

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by
emailing scholarworks-group@umbc.edu and telling us
what having access to this work means to you and why
it’s important to you. Thank you.

mailto:scholarworks-group@umbc.edu

Demo Abstract: ByzGame, a Visualized and
Understandable BFT Consensus

James R. Clavin and Sisi Duan
{jclavin,sduan}@umbc.edu

University of Maryland, Baltimore County

Abstract
Byzantine Fault Tolerance (BFT) is the only generic tech-
nique that tolerates arbitrary failures in distributed systems,
and can be used as a core primitive in building consensus in
blockchains. Numerous BFT protocols have been proposed
to improve scalability and throughput, but some have been
found to have correctness issues resulting from system de-
sign and implementation. One of the major challenges is
understand-ability of both the theory and implementation.
Specifically, BFT consensus should be made understandable
so that it is easy to reason about the correctness theoret-
ically and also easy to understand the correctness of the
implementation. To address the challenge, in August 2018
we began development of a web application called ByzGame.
ByzGame is designed for visualizing BFT protocols, connect-
ing the visualization with the backend BFT implementation,
and making both BFT consensus theory and implementation
more understandable.
ACM Reference Format:
James R. Clavin and Sisi Duan. 2019. Demo Abstract: ByzGame, a
Visualized and Understandable BFTConsensus. In 20th International
Middleware Conference Demos and Posters (Middleware Demos and
Posters ’19), December 9–13, 2019, Davis, CA, USA. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3366627.3368109

1 BFT Consensus
1.1 The Byzantine Generals Problem
The Byzantine Generals Problem is a classic problem in dis-
tributed systems that is not as easy to implement, adapt, and
understand as it might seem to a systems architect [11]. A
typical Byzantine Fault Tolerant (BFT) protocol assumes n
servers which tolerates up to f = ⌊ n−13 ⌋ failures. A quo-
rum of ⌈n+f +12 ⌉ votes from different nodes are needed to
reach consensus [18]. The first system to implement BFT
was Practical Byzantine Fault Tolerance (PBFT) [4]. Several
BFT protocols have since followed [2, 7–9, 13]. In the past few
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
Middleware Demos and Posters ’19, December 9–13, 2019, Davis, CA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7042-4/19/12.
https://doi.org/10.1145/3366627.3368109

years, interest in BFT has increased due to its applicability
in blockchains.

1.2 Comprehensibility of BFT Consensus
Despite decades of research, BFT consensus still is not easily
comprehended. The consensus theory alone is difficult to un-
derstand, much less whether an implementation matches the
theory, as observed from multiple previous efforts [3, 5]. To
the best of our knowledge, no BFT protocol has been created
that has as a first class property being readily understood.
We do, however, observe that the crash fault tolerant (CFT)
protocol Raft [14] was designed to be more easily understood
than Paxos, the existing state of the art in crash fault toler-
ance [10]. Just as Raft uses a visual and interactive game to
teach the protocol, so too does our ByzGame. But, compara-
tively, we go a step further in ByzGame by connecting the
visualization with a BFT backend codebase.

2 ByzGame: The Byzantine Generals Game
We have built ByzGame, a web-based interface that con-
nects the web front end with a BFT implementation, so that
users can directly manage the BFT nodes and visualize the
message flow. Through such a process, users can do real
world tests of the theory of BFT consensus, examine the BFT
implementation, and identify issues with the protocol.

2.1 BFT-SMaRt
We utilize BFT-SMaRt, an open source java-based BFT library
[16]. It has an API for re-use in other applications by either
clients or servers. Clients can send messages using total
ordered or unordered multicast, either synchronously or
asynchronously [15]. The API provides the ability for an
application to execute client messages, perform state transfer,
and define what message to send in reply [15].

2.2 The Python shim
The ByzGame uses a Python shim to interact with BFT-
SMaRt through both network sockets and using JPype [12].
The shim includes a sender thread that relays a message
through the socket to a receiving replica thread. The receiv-
ing thread handles the request and sends back a message
indicating that the request was processed. Figure 1 is a dia-
gram of the communication process for the ByzGame, with
4 servers (referred to as replicas) running BFT-SMaRt, each
with a Python shim.

21

https://doi.org/10.1145/3366627.3368109
https://doi.org/10.1145/3366627.3368109

Middleware Demos and Posters ’19, December 9–13, 2019, Davis, CA, USA James R. Clavin and Sisi Duan

Figure 1. ByzGame Design: Python + BFT-SMaRt.

2.3 Interface
The ByzGame is a Python web application that presents two
system configuration inputs to users: n, the number of nodes
- or "generals"; and the "target" - or the city against which the
"generals" launch their attack. Upon selection ofn, the system
state variables for faults allowed, or f , and quorum size, orQ ,
are calculated and shown to the user. ∀ replica i, 1 ≤ i ≤ 38,
a node is placed on a global map. (38 is the max n the system
supports; or, 39 cities total, one of which is the target). The
user can then issue these commands.
• START initializes all servers in the system.
• STOP stops all servers in the system.
• LAUNCH gives the order to "Launch Attack".
• RESET puts the system state to the default setting where
n = 4 and f = 1.
"Launch" sends a client request to the nodes running BFT-

SMaRt, who return either a "1" indicating they will "attack,"
or a "0" otherwise. If the nodes reach consensus, the interface
animates either an "attack" against, or "retreat" from, the tar-
get city, as in the original Byzantine generals game proposed
in the 80s [11]. System logs at the nodes are accessible to
illustrate message flow in the protocol. When failures occur,
a user can search the logs to identify the cause.

3 Implementation
The ByzGame is hosted on an AWS EC2 t2.micro instance.
Users from our university log in to ByzGame.com by authen-
ticating using their university-provisioned Gmail account.
Excluding the BFT-SMaRt library, the ByzGame project

has about 5,000 lines of code written in Python, JavaScript,
and HTML. The web framework is the Python library Tor-
nado [1]; it manages both the presentation layer and the
network socket communication. The main Tornado server
interacts with static HTML and JavaScript libraries. The
global map uses geocoded JSON data presented through the
JavaScript library D3. We use LevelDB [6] as the database
for logging. Each replica stores its own log data and records
client requests.

4 ByzGame Status
We believe ByzGame is an ideal tool for education because
it gives students the means to configure and simulate a dis-
tributed system that is running a open source BFT proto-
col [17]. The map is intended to help visualize the locations
of the servers, and underscore the distributed nature of BFT.
Feedback on quorum size and allowable faults is dynamic
and is designed to elicit realizations. E.g., certain n settings
have the same Q value, so the number of servers in a sys-
tem should be given careful consideration so as to not waste
resources. Furthermore, students can better grasp BFT the-
ory by not only examining the output of BFT-SMaRt, but
the output they have caused. We are currently testing the
ByzGame interface in a distributed systems course at the uni-
versity. The game will supplement the lecture on consensus
and BFT. An assignment will be given with the expectation
that ByzGame provides the answers and a survey will gather
feedback on user experience. Class performance on exam
questions related to consensus and BFT will be compared to
prior years’ classes performance on similar questions.

References
[1] 2019. Tornado Web Server. https://www.tornadoweb.org/en/stable/.

(2019).
[2] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random or-

acles in Constantinople: Practical asynchronous Byzantine agreement
using cryptography. Journal of Cryptology 18, 3 (2005), 219–246.

[3] Christian Cachin and Marko Vukolić. 2017. Blockchain consensus
protocols in the wild. In DISC. 1:1–1:16.

[4] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault
tolerance and proactive recovery. TOCS 20, 4 (2002), 398–461.

[5] Tushar D Chandra, Robert Griesemer, and Joshua Redstone. 2007.
Paxos made live: an engineering perspective. In PODC. ACM.

[6] Jeff Dean and Sanjay Ghemawat. 2012. LevelDB. Retrieved 1 (2012).
[7] Sisi Duan, Michael K Reiter, and Haibin Zhang. 2018. BEAT: Asyn-

chronous BFT Made Practical. In CCS. ACM, 2028–2041.
[8] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi,

Benny Pinkas, Michael K Reiter, Dragos-Adrian Seredinschi, Orr Tamir,
and Alin Tomescu. 2018. SBFT: a scalable decentralized trust infras-
tructure for blockchains. arXiv preprint arXiv:1804.01626 (2018).

[9] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, andMarko Vukolić.
2010. The next 700 BFT protocols. In Eurosys. ACM, 363–376.

[10] Leslie Lamport. 1998. The part-time parliament. ACM Transactions on
Computer Systems (TOCS) 16, 2 (1998), 133–169.

[11] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzan-
tine generals problem. ACM TOPLAS 4, 3 (1982), 382–401.

[12] S Ménard and L Nell. 2006. JPype. (2006).
[13] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016.

The honey badger of BFT protocols. In CCS. ACM, 31–42.
[14] Diego Ongaro and John Ousterhout. 2014. In search of an understand-

able consensus algorithm. In ATC. 305–319.
[15] snakejerusalem. 2016. BFT-SMaRt Programming Interfaces. (2016).
[16] João Sousa, Eduardo Alchieri, and Alysson Bessani. 2014. State ma-

chine replication for the masses with BFT-SMaRt. In DSN. 355–362.
[17] Joao Sousa, Alysson Bessani, and Marko Vukolić. 2018. A byzantine

fault-tolerant ordering service for the hyperledger fabric blockchain
platform. In DSN. 51–58.

[18] Andrew S Tanenbaum and Maarten Van Steen. 2007. Distributed
systems: principles and paradigms. Prentice-Hall.

22

https://www.tornadoweb.org/en/stable/

	sheet1
	3366627.3368109
	Abstract
	1 BFT Consensus
	1.1 The Byzantine Generals Problem
	1.2 Comprehensibility of BFT Consensus

	2 ByzGame: The Byzantine Generals Game
	2.1 BFT-SMaRt
	2.2 The Python shim
	2.3 Interface

	3 Implementation
	4 ByzGame Status
	References

