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Abstract: This article reports a study on a turbulence-free Young’s double-slit interferometer.
When the environmental turbulence blurs out the classic Young’s double-slit interference
completely, a two-photon interference pattern is still observable from the measurement of
intensity or photon number fluctuation correlation. This two-photon interferometer always
produces a turbulence-free interference pattern, when the double-slit interferometer is utilizing
both first-order spatially incoherent light and spatially coherent light. This type of two-photon
interferometer establishes new capabilities in optical observations and sensing measurements
that require high sensitivity and stability.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Interferometers utilize the property of superposition of radiation fields to make accurate
measurements and have many uses in a wide range of fields [1–6]. A classic, or first-order,
interferometer measures the intensity of light, or the photon flux of radiation, which, by means of
optical delays between the superposed electromagnetic fields (or the superposed amplitudes of a
photon), gives rise to an interference pattern in the output current of a photodetector. Likewise, a
two-photon interferometer, or second-order interferometer, measures the intensity fluctuation
correlation or photon number fluctuation correlation which gives rise to an interference pattern in
the joint-photodetection of two photodetectors bymeans of manipulating the optical delay between
the superposed two-photon amplitudes of a pair of photons. Often two-photon interference is
associated with light in an entangled state [7–9]; however, as originally done in the Hanbury
Brown-Twiss experiment [10,11], two-photon interference with randomly created and randomly
distributed thermal light is also been demonstrated [12,13]. Many interferometers can be negatively
affected by the fluctuations resulting from optical turbulence in the environment, especially
over large distances [14,15]. This forces extremely sensitive interferometers to be contained in
high-cost vacuum chambers, such as the ones required for the Laser Interferometer Gravitational-
Wave Observatory (LIGO) [16]. Is optical turbulence always harmful to interferometers? It
has been demonstrated recently in a Young’s double-slit interferometer that optical turbulence
is not necessarily harmful to two-photon double-slit interference under certain conditions [17].
The demonstrations of two-photon double-slit interference [12] and turbulence-free double-slit
interference [17] exclusively utilized the experimental condition of d � lc, where d is the
separation of the two slits and lc is the spatial coherence of the applied light, such that no
first-order interference was observable.
This article reports a general study of the two-photon double-slit interferometer including

when d � lc in which the classic first-order interference from the measurement of intensity
or photon flux is observable. We show that spatially incoherent light is not a requirement for
two-photon interference with 100% visibility. When d � lc, both first-order and second-order
interference are observable; however, when the environmental turbulence blurs out the classic
Young’s double-slit interference completely, a two-photon interference pattern is still present.
How does a two-photon interferometer overcome turbulence and produce interference when the
classic Young’s double-slit interference pattern is blurred? And why is the turbulence-free nature
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of two-photon interference independent of first-order spatial coherence? This article addresses
these fundamentally interesting and practically useful questions.

This article is organized as follows: in Sec. II we review the concept of intensity fluctuations
due to interference between two photons based on Einstein’s granularity picture of thermal light
and distinguish these fluctuations from the classical changes in mean intensity. Also reviewed
is the concept of the intensity fluctuation correlation, which is the measurement of two-photon
interference: a randomly created and randomly pair of subfields, or photons, interfering with the
pair itself. A breif subsection is included to demonstrate the equivalence of Glauber’s theory
of optical coherence to Einstein’s picture of thermal light and place emphasis on the concept
of two-photon interference. Applying this model of two-photon interference in Sec. III we
compare the measurements of intensity fluctuation correlation and intensity following a double
slit. Specifically, we focus on how different degrees of first order spatial coherence affect both
types of measurements. Following this, we then analyze what effect optical turbulence has on
both measurements and provide experimental data in Sec. IV. Section V then summarizes our
conclusions.

2. Intensity fluctuations and two-photon interference

The reported two-photon double-slit interferometer consists of light from a disk-like thermal
source incident on a double slit, similar to the classic Young’s double-slit interferometer [1,18];
however, now two detectors, D1 and D2, jointly measure the intensity fluctuation correlation,
〈∆I(r1, t1)∆I(r2, t2)〉, or equivalently in photon counting mode, the photon number fluctuation
correlation 〈∆n(r1, t1)∆n(r2, t2)〉. For the measurements discussed in this paper we will focus
on the second-order spatial correlation by assuming perfect second-order temporal correlation
through the use of monochromatic thermal light. To simplify the mathematics, we also only
focus on the 1-D spatial measurement in the form of 〈∆I(x1)∆I(x2)〉 or 〈∆n(x1)∆n(x2)〉. The
interference present in this measurement is a result of two-photon interference: two randomly
created and randomly paired photons interfering with the pair itself [19,20].

2.1. Einstein’s granularity picture

To model these measurements we will use Einstein’s granularity picture of thermal light [21].
This picture models the total electric field from electromagnetic radiation at detector Dj as a
superposition of a large number of quantized subfields (corresponding to photons in modern
language),

E(rj, tj) =
∑
m

Em(rj, tj) =
∑
m

Emgm(rj, tj), (1)

where Em = ameiφm labels the complex amplitude of a subfield emitted from the mth subsource
with a random phase φm, and gm(rj, tj) represents the field propagator or Green’s function that
propagates the mth subfield from the coordinate of the subsource (rm, tm) to the coordinate of the
detector (rj, tj). The intensity, or the first-order correlation, measured by detector Dj at

(
rj, tj

)
is

〈I(rj, tj)〉 = 〈E∗(rj, tj)E(rj, tj)〉, which can be written as

〈I(rj, tj)〉 =
〈∑

m
E∗m(rj, tj)

∑
n

En(xj)
〉

=
〈∑

m

��Em(rj, tj)
��2〉 + 〈 ∑

m,n
E∗m(rj, tj)En(rj, tj)

〉
=

∑
m

��Em(rj, tj)
��2 + 0.

(2)

The expectation value, or ensemble average, takes into account all possible phases and, due
to the random phase difference between the mth and nth subfields, the m , n term sums
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to zero. In a typical measurement, not all random phases may be present, meaning the
m , n term will contribute to the measurement. We may conclude that the mean intensity,
〈I(rj, tj)〉 =

∑
m
��Em(rj, tj)

��2, is the result of the mth subfield interfering with the mth subfield
itself and that the mth subfield interfering with a different nth subfield results in fluctuations
in intensity, ∆I(rj, tj) =

∑
m,n E∗m(rj, tj)En(rj, tj). Although these fluctuations are typically

considered as unwanted noise, the correlation of intensity fluctuations at separate detectors may
not be considered as noise,

〈∆I(r1, t1)∆I(r2, t2)〉 =
〈 ∑

m,n
E∗m(r1, t1)En(r1, t1)

∑
p,q

E∗p(r2, t2)Eq(r2, t2)
〉

=
∑
m,n

E∗m (r1, t1)En (r1, t1)E∗n (r2, t2)Em (r2, t2) .
(3)

Due to the cancellation of random relative phases between the subfields, the m = q and n = p
terms survive the ensemble average. Mathematically, the result of Eq. (3) is the cross term of the
following superposition,∑

m,n

��Em(r1, t1)En(r2, t2) + En(r1, t1)Em(r2, t2)
��2, (4)

corresponding to the superposition of two different yet indistinguishable alternatives of joint
photodetection: (1) the mth subfield is measured at D1 while the nth subfield is measured at
D2; (2) the nth subfield is measured at D1 while the mth subfield is measured at D2. Physically,
the above superposition defines two-photon interference: a random pair of subfields (photons)
interfering with the pair itself. In its entirety, Eq. (4) is equivalent to the intensity-intensity
correlation of thermal light,

〈I(r1, t1)I(r2, t2)〉 =
∑
m,n

�� 1√
2
[Em(r1, t1)En(r2, t2) + En(r1, t1)Em(r2, t2)]

��2
=

∑
m

��Em(r1, t1)
��2 ∑

n

��En(r2, t2)
��2 +∑

m,n
E∗m(r1, t1)En(r1, t1)E∗n(r2, t2)Em(r2, t2)

= 〈I(r1, t1)〉〈I(r2, t2)〉 + 〈∆I(r1, t1)∆I(r2, t2)〉.

(5)

Note that, in this notation, 〈∆I(r1, t1)∆I(r2, t2)〉 refers to the two-photon interference induced
intensity fluctuation correlation. In addition to the fluctuations from the mth subfield interfering
with the nth subfield, 〈I(r1, t1)〉 =

∑
m
��Em(r1, t1)

��2 and 〈I(r2, t2)〉 =
∑

n
��En(r2, t2)

��2 may
fluctuate from time to time or from measurement to measurement due to the variation of the
total number of subfields (photons) that contribute to each measurement. These changes in total
photons present in the system may be better labeled as “classical” intensity fluctuations while the
two-photon interference induced fluctuations resulting from

∑
m,n E∗m(rj, tj)En(rj, tj) may be

considered quantum fluctuations or quantum noise.

2.2. Glauber’s theory of optical coherence

To fully connect Einstein’s granularity picture of thermal light to the idea of two-photon
interference we can look toward the quantum theory of optical coherence [19,22,23]. Following
Glauber’s theory, we introduce a concept of the “effective wavefunction.” It can be shown that
the effective wavefunction of a photon in the thermal state takes the same mathematical form as
that of Einstein’s quantized subfield. One can write the state of thermal field in coherent state
representation: |Ψ〉 = Πm |αm〉, where m labels the mth photon or the mth group of identical
photons that are in the coherent state |αm〉. The field operator at (rj, tj), for j = 1, 2 indicating the
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jth photodetector, can be written as,

Ê(+)(rj, tj) =
∑
m

∫
dkâm(k)gm(k; rj, tj)

Ê(−)(rj, tj) =
∑
m

∫
dkâ†m(k)g∗m(k; rj, tj)

(6)

where gm(k; rj, tj) is the same Green’s function (or propagator) used in Einstein’s picture which
propagates the k mode of the state from the space-time coordinate of emission, (rm, tm), to Dj at
space-time coordinate (rj, tj). The first-order coherence function is calculated as follows,

G(1)(r1, t1) =
〈
〈Ψ|Ê(−)(r1, t1)Ê(+)(r1, t1)|Ψ〉

〉
Es

=
〈
〈Ψ|

∑
m

Ê(−)m (r1, t1)
∑

n
Ê(+)n (r1, t1)|Ψ〉

〉
Es

=
〈 ∑

m=n

��ψm(r1, t1)
��2〉

Es
+

〈 ∑
m,n

ψ∗m(r1, t1)ψn(r1, t1)
〉

Es

= 〈n(r1, t1)〉 + 0,

(7)

for which we have defined the effective wavefunction of the mth photon (or coherent group of
photons) as,

ψm(r1, t1) =
∫

dkαm(k)gm(k; r1, t1). (8)

It is clear that this effective wavefunction has the same mathematical form as Einstein’s quantized
subfield presented in Eq. (1) and the first-order coherence function in Eq. (7) is the same as
that in Einstein’s picture, except Einstein’s quantized subfield is replaced by the effective wave
function.
A similar equivalence is found with the second-order coherence function,

G(2)(r1, t1; r2, t2) =
〈
〈Ψ|

∑
m

Ê(−)m (r1, t1)
∑

n
Ê(−)n (r2, t2)

∑
p

Ê(+)p (r2, t2)
∑

q
Ê(+)q (r1, t1)|Ψ〉

〉
Es

=
〈∑

m

��ψm(r1, t1)
��2〉

Es

〈∑
n

��ψn(r2, t2)
��2〉

Es
+

〈 ∑
m,n

ψ∗m(r1, t1)ψn(r1, t1)ψ∗n(r2, t2)ψm(r2, t2)
〉

Es

=
∑
m,n

��ψm(r1, t1)ψn(r2, t2) + ψn(r1, t1)ψm(r2, t2)
��2

= 〈n(r1, t1)〉〈n(r2, t2)〉 + 〈∆n(r1, t1)∆n(r2, t2)〉.
(9)

We find that this result matches that of Eq. (5) and that the measurement is a result of
interference involving a superposition between quantum amplitudes A1 = ψm(r1, t1)ψn(r2, t2) and
A2 = ψn(r1, t1)ψm(r2, t2) corresponding to two possible ways to achieve a joint photo-detection
event: (1) the mth photon is measured at D1 while the nth photon is measured at D2; (2) the nth
photon is measured at D1 while the mth photon is measured at D2. This equivalence emphasizes
that the measurement of intensity fluctuation correlation or photon number fluctuation correlation
is a result of a random pair of photons interfering with the pair itself, namely two-photon
interference.

3. Double-slit interferometer

The Green’s function varies dependent on the potential optical paths. For free propagation
without turbulence, such as the propagation of a subfield from the subsource to a specific slit (or
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from the slit to a detector), gm(rj, tj) is of the form,

gm(rj, tj) =
∫

dk gm(k; rj, tj) '
∫

dk ei[k·(rj−rm)−ω(tj−tm)], (10)

where gm(k; rj, tj) is the Green’s function for propagating each mode of k. When measuring a
1-D spatial scan in Fresnel near-field, this can be approximated as,

gm(xj) = eikzei k
2z (xj−xm)

2
= ei 2πn0z

λ ei πn0
λz (xj−xm)

2
(11)

where we have assumed a monochromatic field to simply the calculation. Propagating the mth
subfield from the mth subsource to slit-A and slit-B, respectively, and then to Dj at xj can be
represented by the following superposition,

gm(xj) =
1
√
2
[gmA(xj) + gmB(xj)], (12)

where gmA(xj) = gm(xA)gA(xj) and gmB(xj) = gm(xB)gB(xj).

3.1. Spatially coherent double-slit measurements

For the specific case of a point-like thermal light source emitting monochromatic light onto slit-A
and slit-B symmetrically with equal optical paths, the fields at slit-A and slit-B are considered
spatially and temporally first-order coherent. Due to the first-order coherence of the fields passing
through slit-A and slit-B, we find both terms of Eq. (5) yield a product of classic Young’s
double-slit interference

〈I(x1)〉〈I(x2)〉 = I20 cos2
πn0d
λz

x1 cos2
πn0d
λz

x2

〈∆I(x1)∆I(x2)〉 = I20 cos2
πn0d
λz

x1 cos2
πn0d
λz

x2,
(13)

where n0 is the index of refraction of the light propagating medium, d is the separation between
slit-A and slit-B, λ is the wavelength of the light in a vacuum, and z is the distance from the
slits to the detectors. To simplify the mathematics we have assumed narrow, line-like slits.
Classic Young’s double-slit interference is observable in the measurement of intensity at each
photodetector (and thus the product of the two measurements), as well as in the measurement
of two-photon interference induced intensity fluctuation correlation 〈∆I(x1)∆I(x2)〉. In the
measurement of 〈I(x1)I(x2)〉 we thus have

〈I(x1)I(x2)〉 = 2I20 cos2
πn0d
λz

x1 cos2
πn0d
λz

x2. (14)

3.2. Spatially incoherent double-slit measurements

Next, we consider a disk-like thermal source with angular diameter ∆θs ≈ Ds/zs, where Ds is
the source diameter and zs is the distance from the source to the slits as depicted in Fig. 1. We
can once again propagate the field from the source to the detector Dj with the Green’s function
of Eq. (12), but now we account for the size of the source by approximating the summation of
subfields as an integral from −∆θs/2 to ∆θs/2. The measurement of intensity at a single detector
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is calculated as follows,

〈I(xj)〉 =
1
2

∑
m
|Em |

2��gmA(xj) + gmB(xj)
��2

=
I0

2∆θs

∫ ∆θs/2

−∆θs/2
dθm

��gmA(xj) + gmB(xj)
��2

=
I0
2

[
1 + sinc

πn0d∆θs

λ
cos

2πn0d
λz

xj

]
,

(15)

where the sinc function is defined as sinc(x) = sin(x)/x. It is easy to see that when d>λ/n0∆θs,
the sinc function vanishes and there is no observable interference. The spatial coherence length
is often defined as lc ≡ λ/n0∆θs. We can calculate the visibility of this first-order interference
pattern as,

V ≡
Imax − Imin

Imax + Imin
= sinc

πn0d∆θs

λ
. (16)

The fields at slit-A and slit-B are considered spatially incoherent when d>lc and the output of the
sinc function is approximately zero, resulting in zero visibility. Contrarily, the fields at slit-A
and slit-B are considered spatially coherent as lc →∞ causing the sinc function to take a value
of one and the visibility of the interference pattern to become 100%. When the sinc function
takes a value between zero and one, the fields at slit-A and slit-B are considered partially spatially
coherent. Partially coherent fields would still produce a first-order interference pattern in each
measurement of 〈I(xj)〉, although with reduced visibility, and thus produce a product of first-order
interference patterns in 〈I(x1)〉〈I(x2)〉,

〈I(x1)〉〈I(x2)〉 =
I20
4

[
1 + sinc

πn0d∆θs

λ
cos

2πn0d
λz

x1
] [
1 + sinc

πn0d∆θs

λ
cos

2πn0d
λz

x2
]
. (17)

If one were to scan the two detectors in unison such that x1 = x2, the resulting visibility would be,

V =
2sinc[πn0d∆θs/λ]

1 + sinc2[πn0d∆θs/λ]
. (18)

Additionally, if one were to scan one detector while the other is held stationary, the visibility
would be the same as first-order interference,

V = sinc
πn0d∆θs

λ
. (19)

The intensity fluctuation correlation, however, provides a different interference pattern when the
fields at slit-A and slit-B are partially coherent. For this measurement, we can apply Eq. (12) to
Eq. (3) and obtain the following,

〈∆I(x1)∆I(x2)〉 =
1
4

∑
m,n

��Em
��2��En

��2[gmA(x1) + gmB(x1)]∗[gnA(x1) + gnB(x1)]

× [gnA(x2) + gnB(x2)]∗[gmA(x2) + gmB(x2)].
(20)

This results in 16 terms which can be represented by

〈∆I(x1)∆I(x2)〉 =
∑
ijkl
〈∆I(x1)ij∆I(x2)kl〉, (21)

where
〈∆I(x1)ij∆I(x2)kl〉 =

1
4

∑
m,n

��Em
��2��En

��2g∗mi(x1)gnj(x1)g∗nk(x2)gml(x2), (22)
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for i, j, k, l = A,B. These terms are expanded upon in Appendix A. Combining the results into a
compact form we get,

〈∆I(x1)∆I(x2)〉 = I20
[
cos

πn0d
λz
(x1 − x2) + sinc

πn0d∆θs

λ
cos

πn0d
λz
(x1 + x2)

]2
, (23)

where, once again, the angular diameter of the source affects the outcome of the measurement.
In the limiting case of spatially coherent fields, lc →∞, the sinc function can be approximated
as one, leading to x1 becoming separable from x2, resulting in Eq. (13). Note that under these
conditions, if either detector is held stationary at a location where the intensity is at a minimum,
i.e. 〈I(xj)〉 = 0, then no interference will be present in the measurement of 〈∆I(x1)∆I(x2)〉 while
scanning the second detector.

In the case of partially coherent fields, as in Eq. (23), there are multiple scanning arrangements
that achieve 100% visibility. Examples include: (1) when D1 and D2 are scanned simultaneously
maintaining x1 + x2 = mλz/2n0d, where m is an integer, such that only one cosine term remains
in Eq. (23); (2) when D1 and D2 are scanned simultaneously maintaining x1 − x2 = mλz/2n0d,
likewise allowing only one cosine term to be present; or (3) when either detector is held stationary,
such as at x2 = 0, while the second is scanned. Interestingly, when scanning the detectors in
unison such that x1 = x2, the measurement of intensity fluctuation correlation is proportional to
the result of Eq. (17) when x1 = x2 and thus has the same visibility given in Eq. (18).
This 100% visibility is also easily obtained when the fields passing through each slit are

fully spatially incoherent, d � lc, for which, unlike first-order interference which gets blurred
completely, certain two-photon interference terms remain resulting in,

〈∆I(x1)∆I(x2)〉 = I20 cos2
πn0d
λz
(x1 − x2). (24)

First demonstrated by Scarcelli et al. [12], here the positions of D1 and D2 are non-separable,
exhibiting the non-classical effects of this measurement.

3.3. The effect of optical turbulence

Another condition that may reduce the visibility of the double-slit interference pattern is when
optical turbulence is present between the slits and detector(s). Optical turbulence is defined as a
random change in index of refraction, δnij, dependent on the optical path from each slit i = A,B
to detector j = 1, 2 (for this discussion, we will ignore potential scattering). These changes are
related to the mean index of refraction, n0, such that nij = n0 + δnij. In general, if a medium of
volume V has a random spatial distribution of index of refraction that also varies in time, n(r, t),
then the mean index of refraction of that volume over the total time of measurement τ is,

n0 =
1
V

∫
V

dr 1
τ

∫
τ

dt n(r, t). (25)

Similarly, the mean index of refraction along a potential path of propagation at a specific moment
for a single photon is,

nij =
1

|rj − ri |

∫ rj

ri

dr 1
|tj − ti |

∫ tj

ti
dt n(r, t). (26)

It should be noted that for our analysis, n(r, t) can take any form; however, for more extreme
cases, scattering may become more prevalent, which we have not accounted for.
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Accounting for turbulence we will use a Green’s function with the same form as Eq. (11) but
with the random shift in index of refraction included,

gT
i (xj) = ei

2πnij z
λ ei

πnij
λz (xj−xi)

2
= ei 2πn0z

λ ei πn0
λz (xj−xi)

2
ei

2πδnij z
λ ei

πδnij
λz (xj−xi)

2
(27)

Here it is useful to define a random phase shift of δφij =
2πδnij
λ (z + (xj − xi)

2/2z) such that,

gT
i (xj) = ei 2πn0z

λ ei πn0
λz (xj−xi)

2
eiδφij = gi(xj)eiδφij , (28)

where now this random phase shift, which is dependent on the change in index of refraction from
the mean, is applied to the original Green’s function given in Eq. (11).

When calculating the expectation value of intensity, an integral over all possible phases present
is needed in addition to the integral over the angular diameter of the source. This was not needed
originally because the relative phases were the same. We have defined φj = δφij − δφij for
i = A,B as the phase difference between the potential paths of a single subfield detected at Dj
and integrating over all possible phase differences results in,

〈I(xj)〉 =
I0

2∆θs

∫ ∆θs/2

−∆θs/2
dθm

1
∆φ

∫ ∆φ/2

−∆φ/2
dφj

��gT
mA(xj) + gT

mB(xj)
��2

=
I0
2

[
1 + sinc∆φ sinc

πn0d∆θs

λ
cos

2πn0d
λz

xj

]
,

(29)

where ∆φ is the range of possible phase differences. Here we have approximated a uniform
distribution of possible phase difference over a certain range. If there is no turbulence present,
there is never a difference in phase introduced between paths from slits A and B so ∆φ = 0,
leaving the original interference pattern achieved in Eq. (15). If the turbulence is strong enough
such that range of possible random phase shift differences is large, i.e. ∆φ � π, only the constant
term will remain, resulting in no interference.

To predict the effect of turbulence on two-photon double-slit interference, we will continue to
model the optical turbulence as done in Eq. (28). Applying it to Eq. (22) we get,

〈∆I(x1)ij∆I(x2)kl〉 =
1
4

∑
m,n

��Em
��2��En

��2g∗mi(x1)e
−iδφi1gnj(x1)eiδφj1g∗nk(x2)e

−iδφk2gml(x2)eiδφl2 , (30)

for i, j, k, l = A,B. Recall that this measurement is a result of two-photon interference and can be
written as the cross terms of the superposition of a pair of two-photon probability amplitudes,
similar to Eq. (4),

〈I(x1)ijI(x2)kl〉 =
∑
m,n

��Emi(x1)eiδφi1Enk(x2)eiδφk2 + Enj(x1)eiδφj1Eml(x2)eiδφl2
��2. (31)

It is easy to see in Eq. (30) that when both i = j and k = l, these random phase shifts
cancel. It should be noted that this is independent of the distribution of turbulence, n(r, t),
and specifically occurs because the paths through the turbulence are the same. This results in
〈∆I(x1)AA∆I(x2)AA〉, 〈∆I(x1)BB∆I(x2)BB〉, 〈∆I(x1)AA∆I(x2)BB〉, and 〈∆I(x1)BB∆I(x2)AA〉 all being
insensitive to turbulence, i.e. turbulence free. In addition to these, more terms have the potential
to be turbulence free, specifically when both i = l and j = k and when the two detectors, D1 and
D2, are in approximately the same location, x1 ≈ x2. This proximity is relative to the spatial
distribution of the turbulence such that the two-photon amplitudes (potential paths) overlap
and experience the same turbulence (Fig. 1). The new terms that become turbulence free
under this condition are 〈∆I(x1)AB∆I(x2)BA〉 and 〈∆I(x1)BA∆I(x2)AB〉. In total, the six terms that
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remain present through turbulence with partially spatially coherent light result in the following
interference pattern,

〈∆I(x1)∆I(x2)〉 = I20
[1
2
sinc2

πn0d∆θs

λ
+ cos2

πn0d
λz
(x1 − x2)

]
. (32)

This result is elaborated upon in Appendix B. Comparing this to the general case without
turbulence, Eq. (23), which had multiple ways of obtaining 100% visibility, now this is only
achievable with a spatially incoherent source of d � lc (as done in the turbulence-free double-slit
interferometer). However, with a partially or fully spatially coherent source, a new constant term
is present which lowers the visibility of the interference pattern. In general, the visibility of this
measurement is,

V =
1

1 + sinc2[πn0d∆θs/λ]
. (33)

Fig. 1. Overlap of two-photon amplitudes. In the figure, the superposed two different
yet indistinguishable two-photon amplitudes are indicated by red and blue colors. When
the detectors are scanning in the neighborhood of x1 ≈ x2, the red amplitude and the blue
amplitude “overlap” which means the pair experience the same phase variations, resulting in
an interference pattern insensitive to turbulence.

4. Experiment

The initial demonstration of the turbulence-free double-slit interferometer utilized spatially
incoherent light in order to produce a turbulence-free interference pattern that maintained 100%
visibility. The experiment presented in this article utilizes partially spatially coherent light to
demonstrate how interference still remains visible through optical turbulence (Fig. 2). In lieu
of a true thermal source, which typically have more bandwidth, a standard monochromatic
pseudo-thermal light source is used consisting of a rotating ground glass and a single-frequency
laser beam of wavelength λ = 532 nm [24]. Millions of tiny diffusers within the rotating
ground glass scatter the laser beam into many independent wave packets, or subfields, at the
single-photon level with random relative phases, artificially simulating a natural thermal light.
An adjustable pinhole is used to control the transverse size of the light source, allowing us to
alter the spatial coherence length of the thermal field. By placing a double-slit with line-like slits
and a slit separation of d = 2.5 mm, 7.5 m after the pinhole, we achieved an angular diameter
of ∆θs ≈ 0.000124 and thus obtained a spatial coherence length of lc = λ/n0∆θs ≈ 4.3 mm.
Point-like tips of single-mode fiber collect the light and direct it to single-photon counting
detectors (Perkin-Elmer SPCM-AQR). A Photon Number Fluctuation Correlation (PNFC) circuit
[25] is then used to measure the mean photon number for each detector, 〈n(x1)〉 and 〈n(x2)〉,
while simultaneously calculating the photon number fluctuation correlation, 〈∆n(x1)∆n(x2)〉.

To introduce turbulence stronger than what is typically present in the atmosphere, heating
elements were used. Temperature variations in the air induce spatial and temporal fluctuations in
index of refraction. Figure 3 reports the measurement of photon number fluctuation correlation
with and without turbulence present. Each plot compares the predicted theory of Eq. (23)



Research Article Vol. 27, No. 23 / 11 November 2019 / Optics Express 33291

Fig. 2. Experimental setup. Similar to the turbulence-free double-slit interferometer, a
pseudo-thermal light source is directed at a pair of slits, except now the source is far enough
away to be partially coherent, lc>d. Beyond the slits, point-like tips of single mode fibers
collect light and direct it to a pair of single-photon detectors (Perkin-Elmer SPCM-AQR). A
Photon Number Fluctuation Correlation (PNFC) circuit then measures the photon number
fluctuation correlation 〈∆n(x1)∆n(x2)〉.

and Eq. (32) in blue with the experimental results in black. For these measurements, D2 was
stationary at x2 = 0 while D1 was scanned along the x-axis. The experimental results without
turbulence, Fig. 3(a), have a visibility of 87.4% which closely matches the predicted 100%. When
turbulence is introduced, Fig. 3(b), the 78.7% visibility of the experimental results almost exactly
matches the 78.2% visibility predicted by the theory. Both sets of data have been normalized
such that I0 = 1 so that the relative amplitudes of the interference patterns can be compared.
As expected, the amplitude of the interference pattern with turbulence is lower due to only six
of the original sixteen terms being unaffected by the turbulence. We also see that, unlike the
turbulence-free double-slit interferometer which uses a spatially incoherent source [17], 100%
visibility is not maintained with turbulence present when using a partially coherent source;
however, the interference pattern is still clearly present.

Fig. 3. Typical measurement of 〈∆n(x1)∆n(x2)〉 when scanning x1 and x2 is stationary. (a)
Without turbulence present, the interference pattern has a large amplitude and approximately
100% visibility. (b) With turbulence present, certain terms no longer contribute to the
measurement, thus lowering the amplitude and decreasing the visibility.

For comparison, Fig. 4 presents the measurement of intensity (mean photon number) obtained
from the same measurements used in the intensity fluctuation correlation Fig. 3. Initially
without turbulence, as seen in Fig. 4(a), the interference pattern is clearly present, however
with reduced visibility due to the source being only partially spatially coherent. As seen in
Fig. 4(b), when turbulence is introduced, the interference pattern is blurred completely. Even
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with turbulence strong enough to completely blur the interference from the measurement of
〈n(x1)〉, the interference from the measurement of 〈∆n(x1)∆n(x2)〉 is still present.

Fig. 4. Typical measurement of 〈n(x1)〉 when scanning x1. (a) As expected with a partially
coherent source, the interference pattern does not have 100% visibility, but an interference
pattern is still clearly visible. (b) After introducing turbulence, the interference pattern is
blurred completely.

5. Summary

It is interesting to find that the intensity fluctuations of thermal light resulting from two randomly
created and randomly paired photons, or subfields, interfering with each other are not necessarily
harmful to all interferometers. Instead, the measurement of intensity fluctuation correlation
utilizes these intensity fluctuations through two-photon interference in a way that benefits
interferometers and interferometric sensors in their sensitivity and stability. This model of two-
photon interference is able to accurately predict how the superpositions of different two-photon
amplitudes contribute to an interference pattern under different degrees of spatial coherence.
This two-photon double-slit interference is observable with 100% visibility in the measurement
of intensity fluctuation correlation for both spatially coherent and spatially incoherent light. In
addition to this, when scanning one detector D1 in approximately the same location as D2, x1 ≈ x2,
interference remains visible through optical turbulence. Unlike when spatially incoherent light is
used, which maintains 100% visibility through turbulence, we found that use of spatially coherent
light loses some visibility. However, a full interference pattern remains present and is predictable
with the two-photon interference theory. The results of the reported experiment are helpful in
furthering the fundamental understanding of two-photon interferometry and turbulence-free
interferometry.

Appendix A

The result of measuring two-photon double-slit interference through intensity fluctuation correla-
tion as shown in Eq. (20). The resulting 16 terms can be written as,

〈∆I(x1)∆I(x2)〉 =
∑
ijkl
〈∆I(x1)ij∆I(x2)kl〉, (34)

where
〈∆I(x1)ij∆I(x2)kl〉 =

1
4

∑
m,n

��Em
��2��En

��2g∗mi(x1)gnj(x1)g∗nk(x2)gml(x2), (35)
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for i, j, k, l = A,B. These terms can be split into groups that provide similar results. When all
four potential paths of subfields pass through the same slit, a constant is produced,

〈∆I(x1)AA∆I(x2)AA〉 + 〈∆I(x1)BB∆I(x2)BB〉 =
I0

2∆θs

∫ ∆θs/2

−∆θs/2
dθm

I0
2∆θs

∫ ∆θs/2

−∆θs/2
dθn

× [g∗mA(x1)gnA(x1)g∗nA(x2)gmA(x2) + g∗mB(x1)gnB(x1)g∗nB(x2)gmB(x2)]

=
1
2

I20 .

(36)

Similarly, when a pair of potential paths pass through each slit and then each respective pair
travels to the same detector, a constant term that is dependent on the angular diameter of the
source is produced,

〈∆I(x1)AA∆I(x2)BB〉 + 〈∆I(x1)BB∆I(x2)AA〉 =
I0

2∆θs

∫ ∆θs/2

−∆θs/2
dθm

I0
2∆θs

∫ ∆θs/2

−∆θs/2
dθn

× [g∗mA(x1)gnA(x1)g∗nB(x2)gmB(x2) + g∗mB(x1)gnB(x1)g∗nA(x2)gmA(x2)]

=
1
2

I20sinc
2 πd∆θs

λ
.

(37)

The following four terms all result in a contribution directly comparable to the result of measuring
intensity with no dependence on x2,

〈∆I(x1)AB∆I(x2)AA〉 + 〈∆I(x1)BA∆I(x2)BB〉 + 〈∆I(x1)AB∆I(x2)BB〉 + 〈∆I(x1)BA∆I(x2)AA〉 =

I0
2∆θs

∫ ∆θs/2

−∆θs/2
dθm

I0
2∆θs

∫ ∆θs/2

−∆θs/2
dθn

× [g∗mA(x1)gnB(x1)g∗nA(x2)gmA(x2) + g∗mB(x1)gnA(x1)g∗nB(x2)gmB(x2)
+ g∗mA(x1)gnB(x1)g∗nB(x2)gmB(x2) + g∗mB(x1)gnA(x1)g∗nA(x2)gmA(x2)]

= I20sinc
πd∆θs

λ
cos

2πd
λz

x1.
(38)

Likewise, four terms contribute a similar result, but with no dependence on x1,

〈∆I(x1)AA∆I(x2)AB〉 + 〈∆I(x1)BB∆I(x2)BA〉 + 〈∆I(x1)AA∆I(x2)BA〉 + 〈∆I(x1)BB∆I(x2)AB〉 =

I0
2∆θs

∫ ∆θs/2

−∆θs/2
dθm

I0
2∆θs

∫ ∆θs/2

−∆θs/2
dθn

× [g∗mA(x1)gnA(x1)g∗nA(x2)gmB(x2) + g∗mB(x1)gnB(x1)g∗nB(x2)gmA(x2)
+ g∗mA(x1)gnA(x1)g∗nB(x2)gmA(x2) + g∗mB(x1)gnB(x1)g∗nA(x2)gmB(x2)]

= I20sinc
πd∆θs

λ
cos

2πd
λz

x2.
(39)

The next pair of terms result in an interference term that is dependent on both x1 and x2 while
having no dependence on the angular diameter of the source,

〈∆I(x1)AB∆I(x2)BA〉 + 〈∆I(x1)BA∆I(x2)AB〉 =
I0

2∆θs

∫ ∆θs/2

−∆θs/2
dθm

I0
2∆θs

∫ ∆θs/2

−∆θs/2
dθn

× [g∗mA(x1)gnB(x1)g∗nB(x2)gmA(x2) + g∗mB(x1)gnA(x1)g∗nA(x2)gmB(x2)]

=
1
2

I20 cos
2πd
λz
(x1 − x2).

(40)



Research Article Vol. 27, No. 23 / 11 November 2019 / Optics Express 33294

Comparably, this pair results in an interference term that is dependent on both x1 and x2, however
this one does have dependence on the angular diameter of the source,

〈∆I(x1)AB∆I(x2)AB〉 + 〈∆I(x1)BA∆I(x2)BA〉 =
I0

2∆θs

∫ ∆θs/2

−∆θs/2
dθm

I0
2∆θs

∫ ∆θs/2

−∆θs/2
dθn

× [g∗mA(x1)gnB(x1)g∗nA(x2)gmB(x2) + g∗mB(x1)gnA(x1)g∗nB(x2)gmA(x2)]

=
1
2

I20sinc
2 πd∆θs

λ
cos

2πd
λz
(x1 + x2).

(41)

Combining all of these we get,

〈∆I(x1)∆I(x2)〉 =
1
2

I20
[
1 + sinc2

πd∆θs

λ
+ 2sinc

πd∆θs

λ
cos

2πd
λz

x1 + 2sinc
πd∆θs

λ
cos

2πd
λz

x2

+ cos
2πd
λz
(x1 − x2) + sinc2

πd∆θs

λ
cos

2πd
λz
(x1 + x2)

]
,

(42)
which can be manipulated to be written as Eq. (23).

Appendix B

With turbulence present, the resulting 16 terms can still be written as,

〈∆I(x1)∆I(x2)〉 =
∑
ijkl
〈∆I(x1)ij∆I(x2)kl〉, (43)

where now a random phase shift is included to each path,

〈∆I(x1)ij∆I(x2)kl〉 =
1
4

∑
m,n

��Em
��2��En

��2g∗mi(x1)e
−iδφi1gnj(x1)eiδφj1g∗nk(x2)e

−iδφk2gml(x2)eiδφl2 , (44)

for i, j, k, l = A,B. As done in Appendix A, these terms can be split into groups that provide
similar results. The first pair of constant terms are inherently overlapped and thus the random
phase shifts always cancel,

〈∆I(x1)AA∆I(x2)AA〉 + 〈∆I(x1)BB∆I(x2)BB〉

=
I0

2∆θs

∫ ∆θs/2

−∆θs/2
dθm

I0
2∆θs

∫ ∆θs/2

−∆θs/2
dθn

1
∆φ

∫ ∆φ/2

−∆φ/2
dφ1

1
∆φ

∫ ∆φ/2

−∆φ/2
dφ2

× [g∗mA(x1)e
−iδφA1gnA(x1)eiδφA1g∗nA(x2)e

−iδφA2gmA(x2)eiδφA2

+ g∗mB(x1)e
−iδφB1gnB(x1)eiδφB1g∗nB(x2)e

−iδφB2gmB(x2)eiδφB2 ]

=
1
2

I20 .

(45)

Likewise, the pair of terms that are constant when doing a spatial scan but dependent on the
angular diameter of the source are also overlapped when propagating from the slits to the
detectors,

〈∆I(x1)AA∆I(x2)BB〉 + 〈∆I(x1)BB∆I(x2)AA〉

=
I0

2∆θs

∫ ∆θs/2

−∆θs/2
dθm

I0
2∆θs

∫ ∆θs/2

−∆θs/2
dθn

1
∆φ

∫ ∆φ/2

−∆φ/2
dφ1

1
∆φ

∫ ∆φ/2

−∆φ/2
dφ2

× [g∗mA(x1)e
−iδφA1gnA(x1)eiδφA1g∗nB(x2)e

−iδφB2gmB(x2)eiδφB2

+ g∗mB(x1)e
−iδφB1gnB(x1)eiδφB1g∗nA(x2)e

−iδφA2gmA(x2)eiδφA2 ]

=
1
2

I20sinc
2 πd∆θs

λ
.

(46)
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The terms that mimic the measurement of intensity measured at D1 see the affect of turbulence,
〈∆I(x1)AB∆I(x2)AA〉 + 〈∆I(x1)BA∆I(x2)BB〉 + 〈∆I(x1)AB∆I(x2)BB〉 + 〈∆I(x1)BA∆I(x2)AA〉

=
I0

2∆θs

∫ ∆θs/2

−∆θs/2
dθm

I0
2∆θs

∫ ∆θs/2

−∆θs/2
dθn

1
∆φ

∫ ∆φ/2

−∆φ/2
dφ1

1
∆φ

∫ ∆φ/2

−∆φ/2
dφ2

× [g∗mA(x1)e
−iδφA1gnB(x1)eiδφB1g∗nA(x2)e

−iδφA2gmA(x2)eiδφA2

+ g∗mB(x1)e
−iδφB1gnA(x1)eiδφA1g∗nB(x2)e

−iδφB2gmB(x2)eiδφB2

+ g∗mA(x1)e
−iδφA1gnB(x1)eiδφB1sg∗nB(x2)e

−iδφB2gmB(x2)eiδφB2

+ g∗mB(x1)e
−iδφB1gnA(x1)eiδφA1g∗nA(x2)e

−iδφA2gmA(x2)eiδφA2 ]

= I20sinc∆φ sinc
πd∆θs

λ
cos

2πd
λz

x1,
(47)

And likewise with the terms that mimic the measurement of intensity measured at D2,
〈∆I(x1)AA∆I(x2)AB〉 + 〈∆I(x1)BB∆I(x2)BA〉 + 〈∆I(x1)AA∆I(x2)BA〉 + 〈∆I(x1)BB∆I(x2)AB〉

=
I0

2∆θs

∫ ∆θs/2

−∆θs/2
dθm

I0
2∆θs

∫ ∆θs/2

−∆θs/2
dθn

1
∆φ

∫ ∆φ/2

−∆φ/2
dφ1

1
∆φ

∫ ∆φ/2

−∆φ/2
dφ2

× [g∗mA(x1)e
−iδφA1gnA(x1)eiδφA1g∗nA(x2)e

−iδφA2gmB(x2)eiδφB2

+ g∗mB(x1)e
−iδφB1gnB(x1)eiδφB1g∗nB(x2)e

−iδφB2gmA(x2)eiδφA2

+ g∗mA(x1)e
−iδφA1gnA(x1)eiδφA1g∗nB(x2)e

−iδφB2gmA(x2)eiδφA2

+ g∗mB(x1)e
−iδφB1gnB(x1)eiδφB1g∗nA(x2)e

−iδφA2gmB(x2)eiδφB2 ]

= I20sinc∆φ sinc
πd∆θs

λ
cos

2πd
λz

x2.
(48)

The following term is the term of most importance in the turbulence-free double-slit interferometer
because, while not always insensitive to turbulence, when scanning such that x1 ≈ x2, the potential
paths “overlap.” Because of this we see the random phases introduced by turbulence cancel, i.e.
δφA1 ≈ δφA2 and δφB1 ≈ δφB1, resulting in turbulence-free interference,

〈∆I(x1)AB∆I(x2)BA〉 + 〈∆I(x1)BA∆I(x2)AB〉

=
I0

2∆θs

∫ ∆θs/2

−∆θs/2
dθm

I0
2∆θs

∫ ∆θs/2

−∆θs/2
dθn

1
∆φ

∫ ∆φ/2

−∆φ/2
dφ1

1
∆φ

∫ ∆φ/2

−∆φ/2
dφ2

× [g∗mA(x1)e
−iδφA1gnB(x1)eiδφB1g∗nB(x2)e

−iδφB2gmA(x2)eiδφA2

+ g∗mB(x1)e
−iδφB1gnA(x1)eiδφA1g∗nA(x2)e

−iδφA2gmB(x2)eiδφB2 ]

=
1
2

I20 cos
2πd
λz
(x1 − x2).

(49)

Unlike the previous terms, here the overlap does not cause the cancellation of the random phases,
and is actually twice as sensitive to the turbulence present, resulting in a sinc-squared term,

〈∆I(x1)AB∆I(x2)AB〉 + 〈∆I(x1)BA∆I(x2)BA〉

=
I0

2∆θs

∫ ∆θs/2

−∆θs/2
dθm

I0
2∆θs

∫ ∆θs/2

−∆θs/2
dθn

1
∆φ

∫ ∆φ/2

−∆φ/2
dφ1

1
∆φ

∫ ∆φ/2

−∆φ/2
dφ2

× [g∗mA(x1)e
−iδφA1gnB(x1)eiδφB1g∗nA(x2)e

−iδφA2gmB(x2)eiδφB2

+ g∗mB(x1)e
−iδφB1gnA(x1)eiδφA1g∗nB(x2)e

−iδφB2gmA(x2)eiδφA2 ]

=
1
2

I20sinc
2
∆φ sinc2

πd∆θs

λ
cos

2πd
λz
(x1 + x2).

(50)
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Combining all of these we get,

〈∆I(x1)∆I(x2)〉 =
1
2

I20
[
1 + sinc2

πd∆θs

λ
+ 2sinc∆φ sinc

πd∆θs

λ
cos

2πd
λz

x1

+ 2sinc∆φ sinc
πd∆θs

λ
cos

2πd
λz

x2 + cos
2πd
λz
(x1 − x2)

+ sinc2∆φ sinc2
πd∆θs

λ
cos

2πd
λz
(x1 + x2)

]
,

(51)

In the case of strong turbulence, the terms with sinc functions attached will go to zero, resulting
in Eq. (32).
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