method is based on the Cayley-Hamilton theorem.

This method will cost less in calculation, when the degree of series approximation

of 𝑒𝐶𝑡 is much higher than the rank of the matrix C [46].

Moler and Loan gave a short description of the method as the following [2]:

1. Find the characteristic polynomial of matrix A

𝑐(𝑧) = det(𝑧𝐼 − 𝐴) = 𝑧𝑛 −∑𝑐𝑘𝑧
𝑘

𝑛−1

𝑘=0

2. According to the Cayley-Hamilton theorem 𝑐(𝐴) = 0, hence

𝐴𝑛 = 𝑐0𝐼 + 𝑐1𝐴 +⋯+ 𝑐𝑛−1𝐴
𝑛−1

And it follows that any power of A can be expressed in terms of 𝐼, 𝐴,⋯𝐴𝑛−1:

𝐴𝑘 =∑𝛽𝑘𝑗𝐴
𝑗

𝑛−1

𝑗=0

3. The 𝑒𝐴𝑡can be implied as the following:

𝑒𝑡𝐴 =∑
𝑡𝑘𝐴𝑘

𝑘!
= ∑

𝑡𝑘

𝑘!
[∑𝛽𝑘𝑗𝐴

𝑗

𝑛−1

𝑗=0

]

∞

𝑘=0

∞

𝑘=0

=∑ [∑𝛽𝑘𝑗
𝑡𝑘

𝑘!

∞

𝑘=0

] 𝐴𝑗 = ∑𝛼𝑗(𝑡)𝐴
𝑗

𝑛−1

𝑗=0

𝑛−1

𝑗=0

95

5.2. Implementation of Multiple P-adic Arithmetic on Matrix

Calculation

Our experiments were carried out on a typical laptop with Intel Core i5-2500 CPU as a

parallel environment. The CPU has 4 cores for parallel processing.

Experiment 5.2.1. We generated random matrices with size from 3 by 3 to 40 by 40,

each element
𝑎

𝑏
 satisfies |𝑎, 𝑏| ≤ 20. For Multiple P-adic arithmetic algorithm, 𝑠 = 12 for

𝑝~{𝑝1, 𝑝2,⋯ , 𝑝𝑠} and for each p the sequence length is 5. While for P-adic arithmetic,

the sequence is 60. For each matrix size, we generated 30 simples. Both algorithms are

used to calculate the Moore-Penrose inverse. We use NTL [5] to represent larger integers

for the experiments. The speed up is defined as:

Speed-up Rate =
𝑃−𝑎𝑑𝑖𝑐

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑃−𝑎𝑑𝑖𝑐

Figure 5.1 Moore-Penrose Inverse; Vertical axis: the average implementation time in

second; Horizontal axis: the matrix size

0

2

4

6

8

10

12

14

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

P-adic

Multiple P-adic arithmetic

96

Experiment 5.2.2. We generated random matrices with size from 3 by 3 to 40 by 40,

each element
𝑎

𝑏
 satisfies |𝑎, 𝑏| ≤ 20. For Multiple P-adic arithmetic algorithm, 𝑠 = 12 for

𝑝~{𝑝1, 𝑝2,⋯ , 𝑝𝑠} and for each p the sequence length is 5. While for P-adic arithmetic,

the sequence is 60. For each matrix size, we generated 30 simples. Both algorithms are

used to calculate 𝑒𝐴𝑡, 𝑡 = 1 with 100 iterations.

From the above two experiments, we can find that on the 4 cores CPU (Intel Core i5-

2500), the multiple P-adic arithmetic algorithm will speed up about 2 to 4 times based on

the matrix sizes compared with that of direct P-adic arithmetic.

Figure 5.2 Polynomial method to calculate 𝐞𝐀𝐭; Vertical axis: the average implementation

time in second; Horizontal axis: the matrix size

0

100

200

300

400

500

600

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

P-adic

Multiple P-adic arithmetic

97

Experiment 5.2.4. We generated random matrices with size from 3 by 3 to 40 by 40,

each element
𝑎

𝑏
 satisfies |𝑎, 𝑏| ≤ 20 . For the multiple P-adic arithmetic algorithm,

𝑠~{4, 5, 8, 12} for 𝑝~{𝑝1, 𝑝2,⋯ , 𝑝𝑠} and for each p the sequence length is 5. While for

P-adic arithmetic, the sequence is {20, 25, 40, 60}. For each matrix size, we generated 30

simples. Both algorithms are used to calculate the Moore-Penrose inverse.

We get the average of speed up rate (
𝑃−𝑎𝑑𝑖𝑐

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑃−𝑎𝑑𝑖𝑐
) for each size s as shown in Figures

5.3 and 5.4.

Figure 5.3 Speed up rate for s equal to 4, 8 and 12; vertical axis: speed up rate value;

horizontal axis: the matrix size

From Figure 5.2.4, we can see that with the increase of the integer sequence length for

multiple P-adic and P-adic sequences, we will have more advantage of the multiple P-

adic arithmetic. The reason is that as the length increase, the time complexity for P-adic

arithmetic is 𝑂(𝑛2), while for Multiple P-adic arithmetic is 𝑂(𝑛).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

4 8 12

98

Figure 5.4 Speed up rate for s equal to 4, 5 and 8; Vertical axis: speed up rate value;

Horizontal axis: the matrix size

The CPU architecture can be an important part of the speeding up. From Figure 5.2.4 and

Figure 5.2.5, we can see that if the length is a multiple of the number of CPU cores, the

speed up is outstanding; while when the length is not a divisible number by CPU cores,

such as 5 for a CPU with four cores, the speed-up will be poor. Also, as the matrix sizes

grow, the speed-up factor becomes even more significant.

5.3 Using Multiple P-adic Data Type in the Security Field

The operation process implemented with the multiple P-adic data type can be separated

into several parallel sub-processes. Each sub-process can be allocated in different nodes

of the cloud system and each sub-process is operated independently. If some sub-

processes have been compromised and the data are distorted, specific algorithms [34, 36,

0

0.5

1

1.5

2

2.5

3

3.5

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

4 5 8

99

40, 41] can be used to identify the abnormality. Furthermore, if the number of sub-

processes with errors is not passing the threshold, the sub-processes with errors can be

identified and the corrected value can be obtained [36]. And if the data type is

implemented on huge integer operations or rational number calculations, the operation

time cost will be significantly decreased. Both linear and non-linear calculation process

can be applied with the multiple P-adic data type. The data type naturally has encryption

property. And if the calculation process is linear, we can use an additional encryption key

to encrypt it.

5.3.1. Data Self-correction Property

The algorithm for data self-correction property is coming from redundant residue number

system (RRNS) [34]. Using multiple P-adic data type, we should define a prime set

𝑝~{𝑝1, 𝑝2,⋯ 𝑝𝑘}. With the number of k primes, we can make sure to avoid the overflow

situation [38]. But during the implementation, we set𝑝~{𝑝1, 𝑝2, ⋯ 𝑝𝑘, 𝑝𝑘+1, … , 𝑝𝑛}. The

{𝑝𝑘+1, … , 𝑝𝑛} part is the redundant part. According to Mandelbaum’s theory [36], if
𝑛−𝑘

2

or less sub-processes are changed, we can identify the compromised sub-processes and

get the correct results. The main idea is to compare the decoded values from combination

𝐶𝑛
𝑘 among the nodes. For example, we use prime set {46337, 46327, 46309,46307}. The

redundant number k=2. We take 4 nodes {𝑛0, 𝑛1, 𝑛2, 𝑛3} of the cloud to do operations.

One of the results is19861 23831⁄ . If there are no changes, the correct integers kept in

the node should be {2443, 36085, 7970, 5634}. Assume the node 𝑛0 is compromised by a

hacker and the value is distorted from 2443 to 23201.

100

Node Values Decoded Results

{𝑛0, 𝑛1} = {46337,46327} ⇔ −43262 3659⁄
{𝑛0, 𝑛2} = {46337,46309} ⇔ 11973 37438⁄
{𝑛0, 𝑛3} = {46337,46307} ⇔ −26632 25557⁄

{𝑛1, 𝑛2} = {46327,46309} ⇔ 19861 23831⁄
{𝑛1, 𝑛3} = {46327,46307} ⇔ 19861 23831⁄
{𝑛2, 𝑛3} = {46309,46307} ⇔ 19861 23831⁄

Through the above table, the correct decoded result is 19861 23831⁄ and node 𝑛0 can be

identified as abnormal.

The data self-correction process can be descripted as the following:

Step 1: Compare the decoded value of {𝑛0, 𝑛1, ⋯ , 𝑛⌈𝑛+𝑘
2
⌉
} and {𝑛

⌊
𝑛+𝑘

2
⌋
, ⋯ , 𝑛𝑛} . If the

values are equal, which means there is no error among the nodes, return the value.

Otherwise, continue to Step 2.

Step 2:Get the decoded values from combination 𝐶𝑛
𝑘 among the nodes𝑣~ {𝑣0, 𝑣1, ⋯ , 𝑣𝐶𝑛𝑘}.

Sort v and pick up the duplicate elements with their nodes indexes. If the number of the

duplicate elements is less than𝐶
⌈
𝑛+𝑘

2
⌉

𝑘 , which means there are more than
𝑛−𝑘

2
 nodes with

errors and we cannot get the correct result, return with NULL. Otherwise, the result of the

duplicate elements is the correct value and the nodes with the duplicate elements are the

normal nodes, return them.

5.3.2. Linear Calculation Encryption Property

The multiple P-adic data type has natural encryption property, because the sub-processes

only have the moduli values. For example, if the prime set is

101

{46337, 46327, 46309,46307} and the P-adic sequence length is 2, 1/463377 will be

represented as: (33098, 5673; 11690, 1505; 26785, 12620; 6486, 1607). If only 1 node

is compromised, the partial data is useless. However, the number 1 will be represented as

1, 0; 1, 0; 1, 0; 1, 0. It is easy to get the original value just from 1 node. In this situation,

we can choose a random fraction number f to multiple with the original number and after

a linear operation, we can use f to decode the original fraction number.

5.3.3. Implementation of the Algorithm on HPC

We did an experiment to prove this method works in practice. During the experiment, we

generated rational numbers which can be represented with length of 15 multiple P-adic

data structure and the prime set are adjacent primes with the largest prime 46337. The

redundant length was chosen k = 5. With the numbers of errors from 1 to 5. In each

situation, we generated 1000 random rational numbers and tried to identify the modified

digits. The experimental result is the following:

Figure 5.5 Implementation Results; Horizontal axis: (Number of Error Digits)/k

0%

20%

40%

60%

80%

100%

120%

0.2 0.4 0.6 0.8 0

Successful Identification Persentage

Disturbing Rate

102

Successful Identification Percentage means among the 1000 experiment samples, the

percentage of samples which have been successfully identified for the error digits and

restored to the correct rational numbers. Disturbing Rate means, in the worst case

situation, the number of disturbing groups divided by the number of correct groups. For

example, if we want to identify the correct digits from the digits of a multiple P-adic data,

we should do all the possible combinations𝐶𝑛
𝑘 of the digits to decode them to the rational

number. Assume the number of compromised digits is e, there will be the number of

𝐶𝑛−𝑒
𝑘 combinations decoded results with the same value. Besides the correct digits having

the same decoded results, some of the combinations with the compromised digits also

will have the same decoded results, which will be called disturbing elements. Usually the

number of disturbing elements is far more less than 𝐶𝑛−𝑒
𝑘 . While with the increase of e,

the number of correct groups 𝐶𝑛−𝑒
𝑘 will decrease, which will make it harder to identify the

correct groups versus the disturbing groups. As we mentioned above, when the number of

compromised digits is larger than
𝑛−𝑘

2
, it will be almost impossible to identify the correct

or compromised digits. The number of disturbing groups is depended on the length of the

Multiple P-adic Data Type.

A Method to Improve the Efficiency

In general, if you want to identify the correct digits, all the combination 𝐶𝑛
𝑘 of digits

should be decoded to rational numbers. With the increase of the n, the computational

complexity will be high. For example, if 𝑛 = 25, 𝑘 = 15 then 𝐶25
15 = 3,268,760, it will

take too much time to decode the groups. We now give a better method that can

significantly decrease the calculation load.

103

Step 1: Randomly select 𝑚 = 𝑘 + 𝑒 + 1 digits among n digits of the multiple P-adic data,

where e means the number of nodes being possibly compromised. If there is no

prediction, e can be taken as 1.

Step 2: Get the decoded values from the combinations 𝐶𝑚
𝑘 among the

nodes𝑣~ {𝑣0, 𝑣1, ⋯ , 𝑣𝐶𝑚𝑘 }. Sort v and pick up the duplicate elements with their nodes

index. If the number of the duplicate elements is less than 𝐶𝑘+1
𝑘 , which means the number

of correct digits is less than k, then repeat step 2 with m = m + 1. Otherwise, the result

from the duplicate elements is the correct value, and the nodes with the duplicate

elements are the normal nodes, record them and the correct rational number.

Step 3: Replace the first digit from the correct group with one from the remaining digits

and decode to get the rational number. If the rational number is the same, then that node

is normal, take it to the normal nodes collection, otherwise it is incorrect. Go through the

remaining digits and identify the correct and incorrect digits.

During step 2, if the disturbing rate is high, say possibly 2 or more groups which cannot

be identified as the correct groups, then in this situation we can increase the value of m

and repeat step 2. Or we can keep all of them to go through step 3. The correct digits are

the group with the most digits.

The following experiments have been designed to compare the new method with the old

version.

Experiment 5.3.1. During this experiment, we generated a rational number which can be

represented with the length of 2 multiple P-adic data structure, and the prime set are the

104

adjacent primes with the largest prime to be 46337. The number of errors is fixed. The

redundant length is k varies from4 to 33.In each situation, we generate 100 random

rational numbers and try to identify the compromised digits using both old and new

methods. The experimental results are given in Figures 5.6 and 5.7.

Figure 5.6 Experiment 1Implementation Results; Horizontal axis: Length of Multiple P-

adic; Vertical axis: 100 operations cost time in second

0

0.5

1

1.5

2

2.5

3

6 7 8 9 1011121314151617181920212223242526272829303132333435

New Method

Old Method

105

Figure 5.7 Experiment 1Implementation Results; Horizontal axis: Length of Multiple P-

adic; Vertical axis:
𝑂𝑙𝑑 𝑀𝑒𝑡ℎ𝑜𝑑 𝑇𝑖𝑚𝑒 𝐶𝑜𝑠𝑡

New Method Time Cost

From Figure 5.7, we can find that the time cost on the new method is significantly shorter

than that of the old method. The reason is that it usually only needs 1 to 2 iterations for

the new method to identify the compromised digits, and the steps cost would be like

𝑪𝒌+𝟏
𝒌 + 𝑪𝒎−𝒌−𝟏

𝟏 for 1 iteration and 𝑪𝒌+𝟐
𝒌 + 𝑪𝒎−𝒌−𝟐

𝟏 for 2 iteration, while the old method

is 𝑪𝒎
𝒌 . In this experiment,𝒌 = 𝟐, the time complexity for the new vs old versions would

be 𝑶(𝒏) vs 𝑶(𝒏𝟐). Actually, with the increase of k, the old method’s time complexity

will increase to (𝒏𝒌), and new method’s iteration steps will also increase but it still has a

significant advantage.

Experiment 5.3.2. During this experiment, we generated a rational number which can be

represented with the length of 6 multiple P-adic data structure and the prime set are

adjacent primes with the largest prime to be 46337. The redundant length is k = 10. With

the number of errors from 1 to 5. In each situation, we generated 100 random rational

0

10

20

30

40

50

60

70

6 7 8 9 1011121314151617181920212223242526272829303132333435

106

numbers and tried to identify the compromised digits using both the old and new methods.

The experimental results are given in Figures5.8 and 5.9.

Figure 5.8 Experiment 2 Implementation Results; Horizontal axis: Length of Error Digits;

Vertical axis: 100 operations cost time in second

0

20

40

60

80

100

120

140

1 2 3 4 5

New Method

Old Method

107

Figure 5.9 Experiment 2 Implementation Results; Horizontal axis: Length of Error Digits;

Vertical axis:
𝑂𝑙𝑑 𝑀𝑒𝑡ℎ𝑜𝑑 𝑇𝑖𝑚𝑒 𝐶𝑜𝑠𝑡

New Method Time Cost

From Figure 5.8, we can find that when k is large, the new method’s advantage is more

significant. The reason for Figure 5.9 is that when the number of error digits increases,

the new method needs more and more iteration steps to identify the compromised digits.

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5

108

References

[1] C. Yap, “Towards exact geometric computation”, Computational Geometry 7

(1997) 3-23.

[2] C. Moler and C. V. Loan, “Nineteen Dubious Ways to Compute the

Exponential of a Matrix, Twenty-Five Years Later, Society for Industrial and

Applied Mathematics”, Vol. 45, No. 1, pp. 3–000, 2003.

[3] J. A. Sjogren, notes.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to

Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-

03293-7.

[5] V. Shoup, http://www.shoup.net/ntl/.

[6] X. Li, C. Lu and J. A. Sjogren, “A Method for Hensel Code Overflow

Detection”, ACM SIGAPP Applied Computing Review, Vol. 12, Issue 1, p. 6-

11, 2012.

[7] E. V. Krishnamurthy, “Matrix Processors Using P-adic Arithmetic for Exact

Linear Computations”, IEEE Transactions on computers, Vol. C-26, No, 7,

1977.

[8] E. V. Krishnamurthy, T. M. Rao and K. Subramanian. “Finite Segment P–adic

Number Systems with Applications to Exact Computation”, Proc. Indian Acad.

Sci., 81A(2): 57-79, 1975.

[9] K. Hensel. Theorie der Algebraischen Zahlen, Teubner, Leipzig-Stuttgart, 1908.

http://www.shoup.net/ntl/

109

[10] G. Bachman. Introduction to P–adic Numbers and Valuation Theory, Academic

Press, New York, NY, 1964.

[11] D. M. Young and R. T. Gregory. “A Survey of Numerical Mathematics”,

Addison Wesley. Reading, Mass, 2 (1973).

[12] J. Dixon. “Exact Solution of Linear Equations Using P-adic Expansions”,

Numerische Mathematik 40, 137-141 (1982) Springer- Verlag.

[13] M. Miola. “The conversion of Hensel Codes to Their Rational Equivalents: or

How to Solve the Gregory’s Open Problem”, ACM Sigsam bulletin, vol. 16,

Issue 4, November 1982.

[14] P. Kornerup, R. T. Gregory. “Mapping Integers and Hensel Codes onto Farey

Fractions”, BIT 23, 9-20, 1983.

[15] C. K. Koc. “A Tutorial on P-adic Arithmetic”, Technical Report, April 2002,

Electrical & Computer Engineering, Oregon State University Corvallis, Oregon

97331.

[16] X. Li, M. Zhao and C. Lu. “Efficient Algorithms and Implementation for Error-

free Computation Using P-adic”, CSNI2011, JeJu, Korea, May 23-24, 2011.

[17] T. M. Rao, K. Subramanian and E. V. Krishnamurthy. “Residue Arithmetic

Algorithms for Exact Computation of g-Inverses of Matrices”, SIAM J.

NUMER. ANAL. Vol. 13, No. 2, April 1976.

[18] G. L. Harvey, “The Residue Number System, Electronic Computers”, IRE

Transactions, V. EC-8, Issue. 2, June 1959.

[19] M. Newman, “Solving Equations Exactly”, Mathematics and Mathematical

Physics, Vol. 71B, No. 4, Oct-Dec 1967.

110

[20] J. A. Howell, “Solving systems of linear algebraic equations using residue

arithmetic”, University of Texas at Austin, Computation Center, B0007ERILI,

1967.

[21] J. A. Howell and R. T. Gregory, “An Algorithm for Solving Linear Algebraic

Equations Using Residue Arithmetic I”, Bit 9, 1969.

[22] C. Lu and X. Li, “An Introduction of Multiple P-adic Data Type and Its Parallel

Implementation”, ICIS 2014.

[23] J. Morrison, “Parallel P-adic computation”, Information Processing Letters, Vol.

28, Issue 3, 1988.

[24] C. Limongelli and H. W. Loidl, “Rational Number Arithmetic by Parallel P-

adic Algorithms”, Springer Verlag, editor, Proc. Of Second International

Conference of the Austrian Center for Parallel Computation (ACPC), Vol. 734

of LNCS, 1993.

[25] C. K. Koc, “Parallel P-adic Method for Solving Linear Systems of Equations”,

Parallel Computing, Vol 23, Issue 13, 1997.

[26] L. Shan, “Extension of P-adic Exact Scientific Computational Library (ESCL)

to Compute the Exponential of a Rational Matrix”, M.S. thesis, Department of

Computer & Information Science, Towson University, August 2007.

[27] C. Lu, X. Li and L. Shan, “Periodicity of the P-adic Expansion after Arithmetic

Operations in P-adic Field”, Computer and Information Science (ICIS), 2012

IEEE/ACIS 11th International Conference, 2012.

[28] R. T. Gregory. “The Use of Finite-segment P-adic Arithmetic for Exact

Computation”, 18(3):282-300, 1978.

111

[29] R. T. Gregory and E. V. Krishnamurthy. “Methods and Applications of Error-

Free Computation”. Springer, Berlin, Germany, 1984.

[30] A. Miola. “Algebraic approach to p-adic conversion of rational numbers.

Information Processing Letters, 18(3):167-171, 30 March 1984.

[31] E. V. Krishnamurthy, “On the Conversion of Hensel Codes to Farey Rationals”,

IEEE Transactions on Computers, Vol. C-32, No. 4, April 1983.

[32] H. Haramoto, M. Matsumoto, “A P-adic algorithm for computing the inverse of

integer matrices”, Journal of Computational Applied Mathematics 225, 320-322

(2009).

[33] P. Kornerup and D. W. Matula, “Finite Precision Number Systems and

Arithmetic”, Cambridge University Press, 2010.

[34] L. Yang and L. Hanzo, “Redundant Residue Number System Based Error

Correction Codes”, Vehicular Technology Conference, IEEE VTS 54th, 2001.

[35] V. T. Goh and M. U. Siddiqi, “Multiple Error Detection and Correction Based

on Redundant Residue Number Systems”, IEEE Transactions on

Communications, Vol. 56, No. 3, March 2008.

[36] D. M. Mandelbaum, “Error Correction in Residue Arithmetic, IEEE

Transactions on Computers”, Vol. c-21, No. 6, June 1972.

[37] O. Goldreich, D. Ron and M. Sudan, “Chinese Remaindering with Errors”,

IEEE Transactions on Information Theory, Vol. 46, no. 7, July 2000.

[38] Xinkai Li, Chao Lu and Jon A. Sjogren, “Overflow Detection In Multiple P-

adic Parallel Implementation”, RACS 2014.

112

[39] J. Du, W. Wei, X. Gu and T. Yu, “Towards Secure Dataflow Processing in

Open Distributed Systems”. Proceedings of the 2009 ACM Workshop on

Scalable Trusted Computing, 2009.

[40] D. M. Mandelbaum, “On a class of arithmetic codes and a decoding algorithm”.

IEEE Transactions on Information Theory, 22(1): 85-88, 1976.

DOI=http://doi.acm.org/10.1109 /TIT.1976.1055504.

[41] D. M. Mandelbaum, “Further results on decoding arithmetic residue codes”,

IEEE Transactions on Information Theory, 24(5): 643-644, 1978.

[42] X. Li, M. Zhao, C. Lu and J. A. Sjogren, “Implementation of the Polynomial

Method to Calculate eAt Using P-adic”, Proceedings of the 2012 ACM

Research in Applied Computation Symposium, 2012.

[43] B. Louis, “The Companion Matrix and Its Properties, The American

Mathematical Monthly”, Vol. 71, No. 6, pp. 629-634.

[44] J. A. Sjogren, Matlab code of the “Poor-Man” method.

[45] C. Lu, “Exact Computation of Generalized Inverse of Matrices with P-adic

Exact Scientific Computational Library”, Computer & Information Sciences,

Towson University.

[46] E. J. Mastascusa, “A method of calculating eAtbased on the Cayley-Hamilton

theorem”, Proc. IEEE, 57 (1969), pp. 1328-1329.

113

Appendix A

Full size of matrix

[
𝒆𝟎𝟎
𝑨 𝒆𝟎𝟏

𝑨

𝒆𝟏𝟎
𝑨 𝒆𝟏𝟏

𝑨]

00

499031910327745937158678240342942112460738357

6881921987519180225314410067784161624259457527

6026307920636823586372102345126805085844059078

4074542147651536093110756252220146919882101022

60614010975

Ae 



77072077485046894606805994907411701

2717289612880116209684578641320599811663054433

4441430214778284813615912208413787146167

9179179519067235333094775009324116369068786440

2291807740735072529720980104108840079387214968

6551682253701813182588071780421932625503562484

1616097423515172013613580871946770453324249466

3316241453549686813846861745670315523362009127

4830152650903361847890546666188872707840409600

00000000000000000000000000000000000000

114

01

3368585763017225866816740542740618137934040906

1105514861033219292265827847626920695113037075

1851153023420317914960372494647322845576117863

9880460547975648247926388751357937664560901672

42662300180

Ae 

69402952282545297924160584548827603

1780733355473181790251971156218526524653642223

8273878016825451972334990799321610437

8261556622754181591985011258793804510894439740

4827085076842881093930808193990598592826808714

9580427615032168727498103820373324124529082274

3981058433250556617845717274654759649407874800

9413524934085221176075606842776240265320998250

3865132569119065629731125254043344127918080000

000000000000000000000000000000000000

10

336858576301722586681674054274061813793404090

6110551486103321929226582784762692069511303707

5185115302342031791496037249464732284557611786

3988046054797564824792638875135793766456090167

24266230018

Ae 



06940295228254529792416058454882760

3178073335547318179025197115621852652465364222

38273878016825451972334990799321610437

3098083733532818096994379222047676691585414902

6810156903816080410224053072746474472310053268

1092660355637063272811788932639996546698405852

8992896912468958731692143977995534868527953050

3530071850281957941028352566041090099495374343

8949424713419649611149171970266254047969280000

000000000000000000000000000000000000

115

11

4421801872006697468026710695910934797779605523

4381935328771611340082943645977772601066958585

8219374488404564632852362258637593988394659927

0352994883600097410104530862746350174007958166

68610916783

Ae 

16812330292970820776999452397429242

4785252264897392678005219184179182559935178422

92278626625923970826726398213879873711

5422300137845624247397757389474161568226287348

6585877990307637781269777276688766291621139643

9313230023283771500262995988434896909580163492

7536935186886599501712663806213282124326560866

1874573010535679974424306516429722250087262775

7283634477326880416475428410406929025728512000

0000000000000000000000000000000000000

116

Appendix B

Proof for P-adic Arithmetic Using Long- Integer method

1. Introduction

By combining with the algorithm of Dr. E. V. Krishnamurthy[1] and John. D.

Dixon[2], we have developed an algorithm on error free matrix calculation called “D-

K Algorithm”. Furthermore, we improve it to a more efficient way using long-

integer method which fits the computer integer operation rules. To ensure

correctness during the operation process, we should predict the range of prime p and

P-adic series length r first. In this report, we focus on finding range of p and r in the

basic arithmetic under long-integer method.

2. Proof of Basic Arithmetic Operations

In order to obtain the range limitation of p and r in basic arithmetic operations, we

should go deep into the process.

Firstly, let’s assume 1 2 3 ra a a a and 1 2 3 rb b b b are two P-adic series under p as the

prime number and r as the length of the series.

For all the arithmetic proofs, we assume:

a) For P-adic expansion 1 2 3 ra a a a , each [0, 1]ia p  under prime p

b) Since the limitation of algorithm, p and r should be less than the maximum of

long integer (+2147483647); we denote m .

We will prove the following operations: Addition, Subtraction, Multiplication and

Division.

117

2.1 Addition

According to the operation rule of P-adic Addition:

1 2 3

1 2 3

1 2 3



 





r

r

r

a a a a

b b b b

d d d d

Because  i i i p
d a b , we can get 1 2 3 rd d d d which is also a P-adic series. During

the process the largest integer possible shows out is i ia b .

Since , [0, 1], i ia b p 2   i ia b p m
2

m
p 

2.2 Subtraction

Subtraction is similar to P-adic addition but add one more step:

1 2 3

1 2 3

1 2 3



 





r

r

r

a a a a

b b b b

d d d d

1 2 3

1 2 3

1 2 3



 





r

r

r

a a a a

c c c c

d d d d

When we deal with subtraction, we transfer the subtrahend to a positive P-adic series.

If so, we can handle the problem like addition. Because we follow the rule of

modulo arithmetic in P-adic field, using 0
i i i p

b c t   (
it is carry number from

1 1i ib c  , so it only can be 0 or 1. In this way, we can easily transfer the series

1 2 3 rb b b b to 1 2 3 rc c c c which is also a P-adic series and satisfies with the

condition that 1 2 3 1 2 3  r rp p
bb b b c c c c . Then, we do calculation as follows:

118

1 2 3

1 2 3

1 2 3



 





r

r

r

a a a a

c c c c

d d d d

So whatever i ia b or i ic b will satisfies
2


m

p

2.3 Multiplication

According to the operation rule of P-adic multiplication, we can split the

multiplication operation into two steps showed as follows: the first step is to get new

temporary series consisting of
ijd , and the next step is to sum up all these temporary

series.

1 2 3

1 2 3

11 12 13 1

21 22 2

31 3

1

r

r

r

r

r

r

a a a a

b b b b

d d d d

d d d

d d

d



 













Now, let’s go to the first step to compute
 11 12 13 1rd d d d as an example. There is two

parts when computing
ijd .

Part (1) is the simple multiplication series as
1 1 2 1 3 1 1 ,j i ra b a b a b a b a b i j r（ ）and

part (2) is the carry number as
ijc , which is carry number for

j ia b .

: 1 2 3digit r

119

1 1 2 1 3 1 1

11 12 13 1

11 12 13 1

(1)

(2)

r

r

r

a b a b a b a b

c c c c

d d d d

 

  



Before estimating
ijd , we should first figure out the range of the carry number

ijc .

Knowing the modulus operation is used in P-adic field, we can proof:

, [0, 1]i ia b p 

2 ,)j ia b p i j r  （

11 12 1 1 11

2

13 2 1 12

2

14 3 1 13

1 1 1 1 1 2 3

0; int[() /] ;

() / () / 1;

1
() / (1) / 1 ;

1 1 1
() / 1r r r r

c c a b c p p

c a b c p p p p p

c a b c p p p p p
p

then c a b c p p
p p p

  

   

     

       

       

1 2 3

1 1 1 1
lim lim 1

1 1/
r rr r

c p p
p p p p 

       


If we assume m= 2147483647 (maximum of long integer), and then we

approximately have

1
lim() 1

1 1/p m
p p

p
  


;

1lim lim 1;
 

  r
p m r

c p

2 2

1 1 1lim lim lim lim() (1) 1r r r
r p m r p m

d c a b p p p
   

       

Since 1rd can be the largest number of the calculation, so if we set 2 p m , then the

error of data overflow won’t occur during the first step. Here, one thing should be

clear that
ijd can only be greater than p during the calculation process, but each

ijd of

120

11 12 13 1rd d d d must meet the condition: [0, 1]ijd p  after carry, because it is also a

P-adic series under p as prime.

After completing the first step, now we start the second step to sum up all temporary

series.

1 2 3 r digit

1 2 3 r digit

11 12 13 1

21 22 2

31 3

1

r

r

r

r

d d d d

d d d

d d

d













11 12 13 1

21 22 2

31 3

1

1 2 3

r

r

r

r

r

d d d d

d d d

d d

d

e e e e









 



Above graph shows addition of r P-adic series, we can still use the same method

before adding ie as the i-th carry number. So we rewrite column addition involving ie .

And now we can proof that:

For each ie , the carry number of column i, reflects the effect from column 1 to

column (i-1). Take column 4 for example, 4e can be affected by column 1 to column

3. For column 1, it has no effect on 4e since 11d can’t be more than p . For column 2,

it has effect no greater than 1/p because 12 21() / 2 / 2d d p p p   , which means it

can be 0 or 1. If it carries 1 to column 3, so this 1 will carry to column 4 as only 1/p.

For column 3, it affects no greater than 2 because 13 22 31() / 3 / 3d d d p p p    ,

which means it can be 0, 1 or 2. So, the number carry to column 4 is no greater than

2. Thus, the maximum value of 4e could be 2 1/ p .

121

By analogy, we have 2

5 3 2/ 1/e p p   ;

And 2 3(2) (3) / (4) / 1/ r

re r r p r p p         ………… (1)

4(2) (3) (4) / 1/ r

rp e r p r r p p           ……………… (2)

(1) (2) , we have 4 3(1) (2) 1 1/ 1/ 1/r r

rp e r p p p p           

We assume m= 2147483647 (maximum of long digit), and then we have

4 3(2) 1 1/ 1/ 1/
lim lim

1

r r

r
p m p m

r p p p p
e

p

 

 

       



, because both numerator and

denominator are polynomial and continuous except 1 0p or . So,

4 3

1 2

(2) 1 1/ 1/ 1/
lim lim lim

1 1

1
(2) lim 2 0

(1)

2

r r

r
p m p m p m

r

rp m

r p p p p
e

p p

p
r r

p p

r

 

  



      
 

 


     

 

 

Now, let’s see the last addition of column addition 1r rd e . Since 1rd is a P-aidc

number, the error of data overflow won’t occur if we set (2) mp r   which is

same as 2  r m p .

Thus, to sum up the points which we have just indicated, 2 p m and 2  r m p

are the two conditions we cannot violate during multiplication process.

122

2.4 Division

Basically, we deal with division by transfer it to multiplication like:

1 2 3

1 2 3

1 2 3



 





r

r

r

a a a a

c c c c

m m m m

1 2 3

1 2 3

1 2 3



 





r

r

r

a a a a

b b b b

m m m m

So we need add one more step that find 1 2 3 rb b b b which is 1

1 2 3



rc c c c . To do that,

we consider the following. If so, we say 1

1 2 3 1 2 3

r rbb b b c c c c .

1 2 3

1 2 3

11 12 13 1

21 22 2

31 3

1

1 0 0 0



 













r

r

r

r

r

r

b b b b

c c c c

d d d d

d d d

d d

d

Actually, to perform the division, we do multiplication twice, one for finding the

divisor’s inverse and another for computing the final result. Since these two

multiplication is independent to each other, the range limitation of p and r would not

change, which still be 2 p m and 2  r m p .

3. Reference

[1]. Krishnamurthy, E. V. Matrix Processors Using P-adic Arithmetic for Exact

Linear Computations, IEEE Transactions on Computers, vol. C-26, No. 7, July 1977.

[2]. Dixon, J. “Exact Solution of Linear Equations Using P-adic Expansions”,

Numerische Mathematik 40, 137-141 (1982) Springer- Verlag.

123

CURRICULUM VITA

NAME: Xinkai Li

PROGRAM OF STUDY: Information Technology

DEGREE AND DATE TO BE CONFERRED: Doctor of Science, 2015

Towson University 2011 Information Technology D. Sc. 2015

Towson University 2009 Applied & Industrial Math M. S. 2011

University of Baltimore 2007 University of Baltimore M. S. 2008

Jinan University 2003 Applied Math B. S. 2007

PROFESSIONAL PUBLICATIONS:

 X. Li, C. Lu, “Proactive Self-defense Algorithm for Large Matrix Calculation Using

Multiple P-adic Data Type”, submitted to RACS 2015, in reviewing.

 X. Li, C. Lu and J. A. Sjogren, “Overflow Detection In Multiple P-adic Parallel

Implementation”, RACS 2014.

 C. Lu and X. Li, “An introduction of Multiple P-adic Data Type and Its Parallel

Implementation”, ICIS 2014.

 X. Li, C. Lu and J. A. Sjogren, “Parallel Implementation of Exact Matrix

Computation Using Multiple P-adic Arithmetic”, SNPD 2013 (also on International

Journal of Networked and Distributed Computing-Atlantis Press, 1(3), August, 2013).

124

 J. A. Sjogren, X. Li, M. Zhao, and C. Lu, “Computable Implementation of

“Fundamental Theorem of Algebra”, International Journal of Pure and Applied

Mathematics, 2013, ISSN 1311-8080.

 X. Li, M. Zhao, C. Lu and J. A. Sjogren, “Implementation of the Polynomial Method

to Calculate e^At Using P-adic”, RACS, 2012.

 X. Li, C. Lu and J. A. Sjogren, “A Method for Hesel Code Overflow Detection”,

Applied Computing Review, Vol. 12 No. 1, pp. 6-11, 2012.

 C. Lu and X. Li, “Periodicity of the P-adic Expansion after Arithmetic Operations in

P-adic Field, ICIS”, China, 2012.

 X. Li, M. Zhao and C. Lu, “Efficient Algorithms and Implementation for Error-free

Computation Using P-adic”, CSNI2011, Korea, 2011.

PROFESSIONAL POSITION HELD:

Lynchval Systems Worldwide, Inc.

13921 Park Center Rd Suite 100

Herndon VA 20171

