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Due to the ability of different sensors to provide complementary views of complicated

systems, the collection of data from multiple sources has become common, particularly in

neurological studies. Therefore, full utilization of the common information forms the fun-

damental goal of performing a joint analysis on this data. However, since little is known

about the relationships among the datasets, it is important to minimize the underlying as-

sumptions placed on the data. Because of this fact and their ability to treat separate datasets

in a fully symmetric manner, multivariate data-driven methods are the main choice for the

fusion of multiple sets of neurological data. However, different methods rely on different

generative models, meaning that many considerations must be taken into account before

an individual method can be applied to a new problem. This motivates an investigation of

how the assumptions of different methods manifest in the resulting decomposition, the de-

velopment of techniques to assess the contribution of different datasets to the analysis, and

the development of a way to unambiguously assess the relative performance of different

methods on real data.

In this dissertation, we approach these issues from multiple directions. We intro-

duce a technique called principal component analysis and canonical correlation analysis

(PCA-CCA) to determine the similarity or links between different neuroimaging datasets.

Through both simulations and application to brain imaging data, namely, functional mag-

netic resonance imaging (fMRI) data, structural MRI (sMRI) data, and electroencephalo-



gram (EEG) data from patients with schizophrenia and healthy controls, we show the desir-

able performance of the proposed technique. We also use this unique set of imaging data in

order to test the robustness of different data-driven fusion methods to deviations from their

assumptions and to assess the effects of bringing each dataset into the analysis. We propose

a classification rate-based procedure to quantify the performance of different fusion meth-

ods on real fMRI data extracted during the performance of different tasks and demonstrate

how this method can be used to determine the “value added” by each dataset to the anal-

ysis. Finally, we introduce a novel visualization technique to highlight the changes in the

brain regions that discriminate between patients with schizophrenia and healthy controls

through the use of different fusion techniques. We find that the methods that we develop in

this dissertation provide a useful framework for investigating the interactions of different

datasets within a fusion analysis.
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and patience throughout my doctoral work. Her emphasis on research as a collaborative

activity has created a wonderful environment where questions and discussion are always

encouraged. She has helped me to improve every aspect of my research immensely, from

writing clearly and concisely to understanding new information quickly and thinking criti-

cally. I could not have asked for a better advisor.

I would like to thank the current and former members of the MLSP lab: Dr. Sai Ma,

Dr. Wei Du, Dr. Gengshen Fu, Mohammad Abu Bak Siddique Akhonda, Zois Boukou-

valas, Suchita Bhinge, Darren Emge, Qunfang Long, Rami Mowakeaa, and Xiaowei Song,

for the countless hours of discussion, often long after the time that a reasonable person

would go home.

I would also like to express my gratitude the members of my committee: Profes-

sor Vince Calhoun, Professor Joel Morris, Professor Seung-Jun Kim, and Professor Shari

Waldstein for their insightful comments.

I owe my deepest thanks to my family. My parents have always been a source of

encouragement and continue to inspire me. My sister, whose boundless enthusiasm and

energy never fails to make me smile. I must also thank Robbin and Gene Warner for

providing a “home away from home;” I cannot express my gratitude to them.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xviii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Chapter 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Neuroimaging Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 FMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 SMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

v



2.2 Dimension-Reduction and Order Selection . . . . . . . . . . . . . . . . . . 13

2.3 BSS Techniques for Data Fusion . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 JICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 CCA, MCCA, and IVA . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 TIVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Minimum Spanning Tree (MST) . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 3 ORDER-SELECTION FOR MULTIMODAL DATA . . . . . . 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Traditional and Sample-poor Hypothesis Test . . . . . . . . . . . . . . . . 31

3.2.1 Determining the Probability of False Alarm using ITC . . . . . . . 33

3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Variable Per-Component SNR Simulation Setup . . . . . . . . . . 34

3.3.2 Variable Per-Component SNR Simulation Results . . . . . . . . . . 36

3.3.3 Fixed Per-Component SNR Simulation Setup . . . . . . . . . . . . 37

3.3.4 Fixed Per-Component SNR Simulation Results . . . . . . . . . . . 38

3.4 Fusion Results Using Real Multimodal Data . . . . . . . . . . . . . . . . . 38

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 4 FUSION OF THREE MULTIMODAL

NEUROIMAGING DATASETS . . . . . . . . . . . . . . . . . . 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Multimodal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vi



4.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . 49

4.4 Multimodal Fusion of FMRI, SMRI, and ERP . . . . . . . . . . . . . . . . 51

4.4.1 JICA Results and Discussion . . . . . . . . . . . . . . . . . . . . . 51

4.4.2 TCCA/TMCCA/TIVA Results and Discussion . . . . . . . . . . . 53

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 5 QUANTIFYING THE INTERACTION AND CONTRIBUTION

OF MULTIPLE DATASETS

IN FUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Classification Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Number of Monte-Carlo Resamplings . . . . . . . . . . . . . . . . 63

5.2.2 Order-Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1 Stability of Conclusions Using Other Classification Techniques . . 68

5.3.2 Exploring the Effects of Fusion . . . . . . . . . . . . . . . . . . . 70

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Chapter 6 VISUALIZING THE CHANGES IN BIOMARKERS FROM

FUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 Motivation for and Generation of a GDM . . . . . . . . . . . . . . . . . . 80

6.1.1 Using GDMs to Summarize Discriminatory Power of a Decompo-

sition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Visualizing Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vii



Chapter 7 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . 86

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2.1 IVA for Determining the Connections between Multiple Datasets . 89

7.2.2 ICA+CCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2.3 TIVA for Calcium Imaging Data . . . . . . . . . . . . . . . . . . . 92

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

viii



LIST OF FIGURES

2.1 Extraction of features for each subject from multimodal neuroimaging data. Note the dif-

ferences in the dimensionality of the original data and how a common subjects dimension

is established through the extraction of features from each subject. . . . . . . . . . . . 9

2.2 Generative model for ICA. Note how the mth column of the mixing matrix, am, represents

the relative weights of the mth source, sm, for each corresponding subject. . . . . . . . . 18

2.3 Generative model for multimodal fusion using tCCA. Note that this model is obtained

after spatial dimension-reduction through PCA, i.e., X̃[1] and X̃[2] are both C × M matrices. 24

3.1 Probability of correctly detecting the number of common components versus the dimen-

sion of the datasets, V1 and V2, when the latent sources are (a) Gaussian, (b) uniformly,

and (c) Laplacian distributed. Note that for these simulations, V1 = V2. . . . . . . . . . 36

3.2 Probability of correctly detecting the number of common components versus the dimen-

sion of the datasets, V1 and V2, when the latent sources are (a) Gaussian, (b) uniformly,

and (c) Laplacian distributed. Note that for these simulations, V1 = V2. . . . . . . . . . 37

3.3 Meaningful and statistically significant components generated using tCCA with pairwise

combinations of the three modalities. The uncorrected significance (p-values) for the

components are (a) 0.027 for the fMRI-sMRI component, (b) 0.003 for the fMRI-ERP

component, and (c) 0.018 for the sMRI-ERP component. All spatial maps are Z-maps

threshold at Z=3.5. Note that we flip the maps such that the activation (red and orange)

represents an increase in controls over patients and deactivation (blue) corresponds to a

decrease in controls versus patients. . . . . . . . . . . . . . . . . . . . . . . . . 39

ix



3.4 Meaningful and statistically significant components generated using MCCA with the

GENVAR cost. The uncorrected significance (p-values) for the components are (a) 0.014

for the first component and (b) 0.018 for the second component. All spatial maps are

Z-maps thresholded at Z=3.5. Note that we flip the maps such that the activation (red

and orange) represents an increase in controls over patients and deactivation (blue) corre-

sponds to a decrease in controls versus patients. . . . . . . . . . . . . . . . . . . . 42

4.1 Estimation performance for the common component with two datasets as (a) the height of

the step in a[1]
1 decreases (b) n[1]

1 increases, and (c) the number of subjects increases. . . . 49

4.2 Estimation performance for the common component with three datasets as the height of

the step decreases in terms of (a) t-statistic for the most significant component, (b) and (c)

correlation of the most significant component to the original source. . . . . . . . . . . 50

4.3 Significant and biologically meaningful components generated for fusion of all three

datasets using jICA using the EBM algorithm. The uncorrected significance values are

(a) 0.0042 and (b) 0.0097. All spatial maps are Z-maps thresholded at Z=3.5. Note that

we flip the maps such that the activation (red and orange) represents an increase in controls

over patients and deactivation (blue) corresponds to a decrease in controls versus patients. . 52

4.4 Significant and biologically meaningful components generated using jICA using the EBM

algorithm for combinations of two modalities. The uncorrected significance values for the

components are (a) 0.0031 for the first component and (b) 0.0147 for the second compo-

nent from the fusion of fMRI and ERP, as well as (c) 0.0044 for the component from the

fusion of sMRI and ERP. All spatial maps are Z-maps thresholded at Z=3.5. Note that we

flip the maps such that the activation (red and orange) represents an increase in controls

over patients and deactivation (blue) corresponds to a decrease in controls versus patients. . 53

x



4.5 Significant and biologically meaningful components generated from the fusion of all three

datasets using tMCCA using the MAXVAR and GENVAR cost functions as well as tIVA-

G. The uncorrected significance values for the components estimated using MAXVAR are

0.0140. The uncorrected significance values for the components estimated using GEN-

VAR 0.0134 for the top component and 0.0187 for the second one. For tIVA-G, we have

a single component that shows significant group difference with 0.0265. All spatial maps

are Z-maps thresholded at Z=3.5. Note that we flip the maps such that the activation

(red and orange) represents an increase in controls over patients and deactivation (blue)

corresponds to a decrease in controls versus patients. . . . . . . . . . . . . . . . . . 54

4.6 Significant and biologically meaningful components generated using tIVA-G and tCCA

with two modalities. The uncorrected significance for components are 0.0130 for the

component estimated using tIVA-G and 0.0130 for the component estimated using tCCA.

All spatial maps are Z-maps thresholded at Z=3.5. Note that we flip the maps such that the

activation (red and orange) represents an increase in controls over patients and deactivation

(blue) corresponds to a decrease in controls versus patients. . . . . . . . . . . . . . . 56

xi



5.1 Classification process for a single feature dataset. For the case where multiple datasets are

analyzed, the ICA step is replaced with either jICA or IVA, performed on the concatenated

feature datasets or the collection of feature datasets, respectively. The procedure is as

follows: (a) the data is split into a training set, XTrain, and a test set, XTest. (b) the training

dataset is dimension reduced using PCA, ICA is run, and the discriminatory components,

S̆Train, and corresponding subject covariations, ĂTrain, are selected. (c) in the final stage,
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Chapter 1

INTRODUCTION

1.1 Motivation

The collection of data from multiple sensors has become common in many fields,

since these different sensors are expected to provide complementary views of complicated

systems, such as the study of brain activity [3], which is the focus of this dissertation. We

refer to data drawn from sensors of different types modalities. Thus, data drawn from mul-

tiple sensors can be categorized as either multiset data or multimodal data. Multiset data

is drawn from sensors of the same type, such as: functional magnetic resonance imaging

(fMRI) or electroencephalography (EEG) data from multiple tasks, at different times, or

from different subjects or the red, green, and blue color channels in video sequences. Con-

trasted with multiset data, multimodal data is drawn sensors of different types, such as:

fMRI data and EEG data from the same subjects and task, remote sensing, i.e., light detec-

tion and ranging data as well as synthetic aperture data of the same region, and data from

the diverse set of devices used in meteorological monitoring. This raises the issue of how to

best utilize each of these datasets in order to maximize the use of available information for

the given task. This goal is made more difficult by the fact that the datasets are generated

from an intricate system, have fairly low signal-to-noise ratios (SNRs), and—in the case

of multimodal data—have different physics units and are of different sizes [4]. In addition,

due to the fact that the mechanisms underlying neural function are not fully understood, a
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major challenge with such analyses is how to validate the results and assess/quantify the

relative performance of different methods.

When applied to medical imaging, the methods used to analyze data from multiple

sensors can be broadly classified as being one of two categories: data integration and data

fusion [5, 6]. In data integration, the datasets are analyzed separately and the results are

combined or the results of one technique are used to constrain another, see e.g., [7–9].

This class of techniques is popular for the analysis of multimodal data, since, by analyzing

each dataset separately, it alleviates the issue of jointly analyzing datasets of different di-

mensionality and physical units [4]. Data fusion methods, on the other hand, analyze the

datasets together in a symmetric manner, enabling the datasets to fully interact and inform

each other by exploiting the information shared across datasets, see e.g., [6, 10–13]. The

concept underlying data fusion is that an ensemble of related datasets can be more than the

“sum of its parts,” meaning that it contains precious information, which can greatly improve

the results if exploited and is lost if the relations across datasets are ignored. Though, po-

tentially more powerful than data integration, a key issue for data fusion is the selection of

a model that can faithfully represent the relationships between the datasets, thus explaining

the similarities and differences between them, and yields a more interpretable combination

of the datasets [4]. This is particularly an issue for multimodal data, since we would like to

be able to define links between the heterogeneous datasets that are flexible enough to allow

each dataset to remain in its most explanatory form.

Since, in general, little is known about the processes underlying brain function, it is

important to reduce the potential for biases and therefore minimize the assumptions placed

on the data. This motivates the use of blind source separation (BSS) techniques, of which

independent component analysis (ICA) is perhaps the most popular [14, 15] for the fusion

of medical imaging data drawn from multiple sensors, see e.g., [12, 16–28]. BSS tech-
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niques minimize the assumptions placed on the data through the use of a simple generative

model, usually of the linear mixing type. However, each generative model assumes differ-

ent underlying relationships between the datasets and using a model that is too restrictive

or is unable to fully exploit the links between datasets will result in less meaningful or, in

the most extreme case, incorrect results [4, 13, 29]. This incentivizes the development of

BSS techniques with more general models that can describe a wider range of links between

the datasets, such as independent vector analysis (IVA), a recent generalization of ICA to

multiple datasets [30], for the fusion of both multiset and multimodal data. Despite the

potential benefits that IVA offers, there are several issues that prevent its immediate adop-

tion as the main method for fusion. These challenges include: determining the nature as

well as the strength of the connection between the datasets, determining how these intrin-

sic properties interact with the assumptions of different analysis methods, and objectively

evaluating the performance of different methods on real neuroimaging datasets.

1.2 Contributions

In this dissertation, we address the challenges that we discuss above, specifically: the

determination of the strength of the connection between different datasets, the determina-

tion of how the intrinsic properties of the data interact with the assumptions of different

analysis methods, and the determination of an unambiguous way to validate the results of

different methods as well as assess/quantify their relative performance. In addressing these

challenges, we make the following contributions:

• We introduce a new method to determine which multimodal neurological datasets

are connected and to what degree. We investigate the performance of this technique

using a series of simulations as well as multimodal neuroimaging data from three

modalities and show how the proposed technique can be used in an exploratory anal-
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ysis to assess which combinations of datasets have the greatest potential in a fusion

analysis.

• We fuse multimodal neurological data from three modalities and demonstrate how

this unique set of datasets enables the determination of the contribution of each

dataset to the fusion result. We investigate how the strength of the connections across

the datasets as well as practical concerns, such as the number of subjects, determine

which BSS technique is most appropriate for the analysis.

• We propose a data-driven classification procedure to unambiguously quantify the

performance of different analysis techniques as well as the amount of potentially ex-

ploitable information that a new dataset introduces to a decomposition beyond what

already exists in the other datasets. We apply the proposed technique to multitask

fMRI data to discover which datasets contribute most to the final result.

• We introduce a new method to summarize the amount of discriminative power for

each dataset within a decomposition. We apply this method to multitask fMRI data

and show how the proposed method facilitates comparisons across fusion techniques

both in terms of the significance of the results as well as how they are related to

certain behavioral scores.

1.3 Overview of Dissertation

The remainder of the dissertation is organized as follows. In Chapter 2, we provide

an introduction to the data and the majority of the methods that we will use throughout

this work. We begin by briefly introducing the relevant neuroimaging modalities that we

analyze and describe how to use features in order to facilitate both multiset as well as

multimodal fusion. We then discuss the implementation details of how we perform data

4



fusion, including: dimension-reduction, different BSS methods for fusion, and how we

derive final results for comparison between multiple non-convex iterative methods.

In Chapter 3, we introduce the method to determine the strength of the connections

between multimodal neurological datasets drawn from patients with schizophrenia and

healthy controls. We show its superior performance over classical methods using simu-

lations and apply it to real multimodal neuroimaging data from three modalities. We use

the proposed method to determine which combinations of datasets share the strongest con-

nection as well as which ones share the weakest.

In Chapter 4, we compare the performance of the techniques discussed in Chapter 2 on

simulated neuroimaging data in order to test the robustness of the techniques to deviations

from their assumptions. We also apply these methods to real multimodal neurological data

drawn from patients with schizophrenia and healthy controls. We show how the strength

of the connections across the datasets as well as practical concerns determine which BSS

technique is most appropriate for the analysis. We also show how we can apply different

methods on different combinations of the datasets to gain greater understanding about the

connections between the modalities.

In Chapter 5, we introduce the classification procedure that is able to unambiguously

quantify the performance of different BSS techniques on real multitask fMRI data drawn

from patients with schizophrenia and healthy controls. We demonstrate how to use this

method to determine the “value added” by each dataset to the analysis and show how each

task contributes differently to the final fusion result.

In Chapter 6, we introduce a new visualization technique to highlight the changes from

fusion and quantify the discriminatory power of each dataset within a decomposition. We

apply this technique to real multitask fMRI data drawn from patients with schizophrenia as

well as healthy controls and show how the technique facilitates comparisons across analysis
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methods in terms of: the significance of the results, how the results are related to certain

behavioral scores, and how the discriminatory brain regions change between methods.

We conclude the dissertation with Chapter 7 and present possible directions for future

research.

6



Chapter 2

BACKGROUND

This chapter provides an introduction to the data and the majority of the methods that

we will use throughout this dissertation. We begin by briefly introducing the relevant neu-

roimaging modalities that we analyze and describe how to use features in order to facilitate

both multiset as well as multimodal fusion. We then discuss the implementation details

of how we perform data fusion, including: dimension-reduction, different BSS methods

for fusion, and how to derive results for comparison between multiple non-convex iterative

methods.

2.1 Neuroimaging Modalities

The desire to understand how the brain encodes cognition and behavior has lead to the

rise of many techniques to measure neural activity, with each exploiting a different aspect of

neural function. These techniques include: fMRI, EEG, magnetoencephalography (MEG),

near-infrared imaging, positron emission tomography (PET), and single photon emission

computed tomography, among others. Additionally, since structure usually underlies func-

tion, a number of imaging techniques that solely study neural structure, such as: structural

MRI (sMRI) and diffusion tensor imaging, have also been developed. Since each of these

imaging techniques are different sensors that report on neural function, we refer to each of

these different imaging techniques as different modalities.
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Each of these modalities provides information about the brain at different spatial and

temporal resolutions. For example, EEG and MEG have comparatively high temporal res-

olution resolution, but low spatial resolution, meaning that these modalities can be used

to study the instantaneous changes in neural activity, but they have difficulty determining

the location in the brain where the activity occurred. Conversely, fMRI and PET have

high spatial resolution, but have low temporal resolution, meaning that they can accurately

locate the locations of neural activation, but they cannot gather this information quickly.

Motivating a joint analysis of multimodal neuroimaging data is the desire to allow the

complementary aspects of each modality, i.e., their contrasting spatial and temporal resolu-

tions, to augment each other and provide a more detailed view of functional changes within

the brain. In this dissertation, we focus on the more commonly used and better understood

functional neuroimaging techniques fMRI and EEG as well as the structural neuroimaging

technique sMRI.

2.1.1 Feature Extraction

Due to the inherent dissimilarities between different modalities, as shown in Figure 2.1

for fMRI, sMRI, and EEG data, as well as the differences in timing for multitask fMRI data,

direct fusion of multimodal and multisubject/multitask data is difficult. Therefore, rather

than jointly analyzing the datasets directly, it is often beneficial to reduce each dataset to a

feature for each subject within the study. This reduction using a lower-dimensional, yet still

multivariate representation of the data facilitates exploration of the associations across these

feature sets through the analysis of variations across individuals, see e.g., [6, 31, 32]. Such

an investigation of variations between subjects through fused features provides a natural

way to discover associations across datasets and simplifies the identification of biomarkers

of disease, since it constructs a common dimension for datasets of otherwise different di-

mensionality and in the case of multimodal data, as shown in Figure 2.1, different units as
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Fig. 2.1. Extraction of features for each subject from multimodal neuroimaging data. Note the differences
in the dimensionality of the original data and how a common subjects dimension is established through the
extraction of features from each subject.

well [12, 33]. In addition, as we describe in Section 2.3.3, this establishment of a common

dimension and similarities between covariations across datasets as well as, especially in the

case of multimodal fusion, dissimilarity across the datasets provide the motivation for the

use of transposed IVA (tIVA). In the following sections, we describe the neuroimaging data

used in this dissertation as well as the features that were extracted.

2.1.2 FMRI

The principle underlying the use of fMRI to study neural function is that brain activity,

i.e., neuronal activation, is associated with oxygen depletion in blood vessels near the ac-

tivated neurons. This depletion is followed by an influx of oxygenated blood to the region

surrounding the activated neurons. Since oxygenated blood has slightly different magnetic

properties than deoxygenated blood, fMRI can provide an indirect and delayed measure
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of brain function by recording these small changes in magnetic susceptibility. FMRI data

consists of repeatedly imaging the 3-D volume of the brain in a series of slices, meaning

that though fMRI data has fairly high spatial resolution, often at the millimeter scale, it

suffers from poor temporal resolution, generally on the order of seconds. Since we expect

that different tasks provide complementary views of neural function, in this dissertation,

we also fuse fMRI data from multiple tasks. For each task and subject, we analyze the data

from each voxel using a simple linear regression, using the general linear model (GLM),

in the statistical parametric mapping toolbox (SPM), where the regressors are created by

convolving the hemodynamic response function (HRF) in SPM with the desired predictors.

Note that for these regressions, we assume that the noise is Gaussian and uncorrelated. We

use the resulting regression coefficient maps as the feature for each fMRI task, described

below.

Auditory Oddball (AOD) This auditory task involves subjects listening to three

different types of auditory stimuli: standard (1 kHz tones occurring with probability 0.82),

novel (computer generated, complex sounds occurring with probability 0.09), and target

(1.2 kHz tones occurring with probability 0.09, to which a right thumb button press was

required), in a pseudo-random order [34, 35]. Each run consists of 90 stimuli each with

a 200 ms duration and a randomly changing interstimulus interval of 550–2,050 ms. The

order of novel and target stimuli is changed between runs to ensure that the responses do not

depend on the stimulus order [35]. In addition, the sequences of stimuli are designed such

that they produce orthogonal blood-oxygen-level dependent responses for each of the three

stimuli [36, 37]. For this task, the regressor is created by modeling the target and standard

stimuli as delta functions convolved with the default SPM differences of gammas HRF

in addition to their temporal derivatives [38]. We use subject-averaged contrast images

between the target versus the standard tones as the feature for this task. We analyze data
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from this task in Chapters 3, 4, 5, and 6.

Sternberg Item Recognition Paradigm (SIRP) In this visual task, the subjects

have to remember a set of 1, 3, or 5 randomly chosen integers between 0 and 9. The

task paradigm consists of: a 1.5 second learn condition, a blank screen for 0.5 seconds,

a 6 second encode condition, where the sequence of digits is presented together, and a 38

second probe condition, where the subject is shown a series of integers and has to indicate,

with a button press with the right thumb, whether it is a member of the memorized set or

not [35]. Each probe digit is presented for up to 1.1 seconds in a pseudo-randomly jittered

fashion within a 2.7 second interval [35]. A total of 84 probes, 42 targets and 42 foils are

obtained per scan and the prompt-encode-probe conditions are run twice for each set size

in a pseudo-random order [35]. For this task, the regressor is created by convolving the

probe response block for the three digit set with the default SPM HRF [38]. This is done

for both runs of the probe response and the average map is used as the feature for this task.

We analyze data from this task in Chapters 5 and 6.

Sensory Motor (SM) In this auditory task, the subjects are presented with a se-

quence of auditory stimuli consisting of 16 different tones each lasting 200 ms and ranging

in frequency from 236 Hz to 1,318 Hz, with a 500 ms inter-stimulus interval [35]. The

first tone is set at the lowest pitch and each subsequent tone is higher than the previous one

until the highest tone is reached and which point the order of the tones is reversed [35].

Each tonal change requires a button press with the right thumb. A total of 15 increase-and-

decrease blocks are alternated with 15 fixation blocks, with each block lasting 16 seconds

in duration [35]. For this task, the regressor is created by convolving the entire increase-

and-decrease block with the default SPM HRF [38]. The responses for each subject are

averaged over the separate runs and the average map is used as the feature for this task. We
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analyze data from this task in Chapters 5 and 6.

2.1.3 EEG

Since neuronal activation is accomplished through the movement of charged ions be-

tween neurons and the surrounding environment, a direct measure of brain activity can be

achieved by recording electrical activity through electrodes placed on the scalp. This en-

ables a more direct measure of neural activity compared with fMRI and the signal can be

recorded almost instantaneously, most commonly at the millisecond scale. However, EEG

has poor spatial resolution, often at the centimeter scale, and determining the exact location

of the neural activation is a challenging problem. This problem is made even more difficult

due to the fact that the electrodes are more sensitive to neural activation occurring closer to

the scalp than that occurring deep within the brain. The EEG data that we analyze in this

dissertation was collected during the performance of the AOD task described previously.

By averaging timelocked windows around the target tone over the repeated instances of the

stimuli, event-related potentials (ERPs) can be extracted from each electrode and generally

offer higher SNR than the raw EEG. In this dissertation, we use the ERP corresponding to

the midline central position (Cz) channel as the feature for fusion, due to the fact that it

appears to be the best single channel to detect both anterior and posterior sources. Also,

when displaying the ERP components, we always compare them with the subject-averaged

raw ERP. We analyze data from this modality in Chapters 3 and 4.

2.1.4 SMRI

SMRI describes the neural structure of the brain through identification of the locations

of the gray matter, white matter, and cerebrospinal fluid. This is done by exploiting the dif-

ferent properties of these three media by varying different parameters of the MRI machine,

such as: repetition time, echo time, or flip angle. Since each scan uses a variety of pa-
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rameter values, the spatial resolution is very high, generally, at the sub-millimeter scale,

however, there is no temporal information. In this dissertation, we extract probabilistically

segmented gray matter images as the sMRI feature for fusion. We analyze data from this

modality in Chapters 3 and 4.

2.2 Dimension-Reduction and Order Selection

Since medical imaging data is usually quite noisy and of high dimensionality, i.e, is

generated by a smaller number of factors than subjects and has a relatively large number

of data samples, dimension-reduction, most commonly using principal component analysis

(PCA), is a crucial preprocessing step for avoiding the problem of over-fitting in subsequent

analyses. However, the success of this step is intimately tied the concept of order-selection,

namely, determination of how much of the data to retain. Note that different fusion models

exploit different dimensions of the data in order to achieve a decomposition, namely, joint

ICA (jICA), which we describe in Section 2.3.1 and IVA, which we describe in Section

2.3.2, exploit the voxels/time dimension whereas tIVA, which we describe in Section 2.3.3,

exploits the subjects dimension.

The basic assumption underlying classical order-selection methods is that the signals

of interest reside in a lower dimensional “signal subspace” and that the entire dataset is

corrupted by isotropic white Gaussian noise. Because of this, the dimension of the sig-

nal subspace, i.e., the order, can be found, by assuming the data is multivariate Gaussian

distributed or the majority of the energy of the signals resides in the second-order mo-

ments, by looking at the eigenvalues of the sample covariance matrix. Then, the data can

be projected into the signal subspace by projecting the data onto the subspace spanned by

the eigenvectors corresponding to the highest eigenvalues. Though simple in theory, this

task is often more difficult in practice, since there is often no clear distinction between
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the eigenvalues associated with the signal subspace and the eigenvalues associated with

the noise subspace. For a single dataset, the most popular order-selection methods, such

as: Akaike’s information criterion (AIC) [39], minimum description length (MDL) [40] or,

equivalently, Bayesian information criterion (BIC) [41], and extensions of those methods,

see e.g., [42], define the order based on information theoretic criteria (ITC) [43], i.e., by

using a function of the estimated eigenvalues of the covariance matrix of the data and the

number of model parameters as shown in (2.3) and described next.

Given a feature dataset from M subjects, X = [x(1), . . . , x(V)] ∈ RM×V , where the mth

row of X is formed either by flattening the feature of V voxels from the mth subject for

fMRI and sMRI data or simply taking the V feature time points from the mth subject for

EEG data, the GLM for X can be written as

X = AS, (2.1)

where the 0 ≤ C < M latent sources or neural spatial/temporal activation patterns, S =

[s1, . . . , sC]T ∈ RC×V , are linearly mixed by the mixing matrix, A ∈ RM×C. The general

form of the ITC for X is given by

Ĉ = argmin
k
{αL(X|C) + r(θk)η(V)}, (2.2)

where L(X|C) = − log P(x(1), . . . , x(V)|θk)/V is the normalized negative log-likelihood of

X, given that model order is k, and r(θk) indicates the number of free parameters, given that

the model order is k. Different methods use different values for α and η(V). For example,

AIC uses α = 2 and η(V) = 2/V , whereas MDL and BIC use α = 1 and η(V) = (log V)/2V .

Note that for the model given in (2.1) with independent and identically distributed (i.i.d.)

samples, order detection using MDL is consistent as V → ∞ and the AIC is inconsistent

[43]. In the subsequent discussion, we focus on MDL, but using the appropriate expressions
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for α and η(V), the form can be extended to other criteria.

For the model given in (2.1) with i.i.d. samples, the MDL order-selection criterion

[42–44] can be written as

Ĉ = argmin
k

 k∑
i=1

log λ2
i + (M − k) logσ2 +

k(2M − k + 1) log V
4V

 , (2.3)

where λi is the ith largest eigenvalue of the sample covariance matrix of X, R̂XX = XXT/V ,

which indicates the energy of the ith principal component, and σ2 = (M − k)−1 ∑M
i=k+1 λ

2
i ,

is the total energy of the noise subspace. The popularity of ITC-based order-selection

methods stems from the fact that the order can be consistently estimated as the sample size

increases to infinity, without requiring the user to specify subjective thresholds, as is the

case for approaches based upon hypothesis-testing or other ad hoc techniques, see e.g.,

[45, 46]. We further discuss order-selection and the development of methods that work in

the high noise of neuroimaging data and, in the case of multimodal data, the sample-poor

regime in Chapter 3.

2.3 BSS Techniques for Data Fusion

Neuroimaging data analysis techniques can be broadly categorized as being model-

based, data-driven, or a hybrid between the two, see e.g., [47–49]. Model-based techniques

seek to model the experimental design, generally using a model of some neurological pro-

cess, such as the HRF for fMRI or source localization for EEG, usually through a GLM-

based approach, see e.g., [50–53]. However, the assumptions do not always hold true in

practice, especially across large populations affected by different neurological disorders

[54], weakening the conclusions that can be drawn from these analyses. The desire to gen-

erate meaningful summary factors from the data, while reducing potential biases, through

the minimization of the assumptions placed on the data, has lead to the popularity of data-
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driven fusion methods, generally based on BSS, for the fusion of neuroimaging data. These

fusion methods include: group ICA [16], jICA [17, 55], partial least squares [18], paral-

lel factors/canonical polyadic decomposition [20], tensor ICA [21], canonical correlation

analysis (CCA) [22], multiset CCA (MCCA) [12], IVA [23,24], parallel ICA (p-ICA) [25],

coefficient constrained ICA [26], CCA/MCCA+jICA [27,28], linked ICA [56], constrained

matrix-tensor factorization [57], block term decomposition [58], among others. For a more

in depth discussion of different fusion methods, their uses, and assumptions, see [4, 33].

In the subsequent sections, we describe the three classes of techniques that we use in this

dissertation, namely jICA, IVA, and tIVA, with an emphasis on their connections.

2.3.1 JICA

Returning to the generative model in (2.1), it is clear that A and S are not unique,

since right-multiplying A by an invertible C × C matrix Q and left-multiplying S by Q−1

will result in another, equally valid, solution. Since it is usually assumed that the number of

subjects is larger than the number of latent sources, the first step in factoring X is perform-

ing dimension-reduction, where the dimension of the signal subspace has been determined

previously. This reduction is generally performed using PCA, thus reducing X to X by

X = FX, (2.4)

where F is the dimension-reduction matrix and is equal to the eigenvectors corresponding

to the Ĉ highest eigenvalues of the sample covariance matrix of X and Ĉ is estimated using

(2.2). Following this reduction and by assuming independence on the part of the latent

sources as well as that the dimension-reduced mixing matrix, A = FA, is full rank, ICA

can estimate an essentially unique demixing matrix, W, i.e., subject to only scaling and

permutation ambiguities, such that the estimated components, Ŝ =
[
ŝ1, . . . , ŝĈ

]T
, are given
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by

Ŝ = WX, (2.5)

and the estimated mixing matrix, Â, is given by

Â = FTÂ = FTW−1. (2.6)

This maximization of independence can be formulated using a maximum likelihood frame-

work, assuming that the samples, i.e., columns, of X, x(v), v = 1, . . . ,V , are i.i.d., as

LICA(W) = log
(
pX(X)

)
= log

 V∏
v=1

pX(x(v))


=

V∑
v=1

log(pŜ
(
Wx(v)

)
| det(W)|)

=

V∑
v=1

log(pŜ
(
Wx(v)

)
) + V log(| det(W)|) (2.7)

=

V∑
v=1

 Ĉ∑
c=1

log pŝc(w
>
c x(v))

 + V log | det(W)|, (2.8)

where w>c is the cth row of W and pŝc(w>c x(v)) is the probability density function (PDF)

from which we have the samples ŝc, i.e., the cth estimated component. Note that the tran-

sition from (2.7) to (2.8) is done through the assumption of independence on the part of

the latent sources. Using the mean ergotic theorem and as V → ∞, maximization of (2.8)

can be shown to be equivalent to the minimization of the mutual information between the

random variables pŝc(w>c x(v)) [59].

Since the rows of the dataset are composed of features that we extract from each sub-

ject, the columns of the estimated mixing matrix, Â, provide the loadings of each compo-

nent across subjects. Thus, the mth column of the estimated mixing matrix, âm, represents

the relative weights of the mth estimated component, ŝm, for each corresponding subject,
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Fig. 2.2. Generative model for ICA. Note how the mth column of the mixing matrix, am, represents the
relative weights of the mth source, sm, for each corresponding subject.

as shown in Figure 2.2. Therefore, to look for differences in the expression of components

between two groups, we can perform a two-sample t-test on the subject covariations, where

one group is represented by the subject covariations from the patients with schizophrenia

and the other by the subject covariations from the healthy controls [6]. We often refer to

those components for which the two-sample t-test on the corresponding subject covaria-

tions was statistically significant as potential biomarkers of disease. Note that the sign of

the t-statistic determines whether the component has higher association in the patients with

schizophrenia or the healthy controls. In this dissertation, we display only the components

that have corresponding t-statistics that are positive, i.e., that have higher activation in the

controls versus the patients. If a component is a biomarker, but has a negative t-statistic,

we multiply both the component and the corresponding column of the mixing matrix by −1

in order to make the t-statistic positive. It is important to note that this does not change the

fundamental nature of the component, due to the sign ambiguity inherent to ICA.

There are many different ICA algorithms, each with different assumptions about the

PDF of the latent sources. The underlying PDF of the latent sources is usually unknown
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in most applications and ICA algorithms that utilize a fixed or simple model for the latent

source PDF will result in poor separation performance when the data deviates significantly

from the assumed model. In this dissertation, we use the entropy-bound minimization

(EBM) algorithm, due to the fact that it shows superior performance in both simulated and

real neurological data when compared with the popular Infomax algorithm [60], see e.g.,

[61–63]. This increase in performance is due to the fact ICA-EBM does not assume any

distribution for the latent sources and instead attempts to upper bound their entropy through

the use of several measuring functions [61]. These measuring functions describe a wide va-

riety of distributions, including those that are: unimodal, bimodal, symmetric, and skewed

[61], thus generally leading to accurate estimation of all sources within the mixture. Info-

max, on the other hand, through the use of a fixed sigmoidal noninearity, is equivalent to

assuming that the latent sources are distributed according to the hyperbolic secant distri-

bution using a maximum likelihood framework [64]. This super-Gaussian source density

model is a good match to focal, i.e., sparse, fMRI sources, see e.g., [65], however it can be

less successful with less focal fMRI sources [66] as well as the “joint” sources found using

jICA [67], which we describe next.

We extend the model in (2.1) in a straightforward manner to K datasets as

X[k] = A[k]X[k], 1 ≤ k ≤ K. (2.9)

Due to the inherent scaling and permutation ambiguities of ICA, running ICA individ-

ually on each dataset and attempting to align the results is impractical and suboptimal,

particularly as K increases. For this reason and to exploit interactions across different

modalities/tasks, it is possible to assume that each dataset is mixed with the same mixing

matrix, A, which enables the solution of the problem posed in (2.9) through the perfor-

mance of a single ICA in which the sources from the disparate datasets form underlying
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“joint sources” [19, 31]. We can then jointly estimate the sources, and hence, determine

the individual components, through the performance of a single ICA on the horizontally

concatenated X[k] defined as

X̄ = [X[1],X[2], . . . ,X[K]] = A[S[1],S[2], . . . ,S[K]]

= AS̄ . (2.10)

This method, referred to as jICA [55], is one of the most popular data fusion methods

for multisubject/multitask as well as multimodal neuroimaging data, see e.g., [11, 17, 27,

31, 68–73]. However, jICA is reliant on the assumption that each dataset has the same

mixing matrix, thus it may perform poorly when this is not the case [13]. In addition, jICA

inherently values each dataset by its dimensionality, meaning that it would weigh datasets

with a lower dimensionality, such as EEG, less than those with a higher dimensionality,

such as fMRI and sMRI.

2.3.2 CCA, MCCA, and IVA

An alternative to jICA for two datasets is CCA [74] or its extension to multiple

datasets, MCCA [75], which both maximize the correlation of sources across datasets.

Neither CCA nor MCCA restrict their solution space by assuming that each mixing matrix

is identical, but rather estimate a separate set of mixing matrices, Â[k], for each dataset si-

multaneously. Because of their less restrictive forms, CCA, MCCA, and related methods

have successfully been applied to multisubject analyses of medical imaging data, see e.g.,

[76–80] and to the fusion of multitask fMRI data [27].

CCA seeks to transform two datasets in order to maximize the correlation of the trans-

formed datasets. This can be expressed in the following maximization problem, where in

the first stage, we obtain the first rows of the transformation matrices P[1] and P[2], p[1]
1 and
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p[2]
1 , respectively,

max
p[1]

1 ,p[2]
1

corr
(
p[1]

1 X[1],p[2]
1 X[2]

)
=

p[1]
1 R̂X[1]X[2](p[2]

1 )T√
p[1]

1 R̂X[1]X[1](p[1]
1 )Tp[2]

1 R̂X[2]X[2](p[2]
1 )T

, (2.11)

where R̂X[i]X[ j] = X[i](X[ j])T/V denotes a sample (cross-) covariance matrix and the opera-

tion corr(·, ·) refers to the sample correlation between the projected datasets. We can esti-

mate subsequent rows of P[1] and P[2] analogously to (2.11), with the additional constraint

that

p[k]
i X[k]

(
p[k]

j X[k]
)T

= 0, ∀ j , i, k = 1, 2.

The estimated sources are then given by,

Ŝ[k]
= P[k]X[k], k = 1, 2, (2.12)

and estimated mixing matrices by

Â[k]
=

(
F[k]

)T (
P[k]

)T
, k = 1, 2. (2.13)

MCCA extends CCA to multiple datasets and maximizes correlation across the

datasets by trying to make the covariance matrices, RŜcŜc
, of each source component matrix

(SCM), defined as Ŝc =
[
ŝ[1]

c ...ŝ[K]
c

]T
∈ RK×V , i.e., by concatenating the cth component from

each of the datasets, as ill-conditioned as possible. This somewhat ad hoc technique to

maximize the correlation across multiple datasets can be performed using one of five cost

functions that all reduce to CCA when K = 2 [75]. These functions are:

• Maximum variance (MAXVAR): Maximize the largest eigenvalue of RŜcŜc

• Minimum variance (MINVAR): Minimize the smallest eigenvalue of RŜcŜc

• Minimum generalized variance (GENVAR): Minimize the determinant of RŜcŜc
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• Maximum sum of the correlation (SUMCOR): Maximize the sum of the entries of

RŜcŜc

• Maximum sum of squared correlation (SSQCOR): Maximize the sum of the squared

entries of RŜcŜc
.

These five cost functions are closely related. Defining λmax and λmin to be the largest and

smallest eigenvalues of RŜcŜc
, respectively, we see that the maximum of the SSQCOR cost,

i.e., the maximum of
∑

i λ
2
i , is dominated by λmax [75]; similarly, we see that the minimum

of the GENVAR cost, i.e., the minimum of
∏

i λi, is dominated by λmin [75]. Also, note that

SUMCOR and SSQCOR are equivalent for correlation maximization [81].

However, despite their widespread use, CCA and MCCA have two important limita-

tions that can hurt their applicability to real data: first, both CCA and MCCA only exploit

second-order statistics and second, both CCA and MCCA limit the solution space by as-

suming that the demixing matrices are orthogonal. A way to overcome the shortcomings

of CCA and MCCA is through the use of IVA, a recent multiset extension of ICA, which

exploits similarities across datasets to achieve a successful decomposition. Unlike CCA or

MCCA, IVA does not limit the demixing matrices to be orthogonal and can take advantage

of second as well as higher-order statistics [59]. This flexibility has lead to the use of IVA

in multisubject fMRI analyses, see e.g., [23, 82, 83], however, to our knowledge, it has not

yet been applied to the problem of fusing multitask feature data.

Given the definition of an SCM from MCCA, we can write the maximum likelihood

objective function for IVA as

LIVA(W) = V

 1
V

V∑
v=1

 Ĉ∑
c=1

log pŜc
(ŝc(v))

 +

K∑
k=1

log |det(W[k])|

 , (2.14)

whereW = {W1, . . . ,WK} and pŜc
denotes the K-dimensional PDF from which the sam-

ples corresponding to the cth SCM are drawn. Similar to the case for ICA, it has been
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shown that the maximum likelihood objective is asymptotically equivalent the mutual in-

formation objective function, with the difference being that we are now minimizing the

mutual information between SCMs and not components [59]. Rewriting 2.14, we have

LIVA(W) = V

 1
V

V∑
v=1

 Ĉ∑
c=1

 K∑
k=1

log pŝ[k]
c

(ŝ[k]
c (v)) − log pŜc

(ŝc(v))


 +

K∑
k=1

log |det(W[k])|

 ,
(2.15)

The new term, log pŜc
(ŝc(v)), in (2.15) represents the information between sources from

different datasets within the SCM and is maximized by maximizing the negative log-

likelihood function. Thus, we see how IVA exploits the shared information across datasets,

when it exists, since if the term is not present, the objective function (2.15) is equivalent to

performing ICA on each dataset separately [59].

Like ICA, there exists a variety of IVA algorithms that make different assumptions

about the generative model of the latent sources, i.e., the SCMs. The models include:

the multivariate Laplacian, resulting the IVA-L algorithm [30], the multivariate Gaussian,

resulting in the IVA-G algorithm [84], and the multivariate generalized Gaussian, resulting

in the IVA-GGD algorithm [85]. An interesting note is that the IVA-G algorithm reduces to

MCCA using the GENVAR cost if we assume that the W[k] are orthogonal [13], thus IVA

can be seen as a generalization of both CCA and MCCA.

2.3.3 TIVA

The previously described CCA/IVA models exploit the similarities of the spatial brain

regions or temporal patterns in multi-subject/multitask fMRI or EEG data, respectively.

However, we cannot use those techniques for multimodal fusion, due to the difficultly of

evaluating the correlation term in (2.11) or the information term in (2.15) for dissimilar

modalities. In addition, even if it were mathematically tractable to solve these issues, the

results would not be meaningful, since increasing the similarity among datasets of fun-
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Ã
[1]

Ã
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Ã
[1]

Ã
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Fig. 2.3. Generative model for multimodal fusion using tCCA. Note that this model is obtained after
spatial dimension-reduction through PCA, i.e., X̃[1] and X̃[2] are both C × M matrices.

damentally different natures and units has no physical interpretation. Instead, the subject

covariations provide the dimension of coherence in multimodal fusion using CCA/IVA,

since similarity between covariations across modalities is expected in practice. As will be

seen in the subsequent discussion, we refer to these models, which are quite useful for

the fusion of multimodal neurological data, see e.g., [12, 28, 73], as the transposed CCA

(tCCA) and transposed IVA (tIVA) models, in order to differentiate them from their multi-

subject/multitask versions. Figure 2.3 depicts the model for multimodal fusion using tCCA

following spatial dimension-reduction through PCA; the implementation of tCCA for fu-

sion is presented next. Note that we only present the discussion for tCCA, since tIVA is a

straightforward extension of the methods used for tCCA.

Consider the transpose of two sets of multimodal feature data
(
X[1]

)T
and

(
X[2]

)T
gath-

ered from the same M subjects, whose dimensions are V1 × M and V2 × M. In this dis-

sertation, these datasets could be any pairwise combination of the fMRI, sMRI, and EEG
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data.

Prior to performing multimodal data fusion using tCCA, spatial dimension-reduction

is first performed using PCA, in order to reduce
(
X[1]

)T
and

(
X[2]

)T
to X̃[1] and X̃[2], respec-

tively, such that

X̃[k]
= G[k]

(
X[k]

)T
, k = 1, 2, (2.16)

where G[k] are data-reduction matrices and are equal to the eigenvectors corresponding to

the highest C eigenvalues of the sample covariance matrix of
(
X[k]

)T
. Note that both X̃[1]

and X̃[2] have the same dimensionality, i.e., C × M. We can decompose these datasets into

the combination of subject covariations, Ã[1] and Ã[2], and associated components, S̃[1] and

S̃[2], in the following manner,

X̃[k]
= S̃[k]Ã[k]

, k = 1, 2. (2.17)

By using this decomposition, we can evaluate the relationship across modalities based on

the correlation of the subject covariations between the two modalities. We assume that

the subject covariations are uncorrelated within each modality and are correlated with at

most one subject covariation from the other modality. This enables the exploration of the

associations across the modalities through relations between the subject correlations by

performing CCA on X̃[1] and X̃[2], which produces the estimated subject covariations, Â[1]

and Â[2]
, according to (2.12) [22].

Then, we find the estimated dimension-reduced sources, ˆ̃S[1] and ˆ̃S[2], using (2.17).

Finally, we can find the full estimated sources, Ŝ[1]
and Ŝ[2]

, through back-reconstruction of

ˆ̃S[1] and ˆ̃S[2] using

Ŝ[k]
=

(
G[k]

)T ˆ̃S[k], k = 1, 2. (2.18)

Note that, in principle, we can use the same algorithms used for MCCA and IVA for

tMCCA and tIVA. However, since usually M � V in practice, some care must be taken
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when selecting an algorithm to use, especially for tIVA, due to the issues associated with

fitting a complex model with a severely limited number of samples.

2.4 Minimum Spanning Tree (MST)

Since, aside from CCA and MCCA using the MAXVAR cost, all of the algorithms that

we use in this dissertation are iterative in nature and the existence of local optima, there

is a natural need to determine a result that best represents the average decomposition of a

given set of data for use when comparing the fusion results from different algorithms. For

this reason, we run each iterative algorithm ten times and identify what we call the central

run using a MST-based method [66] and use that for further analyses and comparisons with

other techniques. We use this MST-based method due to the the fact that it shows superior

performance to the popular alternative method of ICASSO [86]. The MST-based method

works by first generating a matrix for each pair of runs whose elements are given by 1

minus the absolute value of the correlation coefficient between the estimated components

from those runs. We find the minimum cost of aligning the sources between runs using

the Hungarian algorithm [87], and construct a graph with nodes corresponding to runs and

edges corresponding to the minimum cost of aligning the runs. Then, we generate an MST,

with corresponding central node, for this graph. Since the method was originally proposed

for ICA, we can directly apply it to the spatially concatenated “joint” components for jICA.

For the IVA and tIVA models, we first align the components across datasets based on the

sign of the correlation between each pair of corresponding components, such that whenever

the correlation is negative for a given dataset, then both the estimated component and the

corresponding subject covariation are multiplied by −1.
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2.5 Summary

Different neuroimaging modalities and different tasks within a single modality high-

light unique aspects of neural processing, thus motivating their joint use in a single analysis.

However, there are a number of issues associated with performing such an analysis includ-

ing: varying dataset dimensionality and, in the case of multimodal data, different physical

units. We can resolve these issues through the extraction of features from each dataset and

exploring the associations across the feature datasets. In order to avoid possibly biasing the

results, we seek to minimize the assumptions placed on the data and data-driven methods

provide a promising route to analyze such data. However, there are number of data-driven

methods that can be used, each based on different assumptions about the form of the latent

sources. In addition, many of these techniques are iterative in nature, thus necessitating the

selection of a run that represents a consistent estimate for use in further analyses.
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Chapter 3

ORDER-SELECTION FOR MULTIMODAL DATA

Due to their data-driven nature, BSS methods, such as tCCA, are very useful for the

fusion of multimodal neurological data. However, being able to determine the degree of

similarity between datasets and appropriate order-selection are crucial to the success of

such techniques. The standard methods for calculating the order of multimodal data focus

only on sources with the greatest individual energy and ignore relations across datasets. Ad-

ditionally, these techniques as well as the most widely-used methods for determining the

degree of similarity between datasets assume sufficient sample support and are not effec-

tive in the sample-poor regime. In this chapter, we discuss joint estimation of the degree of

similarity between datasets and their order when few samples are present using the method

PCA and CCA (PCA-CCA). By considering these two problems simultaneously, we are

able to minimize the assumptions placed on the data and achieve superior performance

in the sample-poor regime compared to traditional techniques. We apply PCA-CCA to the

pairwise combinations of multimodal data: fMRI, sMRI, and EEG data drawn from patients

with schizophrenia and healthy controls while performing an auditory oddball task. The

PCA-CCA results indicate that the fMRI and sMRI datasets are the most similar, whereas

the sMRI and EEG datasets share the least similarity. We also demonstrate that the degree

of similarity that we obtain using PCA-CCA is highly predictive of the degree of signif-

icance found for components generated using tCCA and therefore relevant to multimodal
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fusion methods that exploit the tIVA model that we describe in Chapter 2.3.3.

3.1 Introduction

Despite being an effective multivariate and data-driven fusion method, see e.g., [13,22,

27, 73], CCA requires sufficient sample support to estimate the unknown covariances from

the samples [88]. This is particularly an issue when performing multimodal data fusion,

since the number of samples, i.e., subjects, is typically much less than the dimension of the

neurological data that is used. Thus, special attention must be paid both before performing

an analysis, i.e., when determining the similarity between datasets and their order—the

dimension of the signal subspace—and while performing the analysis itself.

We define the similarity between two datasets as the number of common components

that both datasets share, i.e., those components that correlate across datasets, raising the

issue of how to determine this number when the sample size is limited. One of the most

popular exploratory techniques to estimate the number of common components between

two datasets is based on the canonical correlation coefficients (CCCs) calculated using

CCA [74] and defining a threshold for the level of the correlation, see e.g., [89–93]. Other

methods for estimating the number of common and distinctive sources include: orthogo-

nal n-way partial least squares [94], generalized singular value decomposition [95], and

distinctive and common components with simultaneous-component analysis [96]. These

methods all assume sufficient sample support and thus perform poorly when the number of

samples is not significantly greater than the number of observations. CCA, in particular,

suffers greatly in the sample-poor regime, where all CCCs are significantly misestimated

[97] and the highest CCCs, usually of greatest interest, may saturate at 1 [88], meaning that

they provide no information about the true relationship between the datasets.

Since multimodal data is often quite noisy and of high dimensionality, dimension-
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reduction using PCA is a crucial preprocessing step for avoiding the problem of over-fitting

in subsequent analyses. However, the effectiveness of PCA is intimately tied to the prob-

lem of order-selection. For a single dataset, the most popular order-selection methods,

such as AIC [39] or MDL [40], define the order based on ITC [43]. Though these methods

have found widespread application in multimodal fusion, they are not directly applicable

for two major reasons. The first is that almost all of these eigenvalue-based methods, with

the notable exception of [98], assume sufficient sample support. If this is not true, such

as for multimodal fusion using tCCA, where the number of subjects is much less than the

dimension of the data, the performance of these methods deteriorates rapidly because the

eigenvalues cannot be estimated accurately [98]. Additionally, these methods only report

on the sources that have greatest energy in each dataset individually. Since we are inter-

ested in common components that are linked across datasets, the use of methods that focus

solely on a single dataset is not a desirable solution to the question of order-selection for

multimodal fusion. This provides the incentive to consider the problems of determining the

degree of similarity and order jointly. Though not used in the context of medical imaging,

there are methods that consider these two problems jointly, however these techniques: are

heuristic [99, 100], will fail in the sample-poor regime [101], or will fail in the low SNR

conditions inherent to multimodal fusion [102].

In this chapter, we discuss an effective method, PCA-CCA along with the order-

selection rule from [97], for jointly determining the number of common sources across

multimodal datasets and their order in the sample-poor regime and demonstrate its im-

portance as a preliminary step for multimodal fusion. We first demonstrate the versatility

and desirable performance of this technique through simulations. Then, we apply this new

method to the pairwise combinations of fMRI, sMRI, and EEG data drawn from 14 patients

with schizophrenia and 22 healthy controls while performing an AOD task and relate these
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results to the pairwise fusion results obtained using tCCA. Through this application, we

demonstrate a strong correlation between the number of common components estimated

using PCA-CCA, i.e., the similarity between datasets, and the number of statistically sig-

nificant components estimated during the fusion analysis. This technique of investigating

the pairwise combinations of datasets drawn from the same subjects provides a unique

insight into the degree of complementarity between related data of different modalities.

3.2 Traditional and Sample-poor Hypothesis Test

Given M i.i.d. paired samples of x[1] ∈ RV1 and x[2] ∈ RV2 from the two-channel

measurement model [97],

x[1] = S[1]a[1] + n[1]

x[2] = S[2]a[2] + n[2], (3.1)

where a[k] ∈ Rd+ f , k = 1, 2, are zero-mean jointly Gaussian random vectors with cross-

covariance matrix, Ra[1]a[2] = E{a[1](a[2])T}, given by

Ra[1]a[2] =


diag(ρ1σ

[1]
1 σ[2]

1 , . . . , ρdσ
[1]
d σ[2]

d ) 0d× f

0 f×d 0 f× f

 ,
where σ[k]

i is the unknown standard deviation of signal component a[k]
i and ρi is the correla-

tion coefficient between a[1]
i and a[2]

i . Thus, both a[1] and a[2] have d correlated signals and

f uncorrelated signals. Without loss of generality, we assume the auto-covariance matrices

of a[1] and a[2] to be diagonal. The noise terms n[1] and n[2] are independent of each other,

independent of the signals, and zero-mean Gaussian with unknown covariance matrices.

Additionally, without loss of generality we assume that S[1] and S[2] are of full column rank
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and, like the dimensions d and f , are fixed but unknown.

We collect the M sample pairs into data matrices X[1] = [x[1](1), . . . , x[1](M)] and

X[2] = [x[2](1), . . . , x[2](M)]. When performing CCA in the where M < V1 + V2, at least

V1+V2−M of the sample canonical correlation coefficients, k̂i, i = 1, . . . , q, q = min(V1,V2),

will be identically 1 regardless of the values of ρi and thus do not provide any information

about the relationship between a[1] and a[2] [88]. Moreover, even in the case where M is

greater, but not significantly greater, than V1 + V2, the sample canonical correlations may

significantly overestimate the population canonical correlations [97]. This result provides

the incentive to estimate a suitable rank, C, in order to reduce the dimensions of X[1] and

X[2], thus allowing accurate estimation of the number of correlated signals.

A classical way of estimating d is by assuming that the sources are drawn from a

multivariate Gaussian distribution and applying a sequence of binary hypothesis tests [103,

104]. The test begins with s = 0 and compares the two hypotheses H0 : d = s and

H1 : d > s. If the null hypothesis is rejected, then s is increased by one and the test is

repeated, until either the null hypothesis is not rejected or s = q. This test is based on the

Bartlett-Lawley statistic [103, 104], which is given by

L(s) =

M − s −
V1 + V2 + 1

2
+

s∑
i=1

k̂−2
i

 log
q∏

i=s+1

(1 − k̂2
i ), (3.2)

and is asymptotically distributed under H0 as χ2 with (V1 − s)(V2 − s) degrees of freedom.

The fact that the test statistic is distributed according to the χ2 distribution enables the

determination of a threshold, T (s), to meet a given probability of false alarm, PFA, for

the test. A major constraint of the traditional framework is the assumption of sufficient

samples, i.e., that the k̂i’s are accurate estimates of the true ki’s, making it inapplicable for

the sample-poor regime.

As proposed in [97], the sample-poor version of the classical hypothesis test selects
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d̂ = max
r∈R

min
s∈S
{s : L(s, c) < T (s, c)}, (3.3)

where R = {1, . . . , rmax}, S = {0, . . . , r − 1}, and rmax = min(M/2, q) and the test statistic is

J(s, r) =

M − s − r −
1
2

+

s∑
i=1

k̂−2
i (r)

 log
r∏

i=s+1

(1 − k̂2
i (r)).

Note in the above expression that the estimated canonical correlations are functions of the

reduced rank, r; if r is too big, then k̂i will be over-estimated, while if it is too small, then

k̂i will be under-estimated [97].

By limiting the dimension through rmax, we can ensure that none of the estimated

canonical correlations will saturate at 1. Note that to guarantee that the rank-reduced statis-

tic under H0 is still asymptotically distributed as χ2 with (r − s)2 degrees of freedom, we

must pick rmax “sufficiently” smaller than M/2. This is critical in order to compute the

test threshold, T (s, r), for a given probability of false alarm. Based on our numerical sim-

ulations, a good value for rmax seems to be bM/3c, where b·c is the floor function [97].

However, note that there is a certain degree of robustness of the results to the selection of

the value of rmax observed in real data. The value for r that leads to d̂ in (3.3) is chosen as

the PCA rank.

3.2.1 Determining the Probability of False Alarm using ITC

A fundamental issue with hypothesis tests is the need to set a probability of false

alarm, which determines the test threshold. However, the ideal value for this probability

of false alarm is application-dependent and can be difficult to determine for real data. This

provides the incentive to use a threshold that is based on ITC. The general MDL expression

for detecting the number of correlated components in a two channel model is given by [105]
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IMDL(s) = M log

 s∏
i=1

(
1 − k̂2

i

) + log(M)s(m + n − s), (3.4)

where the number of correlated components is determined by the value of s which mini-

mizes (3.4).

We can modify (3.4) in a similar manner as (3.2) to account for the PCA step, resulting

in the final MDL criterion [97]

IMDL(s, r) = M log

 s∏
i=1

(
1 − k̂2

i (r)
) + log(M)s(2r − s). (3.5)

The decision rule (3.3) is thus replaced with

d̂ = max
r∈R

argmin
s∈S

IMDL(r, s), (3.6)

and, because of its desirable performance, as we demonstrate through simulations in the

next sections, is used to compute the number of common components for the multimodal

data considered in this chapter.

3.3 Simulations

3.3.1 Variable Per-Component SNR Simulation Setup

For real brain data, the ground truth, i.e., the true latent sources and subject covaria-

tions, is not available. Thus, in order to test the performance of PCA-CCA, we generate

simulated data according to (3.1) and examine the probability of correctly estimating the

true number of correlated components as the dimension of the datasets, V1 and V2, increases

from 10 to 10,000. We compare the performance of PCA-CCA to that of two classical ITC-

based methods, AIC and MDL. These methods use the AIC and MDL framework in [43]

in the PCA step to select r, and then use the AIC and MDL framework described in [105]

to estimate the common order. For these simulations, we have M = 50 samples and d = 2
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pairs of correlated components each with variance of 2 and correlation coefficients, ρ1 = 0.8

and ρ2 = 0.7. The number of uncorrelated components in a[1] and a[2], f , is 3. The variances

of the uncorrelated signals and the white noise are both 1. We select these parameters in

order to align with properties of real neurological data. The entries of the mixing matrices

S[k] are independently drawn from uniformly distributed random numbers between 0 and

1. We consider two values, 0.001 and 0.005, for probability of false alarm, PFA. We also

use the MDL-based method described previously, which does not require the selection of

a probability of false alarm. The plots that we present here are the average result of 1,000

independent Monte-Carlo simulations, where, for each simulation, we apply every method

to the same data.

We repeat this simulation three times, changing only the distribution from which the

sources, a[k], are drawn. In the first case, we consider sources drawn from a zero mean

Gaussian distribution, which aligns with the form typically used in all derivations [42, 43,

97, 103, 104]. The subsequent case considers sources that are uniformly distributed with

zero mean and the same variance as the previous case. Such sub-Gaussian or platykurtic

sources are a good approximation of the subject covariations, since if there is a difference

between the two groups then the distribution describing the subject covariations will be

bi-modal and hence sub-Gaussian. Thus, the performance of PCA-CCA in this case is

of great interest. The final case considered is where the sources are Laplacian distributed

with zero mean and the same variance as the previous distributions. Due to the ability

of the Laplacian distribution to provide good approximations of empirical fMRI source

distributions [65, 106], studying the performance of PCA-CCA in this regime is of interest

for the fusion of two fMRI datasets.
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Fig. 3.1. Probability of correctly detecting the number of common components versus the dimension of the
datasets, V1 and V2, when the latent sources are (a) Gaussian, (b) uniformly, and (c) Laplacian distributed.
Note that for these simulations, V1 = V2.

3.3.2 Variable Per-Component SNR Simulation Results

Figure 3.1 shows the high level of performance obtained using PCA-CCA together

with the order-selection rule in [97] for the three source distributions considered. The re-

sults indicate that PCA-CCA is robust to model mismatch in the latent source distribution.

In all cases, the performance of PCA-CCA improves as the dimensionality of the datasets

increases. The reason for this is that as the dimension of the datasets increases, the signal

eigenvalues of Rx[i]x[i] = S[i]Ra[i]a[i]

(
S[i]

)T
+ σ2

nIM, i = 1, 2, where Ra[i]a[i] is the population

covariance matrix of the correlated and uncorrelated signals, M = V1 = V2 is the dimension

of the system, σ2
n is the variance of the noise, and IN is a M-dimensional identity matrix,

increase, whereas the noise eigenvalues remain unchanged. Thus, the per-component SNR,

i.e., the ratio of signal eigenvalue to the noise eigenvalue, increases as the dimension in-

creases, thus improving the probability of detection. We see that the performance of the

classical methods, AIC and MDL, deteriorates rapidly as the datasets become increasingly

sample-poor because, in this regime, the eigenvalues cannot be estimated accurately. Fi-

nally, note that the MDL-based method consistently has the highest performance, indicating
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Fig. 3.2. Probability of correctly detecting the number of common components versus the dimension of the
datasets, V1 and V2, when the latent sources are (a) Gaussian, (b) uniformly, and (c) Laplacian distributed.
Note that for these simulations, V1 = V2.

the benefits of its use over that of an arbitrary selection of a probability of false alarm.

3.3.3 Fixed Per-Component SNR Simulation Setup

In order to investigate the case where the per-component SNR does not increase with

the dimension, we simulate the case where the signal eigenvalues remain constant as the

dimension of the data increases and display the results below. We design the simulation

using similar parameters to the previous simulation, with two major exceptions: first, the

number of independent Monte-Carlo simulations is 500 and second, the columns of S[k], k =

1, 2 are unitary and not independently drawn from uniformly distributed random numbers

between 0 and 1. This second change ensures that the signal eigenvalues do not change as

we modify the dimension, V1,V2. Also, in order to consider a less noisy case than in the

previous simulation, for this simulation the variance of the uncorrelated signals is 3 and the

variance of the correlated signals is 10.
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3.3.4 Fixed Per-Component SNR Simulation Results

From Figure 3.2, we see that when the signal eigenvalues do not change as the di-

mension increases, the detection performance of all detectors decreases. The reason for

this is due to the existence of an asymptotic threshold below which signal eigenvalues are

classified as noise eigenvalues, leading to a drop in the estimated number of common com-

ponents as seen in equation 18 in [98]. This threshold depends on the ratio of dimension

of the datasets, V1,V2, to M. Thus, if the dimension of the datasets increases, the ratio will

increase and the signal eigenvalues will be classified as noise eigenvalues. Note that even

in this case, PCA-CCA still significantly outperforms the traditional methods.

3.4 Fusion Results Using Real Multimodal Data

We depict the fusion results using tCCA in Figure 3.3. Note that for these results, 15

components were estimated, which corresponds to the mean order found using PCA-CCA

on the pairwise combination of datasets, which we show in Table 3.1. The components

displayed are those that were found to be both biologically meaningful and statistically

significant, i.e., they had activations corresponding to biologically meaningful areas and

p-values in terms of group differences smaller than 0.05. Biological meaning is assessed

based on prior information about the spatial and temporal properties of the components.

For the fMRI and sMRI components, smooth and focal regions are expected, while ERP

components should display a smooth response with peaks corresponding to those in the

group response. When using the fMRI and sMRI data together, one component is found.

This component corresponds to increased frontal lobe activation in the fMRI section and an

increase in gray matter concentrations in the motor cortex in the sMRI of controls versus

patients. When the fMRI and ERP data are used in the analysis, a single one component

is found that is both statistically significant and physically meaningful. This component
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Fig. 3.3. Meaningful and statistically significant components generated using tCCA with pairwise com-
binations of the three modalities. The uncorrected significance (p-values) for the components are (a) 0.027
for the fMRI-sMRI component, (b) 0.003 for the fMRI-ERP component, and (c) 0.018 for the sMRI-ERP
component. All spatial maps are Z-maps threshold at Z=3.5. Note that we flip the maps such that the activa-
tion (red and orange) represents an increase in controls over patients and deactivation (blue) corresponds to a
decrease in controls versus patients.

39



Table 3.1. Number of significant components at two p-values, PCA-CCA estimated common components,
d, and estimated order, C, for the three pairwise combinations of modalities. We assess statistical significance
using a two-sample t-test run on the rows of the estimated subject covariations, Â[k]

, k = 1, 2, calculated using
tCCA.

fMRI-sMRI fMRI-ERP sMRI-ERP
Number of significant components, p = 0.05 2 1 1
Number of significant components, p = 0.1 5 4 2

Number of common components using PCA-CCA 4 3 2
Estimated order using PCA-CCA 17 17 12

corresponds to increased sensory-motor and auditory activation in the fMRI component and

increased activation in the N2\P3 complex in the ERP of controls versus patients. These

regions correspond to areas that have been previously noted as affected in schizophrenia.

We see a similar N2\P3 complex in the ERP component generated using the sMRI and

ERP data. Note that, as we describe in Chapter 5, these discriminative components can

be leveraged to classify a new subject as either a patient with schizophrenia or a healthy

control [72].

Using PCA-CCA and the MDL criterion that we describe in Section 3.2.1, we can

estimate the number of common components for each of the pairwise combinations of the

fMRI, sMRI, and ERP data. This estimation of the number of common components allows

us to measure the degree of similarity between the datasets in a meaningful way, by defining

greater similarity in terms of a greater number of common components. The results of

this analysis are displayed in Table 3.1, where we also show the number of statistically

significant components found for each combination of modalities. We declare components

significant based upon the result of a two-sample t-test run on the rows of the estimated

subject covariations, Â[k]
, k = 1, 2, calculated using tCCA. We see that the fMRI and sMRI

data have the greatest degree of similarity, since they share the greatest number of common

components estimated using PCA-CCA. This result makes sense since both modalities are

MRI data of spatial nature and thus they would be expected to have a greater degree of
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similarity. The result also corresponds to the number of significant components that we find

after performing fusion using tCCA. Since the fMRI-sMRI combination has the greatest

number of significant components, there is a greater number of chances of finding common

significant components. This explains why we observe that greatest number of meaningful

components using the combination of fMRI and sMRI. Using PCA-CCA, we find that

the combination of fMRI and ERP data produce the second greatest number of common

components. This result again makes sense, since both the fMRI and ERP data describe

functional changes in the brain, so they exhibit a fairly large degree of similarity. The result

correlates to the results that we obtain in terms of number of significant components found

after performing fusion using tCCA on the modality pair of fMRI-ERP. From the results

obtained using PCA-CCA, the least similar modalities are the sMRI and ERP, since the

sMRI-ERP combination produced the fewest number of common components. This result

makes sense since the sMRI data is structural whereas the ERP data is functional. Thus,

using PCA-CCA, we can measure the degree of similarity between datasets and the results

can be predictive of the fusion results using tCCA.

3.5 Discussion

The successful application of PCA-CCA to determine the degree of similarity between

pairwise combinations of multimodal datasets naturally leads to the issue of extensions be-

yond two datasets. As we discuss in Section 2.3.2, for fusion using tCCA, the straightfor-

ward extension is the use of tMCCA [75], using one of the five cost functions. We display

the results of the application of tMCCA using the GENVAR cost, to the fMRI, sMRI, and

ERP data in this study in Figure 3.4. As we expect, we can see a great degree of correla-

tion between the tCCA results and those achieved using tMCCA. The motor, auditory, and

visual activation in the second component bear striking resemblance to those of the fMRI-
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Fig. 3.4. Meaningful and statistically significant components generated using MCCA with the GENVAR
cost. The uncorrected significance (p-values) for the components are (a) 0.014 for the first component and
(b) 0.018 for the second component. All spatial maps are Z-maps thresholded at Z=3.5. Note that we flip the
maps such that the activation (red and orange) represents an increase in controls over patients and deactivation
(blue) corresponds to a decrease in controls versus patients.

ERP component. In addition, the N2\P3 activation that we observe in the ERP components

that are generated using tCCA is similar to that of the ERP component generated using

tMCCA.

However, a similar extension of PCA-CCA to more than two datasets remains an open

problem. This is due to the fact that in the case of two datasets the number of non-zero

canonical correlations defines the degree of correlation between the two sets. However, for

more than two datasets, the canonical correlations cannot be used to define the number of

correlated components. To understand the reason for this, consider the case where we have

three datasets with four independent signals in each. Only the first two sources in dataset

1 are correlated with the first two sources in dataset 2. Similarly, only the first and third

sources in dataset 2 are correlated with the first and third sources in dataset 3. Finally, only
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the first and fourth sources in dataset 1 are correlated with the first and fourth sources in

dataset 3. In this example, there are two correlated signals in each pair of datasets but there

is just one signal, i.e., the first signal in each dataset that is correlated across all the datasets.

In order to identify this common signal, we expect a non-zero correlation between all three

pairwise combinations of the first signal components of the three datasets only. However,

tMCCA would generate non-zero correlations for all pairwise combinations of the four

signals from all datasets, regardless of the cost used, indicating that all of the components

are common to all datasets, which is not the case.

Though a true multiset extension of PCA-CCA is preferable, an interim solution is

the following heuristic method, which can estimate the number of correlated components

among all three datasets. Note that this method can be extended to an arbitrary number

of datasets, though it is only presented for three datasets here. Consider three datasets

generated in the same manner as in (3.1)

x[1] = S[1]a[1] + n[1],

x[2] = S[2]a[2] + n[2],

x[3] = S[3]a[3] + n[3].

For datasets x[1] and x[2], by applying the PCA-CCA approach, we can estimate the num-

ber of correlated signals between the first and second datasets, d̂[1,2], and the optimal rank,

C[1,2], that PCA should keep for x[1] and x[2]. With these estimates, the canonical sources,

ω[1,2]
1 and ω[1,2]

2 , associated with the d̂[1,2] largest canonical correlations may be obtained

from the C[1,2]-approximation of x[1] and x[2], respectively. The above procedure for x[1] and

x[2] can be analogously applied for the pairwise combinations x[2] and x[3] as well as x[1] and

x[3]. Due to the fact that the canonical source, e.g., some row in ω[1,2]
1 , is equal to the cor-

responding original source, e.g., some row in a[1], up to a scaling factor, we can find three
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canonical sources, ω[1,2]
1 ,ω[2,3]

2 ,ω[1,3]
3 whose cross-correlation matrices, E

{
ω[1,2]

1

(
ω[2,3]

2

)T
}
,

E
{
ω[1,2]

1

(
ω[1,3]

3

)T
}
, E

{
ω[2,3]

2

(
ω[1,3]

3

)T
}
, are all of rank d, where d is the number of common

signals among three datasets. Then, the ITC-based detection scheme described in [107] can

be used. Applying this method to the fMRI, sMRI, and ERP data, results in the identifica-

tion of one common signal. The result using this method corresponds to what we observe

with tMCCA, where there is only one significant component that is common to all three

modalities.

3.6 Summary

The collection of multimodal data is becoming increasingly common in medical stud-

ies, raising the issue of how best to combine data that are, fundamentally, different. In this

chapter, we propose the use of PCA-CCA and the order-selection rule of [97] to determine

the number of correlated signals, degree of similarity, between multimodal neurological

data in the sample-poor regime. The results using PCA-CCA indicate that this method can

not only measure the degree of similarity between dissimilar datasets but also provides an

accurate measure of prediction of the significance of components generated by tCCA and

tMCCA. This predictive capability of PCA-CCA enables the determination of meaningful

combinations of modalities prior to a fusion analysis.
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Chapter 4

FUSION OF THREE MULTIMODAL
NEUROIMAGING DATASETS

Despite the benefits of fusing multiple modalities, generally only two datasets are

combined. However, the fusion of three or more modalities provides a unique opportu-

nity to study what each modality contributes to the fusion result and which combinations

of modalities are best to fuse. In this chapter, we compare the performance of the same

techniques that we discuss in Chapter 2 on simulated neuroimaging data in order to test

the robustness of the techniques to deviations from their assumptions. We also apply the

methods that we develop in the previous chapter to fuse fMRI, sMRI, and ERP data drawn

from patients with schizophrenia and healthy controls. We find that the number of subjects

and the connections between the modalities can greatly affect the results of the different

fusion methods. We also find that by comparing different methods on different combina-

tions of the datasets, we can gain greater understanding about the connections between the

modalities. Our results show that when the modalities share a large amount of discrimina-

tory power, such as for the combination of fMRI and ERP, jICA, with its more constrained

model may be preferable, since it is more robust to noise. However, when this link between

the datasets is weak, such as for the combinations of fMRI and sMRI or sMRI and ERP,

the more flexible tCCA or tIVA models may be more reasonable.
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4.1 Introduction

The fusion of data from multiple sensors can enable greater understanding of the prob-

lem under study than analyzing the datasets individually [10]. Despite this fact, nearly

every study that fuses multimodality neuroimaging datasets from the same subjects only

considers two modalities, with a few exceptions, see e.g., [12, 28, 38, 108–113]. Much in

the same way that the fusion of two modalities can improve upon separate analyses of the

modalities individually, the fusion of multiple modalities has the potential to improve the

information gained and inferences further. However, there are a number of practical con-

siderations that must be accounted for before applying a method to a particular dataset,

such as: the number of subjects and whether the modeling assumptions of the methods are

realistic for the data.

In order to explore these issues, we adopt a two-part investigation. In the first part,

we use simulated data to explore the effects of model mismatch and noise on the results of

different data fusion methods. Such an investigation is important because, since the ground

truth is known, it grants us the ability to objectively compare the results of different fusion

methods. In the second part of the investigation, we apply the data fusion methods to real

fMRI, sMRI, and ERP data drawn from 36 subjects, 14 subjects with schizophrenia and 22

healthy controls. Note that since this multimodality data is from relatively few subjects, we

only compare the methods jICA, tCCA, tMCCA using different costs, and tIVA-G. This

investigation allows us the ability to see how the modeling assumptions of each method

determine their results and how much each dataset contributes to the fusion analysis by

comparing the results when it is included to the results when it is not.
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4.2 Multimodal Data

The data that we use in this chapter is fMRI, sMRI, and ERP data drawn from 36

subjects, 14 patients with schizophrenia and 22 healthy controls, resulting in datasets of

dimensions XfMRI ∈ R
36×60,261, XsMRI ∈ R

36×306,626, and XERP ∈ R
36×451. Due to the issues

associated with jICA that we discuss in Chapter 2, namely the fact that jICA inherently

weighs each modality by its dimensionality, we concatenate the ERP with itself 100 times

in order to make it of approximately the same dimensionality as the fMRI and sMRI. Note

that, in order to facilitate comparisons between methods, we estimate the same number of

components, 15, for each method for all combinations of datasets. We select this num-

ber because it corresponds to the mean of the orders that we estimate using PCA-CCA on

the pairwise combinations of the modalities. Note that before displaying the statistically

significant components, we evaluate the components using prior knowledge about the prop-

erties of the imaging modalities to identify whether or not the components are physically

meaningful. For the fMRI, we expect smooth and focal regions of activation/deactivation.

Similarly, for the sMRI, we expect smooth a focal regions within the gray matter. The

physically meaningful ERP components correspond to smooth responses, generally align-

ing with peaks in the subject-averaged ERP.

4.3 Simulation

4.3.1 Simulation Setup

In order to create the simulated data, we generate ten sources, each with 500 i.i.d. sam-

ples drawn from a zero-mean Laplacian distribution with a standard deviation of 4. We lin-

early mix these sources using separate mixing matrices of dimensions 50 × 10. We model

the columns of each A[k] in the following manner: a[k]
1 = g+n[k]

1 and a[k]
i = n[k]

i , i = 2, ..., 10,

where g is a step of height 1.5 with a length of 25 and n[k]
i are 50 i.i.d. samples from a zero-
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mean and unit variance Gaussian distribution. Thus, the first column simulates a difference

between two groups, each of size 25 subjects. Note that we adjust the standard deviations

of the noise for the columns not representing the group difference, i.e., σni , i = 2, ..., 10 so

that they have the same approximate value as the standard deviation of a[k]
1 . The column

of the mixing matrix with the step-type response, establishes the connection between the

datasets, i.e., results in components that have a common group difference. The number of

samples in a[k]
i , representing subjects, is small, meaning that we consider a case similar to

that of real neuroimaging data. For all of the simulations in this chapter, we consider two

scenarios, the first, whose results are shown in Figure 4.1, where there are only two datasets

and the second, whose results are shown in Figure 4.2, where there are three. For the case

where there are two datasets, we compare jICA using the EBM algorithm with tCCA and

tIVA-G. For the case where there are three datasets, we compare jICA using the EBM al-

gorithm with tIVA-G and tMCCA using the MAXVAR and GENVAR cost functions. We

select these algorithms due to the fact that the number of subjects is quite limited, thus more

complicated IVA algorithms cannot be used for tIVA. Note that the identifiability condition

of tIVA-G is only satisfied for a1, defined as
[
a[1]

1 a[2]
1

]T
or

[
a[1]

1 a[2]
1 a[3]

1

]T
for the two or three

dataset cases, respectively [84]. For jICA, we horizontally concatenate the datasets and

reduce the dimension to 10, thus resulting in a joint dataset that is 10 × 1000 for the two

dataset scenario and a joint dataset that is 10 × 1500 for the three dataset scenario. For

tCCA/tMCCA/tIVA-G, we transpose each individual dataset and then reduce the dimen-

sion to 10, resulting in matrices that are of dimension 10 × 50. The results that we show in

Figures 4.1 and 4.2 are the results of 100 independent Monte-Carlo simulations, where we

show the average correlation of the estimated component whose estimated subject covaria-

tion had the highest average t-statistic and the original component, which had the step-type

profile.
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Fig. 4.1. Estimation performance for the common component with two datasets as (a) the height of the
step in a[1]

1 decreases (b) n[1]
1 increases, and (c) the number of subjects increases.

4.3.2 Simulation Results and Discussion

In the two dataset scenario, shown in Figure 4.1(a) and (b), we control the link between

the two datasets by either changing the height of the step or by keeping the height constant

and changing n[1]
1 . Thus, we study the performance of the two models when the underlying

common structure between the two datasets becomes weaker as well as when it is strong

but the level of noise is high. Note that, for the results shown in Figure 4.1, the value

of σn1 is 0.3. We see in Figure 4.1(a) that when the connection becomes weaker due to

the change in the step height, tIVA-G provides better performance than jICA, since the two

mixing matrices become less similar, thus violating a central assumption of jICA. However,

we see in Figure 4.1(b) that jICA performs better as the noise level increases, since the

underlying connection between the two datasets for the discriminative component is strong

implying that jICA tends to “average out” the effects of additive noise. We should note
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Fig. 4.2. Estimation performance for the common component with three datasets as the height of the step
decreases in terms of (a) t-statistic for the most significant component, (b) and (c) correlation of the most
significant component to the original source.

that tCCA has worse performance than tIVA-G in this case, likely due to the orthogonality

constraint for CCA, which limits the search space for the optimal demixing matrices. Since

the mixing matrices become more orthogonal as the height of the step decreases, the relative

performance of tCCA compared with tIVA-G increases. Figure 4.1(c) shows the change in

performance of the data fusion techniques as the number of subjects increases for fixed step

height of 1.5 and n[1]
1 = 0.3, demonstrating the advantages for tIVA model as the number

of subjects increases.

The second set of simulations considers three datasets, again with one common com-

ponent across all three. We first study the effect of decreasing correlation for one dataset by

decreasing the step height for this one component, while the step for the other two are kept

constant. In Figure 4.2(a), we show trends in the t-statistic and the estimation performance,

which we measure using the correlation with the estimated source to the original for the
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components for which the step size is altered. Note that the significance for the component

estimated by jICA tends to increase for step heights below 0.5, while the estimation of the

component itself, i.e., its correlation with the original, starts to significantly decrease dur-

ing the same interval, as shown in Figure 4.2(b). On the other hand, tMCCA using both

cost functions and tIVA-G yield reliable estimates for the t-statistics and correlation values,

as seen in Figure 4.2(a) and (b). We can see in Figure 4.2(b) that tMCCA-MAXVAR and

tMMCA-GENVAR are slightly better than tIVA-G. We can attribute this to the fact that the

mixing matrices in this scenario are closer to being orthogonal, especially as the height of

the step function decreases, thus favoring the simpler methods. In the results shown in Fig-

ure 4.2(c), we keep the step height at 0.3, while the other two had a value of 1. We see that

as the number of subjects increases, the performance of all methods increases, though jICA

has the worst performance due the violation of the identical mixing matrix assumption.

4.4 Multimodal Fusion of FMRI, SMRI, and ERP

The fusion results using all three modalities for jICA, tMCCA using MAXVAR and

GENVAR, and tIVA-G are shown in Figures 4.3 and 4.5, respectively. We first describe the

jICA results and then explain their connection with the tMCCA and tIVA-G results.

4.4.1 JICA Results and Discussion

Figure 4.3 displays the results of fusing the three modalities of fMRI, sMRI, and ERP

using jICA. The component shown in Figure 4.3(a) identifies differences between patients

and controls in the anterior motor as well as temporal regions in the fMRI and is associated

with a decrease in gray matter concentration for patients over controls in the frontal lobe

in the sMRI and the P2/N2 transition in the ERP. The second component, shown in Figure

4.3(b), has differences between patients and controls in the sensorimotor as well as tem-

poral regions in the fMRI and is associated with increases in gray matter concentration for
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Fig. 4.3. Significant and biologically meaningful components generated for fusion of all three datasets
using jICA using the EBM algorithm. The uncorrected significance values are (a) 0.0042 and (b) 0.0097. All
spatial maps are Z-maps thresholded at Z=3.5. Note that we flip the maps such that the activation (red and
orange) represents an increase in controls over patients and deactivation (blue) corresponds to a decrease in
controls versus patients.

controls over patients throughout the frontal and occipital lobes in the sMRI and the N1/P2

transition in the ERP. In order to probe the contributions of the modalities to the final result,

we also perform pairwise fusion analyses using the combination of fMRI and ERP as well

as sMRI and ERP. We display the results in Figure 4.4.

We note that the significant components found using only the fMRI and ERP modali-

ties, displayed in Figure 4.4 (a) and (b), are nearly the same as the components found using

all three modalities, implying that the fMRI and ERP datasets are the primary ones driving

the result. However, we should note two things: first, the component found when only

fusing the sMRI and ERP is fairly similar to the component displayed in Figure 4.3(a), im-

plying that the sMRI is providing some discriminatory information. Also, we note that the

rapid transitions between the negative and positive peaks in Figure 4.3(a) and (c) is hard

to interpret physically. Thus, in this application, we note an increase in the “meaningful-
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Fig. 4.4. Significant and biologically meaningful components generated using jICA using the EBM algo-
rithm for combinations of two modalities. The uncorrected significance values for the components are (a)
0.0031 for the first component and (b) 0.0147 for the second component from the fusion of fMRI and ERP, as
well as (c) 0.0044 for the component from the fusion of sMRI and ERP. All spatial maps are Z-maps thresh-
olded at Z=3.5. Note that we flip the maps such that the activation (red and orange) represents an increase in
controls over patients and deactivation (blue) corresponds to a decrease in controls versus patients.

ness” of the components when bringing a third modality into the analysis, in addition to

providing a link across the modalities.

4.4.2 TCCA/TMCCA/TIVA Results and Discussion

Figure 4.5 shows the fusion results using all three modalities using tMCCA-MAXVAR,

tMCCA-GENVAR, and tIVA-G. The first thing to note is that since, unlike for jICA, each

dataset has its own set of subject covariations, it is possible for a component to not be sig-
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Fig. 4.5. Significant and biologically meaningful components generated from the fusion of all three datasets
using tMCCA using the MAXVAR and GENVAR cost functions as well as tIVA-G. The uncorrected signifi-
cance values for the components estimated using MAXVAR are 0.0140. The uncorrected significance values
for the components estimated using GENVAR 0.0134 for the top component and 0.0187 for the second one.
For tIVA-G, we have a single component that shows significant group difference with 0.0265. All spatial
maps are Z-maps thresholded at Z=3.5. Note that we flip the maps such that the activation (red and orange)
represents an increase in controls over patients and deactivation (blue) corresponds to a decrease in controls
versus patients.
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nificant in all three modalities at the same time, as can be seen in Figure 4.5 for tMCCA-

GENVAR and tIVA-G. We should also note that when reporting the significance for these

fusion results, we report the p-value corresponding to the mean of the significant t-statistics

for each component. We see some relations between the component found using jICA, de-

picted in Figure 4.3(a) and the tIVA-G result, particularly in the ERP, which both seem to

characterize the P2/N2 transition. This transition is also characterized in the ERP com-

ponents found by tMCAA-MAVAR and tMCCA-GENVAR. We also see some similari-

ties between the fMRI portion of these components, particularly the increased sensorimo-

tor and temporal activation of the controls versus the patients. However, in the case of

tMCCA-GENVAR, these regions in the fMRI are split between two components. Since

both tMCCA-GENVAR and tIVA-G make use of the same cost function with the differ-

ence being that tMCCA-GENVAR assumes that the demixing matrices are orthogonal, it

is reasonable that the two results are similar. In fact, combining the two significant fMRI

components from tMCCA-GENVAR would result in an fMRI component that is nearly

identical to the one found using tIVA-G. In addition, since IVA-G is the least constrained

approach among the three that we consider here, the fact that the sMRI component is not

significant is meaningful, due to the fact that it supports the conclusions reached with the

jICA results, namely that the sMRI has the weakest connection to the other modalities.

Figure 4.6 displays the results of the pairwise analysis of the fMRI and ERP data

using both tCCA and tIVA-G. We can see that these results are quite similar to each other,

highlighting the connection between tCCA and tIVA-G. Again, these results are similar to

fusion results when analyzing all three modalities for tIVA-G. However, the significance

value is lower for the results using all three modalities than it is when only fusing the

fMRI and ERP. These results again imply that the fMRI and ERP data are driving the

fusion results with three modalities, with the sMRI providing a more minor role. This, in
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Fig. 4.6. Significant and biologically meaningful components generated using tIVA-G and tCCA with two
modalities. The uncorrected significance for components are 0.0130 for the component estimated using tIVA-
G and 0.0130 for the component estimated using tCCA. All spatial maps are Z-maps thresholded at Z=3.5.
Note that we flip the maps such that the activation (red and orange) represents an increase in controls over
patients and deactivation (blue) corresponds to a decrease in controls versus patients.
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addition to the lower significance values when combining all three modalities, highlights

the fact that, though it is attractive to fuse information from all available modalities, there

may be penalties—in this case an overall decrease in the sensitivity of the detected group

differences—when combining modalities that are less discriminative themselves, see e.g.,

[114].

4.5 Summary

The data fusion techniques that we describe in Chapter 2 have the potential to greatly

facilitate our understanding of neural function and how it is disrupted by diseases such as

schizophrenia. However, there are a number of practical issues associated with combining

different modalities that may not be apparent initially, which in this application were the

limited number of subjects and the unequal contribution of the modalities to the final result.

For the given datasets, since the number of subjects is only 36, there is a limit on the

performance of tCCA/tMCCA/tIVA. On the other hand, having a harder constraint, such

as the one imposed by jICA, may lead to results that are more significant and easier to

interpret biologically. However, motivated by the simulation results, we caution against

measuring performance using only the statistical significance of the results, since jICA

may severely overestimate the t-statistics, while tCCA/tMCCA/tIVA may more accurately

estimate them—particularly if the connection between the modalities is weak. Therefore,

we may be more confident in the jICA results for the combination of fMRI and ERP, since

their link appears to be strong and the assumption that the modalities share a common

mixing matrix can average out the effects of additive noise. On the other hand, for the

combinations of fMRI and sMRI, sMRI and ERP, and, possibly, the combination of all

three, the results found using tCCA/tMCCA/tIVA may be more reasonable.
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Chapter 5

QUANTIFYING THE INTERACTION AND
CONTRIBUTION OF MULTIPLE DATASETS

IN FUSION

The analysis of multiple datasets drawn from the same subjects is possible by either

analyzing the datasets jointly as in data fusion, or separately and then combining, as in data

integration. However, selecting the optimal method to combine and analyze multiset data

is an ever-present challenge. The primary reason for this is the difficulty in determining

the optimal contribution of each dataset to an analysis as well as the amount of potentially

exploitable complementary information among datasets. In this chapter, we introduce a

novel classification rate-based technique to unambiguously quantify the contribution of

each dataset to a fusion result as well as to facilitate direct comparisons of fusion methods

on real data and apply IVA to multiset fusion. We apply this classification rate-based tech-

nique to fMRI data from 121 patients with schizophrenia and 150 healthy controls during

the performance of three tasks. Through this application, we find that though we achieve

optimal performance by exploiting all tasks, each task does not contribute equally to the

result and this framework enables effective quantification of the value added by each task.

Our results also demonstrate that data fusion methods are more powerful than data integra-

tion methods, with the former achieving a classification rate of 73.5 percent and the latter

achieving one of 70.9 percent, a difference which we show is significant, when we analyze
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all three tasks together. Finally, we also show that IVA, due to its flexibility, has equivalent

or superior performance compared with the popular data fusion method jICA.

5.1 Introduction

The collection of data from multiple sensors raises the issue of how best to utilize

each of these datasets in order to maximize the use of available information for the given

task. However, there are several issues that prevent straightforward selection of the ideal

method when analyzing multiple real world datasets, these include: quantification of the

additive value of each dataset, determining the combination of datasets that achieves the

best performance, and quantification of the joint information between datasets within an

analysis.

We propose a novel classification rate-based technique to assess the performance of

different multiset analysis methods for various combinations of datasets. We should note

that perfect classification is not the goal of this work, especially since the patients with

schizophrenia were receiving antipsychotic and/or mood stabilizing medication during the

scanning sessions, thus making it difficult to attribute observed differences to the disease

or to the medication, see e.g., [113, 115, 116]. Instead, our goal is to enable unambigu-

ous quantification of the additive value of each dataset, determination of the combination

of datasets that achieves the greatest performance, and quantification of the interaction

among datasets within an analysis. Note that the proposed technique differs fundamen-

tally from the nonparametric prediction, activation, influence, and reproducibility resam-

pling (NPAIRS) framework [117], whose goal is to assess how well a model generalizes

to new data rather than how useful a dataset is to a fusion analysis. We apply this tech-

nique to fMRI data from three tasks: AOD, SIRP, and SM, drawn from 121 patients with

schizophrenia and 150 healthy controls, described in Chapter 2.
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5.2 Classification Procedure

Since there is no ground truth for the components or subject covariations, we propose

to use classification rate to determine the relative performance of different techniques on

real multitask fMRI datasets. We use this as our metric for two reasons: first, classifi-

cation rate has an unambiguous meaning that can be defined for different combinations of

datasets and analysis techniques, and second, classification rate effectively encapsulates the

total discriminative power between patients and controls. A diagram of the classification

procedure is shown in Figure 5.1 and the process is described below.

We will describe the classification process for a single dataset using ICA, since the ex-

tension to multiple datasets and different analysis techniques is, as we will show, straight-

forward. The first step is randomly resampling 190 subjects from the original fMRI feature

dataset, X, in order to produce a dataset to train the classifier, XTrain. The feature data

from the remaining 81 subjects is formed into XTest, which will be used to test the trained

classifier. In order to reduce any bias introduced in the random selection of subjects, the

proportion of patients and controls is kept the same in X, XTrain, and XTest. In the next step,

PCA, using the order specified using PCA-CCA, then ICA-EBM, is performed on XTrain.

Following ICA-EBM, a two-sample t-test is performed on each column of the estimated

subject covariations, ÂTrain, and those that are declared significant, i.e., p < 0.05, as well as

the corresponding spatial maps are formed into ĂTrain and S̆Train, respectively.

The final stage of the classification process begins with the training of a classifier, such

as a radial basis function kernel support vector machine (KSVM) using the rows of ĂTrain.

Next, ĂTest is found by regressing S̆Train onto XTest and is used to test the classifier produced

using ĂTrain. The value of the classification parameter, such as the kernel parameter for

KSVM, is selected by computing the average classification rate for 800 independent Monte-

Carlo resamplings of the data with different parameter values and finding the value with the
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ÃTest

1

X

XTrain

XTest

ATrain

STrain
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ÃTest

1

X

XTrain

XTest

ATrain

STrain
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Fig. 5.1. Classification process for a single feature dataset. For the case where multiple datasets are ana-
lyzed, the ICA step is replaced with either jICA or IVA, performed on the concatenated feature datasets or
the collection of feature datasets, respectively. The procedure is as follows: (a) the data is split into a training
set, XTrain, and a test set, XTest. (b) the training dataset is dimension reduced using PCA, ICA is run, and
the discriminatory components, S̆Train, and corresponding subject covariations, ĂTrain, are selected. (c) in the
final stage, ĂTrain is used to train the classifier, S̆Train is regressed onto XTest producing ĂTest, and ĂTest is used
to test the classifier. This process is repeated N times and the mean classification rate is evaluated. Note that
for IVA and well as the data integration technique, there are dataset-specific subject covariations Ă[k]

Train and
Ă[k]

Test; however, for IVA the subject covariations are derived by fusing information across all datasets whereas
for the data integration technique the subject covariations are extracted from each dataset individually.
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highest average classification rate. Once the optimal value of the classification parameter

is selected, the classification procedure is run on N independent Monte-Carlo resamplings

of the data and the mean classification rate is computed. In our results, we use 200 as the

value of N.

For jICA, the process is identical to the one described above, except X is composed

of the concatenated feature datasets. With IVA, the process is similar to the one described

above, except the two-sample t-test is run on every column of all estimated mixing ma-

trices, Â[k]
Train, and the columns showing a significant difference between the patients and

controls are all concatenated together when training the classifier. In order to compare

these two data fusion methods with a technique that does not analyze the datasets jointly,

i.e., data integration, we took the same setup from IVA, but replaced the IVA step with a

separate ICA analysis for each feature dataset individually. In this work, we use the IVA

using a multivariate Gaussian and Laplacian (IVA-GL) algorithm [118], since it is an ef-

fective IVA algorithm for analysis of fMRI data, see e.g., [118, 119]. Note that to facilitate

comparisons between methods and remove possible confounding from the use of different

orders for different methods, we use the same order, 24, estimated using PCA-CCA, in the

PCA step for all methods. Possible effects of the order on classification performance were

studied by repeating the ICA analyses for different orders and, as we show in Section 5.2.2,

while order-selection is important for most applications, we observe no statistically signif-

icant differences, after a Bonferroni correction, between the classification rates at different

orders.

Note that if the classifier requires the determination of a parameter, such as the value

of kernel parameter for KSVM, the selection of the optimal value is done for each method

individually. One final note regarding the computational complexity, since the number of

samples is much larger than the PCA order and the number of datasets, i.e., V � C, K,
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by far the most time consuming step in the proposed framework is the jICA/IVA step.

The computational complexity is approximately O(KVC2) per iteration and approximately

O(KVC2 + K2VC) per iteration for jICA using EBM and IVA-GL, respectively.

5.2.1 Number of Monte-Carlo Resamplings

In order to evaluate the validity of using 200 Monte-Carlo resamplings, we evaluate

the classification rate using KSVM and IVA on the combination of AOD and SIRP datasets

for different numbers of Monte-Carlo resamplings and display the results in Figure 5.2.
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Fig. 5.2. Average classification rate using KSVM and IVA on the combination of AOD and SIRP datasets
as a function of Monte-Carlo resamplings.

From Figure 5.2, it is clear that the classification rate converges to a stable result fairly

rapidly as a function of the number Monte-Carlo resamplings and the final classification

rate is nearly identical for any number of resamplings greater than approximately 150.

We should note that though we only show the result of one combination of classification

procedure, analysis method, and combination of datasets, we see very similar trends in the

other combinations as well.
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5.2.2 Order-Selection

In order to probe the effect of the order on the classification results, we rerun the

proposed framework 1,000 times, using 800 runs for training and testing and 200 runs for

validation, on the AOD dataset using ICA-EBM for different values of C. We study this

scenario due to the fact that we want to investigate purely the effects of selecting a different

PCA order, thus we want to keep the setup as simple as possible. We use the KSVM as

the classifier, since it scales well with the dimension of training space, and train the KSVM

parameter separately for each value of C. We display the results in the Figure 5.3.
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Fig. 5.3. Average classification results using ICA-EBM and KSVM on the AOD dataset for different
orders.

We expect the number of significant components and therefore the dimensionality of

the space in which we classify to generally increase with C, thus making the classification

problem easier. However, we do not see this in general in Figure 5.3, which may possibly

indicate overfitting for higher values of C. Though we show only one result here, the

trends are fairly consistent with those that we observe for the ICA analyses of the other

datasets, i.e., no consistent general trends as a function of C. We see some variation in the

classification rate as a function of C, however it is hard to determine any general trends

64



and the classification rate seems fairly consistent for orders above 15. In order to probe the

differences in classification rate that we observe in Figure 5.3, we run a two-sample t-test

comparing the highest classification rate achieved, i.e., using C = 15, with all other values

of the classification rates achieved for different values of C and display the results in Table

5.1.

C 5 15 25 35 45 55 65 75 85 95
p-value NS – 0.011 NS NS NS 0.009 NS 0.039 NS

Table 5.1. Significance of the difference in classification rate using KSVM of ICA-EBM using a PCA
order, C, of 15 compared to other values of C. We assess statistical significance through a two-sample t-test
performed on the classification rates obtained for 200 independent resamplings of the fMRI feature datasets.
If the difference corresponds to p ≥ 0.05, the result is marked “not significant” (NS). Note that there is no
correction for multiple comparisons and none of the observed differences would pass a Bonferroni correction
(0.0056 for a p-value of 0.05).

From Table 5.1, we can see that though we see some significance in terms of the

differences that we observe in Figure 5.3, they are mostly minor and would not survive a

correction for multiple comparisons. These results do motivate a future analysis where we

tune the value of C for each method individually. Such an investigation could potentially

be interesting, however, this would raise the issue of whether the different value of C or the

fusion method itself was the source of the differences in classification rate, thus distracting

from the fundamental goal of this chapter, i.e., quantifying the contribution of each dataset

to a fusion result as well as facilitating direct comparisons of fusion methods.

5.3 Results

We display the classification results for the individual multitask datasets as well as

their combinations, using KSVM in Figure 5.4. Several noteworthy trends can be observed

in Figure 5.4. First, we can see that equivalent or improved classification rate is achieved

when multiple datasets are jointly analyzed than when only a single dataset is analyzed.
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Fig. 5.4. Average classification results using KSVM for individual datasets and combinations of datasets
using either data fusion, with jICA and IVA-GL, or data integration using combined ICAs. The first three
columns from the left refer to the case where only one dataset is analyzed. The fourth, fifth, and sixth columns
from the left refer to combinations of two datasets. The rightmost point shows the classification performance
when all three task datasets are jointly analyzed. Note that error bars are omitted for clarity, since the largest
value of the standard error is 0.0035.

This is due to the fact that there is more total discriminative power available in a combina-

tion of multiple datasets than there is in any of the datasets individually. Additionally, the

AOD dataset has the highest classification rate of all of the individual datasets, while the

SM dataset has the lowest. This means that, when analyzed separately, the AOD dataset

is best able to differentiate between patients and controls, while the SM dataset has more

difficulty. We also note that there is a clear advantage to be found through the use of data

fusion, i.e., jICA and IVA-GL, over the use of data integration, i.e., combined ICAs, in

all cases, except where only the AOD and SIRP datasets are used, where equivalent perfor-

mance is achieved. This shows that the results for jICA and IVA-GL are more than the “sum

of their parts,” hence, emphasizing importance of allowing datasets to fully interact with

each other in an analysis [4, 112]. Additionally, in all cases IVA-GL performs better than

or is statistically equivalent to jICA, showing the advantages of using a less constrained

model when the signal-to-noise ratio is relatively high [13]. The strong performance of
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Datasets
Significance of Difference (p-values)

IVA-GL to Combined ICAs IVA-GL to JICA
AOD and SIRP NS NS
AOD and SM 1.0 × 10−10 NS
SIRP and SM 1.4 × 10−16 9.5 × 10−5

All Three Datasets 2.3 × 10−9 8.5 × 10−4

Table 5.2. Significance of the difference in classification rate using KSVM of IVA-GL compared to the data
integration technique, combined ICAs, and the popular data fusion method, jICA. Statistical significance
is assessed through a two-sample t-test performed on the classification rates obtained for 200 independent
resamplings of the fMRI feature datasets. If the difference corresponds to p ≥ 0.05, the result is marked “not
significant” (NS). Note that there is no correction for multiple comparisons, but all significant differences
would remain so after the conservative Bonferroni correction.

IVA-GL when compared with the ICA-based techniques is noteworthy since the algorithm

used for the ICA-based techniques was EBM, which is able to fit a much larger range of

latent source distributions than IVA-GL, thus showing the power of methods that exploit

complementary information across datasets. Since IVA-GL is best able to summarize the

total discriminative power of a combination of datasets, we can use the difference in clas-

sification rate between a two dataset analysis and the three dataset analysis to assess the

additional contribution of the third dataset, beyond what was provided by the other two, to

the fusion result. For example, the additional contribution of the SM dataset is the differ-

ence between the classification rate of IVA-GL using the AOD and SIRP datasets and the

classification rate of IVA-GL using all three datasets. Based on this, the additional contri-

bution of AOD is 4.5 percent, the additional contribution of SIRP is 1.7 percent, and the

additional contribution of SM is 5.5 percent. Thus, the SM and AOD datasets contribute

much more exploitable information than the SIRP dataset. In order to provide a qualitative

assessment of the differences observed in Figure 5.4, 2-sample t-tests were performed on

the classification rates and the results are shown in Table 5.2.

As can be seen from Table 5.2, all of the major differences observed visually in Fig-

ure 5.4 are statistically significant. No correction for multiple comparisons is performed,
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however we note that all of the observed differences remain statistically significant even

after the conservative Bonferroni correction. An interesting result that can be seen in both

Figure 5.4 and Table 5.2 is that for the combination of AOD and SIRP feature datasets,

there is no statistical difference in the classification rates of IVA-GL compared with that

of the combined ICAs. This indicates that there is no measurable difference in performing

data fusion or data integration for this combination of datasets. These results suggest that

there is little joint information that is exploited between the AOD and SIRP datasets. On

the other hand, there is significant improvement in performance when fusing the AOD and

SM datasets, implying that there is a significant amount of joint information between the

AOD and SM datasets.

5.3.1 Stability of Conclusions Using Other Classification Techniques
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Fig. 5.5. Average classification results using KNN for individual datasets and combinations of datasets
using either data fusion, with jICA and IVA-GL, or data integration using combined ICAs. The first three
columns from the left refer to the case where only one dataset is analyzed. The fourth, fifth, and sixth columns
from the left refer to combinations of two datasets. The rightmost point shows the classification performance
when all three task datasets are jointly analyzed. Note that error bars are omitted for clarity, since the largest
value of the standard error is 0.0034.

The motivation for using KSVM is its robust performance in cases, similar to ours,
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where the number of training samples is limited. To confirm the results that we state in the

previous section based on the KSVM, we also repeat our analysis with two other popular

fusion methods: K-nearest neighbors (KNN) and Fisher discriminant analysis (FDA). For

each method, we optimize the classification parameters, i.e., σ for the KSVM and K for

KNN, with the same training/test data consisting of 800 independent runs of each of the

methods on each of the combinations of resampled datasets. We use the same validation

set, consisting of 200 additional runs on separate resampled datasets, for each method and

report the average classification rate as well as the results of two-sampled t-tests performed

on the classification rates of the different methods below.

Datasets
Significance of Difference (p-values)

IVA-GL to Combined ICAs IVA-GL to JICA
AOD and SIRP 0.0062 0.0038
AOD and SM 5.5 × 10−25 1.2 × 10−5

SIRP and SM 1.5 × 10−19 1.3 × 10−11

All Three Datasets 8.3 × 10−13 NS

Table 5.3. Significance of the difference in classification rate using KNN of IVA-GL compared with the
data integration technique, combined ICAs, and the popular data fusion method, jICA. Statistical significance
is assessed through a two-sample t-test performed on the classification rates obtained for 200 independent
resamplings of the fMRI feature datasets. If the difference corresponds to p ≥ 0.05, the result is marked “not
significant” (NS). Note that there is no correction for multiple comparisons, but all significant differences
would remain so after the conservative Bonferroni correction.

From Figures 5.5 and 5.6 as well as Tables 5.3 and 5.4, we note statistically equivalent

or improved classification rates when multiple datasets are jointly analyzed than when only

a single dataset is analyzed. Additionally, the AOD dataset has the highest classification

rate of all of the individual dataset analyses, while the SM dataset has the lowest. We see

that, as we note when using KSVM, there is a significant improvement in classification

rate, using both KNN and FDA, of IVA-GL compared to the combined ICAs for the com-

bination of AOD and SM. Though we note that there is a statistically significant difference

in classification rate, using KNN, of IVA-GL compared to the combined ICAs for the com-
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Fig. 5.6. Average classification results using FDA for individual datasets and combinations of datasets using
either data fusion, with jICA and IVA-GL, or data integration using combined ICAs. The first three columns
from the left refer to the case where only one dataset is analyzed. The fourth, fifth, and sixth columns from
the left refer to combinations of two datasets. The rightmost point shows the classification performance when
all three task datasets are jointly analyzed. Note that error bars are omitted for clarity, since the largest value
of the standard error is 0.0037.

bination of AOD and SIRP, the difference is much less significant than for the combination

of AOD and SM. We also note that there is an advantage to be found through the use of data

fusion, i.e., jICA and IVA-GL, over the use of data integration in most cases or statistically

equivalent performance is achieved. A final and important trend that we see is that in all

cases IVA-GL performs better than or equivalent to jICA.

5.3.2 Exploring the Effects of Fusion

In order to probe the differences between combining the AOD and SIRP datasets ver-

sus combining the AOD and SM datasets, we run both IVA-GL and the data integration

technique on all of the data 10 times and select a run from each method for comparison

using the MST-based method described in Section 2.4. The reason that we use the compo-

nents from this run is that each of the results of a method on the resampled data may be seen

as rough approximations of the results of the same method on the whole dataset, since we
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Datasets
Significance of Difference (p-values)

IVA-GL to Combined ICAs IVA-GL to JICA
AOD and SIRP NS NS
AOD and SM 6.4 × 10−13 NS
SIRP and SM 1.8 × 10−16 8.3 × 10−4

All Three Datasets 8.0 × 10−12 NS

Table 5.4. Significance of the difference in classification rate using FDA of IVA-GL compared with the
data integration technique, combined ICAs, and the popular data fusion method, jICA. Statistical significance
is assessed through a two-sample t-test performed on the classification rates obtained for 200 independent
resamplings of the fMRI feature datasets. If the difference corresponds to p ≥ 0.05, the result is marked “not
significant” (NS). Note that there is no correction for multiple comparisons, but all significant differences
would remain so after the conservative Bonferroni correction.

greatly reduce the dimension of the datasets using PCA prior to performing the analysis.

Using the run that the MST-based method selects, we find the p-values by performing a

two-sample t-test on each column of the estimated mixing matrices of that run, where one

group is the subject covariations of the controls and the other is the subject covariations

of the patients. Those p-values that pass a significance threshold of p < 0.05 are declared

statistically significant and we align the corresponding Z-scored components between the

data fusion and data integration techniques. Two components are considered aligned if they

have a sample Pearson correlation coefficient above 0.5, which we find matches with the

results produced through visual alignment. We show the results in Figures 5.7 and 5.8.1

There are two trends that become clear from the comparison of Figures 5.7 and 5.8.

The first is that the proportion of components that are declared significant in the IVA-

GL results, which are not seen in the ICA results, is much higher for the combination of

AOD and SM than it is for AOD and SIRP. This would imply that the IVA-GL decompo-

sition shows greater difference for the combination of AOD and SM, i.e., there is greater

joint information that is exploited. This helps explain the significant improvement in the

1An exploration of how the IVA and combined ICAs relate to the jICA results can be found in Figures 5.9
and 5.10.
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classification rate of the data fusion technique over the data integration technique for the

combination of AOD and SM as well as the reason for its absence in the combination of

AOD and SIRP. We should note that the regions found to be significantly different in pa-

tients and controls that do not correspond to the ventricles and are found for both IVA

and the individual ICAs in Figure 5.7 correspond to: medial visual cortex, fronto-insular

cortex, thalamus, cerebellum, left fronto-parietal cortex, motor cortex, visual cortex, and

sensorimotor cortex. These regions are known to differentiate patients with schizophrenia

from controls, see e.g., [25, 27, 120–123]. Similarly, the regions that activate significantly

differently in patients and controls in Figure 5.8 correspond to the: medial visual cortex,

DMN, motor cortex, thalamus, left fronto-parietal cortex, cerebellum, visual cortex, and

sensorimotor cortex. These regions are also known to be impacted by schizophrenia, see

e.g., [25, 27, 120–124], consistent with the idea of cortico-cerebellar-thalamic-cortical cir-

cuit disruption or cognitive dysmetria in schizophrenia [125], thus increasing our overall

confidence in the results of this analysis. In addition to these, we also have differentiating

components with spatial activations corresponding to the posterior parietal lobe in Figure

5.7 and the temporal lobe and right fronto-parietal lobe in Figure 5.8 in the IVA results

and not in the ICA results. These regions are known to differentiate patients from controls,

see e.g., [25, 27], and they, coupled with the higher, on average, significance values for the

components, show the advantages of a fusion analysis over individual analyses.

The second trend that we see from both Figure 5.7 and Figure 5.8 is that there are

multiple significant components that we find in the single dataset analyses but not in the

fusion results. This is may be due to the fact that the fusion results report joint components,

thus they may mask weaker individual components [17]. The regions that we find in the

ICA results and not in the IVA results correspond to the cerebellum, DMN, fronto-parietal

cortex, and medial-visual cortex in Figure 5.7 and to the cerebellum, DMN, temporal cor-
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tex, and frontal lobe in Figure 5.8. These regions are known to be affected in patients with

schizophrenia, see e.g., [25, 27, 120, 124], and their absence from the IVA results demon-

strates the importance of performing a comparison between the fusion results with the ICA

results in order determine the joint as well as dataset-specific information.

These results also motivate the use of the proposed framework for automated feature

selection. Determining optimal features from different modalities\tasks is a continuing

challenge in many data fusion studies, see e.g., [6, 31, 34, 55, 126, 127]. If the goal of a

fusion study is the determination of differences between a set of groups, then the technique

developed in this chapter can be used for automated selection of optimal features based on

the combination of features that achieves the highest classification rate.

5.4 Summary

A fundamental issue associated with analyzing data from multiple sources is how to

most effectively combine datasets from different subjects and tasks. In this chapter, we

describe a data-driven classification procedure to determine the performance of different

multitask analysis techniques as well as the discriminatory information that a new dataset

introduces beyond what already exists in other datasets. We apply this new method to real

multitask fMRI data drawn from patients with schizophrenia as well as healthy controls.

Through this application, we find that though we achieve the best performance by analyzing

all of tasks, each task does not contribute equally to the result and we quantify the value

added by each task. Our results show that data fusion methods, through their exploitation of

shared information across datasets, are more powerful than data integration methods, which

do not take advantage of such information. We also show that the more flexible IVA-GL has

equivalent or superior performance compared with the popular data fusion method jICA.

Finally, it is important to note that the proposed framework can be applied not only to fMRI
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Fig. 5.9. Statistically significant components for the combination of the AOD and SIRP datasets. (a) the
significant components obtained through the use of data fusion, using IVA-GL, are shown in the first two
rows. The third through sixth rows contain those significant components obtained through the use of jICA
that have a correlation above 0.5 with the components obtained using IVA-GL. The aligned components are
in the same column. Note that due to the assumption by jICA of a common mixing matrix for all datasets,
multiple spatial maps are considered a single component with one corresponding p-value. The seventh and
eight rows contain the significant components obtained through the use of data integration, using ICA-EBM,
that have a correlation above 0.5 with the components obtained using IVA-GL. The components obtained
using jICA that do not have a correlation above 0.5 with any of the components obtained using IVA-GL are
shown in the (b). Additionally, those components obtained using ICA-EBM that do not have a correlation
above 0.5 with any of the components obtained using IVA-GL are shown in the (c) and (d) for the AOD and
SIRP datasets, respectively. Note that we flip the maps such that the activation (red and orange) represents an
increase in controls over patients and deactivation (blue) corresponds to a decrease in controls versus patients.
The p-values for each component are located above the corresponding spatial map and those that remain
significant after a Bonferroni correction are displayed in green. All spatial maps are Z-maps thresholded at
Z=2.7.
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Fig. 5.10. Statistically significant components for the combination of the AOD and SM datasets. (a) the
significant components obtained through the use of data fusion, using IVA-GL, are shown in the first two
rows. The third through sixth rows contain those significant components obtained through the use of jICA
that have a correlation above 0.5 with the components obtained using IVA-GL. The aligned components are
in the same column. Note that due to the assumption by jICA of a common mixing matrix for all datasets,
multiple spatial maps are considered a single component with one corresponding p-value. The seventh and
eight rows contain the significant components obtained through the use of data integration, using ICA-EBM,
that have a correlation above 0.5 with the components obtained using IVA-GL. The components obtained
using jICA that do not have a correlation above 0.5 with any of the components obtained using IVA-GL are
shown in the (b). Additionally, those components obtained using ICA-EBM that do not have a correlation
above 0.5 with any of the components obtained using IVA-GL are shown in the (c) and (d) for the AOD and
SM datasets, respectively. Note that we flip the maps such that the activation (red and orange) represents an
increase in controls over patients and deactivation (blue) corresponds to a decrease in controls versus patients.
The p-values for each component are located above the corresponding spatial map and those that remain
significant after a Bonferroni correction are displayed in green. All spatial maps are Z-maps thresholded at
Z=2.7.
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data from multiple tasks, but also to explore the interactions among multimodal data, such

as the data that we analyze in Chapters 3 and 4, thus enabling quantification of the additive

value of each modality in the analysis.
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Chapter 6

VISUALIZING THE CHANGES IN BIOMARKERS
FROM FUSION

In Chapter 5, we introduce a classification technique that can be used to quantify the

value of an fMRI dataset to a fusion result. However, the proposed method only quantifies

the comparative amount of joint discriminatory information and does not summarize how

the decomposition itself changes. In order to address this point and to avoid the component

alignment step used in Section 5.3.2, in this chapter we develop a new visualization tech-

nique, global difference maps (GDMs), and demonstrate how they can be used to visually

highlight the changes from fusion and quantify the discriminatory power of each dataset

within a decomposition. We apply this technique to multitask fMRI data drawn from 247

subjects, 109 patients with schizophrenia and 138 healthy controls. Through this applica-

tion, we find that IVA-GL extracts components that generally represent the common brain

regions across the tasks, but can mask regions associated with only a subset of the datasets.

We also find that the use of GDMs facilitates comparisons across analysis methods in terms

of: the significance of the results, how the results are related to certain behavioral scores,

and how the discriminatory brain regions change between methods.
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6.1 Motivation for and Generation of a GDM

As seen at the end of Chapter 5, for a given analysis technique, there are multiple sta-

tistically significant biomakers that are extracted, thus making a summarization and com-

parison of different techniques difficult. For this reason, we propose to summarize the

performance of a given method through the use of GDMs. We should note that GDMs

can be used to augment the strategy developed in Chapter 5 in several ways: first, GDMs

provide the discriminatory power of each dataset within a joint decomposition, unlike the

former classification technique that summarizes the total discriminatory power of the whole

joint decomposition, thus enabling greater insight into the role that each dataset plays. Ad-

ditionally, GDMs enable visualization of the regions in the brain that have the greatest

discriminatory power enabling a visualization of how a decomposition changes by moving

from one model to another or including a new dataset in the analysis. We describe the

construction of a GDM next.

For the B Z-scored, statistically significant, at p < 0.05, components for each dataset,

ŝ[k]
b , 1 ≤ m ≤ B, we construct the GDM for that method and dataset, ŝ[k]

GDM, as follows

ŝ[k]
GDM =

B∑
b=1

tb∑B
m=1 tm

ŝ[k]
b , k = 1, . . . ,K (6.1)

where tb is the t-statistic for the bth biomarker that is positive or made to be positive by

multiplying the corresponding subject covariation and biomarker by −1. Thus, the GDM

can be seen as a summary map that describes only the regions that activate significantly

differently between patients and controls for a given decomposition and dataset within that

decomposition. Each biomarker is scaled by the value of its corresponding t-statistic, so it is

weighed more if the component is better able to differentiate between patients and controls.

Additionally, we can quantify the discriminative power of a GDM, and thus indirectly the

whole decomposition, by generating subject covariations in a nearly identical manner to the
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Fig. 6.1. Comparison of the t-statistics from the GDMs compared with the t-statistics of the original
biomarkers found using (a) ICA-EBM and (b) IVA-GL for each task. The t-statistics of the GMDs are
shown in red, while the original biomarkers are shown in blue.

GDM spatial maps and performing a two-sample t-test on the resulting subject covariations.

The corresponding subject covariations for the GDM are given by

â[k]
GDM =

B∑
b=1

tb∑B
m=1 tm

â[k]
b , k = 1, . . . ,K (6.2)

where â[k]
b is the subject covariation corresponding to ŝ[k]

b . This construction is expected to

result in subject covariations that show greater discriminatory power than the original â[k]
b ,

since â[k]
GDM is constructed from only the significant biomarkers. The â[k]

b can be modeled as

unit step functions of length equal to the number of controls that are corrupted by Gaussian

noise, where higher values of tb imply lower variances for the noise. Thus, the summa-

tion of multiple â[k]
b , weighted as in (6.2), should—on average—destructively cancel out

some of the noise, thus resulting a lower value for the variance of the noise and a more

discriminative subject covariation.

6.1.1 Using GDMs to Summarize Discriminatory Power of a Decomposition

In order to investigate the ability of a GDM to summarize the discriminatory power of

a decomposition, we run ICA-EBM and IVA-GL ten times on the multitask fMRI data that
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we describe in Chapter 2, drawn from 247 subjects. For each method, we estimate 25 com-

ponents, corresponding to the maximum order that we find by applying PCA-CCA to the

pairwise combinations of the three tasks. We then find the central run for each technique

using the MST-based method that we describe in Section 2.4. After selecting the central

run, we find the biomarkers and from them calculate GDMs for each task and method.

We display the t-statistics of the biomarkers found for each dataset and the corresponding

GDMs for ICA-EBM and IVA-GL in Figure 6.1. We also compare the p-value correspond-

ing to the t-statistic from the GDM with the p-value obtained by performing Hotelling’s

T -squared test—the multivariate counterpart to the two-sample t-test—with one group be-

ing represented by a vector containing the subject covariations of all of the biomarkers from

the controls and the other group being represented by a vector containing the corresponding

subject covariations from the patients. The results of this comparison are shown in Table

6.1.

AOD (ICA) AOD (IVA) SIRP (ICA) SIRP (IVA) SM (ICA) SM (IVA)
GDM 1.65 × 10−13 3.74 × 10−12 4.54 × 10−7 4.20 × 10−8 7.52 × 10−16 4.53 × 10−9

T -Squared 8.19 × 10−10 2.48 × 10−9 3.95 × 10−5 3.06 × 10−6 1.15 × 10−14 1.00 × 10−6

Table 6.1. Significance in terms of p-values for each combination of dataset and analysis method measured
using a 2-sample t-test run on the subject covariations of the GDM as well as Hotelling’s T -squared test. Note
that the relative significance of each combination of dataset and analysis method is consistent across the two
tests.

From Figure 6.1, we see that the t-statistics from the GDMs are an upper-bound for

the t-statistics from their constituent biomarkers. This, combined with the fact that we see

the same trend for the significance values in both the 2-sample t-test run on the subject

covariations of the GDM as well as Hotelling’s T -squared test, motivate the use of GDMs

to summarize the total discriminative power of a dataset within a decomposition. Based

on the results shown in Figure 6.1(a) as well as Table 6.1, we can see that, individually,

the AOD and SM datasets seem to provide more discriminatory information than the SIRP
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dataset, since the significance of the SIRP dataset is much lower than the significance for

the AOD and SM datasets. However, we can see from Figure 6.1(b) as well as Table 6.1

that when combined using IVA, the significance of the SIRP dataset increases, while the

AOD and SM datasets become less significant. This observation matches the result that we

observed in Chapter 4, namely, that there can be a cost, in terms of reduced significance

when fusing more discriminatory datasets with less discriminatory datasets.

6.2 Visualizing Fusion

The GDMs extracted from the multitask fMRI data using both ICA-EBM as well as

IVA-GL is shown in Figure 6.2. We can see that the discriminatory regions that were

found using IVA-GL but not found using ICA-EBM—shown in yellow—correspond to the

sensorimotor and parietal regions of the brain. This makes sense, since these are the regions

that are expected to be consistently activated across the three tasks. We also see regions,

such as some of the auditory activation in the AOD and SM datasets as well as the visual

activation in the SIRP, which are found using ICA-EBM, but not using IVA-GL—shown

in cyan. This highlights the ability of IVA-GL to emphasize similarities across datasets

and also points to the the need to compare fusion results with single dataset analyses, since

some of the regions associated with a subset of the tasks are not found using IVA-GL.

A primary goal of many neuroimaging studies is the investigation of possible links

between cognitive or behavioral measures and neural function, see e.g., [113, 128, 129].

Motivated by this, we examine the relationship between the subject covariations of the

GDMs and behavioral scores, which are classified into multiple domains [1], collected

from each subject. We display the results in Table 6.2.

From Table 6.2, we see that the GDM found using ICA-EBM on the SIRP dataset does

not correlate significantly, after a Bonferroni correction, with the majority of behavioral
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(a) (b) (c)

ICA and IVA IVA not ICA ICA not IVA

Fig. 6.2. GDMs generated from the (a) AOD, (b) SIRP, and (c) SM datasets. For each plot, we display
only those voxels that had an absolute z-score above 1.7. The red shows regions that are common to both
the GDM extracted from the IVA-GL results as well as the GDM extracted from the ICA-EBM results. The
yellow shows the regions that are in the GDM extracted from IVA-GL results but not in the GDM extracted
from the ICA-EBM results. The cyan shows the regions that are in the GDM extracted from ICA-EBM results
but not in the GDM extracted from the IVA-GL results.

t-statistic AOD (ICA) AOD (IVA) SIRP (ICA) SIRP (IVA) SM (ICA) SM (IVA)
Speed of Processing -5.50 4.25 × 10−7 2.50 × 10−5 5.91 × 10−3 7.86 × 10−6 1.02 × 10−5 9.14 × 10−4

Verbal Learning 11.03 1.06 × 10−6 6.45 × 10−6 2.63 × 10−4 3.03 × 10−6 4.70 × 10−9 1.73 × 10−7

Verbal Working Memory 11.35 5.54 × 10−6 7.56 × 10−5 3.58 × 10−3 7.99 × 10−5 6.73 × 10−8 7.10 × 10−5

Nonverbal Working Memory 7.19 7.04 × 10−4 1.23 × 10−3 3.03 × 10−3 1.95 × 10−5 1.40 × 10−4 5.19 × 10−4

Table 6.2. The first column from the left displays the t-statistic from the two-sample t-test run on the
behavioral scores from the “measurement and treatment research to improve cognition in schizophrenia”
consensus cognitive battery [1, 2], where the first group is the scores from the controls and the second group
is the scores from the patients. The second through seventh columns from the left are the correlation between
the subject covariation from the GDM extracted from that combination of dataset and analysis method and the
behavioral score. No correction for multiple comparisons was performed, however we highlight the entries
that are not significant after a Bonferroni correction—p < 2.02 × 10−3 for a p-value of 0.05—in red.

scores, meaning that it cannot be associated with the results observed clinically. However,

the GDM created from the IVA-GL results does correlate significantly. This shows how

a joint analysis can provide more clinically informative results than individual analyses,

particularly for datasets that are not as discriminative or as well associated with clinical

measures, as the SIRP dataset was in this case.
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6.3 Summary

Since each BSS technique has different modeling assumptions, applying different

techniques to the same datasets will result in different decompositions. This motivates

methods to compare these different decompositions and assess their strengths and weak-

nesses on real data. In this chapter, we propose the use of GDMs to summarize the total

discriminative power of each dataset within a decomposition. We apply this technique

to multitask fMRI data collected from patients with schizophrenia and healthy controls.

Through this application, we find that IVA-GL extracts components that generally repre-

sent the common brain regions across the tasks, but can mask regions associated with only

a subset of the datasets. We also find that the use of GDMs facilitates comparisons across

analysis methods both in terms of the significance of the results and how they are related to

certain behavioral scores as well as how the discriminatory brain regions change with the

method.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

The goal of this dissertation has been the development and analysis of a data-driven fu-

sion framework that can utilize complementary information from different datasets as well

as an exploration of the nature and degree of the connections between different datasets.

By exploiting both multimodal as well as multiset neuroimaging data, we have sought to

provide a better view of spatio-temporal brain function, highlight the similarities across

functional tasks, and understand how neural function is disrupted by schizophrenia. We

should note that the techniques developed in this dissertation have application far beyond

the specific datasets to which they were applied in this dissertation or even the domain that

was the focus of our study. Instead, these methods can facilitate understanding of how ro-

bust different techniques are to deviations from their assumptions, the effects of including

an additional dataset in an analysis, and how different datasets interact to determine a joint

result. In this chapter, we summarize our results and present possible directions for further

research.

7.1 Conclusions

The extraction of data from multiple sensors enables the exploitation of complemen-

tary information from each dataset, thus allowing greater understanding of the problem

under study. The datasets can be from sensors of the same type, referred to as multiset
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data, such as multitask or multi-subject fMRI data, or from sensors of different types, re-

ferred to as multimodal datasets, such as fMRI and EEG data drawn from the same subjects.

With the goal of maximizing the amount of complementary information used while min-

imizing the potential for biases, the performance of data fusion through the use of BSS

techniques has recently become quite popular for the analysis of such data. However, the

success of these techniques is intimately tied to the problem of order-selection and the de-

gree of similarity, i.e., the amount of complementary information that is shared, among

the different datasets. In addition, the classical methods for order-selection only address a

single dataset at a time and do not perform well in the sample-poor regime, which is com-

monly encountered when fusing multimodal neuroimaging datasets using tIVA. In Chapter

3 of this dissertation, we discuss a new method, PCA-CCA, which addresses the problems

of order-selection and assessment of the degree of similarity between multimodal neuro-

logical datasets in the sample-poor regime. We demonstrate the desirable performance of

PCA-CCA compared with classical techniques in a series of simulations. Additionally, we

show how the degree of similarity between real multimodal neurological datasets can pro-

vide an accurate prediction of the significance of the components generated by tCCA and

tMCCA, a topic that we explore more in Chapter 4.

Despite the ability of data fusion to facilitate understanding of neural function and how

it is disrupted by disease, most studies focus solely on the fusion of only two modalities.

In Chapter 4 of this dissertation, we fuse real multimodal neurological data from three

datasets, thus enabling exploration of the contribution of each dataset to the fusion result.

We find that the number of subjects and the strength of the similarity between the datasets

are the primary factors affecting the results achieved by different fusion methods. If the

similarity between the datasets is high, such as for the combination of fMRI and ERP

datasets, then the more constrained jICA model may be more appropriate than the tIVA
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model because the former is less sensitive to additive noise than the latter. However, if the

similarity between datasets is not expected to be high, such as for the combination of fMRI

and sMRI as well as sMRI and ERP, the tIVA model may be more reasonable, since it is

less constrained than the jICA model.

Given that the success of a particular fusion method is dependent on the amount of

complementary information that the datasets contain, a question that naturally arises is:

what is the most effective method to combine different datasets? In Chapter 5 of this dis-

sertation, we propose a data-driven classification procedure to unambiguously quantify the

performance of different analysis techniques as well as the discriminatory information that

a new dataset introduces beyond what already exists in other datasets. Through its appli-

cation to real multitask fMRI data, we find that though we achieve the best performance

by analyzing all of the tasks together, the AOD and SM tasks provide much more unique

exploitable discriminatory information than the SIRP dataset. We also show that the more

flexible IVA-GL algorithm has equivalent or superior performance compared with the pop-

ular data fusion method jICA using EBM.

Individual BSS techniques have different modeling assumptions, thus they will pro-

duce different decompositions when applied to the same data. In Chapter 6 of this dis-

sertation, we propose a new method, GDMs, to summarize the discriminative power of

each dataset within a decomposition. In applying it to real multitask fMRI data, we find

that IVA extracts components that generally represent the common brain regions across the

tasks, but can mask regions associated with only a subset of the datasets. We also find

that the use of GDMs facilitates comparisons across analysis methods both in terms of the

significance of the results and how they are related to certain behavioral scores as well as

how the discriminatory brain regions change with the method.
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7.2 Future Work

The methods developed in this dissertation motivate several potentially fruitful direc-

tions for future research.

7.2.1 IVA for Determining the Connections between Multiple Datasets

As we discuss in Chapter 3, the success of PCA-CCA for the determination of the

strength of the connections between two multimodal datasets as well as their joint order

motivates an extension to more than two datasets. To the best of our knowledge, the topic

of determining the number of dependent sources across multiple datasets has received fairly

little attention, see e.g., [107,130–134], and all of these methods exploit solely the second-

order dependence, i.e., correlation, among the datasets. Since, as we mention in Chapter

2, IVA is an extension of both CCA and MCCA such that the demixing matrices are not

constrained to be orthogonal and higher-order dependencies can be exploited, it provides a

natural framework to determine the number of dependent sources across multiple datasets.

A simple example that highlights the potential benefits of this approach over previous meth-

ods is if there are sources that are uncorrelated but dependent across multiple datasets. In

such a case, all previously proposed methods will fail, but an IVA-based technique, which

can exploit this higher-order dependence, will succeed.

The IVA-based framework can be combined with two other approaches to increase

its applicability to real-world data. First, by assuming a fixed parametric model, such

as the generalized Gaussian distribution, for the sources and that the mixing matrices are

orthogonal, it may be possible to derive a close-form solution for this IVA problem similar

to the case for CCA, MCCA-MAXVAR, and MCCA-MINVAR. Second, bootstrapping

techniques, such as the block bootstrap [135], can be used to account for the sample-to-

sample dependence encountered in many applications and to generate a null distribution of
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values within a hypothesis-testing framework.

7.2.2 ICA+CCA

Recent advances in technology have greatly facilitated the collection of genetic data,

such as single nucleotide polymorphisms (SNPs) data or deoxyribonucleic acid methyla-

tion data, thus facilitating the discovery of the genetic factors associated with inheritable

neurological diseases, such as the early-onset form of Alzheimer’s disease. However, de-

spite the fact that inherited medical and psychiatric diseases are most likely based upon

multiple genes, which result in a series of biological processes, as well as environmen-

tal factors [136], most genotyping strategies for complex inherited phenotypes perform

only univariate analyses, such as genome-wide association studies, see e.g., [137]. More

recently, multivariate analyses, of which p-ICA [25] is perhaps the most popular, have be-

come increasingly utilized in order to discover the links between genetic data and neural

function. This popularity is likely due to three factors: first, they facilitate interpretation,

since they extract functional regions or sets of genes that covary together, second, they

provide robustness to noise, and third, because the statistical testing is done at the compo-

nent level and not based on the SNPs locations—which is usually three to four orders of

magnitude higher—thus enabling less extreme corrections for multiple comparisons [138].

Despite this popularity, p-ICA requires the mixing matrices of the two datasets, generally

fMRI feature data and SNPs data derived from the same subjects, to be nearly identical; an

assumption that may not always be true in practice. As was seen for jICA compared with

tIVA in this dissertation, there can be significant benefits to relaxing such restrictive con-

straints. For this reason, we propose a hybrid technique that combines the strengths of ICA

and tCCA, known as ICA+tCCA, in order to factor and then fuse genetic and neurological

feature data. Although we discuss the technique below for the case where we have fMRI

feature data and SNPs data, the datasets could be any combination of neuroimaging and
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genetic datasets, or from other multimodal applications.

Consider an fMRI feature dataset from M subjects, X[1] =
[
x[1](1), . . . , x[1](V1)

]
∈

RM×V1 , where the mth row of X[1] is formed by flattening the feature of V1 voxels from

the mth subject. Similarly, consider a dataset of SNPs collected from the same subjects

X[2] =
[
x[2](1), . . . , x[2](V2)

]
∈ RM×V2 , where the mth row of X[2] are the SNPs values from

the mth subject. Performing ICA on each dataset separately factorizes them into a set

of functional networks S[1] ∈ RC1×V1 and phenotypes S[2] ∈ RC2×V2 , with corresponding

subject covariations A[1] ∈ RM×C1 and A[2] ∈ RM×C2 , respectively. Performing tCCA on

the subject covariations as described in Chapter 2 will produce combinations of the subject

covariations and, therefore, combinations of the factors that maximally correlate across the

two datasets. There are several additional positive aspects of this method when compared to

p-ICA. First, we can use other factorization methods, such as sparse PCA [139], for either

of the two datasets individually or jointly—a feature that is not available for p-ICA. Second,

we can extend this technique to analyze data from more than two datasets by replacing the

tCCA step with tMCCA. Third, we are not constrained to estimate the same number of

factors from each dataset—a strict inherent assumption of p-ICA.

We should also note that this method deviates significantly from the technique

CCA+jICA [27, 140]. The primary reason for these differences is do to the fact that the

final step of CCA+jICA is jICA. This means that, first, CCA+jICA requires the estimation

of the same number of factors from both datasets, and second, CCA+jICA requires the

datasets to have nearly the same mixing matrix after the performance of the CCA step in

order for the jICA to succeed—an assumption which is not guaranteed in practice.

To conclude, this method also shares some similarities with the technique known as

joint and individual variation explained (JIVE) [141]. However, the proposed method de-

pends on ICA to factorize the datasets, whereas JIVE exploits the singular value decompo-
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sition (SVD). The superior performance of ICA over second-order methods, such as SVD,

for the factorization of individual datasets has been shown consistently, see e.g., [14].

7.2.3 TIVA for Calcium Imaging Data

The goal of studying how the brain encodes information in real-time goal has been

greatly advanced by very recent developments in imaging technology, see e.g., [142, 143],

which have enabled the study of large populations of neurons in real time using calcium

florescence imaging. Given the potential offered by such imaging data, many methods have

been developed to extract individual neuronal signals from the high levels of noise in the

fluorescence images. However, traditional analyses of calcium imaging data have focused

on single subject analyses and have compared summary statistics across subjects in order to

derive conclusions, see e.g., [144–150]. Data fusion techniques, particularly tIVA, present

a unique method to extract coactivating neurons within a task whose timing is identical

across subjects, thus facilitating the establishment of how different subjects encode the

same stimuli. In addition, since the data is video, i.e., X[k] ∈ RF×P, where P is the number

of pixels in the vectorized frame and F is the number of frames in the video, the number of

samples for tIVA is F, which is generally quite large. Thus, we can exploit more general

models for tIVA than tIVA-G, which are expected to greatly improving performance.
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