
APPROVAL SHEET

Title of Thesis: yInMem: A Parallel Distributed Indexed In-Memory
Computation System for Big Data Analytics

Name of Candidate: Yin Huang
Ph.D. in Computer Science,
2017

Thesis and Abstract Approved:
Dr. Yelena Yesha
Professor
Department of Computer Science
and
Electrical Engineering

Date Approved:

ABSTRACT

Title of dissertation: yInMem: A Parallel Distributed Indexed In-Memory
Computation System for Big Data Analytics

Yin Huang, Doctor of Philosophy, 2017

Dissertation directed by: Ph.D. Yelena Yesha, Professor
Ph.D. Shujia Zhou, Professor
Department of Computer Science and
Electrical Engineering

Cluster computing is experiencing a surge of interest in in-memory comput-

ing system with the advances in hardware such as memory. However, the network

media has the smallest bandwidth as compared to memory and disk in a typical

setting of cluster computing environment. In addition, the sparse nature of graph

applications, such as social network, imposes new challenges for in-memory com-

puting system. Examples of such challenges are data locality, workload balance

and memory management. As a result, fine control over data partitioning and data

sharing plays a crucial role in improving the speed of large-scale data-parallel pro-

cessing systems by reducing the cross-node communication. In order to maximize

the performance, in-memory computing system should be offering optimized data

throughput for parallel computation in large-scale data analytics.

This dissertation presents yInMem: a parallel, distributed, indexed, in-memory

computing system for big data analytics. With the goal of building an in-memory

computing system that enables optimal data partitioning and improves efficiency

of iterative machine learning and graph algorithms, yInMem bridges the gap be-

tween HPC and Hadoop by parallelizing the computation with MPI while obtaining

the advantage of distributed data storage, such as NoSQL database built on top

of Hadoop. The novelty of yInMem results from introducing indexes or associa-

tive arrays to the in-memory computing system. Such a design offers benefits of fine

control over data distribution with parallel computation to maximize the computing

resources usage in the cluster.

By analyzing the linear algebra characteristics of iterative machine learning

and graph algorithms, such as spectral clustering and PageRank, we find that yIn-

Mem is capable of maximizing the usage of computing resources in the cluster.

Leveraging the insights of Sparse Matrix-Vector Multiplication (SpMV), we also

provide an optimal data partitioning algorithm on top of yInMem for load balance

and data locality.

In order to evaluate yInMem, we investigate iterative machine learning and

graph algorithms using both synthetic benchmarks and real user applications. yIn-

Mem matches or exceeds the performance of existing specialized systems.

yInMem: A Parallel Distributed Indexed In-Memory Computation
System for Big Data Analytics

by

Yin Huang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the status of
Doctor of Philosophy

2017

Advisory Committee:
Professor Yelena Yesha, Chair/Advisor
Professor Shujia Zhou
Professor Milton Halem
Professor Yaacov Yesha
Dr. Walid Keyrouz

c© Copyright by
Yin Huang

2017

To my family

ACKNOWLEDGMENTS

I would like to thank Yelena Yesha, Milton Halem, Shujia Zhou, Yaacov Yesha,
and Walid Keyrouz for their support and guidance through this incredible journey. I
would also like to thank the Center for Hybrid Multicore Productivity Research and
all CHMPR lab mates for their company and help throughout my work, especially
Tim Blattner, Kimberly Blattner, Dorsa Ziaei, Navid Golpa, Asen Radov, Lawrence
Sebald, Phuong Nguyen, Smriti Prathapan, Hadis Dashtestani, Shruti Sanjeev and
Robert Ginsburg. I would also like to thank IBM for providing me fellowship. Thank
you to my family, particularly my parents for their encouragement and also my niece
Wan-ru.

Table of Contents

List of Tables iii

List of Figures iii

1 Introduction 1
1.1 Thesis Statement . 8
1.2 Contributions . 8
1.3 Dissertation outline . 11

2 Background on cluster computation 13
2.1 Cluster computation and architecture 13
2.2 HDFS . 15
2.3 MapReduce . 16
2.4 Distributed NoSQL databases . 18

2.4.1 Accumulo . 19
2.4.1.1 Bigtable . 19

2.4.2 D4M: Dynamic Distributed Dimensional Data Model 20
2.5 Alluxio, Apache Spark and pMatlab 21

2.5.1 Alluxio . 21
2.5.2 Apache Spark . 22
2.5.3 pMatlab . 24

2.6 Iterative machine learning algorithms in this work 26
2.7 Related work . 28
2.8 Summary . 29

3 yInMem architecture 31
3.1 Overview . 31
3.2 Cluster computer in Bluewave . 34
3.3 NoSQL database . 34

3.3.1 Graph500 Benchmark . 36
3.4 Alluxio: in-memory file system . 37

3.4.1 Data sharing . 38

i

3.5 pMatlab . 41
3.6 APIs . 42

3.6.1 Database connector . 43
3.6.2 Alluxio connector . 44
3.6.3 Core APIs . 47

3.7 Related work . 49
3.8 Summary . 50

4 Workload characterization and evaluation model 51
4.1 Workload characterization . 51

4.1.1 Matrix representation of graph 53
4.1.2 Graph topologies . 54

4.2 Iterative algorithm characteristics . 56
4.3 Evaluation model . 63
4.4 Summary . 69

5 Data partitioning 70
5.1 Challenges with existing systems . 71
5.2 Data partition in yInMem . 73

5.2.1 Memory management . 77
5.2.2 Evaluation . 78

5.3 Related work . 83
5.4 Summary . 84

6 Evaluation 86
6.1 System configuration . 87
6.2 Data partitioning . 88
6.3 Performance with iterative algorithms 91

6.3.1 Spectral clustering . 92
6.3.2 PageRank . 96
6.3.3 K-Means clustering . 97

6.4 Data sharing . 100
6.5 Summary . 103

7 Conclusion 105
7.0.1 Lessons learned . 106
7.0.2 Future work . 107

Bibliography 110

ii

List of Tables

2.1 Bandwidth comparison: HDD, SDD, Network and Memory 14

4.1 Graphs used for evaluation. All graphs are real-world data [53] except
Kron which is generated by Graph500 benchmark. 52

4.2 Synthetic graph generated using Kronnecker generator 53
4.3 Comparison of different frameworks for support of data distribution,

load balance, point-to-point(P2P) communication and in-memory . . 64

5.1 A simple example with information about three tweets 72
5.2 Tweets expanded in D4M schema . 73
5.3 TedgeDeg: a degree table containing the total number of entries of each

column . 73
5.4 Operation definition in Lanczos-SO algorithm 78
5.5 Operation definition for MV implementation 80

6.1 Graphs used for evaluation. All graphs are real-world data [53] except
Kron which is generated by Graph500 benchmark. 88

6.2 Synthetic graph generated using Kronnecker generator 88
6.3 Dataset for data partitioning . 89
6.4 Dataset of Road and Orkut . 90

iii

List of Figures

2.1 Cluster computer architecture . 14
2.2 HDFS components: namenode, datanode and secondary namenode . 16
2.3 Work flow example of partitioning a sparse matrix in Hadoop using

MapReduce . 17
2.4 The key structure in Bigtable stores 19
2.5 Data storage using HDFS and D4M 21
2.6 Tachyon Architecture . 22
2.7 Work flow example of partitioning a sparse matrix in Spark extending

MapReduce . 23
2.8 Parallel computation model in pMatlab 24

3.1 yInMem system architecture: the first layer segments and stores data
in a distributed manner, the second layer indexes the data and an-
swers queries from the user in a (RowIndex, ColumnIndex, Value)
format, the third layer is the in-memory storage system for data ac-
cessing and data sharing, the fourth layer is parallel computation
engine where the driver program spawns and manages the processes
across the cluster. 31

3.2 Sparse matrix-vector multiplication. The input of the multiplication
are the whole row of matrix M and the whole vector vi. 32

3.3 A typical data processing flow in yInMem 35
3.4 Accumulo ingest performance vs time. The benchmark runs around

15 mins with the peak ingest rate at 7.8 million entries/s using 16
servers and 4 processes per node. 37

3.5 Sparse matrix-vector multiplication. The input of the multiplication
are the whole row of matrix M and the whole vector vi. 38

3.6 Two consecutive iterations of Sparse Matrix-Vector multiplication. . . 38
3.7 yInMem data aggregation and data broadcasting with Alluxio for

SpMV. 39
3.8 yInMem VS MapReduce for data sharing 40

4.1 Example of the degree distribution of a typical social network. 55

iv

4.2 Sparse matrix-vector multiplication. The input of the multiplication
are the whole row of matrix M and the whole vector vi. 59

4.3 Example of using spectral clustering to partition a graph into 2 clusters. 61
4.4 Lanczos-SO(selective orthogonalization) algorithm 62
4.5 A typical data processing flow in yInMem 66
4.6 yInMem data aggregation and data broadcasting with Alluxio for

SpMV. 68

5.1 Comparison of overall execution time with and without data parti-
tioning with PageRank. The lower the better. 70

5.2 Example of data partition for a sparse matrix. Each process spawned
by the driver program will cache their corresponding rows of matrix
to the RAM of hosting worker node by reading the partition table
generated from Algorithm 3. 76

5.3 Average running time for different Lanczos-SO operations on HEIGEN
and proposed architecture for matrix with size of one million 79

5.4 Average running time of operations in MV by distributing columns
equally into 14 machines for matrix with size of one million. 80

5.5 Statistical information obtained from Accumulo table for non-zero
entries distribution for matrix with size 1048576*1048576 81

5.6 Average running time of operations in MV by distributing work loads
equally to working machines for matrix with size of one million. . . . 82

6.1 synthetic matrix(1 million) . 89
6.2 Friendster . 89
6.3 Comparison of per worker execution time for sparseMV. Left: syn-

thetic 1 million scale matrix. Right: Friendster graph. (top: before
partitioning; down: after partitioning 89

6.4 synthetic matrix(1 million) . 90
6.5 Friendster . 90
6.6 Comparison of per worker execution time for sparseMV. Left: Road.

Right: Orkut. (top: before partitioning; down: after partitioning . . . 90
6.7 Twitter . 91
6.8 Average running time per iteration for eigenvalue decomposition of

various input graphs. yInMem with Alluxio (yellow line) shows 6X
speedup as compared to HEIGEN and 3X speedup as compared to
Spark. 94

6.9 Average running time per iteration for PageRank of various input
graphs. 97

6.10 Average running time per iteration for K-Means of synthetic data. . . 99
6.11 yInMem VS MapReduce for data sharing 101
6.12 yInMem data sharing . 102
6.13 Performance advantage of yInMem over (a) Hadoop and (b) Spark

for SparseMV . 103

v

Chapter 1: Introduction

The advent of big data requires more and more applications to scale out to

distributed systems. The growing data sources produce large and valuable data.

The examples are ranging from the scientific instruments, business operations to

social media. More and more companies are either deploying their data center into

cloud storage or building their own distributed storage system. As the hardware

prices keep decreasing, it is common to see clusters of hundreds of machines. The

performance of cluster computing, therefore, plays a key role in maximizing the

value of analyzing the data sources.

Over the past few years, tremendous efforts have been made to improve the

scalability, efficiency and fault-tolerance of large-scale data processing systems. Hadoop

[1] has become the most popular open-source framework to handle Big Data Ana-

lytics, in which Hadoop Distributed File System(HDFS) [3], serves as the primary

storage layer for Hadoop MapReduce [2] model. Current HDFS design can not

leverage high-performance networks because of the application performance being

bounded by the disk access. While MapReduce has been highly successful in im-

plementing large-scale batch jobs, it is a poor fit for low-latency interactive and

iterative computations, such as machine learning and graph algorithms.

1

To overcome the bottleneck mentioned above, cluster computing systems are

experiencing a surge of interest in in-memory computation given the fast growing

bandwidth gap among memory, disk and network. Typical examples of such in-

memory computing models include Spark [29], MEM-HDFS [38], and Piccolo [46].

Examples of in-memory file systems include Alluxio (formerly known as Tachyon)

[33] and Triple-H [40].

In-memory cluster computing has become a de-facto standard for big data

workloads with the success of Apache Spark. Apache Spark extends MapReduce

to Resilient Distributed Datasets(RDDs) [23] which can be cached into RAM to

reduce their access latency. RDD is a fault-tolerant collection of objects distributed

across a set of nodes that can be operated in parallel. However, Spark also inherits

the limitations of MapReduce. Example includes wide dependencies operation, e.g.

GroupByKey, which involves data shuffle across the network. In addition, Spark

removes data replication for fault-tolerance by using lineage to rebuild lost or cor-

rupted RDDs. Moreover, hash function based data distribution for sparse graphs is

not able to balance the workload across the cluster. Meanwhile, MEM-HDFS main-

tains the default fault-tolerance mechanism from HDFS and caches the working sets

across the cluster nodes. However, both Spark and MEM-HDFS use MapReduce

as the computing model, which is not best fit for iterative computations, machine

learning and graph processing algorithms for example. In contrast to Spark and

MEM-HDFS, Piccolo offers a data-centric programming model for writing parallel

in-memory applications by sharing a distributed mutable state key-value table. Such

design facilitates data sharing for iterative machine learning and graph processing

2

algorithms. All of these computing models, however, do not offer any data parti-

tioning mechanism to achieve data locality and workload balance. Data shuffling

is considered as the bottleneck for Spark and MEM-HDFS. Moreover, computa-

tion gets skewed for iterative computations, which means under utilizing of cluster

resources.

Moreover, practitioners and researchers have also built a wide array of pro-

gramming frameworks for graph processing, examples are Graphlab [52], Dryad [5]

and Pregel [45]. Graphlab targets asynchronous, dynamic, graph-parallel computa-

tion in the shared-memory setting. Since the cluster shares a global memory, it is

easy to write asynchronous programs in Graphlab. Pregel offers a Bulk Synchronous

Parallel model [6] abstraction and does not make assumption about the memory set-

ting. The communication is done via message passing interface(MPI). Dryad pro-

vides a distributed computation engine for coarse-grain data-parallel applications

and the programmer has to design the structure of the parallel computation. Dryad

is a much lower-level programming model than both Graphlab and Pregel. Two

problems of these frameworks are: (i) fine control over data distribution and (ii)

workload balance for sparse graphs.

All computing frameworks and models typically relies on the underlying stor-

age systems to maintain and manage data storage and distribution. Typical dis-

tributed data storage systems include Flat Datacetner Storage (FDS) [62], Google

File System(GFS) [18], Megastore [63], Hyperdex [64], and RAMCloud [65].

FDS presents the distributed data storage system as a remote flat storage

model, in which all compute nodes can access all storage with equal throughput.

3

Unlike FDS, HDFS extends GFS and uses a master and slave architecture for man-

aging distributed data splits with fault-tolerance by replicating data. HDFS exploits

locality by using local disks to co-locate the computation with data. However, many

important computations, e.g. sort, distributed join, and matrix operations, funda-

mentally need to move data around. FDS spreads data over disks uniformly and

offers a relatively fine grain for data placement. Megastore provides a scalable stor-

age system for interactive services, emphasizing both strong consistency guarantees

and high availability. HyperDex offers a distributed searchable key-value store which

enables queries on secondary attributes. RAMCloud is a DRAM-based storage sys-

tem, similar to Spark, both of which recover data after crashes rather than storing

replicas in DRAM. Unlike Spark which is also a computing model, RAMCloud sim-

ply offers a high available storage system.

In-memory cluster computation system comes with several challenges for pro-

grammability. The first is parallelism. It requires rewriting applications in a parallel

fashion, with programming models that can capture a wide range of computations.

Spark captures the parallel computations by enabling operations on top of RDDs.

Such design significantly improves parallel coding efficiency. However, the optimal

performance is not guaranteed due to the lack of data partitioning for data locality.

The second is fault-tolerance. Since data cached in RAM are typically volatile, how

to recover from hardware failure is important. Spark uses lineage to track the logical

construction of RDDs. MEMHDFS relies on data replication in memory level. And

RAMCloud also reconstructs lost data in parallel. Recovering data is appealing

because it significantly improves writing performance but it generally takes a long

4

time. By replicating the data, it will guarantee the availability of data but also

impact the writing performance and data consistency. Finally, it is hard to estimate

the memory usage to maximize the performance. This challenge requires an inte-

gration of computation model and storage system. That means the computation

model should be able to control storage system to optimize the performance. For

example, while caching can dramatically improve read performance, unfortunately,

data shuffling is still the bottleneck for iterative machine learning and graph pro-

cessing algorithms within these frameworks. This is due to inefficient support from

underlying data storage system for applications with a chain of multiple jobs. Con-

sider, iterative machine learning algorithms, for example. The output from previous

iteration serves as the input for next iteration. Fine control over how to save and

distribute these intermediate results determines the network traffic.

All existing cluster computing and data storage systems have been designed

to handle specific workloads. This work focuses on iterative machine learning and

graph processing algorithms for sparse graph because of the popularity of social

media analysis. Problems with existing cluster computing system for this task are

as follows:

1. Data partitioning determines the system performance for iterative machine

learning and graph processing algorithms. Current in-memory data storage

systems, RAMCloud, Spark, Triple-H, and Alluxio e.g., fail to offer fine control

over data distribution to co-locate computation with data. Data shuffling

becomes the bottleneck for such workloads. Spark extends MapReduce to

5

construct RDDs that can be cached into RAM to reduce expensive disk I/O.

But it also inherits the limitation of all-to-all communication to exchange

RDDs. As a result, it is imperative to introduce a system, which enables fine

control of data distribution, to maximize the cluster computing efficiency for

sparse graph mining.

2. Workload balance plays an equally crucial role as data partitioning for

sparse graph applications. The reason is due to the sparse nature of such

workloads, in general, lead to computation skew for iterative algorithms. This

problem is partially related to the initial data distribution as mentioned above.

This problem is also credited to the parallel computing model, MapReduce for

example.

3. Memory management is generally not well supported within existing in-

memory computing system. The primary reason is that the underlying parallel

computation model, (e.g. MapReduce), hides the programmer away from how

data is saved in the distributed file system.

There are some existing systems trying to tackle the first two problems at the

same time. For example, Graphulo [49] utilizes Iterator framework in Accumulo

database to co-locate graph data with computation. However, Graphulo optimizes

the data partition in HDD level rather than DRAM level. Without statistical analy-

sis of the sparse graph, Graphulo fails to balance the workload. Pronto [60] extends

R to a distributed system for machine learning and graph processing with sparse

matrices. Pronto deploys a dynamic data partitioning to mitigate load imbalance

6

by tracking the execution time of each partition and task, which might cause ex-

tra burdens on the system for tracking the performance of each partition and then

moving around the data.

In this dissertation, we present yInMem, a novel in-memory cluster compu-

tation system which targets on iterative machine learning and graph processing

algorithms for sparse graph applications. The novelty results from the introduction

of indexes to the data storage system. Such design gives the computation model

fine access to the data storage system. As a result, yInMem is capable of maximiz-

ing the performance by reducing cross-node communication and achieving workload

balance. The key advantages of yInMem over existing systems are:

1. yInMem offers fine control over data distribution to co-locate computation

with data by saving matrix representation of graph data in NoSQL database.

The database serves as a global accessible distributed data storage to which all

worker nodes have uniform access. Meanwhile, the database also offers fault

tolerance on HDD level.

2. yInMem provides a data partitioning algorithm for sparse matrices with the

goal of achieving data locality. Based on the matrix operation choice, the user

can partition the matrix into sub-blocks and cache these blocks into the in-

memory file system. Additionally, the in-memory file system supports caching

through HDD for fault-tolerance. Moreover, it is much easier to manage the

memory usage across the cluster because the size of sub-blocks can be esti-

mated prior to computation.

7

3. yInMem also balances the workload across the cluster using both the data

partitioning algorithm and message passing interface (MPI). First, the data

partitioning algorithm ensures that all workers will bear more or less the same

workloads. Second, MPI orchestrates the workloads equally among all workers,

maximizing the computing resource and avoiding data skew in the cluster.

4. yInMem minimizes the data shuffling between iterations and offers the max-

imum theoretical performance for iterative machine learning and graph algo-

rithms with sparse graphs.

1.1 Thesis Statement

We propose yInMem, a parallel, distributed, indexed, in-memory cluster com-

puting system which maximizes the performance of Sparse Matrix-Vector Multiplica-

tion for iterative algorithms such as spectral clustering for sparse graphs. This goal

is achieved by ensuring data locality and workload balance with NoSQL database

support for in-memory computing.

1.2 Contributions

• A novel model for distributed in-memory parallel computation.

yInMem is a novel distributed computation system that offers a data split-

ting scheduler for iterative distribute in-memory parallel computation. yIn-

Mem distributes the input data, sparse graphs more specifically, across the

distributed in-memory file system, achieving data locality and workload bal-

8

ance. Moreover, yInMem supports efficient data sharing mechanism, such as

point-to-point, one-to-all, and all-to-one communications in a cluster. In addi-

tion, yInMem manages the memory efficiently to not only maximize the usage

of cluster resources, but also speed up the numerical analysis in contrast to

state-of-the-art systems. Consequently, yInMem optimizes the iterative ma-

chine learning and graph algorithms for sparse graphs by maximizing the usage

of cluster resources. Chapter 3 explains the overall architecture of yInMem in

details.

• A novel model with data partitioning for data locality.

Due to the high latency of network, it is imperative to keep data close to

the computing resource when it comes to distribute systems. However, sparse

graphs, in general, are hard to be divided across the distribute storage system

to reduce the data shuffling cost. What’s worse, most sparse graph algorithms

are iterative. As a result, the cost of shuffling the data becomes the bottleneck

for existing distribute systems.

yInMem saves sparse graphs in a NoSQL database which collects the statisti-

cal information of the input data. Using this information, a data partitioning

algorithm can be optimized for improving the data locality. Therefore, the

data shuffling cost is minimized for iterative machine learning and graph algo-

rithms. Data partitioning is supported by using a triple store data structure

called associative array. The data partitioning algorithm is further illustrated

in Chapter 5.

9

• A novel model balances the workloads in the cluster.

Balancing the workloads in the cluster computing systems and/or cloud com-

puting systems is critical to optimize the resource usage, speed up the per-

formance and thus make timely decisions. However, it is a challenging task

for existing cluster computing systems which lacks the fine control over data

distribution. To be more specific, the parallel computation engine lacks di-

rect control of accessing the input data. Consider MapReduce for example.

MapReduce is independent from HDFS in terms of distributing the data. As

a result, workloads tend to be skewed as the computation progresses. By

analyzing the linear algebra characteristics of iterative machine learning and

graph algorithms, we have identified the Sparse Matrix-Vector Multiplication

(SpMV) as the key component for balancing the workloads. yInMem offers

APIs for parallelizing such operations, which balances the workloads in the

cluster.

• Memory management for in-memory computation. Due to the limited

capacity of memory, it is critical to manage the memory efficiently for opti-

mizing the system performance. Sparse graph applications make it hard to

estimate the memory usage during runtime. Without careful considerations

for memory usage, it is easy to lead to out-of-memory error for in-memory

computation. The reason for this problem is the lack of prior knowledge

about the sparse graphs. One major problem with MapReduce based system

is the varying sizes of intermediate results. When caching these intermediate

10

results in memory, the system should be able to distribute the results to avoid

the out-of-memory errors. However, it is generally hard to estimate the size

of intermediate results prior to computation. It becomes the programmer’s

responsibility to avoid such errors.

yInMem frees the programmer of such responsibilities by first analyzing the in-

put sparse graphs and distributing the data in a way to balance the workloads

and second reducing the inter-node communications. More importantly, the

programmer can easily obtain the memory usage information prior to imple-

menting the algorithms by collecting statistical information about the sparse

graphs.

1.3 Dissertation outline

The dissertation consists of the following chapters as an approach to the con-

tributions stated above.

• Chapter 2: Background and related work in the state of art for big data

analytics platform.

• Chapter 3: yInMem architecture description.

• Chapter 4: Workloads characterization and evaluation model.

• Chapter 5: Data partition algorithm.

• Chapter 6: Evaluation.

11

• Chapter 7: Conclusion and future work.

12

Chapter 2: Background on cluster computation

In this chapter, we present a background on cluster computation and its ar-

chitecture in order to provide context for the rest of this work. We review the

distributed data storage system and parallel computing frameworks. Examples in-

clude HDFS, high performance distributed NoSQL databases such as HBase and

Accumulo, and Hadoop based computing engine for performing massive scientific

and iterative graph algorithms. In particular, we focus on Apache Spark and Al-

luxio. In addition, we present machine learning and graph processing algorithms

used to evaluate and assess yInMem.

2.1 Cluster computation and architecture

A cluster is a type of parallel or distributed processing system, which consists of

a collection of interconnected stand-alone computers working together as a single,

integrated computing resource [19]. Fig. 2.1 shows the typical architecture of a

cluster.

In general, a computer node can be a single or multiprocessor system with

memory, I/O facilities, and an operating system. It is also a common practice to

assume that each node is prone to either hardware or software failure. Also, the

13

Processor
Core

Processor
Core

Cache Cache

Memory
Controllers GPU

IO
ControllersDRAM

10-100GB/s

Processor w/ cores A

Processor
Core

Processor
Core

Cache Cache

Memory
Controllers GPU

IO
ControllersDRAM

10-100GB/s

Processor w/ cores B

Processor
Core

Processor
Core

Cache Cache

Memory
Controllers GPU

IO
ControllersDRAM

10-100GB/s

Processor w/ cores C

LAN

Flash storage system

1.25GB/s 1.25GB/s 1.25GB/s
115GB/s 115GB/s 115GB/s

1

Figure 2.1: Cluster computer architecture

cluster is inter-connected via a LAN. Such a system offers a cost-effective way to

gain features and benefits that have historically been found only on more expensive

shared memory systems. As a result, the system performance is generally bounded

by the bandwidth of hardware and network. Table 2.1 shods the bandwidth of HDD,

SSD, network, and memory in a typical data center node.

Media Capacity Bandwidth

HDD (x12) 12-36 TB 0.2-2 GB/sec

SSD (x4) 1-4 TB 1-4 GB/sec

Network N/A 1.25 GB/sec

Memory 128-512 GB 10-100 GB/sec

Table 2.1: Bandwidth comparison: HDD, SDD, Network and Memory

In the above table, memory bandwidth is one to three orders of magnitude

higher than the aggregate disk bandwidth on a node. And this gap is becoming

larger. The emergence of SSDs improves random access latency but still much

14

slower than memory. Since all nodes are connected by the network, reducing the data

shuffling plays a major role in improving overall system performance. Moreover, with

the hardware advancement of memory, in-memory computing system has emerged

as the new standard for cluster computing.

Hadoop has become the most popular open-source framework to handle Big

Data analytics, in which HDFS serves as the primary storage layer for Hadoop

MapReduce model. However, current Hadoop design can not leverage high-performance

networks because of the application performance being bounded by the disk access.

Even though MapReduce has been highly successful in implementing large-scale

batch jobs, it is a poor fit for low-latency iterative applications. The advantage of

Hadoop is the underlying distributed file system which offers great scalability and

fault-tolerance. Most existing cluster computing models are extensions of Hadoop,

Spark for example.

2.2 HDFS

HDFS is structured similarly to a regular Unix file system except that data

storage is distributed across several machines. HDFS is based on Google File Sys-

tem(GFS) [18]. It has in built mechanisms to handle machine outages, and is opti-

mized for throughput rather than latency.

1. Datanode - where HDFS actually stores the data.

2. Namenode - the master machine which maintains the metadata.

3. Secondary Namenode , a backup service for namenode.

15

NameNode SNN

DN DN DN DN DN

Figure 2.2: HDFS components: namenode, datanode and secondary namenode

Fig. 2.2 shows the HDFS architecture and components. HDFS follows a master-

slave architecture in which the namenode is the master and datanode is the slave.

When files are uploaded to the system, HDFS automatically partitions the file and

saves the splits to the local disk of datanodes. Default partition mechanism is

simply splitting the files sequentially to same sizes. Default data block size is 64MB

to reduce the burden on the namenode.

Although HDFS significantly simplifies the data storage in a distributed man-

ner, it is not the best mechanism to save sparse graphs. For example, when adjacent

edges of one particular vertex are saved across the cluster, a single query of adjacent

edges of this vertex will result in reading the whole file system.

This default data partitioning mechanism not only leads to unbalanced work-

loads but also incurs inter-node communication for sparse graphs.

2.3 MapReduce

In Hadoop, MapReduce is the parallel computing model. Many existing frame-

works like Spark and MEM-HDFS are extensions of MapReduce. Map tasks perform

16

1 0 0 0 0 0 2 3

0 0 0 0 1 1 0 0

0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0

0 0 0 0 0 0 2 0

0 0 0 0 1 1 0 0

2 3 1 1 1 0 0 0

0 0 0 0 0 0 1 0

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

1 1 1

1 7 2

1 8 3

2 5 1

2 6 1

3 2 1

4 5 3

5 7 2

6 5 1

6 6 1

7 1 2

7 2 3

7 3 1

7 4 1

7 5 1

8 7 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

split1

Worker1

split2

Worker2

split3

Worker3

split4

Worker4

r1

r2

r2

r3

r4

r5

r6

r7

r7

r8

Row 1 to 4

Worker2

Row 5 to 8

Worker3

Matrix
HDFS splits the raw

file into 4 parts
Mapper reads

local split
Reducer collects
rows of matrix

1

Figure 2.3: Work flow example of partitioning a sparse matrix in Hadoop using
MapReduce

a transformation while Reduce tasks perform an aggregation. Between map and re-

duce there are 3 other stages: Partitioning, Sorting, and Grouping. The output

to a map and reduce task is always a (key, value) pair. The input to a reduce is

(key, ITERABLE[value]). Reduce is called exactly once for each key output by

the map phase. The ITERABLE[value] is the set of all values output by the map

phase for that key.

Advantages of MapReduce:

1. It is easy to write parallel program.

2. It is easy to scale the cluster thanks to the distributed file system.

3. Fault tolerance is supported due to data replication.

Fig. 2.3 shows a work flow example of how Hadoop partitions a sparse matrix using

17

MapReduce. For the sake of simplicity, we used a 8 × 8 sparse matrix. When the

sparse matrix uploaded to HDFS, HDFS automatically splits the raw file into 4

parts, shown in different colors. Mappers will read their local split and aggregate

rows into the same iterator. Afterwards, reducers collect these iterators.

Limitations of MapReduce:

1. Expensive disk I/O for intermediate results.

2. The shuffling of intermediate results is expensive.

3. It requires chains of MapReduce jobs for complex manipulations.

2.4 Distributed NoSQL databases

A NoSQL database environment is, simply put, a non-relational and largely

distributed database system that enables rapid, ad-hoc organization and analysis

of extremely high-volume, disparate data types. There are four types of NoSQL

databases, each with their own specific attributes: key-value store, column-store,

document database, and graph database. Instead of storing data in rows, these

databases are designed for storing data tables as sections of columns of data, rather

than as rows of data. While this simple description sounds like the inverse of a stan-

dard database, wide-column stores offer very high performance and a highly scalable

architecture. Examples include: HBase, Accumulo, BigTable and HyperTable.

18

2.4.1 Accumulo

Apache Accumulo is a scalable, distributed, NoSQL data store for Hadoop

that provides accessible storage and fast read/write access for very large data sets.

Apache Accumulo is based on Google BigTable [7], but it differs from other im-

plementations by having cell-level security labels and a server-side programming

mechanism that can greatly enhance the performance of read/write access and an-

alytics.

2.4.1.1 Bigtable

Bigtable systems are a type of database that users row and column identifiers

as general purpose keys for data lookup. They are sometimes referred as a data store

rather than a database since they lack features commonly found in a traditional

database. For example, they lack typed columns, secondary indexes, triggers, or

query languages. Fig. 2.4 shows the key structure in Bigtable store which is similar

Figure 2.4: The key structure in Bigtable stores

to a spreadsheet with two additional attributes. In addition to the column names,

a column family is used to group similar column names together. The addition of

a timestamp in the key also allows each cell in a Bigtable store to store multiple

versions of a value over time. To lookup an entry, users should provide a row id and

19

column name. Benefits of such store involve higher scalability, higher availability,

easy to add new data, saving space as empty cells are not store.

2.4.2 D4M: Dynamic Distributed Dimensional Data Model

D4M is developed in MIT with the goal of bringing associative arrays into

database engines. Associative arrays play a key role in offering two dimensional

querying for sparse matrix. The limitations of most MapReduce based framework

result from the missing part of indexing data elements. We argue that introducing

associative arrays into cluster computation can significantly facilitate the data dis-

tribution for load balance and help achieve data locality for Sparse Matrix-Vector

multiplication (SpMV).

Associative array saves data in a triple store (Row, Column, Value). Users

can query on both row and column dimension. Associative arrays also provide a

mathematical interface, most importantly, supporting the linear algebra operations.

yInMem extends D4M in a distributed environment and distributes data across

the cluster prior to the computation with the goal of reducing data shuffling and

achieving workload balance.

Fig 2.5 demonstrates the difference between HDFS and D4M for saving data

in a distributed way. We use a sparse matrix as the input file. When this sparse

matrix uploaded to HDFS, it will be divided into multiple splits and saved to differ-

ent worker nodes following (Row, Column, Value) format. Meanwhile, D4M saves

the sparse matrix file in associative arrays on which the programmer can query. For

20

Figure 2.5: Data storage using HDFS and D4M

example, to get the matrix elements on row 2 to 3, the following query will suffice:

matrix(2:3,:). yInMem saves associative arrays in Accumulo database. MapRe-

duce, on the other hand, will scan the whole data set and then return row 2 and

row 3 elements.

2.5 Alluxio, Apache Spark and pMatlab

2.5.1 Alluxio

Alluxio, formerly known as Tachyon, is a distributed file system enabling reli-

able data sharing at memory speed across cluster computing frameworks. yInMem

deploys Alluxio as the in-memory data storage system. Since D4M offers the fa-

cility to query required data elements, yInMem caches these results into the RAM

of corresponding worker nodes. Alluxio maintains and manages this in-memory file

21

system. Using a separate in-memory file system like Alluxio simplifies the memory

management for cluster computing systems.

Alluxio deploys a master-slave architecture (Fig. 2.6) similar to GFS. The

master acts as the manager which maintains the metadata for the system. Slave

nodes typically maintains their own metadata and can respond to client’s read/write

request.

Standby Master

Tachyon Master

Standby Master

Workflow
Manager

Standby

Standby

Tachyon Worker
Worker Daemon

Ramdisk

ZooKeeper
Quorum

Tachyon Worker
Worker Daemon

Ramdisk

Tachyon Worker
Worker Daemon

Ramdisk

Figure 1: Tachyon Architecture.

at least one copy onto non-volatile media to allow writes
to survive datacenter-wide failures, such as power outages.
Because of these limitations and the advancement of in-
memory computation frameworks [34, 35, 42, 53], inter-job
data sharing cost often dominates pipeline’s end-to-end la-
tencies for big data workloads. While some jobs’ outputs are
much smaller than their inputs, a recent trace from Cloudera
showed that, on average, 34% of jobs (weighted by compute
time) across five customers had outputs that were at least as
large as their inputs [20]. In an in-memory computing clus-
ter, these jobs would be write throughput bound.

Hardware advancement is unlikely to solve the issue.
Memory bandwidth is one to three orders of magnitude
higher than the aggregate disk bandwidth on a node. The
bandwidth gap between memory and disk is becoming
larger. The emergence of SSDs has little impact on this
since its major advantage over disk is random access la-
tency, but not sequential I/O bandwidth, which is what most
data-intensive workloads need. Furthermore, throughput in-
creases in network indicate that over-the-network memory
replication might be feasible. However, sustaining datacen-
ter power outages requires at least one disk copy for the
system to be fault-tolerant. Hence, in order to provide high
throughput, storage systems have to achieve fault-tolerance
without replication.

3. Design Overview
This section overviews the design of Tachyon, while the
following two sections (§4 & §5) focus on the two main
challenges that a storage system incorporating lineage faces:
bounding recovery cost and allocating resources for recom-
putation.

3.1 System Architecture

Tachyon consists of two layers: lineage and persistence. The
lineage layer provides high throughput I/O and tracks the se-
quence of jobs that have created a particular data output. The
persistence layer persists data onto storage without the lin-
eage concept. This is mainly used to do asynchronous check-
points. The persistence layer can be any existing replication
based storage systems, such as HDFS, S3, Glusterfs.

Spark Job

MapReduce Job
Spark Job

File
Set A

File
Set B

File
Set C

File
Set D

File
Set E

Figure 2: A lineage graph example of multiple frameworks

Tachyon employs a standard master-slave architecture
similar to HDFS and GFS (see Figure 1). In the remainder
of this section we discuss the unique aspects of Tachyon.

In addition to managing metadata, the master also con-
tains a workflow manager. The role of this manager is to
track lineage information, compute checkpoint order (§4),
and interact with a cluster resource manager to allocate re-
sources for recomputation (§5).

Each worker runs a daemon that manages local resources,
and periodically reports the status to the master. In addition,
each worker uses a RAMdisk for storing memory-mapped
files. A user application can bypass the daemon and interact
directly with RAMdisk. This way, an application with data
locality §2.1 can interact with data at memory speeds, while
avoiding any extra data copying.

3.2 An Example

To illustrate how Tachyon works, consider the following ex-
ample. Assume job P reads file set A and writes file set B.
Before P produces the output, it submits its lineage infor-
mation L to Tachyon. This information describes how to run
P (e.g., command line arguments, configuration parameters)
to generate B from A. Tachyon records L reliably using the
persistence layer. L guarantees that if B is lost, Tachyon can
recompute it by (partially3 re-executing P. As a result, lever-
aging the lineage, P can write a single copy of B to mem-
ory without compromising fault-tolerance. Figure 2 shows a
more complex lineage example.

Recomputation based recovery assumes that input files
are immutable (or versioned, c.f., §9) and that the executions
of the jobs are deterministic. While these assumptions are
not true of all applications, they apply to a large fraction
of datacenter workloads (c.f., §2.1), which are deterministic
applications (often in a high-level language such as SQL
where lineage is simple to capture).

Tachyon improves write performance by avoiding repli-
cation. However, replication has the advantage of improving
read performance as more jobs read the same data. While
Tachyon leverages lineage to avoid data replication, it uses a
client-side caching technique to mitigate read hotspots trans-
parently. That is, if a file is not available on the local ma-
chine, it is read from a remote machine and cached locally
in Tachyon, temporarily increasing its replication factor.

3 The recomputation granularity depends on the framework integration. For
example, it can be job level or task level.

Figure 2.6: Tachyon Architecture

2.5.2 Apache Spark

Apache Spark is a distributed computation engine based on RDDs. RDDs are

extensions of MapReduce but cached in the RAM of worker nodes. Thanks to the

caching mechanism, Spark has significant performance improvement over Hadoop

for certain applications.

However, it also inherits the limitations of MapReduce. For example, data

shuffling is still considered as the bottleneck for iterative machine learning and

graph algorithms such as Spectral Clustering and PageRank. New challenges with

caching RDDs into the RAM of local workers are the memory usage. A typical

22

error is the collect() operation which aggregates results into the driver. This can

potentially lead to the out of memory error without knowing the size of resulting

RDD. In addition, point-to-point communication is not supported in Spark.

1 0 0 0 0 0 2 3

0 0 0 0 1 1 0 0

0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0

0 0 0 0 0 0 2 0

0 0 0 0 1 1 0 0

2 3 1 1 1 0 0 0

0 0 0 0 0 0 1 0

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

1 1 1

1 7 2

1 8 3

2 5 1

2 6 1

3 2 1

4 5 3

5 7 2

6 5 1

6 6 1

7 1 2

7 2 3

7 3 1

7 4 1

7 5 1

8 7 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

split1

Worker1

split2

Worker2

split3

Worker3

split4

Worker4

r1

r2

r2

r3

r4

r5

r6

r7

r7

r8

Row 1 to 4

Worker2

Row 5 to 8

Worker3

Matrix
HDFS splits the raw

file into 4 parts
Mapper reads

local split
Reducer collects
rows of matrix

DRAM2

Worker2

DRAM3

Worker3

Spark caches
RDDs in RAM

1

Figure 2.7: Work flow example of partitioning a sparse matrix in Spark extending
MapReduce

Fig. 2.7 shows how Spark extends MapReduce to partition a sparse matrix

into RDDs. Data skew typically happens when the reducer number is smaller than

the mapper, 2 reducers v.s. 4 mappers in our example. Moreover, for iterative com-

putations, the data exchange happens during the shuffling stage, which follows an

all-to-all strategy. All-to-all data sharing can easily saturate the network bandwidth.

yInMem provides the memory usage estimation prior to computation by dis-

tributing the partitioned data across the cluster. Out-of-memory error is not en-

countered unless the partitioned input is too large to fit in the memory in the

beginning. yInMem also enables point-to-point communication by using pMatlab

as the parallel computation engine.

23

2.5.3 pMatlab

pMatlab is a parallel library of MPI for matlab based on MatlabMPI. yInMem

utilizes pMatlab as the parallel computation engine. In cluster computing, pMatlab

requires the specification of the total number of processes in the whole cluster with a

fixed number of machines. pMatlab will sequentially assign equal number of proceses

to each machine. pMatlab follows the Bulk Synchronous Parallel model in which the

main process (PID=0) serves as the synchronization point. Each parallel operation

will synchronize at the end by sending a signal to the leader.

Process 0 Process 0

Process 1

Process 2

Process 3

Parallel operation

......

Process 1

Process 2

Process 3

Process 0

Process 1

Process 2

Process 3

Parallel operation

Process 0

Figure 2.8: Parallel computation model in pMatlab

Fig. 2.8 illustrates the parallel computation model for pMatlab, which is an

integration of OpenMP and MPI. Process 0 is the leader process which will spawn

sub-processes on worker machines. Parallel operations are done and synchronized

on all processes. Unlike MapReduce framework which has HDFS support, pMatlab

is simply a parallel computation model without underlying distributed data storage

24

system. And the programmer should take care of data partitioning. To address

the scheduling problem, we need get a global statistical information regarding input

matrix and random access to the matrix. Accumulo degree table provides such

information about the total number of entries for each column; and D4M enables us

to access matrix elements by providing x and y coordinations. Most importantly,

Accumulo tables serve as a shared file system to which working nodes in the cluster

have access. A partitioning algorithm has been devised to ensure balanced workloads

across the cluster. The partitioned data will be cached into Alluxio for iterative

computations.

Advantages of pMatlab:

1. Programmers have fine control over which process resides in which machine.

In our example, each process resides on different machines, say Process 1 is

spawned on Machine 1. This significantly facilitates our sparse data parti-

tioning since we have fine knowledge of which data partition resides on which

process. This feature can help avoid data skew because all processes are par-

ticipating in the iterative computation.

2. pMatlab enables point-to-point communication. Because each process is iden-

tified by one process ID, this enables the programmer to establish communi-

cation channels between any pairs.

3. Programmer can utilize existing linear algebra support from Matlab.

However, there are overheads when using pMatlab in a large cluster environment.

The first is the time of spawning subprocesses at each worker. This is because the

25

leader takes charge of spawning and this often is determined first by the network

speed and second by the number of subprocesses. The second is the synchronization

cost, which is also proportional to the number of processes. But the synchronization

is correlated to the algorithm choice, there is no need to synchronize if the algorithm

has no dependency between iterations.

2.6 Iterative machine learning algorithms in this work

We strive to understand the characteristics of parallelizing iterative machine

learning and graph processing algorithms. In this work, we briefly analyze three

iterative machine learning algorithms to guide our investigation of how different

applications perform on different cluster computation systems.

• K-Means clustering

k-means clustering aims to partition n observations into k clusters in which

each observation belongs to the cluster with the nearest mean, serving as a

prototype of the cluster. This results in a partitioning of the data space into

Voronoi cells, minimizing the within-cluster sum of squares (WCSS) (sum of

distance functions of each point in the cluster to the K center). Data paral-

lelism is a typical way to parallelize K-Means. All workers will broadcast local

means to the driver to update the global means. K-means is a computation

intensive algorithm with small number of data sharing.

• PageRank

PageRank ranks the popularity of a vertex in a graph, and it was originally

26

used to sort web search results [37]. PageRank determines the popularity of

a vertex v not only by the number of vertices that point to v, but also the

popularity of the vertices that point to v. More formally, below formula shows

the PageRank score (PR) for a vertex v (damping factor d (0.85)) :

PR(v) =
1− d
|V | + d

∑

u∈N−(v)

PR(u)

|N + (u)| (2.1)

From linear algebra perspective, PageRank is equivalent to compute the dom-

inant eigenvector of Google matrix using a power method in which the pri-

mary operation is Sparse Matrix-Vector multiplication(SpMV). Compare to

K-means, PageRank has a larger number of data exchange for each iteration.

• Spectral clustering

Spectral clustering makes use of the spectrum (eigenvalues) of the similar-

ity matrix of the data to perform dimensionality reduction before clustering

in fewer dimensions. It first runs an eigenvalue decomposition on the simi-

larity matrix and then applies k-means clustering to reduce the computation

complexities for high dimension data. Spectral clustering has the advantage

over K-means for noisy and high dimensional input. Efficient eigenvalue de-

composition plays a critical role in determining the performance. Lanczos-SO

algorithm extends power method to compute the top k eigenvalues and eigen-

vectors. Another advantage of using Lanczos-SO algorithm is because the

primary operation only involves SpMV which can be parallelized easily.

27

Iterative algorithms normally works on large input datasets and will scan them every

iteration until an object function converged.

Characteristics of iterative algorithms

1. Input data remains the same.

2. It takes several iterations to converge.

3. Data exchange should be minimized.

Since input data is not updated, it is beneficial to cache them to speed up. However,

the partition of the input data is critical to the performance because intermediate

results are shared. That’s why algorithms involving Sparse Matrix-Vector multipli-

cation(SpMV) should be prioritized over others. Because the output of SpMV is a

vector which will minimize the data shuffling for each iteration. PageRank and

Spectral clustering are two examples. K-Means clustering results in smaller

data exchange compared to the other two.

2.7 Related work

Related works focus on both caching systems and cluster programming models.

Caching systems: MEM-HDFS [38] performs intelligent caching and replication

of HDFS data blocks in Memcached [39]. Memcached allows easy indexing of data-

packets against corresponding block identifiers. However, unlike associative arrays

which directly manipulate matrix elements, Memcached operates on data blocks,

which provides no insights of data distribution according to parallel computation.

28

Due to the data replication, the write performance of MEM-HDFS is slower than

Spark/yInMem. Triple-H [40] is another example of in-memory file system, which

takes advantage of different storage devices (e.g. RAMDisk, SSD, HDD, Lustre,

etc). Unlike Tachyon which eliminates data replication, HHH-M actually caches

replication on memory level. CIEL [41] and FlumeJava [42] can likewise cache task

results but do not provide in-memory caching or explicit control over which data

is cached. In general, yInMem differs from these caching systems in that cached

intermediate results are indexed for easy data sharing.

Cluster Programming models: MapReduce based models include: Twister [43]

and HaLoop [44], which are iterative MapRedue runtimes. Pregrel [45] provides

iterative graph applications. These models inherit the limitations of MapReduce for

expensive data shuffling. Other in-memory computation system include Piccolo [46]

which deploys a distributed hash table for read and update operations. Other similar

models are distributed shared memory (DSM) [47] systems and key-value stores like

RAMCloud [65]. These models lack a higher-level programming interface for in-

memory data manipulation.

2.8 Summary

We have presented a background on cluster computation and its architecture,

reviewed distributed data storage system and parallel computing frameworks to

offer a context for the rest of the work. We have also discussed the characteristics of

iterative machine learning algorithms to understand the challenges of parallelizing

29

them in current systems.

yInMem is so far the first computing system that introduces index into the

distributed storage system and integrates closely with parallel computing engine to

achieve data locality and load balance. The next chapter will provide a thorough

description of yInMem architecture.

30

Chapter 3: yInMem architecture

3.1 Overview

This chapter describes the components of yInMem.

Driver

Program

Process 1 Process 2 Process 3 Process 4

Parallel
Comp Engine

DRAM 1 DRAM 2 DRAM 3 DRAM 4
In-memory

Storage System

(Row, Col, Val) (Row, Col, Val) (Row, Col, Val) (Row, Col, Val)

DB1 DB2 DB3 DB4

Indexed
NoSQL DB

Node 1 Node 2 Node 3 Node 4
Distributed

Data Storage

Figure 3.1: yInMem system architecture: the first layer segments and stores data
in a distributed manner, the second layer indexes the data and answers queries
from the user in a (RowIndex, ColumnIndex, Value) format, the third layer is the
in-memory storage system for data accessing and data sharing, the fourth layer
is parallel computation engine where the driver program spawns and manages the
processes across the cluster.

Fig 3.1 describes yInMem architecture which consists of the following 4 layers:

(1) Distributed data storage system saves data in a distributed fashion (2) NoSQL

31

database serves as a shared file system for fast store and query data of interest (3)

In-memory file system is used to cache partitioned data and intermediate results (4)

Parallel computation engine offers parallel programming environment.

The integration of associative arrays enables yInMem to re-arrange the data

saved in the first layer to achieve data locality and load balance. MapReduce typi-

cally reads file splits from local HDD. And how the input file is divided across the

cluster is managed by HDFS. Programmer has no knowledge of which worker saves

which segment of the input file. We define the computation data locality as the

data partition is saved in the same location as the computing resource. MapReduce

fails the computation data locality because it can’t guarantee the data partition

saved locally will be the input for the hosting worker. As a result, data shuffling

becomes the bottleneck for operations that require moving data around. Iterative

computation makes it worse. Although, there are some hash function based data

partitioning approaches, in general, it is impossible to achieve workload balance

for sparse graphs because the programmer has no statistical information about the

sparse elements distribution in the graph.

Algorithm 2 YinEigen algorithm: eigenvalue decomposition
for large sparse matrix on top of YinMem.
INPUT: 1. Np: total number of processes;

2. Machines: nodes in the cluster ;
3. MaxIt: number of iterations;
4. k: top k eigenvalues ;
5. Partition table from Algorithm 1 ;
6. M : input matrix Mm⇥m stored in Accumulo;

OUTPUT: Top k eigenvalues �[1..k] and eigenvectors
Y m⇥k.

1: #Initialization:
1. Leader initializes a normalized random vector v1

2. Leader creates ↵ and � table
3. Np� 1 workers cache rows of M and v1 to Alluxio

2: #Iteration procedure: calculates ↵i and �i to construct
tridiagonal matrix Tmm whose eigenvalue and eigenvec-
tors are approximations to M , pRUN means run in parallel
with Np processes in Machines.

3: for i = 1 : MaxIt do
4: pRUN func1: v Mvi

5: pRUN func2: ↵i vT
i v

6: pRUN func3: v v � �i�1vi�1 � ↵ivi

7: pRUN func4: �i ||v||;
8: pRUN (Selectively orthogonalization)[27]
9: pRUN func5: vi+1 v/�i

10: end for
11: Tmm build tridiagonal matrix from ↵ and �
12: QDQT EIG(T); // Eigen decomposition of T
13: �[1..k] top k diagonal elements of D
14: Y VmQk; Qk is the columns of Q corresponding to �

R1

R2

...

Rm

v

=

R1

R2

...

Rm

M

⇥

C1

C2

...

Cm

vi

s s

m

m

table, meanwhile the Np�1 workers will cache rows of M and
v1 to Alluxio according to partition table from Algorithm 1.
YinEigen takes a power method to calculate ↵ and � which are
used to construct tridiagonal matrix Tmm whose eigenvalues
and eigenvectors are approximation to input matrix M (line 3
to 10). Each function inside the iteration is executed in par-
allel using the following syntax pRUN(‘function name ’, To-
tal number of processes, Nodes list). The first step in the it-
eration is sparse matrix-dense vector multiplication(sparseMV)
which dominates each iteration. The dense vector vi gets
updated after each iteration and vi needs to be shared across
the cluster since we do the multiplication based on rows (line
9). The figure in Algorithm 2 illustrates sparseMV. Algorithm
1 ensures that non-zero elements at each partition of matrix

M are more or less the same for load balancing. The result
vector v has the same partition as input matrix M , and partial
result Ri+1 of v are computed and cached in the main memory
of individual worker. To collate the result, we follow the data
flow illustrated in Fig. 3. The driver program makes a copy of
all these partial results which are saved as files in Alluxio, and
then caches through the collated file into HDD. All workers
runs scp to copy and load the updated vi+1 into Alluxio.

V. EXPERIMENTAL RESULTS

Our experiments use a 16-nodes cluster connected with
1Gbps switch with the following configuration: each node
has 8 processors each with Quad-Core AMD Opteron(tm)
processor 2376, 25GB of RAM, L1 cache 512KB, L2 cache
2MB. Hadoop 2.2.0. Accumulo 1.5.2. Zookeeper 3.4.6. D4M,
pMatlab, and Matlab 2010bSP2. CentOS 6.5 64-bit. Apache
Spark 1.6.1. We generate graph edges using the same 2 ⇥ 2
Kronecker algorithm as the Graph500 benchmark. Table I
shows the information of input symmetric matrix, the largest
matrix is 16-million with 0.01% sparseness (sparseness is
formulated by dividing the number of edges by the square of
matrix size). The matrix is generated in the following syntax:
source, target. Each line is an edge with source node pointing
to the target node. Each node is identified by a numerical ID.

Matrix size Edges Data file size Sparseness

4,096 0.2 million 4MB 1%
8,192 0.7 million 14MB 1%

16,384 2 million 40MB 1%
65,536 43 million 860MB 1%
262,144 0.6 billion 1.2GB 1%
524,288 1.4 billion 2.8GB 0.5%

1,048,576 5 billion 10GB 0.5%
16,777,216 24 billion 48GB 0.01%

TABLE I: Input data for YinMem

Fig. 4: Average running time per iteration for eigenvalue decomposition of varied sym-
metric matrix sizes. YinMem with Alluxio (green line) shows 6X speedup as compared
to HEIGEN and 3X speedup as compared to Spark. [3] reported the performance for
HEIGEN-PLAIN, YinMem w/ data w/o Alluxio, and YinMem w/o data w/o Alluxio for
matrix size up to 1M. This paper extended the experiment to 16M and also added the
performance of YinMem w/ data partition w/ Alluxio (green line) and Spark (blue line)

Fig. 4 shows the average running time of eigenvalue de-
composition of large sparse matrices listed in table I. Three

Figure 3.2: Sparse matrix-vector multiplication. The input of the multiplication are
the whole row of matrix M and the whole vector vi.

32

Consider, Sparse Matrix-Vector multiplication(SpMV) (Fig. 3.2), for example.

The input of the multiplication happens between the whole row of matrix M and

the whole vector vi (the gray area). Row-based matrix decomposition is a common

practice for parallelizing the computation. The reasons are first we are considering

sparse matrix, which means worker node is likely to save multiple rows and the

vector in memory, second it is easy to implement, and finally the output is a small

vector, reducing the data shuffling. HDFS splits the input file based on the size.

As a result, it is most unlikely to distribute the splits based on the matrix rows.

In order to do a simple SpMV operation, multiple MapReduce tasks are assigned

to reduce the elements from the same row in the same worker (computation data

locality).

Spark constructs data from HDFS into RDDs which can be cached into DRAM

to reduce disk I/O latency. Spark also provides a user-defined partition function

partitionBy to RDDs so that data from the same row will be aggregated on the same

worker. This type of consistent partitioning feature is one of the main optimizations

in specialized frameworks like Pregel. However, there is one problem with this

optimization, it is hard to estimate the work load balance using partitionBy. For

example, one worker might aggregate most rows of matrix that would exceed the

memory capacity. Even if the aggregated result can fit the memory, it is hard to

ensure all workers have the same amount of work. The imbalanced workloads among

the workers can significantly slow down the performance. yInMem provides a data

partitioning algorithm to achieve data locality and workload balance to maximize

the performance (Chapter 4).

33

Advantages of yInMem:

• Programmer can easily achieve computation data locality.

• Workload balance improves the computation time.

• yInMem offers point-to-point communication.

3.2 Cluster computer in Bluewave

This section describes the cluster computer configurations in Bluewave at our

CHMPR lab. All experiments shown in following chapters are conducted in this

cluster. Our experiments use a 32-nodes cluster connected with 10Gbps switch

with the following configuration: each node has 8 processors each with Quad-Core

AMD Opteron(tm) processor 2376, 25GB of RAM, L1 cache 512KB, L2 cache 2MB.

Hadoop 2.2.0. Accumulo 1.5.2. Zookeeper 3.4.6. D4M, pMatlab, and Matlab

2010bSP2. CentOS 6.5 64-bit. Apache Spark 1.6.1.

One node is served as the namenode for HDFS while other thirty two nodes are

datanodes. The same applies to Accumulo. The namenode also hosts the Accumulo

master node while the rest serve as slave nodes.

3.3 NoSQL database

Non-traditional, relaxed consistency, triple store databases provide high per-

formance on commodity computing hardware to I/O intensive applications. yInMem

deploys Accumulo as the indexed NoSQL database using the Dynamic Distributed

34

Dimensional Data (D4M). The reasons are as follows: (1) Accumulo supports D4M

(2) Accumulo is designed to handle unstructured data (3) Only non-empty entries

in a table/matrix are stored.

The primary purpose of Accumulo is first to save and index input data in a

triple store and second distribute the partitioned data to the corresponding worker

node and then cached into Alluxio.

Step one Step two Step three

Data partition Data distribution Parallel computation

Figure 3.3: A typical data processing flow in yInMem

Fig. 3.3 shows a typical data processing flow in yInMem. The first step is to

run a data partition algorithm (Chapter 4) which will partition the data across the

cluster to achieve data locality and minimize the data exchange. Step two is loading

data to the RAM of each worker according to the data partitioning algorithm. And

this operation will only be called once for each experiment. Since most algorithms

are iterative, the input data will be cached in Alluxio and so are intermediate results.

In this section, we briefly discuss the write and read performance of Accumulo in

our cluster computer environment. To benchmark the ingest rate of Accumulo in

Bluewave, we use the following steps:

1. Start Accumulo on Nserver servers.

2. Create the table and table splits.

35

3. Launch Ningest processes on each node using pMatlab.

4. Generate Graph500 graph with 2scale nodes

5. All Ningest processes will insert above data to Accumulo table.

3.3.1 Graph500 Benchmark

The Graph500 benchmark has been designed to measure graph performance

following the power-law. The number of vertices and edges in a graph are configured

via a positive integer called the SCALE parameter. Typically the number of vertices,

N , and the number of edges M can be computed as follows:

N = 2SCALE M = 8N (3.1)

The Graph500 will generate N number of vertices in the graph, and M number of

edges. This graph can represent a large N ∗N sparse matrix M , where M(i, j) = 1

indicates an edge from vertex i to vertex j. In our experiment, we use SCALE = 24

to generate a graph with 16 million vertices. And the total number of entries will

be NserverNingestN , which is around 1.9 billion.

Fig. 3.4 shows the accumulo ingest rate for the benchmark of generating 16

million vertices graph. It takes around 15 mins to generate 1.9 billion entries at an

average rate of 7.8 million entries/s.

36

Figure 3.4: Accumulo ingest performance vs time. The benchmark runs around
15 mins with the peak ingest rate at 7.8 million entries/s using 16 servers and 4
processes per node.

3.4 Alluxio: in-memory file system

Alluxio provides an in-memory data sharing system where different frameworks

can share intermediate results. The construction of this in-memory file system is

very similar to GFS and HDFS. The difference is Alluxio is RAM based. Each worker

maintains a local RAMdisk where data are mapped from local storage system(e.g.

HDD, SSD). Alluxio uses two different storage types: Alluxio managed storage and

under storage. Alluxio managed storage is the memory, SSD, and/or HDD allocated

to Alluxio workers. Under storage is the storage resource managed by the underlying

storage system, such as S3, Swift, HDFS or even HDD. yInMem deploys Alluxio in

a local HDD mode which means the underlying storage system is the local HDD.

The reason is our application can be easily embarrassing parallelized. In addition,

yInMem achieves computation data locality by specifying which data partitioning

37

will be cached into which worker node. The first time to write to Alluxio happens

in step two in Fig. 3.3.

Algorithm 2 YinEigen algorithm: eigenvalue decomposition
for large sparse matrix on top of YinMem.
INPUT: 1. Np: total number of processes;

2. Machines: nodes in the cluster ;
3. MaxIt: number of iterations;
4. k: top k eigenvalues ;
5. Partition table from Algorithm 1 ;
6. M : input matrix Mm⇥m stored in Accumulo;

OUTPUT: Top k eigenvalues �[1..k] and eigenvectors
Y m⇥k.

1: #Initialization:
1. Leader initializes a normalized random vector v1

2. Leader creates ↵ and � table
3. Np� 1 workers cache rows of M and v1 to Alluxio

2: #Iteration procedure: calculates ↵i and �i to construct
tridiagonal matrix Tmm whose eigenvalue and eigenvec-
tors are approximations to M , pRUN means run in parallel
with Np processes in Machines.

3: for i = 1 : MaxIt do
4: pRUN func1: v Mvi

5: pRUN func2: ↵i vT
i v

6: pRUN func3: v v � �i�1vi�1 � ↵ivi

7: pRUN func4: �i ||v||;
8: pRUN (Selectively orthogonalization)[27]
9: pRUN func5: vi+1 v/�i

10: end for
11: Tmm build tridiagonal matrix from ↵ and �
12: QDQT EIG(T); // Eigen decomposition of T
13: �[1..k] top k diagonal elements of D
14: Y VmQk; Qk is the columns of Q corresponding to �

R1

R2

...

Rm

v

=

R1

R2

...

Rm

M

⇥

C1

C2

...

Cm

vi

s s

m

m

table, meanwhile the Np�1 workers will cache rows of M and
v1 to Alluxio according to partition table from Algorithm 1.
YinEigen takes a power method to calculate ↵ and � which are
used to construct tridiagonal matrix Tmm whose eigenvalues
and eigenvectors are approximation to input matrix M (line 3
to 10). Each function inside the iteration is executed in par-
allel using the following syntax pRUN(‘function name ’, To-
tal number of processes, Nodes list). The first step in the it-
eration is sparse matrix-dense vector multiplication(sparseMV)
which dominates each iteration. The dense vector vi gets
updated after each iteration and vi needs to be shared across
the cluster since we do the multiplication based on rows (line
9). The figure in Algorithm 2 illustrates sparseMV. Algorithm
1 ensures that non-zero elements at each partition of matrix

M are more or less the same for load balancing. The result
vector v has the same partition as input matrix M , and partial
result Ri+1 of v are computed and cached in the main memory
of individual worker. To collate the result, we follow the data
flow illustrated in Fig. 3. The driver program makes a copy of
all these partial results which are saved as files in Alluxio, and
then caches through the collated file into HDD. All workers
runs scp to copy and load the updated vi+1 into Alluxio.

V. EXPERIMENTAL RESULTS

Our experiments use a 16-nodes cluster connected with
1Gbps switch with the following configuration: each node
has 8 processors each with Quad-Core AMD Opteron(tm)
processor 2376, 25GB of RAM, L1 cache 512KB, L2 cache
2MB. Hadoop 2.2.0. Accumulo 1.5.2. Zookeeper 3.4.6. D4M,
pMatlab, and Matlab 2010bSP2. CentOS 6.5 64-bit. Apache
Spark 1.6.1. We generate graph edges using the same 2 ⇥ 2
Kronecker algorithm as the Graph500 benchmark. Table I
shows the information of input symmetric matrix, the largest
matrix is 16-million with 0.01% sparseness (sparseness is
formulated by dividing the number of edges by the square of
matrix size). The matrix is generated in the following syntax:
source, target. Each line is an edge with source node pointing
to the target node. Each node is identified by a numerical ID.

Matrix size Edges Data file size Sparseness

4,096 0.2 million 4MB 1%
8,192 0.7 million 14MB 1%

16,384 2 million 40MB 1%
65,536 43 million 860MB 1%
262,144 0.6 billion 1.2GB 1%
524,288 1.4 billion 2.8GB 0.5%

1,048,576 5 billion 10GB 0.5%
16,777,216 24 billion 48GB 0.01%

TABLE I: Input data for YinMem

Fig. 4: Average running time per iteration for eigenvalue decomposition of varied sym-
metric matrix sizes. YinMem with Alluxio (green line) shows 6X speedup as compared
to HEIGEN and 3X speedup as compared to Spark. [3] reported the performance for
HEIGEN-PLAIN, YinMem w/ data w/o Alluxio, and YinMem w/o data w/o Alluxio for
matrix size up to 1M. This paper extended the experiment to 16M and also added the
performance of YinMem w/ data partition w/ Alluxio (green line) and Spark (blue line)

Fig. 4 shows the average running time of eigenvalue de-
composition of large sparse matrices listed in table I. Three

Figure 3.5: Sparse matrix-vector multiplication. The input of the multiplication are
the whole row of matrix M and the whole vector vi.

For example, consider SpMV operation where the whole row of the matrix

should be multiplied with the whole vector. yInMem queries rows of matrix from

Accumulo using D4M and caches these rows to the RAM of each worker. D4M

returns three vectors: Row, Col, and V al, corresponding to the non-zero entries in

the sparse matrix. After caching the input to each worker, the Matlab process will

be reading from Alluxio and writing intermediate results to Alluxio.

3.4.1 Data sharing

Data sharing happens in iterative algorithms after each iteration.

Algorithm 2 YinEigen algorithm: eigenvalue decomposition
for large sparse matrix on top of YinMem.
INPUT: 1. Np: total number of processes;

2. Machines: nodes in the cluster ;
3. MaxIt: number of iterations;
4. k: top k eigenvalues ;
5. Partition table from Algorithm 1 ;
6. M : input matrix Mm⇥m stored in Accumulo;

OUTPUT: Top k eigenvalues �[1..k] and eigenvectors
Y m⇥k.

1: #Initialization:
1. Leader initializes a normalized random vector v1

2. Leader creates ↵ and � table
3. Np� 1 workers cache rows of M and v1 to Alluxio

2: #Iteration procedure: calculates ↵i and �i to construct
tridiagonal matrix Tmm whose eigenvalue and eigenvec-
tors are approximations to M , pRUN means run in parallel
with Np processes in Machines.

3: for i = 1 : MaxIt do
4: pRUN func1: v Mvi

5: pRUN func2: ↵i vT
i v

6: pRUN func3: v v � �i�1vi�1 � ↵ivi

7: pRUN func4: �i ||v||;
8: pRUN (Selectively orthogonalization)[27]
9: pRUN func5: vi+1 v/�i

10: end for
11: Tmm build tridiagonal matrix from ↵ and �
12: QDQT EIG(T); // Eigen decomposition of T
13: �[1..k] top k diagonal elements of D
14: Y VmQk; Qk is the columns of Q corresponding to �

R1

R2

...

Rm

v

=

R1

R2

...

Rm

M

⇥

C1

C2

...

Cm

v1

s s

m

m

table, meanwhile the Np�1 workers will cache rows of M and
v1 to Alluxio according to partition table from Algorithm 1.
YinEigen takes a power method to calculate ↵ and � which are
used to construct tridiagonal matrix Tmm whose eigenvalues
and eigenvectors are approximation to input matrix M (line 3
to 10). Each function inside the iteration is executed in par-
allel using the following syntax pRUN(‘function name ’, To-
tal number of processes, Nodes list). The first step in the it-
eration is sparse matrix-dense vector multiplication(sparseMV)
which dominates each iteration. The dense vector vi gets
updated after each iteration and vi needs to be shared across
the cluster since we do the multiplication based on rows (line
9). The figure in Algorithm 2 illustrates sparseMV. Algorithm
1 ensures that non-zero elements at each partition of matrix

M are more or less the same for load balancing. The result
vector v has the same partition as input matrix M , and partial
result Ri+1 of v are computed and cached in the main memory
of individual worker. To collate the result, we follow the data
flow illustrated in Fig. 3. The driver program makes a copy of
all these partial results which are saved as files in Alluxio, and
then caches through the collated file into HDD. All workers
runs scp to copy and load the updated vi+1 into Alluxio.

V. EXPERIMENTAL RESULTS

Our experiments use a 16-nodes cluster connected with
1Gbps switch with the following configuration: each node
has 8 processors each with Quad-Core AMD Opteron(tm)
processor 2376, 25GB of RAM, L1 cache 512KB, L2 cache
2MB. Hadoop 2.2.0. Accumulo 1.5.2. Zookeeper 3.4.6. D4M,
pMatlab, and Matlab 2010bSP2. CentOS 6.5 64-bit. Apache
Spark 1.6.1. We generate graph edges using the same 2 ⇥ 2
Kronecker algorithm as the Graph500 benchmark. Table I
shows the information of input symmetric matrix, the largest
matrix is 16-million with 0.01% sparseness (sparseness is
formulated by dividing the number of edges by the square of
matrix size). The matrix is generated in the following syntax:
source, target. Each line is an edge with source node pointing
to the target node. Each node is identified by a numerical ID.

Matrix size Edges Data file size Sparseness

4,096 0.2 million 4MB 1%
8,192 0.7 million 14MB 1%

16,384 2 million 40MB 1%
65,536 43 million 860MB 1%
262,144 0.6 billion 1.2GB 1%
524,288 1.4 billion 2.8GB 0.5%

1,048,576 5 billion 10GB 0.5%
16,777,216 24 billion 48GB 0.01%

TABLE I: Input data for YinMem

Fig. 4: Average running time per iteration for eigenvalue decomposition of varied sym-
metric matrix sizes. YinMem with Alluxio (green line) shows 6X speedup as compared
to HEIGEN and 3X speedup as compared to Spark. [3] reported the performance for
HEIGEN-PLAIN, YinMem w/ data w/o Alluxio, and YinMem w/o data w/o Alluxio for
matrix size up to 1M. This paper extended the experiment to 16M and also added the
performance of YinMem w/ data partition w/ Alluxio (green line) and Spark (blue line)

Fig. 4 shows the average running time of eigenvalue de-
composition of large sparse matrices listed in table I. Three

Algorithm 2 YinEigen algorithm: eigenvalue decomposition
for large sparse matrix on top of YinMem.
INPUT: 1. Np: total number of processes;

2. Machines: nodes in the cluster ;
3. MaxIt: number of iterations;
4. k: top k eigenvalues ;
5. Partition table from Algorithm 1 ;
6. M : input matrix Mm⇥m stored in Accumulo;

OUTPUT: Top k eigenvalues �[1..k] and eigenvectors
Y m⇥k.

1: #Initialization:
1. Leader initializes a normalized random vector v1

2. Leader creates ↵ and � table
3. Np� 1 workers cache rows of M and v1 to Alluxio

2: #Iteration procedure: calculates ↵i and �i to construct
tridiagonal matrix Tmm whose eigenvalue and eigenvec-
tors are approximations to M , pRUN means run in parallel
with Np processes in Machines.

3: for i = 1 : MaxIt do
4: pRUN func1: v Mvi

5: pRUN func2: ↵i vT
i v

6: pRUN func3: v v � �i�1vi�1 � ↵ivi

7: pRUN func4: �i ||v||;
8: pRUN (Selectively orthogonalization)[27]
9: pRUN func5: vi+1 v/�i

10: end for
11: Tmm build tridiagonal matrix from ↵ and �
12: QDQT EIG(T); // Eigen decomposition of T
13: �[1..k] top k diagonal elements of D
14: Y VmQk; Qk is the columns of Q corresponding to �

R1

R2

...

Rm

v

=

R1

R2

...

Rm

M

⇥

C1

C2

...

Cm

v2

s s

m

m

table, meanwhile the Np�1 workers will cache rows of M and
v1 to Alluxio according to partition table from Algorithm 1.
YinEigen takes a power method to calculate ↵ and � which are
used to construct tridiagonal matrix Tmm whose eigenvalues
and eigenvectors are approximation to input matrix M (line 3
to 10). Each function inside the iteration is executed in par-
allel using the following syntax pRUN(‘function name ’, To-
tal number of processes, Nodes list). The first step in the it-
eration is sparse matrix-dense vector multiplication(sparseMV)
which dominates each iteration. The dense vector vi gets
updated after each iteration and vi needs to be shared across
the cluster since we do the multiplication based on rows (line
9). The figure in Algorithm 2 illustrates sparseMV. Algorithm
1 ensures that non-zero elements at each partition of matrix

M are more or less the same for load balancing. The result
vector v has the same partition as input matrix M , and partial
result Ri+1 of v are computed and cached in the main memory
of individual worker. To collate the result, we follow the data
flow illustrated in Fig. 3. The driver program makes a copy of
all these partial results which are saved as files in Alluxio, and
then caches through the collated file into HDD. All workers
runs scp to copy and load the updated vi+1 into Alluxio.

V. EXPERIMENTAL RESULTS

Our experiments use a 16-nodes cluster connected with
1Gbps switch with the following configuration: each node
has 8 processors each with Quad-Core AMD Opteron(tm)
processor 2376, 25GB of RAM, L1 cache 512KB, L2 cache
2MB. Hadoop 2.2.0. Accumulo 1.5.2. Zookeeper 3.4.6. D4M,
pMatlab, and Matlab 2010bSP2. CentOS 6.5 64-bit. Apache
Spark 1.6.1. We generate graph edges using the same 2 ⇥ 2
Kronecker algorithm as the Graph500 benchmark. Table I
shows the information of input symmetric matrix, the largest
matrix is 16-million with 0.01% sparseness (sparseness is
formulated by dividing the number of edges by the square of
matrix size). The matrix is generated in the following syntax:
source, target. Each line is an edge with source node pointing
to the target node. Each node is identified by a numerical ID.

Matrix size Edges Data file size Sparseness

4,096 0.2 million 4MB 1%
8,192 0.7 million 14MB 1%

16,384 2 million 40MB 1%
65,536 43 million 860MB 1%
262,144 0.6 billion 1.2GB 1%
524,288 1.4 billion 2.8GB 0.5%

1,048,576 5 billion 10GB 0.5%
16,777,216 24 billion 48GB 0.01%

TABLE I: Input data for YinMem

Fig. 4: Average running time per iteration for eigenvalue decomposition of varied sym-
metric matrix sizes. YinMem with Alluxio (green line) shows 6X speedup as compared
to HEIGEN and 3X speedup as compared to Spark. [3] reported the performance for
HEIGEN-PLAIN, YinMem w/ data w/o Alluxio, and YinMem w/o data w/o Alluxio for
matrix size up to 1M. This paper extended the experiment to 16M and also added the
performance of YinMem w/ data partition w/ Alluxio (green line) and Spark (blue line)

Fig. 4 shows the average running time of eigenvalue de-
composition of large sparse matrices listed in table I. Three

Figure 3.6: Two consecutive iterations of Sparse Matrix-Vector multiplication.

38

Fig. 3.6 shows two consecutive iterations of SpMV multiplication. The output

of the left multiplication v serves as the input v2 for the right multiplication. Notice

that each worker will generate a partial result to produce the output v. As a result,

the output from each worker should be first aggregated and then broadcast to all

workers. yInMem offers an easy point-to-point communication and also enables

aggregation and broadcast operations. Fig. 3.7 shows data aggregation and data

broadcasting in yInMem. Fig. 3.7(a) explains how intermediate results from workers

cessing frameworks in general provide simple programming
model which makes these systems unsuitable for implementing
complex algorithms based on matrix operations. For example,
restrictive MapReduce communication pattern does not allow
efficient point to point communication. This limitation has
led to the development of domain specific systems. Pregel
[19], for example, has been created in particular for graph
algorithms. Ricardo [22] and HAMA [28] are recent efforts to
better support large-scale matrix operations but the inheritance
of MapReduce interface is still not efficient. MadLINQ [24] is
another example of linear algebra platform built on Dryad [25]
but has limit support for sparse matrix computations. Presto
[26] is a distributed machine learning and graph processing
platform with support for sparse matrices, building on top of R.
Unlike MadLINQ and Presto, YinMem inherits both HPC and
big data processing ecosystems such as Hadoop, Accumulo,
and Alluxio. In addition, data in Alluxio can be shared between
different tasks.

0 1

0

2 3

(a) The leader process or Process 0 collects partial results from
other processes

1

0

2 3

(b) The leader process or Process 0 broadcasts the collected results
to the HDD/SSD of other workers via linux secure copy (scp)

Alluxio
DRAM

1

Worker1

DRAM

2

Worker2

DRAM

3

Worker3

(c) Each worker process uploads the data from HDD/SSD to the DRAM.
Alluxio can be viewed as a collection of DRAMs from workers

Fig. 3: Example of data sharing in YinMem with Alluxio. The time cost consists of
the following three steps: a. T1, the leader process or Process 0 collects partial results
from other processes b. T2, worker processes make a secure copy (scp) of the collected
results from the leader process to their local HDD/SSD c. T3, worker processes upload
the collected result to their DRAM; Alluxio can be viewed as a global addressable file-
system constructed by DRAM from workers.

YinMem enables data sharing by deploying Alluxio, an
in-memory global data storage system to which all worker
nodes have access. Alluxio uses two different storage types:
Alluxio managed storage and under storage. Alluxio managed

storage is the memory, SSD, and/or HDD allocated to Alluxio
workers. Under storage is the storage resource managed by
the underlying storage system, such as S3, Swift or HDFS.
Fig. 3 illustrates the data sharing mechanism in YinMem.
Fig. 3(a) explains how intermediate results from workers are
collected (T1) and then (b) broadcast to all workers (T2).
Intermediate results are differentiated by process ID. The
driver program collates these files and write a collated version
to Alluxio located at the main memory of the driver node.
In our experiment, we find out that Alluxio does not support
parallel in-memory copy of the collated result, we end up using
(b) linux scp command to copy to HDD and then (c) load
to the DRAM (T3). Two potential improvement over Alluxio
could be file appending and parallel reading. File appending
is critical to collating all partial results from workers into one;
parallel reading is fundamental to broadcasting data to worker
processes.

C. Parameter tuning

Parameter tuning consists of configuring parameters within
the cluster environment to maximize the performance for user
tasks. In Hadoop, this normally involves setting the number
of reducer. Spark is more challenging because there are more
parameters and some of them are not easy to configure without
prior knowledge. For example, one typical error using Spark is
Java out of memory error. Building RDDs normally involves
shuffling small data chunks and then to group to several
executors (worker node runs executors for assigned tasks).
Also, the memory size for each executor has to be configured
when submitting the task. Sparse matrix makes it hard to
estimate this parameter prior to task submission. YinMem in
general has no parameter tuning problems since load balancing
is achieved; out of memory error is not encountered unless the
input data size exceeds the Alluxio memory capacity.

IV. APPLICATIONS

Many real-world applications can be easily expressed as
matrix operations using machine learning, graph algorithms,
and statistical analyses. Big data system researchers have
mainly focused on algorithms like Kmeans, PageRank, and
linear regression. In this paper, we focus on eigenvalue de-
composition for large sparse matrix, and we have developed
YinEigen, an algorithm to calculate top k eigenvalues and
eigenvectors for large sparse matrix on top of YinMem based
on Lanczos-SO [27] algorithm.

Algorithm 2 shows how we calculate the top k eigenval-
ues and eigenvectors for large sparse matrix. We argue that
YinEigen is a good representation of iterative machine learning
algorithms because: first, it involves the sparse matrix-dense
vector multiplication (line 4) which dominates every single
iteration, load balancing should be taken into consideration
for maximum performance; second, data sharing occurs at each
iteration when the dense vector is updated and broadcast across
the cluster to all worker nodes(line 9).

During the initialization stage, the leader first generates a
normalized random vector vM⇥1

i and also creates ↵ and �

Figure 3.7: yInMem data aggregation and data broadcasting with Alluxio for SpMV.

39

are collected (T1) and then (b) broadcast to all workers (T2). Intermediate results

are differentiated by process ID. The driver program collates these files and write a

collated version to Alluxio located at the main memory of the driver node. In our

experiment, we find out that Alluxio does not support parallel in-memory copy of

the collated result, we end up using (b) linux scp command to copy to HDD and

then (c) load to the DRAM (T3). Two potential improvement over Alluxio could

be file appending and parallel reading.

0 1

0

2 3

1 2 3

(a) YinMem: data sharing by all-to-one and then one-to-all

0 1 2 3

0 1 2 3

(b) MapReduce: data sharing by all-to-all

Fig. 7: YinMem VS MapReduce for broadcasting the collated result vi+1 in Algorithm
2 (line 3 to 10). (a) shows that YinMem uses process 0 to collect all partial results and
then broadcast to other worker processes; (b) shows MapReduce sorts and shuffles the
intermediate results to all worker processes

the input sparse matrix in a parallel manner (line 3 to 10).
Fig. 8 illustrates the time for each step in data sharing with

Alluxio on top of YinMem. Fig. 8(a) depicts the time for
three steps in Fig. 3 with varied matrix sizes. The time for
the leader process to receive partial results from workers or
T1 is proportional to the matrix size. That’s because partial
result vector vi size is proportional to the matrix size. T2, the
time to broadcast vi to all workers, is less proportional to the
matrix size as compared to T1 because it is mostly determined
by the network connection speed for the cluster. T3, the time
to upload vi+1 to DRAM is almost consistent within a few
seconds. Fig. 8(b) demonstrates the data sharing time for 16-
million scale matrix with varied number of cores. The time for
all three steps appear to be consistent. The reason is because
there is an overhead when spawning more MPI processes to
use more cores in pMatlab. And this overhead is proportional
to the number of cores. The more cores used the less load each
core has, however the communication cost is also increasing
with more cores.

C. Comparison with Hadoop and Spark

Fig. 9 shows that YinMem is 10⇥ faster than Hadoop and
more than 7⇥ faster than Spark for SparseMV operation in
YinEigen. In Algorithm 2, SparseMV operation reads vector
v from previous iteration. And this fetching time is the sum
of T1, T2 and T3 from last section and T4, the time to read
from Alluxio. T4 is generally ranged from milliseconds to
seconds.

Hadoop. Fig. 9(a) compares the performance of HEIGEN-
PLAIN, Hadoop implementation of eigenvalue decomposition
to that of YinMem. In HEIGEN, fetch time is estimated by
the running time of Mapper while execute time is the time
of Reducer. Fetch time dominates the operation, showing the

65536 262144 524288 1048576 16777216
0

20

40

60

80

Matrix size

Ti
m

e
(s

ec
on

ds
) T1 T2 T3

(a) YinMem data sharing performance with varied matrix sizes

15 30 45 60 75
0

20

40

60

80

cores

Ti
m

e
(s

ec
on

ds
)

(b) YinMem data sharing performance for 16-million scale matrix with varied
number of cores

Fig. 8: Performance of data sharing for YinMem. T1: the time for the leader process to
collate partial results from workers. T2: the time for workers to run scp to make a copy
of the collated result to their HDD. T3: the time for workers to upload the result from
their HDD to DRAM.

importance of data sharing. Overall, YinMem is more than
10X faster for fetching vector v from previous iteration. In
addition, YinMem preserves the matrix and vector structure
in between operations, and also eliminates the need to sort
data between iterations.

Spark. MLlib, the machine learning library for Spark,
computes the leading k eigenvalues and eigenvectors on a
symmetric square matrix using ARPACK. ARPACK requires
memory for n⇤(4⇤k+4) doubles (n is the size of the matrix),
which becomes infeasible for large matrix. So we implement
Lanczos-SO algorithm with Spark to compare its performance
with YinMem in Fig. 9(b). Spark takes about 510 seconds per-
iteration with 75 cores. With 75 cores, around 480 seconds
are used to shuffle the updated vector v and 30 seconds to
compute matrix and vector multiplication. At fewer cores, the
fetch time is as high as 600 seconds with 15 cores. The main
reason why YinMem is 7⇥ faster than Spark is because Spark
generates a large amount of intermediate data and therefore
spends more time transferring data. This proves the efficiency
of the data sharing strategy in YinMem.

Figure 3.8: yInMem VS MapReduce for data sharing

Comparison: Fig. 3.8 compares the data sharing mechanism between yIn-

Mem and MapReduce: (a) yInMem adapts an all-to-one and then one-to-all strat-

egy; (b) MapReduce communicates via all-to-all. Advantages of yInMem over

40

MapReduce are as follows: 1. yInMem reduces the number of communication.

The total number of communication channels is n (all-to-one) in the former while

MapReduce n2 (all-to-all). 2. yInMem re-assembles the result once. The cost is

typically proportional to the size of the output. Spark, however, offers aggregate

and broadcast function to share the results. The difference is yInMem can easily

estimate the size of data to be shared because we distribute the data beforehand.

We can manage the memory more efficiently.

3.5 pMatlab

pMatlab, an open source software that runs Matlab in parallel, serves as the

parallel computation engine in yInMem. pMatlab gives the application/programmer

precise control of its computations and communications. pMatlab also follows the

master-slave architecture. The driver program or the master, can launch Np in-

stances of Matlab processes for the life of the program. Each process has a unique

identifier PID, and can directly communicate with all the other instances. The

communication is handled by message passing. This is the essential difference from

MapReduce based parallel framework.

One potential limitation for pMatlab is the overhead of spawning sub-processes.

This is particularly true for large clusters. And iterative algorithms make it even

worse. Because pMatlab follows a bulk synchronous parallel (BSP) model, which

means each parallel operation will synchronize at the end. More precisely, all sub-

processes will terminate and send a complete signal to the master. For the next

41

iteration, new processes are launched again on the same worker. This can be easily

optimized by maintaining the life time of a Matlab instance for synchronization.

The benefits of using pMatlab come from the precise control of its computa-

tions and communications. And an evaluation model (Chapter 4) can be devised

thanks to the fine control over data distribution, data computation, and data shar-

ing.

3.6 APIs

The core APIs of yInMem for implementing iterative machine learning algo-

rithms can be categorized into the following three:

1. Database connector.

2. In-memory file system connector (Alluxio connector).

3. Core APIs.

Since yInMem uses pMatlab as the parallel computing engine, we have inherited

existing libraries, database connector for example. During the course of our work,

pMatlab has now included support for federated databases besides Accumulo [61].

Database connector is used to establish a connection from MATLAB to Accumulo

database. And we are using the existing connector. In-memory file system connec-

tor mainly deals with reading/writing data into Alluxio. For iterative algorithms,

after running data partitioning algorithm (Chapter 5), each process will read data

partition from Accumulo using database connector. And these data partitions are

42

cached in Alluxio using in-memory file system connector. Core APIs are designed to

support simple linear algebra operations, namely Sparse Matrix-Vector Multiplica-

tion(SpMV), Vector-Vector Multiplication(VV), Scalar-Vector Multiplication(SV)

and normalization. Parallel computation is implemented by running core APIs, in

which the input is read from Alluxio and output is also written to Alluxio.

3.6.1 Database connector

In order to establish a connection to Accumulo database, DBserver can be

called to return a DB object that contains information about the specific database

being connected to [61].

DB = DBserver(host, type, instanceName, user, pass)

Inputs:

host = database host name

type = type of database (Accumulo)

instanceName = database instance name

username = username in database

password = password associated with username

Outputs:

DB = database object with a binding to a specific DB

After obtaining the DB object, one can create a binding to a specific table in

the database. Binding to the table offers query and insert functionalities.

43

A = T(rows, cols)

Inputs:

T = database table

rows = row keys to select

cols = column keys to select

Outputs: A = associative array of all non-empty row/columns

The following example describes how one can connect to Accumulo to obtain

the total number of machines from table NumOfMachines in the instance named

myaccumulo.

DB = DBserver(’host’,’Accumulo’,’myaccumulo’,’root’,passwd);

machines t = DB(’NumOfMachines’);

NumOfMachines = str2num(Val(machines t(:,:)));

3.6.2 Alluxio connector

Alluxio connector APIs provides the interface to read and write files in Alluxio

file system. It mainly consists of the two following functions: AlluxioWriteRead and

javaMethod.

AlluxioWriteRead establishes the connection to Alluxio The constructor of

AlluxioWriteRead consists of the following 5 parameters:

1. mMasterLocation: the URI for Allxuio master.

2. mFilePath: the file name to be operated on.

44

3. mReadOptions: option to open the file, default CACHE.

4. CreateFileOptions: option to write the file, default CACHE THROUGH.

5. Input: string to be written.

We have listed the constructor of AlluxioWriteRead.java in the following box.

public class AlluxioWriteRead {

private final AlluxioURI mMasterLocation;

private final AlluxioURI mFilePath;

private final OpenFileOptions mReadOptions

private final CreateFileOptions mWriteOptions

private final String input;

public AlluxioWriteRead(AlluxioURI masterLocation, AlluxioURI filePath,

ReadType readType, WriteType writeType, String input) {

mMasterLocation = masterLocation;

mFilePath = filePath;

mReadOptions = OpenFileOptions.defaults().setReadType(readType);

mWriteOptions = CreateFileOptions.defaults().setWriteType(writeType);

contentToBeWritten = input;} }

Example of calling AlluxioWriteRead in Matlab:

myConn = AlluxioWriteRead([′alluxio : //n117 : 19998‖′inputF ilePath]);

javaMethod is used to call Java write() or read() defined in AlluxioWriteRead

for Matlab.

45

write() takes FileSystem and input string s as input. And it uses ByteBuffer

to stream the input to the file system.

read() uses ByteBuffer to read FileInStream which is reading mFilePath with

reading option (CACHE default).

public void write(FileSystem fs, String s) throws IOException, AlluxioExcep-

tion, FileAlreadyExistsException, InvalidPathException{

// Using bytebuffer to hold the string

ByteBuffer buf = ByteBuffer.allocation(s.length());

buf.order(ByteOrder.nativeOrder()); // Set the byteorder

// add input s to the buffer

buf.put(s.getBytes(StandardCharsets.UTF 8));

// define the file name and write option in os

FileOutStream os = fs.createFile(mFilePath, mWriteOptions);

os.write(buf.array()); os.close(); }

public void read(FileSystem fs) throws IOException, AlluxioException, File-

DoesNotExistException{

FileInStream is = fs.openFile(mFilePath, mReadOptions);

ByteBuffer buf = ByteBuffer.allocate((int) is.remaining());

is.read(buf.array());

buf.order(ByteOrder.nativeOrder());

String myString = new String(buf.array(),StandardCharsets.UTF 8);

is.close(); }

46

Example of using javaMethod to read/write to Alluxio is listed as below.

Read: myV al = javaMethod(′read′,myconn);

Write: javaMethod(′write′,myconn, string);

3.6.3 Core APIs

Core APIs implemented in this work include: Sparse Matrix-Vector Multipli-

cation(SpMV), Vector-Vector Multiplication(VV), Scalar-Vector Multiplication(SV)

and normalization. We focus on SpMV operation for its complexity.

[v] = SpMV(’Matrix’, ’Vector’)

Inputs:

Matrix : the matrix file name in Alluxio

Vector : the vector file name in Alluxio

Outputs:

v vector produced from SpMV.

myVector = readVecor(Vector); %% read vector

myMatrix = readMatrix (Matrix); %% read matrix

v = myMatrix * myVector; %% multiplication

SpMV: SpMV operation is composed of the following three parts: 1.

Read data partitions (rows of matrices) from RAM in (Row, Col, Val) format (Row

is a vector showing the row coordinates, Col is a vector of column coordinates and

Val is the value vectors). 2. Read vector from RAM. 3. Multiplication. Recall that

all input data have been saved in Alluxio, we use Alluxio connector to read input

47

and also write intermediate results to Alluxio.

There are 2 parameters for SpMV. Matrix : the matrix file name in Alluxio.

Since Alluxio is a file system, each file is uniquely identified by a file name. Matrix :

the vector file name in Alluxio. Two APIs calls used for SpMV are: readVector and

readMatrix.

a. readVector: takes the input vector file name as input and it will return a

sparse vector. Since we read row vector and value vector from Alluxio using Java,

we re-construct the vector using Matlab sparse() function.

[vector] = readVector(’Vector’)

vRow = AlluxioWriteRead([’host’ Vector ’ r’]);

vVal = AlluxioWriteRead([’host’ Vector ’ v’]);

myRow = javaMethod(’readFile’,vRow);

myVal = javaMethod(’readFile’,vVal);

vr = char(myRow); vv = char(myVal); %% convert to char

vr = sscanf(vr, ’%d’); vv = sscanf(vv,’%f’); %% convert to integer and float

vector = sparse(vr, 1, vv, NumOfNodes, 1); %% construct sparse vector

b. readMatrix: inputs the matrix file and it will return the matrix. Notice

that we are partitioning the matrix based on row, when reconstructing the sparse

matrix, we need reduce the row index from the beginning row number of the corre-

sponding process (based on partition table (Chapter 4)). The last two parameters

in sparse define the dimension of our sub-matrix, in which the x dimension is the

row range based on the partition table and the y dimension equals to the size of the

48

matrix.

[matrix] = readMatrix(’Matrix’)

vRow = AlluxioWriteRead([’host’ Matrix ’ r’]);

vCol = AlluxioWriteRead([’host’ Matrix ’ c’]);

vVal = AlluxioWriteRead([’host’ Vector ’ v’]);

myRow = javaMethod(’readFile’,vRow);

myCol = javaMethod(’readFile’,vCol);

myVal = javaMethod(’readFile’,vVal);

vr = char(myRow); vc = char(myCol); vv = char(myVal);

vr = sscanf(vr, ’%d’); vc = sccanf(vc, ’%d’); vv = sscanf(vv,’%f’);

vector = sparse(vr-startR+1, vc, vv, endR -startR +1 ,NumOfNodes);

3.7 Related work

Most related works involve graph processing frameworks such as GraphX [50],

Pregel [45], Gaffer [51], and Graphlab [52] optimized for graph operations on data

in databases. We focus on Graphulo [49] given the similarity to yInMem.

Graphulo is a processing framework that enables GraphBLAS kernels in the

Apache Accumulo database. Graphulo utilizes Iterator framework in Accumulo

database to co-locate storage and computation. More precisely, Graphulo exploits

the Key-Value Data Model to save edge information. That is, row (source vertex),

column qualifier (destination vertex) and the Value. This is actually equivalent to

the triple store in associative arrays. yInMem differs from Graphulo in that we cache

49

the graph data in Alluxio to achieve faster performance than Graphulo. However it

is ideal to integrate graph load balance and pre-split the graph to Accumulo when

the graph is ingested.

3.8 Summary

This section describes all the components of yInMem: Accumulo, the NoSQL

database for underlying data storage, Alluxio, the in-memory file system for caching

graph data, and pMatlab, the parallel computation engine which gives the program-

mer precise control over data computation and communication. We also list the ad-

vantages of yInMem over other computing frameworks, as well as the data sharing

mechanism in yInMem.

We also present the three iterative machine learning and graph processing

algorithms for sparse graph, namely K-Means clustering, PageRank, and Spectral

Clustering. By identifying the characteristics of these algorithms, we understand the

key points to optimize their parallelization in in-memory cluster computing systems.

In addition, the hardware and software environment has been presented for

assessing yInMem. Moreover, we have also listed the core APIs of yInMem: 1.

database connector. 2. Alluxio connector. 3. Core APIs. Programmers can easily

write parallel iterative algorithms with the APIs.

50

Chapter 4: Workload characterization and evaluation model

In this chapter, we first characterize the workload, namely the sparse graph

constructed from real life applications. Secondly, we illustrate the common ground

of iterative machine learning and graph processing algorithms to optimize the per-

formance in a cluster computing setting. Finally, we present the evaluation model

to assess yInMem theoretically.

4.1 Workload characterization

To best understand iterative machine learning and graph algorithms in cluster

computer, we analyze the performance of three algorithms: (1) K-Means clustering

(2) PageRank and (3) Spectral clustering. The graph we choose to experiment on

include synthetic graph generated by Graph500 benchmark and real-world graph,

both of which are low-diameter and high-diameter graphs, and both mesh and so-

cial network topologies. We conquer the following two conventional challenges of

parallelizing these algorithms efficiently:

1. Load imbalance

2. Synchronization overheads

51

To draw a solid conclusion, we not only consider a range of input graphs in

any analysis but also different graph sizes and topologies. yInMem gives consistent

best results on given experimental environment.

Graph Description Vertices(m) Edges(m) Degree Directed

Kron Synthetic 4k-16 0.2-24000 Varies N
Friendster social network 65 1800 27.7 N
Twitter social network 17 476 28 Y
Road USA road network 1.9 2 1.05 N
Orkut social network 3 117 39 Y

Table 4.1: Graphs used for evaluation. All graphs are real-world data [53] except
Kron which is generated by Graph500 benchmark.

In this work, we use the diverse set of graphs listed in Table 4.1 to guide our

investigations. It is important to have a diverse set of graphs, since the topology of

a graph can impact the characteristics of the workload. For example, the average

number of edges for each vertex varies for all the datasets. Our primary focus is on

social network since they are more challenging than meshes.

All the real-world data we used in this work can be found at [53]. We are

grateful for these public available data because real-world social network data is often

difficult to obtain due to anonymity concerns. Social networks typical indicate online

communities by constructing the links between users, examples include Friendster,

Twitter and Orkut. We also include the USA road network as it contrasts with

the social networks, since Road has a high diameter, low average degree and low

maximum degree.

Among all the graphs, Kron is the only synthetic one using Graph500 Bench-

mark. We generate the kron graph from the Kronecker generator [54]. Table 4.2

52

shows the detailed synthetic datasets used in this work. We generate large degree

synthetic dataset to fill the memory capacity of our cluster.

Matrix size Edges Data file size Degree

4,096 0.2 million 4MB 48.8
8,192 0.7 million 14MB 85.5
16,384 2 million 40MB 122
65,536 43 million 860MB 6,561
262,144 0.6 billion 1.2GB 22,888
524,288 1.4 billion 2.8GB 23,121

1,048,576 5 billion 10GB 26,122
16,777,216 24 billion 48GB 14,305

Table 4.2: Synthetic graph generated using Kronnecker generator

4.1.1 Matrix representation of graph

The graph abstraction is a way to model the connections between objects and

the nature of these connections can have many properties. For example, a graph

G(V,E) consist of a set of vertices V and a set of edges E. Two vertices u and v are

connected via an edge (u, v). A directed edge (u, v) represents a connection from

u to v, while an undirected edge represents a bidirectional connection. If a graph

is composed only by undirected edges, it is an undirected graph. Otherwise, it is

called a directed graph. The degree of a vertex is the number of edges connected to

it. The degree of a graph is the average degree of all of its vertices (|E|/|V |). To

capture the diversity of vertex degrees within a graph, the degree distribution is the

distribution of degrees over the vertices within a graph.

From linear algebra perspective, it is conventional to represent graph abstrac-

tion as an adjacency matrix. Using the linear algebra abstraction not only provides

53

great notational conciseness and expressibility, it can often allow for reusing op-

timized linear algebra libraries. This adjacency matrix is a symmetric one. All

vertices are ordered both on the rows and columns. And the matrix entry value

indicates the weight of their edge. In his work, we present all these graphs into

matrix format and saved in Accumulo tables.

4.1.2 Graph topologies

The structure of the graphs is another important feature that should be taken

into serious consideration for parallel computation. Why? The sparsity of a graph

has a big impact on the load balance. A graphs sparsity is determined by its average

degree. There is no formal mathematical way to distinguish a dense graph from a

sparse graph. But in general, for a graph of n vertices, a dense graph has O(n2) edges

while a sparse graph has O(n) edges. We focus on the sparse graphs because first

they appear much in real-world applications and second processing sparse graphs

incurs greater communication inefficiencies.

Social networks typically have a low diameter, or small communities and a

power-law degree distribution. More specifically, a large number of vertices in a

graph are not neighbors of one another; but most vertices can be reached from

every other within small hops. Since we are not analyzing graph traversal related

algorithms, this only affects the load balance. Fig. 4.1 shows a degree distribu-

tion of a typical social network. Normally a certain number of vertices have more

connections than other vertices. For example, the celebrities, the politicians, and

54

Figure 4.1: Example of the degree distribution of a typical social network.

news channels. Community discover has become a renewed interest for social net-

works [55]. The imbalanced graph input itself makes it hard for conventional graph

processing frameworks to parallelize the computation. Moreover, the synchroniza-

tion overheads are also directly connected with the data distribution.

55

4.2 Iterative algorithm characteristics

In this section, we strive to understand the characteristics of iterative algo-

rithms and then try to optimize the performance in cluster computer. The reason

we focus on iterative algorithms comes from the fact that it is conventionally hard to

optimize the performance using existing parallel processing frameworks. The spar-

sity nature of the objects to be analyzed results in imbalanced input. And this is

becoming worse as the data size grows bigger and bigger. Nowadays, the in-memory

computation system significantly reduces the latency of disk I/O, but data shuffling

is still considered the bottleneck for most of existing frameworks.

We have identified the roots for expensive data shuffling incurred in iterative

algorithms are the following respects:

1. Initial data distribution. As shown in Fig. 4.1, the data originated from

social network is not evenly distributed. Most distributed storage systems

only provide a storing mechanism to save the data. In addition, distributed

storage system tends to replicate data to handle fault or error from hardware.

The co-location of computation and data is mostly lost. One solution to

this problem is to design a data management system that can co-locate the

computation and data.

2. Data sharing required by the algorithm. Most algorithms take an iterative

way to update variables in order to achieve a goal for the goal function. And

normally there is a dependency between each iterations. This dependency

56

should be minimized to reduce the communication. This is particularly true for

applications with large input. Most parallel computing model follows a Bulk

Synchronous Parallel pattern, which is a natural fit for iterative algorithms.

The synchronous overheads are directly connected to the dependency between

iterations.

K-Means clustering: K-Means clustering works to partition n objects into k

clusters in which each object belongs to the cluster with shortest distance. However,

there is no prior knowledge regarding the initialization of k clusters and should be

computed from the data. The objective function with K-Means is to minimize the

squared error function:

J =
k∑

j=1

n∑

i=1

||xij − cj||2 (4.1)

J is the objective function, k is the number of clusters, n is the number of cases, xi
j

is the node i, cj is the centroid for cluster j. Algorithm 1 shows the serial K-Means

Algorithm 1 Serial K-Means clustering algorithm

Input:
D: training examples , k clusters and ε convergence rate, t=0
Randomly initialize k centroids: µ1

t, µ2
t, ..., µk

t

1: Repeat
2: t← t+ 1
3: Cj ← ∅ for all j = 1, ..., k
4: for xj ∈ D do

5: j∗ ← argmini||xj − µi
t||2 // assign xj to closet centroid

6: Cj∗ ← Cj∗ ∪ {xj}
7: //Centroid update step
8: for i = 1 to k do
9: µi

t ← 1
||Ci||

∑
xj∈Ci

Xj

10: until
∑k

i=1 ||µi
t − µi

t−12|| ≤ ε

clustering algorithm. Data parallelism fits the parallelization of K-Means on the

57

assumption that data points are independent of each other. Our implementation of

K-Means are as follows:

1. Partition N/P data points to each node.

2. Leader node randomly choose K points and assigns them as the cluster means

and broadcast.

3. Each node finds membership for their local data point using the cluster mean.

4. Each node updates local means for each cluster.

5. Leader node collects these local means and broadcast the global mean.

Observations of our implementation:

1. Independent data points simplify the data distribution. We just split the data

points equally among the cluster. This is much easier than matrix decompo-

sition. Moreover, the data points remain unaltered.

2. Computation complexity is O(n2) for each worker node, computation intensive

comparing to PageRank and Spectral clustering.

3. Communication happens at the end of each iteration for collection local means

and then broadcasting the global mean.

PageRank: PageRank computes the score for each page (vertex) and then ranks

all the pages according to this score. The core of PageRank algorithm involves

computing the principal eigenvector of a Markov matrix representing the structured

58

graph. The simplest way to compute the left eigenvector is to apply the power

method [56]. More formally, the definition of PageRank πTG = πT . Algorithm

Algorithm 2 Power method for PageRank

Input:
Matrix G, k = −1, pick x(0) > 0, ||x(0)||1 = 1

1: Repeat
2: k = k + 1
3: [x(k+1)]T = [x(k)]TG
4: until ||x(k+1) − x(k)|| ≤ ε

2 shows the power method for computing the left eigenvector of matrix G. The

difference of successive iterates in the stopping criterion is just the residual ε, which

often lies between 10−8 and 10−4. And the core operation in Algorithm 2 is SpMV

as shown below. SpMV also serves as the essential part for Lanczos-SO algorithm

in spectral clustering.

Algorithm 2 YinEigen algorithm: eigenvalue decomposition
for large sparse matrix on top of YinMem.
INPUT: 1. Np: total number of processes;

2. Machines: nodes in the cluster ;
3. MaxIt: number of iterations;
4. k: top k eigenvalues ;
5. Partition table from Algorithm 1 ;
6. M : input matrix Mm⇥m stored in Accumulo;

OUTPUT: Top k eigenvalues �[1..k] and eigenvectors
Y m⇥k.

1: #Initialization:
1. Leader initializes a normalized random vector v1

2. Leader creates ↵ and � table
3. Np� 1 workers cache rows of M and v1 to Alluxio

2: #Iteration procedure: calculates ↵i and �i to construct
tridiagonal matrix Tmm whose eigenvalue and eigenvec-
tors are approximations to M , pRUN means run in parallel
with Np processes in Machines.

3: for i = 1 : MaxIt do
4: pRUN func1: v Mvi

5: pRUN func2: ↵i vT
i v

6: pRUN func3: v v � �i�1vi�1 � ↵ivi

7: pRUN func4: �i ||v||;
8: pRUN (Selectively orthogonalization)[27]
9: pRUN func5: vi+1 v/�i

10: end for
11: Tmm build tridiagonal matrix from ↵ and �
12: QDQT EIG(T); // Eigen decomposition of T
13: �[1..k] top k diagonal elements of D
14: Y VmQk; Qk is the columns of Q corresponding to �

R1

R2

...

Rm

v

=

R1

R2

...

Rm

M

⇥

C1

C2

...

Cm

vi

s s

m

m

table, meanwhile the Np�1 workers will cache rows of M and
v1 to Alluxio according to partition table from Algorithm 1.
YinEigen takes a power method to calculate ↵ and � which are
used to construct tridiagonal matrix Tmm whose eigenvalues
and eigenvectors are approximation to input matrix M (line 3
to 10). Each function inside the iteration is executed in par-
allel using the following syntax pRUN(‘function name ’, To-
tal number of processes, Nodes list). The first step in the it-
eration is sparse matrix-dense vector multiplication(sparseMV)
which dominates each iteration. The dense vector vi gets
updated after each iteration and vi needs to be shared across
the cluster since we do the multiplication based on rows (line
9). The figure in Algorithm 2 illustrates sparseMV. Algorithm
1 ensures that non-zero elements at each partition of matrix

M are more or less the same for load balancing. The result
vector v has the same partition as input matrix M , and partial
result Ri+1 of v are computed and cached in the main memory
of individual worker. To collate the result, we follow the data
flow illustrated in Fig. 3. The driver program makes a copy of
all these partial results which are saved as files in Alluxio, and
then caches through the collated file into HDD. All workers
runs scp to copy and load the updated vi+1 into Alluxio.

V. EXPERIMENTAL RESULTS

Our experiments use a 16-nodes cluster connected with
1Gbps switch with the following configuration: each node
has 8 processors each with Quad-Core AMD Opteron(tm)
processor 2376, 25GB of RAM, L1 cache 512KB, L2 cache
2MB. Hadoop 2.2.0. Accumulo 1.5.2. Zookeeper 3.4.6. D4M,
pMatlab, and Matlab 2010bSP2. CentOS 6.5 64-bit. Apache
Spark 1.6.1. We generate graph edges using the same 2 ⇥ 2
Kronecker algorithm as the Graph500 benchmark. Table I
shows the information of input symmetric matrix, the largest
matrix is 16-million with 0.01% sparseness (sparseness is
formulated by dividing the number of edges by the square of
matrix size). The matrix is generated in the following syntax:
source, target. Each line is an edge with source node pointing
to the target node. Each node is identified by a numerical ID.

Matrix size Edges Data file size Sparseness

4,096 0.2 million 4MB 1%
8,192 0.7 million 14MB 1%

16,384 2 million 40MB 1%
65,536 43 million 860MB 1%
262,144 0.6 billion 1.2GB 1%
524,288 1.4 billion 2.8GB 0.5%

1,048,576 5 billion 10GB 0.5%
16,777,216 24 billion 48GB 0.01%

TABLE I: Input data for YinMem

Fig. 4: Average running time per iteration for eigenvalue decomposition of varied sym-
metric matrix sizes. YinMem with Alluxio (green line) shows 6X speedup as compared
to HEIGEN and 3X speedup as compared to Spark. [3] reported the performance for
HEIGEN-PLAIN, YinMem w/ data w/o Alluxio, and YinMem w/o data w/o Alluxio for
matrix size up to 1M. This paper extended the experiment to 16M and also added the
performance of YinMem w/ data partition w/ Alluxio (green line) and Spark (blue line)

Fig. 4 shows the average running time of eigenvalue de-
composition of large sparse matrices listed in table I. Three

Figure 4.2: Sparse matrix-vector multiplication. The input of the multiplication are
the whole row of matrix M and the whole vector vi.

The simplest way to parallelize SpMV is to use row-based matrix to multiple

the whole vector vi. Since this is a sparse matrix, we assume that the RAM of a

worker is able to save at least two vectors of size n (n is the size of the matrix).

Observations of our implementation:

1. Data distribution requires co-locating the computation with data since the

59

smallest unit is a vector. That means the data storage system should be able

to provide a data partitioning interface to move vectors around based on the

computation.

2. Above problem also leads to load balance. The goal of load balance is to

ensure all workers will finish on the same time so synchronization won’t de

delayed by the most loaded worker.

3. Computation complexity is O(n) for each iteration.

4. Communication happens at the end of each iteration to collect partial results

and then broadcast to all workers.

Spectral clustering: Spectral clustering is an unsupervised clustering ap-

proach which not only tolerates noisy data but also produces better accuracy than

typical clustering algorithms such as k-means. Spectral clustering performs a dimen-

sionality reduction before running normal clustering in fewer dimensions, K-Means

for example. And eigenvalue decomposition is the dimensionality reduction tech-

nique. Fig. 4.3 illustrates an example of using spectral clustering to partition a

graph into 2 clusters. By representing the graph G into a spare matrix A, we can

investigate the eigenvector space to identify clusters for the original graph. The key

part of spectral clustering is to compute the top k eigenvalues and eigenvectors of

adjacency matrix A.

We focus on Lanczos-SO algorithm for computing the top k eigenvalues and

eigenvectors. The reasons why we choose Lanczos-SO algorithm is as follows:

60

U1

(1)Social network graph G

U3

U2

U8U9

U4 U10 U7

U5

U6

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

U1 0 1 1 0 0 0 0 1 0 0

U2 1 0 0 1 0 0 0 0 0 0

U3 1 0 0 1 0 0 0 0 0 0

U4 0 1 1 0 0 0 0 0 1 0

U5 1 0 0 0 0 0 1 0 0 0

U6 1 0 0 0 0 0 1 0 0 0

U7 0 0 0 0 1 1 0 0 0 1

U8 1 0 0 0 0 0 0 0 1 0

U9 0 0 0 1 0 0 0 1 0 0

U10 1 0 0 0 0 0 1 0 0 0

(2)Adjacency matrix A of graph G

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

U1 0.18 0.17 0.17 0 0.17 0.17 0 0.17 0 0.17

U2 0.17 0.38 0 0.22 0 0 0 0 0 0

U3 0.17 0 0.38 0.22 0 0 0 0 0 0

U4 0 0.22 0.22 0.3 0 0 0 0 0.22 0

U5 0.17 0 0 0 0.38 0 0.22 0 0 0

U6 0.17 0 0 0 0 0.38 0.22 0 0 0

U7 0 0 0 0 0.22 0.22 0.3 0 0 0.22

U8 0.17 0 0 0 0 0 0 0.26 0.38 0

U9 0 0 0 0.22 0 0 0 0.25 0.38 0

U10 0.17 0 0 0 0 0 0.22 0 0 0.38

(3)Normalized Laplacian matrix L of graph G

U1 U2

1 -0.44 0.072

2 -0.29 -0.22

3 -0.29 -0.22

4 -0.33 -0.43

5 -0.30 0.30

6 -0.30 0.30

7 -0.33 0.45

8 -0.29 -0.24

9 -0.28 -0.42

10 -0.30 0.30

(4a)First λ = 2 eigenvectors of L

1 0.892

2 0.750

(4b)First k = 2 eigenvalues

User Cluster

U1 1

U2 2

U3 2

U4 2

U5 1

U6 1

U7 1

U8 2

U9 2

U10 1

(5a)

x y

Centroid1 -0.73 0.62

Centroid2 -0.70 -0.69

(5b)

c1 c2

U1 0.14 0.41

U2 0.78 0.01

U3 0.78 0.01

U4 1.05 0.01

U5 0.05 1.01

U6 0.05 1.01

U7 0.03 1.15

U8 0.84 0.01

U9 1.12 0.02

U10 0.01 1.01

(5c)

x
-0.44-0.42 -0.4 -0.38-0.36-0.34-0.32 -0.3 -0.28-0.26-0.24

y

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

1

2, 3

8

4

5,6,10

7

9

(6)2-D space plot of nodes of graph G

U1

(7)The resulting partition of the 10 nodes of graph G into 2 clusters

U3

U2

U8U9

U4 U10 U7

U5

U6

Figure 4.3: Example of using spectral clustering to partition a graph into 2 clusters.

1. Lanczos method generally calculates top k largest eigenvalues as compared to

other algorithms such as power method.

2. Lanczos-SO filters spurious eigenvalues given the selective re-orthogonalizations.

Algorithm like Lanczos-NO suffers from precision problems.

3. The most expensive operation, a sparse matrix-vector multiplication, is more

cost-effective than matrix-matrix multiplication. This is particularly useful

for sparse large graphs.

61

Figure 4.4: Lanczos-SO(selective orthogonalization) algorithm

Fig. 4.4 shows the Lanczso-SO algorithm. Essentially the most important

steps are SpMV (line 3) and vector update (line 21). This is very similar to Algo-

rithm 2, power method for PageRank. The remaining steps in Fig. 4.4 involve light

operations like, vector-vector multiplication and scalar-vector multiplication, all of

which can be easily parallelized. The only overhead of parallelizing these steps is

the synchronization. pMatlab synchronizes all processes at the end of each parallel

operation. And this algorithm actually help to evaluate the pMatlab overhead for

iterative algorithms. Observations of our implementation:

62

1. Data distribution requires co-locating the computation with data partition.

Moreover, following operations can re-use the same data partition.

2. Load balance is also very important to maximize the performance.

3. Computation complexity is O(n) for each iteration.

4. Communication happens at the end of each iteration to collect partial results

and then broadcast to all workers.

4.3 Evaluation model

To understand the behaviors of iterative algorithms in parallel computation

system, we describe our evaluation model to assess the performance in a theoretical

way. Major steps of doing numerical analysis involve:

1. Data collection and data preprocessing . This complexity of data collection is

typically related with the applications. Data preprocessing aims to remove the

noisy data to generate clean input data. We simplify this step by assuming

data already collected and cleaned in the system.

2. Data distribution. Like discussed above, the initial data distribution plays a

key role in improving the performance. Unlike yInMem, most existing parallel

computation frameworks do not consider distribute data or partition data to

co-locate the computation with data. For example, MapReduce utilizes the

HDFS for data management, and HDFS lacks fine control over sparse matrix

entries. As a result, most MapReduce based frameworks will generate a lot of

63

data traffic during computation stage. This is one key bottleneck within such

frameworks. In Chapter 5, we will describe data partitioning algorithm with

yInMem to achieve load balance and data locality.

3. Data shuffling. On one hand, data distribution has a big impact on the amount

of exchanging data. On the other hand, the data collection and broadcast in

iterative algorithms also lead to burdens on the network which has a limited

bandwidth in the first place. Reducing both the data to be shuffled and also

the communication channels are important factors to improve performance.

To simplify the evaluation, we assume that all data can be cached in the cluster

memory. With the increasing bandwidth and decreasing price of RAM, this is a legit

assumption. Moreover, the communication cost becomes dominant in in-memory

computation since the expensive disk I/O no longer slows the computation. As a

result, the evaluation model will focus much on the communication cost.

Framework Data distribution Load balance P2P In-memory

Hadoop/Spark Coarse control N N Non-shared

Graphulo Fine control N Y N/A

yInMem Fine control Y Y Both

Table 4.3: Comparison of different frameworks for support of data distribution, load
balance, point-to-point(P2P) communication and in-memory

Table 4.3 compares different frameworks for support of data distribution, load

balance, point-to-point(P2P) communication and in-memory. yInMem strives to

bridge the gap between HPC and Hadoop community by utilizing the distributed

in-memory data management system from Hadoop and pMatlab for parallel com-

64

putation engine. Therefore, yInMem has support for all listed attributes.

Hadoop/Spark: The coarse control of data distribution in Hadoop/Spark

results from HDFS, which automatically divides the file into splits and save them

across the work nodes. This mechanism is only coarse level because it, in general,

fails to co-locate the computation and the data. Moreover, load balance is not

supported because of this. Point-to-point communication is also missing in MapRe-

duce based approach. Programmer can claim that writing complicated mapper and

reducer can channel direct communication between different mapper and reducer.

However, the programmer has no identification of each mapper or reducer. As a re-

sult, the network is saturated with (Key, Value) pairs during shuffling stage. Spark

extends MapReduce to RDDs which can be cached in memory. However, it also

inherits the limitation of MapReduce. Even though, programmer can aggregate

matrix elements from the same row to the worker nodes. A global load balance

scheduler is missing. Consider, the sparse graph which follows power-law distribu-

tion, each row has various non-zero elements. It is hard to guarantee equal size of

RDDs across the cluster.

Graphulo: Graphulo is a specified graph processing framework with linear

algebra support and is based on Accumulo database. Graphulo utilizes the Key −

V alue Data Model to model sparse graph in the database. One advantage of this

approach is natural integration with the data storage format with HDFS. As a

result, Graphulo offers fine control of data splitting. yInMem exploits the usage

of associative array on top of Accumulo. The idea is similar, but the benefits

of using associative array is first it is easy to program. It takes only a query to

65

get desired matrix elements from the database. Second, pre-splitting in Graphulo

normally involves careful considerations and human intervene. yInMem offers a

data partitioning algorithm to automate this process. Both Graphulo and yInMem

use pMatlab as the parallel computing engine, so P2P is supported. In addition,

yInMem provides in-memory computation, which can be deployed as shared or non-

shared mode. Non-shared mode in general outperforms shared mode because there

is no communication cost. However, non-shared mode requires the applications

can de decomposed into embarrassing parallel tasks. The three algorithms under

investigation fall into this category.

Evaluation model: We focus on the running time of a typical data analytical

process (Fig. 4.5), which is composed of first data collection, data preprocessing,

data partitioning, and computation. The first two steps are applications dependent,

Step one Step two Step three

Data preparation Data partition Parallel computation

Figure 4.5: A typical data processing flow in yInMem

we simply use a constant value Tpreparation to represent. Data partitioning (Tpartition)

plays a key role in yInMem to achieve data locality and load balance. In iterative

algorithms, it takes multiple iterations to converge. We use Tcomputation to represent

the time for computing. The following formula indicates the total running time of

an iterative algorithm:

66

T = Tpreparation + Tpartition + Tcomputation (4.2)

Tcomputation =
n∑

i=1

(ti + tiagg + tibroadcast + tisyncrhonization) (4.3)

MapReduce model mixes Tpartition with Tcomputation. As a result, it is hard to accu-

rately measure the time for each step. yInMem offers the partitioning algorithm and

runs a parallel operation for each step, we argue that this can potentially achieve

the theoretical maximum performance in cluster computers. Equation 4.3 shows the

time for computation, in which n is the number of iterations, ti the numerical oper-

ation time, tagg the time to aggregate partial results, tbroadcast the time to broadcast

the variable, and tsyncrhonization the time to synchronize all worker processes.

Data partition is important because ti is proportional to the input size.

Moreover, the tsyncrhonization will always wait for the slowest process to finish and

then proceed. Had the work loads not been evenly distributed, tsyncrhonization will

be equal to the sequential running time on the whole dataset (worst case). tagg

is the time for the leader process to aggregate partial results from workers. This

time is proportional to the output size (Svpartial) from this process and divide by the

network speed (Snetwork). In SpMV, it will be a partial vector v. More formally:

tagg = Svpartial/Snetwork (4.4)

67

tbroadcast is the time for the leader process to broadcast aggregated result to all worker

processes. This time is also proportional to the size of the aggregated result (Svagg)

and divide by the network speed ((Snetwork)).

tbroadcast = Svagg/Snetwork (4.5)

cessing frameworks in general provide simple programming
model which makes these systems unsuitable for implementing
complex algorithms based on matrix operations. For example,
restrictive MapReduce communication pattern does not allow
efficient point to point communication. This limitation has
led to the development of domain specific systems. Pregel
[19], for example, has been created in particular for graph
algorithms. Ricardo [22] and HAMA [28] are recent efforts to
better support large-scale matrix operations but the inheritance
of MapReduce interface is still not efficient. MadLINQ [24] is
another example of linear algebra platform built on Dryad [25]
but has limit support for sparse matrix computations. Presto
[26] is a distributed machine learning and graph processing
platform with support for sparse matrices, building on top of R.
Unlike MadLINQ and Presto, YinMem inherits both HPC and
big data processing ecosystems such as Hadoop, Accumulo,
and Alluxio. In addition, data in Alluxio can be shared between
different tasks.

0 1

0

2 3

(a) The leader process or Process 0 collects partial results from
other processes

1

0

2 3

(b) The leader process or Process 0 broadcasts the collected results
to the HDD/SSD of other workers via linux secure copy (scp)

Alluxio
DRAM

1

Worker1

DRAM

2

Worker2

DRAM

3

Worker3

(c) Each worker process uploads the data from HDD/SSD to the DRAM.
Alluxio can be viewed as a collection of DRAMs from workers

Fig. 3: Example of data sharing in YinMem with Alluxio. The time cost consists of
the following three steps: a. T1, the leader process or Process 0 collects partial results
from other processes b. T2, worker processes make a secure copy (scp) of the collected
results from the leader process to their local HDD/SSD c. T3, worker processes upload
the collected result to their DRAM; Alluxio can be viewed as a global addressable file-
system constructed by DRAM from workers.

YinMem enables data sharing by deploying Alluxio, an
in-memory global data storage system to which all worker
nodes have access. Alluxio uses two different storage types:
Alluxio managed storage and under storage. Alluxio managed

storage is the memory, SSD, and/or HDD allocated to Alluxio
workers. Under storage is the storage resource managed by
the underlying storage system, such as S3, Swift or HDFS.
Fig. 3 illustrates the data sharing mechanism in YinMem.
Fig. 3(a) explains how intermediate results from workers are
collected (T1) and then (b) broadcast to all workers (T2).
Intermediate results are differentiated by process ID. The
driver program collates these files and write a collated version
to Alluxio located at the main memory of the driver node.
In our experiment, we find out that Alluxio does not support
parallel in-memory copy of the collated result, we end up using
(b) linux scp command to copy to HDD and then (c) load
to the DRAM (T3). Two potential improvement over Alluxio
could be file appending and parallel reading. File appending
is critical to collating all partial results from workers into one;
parallel reading is fundamental to broadcasting data to worker
processes.

C. Parameter tuning

Parameter tuning consists of configuring parameters within
the cluster environment to maximize the performance for user
tasks. In Hadoop, this normally involves setting the number
of reducer. Spark is more challenging because there are more
parameters and some of them are not easy to configure without
prior knowledge. For example, one typical error using Spark is
Java out of memory error. Building RDDs normally involves
shuffling small data chunks and then to group to several
executors (worker node runs executors for assigned tasks).
Also, the memory size for each executor has to be configured
when submitting the task. Sparse matrix makes it hard to
estimate this parameter prior to task submission. YinMem in
general has no parameter tuning problems since load balancing
is achieved; out of memory error is not encountered unless the
input data size exceeds the Alluxio memory capacity.

IV. APPLICATIONS

Many real-world applications can be easily expressed as
matrix operations using machine learning, graph algorithms,
and statistical analyses. Big data system researchers have
mainly focused on algorithms like Kmeans, PageRank, and
linear regression. In this paper, we focus on eigenvalue de-
composition for large sparse matrix, and we have developed
YinEigen, an algorithm to calculate top k eigenvalues and
eigenvectors for large sparse matrix on top of YinMem based
on Lanczos-SO [27] algorithm.

Algorithm 2 shows how we calculate the top k eigenval-
ues and eigenvectors for large sparse matrix. We argue that
YinEigen is a good representation of iterative machine learning
algorithms because: first, it involves the sparse matrix-dense
vector multiplication (line 4) which dominates every single
iteration, load balancing should be taken into consideration
for maximum performance; second, data sharing occurs at each
iteration when the dense vector is updated and broadcast across
the cluster to all worker nodes(line 9).

During the initialization stage, the leader first generates a
normalized random vector vM⇥1

i and also creates ↵ and �

Figure 4.6: yInMem data aggregation and data broadcasting with Alluxio for SpMV.

Fig. 4.6 shows the operation of tagg and tbroadcast. Typically, a good data

partition should generate equal size of input at each process (colorful bars). The

output or aggregated result is equal to the size of a vector. When compared with

Hadoop/Spark, the advantage of yInMem is a fine control over data computation and

data sharing. The limitation of this approach, however, is when the intermediate

68

results grow significantly large. The leader process might be over loaded. This

case should be avoided by designing a good parallel algorithm, for example, pick

algorithms with SpMV over matrix-matrix multiplication.

4.4 Summary

This chapter provides a complete analysis of workload characterization. More

specifically, the characteristics of graph data have been discussed. In this work, we

cover not only synthetic graph generated by Graph500 benchmark, but also real-

world graph. The sparsity nature of these graphs have led to one of the biggest

challenges for cluster computer, namely load imbalance. Exiting frameworks are

not taking serious considerations to optimize the general performance, examples

include Spark/Hadoop. yInMem is designed so that data balance can be achieved

across the cluster to speed up the iterative algorithms.

This chapter also summarizes the characteristics of iterative machine learning

or graph processing algorithms, including K-Means clustering, PageRank, and Spec-

tral clustering. While picking the right algorithm is very important to gain speedup,

a careful co-location of computation and data can also greatly impact the system

performance. In addition, we present a theoretical analysis model for yInMem. In

the next chapter, we will mainly discuss the data partition algorithm in yInMem for

data locality and load balance.

69

Chapter 5: Data partitioning

Performance of cluster computing (e.g. MapReduce, DryadLINQ) heavily de-

pends on how data is partitioned. Reducing imbalance is especially important for

iterative algorithms as the overall execution time can be significantly high due to the

skew among workers. As seen in Fig. 5.1, data partitioning reduces the completion

time by around 22200 seconds (6.17 hours) when PageRank algorithm is run for 20

iterations with 16-million scale matrix.

0 5 10 15 20

0

1

2

3

4
·104

Iteration Count

T
im

e
(s

ec
on

d
s)

W/O data partitioning
W data partitioning

Figure 5.1: Comparison of overall execution time with and without data partitioning
with PageRank. The lower the better.

The current state of the art systems have not yet to give an optimal solution

70

to partition the data to maximize the performance. By performance, we generally

refer to various cost metrics including the number of processes required, CPU time,

memory utilization, disk and network I/O.

Techniques proposed by the database community have shed some light on the

optimal data partitions. yInMem is one example of utilizing the data management

facilities from NoSQL database to find the optimal data partition for iterative ma-

chine learning algorithms.

5.1 Challenges with existing systems

Recent efforts in distributed computing frameworks have significantly simpli-

fied the development of distributed large-scale applications. Examples are MapRe-

duce, Hadoop, and Dryad. In such systems, the parallelism is directly controlled by

the data partition. The simplicity of MapReduce helps scaling the cluster horizon-

tally. However, the performance of these systems are not competitive because the

partitioning techniques are very primitive.

The simple hash and range partitioning are two most widely used methods

to partition the datasets in these systems. There are many potential questions

need addressing. For example, what partition function and how many partitions?

Problems with existing systems are listed as follows:

1. It leads to unbalanced partitions in terms of data or computation using a hash

function or a set of equally spaced range keys.

2. The number of partitions is hard to estimate for optimal performance. There is

71

a trade-off between the amount of computation per partition and the network

traffic as discussed in Chapter 4.

3. For jobs with a chain of tasks, the data or computation skew is likely to occur

in later tasks. One example is the number of reducers normally is smaller than

the mappers. As a result, data distribution is skewed to these reducers.

4. Some real-time applications normally generate dynamic datasets (e.g., data

streaming). As a result, old partitioning schemes might no longer be the best

strategy.

yInMem tackles above challenges with the support from NoSQL database,

which gives a statistical information about input data. Consider a real example

from our previous work [55, 57] that discovers communities in Twitter during Hur-

ricane Sandy. We first save tweets in associative arrays in Accumulo. Consider, for

example, an associative array Assoc(′Tweet1′,′ Status | 200′) holding information

about user’s tweet Status (Table 5.1). Table 5.2 shows how to save tweets in D4M

schema. Remember, non-zero cells are not saved and 1 means this cell exists.

TweetID User Status

Tweet1 Joe 200

Tweet2 Adam 200

Tweet3 Jane 301

Table 5.1: A simple example with information about three tweets

TedgeDeg in Table 5.3 is the degree table which sums up the total number of

entries for each column. This information is extremely useful for partitioning the

72

TweetID User| Joe User| Adam User| Jane Status| 200 Status| 301

Tweet1 1 1

Tweet2 1 1

Tweet3 1 1

Table 5.2: Tweets expanded in D4M schema

data across the cluster, the reason being we obtain the global information about

the sparse graph. In SpMV, TedgeDeg represents how many non-zero entries in

each row. We can rely on this table to understand the distribution of data and then

balance the load by copying the load to each work node. Our scheduler relies on

this table to obtain the sparseness information.

User| Joe User| Adam User| Jane Status| 200 Status| 301

Degree 1 1 1 2 1

Table 5.3: TedgeDeg: a degree table containing the total number of entries of each column

5.2 Data partition in yInMem

yInMem provides data partitioning by collecting statistical information of large

sparse matrix from Accumulo. Below algorithm 3 is targeted to achieve load balance

according to the computation resources of the cluster.

The input for algorithm 3 include: (1)Np the total number of processes (2)n the

matrix size (3)startCol, start column number, which begins with 1 (4)TotalEn is

the total non-zero entries in the matrix (5)Load : TotalEn/(Np−1), load is the ideal

average load per process (6) myStep is a step range to speed up the computation

and (7)avgCol : floor(n/(Np − 1)), average columns per process. avgCol serves

73

Algorithm 3 Data partitioning algorithm for achieving load balance for large sparse
matrix
INPUT: 1. Np: total number of processes;

2. n: matrix size ;
3. startCol : 1: start column;
4. TotalEn: non-zero entries in the matrix;
5. Load : TotalEn/(Np− 1): avg load/process;
6. myStep: move steps;
7. avgCol : floor(n/(Np− 1)): avg cols/process

OUTPUT: PartitionTable: (Np-2) number of ticks to indicate the last row id of
matrix for the corresponding process id.

1: for ticks = 1 : Np− 2 do
2: endCol = [floor(startCol/avgCol) + 1] ∗ avgCol
3: CurrentLoad = Sum(startCol : endCol)
4: if CurrentLoad > Load then
5: while CurrentLoad > Load do
6: CurrentLoad = CurrentLoad− Sum((endCol −myStep) : endCol)
7: endCol = endCol −myStep
8: else
9: while CurrentLoad < Load do

10: CurrentLoad = CurrentLoad+ Sum(endCol : (endCol +myStep))
11: endCol = endCol +myStep

12: startCol = endCol + 1
13: Save endCol to current ticks

as the baseline of a naive partition approach, in which we simply divide the matrix

into equal number of columns per process. This naive approach is most likely to

lead to imbalance load because of the sparsity of the matrix. We adjust the load

per process based on the naive approach, and update CurrentLoad based on the

non-zero entries in the updated range. A range is defined by the startCol and

endCol. myStep is the adjusting rate to control how fast we update the range. By

comparing CurrentLoad and Load, we can update the endCol of current range to

make sure CurrentLoad is more or less the same as Load.

Algorithm 3 achieves balanced workload in terms of co-location data and com-

74

putation. The number of partitions equal to the number of processes spawned in the

cluster, maximizing the resource usage, e.g. CPU, memory utilization, minimizing

the network I/O. Computation skew is not likely to happen in SpMV because all

process will share almost the same amount of workload. At last, for real-time appli-

cations, we can easily run a monitoring process to watch the change of TedgeDeg

to update the partitions. However, in this work, we have not yet explored real-time

applications.

Algorithm 3 demonstrates how to arrange rows of input matrix to all processes

in worker nodes to achieve load balancing. The output of algorithm 3 is a partition

table which shows how the sparse matrix is partitioned among all processes. All

working processes will cache their input to Alluxio according to the partition table.

The time complexity for Algorithm 3 is O((np) where np is total number of processes.

Fig.5.2 lists an example of how yInMem generates a partition table according

to Algorithm 3. Load in this example is 17/4 = 5, 5 entries per process. Therefore,

process 1 will work on row 1 while process 3 will work on both row 3 and row 4.

Each process starts caching the corresponding rows of matrix to the RAM of hosting

worker node by reading this partition table. Benefits of this partition algorithm are:

1. Data is co-located with computation. In SpMV, it is ideal to save partitions of

rows of matrix into each worker process. For MapReduce, same partitioning

purpose can be achieved by carefully choosing the key and hash function.

However, yInMem offers a data partition algorithm prior to computation.

2. Workload balance is ensured by assigning same Load to each worker. MapRe-

75

Figure 5.2: Example of data partition for a sparse matrix. Each process spawned
by the driver program will cache their corresponding rows of matrix to the RAM of
hosting worker node by reading the partition table generated from Algorithm 3.

duce based approach is generally hard to achieve this goal. To simplify the

discussion, we assume that all workers have almost the same computing power

and the computation time is proportional to its working load.

3. Maximization of computing resources. yInMem guarantees that each worker

node will share the same workload in cluster computers.

76

5.2.1 Memory management

After generating the partitioning table, the next step is to query the database

and cache these entries into Alluxio. Memory management problem arises naturally.

For example, how much RAM should be assigned for caching? Since yInMem collects

the global information about the input data, it becomes easy to estimate the memory

footprint for each application.

The average load for each process can be estimated in the following equation:

Avg =
Num Of Entries

Num Of Processes
(5.1)

where Num Of Entries is the total number of entries in the matrix which can be

obtained from Accumulo degree table and Num Of Process the total number of

processes. Moreover, average main memory footage (MM) can be evaluated by the

following formula:

MM = (
α ∗ S2

N
+ S)× 3B (5.2)

Where α is the sparseness of the matrix, S is the size of the matrix, N means the

number of machines, 3 Byte for an associative array. For matrix with size 262,144,

the main memory requirement is around 240MB with sparseness 1% and 8 machines.

Such fine control of data elements provide another opportunity for scheduling in-

memory distributed computation, for example Spark [29] uses Resilient Distributed

Datasets [23] for such computation on large clusters. One known problem for RDD

is when the size of RDD exceeds the memory capacity, and it is hard for Spark to

77

estimate the size prior to computation since RDDs are constructed by transforming

files in HDFS using operators like map, filter etc. Programmers typically have no

idea how files are distributed in HDFS.

5.2.2 Evaluation

To evaluate the partition algorithm, we test Lanczos-SO 4 with our synthetic

dataset matrix size 1 million without in-memory file system. Algorithm 4 shows the

major code of Lanczos-SO algorithm for computing top k eigenvalues and eigenvec-

tors of a large sparse matrix.

Algorithm 4 Major part of Lanczos-SO

Input:
Matrix: An×n, random n− vector b, iteration steps m, error threshold ε
β0 ← 0, v0 ← 0, v1 ← b/||b||

1: for i← 1, n do
2: v ← A× vi
3: αi ← vi

Tv
4: v ← v − βi−1vi−1 − αivi
5: βi ← ||v||
6: vi+1 ← v/βi

MV: matrix-vector multiplication Line 2

Alpha: dot product of two vectors to compute α Line 3

OrtV: orthogonalize against two previous basis vectors Line 4

Beta: normalization of a vector to compute β Line 5

UpdateV: Update vector vi+1 Line 6

Table 5.4: Operation definition in Lanczos-SO algorithm

Table 5.4 shows the definition of each operation in Lanczos-SO algorithm.

SpMV dominates the computation. Other operations mainly involve vector-vector

78

multiplication, scalar-vector multiplication and normalization of a vector, which are

computationally easier than SpMV (Fig. 5.3).

Figure 5.3: Average running time for different Lanczos-SO operations on HEIGEN
and proposed architecture for matrix with size of one million

Fig. 5.3 lists average running time of operations in Table 5.4. On average,

MV is the most expensive operation among all of them. We compared 5 sets of

experiments, HEIGEN is a MapReduce based approach, while the rest 4 sets are

conducted with yInMem, in which 2 are tested without data partitioning and the

other 2 are tested with data partitioning. Because this chapter focuses on how data

partitioning impact the performance, we focus on the most expensive operation

MV. In pMatlab, we implement SpMV with the following steps in Table 5.5.

The average running time of SpMV without caching without data partition is

listed in Fig. 5.4. The matrix entries distribution is listed in Fig. 5.5 for matrix

with size of 1 million. The average running time of SpMV with data partition is

79

RV: Reading Vector

RM: Reading Matrix

PP: Post Processing: convert string into matrix

MUL: Matrix Vector Multiplication

WB: Writing result Back

Table 5.5: Operation definition for MV implementation

listed in Fig. 5.6.

Figure 5.4: Average running time of operations in MV by distributing columns
equally into 14 machines for matrix with size of one million.

Naive Data Partition: Fig. 5.4 shows the average running time of SpMV

using a naive data partitioning algorithm. A naive data partitioning algorithm

simply divides the matrix into chunks with equal number of columns. And each

worker work on the same number of ranges of chunks. Due to the skewed nature

of the input data, naive data partitioning also results in skewed data distribution.

80

Figure 5.5: Statistical information obtained from Accumulo table for non-zero en-
tries distribution for matrix with size 1048576*1048576

In Fig. 5.4, x-axis is the machine ID while y-axis is the running time. Among all

of the operations, RM (reading matrix) is the most expensive operation, which is

proportional to the input size. Machine 2 has the highest cost of reading matrix, the

reason being input data in this machine has the highest density (evidenced in Fig.

5.5). Fig. 5.5 shows the statistical information about matrix with size of one million:

x-axis shows the column number and y-axis the total number of non-zero entries in

each column. Other operations are much faster than RM. For iterative algorithms,

the leader process will synchronize the parallel computations in the cluster, which

means it will always wait for the slowest machine to finish (Machine 2 in this case).

In addition, the bar heights distribution in both Fig. 5.4 and Fig. 5.5 is similar

due to naive partitioning mechanism.

yInMem Data Partition: Fig. 5.6 shows the average running time of SpMV

with data partitioning on the same matrix. Fig. 5.6 shows 3X faster for RM because

81

we have scheduled almost the same work load across the working processes. In

addition, other operations like PP, MUL, and WB also cost more or less the same

amount of time.

Figure 5.6: Average running time of operations in MV by distributing work loads
equally to working machines for matrix with size of one million.

Notice the result obtained in Fig. 5.6 is conducted without caching. By caching

the data into in-memory file system, we can significantly improve the performance

by reducing expensive disk I/O.

Recall the evaluation model discussed in last chapter, we argue that yInMem

has offered an optimal partition solution.

T = Tpreparation + Tpartition + Tcomputation (5.3)

82

Tcomputation =
n∑

i=1

(ti + tiagg + tibroadcast + tisyncrhonization) (5.4)

tagg = np ∗ Svpartial/Snetwork (5.5)

tbroadcast = np ∗ Svagg/Snetwork (5.6)

First, tsyncrhonization has been optimized since all processes will finish at around the

same time, there is no extra waiting for the slowest process. Second, tagg and ti

have also been optimized because of balanced workload. tbroadcast is typically not

impacted because it is only proportional to the vector size. In addition, Tpartition is

the running time of Algorithm 3 with the time complexity of O(np).

5.3 Related work

FiDoop-DP [58] was developed to use the Voronoi diagram-based data parti-

tioning technique to boost the performance of parallel Frequent Itemset Mining on

Hadoop clusters. More formally, FiDoop-DP aggregates highly similar transactions

into a data partition to improve locality. LBP(Locality Based Partitioning) [59]

clusters data blocks from a same node into a single partition, avoiding the spoil

time for slot reallocation and reducing the initialization time for multiple tasks.

They also provide a LBP-SA(LBP Skew Aware) to partition the data file according

their record and computation skews. The fundamental difference of yInMem is that

83

yInMem uses NoSQL distributed data management system to partition the data

and also ensures load balance.

Pronto [60] extends R to a distributed system for iterative algorithms with

a focus on matrix operations. To conquer the imbalance and computation skew,

Pronto adapts a dynamic repartition method using the concept of distributed arrays.

Pronto tracks the number of elements in a partition (ei which is similar to avgLoad)

and execution time fo the task (ti), and then dynamically repartition data to reduce

load imbalance. This mechanism works well in a shared memory environment, but

it becomes hard and expensive in non-shared environment.

5.4 Summary

This chapter discusses the impact of data partition in a cluster computer

environment. We have presented the challenges with current systems and introduced

the data partitioning algorithm deployed in yInMem. By exploring the usage of

associative arrays in a NoSQL database, data partitioning algorithm presented in

yInMem offers an optimal solution. We have also verified the efficiency of yInMem

by comparing the naive partitioning method and our method.

The data partitioning algorithm in yInMem has the following benefits:

1. Minimizing the inter-node communication by breaking data dependencies for

embarrassing parallelization. In SpMV example, yInMem caches the rows of

matrix into different machines since row is the smallest unit for such operation.

There is no communication among rows.

84

2. The data partitioning algorithm also ensures all machines will bear almost

the same amount of work. This guarantees the maximal utilization of cluster

resources.

85

Chapter 6: Evaluation

This chapter presents most of the experimental results to evaluate the per-

formance of yInMem. We have implemented the three following algorithms: (1)

K-Means clustering (2) PageRank and (3) Spectral clustering mainly using the par-

allel SpMV APIs and data partitioning algorithm introduced in chapter 5. Ex-

periments are conducted in our Bluewave cluster using both synthetic datasets and

real-world data sets. We have also compared the performance of Hadoop, Spark, and

MEM-HDFS with yInMem. Hadoop is a HDD-based approach, serving as the base-

line. MEM-HDFS caches the both the initial input data and intermediate results

to speed up the computation. And Spark caches input and exchange intermediate

results in RDDs. Machine learning libraries have been developed to support both

Hadoop and Spark. Mahout [31] is a machine learning library based on Hadoop,

while MLlib [30] is Apache Spark’s scalable machine learning library. We directly

use existing libraries to assess the performance of these algorithms on each parallel

system respectively.

86

6.1 System configuration

This section describes the cluster computer configurations in Bluewave at our

CHMPR lab. Our experiments use a 32-nodes cluster connected with 10Gbps switch

with the following configuration: each node has 8 processors each with Quad-Core

AMD Opteron(tm) processor 2376, 25GB of RAM, L1 cache 512KB, L2 cache 2MB.

Hadoop 2.2.0. Accumulo 1.5.2. Zookeeper 3.4.6. D4M, pMatlab, and Matlab

2010bSP2. CentOS 6.5 64-bit. Apache Spark 1.6.1.

Out of all 32-nodes, 1 node is designated as the namenode and another node

as the leader node for pMatlab. So there are 14 nodes as the worker nodes. All

input data have been uploaded into Accumulo table in adjacency matrix format

, and TedgeDeg table included for each application. Remember TedgeDeg table

maintains the metadata about the non-zero elements in each row of sparse matrix.

Datasets: Table 6.1 shows the graphs used for evaluation. Friendster is the

largest network graph we can find in [53] with 65 million vertices and 1.8 billion

edges. Twitter graph comes next in terms of size. Road graph and Orkut graph

have 1.9 and 3 million vertices respectively , but Orkut has a much higher degree

than Road. All graphs are real world-data downloaded from [53] except Kron which

is generated by Graph500 benchmark.

Table 6.2 is the large synthetic dataset generated to fill the memory capacity

of our cluster. The largest dataset is the sparse matrix with 16 million vertices and

24 billion edges, which is around 48GB.

87

Graph Description Vertices(m) Edges(m) Degree Directed

Kron Synthetic 4k-16 0.2-24000 Varies N
Friendster social network 65 1800 27.7 N
Twitter social network 17 476 28 Y
Road USA road network 1.9 2 1.05 N
Orkut social network 3 117 39 Y

Table 6.1: Graphs used for evaluation. All graphs are real-world data [53] except
Kron which is generated by Graph500 benchmark.

6.2 Data partitioning

In chapter 5, we have discussed the significance of data partition in cluster

computers. We have also presented the result on synthetic dataset with the matrix

size 1 million. In this section, we will cover not only the synthetic dataset, but also

the real-world graph to strike a comparison. Table 6.3 lists the two datasets we are

comparing.

Fig. 6.3 compares the per worker execution time for SpMV with synthetic

1-million scale matrix and Friendster graph without Alluxio both before and after

data partitioning. By comparing both execution time, we can see the parallelism

Matrix size Edges Data file size Degree

4,096 0.2 million 4MB 48.8
8,192 0.7 million 14MB 85.5
16,384 2 million 40MB 122
65,536 43 million 860MB 6,561
262,144 0.6 billion 1.2GB 22,888
524,288 1.4 billion 2.8GB 23,121

1,048,576 5 billion 10GB 26,122
16,777,216 24 billion 48GB 14,305

Table 6.2: Synthetic graph generated using Kronnecker generator

88

Graph Description Vertices Edges Degree Directed

Kron Synthetic 1 million 5 billion 2.6 million N
Friendster social network 65 million 1.8 billion 27.7 N

Table 6.3: Dataset for data partitioning

100 200 300 400 500 600 700 800
1

4

7

10

13

Time (seconds)

W
or

ke
rs

Fetch
Execute

50 100 150 200 250

1

4

7

10

13

Time (seconds)

W
or

ke
rs

Figure 6.1: Per worker execution time for sparseMV with synthetic 1-million scale
matrix without Alluxio (a) before data partitioning (b) after data partitioning. The
shorter the bar of all workers the better.

70

Figure 6.1: synthetic matrix(1 million)

100 200 300 400 500 600 700 800
1

4

7

10

13

Time (seconds)

W
or

ke
rs

Fetch
Execute

50 100 150

1

4

7

10

13

Time (seconds)

W
or

ke
rs

Figure 6.2: Per worker execution time for sparseMV with Friendster without Alluxio
(a) before data partitioning (b) after data partitioning. The shorter the bar of all
workers the better.

71

Figure 6.2: Friendster

Figure 6.3: Comparison of per worker execution time for sparseMV. Left: synthetic
1 million scale matrix. Right: Friendster graph. (top: before partitioning; down:
after partitioning

between our synthetic dataset and the Friendster (real-world application). Top

figures indicate the inherent imbalanced distribution of the data. After running

data partition, both running time get significantly reduced and all workers in both

complete at around the same time, proving the efficiency of data partition. One

difference between these two sets is the execute time. The Friendster takes longer

to execute, the reason is it has more vertices than Kron (65 times more), meanwhile

the fetch time is slightly less than Kron, because the total number of edges is less

89

than Kron. Fig. 6.6 compares the per worker execution time for Road and Orkut

Graph Description Vertices Edges Degree Directed

Road USA road network 1.9 million 2 million 1.05 N
Orkut social network 3 million 117 million 39 Y

Table 6.4: Dataset of Road and Orkut

10 20 30 40 50 60 70 80
1

4

7

10

13

Time (seconds)

W
or

ke
rs

Fetch
Execute

10 20 30 40

1

4

7

10

13

Time (seconds)

W
or

ke
rs

Figure 6.4: synthetic matrix(1 million)

10 20 30 40 50 60 70 80
1

4

7

10

13

Time (seconds)

W
or

ke
rs

Fetch
Execute

10 20 30 40 50 60

1

4

7

10

13

Time (seconds)

W
or

ke
rs

Figure 6.5: Friendster

Figure 6.6: Comparison of per worker execution time for sparseMV. Left: Road.
Right: Orkut. (top: before partitioning; down: after partitioning

without Alluxio both before and after data partitioning. We see similar result as

Fig. 6.3. Fig. 6.7 shows the result for Twitter graph.

Above listed results prove the optimal data partition with yInMem for both

synthetic and real-world graphs. We also observe that each process completes the

assigned tasks at around the same time, reducing the synchronization overhead for

iterative algorithms. In addition, the fetch time is equivalent to the input data size,

indicating the workload balance has been achieved for all cases. This is essential to

maximize the computing resources in the cluster.

90

0 20 40 60 80 100 120 140 160
1

4

7

10

13

Time (seconds)

W
or

ke
rs

Fetch
Execute

0 20 40 60 80 100 120 140

1

4

7

10

13

Time (seconds)

W
or

ke
rs

Figure 6.7: Twitter

While all of above experiments are conducted on HDD level, the performance

gain is also applicable when data splits are cached in the in-memory file system.

First, the computation time is, in general, linear to the input computing data size

for large sparse data. Second, Such data partitioning also balances the memory

usage across the cluster. This creates new opportunities for memory management

in a cluster computing system. At last, it also benefits asynchronized computation

because the programmer has fine control over how to achieve load balance on a

memory level.

6.3 Performance with iterative algorithms

This section demonstrates the overall running time of iterative algorithms: (1)

Spectral clustering algorithms (2) PageRank and (3) K-Means clustering on both

synthetic dataset and real world graph.

91

6.3.1 Spectral clustering

We have implemented an YinEigen algorithm 5 to compute top k eigenvalues

and eigenvectors for large sparse graph. We argue that YinEigen is a good represen-

tation of iterative machine learning algorithms because: first, it involves the sparse

matrix-dense vector multiplication (line 7) which dominates every single iteration,

load balancing should be taken into consideration for maximum performance; sec-

ond, data sharing occurs at each iteration when the dense vector is updated and

broadcast across the cluster to all worker nodes(line 12). Compared to PageRank,

YinEigen has more extra operations other than SpMV and vector update.

During the initialization stage, the leader first generates a normalized ran-

dom vector vM×1i and also creates α and β table. The input of YinEigen includes

the partition table generated from Algorithm 3. And it assumes that all worker

nodes have already cached corresponding data partition in Alluxio. YinEigen takes

a power method to calculate α and β which are used to construct tridiagonal ma-

trix Tmm whose eigenvalues and eigenvectors are approximation to input matrix M

(line 3 to 10). Each function inside the iteration is executed in parallel using the fol-

lowing syntax pRUN(‘function name ’, Total number of processes, Nodes list). The

first step in the iteration is sparse matrix-dense vector multiplication(SpMV) which

dominates each iteration. The dense vector vi gets updated after each iteration and

vi needs to be shared across the cluster since we do the multiplication based on rows

(line 9). The result vector v has the same partition as input matrix M , and partial

result Ri+1 of v are computed and cached in the main memory of individual worker.

92

Algorithm 5 YinEigen algorithm: eigenvalue decomposition for large sparse matrix
on top of yInMem.

INPUT: 1. Np: total number of processes;
2. Machines: nodes in the cluster ;
3. MaxIt: number of iterations;
4. k: top k eigenvalues ;
5. Partition table from Algorithm 3 ;
6. M : input matrix Mm×m stored in Accumulo;

OUTPUT: Top k eigenvalues λ[1..k] and eigenvectors Y m×k.

1: #Initialization:
2: 1. Leader initializes a normalized random vector v1
3: 2. Leader creates α and β table
4: 3. Np− 1 workers cache rows of M and v1 to Alluxio
5: #Iteration procedure: calculates αi and βi to construct tridiagonal matrix Tmm

whose eigenvalue and eigenvectors are approximations to M , pRUN means run
in parallel with Np processes in Machines.

6: for i = 1 : MaxIt do
7: pRUN func1: v ←Mvi
8: pRUN func2: αi ← vTi v
9: pRUN func3: v ← v − βi−1vi−1 − αivi

10: pRUN func4: βi ← ||v||;
11: pRUN (Selectively orthogonalization) [21]
12: pRUN func5: vi+1 ← v/βi

13: Tmm ← build tridiagonal matrix from α and β
14: QDQT ← EIG(T); // Eigen decomposition of T
15: λ[1..k]← top k diagonal elements of D
16: Y ← VmQk; Qk is the columns of Q corresponding to λ

To collate the result, the driver program makes a copy of all these partial results

which are saved as files in Alluxio, and then caches through the collated file into

HDD. All workers runs scp to copy and load the updated vi+1 into Alluxio.

Fig. 6.8 shows the average running time of eigenvalue decomposition of various

input graphs (Table 6.1 6.2) with the following frameworks: 1. HEIGEN-PLAIN,

MapReduce based approach without in-memory support. 2. yInMem. 3. Spark. 4.

MEM-HDFS. The input graph is arranged in ascending order of matrix size.

HEIGEN-PLAIN is a MapReduce based approach without caching any data,

93

Figure 6.8: Average running time per iteration for eigenvalue decomposition of
various input graphs. yInMem with Alluxio (yellow line) shows 6X speedup as
compared to HEIGEN and 3X speedup as compared to Spark.

MEM-HDFS is also based on MapReduce with data caching. The difference between

MEM-HDFS and Spark is the data replication on memory level. Spark uses lineage

to track the computing logics for generating RDDs, removing the data replication

for fault-tolerance. MEM-HDFS, however, is slower than Spark when caching the

intermediate result because of memory level replication. For yInMem, we run three

different sets of experiment, the best performance is when both data partitioning

and Alluxio are used.

The top line is when naive data partitioning algorithm is used to split the

input matrix without Alluxio. Due to the power-law distribution of the input graph,

94

every iteration is waiting for the slowest process to complete. As a result, it has the

worst performance among all. HEIGEN-PLAIN runs consistently around 1300s per

iteration, the reason is first data is very sparse, the shuffling cost is not much affected

by the number of vertices. The following three lines are: Spark, MEM-HDFS and

yInMem with data partition and without Alluxio. yInMem is slightly faster than

previous two, proving the importance of an optimal data partition. Spark is better

than MEM-HDFS, because Spark removes data replication. And yInMem with data

partition and Alluxio achieves almost 5X speedup than HEIGEN, and 3X faster than

Spark.

For Orkut dataset, even it has more vertices than Road, the number of edges

is 100X smaller than Road. That explains why all frameworks show almost the same

performance. The same reason applies to Twitter, even though Twitter has more

vertices, it has much less edges than our 16 million-scale synthetic graph.

We test the accuracy of our spectral clustering algorithm using a smaller matrix

size, 10,000 for example. And we then verify the top k eigenvalues and eigenvectors

with other eigenvalue decomposition packages like Matlab.

yInMem not only demonstrates the fastest running time for all input graphs

but also yields consistent results. That is because of the optimal data partitioning

which ensures data locality and workload balance. All workers in the cluster are

assigned almost the same amount of work. In addition, data sharing mechanism

offers linear performance which outperforms MapReduce based approach.

95

6.3.2 PageRank

The essential part of power method for PageRank is computing the principal

eigenvector of a Markov matrix representing the structured graph. Algorithm 6.3.2

shows the power method for PageRank, which is very similar to YinEigen, both of

which consist of SpMV iteratively until convergence.

Algorithm 6 Power method for PageRank

Input:
Matrix G, k = −1, pick x(0) > 0, ||x(0)||1 = 1

1: Repeat
2: k = k + 1
3: [x(k+1)]T = [x(k)]TG
4: until ||x(k+1) − x(k)|| ≤ ε

Fig. 6.9 shows the average running time per iteration for PageRank of various

input graphs. The result is almost the same as Fig. 6.8 except yInMem has gained

almost 2X speedup, reducing from 250s per iteration to 110s per iteration. The main

reason for this speedup is because of the synchronization cost for multiple parallel

operations. PageRank has only one simple parallel operation for each iteration,

while YinEigen includes extra operations. Since pMatlab synchronize all processes at

each operation, it accumulates this synchronization cost per operation. MapReduce-

based frameworks only improve slightly in terms of speed, the reason being there

is no extra synchronization cost. Unlike pMatlab which will terminate all worker

processes, MapReduce maintains the whole life cycle until the end of the program.

Even though PageRank generates reasonable results for web applications, we

benchmark the performance using both synthetic and real-world user applications

other than web applications.

96

Figure 6.9: Average running time per iteration for PageRank of various input graphs.

6.3.3 K-Means clustering

The parallelization of K-Means is different from previous two algorithms. We

deploy the data parallelism for K-Means clustering. That is, we can use naive

data partition to split the data points across the cluster. Since each data point is

the smallest unit for computation, we first equally divide the data into Np chunks.

Algorithm 6.3.3 is the serial K-Means clustering algorithm. This algorithm is com-

putation intensive as compared to previous two, O(nk) complexity because all data

points will calculate the distance to potential centroids. And the data exchange

amount is much less than previous two algorithms, since they only broadcast the

97

local means for each cluster, that is a vector size of k. Our implementation of

Algorithm 7 Serial K-Means clustering algorithm

Input:
D: training examples , k clusters and ε convergence rate, t=0
Randomly initialize k centroids: µ1

t, µ2
t, ..., µk

t

1: Repeat
2: t← t+ 1
3: Cj ← ∅ for all j = 1, ..., k
4: for xj ∈ D do

5: j∗ ← argmini||xj − µi
t||2 // assign xj to closet centroid

6: Cj∗ ← Cj∗ ∪ {xj}
7: //Centroid update step
8: for i = 1 to k do
9: µi

t ← 1
||Ci||

∑
xj∈Ci

Xj

10: until
∑k

i=1 ||µi
t − µi

t−12|| ≤ ε

K-Means are as follows:

1. Partition N/P data points to each node.

2. Leader node randomly choose K points and assigns them as the cluster means

and broadcast.

3. Each node finds membership for their local data point using the cluster mean.

4. Each node updates local means for each cluster.

5. Leader node collects these local means and broadcast the global mean.

The input graph for this experiment set is primarily synthetic datasets because

real-world user application graphs used in previous two experiments are not high

dimension. The input data points are generated with 16 dimensions to reflect real-

world applications. Admittedly, some applications render even higher dimensions

than 16, our intention is to investigate the system performance. We compare our

performance with HEIGEN-PLAIN, yInMem, Spark and MEM-HDFS.

98

Figure 6.10: Average running time per iteration for K-Means of synthetic data.

Fig. 6.10 shows the average running time per iteration for K-Means of syn-

thetic dataset. Data partition does affect the converge rate (which is also dependent

on the initialization of k centroids) but has no impact on the average running time

per iteration. To simplify the analysis, we choose the same k centroids for each test

case. Since we are trying to evaluate the framework for computation, this test case

actually eliminates the bias resulting from data partition. The three in-memory

computing frameworks are very close for K-Means. Because there is no computa-

tion/data skew within K-Means, every process will generate a local means based

on the data points. As a result, Spark, MEM-HDFS and yInMem are consistent in

terms of computing speed.

99

6.4 Data sharing

While data partitioning impact most of the system, data sharing is also im-

portant for iterative algorithms. And this also explains why yInMem outperforms

other MapReduce based in-memory systems. Existing MapReduce based platform

inherits the limitation of data sort and data shuffling for exchanging intermediate

results. yInMem enables data sharing by copying intermediate results to Alluxio

worker nodes. In short, MapReduce follows an all-to-all strategy while yInMem

follows point-to-point.

One way to mitigate the effects of communication on performance is to reduce

the total number of individual messages by sending a few large messages rather

than sending many small messages. All networking protocols incur a fixed amount

of overhead when sending or receiving a message. Rather than sending multiple mes-

sages, it is often worthwhile to wait and send a single large message, thus incurring

the network overhead once.

Consier, iterative SpMV operations, for example. The partial results (vector

v) computed from all worker processes have to be aggregated and updated into one

dense vector (vector vi+1) which will be multiplied by the input sparse matrix in a

parallel manner. That means the output from each iteration will be aggregated and

then broadcast for next iteration. With a comparison of yInMem and MapReduce,

it is clear that yInMem handles the data sharing more efficiently than MapReduce.

First, less communication channels are established. Second, the aggregated result

will be assembled once.

100

0 1

0

2 3

1 2 3

(a) YinMem: data sharing by all-to-one and then one-to-all

0 1 2 3

0 1 2 3

(b) MapReduce: data sharing by all-to-all

Fig. 7: YinMem VS MapReduce for broadcasting the collated result vi+1 in Algorithm
2 (line 3 to 10). (a) shows that YinMem uses process 0 to collect all partial results and
then broadcast to other worker processes; (b) shows MapReduce sorts and shuffles the
intermediate results to all worker processes

the input sparse matrix in a parallel manner (line 3 to 10).
Fig. 8 illustrates the time for each step in data sharing with

Alluxio on top of YinMem. Fig. 8(a) depicts the time for
three steps in Fig. 3 with varied matrix sizes. The time for
the leader process to receive partial results from workers or
T1 is proportional to the matrix size. That’s because partial
result vector vi size is proportional to the matrix size. T2, the
time to broadcast vi to all workers, is less proportional to the
matrix size as compared to T1 because it is mostly determined
by the network connection speed for the cluster. T3, the time
to upload vi+1 to DRAM is almost consistent within a few
seconds. Fig. 8(b) demonstrates the data sharing time for 16-
million scale matrix with varied number of cores. The time for
all three steps appear to be consistent. The reason is because
there is an overhead when spawning more MPI processes to
use more cores in pMatlab. And this overhead is proportional
to the number of cores. The more cores used the less load each
core has, however the communication cost is also increasing
with more cores.

C. Comparison with Hadoop and Spark

Fig. 9 shows that YinMem is 10⇥ faster than Hadoop and
more than 7⇥ faster than Spark for SparseMV operation in
YinEigen. In Algorithm 2, SparseMV operation reads vector
v from previous iteration. And this fetching time is the sum
of T1, T2 and T3 from last section and T4, the time to read
from Alluxio. T4 is generally ranged from milliseconds to
seconds.

Hadoop. Fig. 9(a) compares the performance of HEIGEN-
PLAIN, Hadoop implementation of eigenvalue decomposition
to that of YinMem. In HEIGEN, fetch time is estimated by
the running time of Mapper while execute time is the time
of Reducer. Fetch time dominates the operation, showing the

65536 262144 524288 1048576 16777216
0

20

40

60

80

Matrix size

Ti
m

e
(s

ec
on

ds
) T1 T2 T3

(a) YinMem data sharing performance with varied matrix sizes

15 30 45 60 75
0

20

40

60

80

cores
Ti

m
e

(s
ec

on
ds

)
(b) YinMem data sharing performance for 16-million scale matrix with varied
number of cores

Fig. 8: Performance of data sharing for YinMem. T1: the time for the leader process to
collate partial results from workers. T2: the time for workers to run scp to make a copy
of the collated result to their HDD. T3: the time for workers to upload the result from
their HDD to DRAM.

importance of data sharing. Overall, YinMem is more than
10X faster for fetching vector v from previous iteration. In
addition, YinMem preserves the matrix and vector structure
in between operations, and also eliminates the need to sort
data between iterations.

Spark. MLlib, the machine learning library for Spark,
computes the leading k eigenvalues and eigenvectors on a
symmetric square matrix using ARPACK. ARPACK requires
memory for n⇤(4⇤k+4) doubles (n is the size of the matrix),
which becomes infeasible for large matrix. So we implement
Lanczos-SO algorithm with Spark to compare its performance
with YinMem in Fig. 9(b). Spark takes about 510 seconds per-
iteration with 75 cores. With 75 cores, around 480 seconds
are used to shuffle the updated vector v and 30 seconds to
compute matrix and vector multiplication. At fewer cores, the
fetch time is as high as 600 seconds with 15 cores. The main
reason why YinMem is 7⇥ faster than Spark is because Spark
generates a large amount of intermediate data and therefore
spends more time transferring data. This proves the efficiency
of the data sharing strategy in YinMem.

Figure 6.11: yInMem VS MapReduce for data sharing

There are three steps in yInMem to share these partial results (6.11(a)). The

time for the leader process to receive partial results from workers or T1 is proportional

to the matrix size. That’s because partial result vector vi size is proportional to the

matrix size. T2, the time to broadcast vi to all workers, is less proportional to

the matrix size as compared to T1 because it is mostly determined by the network

connection speed for the cluster. T3, the time to upload vi+1 to DRAM is almost

consistent within a few seconds (6.12). MapReduce has its own shuffling mechanism,

which is essentially a hash function. We estimate the shuffling time based on the

running time of mapper for each iteration 6.13. Fig. 6.12(a) illustrates the time

for all these three steps with various synthetic matrix sizes. T1 appears to be linear

101

0 1

0

2 3

1 2 3

(a) YinMem: data sharing by all-to-one and then one-to-all

0 1 2 3

0 1 2 3

(b) MapReduce: data sharing by all-to-all

Fig. 7: YinMem VS MapReduce for broadcasting the collated result vi+1 in Algorithm
2 (line 3 to 10). (a) shows that YinMem uses process 0 to collect all partial results and
then broadcast to other worker processes; (b) shows MapReduce sorts and shuffles the
intermediate results to all worker processes

the input sparse matrix in a parallel manner (line 3 to 10).
Fig. 8 illustrates the time for each step in data sharing with

Alluxio on top of YinMem. Fig. 8(a) depicts the time for
three steps in Fig. 3 with varied matrix sizes. The time for
the leader process to receive partial results from workers or
T1 is proportional to the matrix size. That’s because partial
result vector vi size is proportional to the matrix size. T2, the
time to broadcast vi to all workers, is less proportional to the
matrix size as compared to T1 because it is mostly determined
by the network connection speed for the cluster. T3, the time
to upload vi+1 to DRAM is almost consistent within a few
seconds. Fig. 8(b) demonstrates the data sharing time for 16-
million scale matrix with varied number of cores. The time for
all three steps appear to be consistent. The reason is because
there is an overhead when spawning more MPI processes to
use more cores in pMatlab. And this overhead is proportional
to the number of cores. The more cores used the less load each
core has, however the communication cost is also increasing
with more cores.

C. Comparison with Hadoop and Spark

Fig. 9 shows that YinMem is 10⇥ faster than Hadoop and
more than 7⇥ faster than Spark for SparseMV operation in
YinEigen. In Algorithm 2, SparseMV operation reads vector
v from previous iteration. And this fetching time is the sum
of T1, T2 and T3 from last section and T4, the time to read
from Alluxio. T4 is generally ranged from milliseconds to
seconds.

Hadoop. Fig. 9(a) compares the performance of HEIGEN-
PLAIN, Hadoop implementation of eigenvalue decomposition
to that of YinMem. In HEIGEN, fetch time is estimated by
the running time of Mapper while execute time is the time
of Reducer. Fetch time dominates the operation, showing the

65536 262144 524288 1048576 16777216
0

20

40

60

80

Matrix size

Ti
m

e
(s

ec
on

ds
) T1 T2 T3

(a) YinMem data sharing performance with varied matrix sizes

15 30 45 60 75
0

20

40

60

80

cores

Ti
m

e
(s

ec
on

ds
)

(b) YinMem data sharing performance for 16-million scale matrix with varied
number of cores

Fig. 8: Performance of data sharing for YinMem. T1: the time for the leader process to
collate partial results from workers. T2: the time for workers to run scp to make a copy
of the collated result to their HDD. T3: the time for workers to upload the result from
their HDD to DRAM.

importance of data sharing. Overall, YinMem is more than
10X faster for fetching vector v from previous iteration. In
addition, YinMem preserves the matrix and vector structure
in between operations, and also eliminates the need to sort
data between iterations.

Spark. MLlib, the machine learning library for Spark,
computes the leading k eigenvalues and eigenvectors on a
symmetric square matrix using ARPACK. ARPACK requires
memory for n⇤(4⇤k+4) doubles (n is the size of the matrix),
which becomes infeasible for large matrix. So we implement
Lanczos-SO algorithm with Spark to compare its performance
with YinMem in Fig. 9(b). Spark takes about 510 seconds per-
iteration with 75 cores. With 75 cores, around 480 seconds
are used to shuffle the updated vector v and 30 seconds to
compute matrix and vector multiplication. At fewer cores, the
fetch time is as high as 600 seconds with 15 cores. The main
reason why YinMem is 7⇥ faster than Spark is because Spark
generates a large amount of intermediate data and therefore
spends more time transferring data. This proves the efficiency
of the data sharing strategy in YinMem.

Figure 6.12: yInMem data sharing

to the matrix size. T2 remains almost constant, largely because it is determined by

network topology and network speed. T3 is constant. Fig. 6.12(b) shows the three

times for 16 million size matrix. T1 and T2 is decreasing very slowly, that’s because

each process will generate smaller output within larger number of cores per worker.

However, there is an overhead with increasing number of processes spawned in the

cluster. This overhead compensates the performance gains from more processes per

102

15 30 45 60 75

100

500

1,000
1,100
1,200

YinMemYinMemYinMemYinMem
YinMem

Hadoop Hadoop Hadoop
Hadoop

Hadoop

cores

Ti
m

e
(s

ec
on

ds
)

SparseMV in YinMem and Hadoop

Fetch Execute

(a) SparseMV performance comparison between Hadoop HEIGEN-PLAIN
and YinMem for 16-million scale matrix

15 30 45 60 75

100

200

300

400

500

600

700

YinMemYinMemYinMem
YinMemYinMem

Spark
Spark

Spark
Spark

Spark

cores

Ti
m

e
(s

ec
on

ds
)

SparseMV in YinMem and Spark

Fetch Execute

(b) SparseMV performance comparison between Spark and YinMem for
16-million scale matrix

Fig. 9: Performance advantage of YinMem over (a) Hadoop and (b) Spark for SparseMV.
Lower is better.

VI. DISCUSSION

In this paper, we propose YinMem, a parallel distributed
indexed in-memory computation system, bridging the gap
between Hadoop ecosystem and HPC. To demonstrate the effi-
ciency of YinMem, we have designed a new parallel algorithm,
YinEigen, to do eigenvalue decomposition for large sparse
matrices in memory. Two key issues have been discussed:
(1) data partitioning for load balance, and (2) data sharing
for intermediate results. We believe that YinMem is a step
towards a platform on which near real-time data analysis can
be implemented.

However, certain challenges remain in the current system
architecture. First, the parallel computation engine pMatlab, is
not generally part of open source Hadoop ecosystem. We are
working on adding index support to underlying data storage
system to remove the dependency of Matlab.

Second, fault tolerance is not supported due to the usage

of pMatlab. We assume the reliability of the cluster. During
runtime, when a node fails the task, there is no support to
reschedule the task on that node.

The third challenge comes from the usage of Alluxio which
currently does not support file appending and parallel reading.
YinMem bypasses this problem and enables data sharing by
using Linux secure copy to cache the data. We are also
working on adding these two functionalities to Alluxio. An
alternative is Apache Ignite[31], which provides a distributed
in-memory file system called Ignite File System (IGFS) for
Hadoop and Spark. It claims to exhibit much better write and
read performance than Alluxio and more stable.

Currently YinMem supports sparse matrix operations but
not dense matrix operations due to memory limits.

VII. SUMMARY

In this paper, we propose YinMem, a parallel distributed
indexed in-memory computation system, bridging the gap
between Hadoop ecosystem and HPC. YinMem offers a fair
data partition algorithm to achieve load balancing for sparse
matrix operations and also enables fast data sharing with in-
memory file system. Experimental results prove the efficiency
and scalability of YinMem.

ACKNOWLEDGMENT

The authors would like to thank IBM/CAS Toronto for
supporting Yin Huang with a CAS fellowship. We would
also like to thank NIST/SSD Information Systems Group
for providing support to conduct this Big Data Analytics
computation. We are also grateful to CHMPR for providing the
IBM iDataPlex bluewave computational resources to conduct
the experiments. In particular, we wish to acknowledge Dr.
John Dorband for training one of the authors as a system
administrator to establish the Hadoop based ecosystem.

REFERENCES

[1] Spark, Apache. “Apache Spark-Lightning-Fast Cluster Computing.”
(2014).

[2] Shi, Juwei, et al. “Clash of the titans: MapReduce vs. Spark for large
scale data analytics.” Proceedings of the VLDB Endowment 8.13 (2015):
2110-2121.

[3] Huang, Yin, Yelena Yesha, and Shujia Zhou. “A database-based dis-
tributed computation architecture with Accumulo and D4M: An appli-
cation of eigensolver for large sparse matrix.” Big Data (Big Data), 2015
IEEE International Conference on. IEEE, 2015.

[4] Reyes-Ortiz, Jorge L., Luca Oneto, and Davide Anguita. “Big data
analytics in the cloud: Spark on hadoop vs mpi/openmp on beowulf.”
Procedia Computer Science 53 (2015): 121-130.

[5] Zaharia, Matei, et al. “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing.” Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 2012.

[6] Bu, Y., Howe, B., Balazinska, M., and Ernst, M. 2010. HaLoop: Efficient
iterative data processing on large clusters. Proc. VLDB Endow. 3, 1,
285296.

[7] Zhang, Y., Gao, Q., Gao, L., AND Wang, C. 2012. IMapReduce: A
Distributed Computing Framework for Iterative Computation. J. Grid
Comput. 10, 1, 4768

[8] Daytona, http://research.microsoft.com/en-us/projects/daytona/
[9] Twister, http://www.iterativemapreduce.org/
[10] Apache Accumulo, https://accumulo.apache.org/

15 30 45 60 75

100

500

1,000
1,100
1,200

YinMemYinMemYinMemYinMem
YinMem

Hadoop Hadoop Hadoop
Hadoop

Hadoop

cores

Ti
m

e
(s

ec
on

ds
)

SparseMV in YinMem and Hadoop

Fetch Execute

(a) SparseMV performance comparison between Hadoop HEIGEN-PLAIN
and YinMem for 16-million scale matrix

15 30 45 60 75

100

200

300

400

500

600

700

YinMemYinMemYinMem
YinMemYinMem

Spark
Spark

Spark
Spark

Spark

cores

Ti
m

e
(s

ec
on

ds
)

SparseMV in YinMem and Spark

Fetch Execute

(b) SparseMV performance comparison between Spark and YinMem for
16-million scale matrix

Fig. 9: Performance advantage of YinMem over (a) Hadoop and (b) Spark for SparseMV.
Lower is better.

VI. DISCUSSION

In this paper, we propose YinMem, a parallel distributed
indexed in-memory computation system, bridging the gap
between Hadoop ecosystem and HPC. To demonstrate the effi-
ciency of YinMem, we have designed a new parallel algorithm,
YinEigen, to do eigenvalue decomposition for large sparse
matrices in memory. Two key issues have been discussed:
(1) data partitioning for load balance, and (2) data sharing
for intermediate results. We believe that YinMem is a step
towards a platform on which near real-time data analysis can
be implemented.

However, certain challenges remain in the current system
architecture. First, the parallel computation engine pMatlab, is
not generally part of open source Hadoop ecosystem. We are
working on adding index support to underlying data storage
system to remove the dependency of Matlab.

Second, fault tolerance is not supported due to the usage

of pMatlab. We assume the reliability of the cluster. During
runtime, when a node fails the task, there is no support to
reschedule the task on that node.

The third challenge comes from the usage of Alluxio which
currently does not support file appending and parallel reading.
YinMem bypasses this problem and enables data sharing by
using Linux secure copy to cache the data. We are also
working on adding these two functionalities to Alluxio. An
alternative is Apache Ignite[31], which provides a distributed
in-memory file system called Ignite File System (IGFS) for
Hadoop and Spark. It claims to exhibit much better write and
read performance than Alluxio and more stable.

Currently YinMem supports sparse matrix operations but
not dense matrix operations due to memory limits.

VII. SUMMARY

In this paper, we propose YinMem, a parallel distributed
indexed in-memory computation system, bridging the gap
between Hadoop ecosystem and HPC. YinMem offers a fair
data partition algorithm to achieve load balancing for sparse
matrix operations and also enables fast data sharing with in-
memory file system. Experimental results prove the efficiency
and scalability of YinMem.

ACKNOWLEDGMENT

The authors would like to thank IBM/CAS Toronto for
supporting Yin Huang with a CAS fellowship. We would
also like to thank NIST/SSD Information Systems Group
for providing support to conduct this Big Data Analytics
computation. We are also grateful to CHMPR for providing the
IBM iDataPlex bluewave computational resources to conduct
the experiments. In particular, we wish to acknowledge Dr.
John Dorband for training one of the authors as a system
administrator to establish the Hadoop based ecosystem.

REFERENCES

[1] Spark, Apache. “Apache Spark-Lightning-Fast Cluster Computing.”
(2014).

[2] Shi, Juwei, et al. “Clash of the titans: MapReduce vs. Spark for large
scale data analytics.” Proceedings of the VLDB Endowment 8.13 (2015):
2110-2121.

[3] Huang, Yin, Yelena Yesha, and Shujia Zhou. “A database-based dis-
tributed computation architecture with Accumulo and D4M: An appli-
cation of eigensolver for large sparse matrix.” Big Data (Big Data), 2015
IEEE International Conference on. IEEE, 2015.

[4] Reyes-Ortiz, Jorge L., Luca Oneto, and Davide Anguita. “Big data
analytics in the cloud: Spark on hadoop vs mpi/openmp on beowulf.”
Procedia Computer Science 53 (2015): 121-130.

[5] Zaharia, Matei, et al. “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing.” Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 2012.

[6] Bu, Y., Howe, B., Balazinska, M., and Ernst, M. 2010. HaLoop: Efficient
iterative data processing on large clusters. Proc. VLDB Endow. 3, 1,
285296.

[7] Zhang, Y., Gao, Q., Gao, L., AND Wang, C. 2012. IMapReduce: A
Distributed Computing Framework for Iterative Computation. J. Grid
Comput. 10, 1, 4768

[8] Daytona, http://research.microsoft.com/en-us/projects/daytona/
[9] Twister, http://www.iterativemapreduce.org/
[10] Apache Accumulo, https://accumulo.apache.org/

Figure 6.13: Performance advantage of yInMem over (a) Hadoop and (b) Spark for
SparseMV

worker. That is why T1 and T2 are not decreasing linearly.

Fig. 6.13 depicts the performance advantage of yInMem over Hadoop(a) and

Spark(b) for SparseMV. For Hadoop(a), we measure the running time of mapper as

the fetch time which indicates both the time for reading matrix and vector from

HDFS and also the time of shuffling the intermediate results, which is around 1000s

for 16 million size matrix using 75 cores. yInMem is around 10X faster both for

caching intermediate results and efficient data sharing mechanism. To better under-

stand the performance gain of data sharing, the comparison with Spark(b) shows

that yInMem is around 6X faster than Spark. This performance gain is attributed

to the data/computation skew within Spark.

6.5 Summary

This chapter presents the experimental results of iterative machine learning al-

gorithms to compare the performance among yInMem, Spark, and Hadoop. yInMem

103

has achieved consistent speedup over the latter two frameworks for both synthetic

and real-world graphs. The performance gain is largely due to data partition with

workload balance and data sharing.

Three algorithms under investigation are: (1) K-Means clustering (2) PageR-

ank (3) Spectral clustering. Data partition plays a more important role in PageRank

and Spectral clustering than K-Means clustering. However, K-Means is slightly more

computation-intensive compared to the other two algorithms. As for data sharing,

all of these algorithms generate a vector output which should be aggregated and

broadcast to all workers. Both PageRank and Spectral clustering output a larger

vector than K-Means. And both run a SpMV kernel iteratively to achieve an object

function. The subtle difference between PageRank and Spectral clustering is Spec-

tral clustering includes extra cheap parallel operations besides SpMV, while SpMV

is the only operation in PageRank.

104

Chapter 7: Conclusion

This dissertation presents yInMem: a parallel distributed indexed in-memory

computation system for big data analytics with a focus on iterative machine learn-

ing algorithms, more specifically Sparse Matrix-Vector Multiplication kernel. The

novelty results from introducing the associative arrays to index sparse matrix en-

tries stored in a NoSQL database. This not only separates the data management

from the computation engine, but also enables fine control for data partition. As a

result, yInMem can achieve state-of-the-art performance in a wide range workloads

by bridging the gap between HPC and Hadoop community.

With the rapid development of cluster computing systems, we hope that yIn-

Mem presented here can offer, at the very least, a useful insight for next-generation

computing system. Even though we mainly focus on iterative algorithms with a

SpMV kernel, we believe that the idea of first collecting global information about

the input data using database and then devising an optimal data partition solu-

tion can maximize the overall system performance. This also benefits the memory

management for in-memory computation.

In the rest of this chapter, we summarize a few of the lessons that influenced

this work. Finally, we sketch areas for future work.

105

7.0.1 Lessons learned

The importance of data partitioning. The main thread underlying our

work is how important data partitioning is to performance within a single computa-

tion (e.g., an iterative algorithm). For big data applications, social network graph

analysis in particular, an optimal data partitioning solution is crucial to perfor-

mance. yInMem utilizes the state-of-the-art distributed data management system

to co-locate the computation with the data splits cached in the local RAM. Whereas

existing systems have mostly focused on devising hash/partitioning techniques tai-

lored to specific applications, yInMem integrates the data management system with

the more general applications. With the continuing gaps between network band-

width, storage bandwidth and computing power on each machine, we believe that

data partitioning will remain a major concern in most distributed applications.

The importance of workload balance. A balanced workload across the

cluster is also important for maximizing resource usage. For parallel computing

models with synchronization, an unbalanced workload will lead to performance de-

generation because of the waiting time for the slowest (with heaviest load) worker.

However, some applications naturally lead to data skews during computation. Even

though such cases are not explored in this work, we believe a dynamic data parti-

tion strategy can be designed to re-balance the workload within yInMem. Because

of the associative arrays, it is easy to move data around and cache intermediate

results to local RAM. Meanwhile, for most in-memory computing systems, it is also

crucial to be able to estimate or predict the memory usage during runtime. Recent

106

research focuses on statistically analyzing the workload to optimize the memory us-

age. yInMem might actually shed some light on optimizing the memory usage by

both analyzing the input data and also the computation logics.

The importance of minimizing data shuffling. MapReduce is notoriously

infamous for the expensive data shuffling for complex algorithms. This limitation is

inherently rooted in the computation framework. Even though the simplicity comes

at the cost of performance, the right choice of algorithm can also contribute to

minimizing data shuffling. One example is to pick the algorithm that can be easily

parallelized with minimal intermediate results to share, SpMV is one example. MPI

based approach has the advantage of fine control over which machine runs which

process but also inherits the limitation of data sharing for large input applications.

yInMem conquers this problem by deploying the in-memory file system to share

intermediate results while maintaining the fine control of parallel computation.

7.0.2 Future work

Our implementation of yInMem focuses on iterative machine learning algo-

rithms with SpMV kernel. In the future, it is important to devise Sparse Matrix-

and-Matrix(SpMM) kernel for a wider range of applications. In addition, current

implementation uses a row-based decomposition approach, it is viable to support

block algorithms for SpMM. Since we can query associative arrays in a row and

column manner, it is straightforward to design interfaces to support block queries.

To make yInMem more extensible, another important future work is to get

107

rid of the dependency of pMatlab. As a result, it is imperative to re-write the

associative arrays to support other languages, C, C++, java e.g.

In addition, yInMem is prone to single point of failure (SPOF) which is a

common problem for most master-slave architecture. Since we use pMatlab as the

parallel computation engine, if the master process fails, for whatever reason, the

programmer has to restart the whole application from the beginning. This is par-

ticularly true for iterative algorithms, since the same computation will run multiple

rounds. One potential solution is to add a monitor process in the leader node. The

monitor process serves two major tasks: 1. keeping track of computing tasks for

slaves. 2. watching the progress of each slave process. A task log will be generated

on the monitor process, which lists the task for each sub-process. All work processes

also maintain a connection to the monitor process by sending heartbeat messages.

When the monitor process identifies a dead/crashed machine, it will try to assign

the unfinished task to a new machine.

Finally, yInMem makes a homogeneous assumption about the worker machines

in the cluster. That means all worker machines share the same computing power,

for example, CPU, memory, and network etc. This assumption simplifies the overall

architecture of yInMem because the parallel computing model follows the integration

of OpenMP and MPI. When this assumption is violated, however, a new running

time scheduler might be devised for yInMem to handle the heterogeneity of the

cluster. HTGS [66] is such an example of running time scheduler that offers a

hybrid task graph for scheduling tasks for multi-cores and multi-GPUs system, with

the goal of overlapping data move and data computation. Another future work is,

108

therefore, to integrate yInMem with HTGS to handle task scheduling in a hybrid

cluster environment.

109

Bibliography

[1] Apache Hadoop. http://hadoop.apache.org.

[2] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. In The 6th Symposium on Operating Systems Design and Implemen-
tation (OSDI 04), pages 137150, December 2004.

[3] Shvachko, K., Kuang, H., Radia, S. and Chansler, R., 2010, May. The hadoop
distributed file system. In Mass storage systems and technologies (MSST), 2010
IEEE 26th symposium on (pp. 1-10). IEEE.

[4] B.A. Miller, N. Arcolano, M.S. Bear d, N.T. Bliss, J. Kepner, M.C. Schmidt,
and P.J. Wolfe, A Scalable Signal Processing Architecture for Massive Graph
Analysis, 37th IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Kyoto, Japan, Mar 2012

[5] Isard, M., Budiu, M., Yu, Y., Birrell, A. and Fetterly, D., 2007, March. Dryad:
distributed data-parallel programs from sequential building blocks. In ACM
SIGOPS operating systems review (Vol. 41, No. 3, pp. 59-72). ACM.

[6] Cheatham, T., Fahmy, A., Stefanescu, D. and Valiant, L., 1996. Bulk syn-
chronous parallel computinga paradigm for transportable software. In Tools
and Environments for Parallel and Distributed Systems (pp. 61-76). Springer
US.

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gru-
ber. Bigtable: A distributed storage system for structured data. ACM Trans.
Comput. Syst., 26(2):4:1–4:26, June 2008.

[8] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. Lopez, G. Gibson, A.
Fuchs, and B. Rinaldi, YCSB++: benchmarking and performance debugging

110

advanced features in scalable table stores, in Proceedings of the 2nd ACM
Symposium on Cloud Computing. ACM, 2011, p. 9.

[9] N. Bliss, R. Bond, H. Kim, A. Reuther, and J. Kepner, Interactive Grid Com-
puting at Lincoln Laboratory, Lincoln Laboratory Journal, vol. 16, no. 1, 2006.

[10] U Kang, Breandan Meeder, Evangelos E. Papalexakis, and Christos Falout-
sos, HEigen: Spectral Analysis for Billion-Scale graphs, IEEE Transactions on
knowledge and data engineering, VOL. 26, No.2, Feb 2014.

[11] Ankur Dave, Wei Lu, Jared Jackson, Roger Barga, Cloudclustering: Toward
an iterative data processing pattern on the cloud.

[12] Apache Giraph http://giraph.apache.org/

[13] Apache Hama https://hama.apache.org/

[14] V. Hernandez, J.E. Roman, A. Tomas, and V. Vidal, A Survey of Software
for Sparse Eigenvalue Problems, technical report, Universidad Politecnica de
Valencia, 2005

[15] Nathan P. Halko, Randomized methods for computing low-rank approxima-
tions of matrices, Ph. D., Department of Applied Mathematics, University of
Colorado. 2012

[16] B.A. Miller, N. Arcolano, M.S. Bear d, N.T. Bliss, J. Kepner, M.C. Schmidt,
and P.J. Wolfe, A Scalable Signal Processing Architecture for Massive Graph
Analysis, 37th IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Kyoto, Japan, Mar 2012

[17] Travinin Bliss, N., Kepner, J. pMatlab parallel Matlab library. Int.J. High
Perform. Comput. Appl. 21(3), 336-359 (2007)

[18] Ghemawat, S., Gobioff, H., and Leung, S.-T. 2003. The Google file system. In
19th Symposium on Operating Systems Principles. Lake George, NY. 29-43

[19] R. Buyya (ed.), High Performance Cluster Computing: Architectures and Sys-
tems, vol. 1, Prentice Hall, 1999

[20] B. Wilkinson and M. Allen, Parallel Programming (New Jersey: Prentice Hall,
1999).

111

[21] B. N. Parlett and D. S. Scott, The Lanczos algorithm with selective orthogo-
nalization, Mathematics of Computation, 33:217-238, 1979.

[22] Apache Spark https://spark.apache.org/

[23] M. Zaharia et al. Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing. NSDI, 2012.

[24] D. C. Liu , J. Nocedal, On the limited memory BFGS method for large scale
optimization, Mathematical Programming: Series A and B, v.45 n.3, p.503-528,
Dec. 1989

[25] H.P. Crowder and P. Wolfe, Linear convergence of the conjugate gradient
method, IBM Journal of Research and Development 16 (1972) 431433.

[26] J. Kepner et al., “Dynamic distributed dimensional data model (D4M) database
and computation system,” 37th IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Kyoto, Japan, Mar 2012.

[27] Apache HBase http://hbase.apache.org/

[28] Apache Accumulo https://accumulo.apache.org/

[29] Apache Spark https://spark.apache.org/

[30] MLlib http://spark.apache.org/mllib/

[31] Apache Hama https://mahout.apache.org/

[32] U Kang , Brendan Meeder , Evangelos Papalexakis , Christos Faloutsos,
HEigen: Spectral Analysis for Billion-Scale Graphs, IEEE Transactions on
Knowledge and Data Engineering, v.26 n.2, p.350-362, February 2014

[33] Li, Haoyuan, et al. “Tachyon: Reliable, memory speed storage for cluster com-
puting frameworks.” Proceedings of the ACM Symposium on Cloud Comput-
ing. ACM, 2014.

[34] Zaharia, Matei Alexandru. An architecture for fast and general data processing
on large clusters. Diss. University of California, Berkeley, 2013.

[35] Ghoting, Amol, et al. “SystemML: Declarative machine learning on MapRe-
duce.” Data Engineering (ICDE), 2011 IEEE 27th International Conference
on. IEEE, 2011.

112

[36] Huang, Botong, Shivnath Babu, and Jun Yang. “Cumulon: Optimizing sta-
tistical data analysis in the cloud.” Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. ACM, 2013.

[37] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
PageRank citation ranking: Bringing order to the web. Technical Report 1999-
66, Stanford InfoLab, November 1999.

[38] N. S. Islam, X. Lu, M. W. Rahman, R. Rajachandrasekar, D. K. Panda, “In-
Memory I/O and Replication for HDFS with Memcached: Early Experiences”,
2014 IEEE International Conference on Big Data (IEEE BigData), 2014.

[39] B. Fitzpatrick, “Distributed Caching with Memcached” Linux Journal, 2004.

[40] N. S. Islam, X. Lu, M. W. Rahman, D. Shankar, and D. K. Panda. Triple-H:
A Hybrid Approach to Accelerate HDFS on HPC Clusters with Heterogeneous
Storage Architecture. In 15th IEEE/ACM Intl. Symposium on Cluster, Cloud
and Grid Computing (CCGrid) , 2015.

[41] Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith,
Anil Madhavapeddy, and Steven Hand. Ciel: a universal execution engine for
distributed data-flow computing. In NSDI, 2011.

[42] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R.
Henry, Robert Bradshaw, and Nathan Weizenbaum. FlumeJava: easy, efficient
data-parallel pipelines. In PLDI, 2010.

[43] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee
Bae, Judy Qiu, and Geoffrey Fox. Twister: a runtime for iterative mapreduce.
In HPDC 10, 2010.

[44] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. HaLoop:
efficient iterative data processing on large clusters. Proc. VLDB Endow., 3:285
296, September 2010.

[45] GrzegorzMalewicz,MatthewH.Austern,AartJ.CBik,JamesC.Dehnert,Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph
processing. In SIGMOD, 2010.

[46] Russel Power and Jinyang Li. Piccolo: Building fast, distributed programs with
partitioned tables. In Proc. OSDI 2010, 2010.

[47] B. Nitzberg and V. Lo. Distributed shared memory: a survey of issues and
algorithms. Computer, 24(8):52 60, Aug 1991.

113

[48] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John K. Ousterhout, and
Mendel Rosenblum. Fast crash recovery in RAMCloud. In SOSP, 2011.

[49] Weale, T., Gadepally, V., Hutchison, D. and Kepner, J., 2016, September.
Benchmarking the graphulo processing framework. In High Performance Ex-
treme Computing Conference (HPEC), 2016 IEEE (pp. 1-5). IEEE.

[50] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “Graphx: A resilient
distributed graph system on spark,” in First International Workshop on Graph
Data Management Experiences and Systems. ACM, 2013, p. 2.

[51] https://github.com/GovernmentCommunicationsHeadquarters/Gaffer

[52] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein,
“Distributed graphlab: a framework for machine learning and data mining in
the cloud,” Proceedings of the VLDB Endowment, vol. 5, no. 8, pp. 716727,
2012.

[53] https://snap.stanford.edu/data/

[54] Jurij Leskovec, Deepayan Chakrabarti, Jon Kleinberg, and Christos Falout-
sos. Realistic, mathematically tractable graph generation and evolution, using
Kronecker multiplication. European Conference on Principles and Practice of
Knowledge Discovery in Databases, 2005.

[55] Yin Huang, Han Dong, Yelena Yesha, Shujia Zhou, “A Scalable System for
Community Discovery in Twitter During Hurricane Sandy”, 14th IEEE/ACM
International Symposium Cluster Cloud and Grid Computing (CCGrid), May
2014.

[56] Ipsen, I.C. and Wills, R.S., 2006. Mathematical properties and analysis of
Googles PageRank. Bol. Soc. Esp. Mat. Apl, 34, pp.191-196.

[57] Yin Huang, Yelena Yesha, and Shujia Zhou. 2015. A database-based distributed
computation architecture with Accumulo and D4M: An application of eigen-
solver for large sparse matrix. In Proceedings of the 2015 IEEE International
Conference on Big Data (Big Data) (BIG DATA ’15).

[58] Xun, Y., Zhang, J., Qin, X. and Zhao, X., 2017. FiDoop-DP: Data Partitioning
in Frequent Itemset Mining on Hadoop Clusters. IEEE Transactions on Parallel
and Distributed Systems, 28(1), pp.101-114.

[59] Wang, C., Wu, Q., Tan, Y., Wang, W. and Wu, Q., 2013, December. Locality
Based Data Partitioning in MapReduce. In Computational Science and Engi-

114

neering (CSE), 2013 IEEE 16th International Conference on (pp. 1310-1317).
IEEE.

[60] Venkataraman, S., Bodzsar, E., Roy, I., AuYoung, A. and Schreiber, R.S., 2013,
April. Presto: distributed machine learning and graph processing with sparse
matrices. In Proceedings of the 8th ACM European Conference on Computer
Systems (pp. 197-210). ACM.

[61] Gadepally, V., Kepner, J., Arcand, W., Bestor, D., Bergeron, B., Byun, C., Ed-
wards, L., Hubbell, M., Michaleas, P., Mullen, J. and Prout, A., 2015, Septem-
ber. D4m: Bringing associative arrays to database engines. In High Performance
Extreme Computing Conference (HPEC), 2015 IEEE (pp. 1-6). IEEE.

[62] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell, and Y. Suzue. Flat
Datacenter Storage. In OSDI 2012.

[63] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M.Le
on,Y.Li,A.Lloyd, and V.Yushprakh. Megastore: Providing scalable, highly
available storage for interactive services. In CIDR, volume 11, pages 223234,
2011.

[64] R. Escriva, B. Wong, and E. G. Sirer. Hyperdex: A distributed, searchable key-
value store. ACM SIGCOMM Computer Communication Review, 42(4):2536,
2012.

[65] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Lev- erich, D.
Mazie‘res, S. Mitra, A. Narayanan, D. Ongaro, G. Parulkar, et al. The case
for ramcloud. Communications of the ACM, 54(7):121130, 2011.

[66] Tim Blattner (2017). The Hybrid Task Graph Scheduler (Doctoral disserta-
tion).

[67] L.N. Trefethen and D. Bau III, Numberical Linear Algebra, SIAM, 1997

[68] Shi, Juwei, et al. “Clash of the titans: MapReduce vs. Spark for large scale
data analytics.” Proceedings of the VLDB Endowment 8.13 (2015): 2110-2121.

[69] Reyes-Ortiz, Jorge L., Luca Oneto, and Davide Anguita. “Big data analytics in
the cloud: Spark on hadoop vs mpi/openmp on beowulf.” Procedia Computer
Science 53 (2015): 121-130.

[70] Zhang, Y., Gao, Q., Gao, L., AND Wang, C. 2012. IMapReduce: A Distributed
Computing Framework for Iterative Computation. J. Grid Comput. 10, 1, 4768

115

[71] Aly,A.M., Sallam, A., Gnanasekaran, B.M., Nguyen-Dinh, L.V.,Aref, W. G.,
Ouzzani, M., Ghafoor, A. (2012, April). M3: Stream processing on main-
memory mapreduce. In 2012 IEEE 28th International Conference on Data En-
gineering (pp. 1253-1256). IEEE.

[72] Yoo, R. M., Romano, A., Kozyrakis, C. (2009, October). Phoenix rebirth: Scal-
able MapReduce on a large-scale shared-memory system. In Workload Charac-
terization, 2009. IISWC 2009. IEEE International Symposium on (pp. 198-207).
IEEE.

[73] Das, S., Sismanis, Y., Beyer, K. S., Gemulla, R., Haas, P. J., McPherson, J.
(2010, June). Ricardo: integrating R and Hadoop. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data (pp. 987-998).
ACM.

[74] Davis, Timothy A., Sivasankaran Rajamanickam, and Wissam M. Sid-Lakhdar.
“A survey of direct methods for sparse linear systems.” Acta Numerica 25
(2016): 383-566.

[75] Beamer, Scott, and Krste Asanovic David Patterson. “Reducing Pagerank
Communication via Propagation Blocking.”

[76] Monteiro, Steena, Forrest Iandola, and Daniel Wong. “STOMP: Statistical
Techniques for Optimizing and Modeling Performance of blocked sparse matrix
vector multiplication.” Computer Architecture and High Performance Comput-
ing (SBAC-PAD), 2016 28th International Symposium on. IEEE, 2016.

[77] Samfass, Philipp Johannes. Towards a deeper understanding of hybrid pro-
gramming. Diss. 2016.

[78] Azad, Ariful, et al. “The Reverse Cuthill-McKee Algorithm in Distributed-
Memory.” arXiv preprint arXiv:1610.08128 (2016).

[79] Li, Sicheng, et al. “A data locality-aware design framework for reconfigurable
sparse matrix-vector multiplication kernel.” Proceedings of the 35th Interna-
tional Conference on Computer-Aided Design. ACM, 2016.

[80] Fischer, Peter. “Density-Aware Linear Algebra in a Column-Oriented In-
Memory Database System.”

[81] AbuBaker, Nabil. Reordering methods for exploiting spatial and temporal lo-
calities in parallel sparse matrix-vector multiplication. Diss. Bilkent University,
2016.

116

	List of Tables
	List of Figures
	Introduction
	Thesis Statement
	Contributions
	Dissertation outline

	Background on cluster computation
	Cluster computation and architecture
	HDFS
	MapReduce
	Distributed NoSQL databases
	Accumulo
	D4M: Dynamic Distributed Dimensional Data Model

	Alluxio, Apache Spark and pMatlab
	Alluxio
	Apache Spark
	pMatlab

	Iterative machine learning algorithms in this work
	Related work
	Summary

	yInMem architecture
	Overview
	Cluster computer in Bluewave
	NoSQL database
	Graph500 Benchmark

	Alluxio: in-memory file system
	Data sharing

	pMatlab
	APIs
	Database connector
	Alluxio connector
	Core APIs

	Related work
	Summary

	Workload characterization and evaluation model
	Workload characterization
	Matrix representation of graph
	Graph topologies

	Iterative algorithm characteristics
	Evaluation model
	Summary

	Data partitioning
	Challenges with existing systems
	Data partition in yInMem
	Memory management
	Evaluation

	Related work
	Summary

	Evaluation
	System configuration
	Data partitioning
	Performance with iterative algorithms
	Spectral clustering
	PageRank
	K-Means clustering

	Data sharing
	Summary

	Conclusion
	Lessons learned
	Future work

	Bibliography

