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1 Introduction

The financial market is an environment where people trade stocks, financial

securities, and other values. This market is characterized by volatility and risk-

sensitivity. The volatility is a statistical measure of the degree of uncertainty

associated with a particular security or investment portfolio while, the risk sen-

sitivity accounts for the degree to which investors are willing to take risk. Over

the last century, mathematicians have developed various models of financial com-

modities (cf. [25]) as an attempt to predict the prices of these commodities and

to optimize trading strategies. Now, since financial objects are subject to random

behavior, how can one adjust the model to account this random fluctuations?

Brownian motion marked the first step in the process to bring some solutions

to this problem. The Brownian motion was first discovered by the biologist Robert

Brown. While examining pollen grains under the microscope, he observed that the

grains in the water were moving continuously and randomly on a different way.

In fact, the pollen grains were being knocked around by the water molecules. An

example of such continuous and random movements in finance would be the incre-

ments and decrements of stock prices. The french mathematician Louis Bachelier,

was the first to introduce Brownian motion in finance in 1900. In his doctoral

thesis, Bachelier introduced a mathematical model of Brownian motion and its use

for valuing stock options.
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He is historically the first to use advanced mathematics in the study of finance,

therefore he is considered as the forefather of mathematical finance and a pioneer

in the study of stochastic processes.

For the price of a stock on the market, making analogy to Brown’s observation,

the traders activities along with other factors have a random impact on the price.

Brownian motion also called the Wiener process, named after Norbert Wiener,

is a mathematical tool that formalizes the random behavior observed by Robert

Brown in 1827. It can be defined as the limit for scaling random steps such as step

size and time interval. The Wiener process or Brownian motion is very important

in stochastic processes modeling because it represents the integral of the noise

idealized, independently of the frequency, called white noise. The Wiener process

is often used to represent random external influences on a system, or more generally,

it is an instrument used when the deterministic model fails to capture the presence

of uncertainties.

In this thesis, we will provide the principle for a class of diffusion processes that

are usually used to describe financial commodities. Probability theory provides

tools that can be used to represent and convert our beliefs, about the dynamics

of financial instruments, into actions. The purpose of this thesis is to study and

understand some works that have been done on the risk-sensitive stochastic optimal

control with Regime switching using the Maximum Principle. The work done

in this document is a combination of a revision of lectures notes for stochastic
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differential equations (SDE), and also a survey of some works done in stochastic

optimization, risk-sensitivity, and Markov regime switching.

There exist two principal and mostly used approaches in solving stochastic opti-

mal control problems. The first approach is the Bellman’s Dynamic Programming,

where the system consists of a partial differential equation (PDE), known as the

Hamilton-Jacobi-Bellman (HJB) equation (cf. [25]). In a deterministic case, the

PDE is of first order, and in a stochastic case, the PDE is of second order. The sec-

ond approach is the Pontryagin’s Maximum Principle, where the system consists

of the adjoint equation, the original state equation and the maximum condition

referred to an (extended) Hamiltonian system (cf. [25]). In a deterministic case,

the adjoint equation is an ordinary differential equation (ODE), and in a stochastic

case, the adjoint is a stochastic differential equation (SDE). Since the publication

of the deterministic maximum principle by Pontryagin et al., in 1956 (cf. [25]),

tremendous researches have been done in the stochastic optimal control theory.

One of the big challenge was to determine a general stochastic maximum principle

if the diffusion depends on the control and the control domain is not necessarily

convex. This problem has been the subject of many researches on the field since

1960 (cf. [25]). Until 1980, most of these researches considered a diffusion term

independent of the control variable or a diffusion term that depends on a convex

control domain. Under these considerations the results for stochastic and determin-

istic maximum principle are very similar. In 1990, Peng and other mathematicians
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from Fudan University (Shanghai) were able to solve a stochastic maximum prin-

ciple for systems with control dependent diffusion coefficients and possibly non

convex control domains, by introducing for the first time, the second order adjoint

equation (cf. [17]).

Literature review

The first to study the necessary condition Stochastic Maximum Principle (SMP)

was Krushner in 1965. Krushner’s result was extended to more general stochas-

tic control problems with control-free diffusion coefficients by Bismut in 1973,

Bensoussam in 1981, and Haussmann in 1986. For stochastic control problems

with controlled diffusion coefficients, Peng in 1990 applied the second order-adjoint

equation to derive the necessary SMP. Zhou in 1991 simplified Peng’s proof. Tang

and Li in 1994 extends Peng’s SMP to systems with jump diffusions (cf. [12]),

Cadenillas and Karatzas in 1995 extends Peng’s SMP to systems with random

coefficients. Bismut was the first researcher to study the sufficient SMP in 1978.

Peng’s necessary SMP result was proved to be also sufficient under certain convex-

ity assumption by Zhou in 1996. In 2004, Framstad, Oksendal, and Sulem applied

the sufficient stochastic maximum principle (SMP) to jump diffusion systems. In

2011, Donnelly extended the SMP with Markovian regime-switching, and Zhang,

Elliot and Siu in 2012 with Markov regime-switching for jump diffusion processes.

Peter Whittle was one of the first to work on risk-sensitive stochastic maximum
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principle in 1990, when he derived a maximum principle based on the theory of

large deviations. Then in 2005, Lim and Zhou established a new risk-sensitive max-

imum principle, based on the general stochastic maximum principle of Peng and

the relationship between maximum principle and dynamic programming principle

of Yong and Zhou. In 2009, Wang and Wu considered a more general risk-sensitive

cost functional, and found applications in finance. Therefore, tremendous works

have been done in finance using the risk-sensitive maximum principle. Among

them, the derivation of a general stochastic maximum principle for risk-sensitive

type optimal control problem of Markov regime-switching jump-diffusion model,

developed by Zhongyang Sun, Isabelle Kemajou-Brown, and Olivier Menoukeu-

Pamen in 2017 (cf. [21]).

The remainder of this thesis is organised as follows:

Chapter 2 introduces notation and definitions used throughout this document.

It presents a brief review of the relevant theoretic background concerning proba-

bility theory, and stochastic differential equations; in particular, definitions of

Sigma-algebra, measure space, probability measure, probability space, random

variable, and differential equations. We also recall in this chapter the axioms of

probability as defined by Kolmogorov, and the properties of Wiener process. We

finally recall in this chapter the basic concepts on control optimization, referring

to the two common methods used for optimization problems: the dynamic pro-

gramming method and the Pontryagin maximum principle. The two fundamental
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theorems of maximum principle are stated. In Chapter 3, we state a stochastic

optimal problem and we derive the risk-sensitive stochastic maximum principle.

In Chapter 4, the concept of regime switching is presented in a stochastic-optimal

problem with risk-sensitivity. Chapter 5 presents an application of a risk-sensitive

stochastic optimal control problem based on an optimal portfolio choice problem

in the financial market, and using the hyperbolic absolute risk aversion (HARA)

utility function. We give our conclusion in chapter 6.
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2 Preliminaries and framework

In this section we recall and define some of the important mathematical con-

cepts used throughout this document. More details on these concepts can be found

in [10].

2.1 Notation and Acronyms

The following list summarizes notation and acronyms used in this work.

R the set of reals
R+ the set of positive reals
Rn n-dimensional Euclidean space
Rn×m the set of all (n×m) real matrices
In the n× n identity matrix
AT the transpose of a matrix A
trA the trace of a matrix A
Ck the space of functions with continuous derivatives

up to order k〈
·, ·
〉

the inner product in some Hilbert space.
E[·] mathematical expectation
Ft filtration at time t
E
[
· |Ft

]
expectation conditioned on Ft

, defined as
:= equal by definition
≡ identically equal to
≈ approximately equal to∨

the join of all elements operated on

N (µ, σ2) normal (Gaussian) distribution with mean µ
and variance σ2

W (t) standard Brownian motion process
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LkF
(
[0, T ];Rn

)
the space of all {F}t≥0 -adapted Rn-valued processes

f : [0, T ]→ Rn such that E
[ ∫ T

0

|f(t)|kdt
]
<∞,

for 1 ≤ k <∞
LkF ,p

(
[0, T ];Rn

)
the space of all {F}t≥0 predictable Rn-valued processes

f : [0, T ]→ Rn such that E
[ ∫ T

0

|f(t)|kdt
]
<∞,

for 1 ≤ k <∞
Lk
(
[0, T ];Rn

)
the space of measurable functions

f : [0, T ]→ Rn such that E
[ ∫ T

0

||f(t)||kdt
]
<∞,

for 1 ≤ k <∞
M2

(
[0, T ];Rn

)
the set of square-integrable functions

M2
F

(
[0, T ];Rn

)
the space of all {F}t≥0 predictable Rn-valued processes

f : [0, T ]→ Rn such that E
[ ∫ T

0

||f(t)||2M2 dt
]
<∞,

2.2 Deterministic differential equations

Definition 2.2.1 (Differential Equations).

A differential equation is a relation of the form, F (x, y, y′, · · · , y(n)) = 0, where

x is the independent variable, y is the dependent variable, and y(i) are the successive

derivatives of y with respect to x.

In applications, differential equations describe a relationship that involves some

physical quantities (the functions) and their rates of change (derivatives).

Example 1: The priceX(t) per unit time of a riskless asset grows exponentially

and satisfies the following differential equation

dX0(t) = rX0(t)dt,

where r is a positive constant.
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2.3 Probability theory refresher

To adequately model the financial market behavior, we need some tools from

the theory of probability and stochastic analysis to capture the uncertainties.

2.3.1 Random experiment

A random experiment is an experiment whose outcomes are unpredictable.

Example, tossing a coin could lead us with tail or head, but we cannot say exactly

which face of the coin will come. Another example, in financial market the price

of a stock is a random quantity, since the experiment of looking that value, let say

every hour during an open day is a quantity that cannot be predicted in advance.

Therefore, the price of stocks in a financial market forms a random experiment.

Nevertheless, to work at ease with the notion of random experiment, we make the

assumptions that all possible outcomes for a specific experiment are known, those

outcomes could be finite or infinite.

2.3.2 Probability measure, probability space

Let us consider an experiment for which the set of all the possible outcomes

is known, and let us denote by Ω that set. Ω is also called the sample space and

could be countably finite or infinite, or Ω could be uncountable.
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Definition 2.3.1 (σ-algebra, Measurable space)

A σ-algebra denoted by F is a collection of subsets of Ω with the following

properties.

(i) ∅, Ω ∈ F .

(ii) If A ∈ F , then Ac ∈ F .

(iii) If A1, A2, A3, · · · , An,· · · ∈ F ⇒
∞⋃
n=1

An ∈ F .

The pair (Ω , F ) is called a measurable space.

In 1933 the axiomatic approach to probability was formalized by the Russian

mathematician A.N. Kolmogorov (cf. [19]). The probability theory system is

constructed from those axioms (cf. [11]).

Axioms of Probability

Let Ω be a sample space, and F a σ-algebra associated to Ω. A probability measure

P on a measurable space (Ω , F ) is a function P: F → [0, 1] satisfying the following

axioms.

(i) P (∅) = 0 , P (Ω) = 1.

(ii) Let A1, A2, · · · , Ak,· · · ∈ F , then P (
∞⋃
k=1

Ak) ≤
∞∑
k=1

P(Ak).

(iii) If A1, A2, · · · are mutually disjoint sets in F , then P (
∞⋃
k=1

Ak) =
∞∑
k=1

P(Ak).
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If those three axioms are met, then the triple (Ω, F , P) is called a probability

space. Furthermore, (Ω, F , P) is called a complete probability space if F contains

all subsets A of Ω with P-outer measure zero.

Definition 2.3.2 (Measurable Function)

Let (Ω, F , P) be a probability space where Ω is a nonempty set, F a σ-algebra

of subsets of Ω, and P is a probability measure on F .

Then a function X: Ω → Rn is called F -measurable if its preimage belongs to F ,

i.e., X−1 (U) , {ω ∈ Ω : X (ω) ∈ U} ∈ F , for any measurable set U in Rn.

Definition 2.3.3 (Conditional Probability)

Let (Ω, F , P) be a probability space such that P (A)>0, with A an event of Ω.

Let B be an event of Ω: If the event A occurs and we want to use that information

to find the probability of the event B, we write: P(B|A) = P(A∩B) / P(A) called

probability of B given A.

If A and B are independent then P(B|A) = P (B).

Definition 2.3.4 (Random Variable)

Let (Ω, F , P) be a probability space, a random variable X is an F -measurable

function, or Real valued function X: Ω→ R such that its domain is the measurable

space (Ω, F ) and its range is the measurable space (R, B) where B is a σ-algebra

defined on R, satisfying the following: If B ∈ B, then X−1 (B) ∈ F .
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Definition 2.3.5 (Filtration)

A filtration {Ft}t≥0 on a probability space (Ω,F ,P) is a collection of sub-

sigma-algebras of F satisfying Fs ⊆ Ft whenever s ≤ t. Ft represents the set

of events observable by the time t. The probability space taken together with the

filtration
(
Ω,F , {Ft}t≥0,P

)
is called a filtered probability space.

2.4 Stochastic Processes

Nowadays, the description of several phenomena in many fields such as engi-

neering, robotics, neuroscience, and finance often requires the use of mathematical

tools related to random processes. In this section, we recall the basics of processes

and stochastic differential equations.

Definition 2.4.1 (Stochastic Process) A stochastic process is a collection of ran-

dom variables {X(t)}t∈T , where T is the parameter space such as [0,∞) or [a, b],

a, b ∈ R.

Any (deterministic) function f(t) can be considered as an elementary stochastic

function process. A typical example that we find very often in physics, engineering,

and finance models is the process of Wiener Wt also known as Brownian motion.

Definition 2.4.2 (Adapted Process)

Let

• (Ω,F ,P) be a probability space;

• Time set T be an index set with a total order;
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• F =
{
Ft

}
t∈T be a filtration of the sigma-algebra F with Fs ⊆ Ft if s < t.

Ft is the information available at time t;

• X : T x Ω → R be a stochastic process. X can be also write as Xt(ω), or

X(t, ω).

The process X is said to be adapted to the filtration
{
Ft

}
t∈T if the random

variable Xt is Ft-measurable for each t ∈ T : that is the value of Xt(ω) can be

determined by the “information available at time t.”

Definition 2.4.3 (Standard Brownian Motion)

A stochastic process
{
W (t)

}
t≥0

of real-valued random variables defined on some

probability space
(
Ω,F ,P

)
is called a Brownian motion (or Wiener process) if,

given any time points 0 = t0 < t1 < t2 < · · · < tn, we have the following properties

in continuous time:

Property 1. W (0) = 0.

Property 2. Independent increments:

W (t1) − W (t0), W (t2) − W (t1), · · · , W (tn) − W (tn−1) are independent random

variables.

Property 3. Normal distribution: W (ti+1)−W (ti) ∼ N (0, ti+1− ti), for every i.

Property 4. The Wiener process
{
W (t)

}
can be represented by continuous paths.

Let
{
F (t)

}
t≥0

be a filtration associated with a Brownian motion W (t).
{
F (t)

}
t≥0

is a collection of σ-algebras such that:

i) For 0 ≤ s < t, F (s) ⊂ F (t).
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ii)
{
W (t)

}
must be adapted to the filtration

{
F (t)

}
t≥0

.

iii) For 0 ≤ t < u, W (u)−W (t) is independent of F (t).

Definition 2.4.4 (Predictable Continuous-time Process)

Let
(
Ω,F , {Ft}t≥0,P

)
a filtered probability space, then a continuous-time

stochastic process (Xt)t≥0 is predictable if X, considered as a mapping from Ω × R+

is measurable with respect to the sigma-algebra generated by all left-continuous

adapted processes.

2.4.1 Stochastic differential equations

The use of stochastic differential equations (SDE) for the modeling of financial

quantities such as asset prices, interest rates and their derivatives has become a

standard tool in applied mathematics. Unlike deterministic models which have a

unique solution for each appropriate initial condition, stochastic differential equa-

tions have solutions which are continuous time stochastic processes. However, the

resolution methods of the stochastic differential equations are based on similar

techniques for Ordinary differential equations, but generalized to support stochas-

tic dynamics.

Definition 2.4.5 (Stochastic Differential Equation).

In general, we define a stochastic differential equation, as a differential equation

in which one or more of the terms is a stochastic process, resulting in a solution

which is also a stochastic process.

14



Example 2: Let X(t) be a stochastic process. The dynamic of this process

can be described as the following (SDE):

dX(t) = f
(
t,X(t)

)
dt+ g

(
t,X(t)

)
dW (t),

where W (t) is a Wiener process, f and g are some functions that satisfy some given

conditions.

Definition 2.4.6 (Mathematical Expectation)

Let (Ω,F ,P), be a probability space, and X a random variable defined by

X : Ω→ Rn. We write

∫
Ω

XdP =

∫
Ω

X+dP−
∫

Ω

X−dP, provided at least one of the

integrals on the right is finite. Where X+ = max(X, 0) and X− = max(−X, 0);

so that X = X+ −X−. We call E(X) :=

∫
Ω

XdP the expected value of X.

Definition 2.4.7 (Conditional Expectation)

Given a probability space (Ω,F ,P), a random variable X : Ω → Rn such that

E[|X|] <∞, and H ⊂ F a σ-algebra, then the conditional expectation of X given

H, is denoted by E[X|H] : Ω→ Rn such that:

• E[X|H] is H−measurable.

•
∫
H

E[X|H]dP =

∫
H

XdP, for all H ∈ H.

Definition 2.4.8 (Square-integrability)

A stochastic process X(t) is called square-integrable if E
[ ∫ T

τ

|X(T )|2dt
]
< ∞

for any T > τ.
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Definition 2.4.9 (Martingale)

An N-dimensional stochastic process {Mt}t≥0 on a probability space (Ω,F ,P),

is called a martingale with respect to a filtration {Ft}t≥0 and a probability measure

P if:

• Mt is Ft-measurable for all t.

• E[|Mt|] <∞ for all t.

• E[Ms|Mt] = Mt for any s ≥ t.

Definition 2.4.10 (Itô process)

An Itô process is a stochastic integral with respect to a Brownian motion defined

on
(
Ω,F , {Ft}t≥0,P

)
a filtered probability space. Let

{
X(t)

}
0≤t≤T be a stochas-

tic process, adapted to the natural filtration
{
F (t)

}
t≥0

of a Brownian motion{
W (t)

}
0≤t≤T , that is X(t) be F (t)-measurable. We have the following Itô pro-

cess.

I(t) =

∫ t

0

X(u)dW (u), 0 ≤ t ≤ T .

2.5 Basic concepts on control optimization

An optimal control is a set of differential equations describing the paths of the

control variables that optimize the cost functional. The method is largely due to

the work of Richard Bellman and Lev Pontryagin in the 1950s. In economic or

finance, we have two tools frequently used: the dynamic programming and the

maximum principle.
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• Dynamic Programming: This is a model developed by Richard Bellman.

It is mostly used for discrete-time dynamic optimization. The method involves the

optimal value. If the value depends on state x ∈ R and time t, and the optimal

value is Vt(xt), then one trades off immediate payoff f (direct utility) against future

optimal value (indirect utility) Vt+1(xt+1). If our control at time t is ut,

f := f(t, x, u) depends on time, state, and control, and so does xt+1 = g(t, x, u),

then the best we can do with state xt = x is to maximize f(t, x, u)+Vt+1(g(t, x, u))

with regard to our control u if Vt+1 is a known function, that gives us the optimal

ūt as a function of time and date.

• Maximum principle: This is a model developed by Lev Pontryagin. It

is used in optimal control theory to find the best possible control for taking a

dynamic system (time dependence) from one state to another, especially in the

presence of constraints for the state or input controls.

The maximum principle will be the main focus of this thesis. In general terms, an

optimal control problem consists of the following elements:

• State process S(·). This process must capture the minimal necessary

information needed to describe the problem. Typically, S(t) ∈ Rd is influenced by

the control and given the control process it has a Markovian structure. Usually its

time dynamics is prescribed through an equation. In this section, we will consider

only the state processes whose dynamics is described through an ordinary or a

stochastic differential equation.
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• Control process u(·). We need to describe the control set, U , in which u(t)

takes values for every t. Applications dictate the choice of U . In addition to this

simple restriction u(t) ∈ U , there could be additional constraints placed on control

process. For instance, in the stochastic setting, we will require v to be adapted

to a certain filtration, to model the flow of information. Also we may require the

state process to take values in a certain region (i.e., state constraint). This also

places restrictions on the process u(·).

• Admissible controls U . A control process satisfying the constraints is

called an admissible control. The set of all admissible controls will be denoted by

U and it may depend on the initial value of the state process.

• Objective functional J
(
S(·), u(·)

)
. This is the functional to be maximized

(or minimized). In all of our applications, J has an additive structure, or in other

words J is given as an integral over time.

In optimal control, the goal is to minimize (or maximize) the objective functional J

over all admissible controls by finding the minimizing (maximizing) control process.

2.5.1 Maximum principle

The principle states, informally, that the control Hamiltonian must take an

extreme value over controls in the set of all permissible controls. Whether the

extreme value is maximum or minimum depends on the problem and on the sign

convention used for defining the Hamiltonian.
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(a) Necessary conditions. Let the time frame [t0, t1] be given. Consider the

problem to maximize with regard to u(t) ∈ U the functional

∫ t1

t0

f(t, x(t), u(t))dt

where x starts at x(t0) = x0 (given) and evolves as ẋ(t) = g(t, x(t), u(t)); we

shall consider the following three possible terminal conditions:

(i) x(t1) = x1 (given), (ii) x(t1) ≥ x1, or (iii) x(t1) free.

Step 1: Form the Hamiltonian H(t, x, u, p) = f(t, x, u) + pg(t, x, u).

Step 2: The optimal ū maximizes H. (p is the adjoint satisfying the next

step.)

Step 3: We have a differential equation for p:

ṗ = − ∂H

∂x
(evaluated at optimum), with the so-called transversality conditions

on p(t1):

• In case the terminal value x(t1) is fixed, there is no condition on p(t1).

• In case the problem imposes x(t1) ≥ x1, then we get a complementary

slackness condition on p(t1): p(t1) ≥ 0.

• If there is no restriction on x(t1),then p(t1) must be equal to zero. If we

have a function ū(t, x, u) for the optimal control, then plugging this into

− ∂H

∂x
will give ṗ as a function of (t, x∗, p).

Step 4: We have the differential equation for the the state. Inserting ū there

as well, gives a differential equation system:


dx∗ = φ(t, x∗, p)

dp = ψ(t, x∗, p)

, and the
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conditions on x(t0), x(t1), and p(t1) determine the integration constants.

(b) Sufficient conditions. We have two sets of sufficient conditions. Suppose

we have found a pair (x̄, ū) which satisfies the necessary conditions. This pair

is a candidate for optimality. We can conclude that it is indeed optimal if it

satisfies one of the following:

• Mangasarian sufficiency condition: For this condition, we use

p = p(t) produced by applying the maximum principle to obtain that H

is concave with regard to (x, u) for all t ∈ (t0, t1).

• The Arrow sufficiency condition: For this condition, we insert the

function ū(t, x, p) for u in the Hamiltonian to get the function

H̄(t, x, p) = H
(
t, x, ū(t, x, p), p

)
, with the p = p(t) that the maximum

principle produces. Then H̄ is concave with regard to x for all t ∈ (t0, t1).

The Arrow sufficiency condition is more powerful and mostly applied in

economics problems.

Example 3: Maximization problem. Case of a deterministic optimal

control problem using the Maximum principle steps.

Let maximize the function J given by: J =

∫ 2

0

(2x − 3u − u2)dt subject to:

ẋ = x + u, x(0) = 5, and the control constraint u ∈ U = [0, 2]. The optimal
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solution u(t) of this problem can be obtained using the Pontryagin maximum

principle as follows.

Step 1: We form the Hamiltonian.

H = (2x− 3u− u2) + p(x+ u) = (2 + p)x− (u2 + 3u− pu)

Step 2: The optimal control can be calculated by differentiating H with respect

to u and equating the result to zero as:

∂H

∂u
= −2u− 3 + p = 0

which gives ū(t) =
(
p(t)− 3

)/
2, where ū(t) must lie in the interval U = [0, 2].

Step 3: In order to obtain p we derive the adjoint equation as:

ṗ = −∂H
∂x

= −2− p, p(2) = 0

or equivalently,

ṗ+ p = −2, p(2) = 0.

p(2) = 0 since there is no restriction on x(2). The solution of the above equation

is p(t) = 2
(
e2−t − 1

)
Step 4: Considering the fact that the control must always lie in the interval

U = [0, 2], this leads to the following optimal control:

u =



2 if e2−t − 2.5 > 2,

e2−t − 2.5 if 0 ≤ e2−t − 2.5 ≤ 2,

0 if e2−t − 2.5 < 0.
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As it is expected, the resultant optimal control is a continuous function in t. it can

be easily verified that the total cost J using this optimal control is equal to 68.93.

2.5.2 Stochastic maximum principle

• Problem formulation.

In a stochastic control problem, the state equation is stochastic. Let X0 be the

initial state of an Itô controlled process that describes the state of a system in a

form:


dX(t) = f

(
t,X(t), u(t)

)
dt+ g

(
t,X(t), u(t)

)
dW (t)

X(0) = X0, t ∈ [0, T ]

(2.5.1)

Where X(t) ∈ Rn, f : [0, T ] x Rn x U → Rn, g : [0, T ] x Rn x U → Rn x m

and W (t) is m-dimensional Brownian motion. Here u(t) ∈ U ⊂ Rk is a parameter

which can be chosen in the given Borel set U at any time t in order to control the

process X(t). Therefore, u(t) = u(t, w) is a stochastic process.

The cost functional J
(
(0, X0, u(t)

)
associated with the initial condition (0, X0)

is given by:

J(0, X0, u) := EX0

[∫ T

0

F
(
t,X(t), u(t)

)
dt+G

(
T,X(T )

)]
(2.5.2)

Where F : [0, T ] x Rn x U → R, G : Rn → R are given. We say that u is an

admissible control, if it is predictable such that: E

[∫ T

0

|u(t)|2dt

]
< ∞ and the

stochastic differential equation has a unique strong solution.
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We denote by U [0, T ] the set of all admissible controls. Our stochastic control

problem is now defined as follows:

Minimize J
(
0, X(t), u(·)

)

subject to


u(·) ∈ U [0, T ]

(
X(·), u(·)

)
satisfies (2.5.1).

(2.5.3)

We make further assumptions on the above functions.

(A1): f, g are uniformly lipschitz in (x, u) and f(t, 0, 0) is bounded ∀t ∈ [0, T ];

(A2): f, g, F, G are twice continuously differentiable with respect to x, they

and their partial derivatives in x are continuous in (x, u);

(A3): fx, fxx, gx, gxx, Fx, Fxx, Gx, Gxx are bounded;

(A4): F and G are uniformly bounded;

(A5): U is a convex subset of Rk

(A1) - (A3) are usual conditions for risk-neutral maximum principles. (A4)

ensure that the cost functional is well defined.

Now, we can present a general maximum principle control problem and also

sufficient conditions for optimality.

In the following, we take ϕ = f, g, F we define

ϕ̄(t) , ϕ
(
t, X̄(t), ū(t)

)
,

ϕ̄x(t) , ϕx
(
t, X̄(t), ū(t)

)
,

ϕ̄xx(t) , ϕxx
(
t, X̄(t), ū(t)

)
.

23



Let
(
X̄(·), ū(·)

)
be an admissible pair for the system (2.5.1). To construct our

Hamiltonian we need to introduce the first order adjoint variable(
p̄(·), q̄(·)

)
∈ L2

F

(
[0, T ];Rn

)
× L2

F ,p

(
[0, T ];Rn×m), and the second order adjoint

variable
(
P̄ (·), Q̄(·)

)
∈ L2

F

(
[0, T ];Rn × n)×(L2

F ,p

(
[0, T ];Rn × n))m associated with

the admissible pair
(
X̄(·), ū(·)

)
, which are the solutions of the following equations

respectively:


dp̄(t) = −

{
f̄x(t)

Tp̄(t)− F̄x(t)T +
m∑
j=1

[
ḡjx(t)

Tq̄j(t)
]}
dt+

m∑
j=1

q̄j(t)dWj(t)

p(T ) = −Gx

(
X̄(T )

)
,

(2.5.4)



dP̄ (t) = −
{(
f̄x(t)

TP̄ (t) + P̄ (t)f̄x(t)
)

+
m∑
j=1

(
ḡjx(t)

TP̄ (t)ḡjx(t)
)

+
m∑
j=1

[(
ḡjx(t)

TQ̄j(t)
)

+
(
Q̄j(t)ḡ

j
x(t)
)]

+ H̄xx

(
t, X̄(t), ū(t), p̄(t), q̄(t)

}
dt

+
m∑
j=1

Q̄j(t)dWj(t),

P̄ (T ) = −Gxx

(
X̄(T )

)
.

(2.5.5)

The Hamiltonian H̄ : [0, T ]× Rn × U × Rn × Rn×m → R is defined as:

H̄(t,X0, u, p, q) := 〈p, f(t,X0, u)〉 − F (t,X0, u) +
m∑
j=1

gj(t,X0, u)Tqj

From (2.5.4) the unknown is the pair of processes
(
p̄(·), q̄(·)

)
which is F -adapted,

and from (2.5.5) the unknown is the pair of processes
(
P̄ (·), Q̄(·)

)
.
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We note that equations (2.5.4) and (2.5.5) are backward stochastic differential

equations (BSDE). Then, those equations associated with the 6-tuple(
X̄, ū, p̄(·), q̄(·), P̄ (·), Q̄(·)

)
, define

H(t, X̄, ū) := H(t, X̄, ū, p̄, q̄)+
1

2

〈
P̄ (t) g(t,X, u), g(t,X, u)

〉
−
〈
P̄ (t)ḡ(t), g(t,X, u)

〉
.

The main result in [17] asserts that the optimal pair
(
X̄(·), ū(·)

)
verifies the

following stochastic maximum principle.

H̄(t) = H(t, X̄(t), ū(t)) = max
u∈U

H(t, X̄(t), u) , a.e.t ∈ [0, T ],P− a.s.

There are two fundamental theorems used in stochastic control.

• First fundamental theorem in stochastic control:

This theorem is also called the necessary stochastic maximum principle, the

theorem states that: If there exists an optimal control, then it is associated to the

easier problem of finding the maximum of a certain real function in a particular

control space.

• Second fundamental theorem in stochastic control:

The second fundamental theorem in stochastic control is the sufficient

stochastic maximum principle. It states that if a certain real function is maximum

for a particular control, then that control is optimal.
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2.6 Markov regime switching

2.6.1 Markov chain

Let St be a random variable that can assume only an integer {1, 2, · · · , N}.

Suppose that the probability that St equals some particular value j depends on the

past only through the most recent value St−1. P{St = j|St−1 = i, St−2 = k, · · · }

= P{St = j|St−1 = i}= pij. Such a process is described as an N-state Markov

chain with transition probabilities {pij}i,j=1,2,··· ,N .

The transition probability pij gives the probability that: state i will be followed

by state j. Note that: pi1 + pi2 + · · ·+ piN = 1.

It is often convenient to collect the transition probabilities in a (N×N) matrix

P known as the transition matrix (cf.[8]).
p11 p21 · · · pN1

p12 p22 · · · pN2
...

...
...

...
p1N p2N · · · pNN


In our approach, we will exploit the Markovian structure of the problem and use

the Maximum Principle.

2.6.2 Markov-chain regime switching

• Problem statement.

A stochastic control problem in a regime switching diffusion model can be

formulated as follows.

Let X = {Xt}t∈[0,T ] be a continuous time, finite Markov chain. We identify the
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states of this process with the standard unit vector ei in RN where N is the

number of states of the chain. Let
(
Ω,F ,P) be a complete probability space. Let

T ∈ (0,∞) be a fixed deterministic time. Let W (·) be an m-dimensional Brownian

motion and α(·) a continuous time finite state space Markov chain defined on the

same probability space (Ω,F ,P). Let {Ft}t∈[0,T ] be the filtration generated by W

and the Markov chain α,

Ft := σ
[(
W (s), α(s)

)
: 0 ≤ s ≤ t

]∨
N (P), ∀t ∈ [0, T ],

where N (P) is the collection of all P-null sets in the probability space (Ω,F ,P).

Let the Markov chain α takes values in a finite state space S = {1, 2, · · · , N} and

starts from initial state i0 ∈ S with a N x N generator matrix G =
(
gij
)N
i,j=1

. For

each pair of distinct states (i, j), the Markov chain is a point process, or a counting

process,

Nij(t) :=
∑

0<s≤t

χ[α(s−) = i] χ[α(s) = j],∀t ∈ [0, T ],

where χ is an indicator function.

The process Nij(t) counts the number of jumps that the Markov chain α has made

from state i to state j up to time t. Define the intensity process

Iij(t) := gij χ[α(s−) = i].

If we compensate Nij(t) by

∫ t

0

Iij(s)ds, then we have the process

Mij(t) := Nij(t)−
∫ t

0

Iij(s)ds,
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which is a discontinuous square-integrable martingale with initial value zero (cf.[18]).

Consider a stochastic control model where the state of the system is governed by

a controlled Markovian regime-switching.
dX(t) = f

(
t,X(t), u(t), α(t−)

)
dt+ g

(
t,X(t), u(t), α(t−)

)
dW (t),

X(0) = X0 ∈ Rn, α(0) = i0 ∈ S,

(2.6.1)

where u(t) = u(ω, t) is a control process defined by: u(t) : Ω x [0, T ]→ U , U ∈ Rk,

T ∈ (0,∞), f : [0, T ]× Rn × Rk × S → Rn and g : [0, T ]× Rn × Rk × S → Rn×m

are giving continuous functions satisfying the following assumptions:

(A1): The maps f and g are measurable, and there exists a constant L > 0

such that for ϕ = f, g we have:

|ϕ(t,X, u, i)− ϕ(t, Y, v, i)| ≤ L
(
|X − Y |+ |u− v|

)
,

∀t ∈ [0, T ], X, Y ∈ Rn, u, v ∈ U , i ∈ S,

|ϕ(t, 0, 0, i)| ≤ L; ∀t ∈ [0, T ], i ∈ S.

(A2): The maps f and g are C1 in x and there exists a constant K > 0 and

a modulus of continuity ω̄ : [0,∞)→ [0,∞) such that:

∣∣ϕx(t,X, u, i)− ϕx(t, Y, v, i)∣∣ ≤ K|X − Y |+ ω̄
(
d(u− v)

)
,

∀t ∈ [0, T ], X, Y ∈ Rn, u, v ∈ U , i ∈ S,

where ϕx(t,X, u, i) is the partial derivative of ϕ with respect to x at the point

(t, x, u, i).
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We consider the cost functional:

J(0, X0, u) = E

[∫ T

0

F
(
(t,X(t), u(t), α(t)

)
dt+G

(
(X(T ), α(T )

)]

X(0) = X0, α(0) = i0,

(2.6.2)

(A3): The maps F and G are measurable, and there exist constants L1, L2 > 0

such that:

|F (t,X, u, i)− F (t, Y, v, i)| ≤
[
L1 + L2(|X|+ |u|+ |v|)

]
|u− v|,

∀t ∈ [0, T ], X, Y ∈ Rn, u, v ∈ U , i ∈ S,

|F (t, 0, 0, i)|+ |G(0, i)| < L1; ∀t ∈ [0, T ], i ∈ S.

(A4): The maps F and G are C1 in x and there exists a constant K > 0 and

a modulus of continuity ω̄ : [0,∞)→ [0,∞) such that for ϕ = F,G we have:

∣∣ϕx(t,X, u, i)− ϕx(t, Y, v, i)∣∣ ≤ K|X − Y |+ ω̄
(
d(u, v)

)
,

∀t ∈ [0, T ], X, Y ∈ Rn, u, v ∈ U , i ∈ S,

∣∣ϕx(t, 0, 0, i)∣∣ ≤ K; ∀t ∈ [0, T ], i ∈ S,

where for each i ∈ S we have that F (·, ·, ·, i) : [0, T ] x Rn x U → R is continuous

and G(·, i) : Rn → R is C1(R) and concave.

(A5): suppose that G(·, α(T )) is convex and the Hamiltonian

H(t, ·, ·, α(t−), p̄(t), q̄(t)) is concave for all t ∈ [0, T ] almost surely.

Our equation (2.6.1) admits a unique solution and the cost functional is well

defined. The control process u is said admissible if it is valued in U , a non-empty

closed convex subset of Rk.
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Let X(t) = X(u)(t), t ∈ [0, T ] satisfying both X(0) = X0 almost surely, and

E

[∫ T

0

F
(
(t,X(t), u(t), α(t)

)
dt+G

(
(X(T ), α(T )

)]
<∞.

Let us denoted by Uad the set of admissible controls. If X is a solution of the equa-

tion (2.6.1) with the corresponding admissible control u ∈ Uad, then we call (X, u)

an admissible pair and X an admissible state process. Our optimal stochastic

control problem is to find an optimal control ū such that

J(0, X0, ū) = inf
u∈ Uad

J(0, X0, u) (2.6.3)

The corresponding X̄ and (X̄, ū) are called an optimal state process and optimal

pair, respectively.

2.7 Adjoint variable and Hamiltonian

The Hamiltonian H : [0, T ] × Rn × U × S × Rn × Rn×n → R is defined

by:

H(t,X0, u, i, p, q) := −F (t,X0, u, i)+fT (t,X0, u, i)p+ tr
(
gT (t,X0, u, i)q

)
. (2.7.1)

We assume that the Hamiltonian H is differentiable with respect to x.

Given an admissible pair (X̄, ū), the adjoint equation corresponding in the adapted

process p̄(t) ∈ Rn, q̄(t) ∈ Rn × n and η(t) =
(
η(1)(t), · · · , η(N)(t)

)T
.

Where η(n) ∈ RN × N for n = 1, · · · , N, is the backward stochastic differential

equation (BSDE).
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dp̄(t) = −H̄x

(
(t, X̄(t), ū(t), α(t−), p̄(t), q̄(t)

)
dt+ q̄(t)dW (t) + η(t) • dM(t)

p̄(T ) = −Gx

(
X̄(T ), α(T )

)
,

(2.7.2)

η(t) • dM(t) :=

(∑
j 6=i

η
(1)
ij (t)dMij(t), · · · ,

∑
j 6=i

η
(N)
ij (t)dMij(t)

)T

, ∀t ∈ [0, t)

and
∑
j 6=i

stands for
N∑
i=1

N∑
j=1

with j 6= i.

Remark: There are jumps in the adjoint equation, even though there are no

jumps in the equation (2.6.1) which governs the state variable X(t). This is a

consequence of the coefficients f(t) and g(t) being functions of the Markov chain

α(t). Moreover, the unknown process η(t) in the adjoint equations does not appear

in the Hamiltonian (2.7.1).

Theorem 2.7.1 (Necessary stochastic maximum principle regime-rwitching, cf.[13])

Let assumptions (A1)-(A4) hold and let (X̄, ū) be an optimal pair of (2.6.1). Then,

there exists a triplet stochastic process
(
p̄(·), q̄(·), s̄(·)

)
which is an adapted solution

to (2.7.2).

Theorem 2.7.2 (Sufficient stochastic maximum principle regime-rwitching, cf.[13])

Suppose that (A1)-(A5) hold. Let
(
x̄(·), ū(·)

)
be an admissible pair, and(

p̄(·), q̄(·)
)
,
(
s̄(·)
)

being the solution of the corresponding adjoint equation (2.7.2)

satisfying
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E
∫ T

0

‖
(
f
(
(t, X̄(t), ū(t))− g(t,X(t), u(t))

)T
p̄(t)‖2dt <∞, (2.7.3)

E
∫ T

0

‖q̄(t)T
(
X̄(t)−X(t)

)
‖2dt <∞, (2.7.4)

and
N∑
n=1

N∑
j 6=i

E
∫ T

0

∣∣(X̄n(t)− X̄n(t)
)
s̄nij(t)

∣∣2d〈Mij

〉
<∞, (2.7.5)

for all admissible controls u(·) ∈ U ,

then,
(
x̄(·), ū(·)

)
is an optimal pair for the problem (2.6.3).
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3 Risk-sensitive stochastic control optimization

After exploring the basic concepts of control optimization, we add in this chap-

ter a new parameter in stochastic optimal control problems: the risk-sensitivity.

Risk-sensitivity can be seen as the behavior of an investor towards risk. Therefore,

an optimal risk-sensitive control, from this perspective, will be the balance of an

investor’s interest in optimizing the cost functional against his aversion to risk due

to deviations of the realized cost rate from the expectation.

3.1 Statement of the problem

Let T > 0 be a fixed time horizon and
(
Ω,F , {Ft}t≥0,P

)
a filtered probability

space on which a n-dimensional standard Brownian motion W = {Wt}t≥0 is given,

and the filtration {Ft}t≥0 is the natural filtration of W augmented by P-null sets

of F . We consider the following stochastic control system:


dX(t) = f

(
t,X(t), u(t)

)
dt+ g

(
t,X(t), u(t)

)
dW (t),

X(0) = X0,

(3.1.1)

where

f(t,X, u), g(t,X, u) : [0, T ] × Rn × U → Rn, t ∈ [0, T ], X ∈ Rn, u ∈ U .

An admissible control u is an F -adapted and square-integrable process with

values in a non-empty subset U of Rm. Let U be the set of all admissible controls.
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Given u ∈ U , equation (3.1.1) is a stochastic differential equation with random

coefficients.

The risk-sensitive cost functional associated with (3.1.1) is given by:

Jθ
(
0, X0, u(·)

)
= E

[
eθ
[ ∫ T

0 F
(
t,X(t),u(t)

)
dt+G

(
X(T )

)]]
, (3.1.2)

where, θ is the risk-sensitivity parameter,

F (t,X, u) : [0, T ] × Rn × U → R, G(X) : Rn → R, t ∈ [0, T ], X ∈ R, u ∈ U .

The risk-sensitive control problem associated with (3.1.1) − (3.1.2) is defined as

follows: 

Minimize Jθ
(
0, X0;u(·)

)

subject to


u(·) ∈ U [0, T ]

(
X(·), u(·)

)
satisfies (3.1.1)

(3.1.3)

Any ū(·) ∈ U [0, T ] satisfying

Jθ
(
0, X0, ū(·)

)
= inf

u(·)∈U [0,T ]
Jθ
(
0, X0, u(·)

)
(3.1.4)

is called a risk sensitive optimal control. The corresponding state process, solution

(3.1.1), is denoted by X̄(·) := X̄ ū(·).

Our next step is to characterize the pair (X̄, ū) solution of problem (3.1.4).

Let ΓT :=

∫ T

0

F
(
t,X(t), u(t)

)
dt+G

(
X(T )

)
.

Then the risk sensitive functional is given by:

Γθ :=
1

θ
log E

[
eθ
[ ∫ T

0 F
(
t,X(t),u(t)

)
dt+G

(
X(T )

)]]
=

1

θ
log E[eθΓT ].
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When the risk-sensitive parameter θ is small, the functional Γθ around θ = 0 can

be asymptotically expanded as:

Γθ =
1

θ
log E

[
1 + θΓT +

θ2

2!
Γ2
T + · · ·

]
=

1

θ
log
[
1 + θE[ΓT ] +

θ2

2
E[Γ2

T ] + · · ·
]

=
1

θ
log
[
1 +

(
θE[ΓT ] +

θ2

2
E[Γ2

T ]
)

+ · · ·
]

=
1

θ

[(
θE[ΓT ] +

θ2

2
E[Γ2

T ]
)
− 1

2

(
θE[ΓT ] +

θ2

2
E[Γ2

T ]
)2

+ · · ·
]

= E[ΓT ] +
θ

2
E[Γ2

T ]− θ

2

(
E[ΓT ]

)2

= E[ΓT ] +
θ

2
Var(ΓT ) +O(θ2),

where var(ΓT ) denotes the variance of ΓT . If θ < 0, the function Γθ increases

and the optimizer is called risk seeker. If θ > 0, the function Γθ decreases and the

optimizer is called risk averse. If θ = 0, we evaluate the limit of the function Γθ

when θ → 0 and the optimizer is called risk- neutral.

Assumptions:

(A1): U is a separable metric space and T > 0.

(A2): The maps f : [0, T ]× Rn × U → Rn, g : [0, T ]× Rn × U → Rn,

F : [0, T ] × Rn × U → R and G : Rn → R are measurable, and there exists a

constant K > 0 and a modulus ω̄ : [0,∞)→ [0,∞) such that for

ϕ(t,X, u) = f(t,X, u), g(t,X, u), F (t,X, u), G(X),
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|ϕ(t,X, u)− ϕ(t, Y, v)| ≤ K|X − Y |+ ω̄(d(u, v)),

∀t ∈ [0, T ], X, Y ∈ Rn, u, v ∈ U ,

|ϕ(t, 0, u)| ≤ K; ∀t ∈ [0, T ], u ∈ U .

Also, F , and G are uniformly bounded.

(A3): f, F,G are C2 in x, and there exists a modulus of continuity

ω̄ : [0,∞)→ [0,∞) such that for ϕ(t,X, u) = f(t,X, u), F (t,X, u), G(X),



|ϕx(t,X, u)− ϕx(t, Y, v)| ≤ K|X − Y |+ ω̄(d(u, v)),

|ϕxx(t,X, u)− ϕxx(t, Y, v)| ≤ K|X − Y |+ ω̄(d(u, v)),

∀t ∈ [0, T ], X, Y ∈ Rn, u, v ∈ U .

(A4): Jθ
(
0, X0, ū(·)

)
∈ C1,3

(
[0, T ] x Rn

)
.

For the maximum principle to be sufficient, we need the following additional

assumption.

(A5): U is a convex subset of Rk. The maps f, g, and F are locally Lipschitz

in u, and their derivatives in x are continuous in (x, u).

Let Φ = f, g, F,G, we define the following.
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δΦ(t) = Φ(t, X̄(t), u(t))− Φ(t, X̄(t), ū(t)),

Φ̄(t) = Φ
(
t, X̄(t), ū(t)

)
,

Φ̄x(t) =
∂Φ

∂x
(t, X̄(t), ū(t),

Φ̄xx(t) =
∂2Φ

∂x2
(t, X̄(t), ū(t),

where u is an admissible control from U .

3.2 Adjoint variables and Hamiltonian

Let
(
X̄(·), ū(·)

)
be an admissible pair for the system (3.1.1). We introduce the

first order adjoint variable
(
p̄(·), q̄(·)

)
∈ L2

F([0, T ];Rn) × L2
F([0, T ];Rn) and the

second order adjoint variable
(
P̄ (·), Q̄(·)

)
∈ L2

F([0, T ];Rn × n) × L2
F([0, T ];Rn × n)

associated with the admissible pair
(
X̄(·), ū(·)

)
, which are the solutions of the

following first order and second order adjoint equations respectively:

dp̄(t) = −
[
f̄x(t)

T p̄(t)− F̄x(t)T − θ p̄(t)T ḡ(t)ḡx(t)
T p̄(t)− θ p̄(t)T ḡ(t)q̄(t)

+ ḡx(t)
T q̄(t)

]
dt+ q̄(t)dW (t),

p̄(T ) = −Gx

(
X̄(T )

)
,

(3.2.1)
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dP̄ (t) = −
{
f̄x(t)

T P̄ (t) + P̄ (t)f̄x(t) + ḡx(t)
T
[
P̄ (t)− θ p̄(t)p̄(t)T

]
ḡx(t)

+ḡx(t)
T
[
Q̄(t)− θ p̄(t)q̄(t)T − θ p̄(t)T ḡ(t)P̄ (t)

]
+
[
Q̄(t)− θ q̄(t)p̄(t)T − θ p̄(t)T ḡ(t)P̄ (t)

]
ḡx(t)

−θ p̄(t)T ḡ(t)Q̄(t)− θ q̄(t)q̄(t)T

+p(t) fxx(t) +
(
q + θ pTp) gxx(t) − Fxx(t)

)}
dt

+Q̄(t)dW (t),

P̄ (T ) = −Gxx

(
X̄(T )

)
,

(3.2.2)

Where f̄x(t) := fx
(
t, X̄(t), ū(t)

)
(with similar interpretations for ḡx(t), F̄x(t),

etc.)

We define the risk-neutral Hamiltonian associated with random variables

X ∈ L1(Ω,F ,P) as follows. For (p, q) ∈ Rn × Rn

H(t,X, u, p, q) :=
〈
p, f(t,X, u)

〉
+ tr

(
qT g(t,X, u)

)
− F (t,X, u). (3.2.3)

We also introduce the risk-sensitive Hamiltonian for θ ∈ R and (p, q) ∈ Rn × Rn,

by:

Hθ(t,X, u, p, q) :=
〈
p, f(t,X, u)

〉
+g(t,X, u)T

[
q−θppT ḡ(t)

]
−F (t,X, u). (3.2.4)
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We denote (following [6]):

Hx(t) := fx(t)p + gx(t)q − Fx(t),

Hθ
x(t) := p(t) fx(t) + gx(t)

(
q − θ ppT ḡx(t)) − Fx(t),

Hxx(t) := fxx(t)p + gxx(t)q − Fxx(t),

Hθ
xx(t) := p(t) fxx(t) + gxx(t)

(
q − θ ppT ḡxx(t)

)
− Fxx(t),

Let us consider that our assumptions are sufficient to guarantee the existence of

unique solutions
(
p̄(·), q̄(·)

)
∈ L2

F (0, T ;Rn) × L2
F (0, T ;Rn) and the second order

adjoint variable
(
P̄ (·), Q̄(·)

)
∈ L2

F (0, T ;Rn × n) × L2
F (0, T ;Rn × n) of (3.1.5) and

(3.1.6) respectively.

Let the H-function H̄θ : R × Rn × Rm → R, associated with the pair(
X̄(·), ū(·)

)
, be defined as:

H̄θ(t,X, u) := f(t,X, u)p̄(t)− F (t,X, u) +
1

2
g((t,X, u)T×

[
P̄ (t)− θp̄(t)p̄(t)T

]
g(t,X, u)

+g(t,X, u)T
[
q̄(t)− P̄ (t)g

(
t, X̄(t), ū(t)

)]
.

(3.2.5)

Under these assumptions, we present a maximum principle for the risk-sensitive

control problem (3.1.3) as well as sufficient conditions for optimality.

Theorem 3.2.1 (Risk-sensitive maximum principle, cf.[13])

Suppose that (A1)-(A4) hold. Let
(
X̄(·), ū(·)

)
be an optimal pair for the risk-

sensitive optimal control problem (3.1.3).
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Then, there are unique solutions
(
p̄(·), q̄(·)

)
∈ L2

F (0, T ;Rn) x L2
F (0, T ;Rn) and(

P̄ (·), Q̄(·)
)
∈ L2

F (0, T ;Rn x n) x L2
F (0, T ;Rn x n) of the first order and second order

adjoint equations (3.2.1) and (3.2.2) respectively, such that:

H̄θ
(
t, X̄(t), ū(t), p̄(t), q̄(t)

)
− H̄θ

(
t, X̄(t), u(t), p̄(t), q̄(t)

)
−1

2

[
g(t, X̄(t), ū(t))− g(t, X̄(t), u(t))

]T × [
P̄ (t)− θp̄(t)p̄(t)T

]
×[

g(t, X̄(t), ū(t))− g(t, X̄(t), u(t))
]
≥ 0, a.e.t ∈ [0, T ], P − a.s.,

(3.2.6)

Theorem 3.2.2 (Sufficient conditions for optimality, cf.[13])

Suppose that (A1)-(A5) hold. Let
(
X̄(·), ū(·)

)
be an admissible pair, and(

p̄(·), q̄(·)
)
,
(
P̄ (·), Q̄(·)

)
the associated first and second order adjoint variables res-

pectively. We suppose that G(·) is convex, H̄θ(t, ·, ·, p̄(t), q̄(t)) is concave for all

t ∈ [0, T ] almost surely, and that (3.2.6) is satisfied. Then
(
X̄(·), ū(·)

)
is an

optimal pair for the problem (3.1.3).
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4 Risk-sensitive stochastic optimal control with

Markov regime switching

In this chapter we present and formulate a model of maximum principle for

stochastic optimization control problem of Markov regime-switching with risk-

sensitivity.

4.1 Problem Statement

1) Let T > 0 be a fixed time horizon.

2) Let (Ω,F ,P) be a complete probability space.

3) Let W (·) be a standard Brownian motion defined on (Ω,F ,P) over [0, T ] (with

W (0) = 0, P-a.s). W = {W (t)}t∈[0,T ]

4) Let {Ft}t∈[0,T ] be the natural filtration of W augmented by all the P-null sets

in F .

5) Let u : [0, T ] × Ω→ U be an {Ft}t∈[0,T ] adapted process on (Ω,F ,P)

6) LetX = {X(t)}t∈[0,T ] be a continuous time, controlled Markov regime-switching.

7) Let α(·) be a continuous time finite state space Markov chain defined on the

same probability space (Ω,F ,P). α := {α(t)}t∈[0,T ] is an irreducible homogeneous

continuous-time Markov chain with finite state space S = {e1, e2, · · · , eN} ⊂ RN ,

where N ∈ N, and jth component of ei is the Kronecker delta δij for each

i, j = 1, 2, · · · , N.
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The Markov chain is characterized by an intensity matrix

Λ := {λij : 1 ≤ i, j ≤ N} under P.

For each 1 ≤ i, j ≤ N}, λij is the constant transition intensity of the chain from

state ei to state ej at time t. In addition for i 6= j, λij ≥ 0 and
N∑
j=1

λij = 0,

therefore λii ≤ 0. We then have from [7] the dynamics of α given by:

α(t) = α(0) +

∫ t

0

ΛTα(s)ds+M(t), (4.1.1)

where M := {M(t)}t∈[0,T ] is a RN - valued (F,P)-martingale and ΛT is the transpose

of the matrix Λ. We consider the following stochastic optimization control system.

For each 1 ≤ i, j ≤ N , with i 6= j, and t ∈ [0, T ], let J ij(t) be the number of jumps

from state ei to state ej up to time t. From [7], it follows that:

J ij(t) = λij

∫ t

0

〈
α(s−), ei

〉
ds+mij(t), (4.1.2)

with mij := {mij(t)}t∈[0,t], where mij(t) :=

∫ t

0

〈
α(s−), ei

〉〈
dM(s), ej

〉
is a

(F ,P)-martingale.

Fix j ∈ {1, 2, · · · , N} and let Φj(t) be the number of jumps into state ej up to

time t. Then

Φj(t) :=
N∑

i=1,i 6=j

J ij(t) =
N∑

i=1,i 6=j

λij

∫ t

0

〈
α(s−), ei

〉
ds+Φ̃j(t) = λj(t)+Φ̃j(t), (4.1.3)

where Φ̃j(t) =
N∑

i=1,i 6=j

mij(t) and λj(t) =
N∑

i=1,i 6=j

λij

∫ t

0

〈
α(s−), ei

〉
ds.
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It is important to mention that for each j ∈ {1, 2, · · · , N}, Φ̃j := {Φ̃j(t)}t∈[0,t] is a

(F ,P)-martingale.

Suppose that the state process X(t) = X(u)(t, w); 0 ≤ t ≤ T, w ∈ Ω is a

controlled Markov regime-switching diffusion of the form



dX(t) = f
(
t,X(t), u(t), α(t)

)
dt+ g

(
t,X(t), u(t), α(t)

)
dW (t)

+ γ
(
t,X(t−), u(t−), α(t−)

)
dΦ̃(t),

X(0) = X0, t ∈ [0, T ].

(4.1.4)

Where the functions f, g and γ are given such that for all t, f(t, x, en, u),

g(t, x, en, u), and γ(t, x, en, u), for n = 1, 2, · · · , N are Ft- measurable continuous

functions, for all x ∈ R.

Here, f : [0, T ] × Rn × U × S → Rn, g : [0, T ] × Rn × U × S → Rn × m,

γ : [0, T ] × Rn × U × S → Rn × N . W (t) := (W1(t),W2(t), · · · ,WN(t))T is an

N-dimensional standard Brownian motion, and Φ̃(t) := (Φ̃1(t), · · · , Φ̃N(t))T with

Φ̃j(t), j = 1, 2, · · · , N, defined by (4.1.3).

The cost functional Jθ(0, X, ei;u(·)) associated with the initial condition

(0, X0, ei) ∈ [0, T ] × Rn × S and control process u(·) ∈ U is given by:

Jθ(0, X, ei;u(·)) := E
[
eθ
[ ∫ T

0 F (t,X(t),u(t),α(t))dt+G(X(T ),α(T ))
]]
, (4.1.5)

where F : [0, T ] × Rn × U × S → R, G : Rn × S → R are given and θ > 0, the

risk-sensitive parameter, is a fixed constant.
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We say that u(·) is an admissible control, if it belongs to L2
F ,p([0, T ];Rk) and the

stochastic differential equation (4.1.4) has a unique strong solution. We denote

by U [0, T ] the set of all admissible controls. Our risk-sensitive stochastic control

problem associated with (4.1.4)− (4.1.5) is defined as follows:

Minimize Jθ(0, X, ei;u(·))

subject to


u(·) ∈ U [0, T ]

(X(·), u(·)) satisfies (4.1.4).

(4.1.6)

The value V θ : [0, T ] × Rn × S → R associated with (4.1.6) is defined as follows:

V θ(0, X0, ei) := inf
u(·)∈U [0,T ]

Jθ(0, X0, ei, u(·)). (4.1.7)

Because of the exponential function,we require V θ(0, X0, ei) ≥ 0 for ei ∈ S.

4.2 Adjoint variables and Hamiltonian

Assumptions

(A1): f, g, γ are uniformly Lipschitz in (x, u)

(A2): f, g, γ, F,G are twice continuously differentiable with respect to x, and

their partial derivatives in x are continuous in (x, u);

(A3): fx, fxx, gx, gxx, Fx, Fxx, ‖γx‖M2p , ‖γxx‖M2 , p = 1, 2 andGx, Gxx are bounded;

(A4): F and G are uniformly bounded;

(A5): V θ ∈ C1,3([0, T ] × Rn × S);

(A6): U is a convex subset of Rk.
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For risk-neutral maximum principle, we need assumptions (A1)-(A3).

To ensure the cost functional (4.1.5) to be well defined, (A4) is needed for the

risk-sensitivity. And for the sufficient maximum principle, we require (A6).

Let ϕ = f, g, F,G, γ, we define the following.

ϕ̄(t) , ϕ
(
t, X̄(t), ū(t), α(t)

)
, ϕ̄x(t) , ϕx

(
t, X̄(t), ū(t), α(t)

)
,

ϕ̄xx(t) , ϕxx
(
t, X̄(t), ū(t), α(t)

)
,

δϕ(t, u) , ϕ
(
t, X̄(t−), u, α(t−)

)
− ϕ

(
t, X̄(t−), ū(t), α(t−)

)
.

(4.2.1)

Let
(
X̄(·), ū(·)

)
be an admissible pair for the system (4.1.4). We introduce the

first order adjoint variable:(
p̄(·), q̄(·), s̄(·)

)
∈ L2

F([0, T ];Rn) × L2
F , p
(
[0, T ];Rn × m) × M2

p

(
[0, T ];Rn × N) and

the second order adjoint variable:(
P̄ (·), Q̄(·), S̄(·)

)
∈ L2

F([0, T ];Rn×n)×
(
L2
F , p
(
[0, T ];Rn×n))m×(M2

p

(
[0, T ];Rn×n))N

associated with the admissible pair
(
X̄(·), ū(·)

)
, which are the solutions of the

following first order and second order adjoint equations respectively:
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dp̄(t) = −
[
f̄x(t)

T p̄(t) + F̄x(t) +
m∑
j=1

ḡjx(t)
T q̄j(t)

+
m∑
j=1

+θp̄(t)T ḡj(t)
(
ḡjx(t)

T p̄(t) + q̄j(t)
)

+
N∑
j=1

[
γ̄jx(t)

T s̄j(t) + Λj(t)
(
γ̄jx(t)

T p̄(t) + γ̄jx(t)
T s̄j(t)

)]
λj(t)

]
dt

+
m∑
j=1

q̄j(t)dWj(t) +
N∑
j=1

s̄j(t)dΦ̃j(t),

p̄(T ) = −Gx

(
X̄(T ), α(T )

)
,

(4.2.2)
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dP̄ (t) = −
{
f̄x(t)

T P̄ (t) + P̄ (t)f̄x(t) +
m∑
j=1

[
ḡjx(t)

T (P̄ (t) + θp̄(t)p̄(t)T )ḡjx(t)

+ḡjx(t)
T
(
Q̄j(t) + θp̄(t)T ḡj(t)P̄ (t) + θp̄(t)q̄j(t)

T
)

+
(
Q̄j(t) + θp̄(t)T ḡj(t)P̄ (t) + θq̄j(t)p̄(t)

T
)
ḡjx(t)

+θp̄(t)T ḡj(t)Q̄j(t) + θq̄j(t)q̄j(t)
T
]

+
N∑
j=1

[
γjx(t)

T
(
1 + Λj(t)

)(
P̄ (t) + S̄j(t)

)
γ̄jx(t)

+γjx(t)
T
(
1 + Λj(t)

)(
θ(p̄(t) + s̄j(t)) (p̄(t) + s̄j(t))

T
)
γ̄jx(t)

+γjx(t)
T
[(

1 + Λj(t)
)(
P̄ (t) + S̄j(t) + θ(p̄(t) + s̄j(t)) s̄j(t)

T
)
− P̄ (t)

]
+
[(

1 + Λj(t)
)(
P̄ (t) + S̄j(t) + θs̄j(t)(p̄(t) + s̄j(t))

T
)
− P̄ (t)

]
γ̄jx(t)

+Λj(t)S̄j(t) +
(
1 + Λj(t)

)
θs̄j(t)s̄j(t)

T
]
γj(t)

+H̄θ
xx

(
t, X̄(t), ū(t), α(t), p̄(t), q̄(t), s̄(t)

)}
dt

+
m∑
j=1

Q̄j(t)dWj(t) +
N∑
j=1

S̄j(t)dΦ̃j(t),

P̄ (T ) = −Gxx

(
X̄(T ), α(T )

)
.

(4.2.3)

Where gj, γj are the jth columns of the matrices g, γ, respectively.

For each t ∈ [0, T ],

Λj(t) =
V θ(t, X̄(t−) + γ̄j(t), ej)− V θ(t, X̄(t−), α(t−))

V θ(t, X̄(t−), α(t−))
, j = 1, 2, · · · , N.

(4.2.4)
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The Hamiltonian H̄θ : [0, T ]×Rn ×U × S ×Rn ×Rn×m ×M2(R+;Rn×N)→ R is

defined as:

H̄θ(t,X, u, ei, p, q, s) :=
〈
p, f(t,X, u, ei)

〉
− F (t,X, u, ei)

+
m∑
j=1

gj(t, x, u, ei)
T (qj + θppT ḡj(t))

+
N∑
j=1

〈
sj(t) + Λj(t)(p+ sj(t)), γ

j(t,X, u, ei)
〉
λj(t).

(4.2.5)

Note that (4.2.2) is a non linear backward stochastic differential equation

(BSDE), which is different from the risk-neutral case. In addition, its generator

does not satisfy the classical Lipschitz condition for the existence and uniqueness

of solution to nonlinear (BSDE). Our assumptions are sufficient to guaranty the

existence of unique solution to (4.2.2) and (4.2.3).

Remark 4.1: A key feature of (4.2.2) and (4.2.3) is that it relies on the value

function, which involves the function Λj(·) defined by (4.2.4) the jump proportion

process associated with the value function along with the state trajectory X̄(·).

We define H̄θ : [0, T ] × Rn × U × S → R, associated with the pair (X̄(·), ū(·)),

as:
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H̄θ(t,X, u, ei) :=
〈
p̄(t−), f(t,X, u, ei)

〉
− F (t,X, u, ei)

+
m∑
j=1

[
gj(t,X, u, ei)

T (q̄j(t)− P̄ (t−)ḡj(t))

+
1

2
gj(t,X, u, ei)

T (P̄ (t−) + θp̄(t−)p̄(t−)T )gj(t,X, u, ei)
]

+
N∑
j=1

γj(t,X, u, ei)
T
[
s̄j(t) + Λj(t)

(
p̄(t−) + s̄j(t)

)
+

1

2

(
1 + Λj(t)

)
×

(
P̄ (t−) + S̄j(t) + θ

(
p̄(t−) + s̄(t)

)(
p̄(t−) + s̄j(t)

)T)(
γj(t,X, u, ei)− 2γ̄j(t)

)]
λj(t).

(4.2.6)

Theorem 4.2.1 (Risk-sensitive maximum principle, cf. [21])

Suppose that the assumptions (A1)-(A5) hold. Let (X̄(·), ū(·)) be an opti-

mal pair for the risk-sensitive control problem (4.1.6). Then there exist processes(
p̄(·), q̄(·), s̄(·)

)
and

(
P̄ (·), Q̄(·), S̄(·)

)
satisfying the first and second order adjoint

equations (4.2.2) and (4.2.3), respectively, such that the following inequality holds,

H̄θ
(
t, X̄(t−), u, α(t−), p̄(t−), q̄(t), s̄(t)

)
− H̄θ

(
t, X̄(t−), ū(t), α(t−), p̄(t−), q̄(t), s̄(t)

)
+

1

2

m∑
j=1

δgj(t, u)T
(
P̄ (t−) + θp̄(t−)p̄(t−)T

)
δgj(t, u) +

1

2

N∑
j=1

[
δγj(t, u)T

(
1 + Λj(t)

)
×
(
P̄ (t−) + S̄j(t) + θ

(
p̄(t−) + s̄j(t)

)(
p̄(t−) + s̄j(t)

)T)
δγj(t, u)

]
λj(t) ≥ 0.

∀u ∈ U , a.e. t ∈ [0, T ],P− a.s.

(4.2.7)

or equivalently

H̄θ(t, X̄(t−), ū(t), α(t−)) = inf
u∈U
H̄θ(t, X̄(t−), u, α(t−)), a.e. t ∈ [0, T ],P− a.s.

(4.2.8)
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Remark 4.2: The equation (4.2.8) expressed by the minimum over U is still called

the maximum condition for the control problem just as in the classical optimal

control problem.

Theorem 4.2.2 (sufficient conditions for optimality, cf.[21])

Suppose that assumptions (A1)-(A6) hold. Let (X̄(·), ū(·)) be an admissible pair,

and
(
p̄(·), q̄(·), s̄(·)

)
and

(
P̄ (·), Q̄(·), S̄(·)

)
be the associated first and second adjoint

variables respectively.

Suppose for each ei ∈ S, X → g(X, ei) is convex,

(X, u)→ H̄θ(t,X, u, ei, p̄(t−), q̄(t), s̄(t)) is convex ∀t ∈ [0, T ],P− a.s., and (4.2.8)

holds. Then (X̄(·), ū(·)) is an optimal pair for the problem (4.1.6).

Remark 4.3:

(1) Since the jump proportion process Λ(·) given by (4.2.4) do not depend on

the control variable u, we can simply apply the maximum condition (4.2.8) to look

for the optimal control.

(2) Observe that if we take N = 1 and γ ≡ 0 in equation (4.1.4), Theorems

(4.2.1) and (4.2.2) could be replaced by Theorems (3.1) and (3.2) in [13] and in

this case, the first and second adjoint equations (4.2.2), (4.2.3) along with the H̄θ-

function and H̄θ-function (4.2.5), (4.2.6) coincide with equations (5), (6), (7), and

(8) in [13], respectively.
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4.3 Proofs of Theorems

In this section we bring a proof for Theorems (4.2.1) and (4.2.2). The proof is

subdivided in four steps. In the first step, we apply the risk-neutral to problem

(4.1.6) to be able to use the risk-neutral maximum principle. In steps 2 and 3,

we transform the first and second order adjoint equation respectively to a relative

simple form. In step 4 we transform the inequality (4.2.7).

Step 1: Applying Risk-Neutral Maximum Principle. In order to obtain

a risk-sensitive maximum principle of the risk-neutral problem in global form, we

define the Hamiltonian and associated second order adjoint equation. Combin-

ing the first and second order adjoint equations, a general stochastic maximum

principle is obtained in terms of the variational inequality.

Let the following risk-neutral control problem be considered:

Minimize Jθ(0, X, y, ei;u(·)) = E
[
eθ [G(X(T ),α(T ))+ y(t)]

]

subject to



dX(t) = f
(
t,X(t), u(t), α(t)

)
dt+ g

(
t,X(t), u(t), α(t)

)
dW (t)

+ γ
(
t,X(t−), u(t−), α(t−)

)
dΦ̃(t),

dY (t) = F (t,X(t), u(t), α(t))dt,

X(0) = X0, Y (0) = Y0, t ∈ [0, T ], u(·) ∈ U [0, T ].

(4.3.1)
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Problem (4.1.6) corresponds to the case when Y = 0 in (4.3.1). The value

function V θ : [0, T ] × Rn × R × S → R associated with (4.2.1) is:

V θ(0, X0, Y0, ei) := inf
u(·)∈U [0,T ]

Jθ(0, X0, Y0, ei;u(·)) (4.3.2)

Note that V θ(0, X0, Y0, ei) = eθyV θ(0, X0, ei). In particular, assumption (A5)

implies that V θ(0, X0, Y0, ei) ∈ C1,3,∞([0, t] × Rn × R × S
)
. Assume that

(A1)-(A4) hold, and let
(
X̄(·), Ȳ (·), ū(·)

)
be an optimal triple for the risk-neutral

problem (4.3.1).

We introduce the following first and second order adjoint equations:

Let Gx(X̄(T )), α(T )) := Gx(T ), and Gxx(X̄(T )), α(T )) := Gxx(T ),



dp(t) = −

{ f̄x(t) 0

F̄x(t) 0


T

p(t) +
m∑
j=1

ḡ
j
x(t) 0

0 0


T

qj(t)

+
N∑
j=1

γ̄
j
x(t) 0

0 0


T

sj(t)λj(t)

}
dt

+
m∑
j=1

qj(t)dWj(t) +
N∑
j=1

sj(t)dΦ̃j(t),

p(T ) = θeθ [G(X̄(T ),α(T )+Ȳ (T )]

Gx(X̄(T )), α(T ))

1

 ,

(4.3.3)
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dP (t) = −

{ f̄x(t) 0

F̄x(t) 0


T

P (t) + P (t)

 f̄x(t) 0

F̄x(t) 0



+
m∑
j=1

[ḡ
j
x(t) 0

0 0


T

Qj(t)

+ Qj(t)

ḡ
j
x(t) 0

0 0

+

ḡ
j
x(t) 0

0 0


T

P (t)

ḡ
j
x(t) 0

0 0


]

+
N∑
j=1

[γ̄
j
x(t) 0

0 0


T

P (t)

γ̄
j
x(t) 0

0 0

+

γ̄
j
x(t) 0

0 0


T

Sj(t)

+ Sj(t)

γ̄
j
x(t) 0

0 0

+

γ̄
j
x(t) 0

0 0


T

Sj(t)

γ̄
j
x(t) 0

0 0


]
λj(t)

+

H
θ
xx(t, X̄(t), ū(t), α(t), p(t), q(t), s(t)) 0

0 0


}
dt

+
m∑
j=1

Qj(t)dWj(t) +
N∑
j=1

Sj(t)dΦ̃j(t),

P (T ) =

θGx

(
T
)
Gx

(
T
)T

+Gxx

(
T
)

θGx

(
T
)

θGx

(
T
)T

θ

× θeθ [G(X̄(T ),α(T )+Ȳ (T )]

(4.3.4)
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The Hamiltonian function

H̄θ : [0, T ] × Rn × U × S × Rn × Rn × m × M2(R+;Rn × N)→ R is given by:

Hθ(t,X, u, ei, p, q, s) :=

〈
p,

(
f(t,X, u, ei)
F (t,X, u, ei)

)〉
+

m∑
j=1

〈
qj,

(
gj(t,X, u, ei)

0

)〉

+
N∑
j=1

〈
sj(t),

(
γj(t,X, u, ei)

0

)〉
λj(t).

(4.3.5)

The adjoint equations (4.3.3) and (4.3.4) are linear (BSDE). The guaranty of the

existence and uniqueness of solution to (4.3.3) and (4.3.4), respectively hold by

considering assumptions (A1)-(A3). The proof follows from, (cf. [2]) where jumps

only come from the Markov regime. Combining ([22]. Theorem 2.1) with

([26], Theorem 3.1), let us consider the following Maximum Principle for the risk-

neutral problem (4.3.1).

Proposition 4.2.1 Let assumptions (A1)-(A4) hold and let
(
X̄(·), Ȳ (·), ū(·)

)
be an optimal triple for risk-neutral problem (4.3.1). Then there exists a unique

solution
(
p(·), q(·), s(·)

)
and

(
P (·), Q(·), S(·)

)
of (4.3.3) and (4.3.4), respectively,

such that:
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Hθ
(
t, X̄(t−), u, α(t−), p(t−), q(t), s(t)

)
−Hθ

(
t, X̄(t−), ū(t), α(t−), p(t−), q(t), s(t)

)
+

1

2

m∑
j=1

(
δgj(t, u)

0

)T
P (t−)

(
δgj(t, u)

0

)

+
1

2

N∑
j=1

[(
δγj(t, u)

0

)T (
P (t−) + Sj(t)

)(δγj(t, u)
0

)]
λj(t) ≥ 0.

∀u ∈ U , a.e. t ∈ [0, T ],P− a.s,

(4.3.6)

or equivalently,

Hθ(t, X̄(t−), ū(t), α(t−)) = inf
u∈U
Hθ(t, X̄(t−), u, α(t−)), a.e. t ∈ [0, T ],P− a.s.,

(4.3.7)

where the Hθ-function for problem (4.3.1) associated with
(
X̄(·), Ȳ (·), ū(·)

)
is defined by:

Hθ(t,X, u, ei) = Hθ
(
t,X, u, ei, p(t−), q(t), s(t)

)
−1

2

m∑
j=1

(
ḡj(t)

0

)T
P (t−)

(
ḡj(t)

0

)
+

1

2

m∑
j=1

(
δgj(t, u)

0

)T
P (t−)

(
δgj(t, u)

0

)

−1

2

N∑
j=1

[(
γ̄j(t)

0

)T (
P (t−) + Sj(t)

)(γ̄j(t)
0

)]
λj(t)

+
1

2

N∑
j=1

[(
δγj(t, u)

0

)T (
P (t−) + Sj(t)

)(δγj(t, u)
0

)]
λj(t).

(4.3.8)

By combining ([22], Theorem 2.1) and ([26], Theorem 3.1), the complete proof can

be easily retrieve. In the following, we will derive the sufficient conditions for the

optimality of
(
X̄(·), Ȳ (·), ū(·)

)
55



Proposition 4.2.2 Suppose that assumptions (A1)-(A4) and (A6) hold and

let
(
X̄(·), Ȳ (·), ū(·)

)
be an admissible triple,

(
p(·), q(·), s(·)

)
and

(
P (·), Q(·), S(·)

)
satisfy (4.3.3) and (4.3.4), Hθ

(
t,X, u, ei, p(t), q(t), s(t)

)
is convex for all t ∈ [0, T ],

P-a.s., and (4.3.7) holds. Then
(
X̄(·), Ȳ (·), ū(·)

)
is an optimal triple for problem

(4.3.1)

Remark 4.4: Propositions (4.2.1) and (4.2.2) do not depend on assumption

(A5).

Step 2: Transformation of the first order adjoint equation.

Proposition (4.2.1) can be viewed as a maximum principle for the underlying

risk-sensitive control problem (4.1.6). However, it is not what we actually need

since the adjoint equations involve additional components. To solve this problem,

we need to transform the adjoint variables
(
p(·), q(·), s(·)

)
and

(
P (·), Q(·), S(·)

)
.

We use logarithm transformation (cf. [13]) to derive a PDE for the value

function and the relationship between the maximum principle and the dynamic

programming principle (cf. [26]). We extend the result in [13] to a continuous

time Markov-regime switching, but without Poisson processes which is a simplified

version of (cf. [21]) where Poisson processes were considered.

Lemma 4.1: (cf. [21]) Considering (A1)-(A5), the first order adjoint equa-

tion (4.3.3) reduces to (4.2.2).

Proof. Let
(
X̄(·), Ȳ (·), ū(·)

)
be an optimal triple for problem (4.2.1) and

(
p(·), q(·), s(·),

)
≡
([
p1(·)
p2(·)

]
,

[
q1(·)
q2(·)

]
,

[
s1(·)
s2(·)

])
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(
p(·), q(·), s(·),

)
∈ L2

F
(
[0, T ];Rn

)
× L2

F , p
(
[0, T ];Rn × m) × M2

p

(
[0, T ];Rn × N),

be the first order adjoint variables satisfying equation (4.3.3), where(
p1(·), q1(·), s1(·),

)
∈ L2

F
(
[0, T ];Rn

)
× L2

F , p
(
[0, T ];Rn × m) × M2

p

(
[0, T ];Rn × N),

and
(
p2(·), q2(·), s2(·),

)
∈ L2

F
(
[0, T ];R

)
× L2

F , p
(
[0, T ];R1 × m) ×M2

p

(
[0, T ];R1 × N).

By the relationship between the maximum principle and the dynamic programming

principle (cf. [26], Theorem 4.2), we have:

p(t) = V θ
(X,Y )(t, X̄, Ȳ , ei), (4.3.9)

where V θ
(X,Y ) denotes the gradient of V θ in (X, Y ). Let us introduce the following

logarithmic transformation of the value function

vθ(t,X, Y, ei) =
1

θ
lnV θ(t,X, Y, ei) (4.3.10)

Taking gradient on the right hand side of (4.2.10) and noting 4.2.9), we have

the following transformation of the first order adjoint variable:

p̃(t) =
1

θ

p(t)

V (t)
, (4.3.11)

where V (t) := V θ
(
t, X̄(t), Ȳ (t), α(t)

)
> 0.

We then derive the equation for p̃(·) ≡
(
p̄(·)
p̃∗(·)

)
, where p̄(·) is Rn-valued.

We notice that V θ(0, X0, Y0, ei) is the value function of the risk-neutral problem

(4.3.1). It follows from ([21], equation(4.12)) that V must satisfy:
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dV (t) =
m∑
j=1

p1(t)T ḡj(t)dWj(t) +
N∑
j=1

[
V θ(t, X̄(t−) + γ̄j(t), Ȳ (t), ei)

−V θ(t, X̄(t−), Ȳ (t), α(t−))
]
dΦ̃j(t),

V (T ) = eθ
[
G(X̄(T ),α(T ))+Ȳ (T )

]
.

(4.3.12)

Assume that p̃ satisfies an equation of the following form:

dp̃(t) = α(t)dt+
m∑
j=1

q̃j(t)dWj(t) +
N∑
j=1

s̃j(t)dΦ̃j(t). (4.3.13)

Using Itô’s formula for Markov regime switching process (cf.[26], Theorem 4.1),

we obtain:

dp(t) = d(θV (t)p̃(t))

= θV (t−)dp̃(t) +
m∑
j=1

θp1(t)T ḡj(t) q̃j(t)dt+
m∑
j=1

θp̃(t)p1(t)T ḡj(t)dWj(t)

+
N∑
j=1

θ
[
V θ(t, X̄(t−) + γ̄j(t), Ȳ (t), ej)− V θ(t, X̄(t−), Ȳ (t), α(t−))

]
×

s̃j(t)λj(t)dt

+
N∑
j=1

θ
[
V θ(t, X̄(t−) + γ̄j(t), Ȳ (t), ej)− V θ(t, X̄(t−), Ȳ (t), α(t−))

]
×

(
p̃(t−) + s̃j(t)

)
dΦ̃j(t).

(4.3.14)

Dividing both sides of (4.3.14) by θV (t−) and noting that p1(t−) = θV (t−)p̄(t−),

we obtain:
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dp̃(t) =
1

θV (t−)
dp(t)−

m∑
j=1

θp̄(t)T ḡj(t) q̃j(t)dt−
m∑
j=1

θp̃(t) p̃(t)T ḡj(t)dWj(t)

−
N∑
j=1

Λ̃j(t)s̃j(t)λj(t)dt−
N∑
j=1

Λ̃j(t)
(
p̃(t−) + s̃j(t)

)
dΦ̃j(t),

(4.3.15)

where for each t ∈ [0, T ] we have:

Λ̃j(t) =
V θ(t, X̄(t−) + γ̄j(t), Ȳ (t), ej)− V θ(t, X̄(t−), Ȳ (t), α(t−))

V θ(t, X̄(t−), Ȳ (t), α(t−))
, j = 1, · · · , N

Substituting (4.3.3) into (4.3.15) leads to:

q̃j(t) ≡
(
q̄j(t)
q̃∗j (t)

)
=

qj(t)

θV (t−)
− θp̃(t) p̄(t)T ḡj(t), j = 1, · · · ,m,

s̃j(t) ≡
(
s̄j(t)
s̃∗j(t)

)
=

sj(t)

θV (t−)
− Λ̃(t)

(
p̃(t−) + s̃j(t)

)
, j = 1, · · · , N,

(4.3.16)

where q̄(·) =
(
q̄1(·), · · · , q̄m(·)

)
is Rn × m-valued, and s̄(·) =

(
s̄1(·), · · · , s̄N(·)

)
is Rn × N -valued. Substituting (4.3.16) into (4.3.15) and considering (4.3.3).

It follows that the transformed first order adjoint variable p̃(·) satisfies the

following equation:
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dp̃(t) = −

{ f̄x(t) 0

F̄x(t) 0


T

p̃(t) +
m∑
j=1

ḡ
j
x(t) 0

0 0


T

(
q̃j(t) + θp̃(t) p̃(t)T ḡj(t)

)

+
N∑
j=1

γ̄
j
x(t) 0

0 0


T

(
s̃j(t) + Λ̃j(t)(p̃(t−) + s̃j(t))

)
λj(t)

+
m∑
j=1

θp̄(t)T ḡj(t)q̃j(t)dt+
N∑
j=1

Λ̃j(t)s̃j(t)λj(t)

}
dt

+
m∑
j=1

q̃j(t)dWj(t) +
N∑
j=1

s̃j(t)dΦ̃j(t),

p̃(T ) =

Gx(X̄(T )), α(T ))

1

 ,

(4.3.17)

where p̃(T ) is determined from (4.3.11) and p(T ).

Letting Y = 0 in (4.3.1) and expanding (4.3.17), we have:

p̃∗(t) = 1, q̃∗j (t) = s̃∗j(t) = 0, ∀t ∈ [0, T ], (4.3.18)

and
(
p̄(·), q̄(·), s̄(·) is a solution of (4.2.2). This explains how equation (4.2.2) is

derived. Therefore, from this derivation, it follows from the uniqueness of solution

to (4.3.3) that this solution is unique.

Step 3: Transformation of the second order adjoint equation.

The transformation of second order adjoint equation is given in the following

lemma.
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Lemma 4.2: (cf. [21]) Let assumptions (A1)-(A5) hold, then the second

order adjoint equation (4.3.4) reduces to (4.2.3).

Proof. Let (P (·), Q(·), S(·) be the second order adjoint variable satisfying

(4.3.4) and consider the following transformation:

P̃ (t) =
1

θ

P (t)

V (t)
− θp̃(t)p̃(t)T , Γ(t)− θp̃(t)p̃(t)T , (4.3.19)

assume that:

dΓ(t) = X(t)dt+
m∑
j=1

Yj(t)dWj(t) +
N∑
j=1

Aj(t)dΦ̃j(t), (4.3.20)

using Itô’s formula, (4.3.12) and (4.3.19) we get:

dP (t) = d(θV (t)Γ(t))

= θV (t−)dΓ(t) +
m∑
j=1

θp1(t)T ḡj(t) Yj(t)dt+
m∑
j=1

θΓ(t)p1(t)T ḡj(t)dWj(t)

+
N∑
j=1

θ
[
V θ(t, X̄(t−) + γ̄j(t), Ȳ (t), ej)− V θ(t, X̄(t−), Ȳ (t), α(t−))

]
×

Aj(t)λj(t)dt

+
N∑
j=1

θ
[
V θ(t, X̄(t−) + γ̄j(t), Ȳ (t), ej)− V θ(t, X̄(t−), Ȳ (t), α(t−))

]
×

(
Γ(t−) + Aj(t)

)
dΦ̃j(t).

(4.3.21)

Dividing both sides of (4.3.21) by θV (t−) and taking p1(t−) = θV (t−)p̄(t−),

we obtain:
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dΓ(t) =
1

θV (t−)
dP (t)−

m∑
j=1

θp̄(t)T ḡj(t) Yj(t)dt−
m∑
j=1

θΓ(t) p̄(t)T ḡj(t)dWj(t)

−
N∑
j=1

Λ̃j(t) Aj(t)λj(t)dt−
N∑
j=1

Λ̃j(t)
(
Γ(t−) + Aj(t)

)
dΦ̃j(t),

(4.3.22)

substituting the expression (4.3.4) with (4.3.22) we obtain:

Yj(t) ≡
Qj(t)

θV (t−)
− θp̄(t)T ḡj(t)

(
P̃ (t) + θp̃(t)p̃(t)T

)
, j = 1, · · · ,m,

Aj(t) ≡
Sj(t)

θV (t−)
− Λ̃(t)

(
P̃ (t−) + θp̃(t−)p̃(t−)T + Aj(t)

)
, j = 1, · · · , N,

(4.3.23)

Combining (4.3.5) with (4.2.5) we have:

1

θV (t−)

(
Hθ
xx

(
t, X̄(t−), ū(t), α(t−), p(t−), q(t), s(t)

)
0

0 0

)
=

(
H̄θ
xx

(
t, X̄(t−), ū(t), α(t−), p̄(t−), q̄(t), s̄(t)

)
0

0 0

)
.

(4.3.24)

Applying Itô’s formula to (4.3.19) and using (4.3.17) and (4.3.22), we have.
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dP̃ (t) = −

{(
f̄x(t) 0
F̄x(t) 0

)T
P̃ (t) + P̃ (t)

(
f̄x(t) 0
F̄x(t) 0

)

+
m∑
j=1

(
ḡjx(t) 0

0 0

)T (
P̃ (t) + θp̃(t)p̄(t)T

)(ḡjx(t) 0
0 0

)

+
m∑
j=1

(
ḡjx(t) 0

0 0

)T (
Q̃j(t) + θp̄(t)T ḡj(t)P̃ (t) + θp̃(t)q̃j(t)

T
)

+
m∑
j=1

(
Q̃j(t) + θp̄(t)T ḡj(t)P̃ (t) + θq̃j(t)p̃(t)

T
)(ḡjx(t) 0

0 0

)

+
m∑
j=1

[
θp̄(t)T ḡj(t)Q̃j(t) + θq̃j(t)q̄j(t)

T
]

+
N∑
j=1

(
γ̄jx(t, z) 0

0 0

)T (
1 + Λ̃j(t)

)(
P̃ (t) + S̃j(t)

)(γ̄jx(t, z) 0
0 0

)
λj(t)

+

(
γ̄jx(t, z) 0

0 0

)T (
1 + Λ̃j(t)

)(
θ(p̃(t) + s̃j(t))(p̃(t) + s̃j(t))

T
)
×(

γ̄jx(t, z) 0
0 0

)
λj(t)

+
N∑
j=1

(
γ̄jx(t, z) 0

0 0

)T [(
1 + Λ̃j(t)

)(
P̃ (t) + S̃j(t)

)
+
(
1 + Λ̃j(t)

)(
θ
(
p̃(t) + s̃j(t)s̃j(t)

T
)
− P̃ (t)

]
λj(t)

+
N∑
j=1

[(
1 + Λ̃j(t)

)(
P̃ (t) + S̃j(t) + θs̃j(t)

(
p̃(t) + s̃j(t)

)T)− P̃ (t)
]
×

(
γ̄jx(t, z) 0

0 0

)
λj(t)

+
N∑
j=1

[
Λ̃j(t)S̃j(t) +

(
1 + Λ̃j(t)

)
θs̃j(t)s̃j(t)

T
]
λj(t)

+

(
H̄θ
xx

(
t, X̄(t−), ū(t), α(t), p̄(t), q̄(t), s̄(t)

)
0

0 0

)}
dt

+
m∑
j=1

Q̃j(t)dWj(t) +
N∑
j=1

S̃j(t)dΦ̃j(t),

P̃ (T ) =

(
Gxx(X̄(T )), α(T )) 0

0 0

)
,

(4.3.25)
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where,

Q̃j(t) =
Qj(t)

θV (t−)
− θp̄(t)T ḡj(t)

(
P̃ (t) + θp̃(t)p̃(t)T

)
− θp̃(t)q̃j(t)T − θq̃j(t)p̃(t)T ,

j = 1, · · · ,m,

S̃j(t) =
Sj(t)

θV (t−)
− Λ̃(t)

(
P̃ (t−) + θp̃(t−)p̃(t−)T + Aj(t)

)
− θp̃(t−)s̃j(t)

T

− θs̃j(t)p̃(t−)T − θs̃j(t)s̃j(t)T , j = 1, · · · , N.

(4.3.26)

Therefore, it follows that

P̃ (t) =

(
P̄ (t) 0

0 0

)
,

Q̃(t) =

(
Q̄(t) 0

0 0

)
, j = 1, · · · ,m

S̃(t) =

(
S̄(t) 0

0 0

)
, j = 1, · · · , N,

(4.3.27)

where
(
P̄ (·), Q̄(·), S̄(·) is the solution of (4.2.3). This solution is unique.

Step 4: Maximum Condition:

The transformation of the variational inequality (4.3.6) and the maximum

condition are given in the following lemma.

Lemma 4.3: (cf. [21]) Under assumptions (A1)-(A5), the variational

inequality (4.3.6) and the maximum condition (4.3.7) are reduced to (4.2.7) and

(4.2.8), respectively. (cf.[21])

Proof. Let consider (4.3.6), in a view of (4.3.11), (4.3.16), and (4.3.18), for

each ei ∈ S,
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Hθ
(
t,X, u, ei, p(t−), q(t), s(t)

)
= θV (t−)H̄θ

(
t,X, u, ei, p̄(t−), q̄(t), s̄(t)

)
, (4.3.28)

where Hθ and H̄θ are defined by (4.3.5) and (4.2.5), respectively.

By (4.3.19), (4.3.26), and (4.3.27) we obtain:

1

2

(
δgj(t, u)

0

)T
P (t−)

(
δgj(t, u)

0

)
=
θV (t−)

2
δgj(t, u)T×

(
P̄ (t−) + θp̄(t−)p̄(t−)T

)
δgj(t, u),

(4.3.29)

1

2

(
δγj(t, u)

0

)T (
P (t−) + Sj(t)

)(δγj(t, u)
0

)
=
θV (t−)

2
δγj(t, u)T×

(
1 + Λj(t)

)(
P̄ (t−) + S̄j(t) + θ

(
p̄(t−) + s̄j(t)

)(
p̄(t−) + s̄j(t)

)T)
δγj(t, u).

(4.3.30)

Since V (t−) > 0, it follows that (4.2.6) is equivalent to:

H̄θ
(
t, X̄(t−), u(t), α(t−), p̄(t−), q̄(t), s̄(t)

)
− H̄θ

(
t, X̄(t−), ū(t), α(t−), p̄(t−), q̄(t), s̄(t)

)
+

1

2

m∑
j=1

δgj(t, u)T
(
P̄ (t−) + θp̄(t−)p̄(t−)T

)
δgj(t, u)

+
1

2

N∑
j=1

[
δγj(t, u)T

(
1 + Λj(t)

)(
P̄ (t−) + S̄j(t)

)
δγj(t, u)

+ δγj(t, u)T
(

1 + Λj(t)
)(
θ
(
p̄(t−) + s̄j(t)

)(
p̄(t−) + s̄j(t)

)T)
δγj(t, u)

]
λj(t) ≥ 0.

∀u ∈ U , a.e. t ∈ [0, T ],P− a.s.

(4.3.31)

This completes the proofs for Theorem (4.2.1) and (4.2.2).
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5 Application

In this section we present an application of the risk-sensitivity stochastic max-

imum principle with regime switching.

5.1 Application to optimal portfolio choice problem

We will now discuss the application of the results in the previous chapter to the

topic of optimal portfolio choice problem in financial market with Markov regime-

switching. We will consider the Fleming and Sheu model (cf. [20]) where the price

of the risky asset S1(t) is given by L(t) = log S1(t). The Brownian motion will

be interpreted as small random shocks that influence the market dynamics. The

Markov process will be the transition to one state model to another state, which is

simply a shift in the financial market behavior. Finally, we will use the hyperbolic

absolute risk aversion (HARA) utility function of wealth with the risk-sensitive θ

in this model to capture the action of the investors regarding their risk level.

• Problem formulation

Let T > 0 be a deterministic finite horizon time and let (Ω,F ,Ft,P) be a

complete filtered probability space. We define on (Ω,F ,Ft,P) a standard one-

dimension Brownian motion W (t) = {W (t)}t∈[0,T ], a continuous time Markov pro-

cess {α(t)}t∈[0,T ] with a finite state space S = {e1, e2}. The generator of the Markov

chain α is given by the Q-matrix Q = (qij)i,j∈S. Let Nij(t) denote the counting
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process given by

Nij =
∑

0<s≤t

I{α(s−)=i}I{α(s)=j},

where IA denotes the indicator function of a set A. We note that Nij(t) gives the

number of jumps of the Markov process α from state i to state j up to time t. We

define the intensity process by:

λij = qijI{α(s−)=i}

and we introduce the martingale process Mij(t) given by:

Mij(t) = Nij(t)−
∫ t

0

λij(s)ds.

The process Mij(t) is a pure discontinuous, square-integrable martingale which is

null at the origin.

We assume that the stochastic processes, α(·),W (·) are independent. Using

the stochastic processes described above, we define a financial market consisting of

one risk-free asset and one risky-asset. Let us denote by {S0(t)}t∈[0,T ] the risk-free

asset (bond) and by {S1(t)}t∈[0,T ] the traded risky asset (stock market index). We

define the following differential equations:

The risk-free asset satisfies

dS0(t) = r
(
t, α(t)

)
S0(t)dt. (5.1.1)

Where r ≥ 0 is the constant bond rate.

The price of a stock at time t is given by the risky asset S1(t). Using Fleming

and Sheu model (cf. [20]), Let L(t) = log S1(t) and assume that
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dL(t) = c(L̄(t)− L(t))dt+ g(t)(dW̃ (t)) + γ(t)dΦ̃(t), (5.1.2)

where g is the stock price volatility rate, c > 0 is some appropriate coefficient,

and γ represents the jumps related to the Markov regime-switching. L̄(t) is the

deterministic log stock price trend and it is linear in t. We have L̄(t) = mt + L̄0,

where m and L̄0 are constants.

We assume that the financial market coefficients depend both on time and the

state of the Markov process {α(t)}t∈[0,T ]; and we also assume that the risk-free in-

terest rate r(t, e) and the risky-asset volatility g(t, e), are deterministic continuous

functions on the interval [0, T ] for every fixed state e ∈ S.

Let us also assume that r(t, e) ≥ 0, ∀(t, e) ∈ [0, T ] x S, and

E
[ ∫ T

0

|σ(t, e)|2dt
]
<∞, ∀ e ∈ S

We now introduce the control variables.

If X(t) is the amount of the investor’s wealth and u(t) is the proportion of

wealth invested in the stock at time t with u(t) ∈ U where U = (−∞,∞), then

u(t)X(t) is the amount in the stock and (1−u(t))X(t) is the amount in the bond.

The state equation describing the dynamics of wealth process X(t), for t ∈ [0, T ] as

in (cf. [20]), on which we add the regime-switching and the control on the diffusion

term is given by:
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dX(t) = X(t)

[
r(1− u(t)dt+ u(t)

dSt
St

]
X(0) = X0, α(0) = e1, t ∈ [0, T ]

(5.1.3)

where X0, and e1 represent respectively the initial wealth and the initial state of

the Markov process α(·).

Since we have Lt = log St, we have: dLt = d(log St) =
dSt
St

. Using equation

(5.1.2), we obtain:

dSt = St

[
c(L̄t − Lt)dt+ g(t)dW̃ (t) + γ(t)dΦ̃(t) +

1

2
(g(t))2dt

]
We wish to maximize the long term exponential growth rate of the expected

utility (HARA) of
(1

θ
Xθ
T

)
as T →∞, where T > 0 is some terminal time.

J̃(u(·)) =
1

θ
Ẽ[X(T )θ] (5.1.4)

Applying Itô’s formula to log X(t)θ = θ log X(t), we obtain:

d(θ log X(t)) = θ
[dX(t)

X(t)
− 1

2

(dX(t)

X(t)

)2
]

= θ
[
r
(
1− u(t)

)
dt+ u(t)

dS(t)

S(t)
− 1

2
u2(t)

(dS(t)

S(t)

)2
]

= θ

[(
r
(
1− u(t)

)
+ u(t)c(L̄t − Lt)−

1

2
u2(t)g2(t)

)
dt

+ u(t)g(t)dW̃ (t) +
(
u(t)γ(t)− 1

2
u2(t)γ2(t)

)
dΦ̃(t)

]
.
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Therefore, we have the following expected function:

E(Xθ
T ) = (X0)θẼ

[
exp

{
θ

(∫ T

0

(
r
(
1− u(t)

)
+ u(t)c(L̄t − Lt)

−1

2
u2(t)g2(t)

)
dt

+ θ

∫ T

0

u(t)g(t)dW̃ (t) + θ

∫ T

0

(
u(t)γ(t)− 1

2
u2(t)γ2(t)

)
dΦ̃(t)

)}]

We use the following Girsanov transformation to eliminate the stochastic

integral.

dP

dP̃
= e

(
θ
∫ T
0 σu(t)dW̃ (t)− 1

2
θ2

∫ T
0 σ2u2(t)dt−θ

∫ T
0 (λ̃−λ)dt( λ̃

λ
)NT
)

This change of probability measure argument is valid under the following assump-

tion: The Markov regime-switching contains jumps that follows the Poisson dis-

tribution. We also consider

Ẽ
[
e(µu(t)2)

]
≤ C, (5.1.5)

where µ,C are positive constants. The equation (5.1.3) becomes

dL(t) =
[
cα(t)

(
L̄(t)− L(t)

)
+ θg2(t)u(t)

]
dt+ α(t)u(t)g(t)dW (t) + α(t)u(t)dΦ(t),

(5.1.6)

where W (t) is a Brownian motion under another probability measure P and

Ẽ[X(T )θ] = Xθ
0E
[
eθ
[ ∫ T

0 F
(
X(t),u(t)

)
dt+G

(
X(T ),α(T )

)]]
,

where

F (X(t), u(t)) = r(1−u(t))+cu(t)(L̄t−Lt)−
1

2
u2(t)g2(t)+

1

2
u(t)g2(t)+θ

1

2
u2(t)g2(t)

+ θ
1

2

(
u(t)γ(t)− 1

2
u2(t)γ2(t)

)2
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G
(
X(T ), α(T )

)
= α(T )X(T )

g
(
u(t), α(t)

)
= α(t)u(t)

f
(
X(t), u(t), α(t) = −cα(t)X(t) + θg2(t)u(t)

We interpret the equation (5.1.6) as the dynamic of a risk-sensitive stochastic

control problem with Markov regime-switching, in which Lt is the state and u(t)

the control at time t. Assuming that u(·) is Ft-progressively measurable for the

filtration Ft, we call such u(·) an admissible control and we denote by Uad the

admissible control set. Let us adopt the following transformation for suitable

convenience.

X(t) = Lt − L̄t +
m

c
, where

m

c
is a constant.

We then obtain stochastic equation defined by:
dX(t) =

(
− cα(t)X(t) + θα2(t)u2(t)u(t)

)
dt+

(
α(t)u(t)

)
dW (t) +

(
α(t)u(t)

)
dΦ(t)

X(0) =
m

c
(5.1.7)

and the cost functional:

J
(
u(·)

)
= E

[
eθ
[ ∫ T

0 F
(
X(t),u(t)

)
dt+G

(
X(T ),α(T )

)]]
Under the following assumptions

(A1): f, g, γ are uniformly Lipschitz in (x, u)

(A2): f, g, γ, F,G are twice continuously differentiable with respect to x, and

their partial derivatives in x are continuous in (x, u);
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(A3): fx, fxx, gx, gxx, Fx, Fxx, ‖γx‖M2p , ‖γxx‖M2 , p = 1, 2 and Gx, Gxx are

bounded;

(A4): F and G are uniformly bounded;

(A5): V θ ∈ C1,3([0, T ] x Rn x S);

(A6): U is a convex subset of Rk.

We define the first and second adjoint variables respectively as follow:
dp̄(t) =

[
cα(t)p̄(t) + cu(t)− θp̄(t)α(t)u(t)q̄(t)

]
dt+ q̄dW (t) +

2∑
j=1

s̄j(t)dΦj(t)

p̄(T ) = α(T )

(5.1.8)



dP̄ (t) = −
[
− 2cα(t)P̄ (t) + θp̄(t)α(t)u(t)Q̄(t) + θq̄2(t)

+
2∑
j=1

(
Λj(t)S̄j(t) +

(
1 + Λj(t)

)
θs̄2

j(t)
)
αj(t)uj(t)

]
dt

+Q̄j(t)dWj(t) +
2∑
j=1

S̄j(t)dΦj(t),

P̄ (T ) = 0

(5.1.9)

We have the following Hamiltonian H -function:

H̄ θ(t.X, u) :=
(
− cα(t)X(t) + θα2(t)u2(t)

)
p̄(t) + cu(t)X(t) + (r −m)u(t)− r

+
1

2
α2(t)u4(t)− 1

2
α2(t)u3(t)

+
1

2
α2(t)u2(t)

(
P̄ (t)− θp̄2(t)

)
+ α(t)u(t)

(
q̄(t)− P̄ (t)α(t)u(t)

)
(5.1.10)
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H θ
u (t,X, u) = 2θα2(t)p(t)u(t) + cX(t) + (r −m) + 2α2(t)u3(t)− 3

2
α2(t)u2(t)

+ α2(t)
(
P (t)− θp2(t)

)
u(t) + α(t)q(t)− 2α2(t)P (t)u(t)

(5.1.11)

Equating (5.1.11) to zero gives us the following equation to solve for u(t).

H θ
u (t,X, u) = 0

Unfortunately, we do not have enough resources to solve this equation for u(t) at

this time. This will be our next investigation.
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6 Conclusion

In this thesis, we reviewed the basic concepts of the probability theory, ordi-

nary and stochastic differential equations, and the principles of Markov chain nec-

essary and unavoidable for this work. We conducted a survey of the literature on

stochastic optimization problem using the Pontryagin Maximum Principle. Then,

we derived a risk-sensitivity stochastic maximum principle problem with regime-

switching. And finally, we studied an example of its application on an optimal

portfolio choice problem in the financial market using the hyperbolic absolute risk

aversion (HARA) utility function and the linear exponential of quadratic Gaussian

(LEQG). The maximum principle for this kind of problem is obtained. However,

we notice that the first and second adjoint equations depend deliberately on the

risk-sensitive parameter, as well as the maximum condition. In future work, we

plan to extend our study to a more general case using the Poisson jump diffusion

systems and compute our result to explicitly illustrate the optimal solution.
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