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Abstract—Belonging to the framework of shape constrained
estimation, k-monotone estimation refers to the nonparametric
estimation of univariate k-monotone functions, e.g., monotone
and convex functions. This paper develops minimax lower bounds
for k-monotone regression problems under the sup-norm for
general k by constructing a family of k-monotone piecewise
polynomial functions (or hypotheses) belonging to suitable Hölder
and Sobolev classes. After establishing that these hypotheses
satisfy several properties, we employ results from general min-
imax lower bound theory to obtain the desired k-monotone
regression minimax lower bound. Implications and extensions
are also discussed.

I. INTRODUCTION

A univariate function is k-monotone for k ∈ N if its
(k − 1)th derivative is increasing; examples of k-monotone
functions include monotone (k = 1) and convex (k = 2)
functions. The goal of k-monotone estimation is to develop
effective estimators that preserve the k-monotone constraint.
An important special case of shape constrained estimation,
k-monotone estimation has received considerable interest in
statistics and system identification [1], [12]. In particular,
monotone and convex estimation have been extensively studied
in the literature [2], [4], [9], [10], [13], [14], [16], [17].
Motivated by numerous applications of k-monotone estimation
when k > 2, e.g., insurance [3], qualitative simulation [5],
and attitude control [11], the asymptotic performance of a
k-monotone estimator for general k was recently studied in
[8]. Specifically, a two stage k-monotone B-spline regression
estimator was proposed. Supported by the critical uniform
Lipschitz property, it was shown that this estimator achieves
the “optimal” convergence rate for general k over a suitable
function class under the sup-norm and other norms [8].

A related question, pertaining to k-monotone estimation
minimax lower bound theory, asks whether the convergence
rate attained in [8] is strict for any k-monotone estimator. To
answer this question, we adapt results from general minimax
lower bound theory to establish minimax lower bounds for k-
monotone regression problems. Particularly, inspired by the
recent work on convex estimation minimax lower bounds
in the sup-norm [9], we construct a family of k-monotone
piecewise polynomial functions (or hypotheses) in suitable
Hölder and Sobolev classes. These hypotheses lead to the
desired minimax lower bound; implications and extensions are

also discussed. The results presented in this paper originally
appear in the first author’s Ph.D. thesis [7].

This paper is organized as follows. In Section II, we present
the k-monotone regression problem and state the main result
(cf. Theorem II.1). Next, in Section III we assemble the
hypothesis functions. A proof of the main result is given in
Section IV. Finally, several extensions and implications are
presented in Section V.

Notation: Given a function g : [a, b] → R, denote its
sup(remum)-norm and L2-norm by ‖g‖∞ := supx∈[a,b] |g(x)|
and ‖g‖L2

:= (
∫ b
a

(g(x))2 dx)1/2, respectively. Define the pth
integral of g on [a, b] as

I(p)[a,b](g) := (1){∫ b
a
g(t1) dt1 if p = 1∫ b

a

∫ tp
a
· · ·
∫ t2
a
g(t1) dt1 . . . dtp−1 dtp otherwise.

Let f (q) denote the qth derivative of the function f . For
two sequences of positive numbers (an) and (bn), we write
an � bn if there exist constants c1, c2 > 0, such that
c1 ≤ lim infn→∞ an/bn ≤ lim supn→∞ an/bn ≤ c2. Finally,
for n,m ∈ N with n ≤ m, [n : m] denotes the set of integers
{n, n+ 1, . . . ,m}.

II. PROBLEM FORMULATION

Fix k ∈ N, r ∈ (k − 1, k] and L > 0. Let γ := r − k + 1.
The family of k-monotone univariate functions on [0, 1] is

Sk :=
{
f : [0, 1]→ R

∣∣∣ the (k − 1)th derivative f (k−1)

exists a.e. on [0, 1], and(
f (k−1)(x1)− f (k−1)(x2)

)
·
(
x1 − x2

)
≥ 0

when f (k−1)(x1), f (k−1)(x2) exist
}
. (2)

When k = 1, 2, Sk represents the set of monotone functions
and continuous convex functions, respectively. Additionally,
denote the Hölder class of functions as Hr

L, i.e.,

Hr
L :=

{
f : [0, 1]→ R

∣∣∣ |f (k−1)(x)− f (k−1)(y)|

≤ L|x− y|γ , ∀ x, y ∈ [0, 1]
}
. (3)

Finally, set Sk,H(r, L) := Sk ∩Hr
L.



Consider the k-monotone regression problem

yi = f(xi) + σεi, (4)

where the xi’s are evenly spaced design points on the unit
interval, i.e., xi = i/n for all i ∈ [0 : n], n denotes the
sample size, f : [0, 1] → R is an unknown function in
Sk,H(r, L), and the εi’s are iid standard normal errors. Our
goal is to establish a lower bound under the sup-norm on the
minimax risk associated with the collection of estimators that
preserve the k-monotone constraint of f ∈ Sk,H(r, L), for the
nonparametric model (4). Specifically, the main result of this
paper is presented in the following theorem.

Theorem II.1. Fix k ∈ N, r ∈ (k − 1, k], and consider the
regression problem (4). There is a constant c > 0 such that

lim inf
n→∞

inf
f̂n

sup
f∈Sk,H(r,L)

( n

log n

) r
2r+1 E

(
‖f̂n−f‖∞

)
≥ c, (5)

where inf f̂n denotes the infimum over all constrained estima-
tors f̂n ∈ Sk on [0, 1].

Our strategy to substantiate Theorem II.1, motivated by [15,
Theorem 2.10] and [9], amounts to constructing a class of
hypothesis functions that lie in Sk,H(r, L). These functions
will maintain a suitable distance from each other in the sup-
norm, while staying sufficiently close to each other under the
L2-norm. Specifically, this family of Mn hypotheses fj,n, j ∈
[0 : Mn] must satisfy the following three conditions:

(C1) each fj,n ∈ Sk,H(r, L), j ∈ [0 : Mn];
(C2) whenever j 6= `, ‖fj,n − f`,n‖∞ ≥ 2sn > 0, where

sn � (log n/n)r/(2r+1);
(C3) there exists a constant c0 ∈ (0, 1/8) such that for all n

sufficiently large,

1

Mn

Mn∑
j=1

K(Pj , P0) ≤ c0 log(Mn),

where Pj denotes the distribution of (Yj,1, . . . , Yj,n),
Yj,i = fj,n(Xi) + ξi, j ∈ [1 : Mn], Xi = i/n, the ξi’s
are iid random variables, and K(·, ·) denotes the Kullback
divergence between two probability measures [6].

We will specify Mn in the later development. We also assume
that there exists a constant p∗ > 0 (independent of n and fj,n)
such that K(Pj , P0) ≤ p∗

∑n
i=1

(
fj,n(Xi)−f0,n(Xi)

)2
. This

assumption holds if the iid random variables ξi ∼ N(0, σ2)
(cf. [15, (2.36)] or [15, Section 2.5, Assumption B]). Hence,
the regression problem (4) satisfies this assumption.

III. CONSTRUCTION OF HYPOTHESIS FUNCTIONS

In this section, we construct a family of suitable functions
fj,n satisfying (C1)-(C3). Let (Kn) be the increasing sequence
of natural numbers given by

Kn :=
⌈( n

log n

) 1
2r+1

⌉
, (6)

and fix n large. For that fixed n, define κi := i
Kn

for
each i ∈ [0 : Kn]. To construct the desired functions fj,n,

j ∈ [0 : Mn], we begin by constructing increasing functions
h
[1]
p,n , h

[2]
p,n : [0, κ2p ] → R inductively for p ∈ [1 : k].

Our procedure for constructing the fj,n’s involves (i) using
h
[1]
k,n and h

[2]
k,n to construct the gj,n’s (cf. (16)-(17) and (19)-

(20)) and (ii) integrating the gj,n’s a total of (k − 1) times to
produce the fj,n’s (cf. (21)). We choose h[1]k,n and h[2]k,n for this
procedure for the following reasons.

(i) In order to meet (C1), each gj,n = f
(k−1)
j,n must be

increasing. Both h[1]k,n and h[2]k,n (used in the construction
of each gj,n) meet this requirement.

(ii) In view of (C2), the distance (measured with respect
to the sup-norm) between fj,n and f`,n for j 6= `
must be non-small. The fj,n’s are constructed such that
fj,n(x) = f`,n(x) when j 6= ` for all x outside of
two small subintervals of [0, 1]. On these subintervals,
fj,n−f`,n will be equal to the (k−1)th integral of either
h
[2]
k,n−h

[1]
k,n or h[1]k,n−h

[2]
k,n (cf. Lemma III.3). This integral

is on the order of Kk−1
n times smaller than h[2]k,n−h

[1]
k,n in

the sup-norm. Although this integral is relatively small,
it will still be large enough for the fj,n’s to meet (C2).

(iii) The (k − 1)th integral of h[2]k,n − h
[1]
k,n, is on the or-

der of Kk−1
n times smaller than h

[2]
k,n − h

[1]
k,n in the

sup-norm, and even smaller in the L2-norm. Since the
fj,n’s are constructed such that |fj,n − f`,n| is equal to
|I(k−1)[0,·] (h

[2]
k,n − h

[1]
k,n)| (cf. (1)) on two small subintervals

of [0, 1] and zero elsewhere for j 6= ` (cf. Lemma III.3),
the L2-norm of fj,n− f`,n will be sufficiently small and
allow the fj,n’s to meet (C3).

With these ideas in mind, we proceed to construct the auxiliary
functions h[1]p,n and h

[2]
p,n, for p ∈ [1 : k] and establish two

technical lemmas in Section III-A. In Section III-B, we use
the constructions and results from Section III-A to (i) construct
the gj,n’s, (ii) construct the hypotheses fj,n, j ∈ [0 : Mn]
by integrating each gj,n a total of (k − 1) times, and (iii)
establish Lemma III.3, which will pave the way for the proof
of Theorem II.1.

A. Construction of Auxiliary Functions

We will now construct the auxiliary functions h[1]p,n and h[2]p,n
to be used in the sequel. Let c0 ∈ (0, 18 ), and p∗ be the positive
constant indicated after condition (C3) in the previous section.
Choose

L := min

{
L

2 k
,
k!

2kk

√
γ c0

2k+3p∗(2r + 1)

}
. (7)

Define the following functions h
[1]
p,n, h

[2]
p,n : [0, κ2p ] → R

recursively for p ∈ [1 : k] as follows. First let

h
[1]
1,n(x) :=

{
0 if x ∈ [0, κ1]
LK1−γ

n (x− κ1) if x ∈ (κ1, κ2]
(8)

and

h
[2]
1,n(x) :=

{
LK1−γ

n x if x ∈ [0, κ1]
LK−γn if x ∈ (κ1, κ2].

(9)



Then for p ∈ [2 : k], define

h[1]p,n(x) := (10){
h
[1]
p−1,n(x) if x ∈ [0, κ2p−1 ]

h
[2]
p−1,n(x− κ2p−1) + h

[1]
p−1,n(κ2p−1) if x ∈ (κ2p−1 , κ2p ]

and

h[2]p,n(x) := (11){
h
[2]
p−1,n(x) if x ∈ [0, κ2p−1 ]

h
[1]
p−1,n(x− κ2p−1) + h

[2]
p−1,n(κ2p−1) if x ∈ (κ2p−1 , κ2p ].

Figure 1 contains plots of these functions for p = 1, 2, 3. Note
that both h

[1]
1,n and h

[2]
1,n are continuous. By induction, so are

h
[1]
p,n and h

[2]
p,n for p ∈ [2 : k]. Additionally, for p ∈ [2 : k],

the first “half” of h[1]p,n (i.e., the part defined on [0, κ2p−1 ]) is
identical to h

[1]
p−1,n, and the second “half” of h[1]p,n (i.e., the

part defined on (κ2p−1 , κ2p ]), when shifted appropriately, is
identical to h[2]p−1,n. An analogous relationship holds for h[2]p,n,
h
[2]
p−1,n on [0, κ2p−1 ], and h[1]p−1,n on (κ2p−1 , κ2p ].
For each p ∈ [1 : k], define ϕp : [0, κ2k ]→ R such that for

all x ∈ [0, κ2k ],

ϕ1(x) := (h
[2]
k,n − h

[1]
k,n)(x) and

ϕp(x) := I(p−1)[0,x] (ϕ1), p ∈ [2 : k].
(12)

Note that on [0, κ2p ],

ϕ1(x) = (h
[2]
k,n − h

[1]
k,n)(x) = (h

[2]
k−1,n − h

[1]
k−1,n)(x) (13)

= · · · = (h[2]p,n − h[1]p,n)(x).

Also, on [0, κ2k ], the qth derivative

ϕ(q)
p (x) = ϕp−q(x), for all q ∈ [1 : p− 1]. (14)

The following two lemmas will be useful in Section III-B.

Lemma III.1. For each p ∈ [1 : k], ϕ(q)
p (κ2p) = 0 for q ∈

[0 : p − 1]. Note that for p = k, we define ϕ(q)
k (κ2k) as the

qth right derivative of ϕk at κ2k .

Proof. We prove this result by induction on p. For p = 1, by
virtue of (8)-(9), and(12),

ϕ1(κ2) = (h
[2]
1,n − h

[1]
1,n)(κ2) = LK−γn − LK−γn = 0.

Hence, the result holds for p = 1. Fix p ∈ [2 : k] and assume
that the result holds for (p−1). In what follows, we show that
the result then holds for p.

Consider q = 0 first. Since ϕp is (p−1) times differentiable,
by Taylor expansion

ϕp(κ2p) =

p−2∑
r=0

ϕ
(r)
p (κ2p−1)

(
2p−1

Kn

)r
r!

+ I(p−1)[κ2p−1 ,κ2p ]
(ϕ(p−1)
p ).

By (14) and the induction hypothesis, we have

ϕ(r)
p (κ2p−1) = ϕp−r(κ2p−1) = ϕ

(r−1)
p−1 (κ2p−1) = 0,

Legend

h[1]
p,n

h[2]
p,n

p = 1

0 κ1 κ2

L
Kγ
n

p = 2

0 κ2 κ4

L
Kγ
n

2L
Kγ
n

p = 3

0 κ2 κ4 κ6 κ8

L
Kγ
n

2L
Kγ
n

3L
Kγ
n

4L
Kγ
n

Fig. 1: Plot of h[1]p,n and h[2]p,n for p = 1, 2, 3.

for r ∈ [1 : p− 2]. Hence, by the above two displays,

ϕp(κ2p)

= ϕp(κ2p−1) + I(p−1)[κ2p−1 ,κ2p ]
(ϕ(p−1)
p )

= ϕp(κ2p−1) + I(p−1)[κ2p−1 ,κ2p ]
(h[2]p,n − h[1]p,n)

= ϕp(κ2p−1)

+ I(p−1)[κ2p−1 ,κ2p ]

(
(h

[1]
p−1,n − h

[2]
p−1,n)( · − κ2p−1)

+ ϕ1(κ2p−1)
)

= ϕp(κ2p−1) + I(p−1)[0,κ2p−1 ]
(h

[1]
p−1,n − h

[2]
p−1,n)

= ϕp(κ2p−1)− ϕp(κ2p−1) = 0,

where we use (10)-(14), and ϕ1(κ2p−1) = ϕ
(p−2)
p−1 (κ2p−1) = 0



via (14) and the induction hypothesis.
Next consider q ∈ [1 : p− 2]. We have that

ϕ(q)
p (κ2p)

=

p−q−2∑
r=0

ϕ
(q+r)
p (κ2p−1)

(
2p−1

Kn

)r
r!

+ I(p−q−1)[κ2p−1 ,κ2p ]
(ϕ(p−1)
p ).

In view of ϕ(q+r)
p (κ2p−1) = ϕp−q−r(κ2p−1) = 0 for all r ∈

[0 : p− q− 2] via (14) and the induction hypothesis, we have
by the above display, and (10)-(14),

ϕ(q)
p (κ2p) = I(p−q−1)[κ2p−1 ,κ2p ]

(ϕ1) = I(p−q−1)[κ2p−1 ,κ2p ]
(h[2]p,n − h[1]p,n)

= I(p−q−1)[κ2p−1 ,κ2p ]

[
(h

[1]
p−1,n − h

[2]
p−1,n)( · − κ2p−1) + ϕ1(κ2p−1)

]
= −I(p−q−1)[0,κ2p−1 ]

(ϕ1) = −ϕp−q(κ2p−1) = 0.

Finally, if q = p− 1, then by (10)-(14),

ϕ(q)
p (κ2p) = ϕ1(κ2p) = h[2]p,n(κ2p)− h[1]p,n(κ2p)

=
(
h
[1]
p−1,n(κ2p−1) + h

[2]
p−1,n(κ2p−1)

)
−
(
h
[2]
p−1,n(κ2p−1) + h

[1]
p−1,n(κ2p−1)

)
= 0.

Hence the result holds by induction.

Lemma III.2. Let r ∈ (k − 1, k] and γ = r − (k − 1). For

ϕk : [0, κ2k ]→ R,
L

k!
K−rn ≤ ‖ϕk‖∞ ≤

L 2k
k

k!
K−rn .

Proof. Consider k = 1. It is easy to see via Figure 1 that

‖ϕ1‖∞ = ‖h[2]1,n − h
[1]
1,n‖∞ = LK−γn ,

so the result holds for k = 1.
We then consider k > 1. On [0, κ1], we have that ϕ1(x) =

h
[2]
1,n(x)− h[1]1,n(x) = LK1−γ

n x. Hence,

‖ϕk‖∞ ≥ ϕk (κ1) = I(k−1)[0,κ1]
(ϕ1)

= I(k−1)[0,κ1]
(LK1−γ

n · ) =
L

k!
K−rn .

We claim that |ϕ1(x)| ≤ LK−γn for all x ∈ [0, κ2p ] for
p ∈ [1 : k], and prove this claim by induction on p. Certainly
this claim holds for p = 1, via (8)-(9) and the definition of
ϕ1 (12). If p ∈ [2 : k], and the result holds for (p − 1),
we need only show that |ϕ1(x)| ≤ LK−γn on (κ2p−1 , κ2p ]. If
x ∈ (κ2p−1 , κ2p ], then by (10)-(13) and Lemma III.1,

|ϕ1(x)| = |(h[2]p,n − h[1]p,n)(x)|

= |(h[1]p−1,n − h
[2]
p−1,n)(x− κ2p−1) + ϕ1(κ2p−1)|

= |(h[1]p−1,n − h
[2]
p−1,n)(x− κ2p−1)| ≤ LK−γn ,

since (x− κ2p−1) ∈ [0, κ2p−1 ]. By observing that

‖ϕk‖∞ ≤ I(k−1)[0,κ
2k

](‖ϕ1‖∞) ≤ I(k−1)[0,κ
2k

](LK
−γ
n )

=
L 2k

k−1

(k − 1)!
K−rn ≤ L 2k

k

k!
K−rn

and the established claim, the proof is complete.

Now that we have established the previous two preliminary
results, we are ready to construct the hypothesis functions
using h[1]k,n and h[2]k,n in the next section.

B. Construction of the Hypotheses

In the sequel, we construct the (k − 1)th derivatives of the
fj,n’s, namely the gj,n’s, j ∈ [0 : Mn]. We then integrate the
gj,n’s to create the fj,n’s. In Section IV, we will demonstrate
that the fj,n’s meet conditions (C1)-(C3) of Section II. To this
end, we consider two different cases in constructing the gj,n’s.

Case 1: r ∈ (k − 1, k), so that γ = r − k + 1 ∈ (0, 1). In
this case, let Mn := bKγ

nc − 1 ∈ N and define the intervals

Ij := [(j − 1)K−γn , (j − 1)K−γn + κ2k) (15)

for each j ∈ N. Then, let g0,n : [0, 1]→ R be such that

g0,n(x) :=


(j − 1)2k−1LK−γn + h

[1]
k,n(x− (j − 1)K−γn )

if x ∈ Ij ∩ [0, 1]

j 2k−1LK−γn if x ∈ [(j − 1)K−γn , j K−γn ) \ Ij ,
(16)

for all appropriate j ∈ N, where h[1]k,n is defined in (10). Note
that we assume that n is large enough so that κ2k < K−γn ,
and hence, g0,n is well defined. Next, for each j ∈ [1 : Mn],
we define gj,n : [0, 1]→ R such that

gj,n(x) :=


(j − 1)2k−1LK−γn + h

[2]
k,n(x− (j − 1)K−γn )

if x ∈ Ij
g0,n(x) otherwise,

(17)
where h[2]k,n is defined in (11). Hence, gj,n(x) = g0,n(x) for
all x ∈ [0, 1] \ Ij . For x ∈ Ij ,

gj,n(x)− g0,n(x)

= h
[2]
k,n(x− (j − 1)K−γn )− h[1]k,n(x− (j − 1)K−γn )

= ϕ1(x− (j − 1)K−γn ).

Furthermore, g0,n is continuous, since (i) h[1]k,n is continuous on
[0, κ2k ], and (ii) it can be shown by induction that h[1]k,n(κ2k) =

2k−1LK−γn ; thus for each j,

(j − 1)2k−1LK−γn

+ h
[1]
k,n((j − 1)K−γn + κ2k − (j − 1)K−γn )

= j2k−1LK−γn .

A similar argument shows that gj,n is continuous, j ∈ [1 :
Mn].

In Figure 2 a plot of several of the gj,n’s near the origin is
given for k = 1, 2, 3.

Case 2: r = k, so that γ = 1. In this case, let Mn :=
bKn

2k
c − 1 ∈ N and define the intervals

Ij := [(j − 1)2kK−1n , j 2kK−1n ) (18)
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Fig. 2: Plot of the gj,n’s near the origin, γ ∈ (0, 1).

for each j ∈ N. Then define the function g0,n : [0, 1] → R
such that

g0,n(x) := (j − 1) 2k−1LK−1n + h
[1]
j,n(x− (j − 1) 2kK−1n )

if x ∈ Ij ∩ [0, 1] (19)

for all appropriate j ∈ N, where h[1]k,n is defined in (10). Next
for each j ∈ [1 : Mn] let gj,n : [0, 1]→ R be such that

gj,n(x) := (20)
(j − 1)2k−1LK−1n + h

[2]
k,n(x− (j − 1)2kK−1n )

if x ∈ Ij
g0,n(x) otherwise,
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Fig. 3: Plot of the gj,n’s near the origin, γ = 1.

where h[2]k,n is defined in (11). In this case, we again have that,
gj,n(x) = g0,n(x) for all x ∈ [0, 1] \ Ij and for all x ∈ Ij ,

gj,n(x)− g0,n(x) = (h
[2]
k,n − h

[1]
k,n)(x− (j − 1)2kK−1n )

= ϕ1(x− (j − 1)2kK−1n ).

In Figure 3 a plot of several of the gj,n’s near the origin is
given for k = 1, 2, 3. By an argument similar to that in Case
1, each gj,n, j ∈ [0 : Mn], is continuous on [0, 1].

Finally, in either case, define the jth hypothesis function
fj,n : [0, 1]→ R such that

fj,n(x) := I(k−1)[0,x] (gj,n), ∀ x ∈ [0, 1]. (21)



Now that we have constructed the hypothesis functions, we
will establish one more lemma, before demonstrating that the
hypotheses satisfy conditions (C1)-(C3) in Section IV.

Lemma III.3. If γ ∈ (0, 1), then for each j ∈ [1 : Mn], we
have

fj,n(x)− f0,n(x) =

{
ϕk(x− (j − 1)K−γn ) if x ∈ Ij
0 otherwise,

where Ij is defined in (15). Alternatively, if γ = 1, for each
j ∈ [1 : Mn], we have

fj,n(x)− f0,n(x) =

{
ϕk(x− (j − 1)2kK−1n ) if x ∈ Ij
0 otherwise,

where Ij is defined in (18).

Proof. Certainly, the result holds for k = 1 by (12), (16)-(17),
and (19)-(21). In what follows, consider k > 1 in two cases.
Case 1: γ ∈ (0, 1), so each fj,n is given by (16)-(17), and (21).

Fix j ∈ [1 : Mn]. If x ∈ [0, (j − 1)K−γn ), then via (17),
and (21),

(fj,n − f0,n)(x) = I(k−1)[0,x] (gj,n − gj,0) = 0. (22)

Suppose that x ∈ Ij (cf. (15)). By (12), (16)-(17), and (21),

(fj,n − f0,n)(x)

= I(k−1)[0,x] (gj,n − gj,0)

= I(k−1)
[(j−1)K−γn ,x]

(
(h

[2]
k,n − h

[1]
k,n)( · − (j − 1)K−γn )

)
= I(k−1)

[0, x−(j−1)K−γn ]
(ϕ1) = ϕk(x− (j − 1)K−γn ). (23)

Finally, consider x ∈ [(j − 1)K−γn + κ2k , 1]. By
Lemma III.1, (12)-(14), (16)-(17), and (21),

0 = ϕ
(p)
k (κ2k) = ϕk−p(κ2k) = I(k−p−1)[0,κ

2k
] (h

[2]
k,n − h

[1]
k,n)

= I(k−p−1)
[(j−1)K−γn , (j−1)K−γn +κ

2k ](
(h

[2]
k,n − h

[1]
k,n)( · − (j − 1)K−γn )

)
= I(k−p−1)

[(j−1)K−γn , (j−1)K−γn +κ
2k ]

(
gj,n − g0,n

)
= I(k−p−1)

[0, (j−1)K−γn +κ
2k ]

(
gj,n − g0,n

)
= (fj,n − f0,n)(p)((j − 1)K−γn + κ2k), (24)

for p ∈ [0 : k−1]. Since gj,n−g0,n is continuous by the discus-
sion below (16)-(17), fj,n−f0,n is (k−1) times continuously
differentiable. Hence, via Taylor expansion, (15), (17), (21)
and (24),

(fj,n − f0,n)(x) = (fj,n − f0,n)(x)

−
k−2∑
p=0

1

p!

[
(fj,n − f0,n)(p)

(
(j − 1)K−γn + κ2k

)
×
(
x− [(j − 1)K−γn + κ2k ]

)p ]
= I(k−1)

[(j−1)K−γn +κ
2k
, x]

(
(fj,n − f0,n)(k−1)

)

= I(k−1)
[(j−1)K−γn +κ

2k
, x]

(gj,n − g0,n)

= 0, (25)

and the result holds for Case 1.
Case 2: γ = 1 so each fj,n is given by (19)-(21). Again, fix
j ∈ [1 : Mn]. Using arguments similar to those in (22), (23),
and (24)-(25), we can also show that Case 2 holds for all
x ∈ [0, (j − 1)2kK−1n ), [(j − 1)2kK−1n , j 2kK−1n ), and
[j 2kK−1n , 1], respectively.

Now that we have constructed the hypotheses and estab-
lished the previous result, we are ready to show that these
functions meet conditions (C1)-(C3) from Section II.

IV. PROOF OF THE MAIN RESULT

We use the previous constructions and results to establish
Theorem II.1 in the following proof.

Proof. In each of the following two cases, we demonstrate
that the fj,n’s of (21) meet conditions (C1)-(C3).

Case 1: γ ∈ (0, 1), so that Mn = bKγ
nc − 1, and the gj,n’s

are given by (16)-(17). We show as follows that the fj,n’s
satisfy conditions (C1), (C2), and (C3), respectively.

(1) For all n (and Kn) sufficiently large, the following
properties of each gj,n can be easily verified via Figure 2:
for x, y ∈ [0, 1], suppose that
(i) 0 < |x− y| ≤ κ2k . Then

max
j

|gj,n(x)− gj,n(y)|
|x− y|

≤ |g0,n(x)− g0,n(y)|
|x− y|

∣∣∣
x=κ1, y=κ2

= LK1−γ
n .

(ii) κ2k < |x− y| ≤ K−γn . Then

max
j
|gj,n(x)− gj,n(y)|

≤ |g0,n(x)− g0,n(y)|
∣∣
x=0, y=κ

2k
= 2k−1LK−γn .

(iii) K−γn < |x−y| ≤ 1. Without loss of generality, let x < y
with y = qK−γn + s(x, y) for some q ∈ N and 0 ≤
s(x, y) < K−γn . It follows from (7) that

max
j

|gj,n(x)− gj,n(y)|
|x− y|

≤ max
i=2k−1, 2k

|g0,n(x)− g0,n(y)|
|x− y|

∣∣∣
x=κ1, y=qK

−γ
n +κi

≤ 2k−1(q + 1)LK−γn
qK−γn + (2k − 1)K−1n

≤ 2k−1(q + 1)LK−γn
qK−γn

≤ 2kL ≤ L.

Since each gj,n is nondecreasing, each fj,n given by (21)
belongs to Sk (cf. (2)). To see that each fj,n is in the Hölder
class Hr

L (cf. (3)), we consider the following three scenerios:
(1.1) 0 < |x − y| ≤ κ2k . Then, by (i), (7), and (21), we have

that

|f (k−1)j,n (x)− f (k−1)j,n (y)|
|x− y|γ



=
|f (k−1)j,n (x)− f (k−1)j,n (y)|

|x− y|
|x− y|1−γ

≤ L̄K1−γ
n κ1−γ

2k
≤ 2kL ≤ L.

(1.2) κ2k < |x − y| ≤ K−γn . Then, by (ii), (7), and (21), we
have that

|f (k−1)j,n (x)− f (k−1)j,n (y)|
|x− y|γ

≤ 2k−1LK−γn
|x− y|γ

≤ 2k−1L̄K−γn κ−γ
2k
≤ 2kL ≤ L.

(1.3) 1
Kγ
n
< |x− y| ≤ 1. By (iii) and (21), we obtain

|f (k−1)j,n (x)− f (k−1)j,n (y)|
|x− y|γ

≤
|f (k−1)j,n (x)− f (k−1)j,n (y)|

|x− y|
≤ L.

Thus, each fj,n ∈ Sk,H(r, L), so the fj,n’s satisfy (C1).
(2) Suppose that j 6= `. By Lemma III.3, we have that

fj,n(x) = f0,n(x) = f`,n(x) for all x ∈ [0, 1] \ (Ij ∪ I`)
(cf. (15)). Hence, |fj,n(x)− f`,n(x)| = 0 on [0, 1] \ (Ij ∪ I`).
Also,

|fj,n(x)− f`,n(x)| = |fj,n(x)− f0,n(x)|
= |ϕk(x− (j − 1)K−γn )| ∀ x ∈ Ij ,

and similarly, |fj,n(x)−f`,n(x)| = |ϕk(x−(`−1)K−γn )| ∀ x ∈
I`. Therefore, in view of (6) and Lemma III.2, we see that the

fj,n’s meet condition (C2) with sn := L
2k!

⌈(
n

logn

) 1
2r+1

⌉−r
�(

logn
n

) r
2r+1

, as

‖fj,n − f`,n‖∞ = ‖ϕk‖∞ ≥
L

k!
K−rn = 2sn.

(3) By the discussion following the statement of (C3) in
Section II, there exists p∗ > 0, independent of n and fj,n,
such that K(Pj , P0) ≤ p∗

∑n
i=1(fj,n(Xi)−f0,n(Xi))

2 where
Xi = i

n , for all j ∈ [1 : Mn]. Also,

Xi ∈
[
(j − 1)K−γn , (j − 1)K−γn + κ2k

)
=⇒⌈

n(j − 1)K−γn
⌉
≤ i ≤

⌊
n
(
(j − 1)K−γn + κ2k

)⌋
.

Let aj := dn(j − 1)K−γn e and bj :=
bn ((j − 1)K−γn + κ2k)c. Then by Lemma III.2,
Lemma III.3, (6), and (7), for n sufficiently large,

K(Pj , P0) ≤ p∗
n∑
i=1

(fj,n (Xi)− f0,n (Xi))
2

= p∗

bj∑
i=aj

(fj,n (Xi)− f0,n (Xi))
2

= p∗

bj∑
i=aj

(
ϕk

(
i/n− (j − 1)K−γn

) )2
≤ p∗

bj∑
i=aj

(L2k
k

k!
K−rn

)2
≤ p∗2n κ2k

(L2k
k

k!
K−rn

)2

= p∗2
k+1
(L2k

k

k!

)2
nK−(2r+1)

n

≤ γc0
4(2r + 1)

n K−(2r+1)
n ≤ γc0

4(2r + 1)
log n

≤ γc0
2(2r + 1)

log
( n

log n

)
≤ γc0

2
log(Kn)

≤ c0 log(bKγ
nc − 1) = c0 logMn

for all j ∈ [1 : Mn]. Thus, 1
Mn

∑Mn

j=1K(Pj , P0) ≤ c0 logMn,
and (C3) holds in Case 1.

Case 2: γ = 1, so that Mn = bKn
2k
c − 1, and the gj,n’s are

now given by (19)-(20). We now demonstrate that conditions
(C1)-(C3) hold for Case 2 in (1)-(3).

(1) It is easy to see that each gj,n is increasing via Figure 3.
Hence, each fj,n given by (21) belongs to Sk. Also, it is easy
to verify that for any 0 ≤ x < y ≤ 1, |gj,n(x)−gj,n(y)||x−y| ≤
L ≤ L for each j ∈ [0 : Mn]. This thus implies that each
fj,n ∈ Sk,H(r, L). Hence, the fj,n’s meet condition (C1).

(2) Suppose j 6= `. By an argument similar to that in Case
1 and (18),

|fj,n(x)− f`,n(x)| =


|ϕk(x− (j − 1)κ2k)| if x ∈ Ij
|ϕk(x− (`− 1)κ2k)| if x ∈ I`
0 otherwise,

and the fj,n’s meet condition (C2) with sn :=

L
2k!

⌈(
n

logn

) 1
2r+1

⌉−r
�
(

logn
n

) r
2r+1

.
(3) Let aj := dn(j − 1)κ2ke and bj := bn j κ2kc. By an

argument similar to that in Case 1, for n sufficiently large, we
have that for all j ∈ [1 : Mn],

K(Pj , P0) ≤ p∗
bj∑
i=aj

(
ϕk

(
i/n− (j − 1)κ2k

) )2
≤ p∗

bj∑
i=aj

(L2k
k

k!
K−rn

)2
≤ p∗2n κ2k

(L2k
k

k!
K−rn

)2
≤ c0

2
log(Kn) ≤ c0 log

(⌊Kn

2k

⌋
− 1
)

= c0 log(Mn)

Hence 1
Mn

∑Mn

j=1K(Pj , P0) ≤ c0 logMn and condition (C3)
holds for Case 2 as well.

We have demonstrated that conditions (C1)-(C3) are satis-
fied by fj,n, j ∈ [0 : Mn]. By virtue of the discussion follow-
ing the statement of Theorem II.1, Theorem II.1 holds.

V. IMPLICATIONS AND EXTENSIONS

In this section, we state and establish several corollaries.
Combining Theorem II.1 and [8, Theorem 4.1], we immedi-
ately obtain the following corollary which demonstrates the
minimax optimal convergence rate under the sup-norm.

Corollary V.1. Fix k ∈ N, r ∈ (k − 1, k], and L > 0. Then
the regression problem given by (4) satisfies

inf
f̂

sup
f∈Sk,H(r,L)

E
(
‖f̂ − f‖∞

)
�
( log n

n

) r
2r+1

, (26)

where inf f̂ denotes the infimum over all estimators in Sk.



We have studied minimax lower bounds for constrained
Hölder clasees, where the ceiling of the Hölder exponent, dre,
is equal to k, the order of the k-monotone constraint. In the
next corollary, we establish the same minimax lower bounds
when dre is greater than the order of the derivative constraint.
Let Sp,H(r, L) := Sp ∩Hr

L for any p ∈ [1 : k − 1]. Consider
the regression problem given by (4) with Sk,H(r, L) replaced
by Sp,H(r, L). We obtain the following corollary.

Corollary V.2. Fix k ∈ N, r ∈ (k− 1, k], L > 0, and p ∈ [1 :
k − 1]. There exists a constant c > 0 such that

lim inf
n→∞

inf
f̂

sup
f∈Sp,H(r,L)

( n

log n

) r
2r+1E

(
‖f̂ − f‖∞

)
≥ c,

where inf f̂ denotes the infimum over all estimators in Sp.

Proof. In view of the proof of Theorem II.1, it suffices to
show that there exists a family of hypothesis functions fj,n,
j ∈ [0 : Mn] satisfying (i) fj,n ∈ Sp,H(r, L) for all j, (ii)
(C2) of Section II, and (iii) (C3) of Section II. Because the
gj,n’s constructed in (16)-(17) and (19)-(20) satisfy gj,n ≥ 0,
we have f (p)j,n (x) = I(k−p−1)[0,x] (gj,n) ≥ 0, so each fj,n given
by (21) belongs to Sp. Moreover, by the proof of Theorem II.1,
each fj,n ∈ Hr

L (and thus is also in Sp,H(r, L)) and satisfies
(C2) and (C3).

We have studied k-monotone estimation over suitable
Hölder classes in the sup-norm. In this final corollary, we
consider the same problem over a Sobolev class. For fixed
k ∈ N and L > 0, define the Sobolev class of functions

W(k, L) :={
f : [0, 1]→ R

∣∣∣ f is (k − 1) times differentiable, with

f (k−1) absolutely continuous, and ‖f (k)‖L2 ≤ L
}
.

Let Sp,W(k, L) := Sp ∩ W(k, L) with p ∈ [1 : k]. Consider
the regression problem given by (4) with Sk,H(r, L) replaced
by Sp,W(k, L). We obtain the following corollary.

Corollary V.3. Fix k ∈ N, L > 0, and p ∈ [1 : k]. Then there
exists a positive constant c such that

lim inf
n→∞

inf
f̂

sup
f∈Sp,W(k,L)

( n

log n

) r
2r+1E

(
‖f̂ − f‖∞

)
≥ c,

where inf f̂ denotes the infimum over all estimators in Sp.

Proof. In view of the proof of the previous corollary, it
is sufficient show that the fj,n’s given by (21) belong to
Sp,W(k, L). Note that each gj,n is Lipschitz continuous, with
Lipschitz constant L. Hence, each f (k−1)j,n = gj,n is absolutely
continuous. In addition, by the Lipschitz continuity of gj,n,∫ 1

0

(
f
(k)
j,n (x)

)2
dx =

∫ 1

0

(
g′j,n(x)

)2
dx ≤

∫ 1

0

L2 dx = L2.

Thus, ‖f (k)j,n ‖L2 ≤ L, and each fj,n ∈ Sp,W(k, L).

VI. CONCLUSION

This paper establishes minimax lower bounds for k-
monotone regression problems over a Hölder class in the sup-
norm for general k. Combining these results with the minimax
upper bounds for k-monotone regression problems established
in [8], we obtain optimal minimax convergence rates under the
sup-norm. An extension to Sobolev classes is also verified.
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