
 i

 TOWSON UNIVERSITY

 OFFICE OF GRADUATE STUDIES

 TRANSFORMING SQLITE DBMS TO RUN ON A BARE PC

by

Uzo Okafor

A Dissertation

Presented to the faculty of

Towson University

in partial fulfillment of

 requirements for the degree of

Doctor of Science in Information Technology

Department of Computer and Information Sciences

Towson University

Towson, Maryland 21252

May 2013

ii

© 2013 By Uzo Okafor

All Rights Reserved

iii

iv

 ACKNOWLEDGEMENTS

I would like to express my appreciation to all those who have supported my efforts to

complete this dissertation. I am greatly appreciative of my research committee Dr.

Ramesh K. Karne (chair), Dr. Alexander Wijesinha, Dr. Siddharth Kaza and Dr. Wei Yu

for supporting this research. I am especially thankful to Dr. Karne and Dr. Wijesinha for

all the long hours in lab, the support and advice I have received throughout this

dissertation research. I am also thankful to my elderly mother, Dorah Okafor, for

continuing to be with us – as it were, patiently. I have to thank my wife, Gladiette Nkiru,

my children - especially Chika Jennifer Okafor who just passed her New York Law Bar

exam, as it were, to make our successes complete - and several friends and relatives who

have passionately supported my academic goals during the long period of my doctoral

study.

I also would like to thank Dr. Chao Lu, Chair of the Department of Computer and

Information Sciences and Towson University for facilitating this work. My gratitude also

goes to the late Frank Anger (National Science Foundation) for his support of the

Application oriented Object Architecture, which evolved into Bare Machine Computing

research which in turn led to this dissertation.

v

 ABSTRACT

 TRANSFORMING SQLITE DBMS TO RUN ON A BARE PC
 Uzo Okafor

 This dissertation extends on-going Bare Machine Computing (BMC) research at

Towson University. BMC applications run on a bare machine without any commercial

operating system, kernel or other centralized support and are in need of a bare machine

database management system. This research deals with transforming SQLITE DBMS

system to run on a bare PC. The SQLITE DBMS is a lean database that runs on Windows

or Linux operating system. It is commonly used as a standalone database across many

academic institutions and is also a free download. When a DBMS runs on top of an

operating system, it uses the operating system’s system calls to access hardware

resources. This dissertation will eliminate such system calls and allow the SQLITE

DBMS to directly access and manage hardware resources. This novel concept eventually

will pave the way to transform other systems and application programs.

The transformation process poses many daunting challenges and issues. There are a

variety of ways to explore the transformation process. However, this dissertation

proposes a novel approach in transformation methodology using existing tools. It uses

Microsoft Visual Studio to develop, test, validate and debug bare PC applications; this

step is referred to as pseudo transformation process. This pseudo transformed code is

then used in further transformation process where rest of the OS related dependencies are

eliminated. This fully transformed code is now ready to run on a bare PC.

vi

The primary objective of this research assumes minimal understanding or modification

of the SQLITE code during its transformation. This dissertation demonstrates and

validates this hypothesis successfully. After transformation, the functionality and results

are validated with its original SQLITE model that runs on a Windows operating system.

This investigation serves as a cornerstone for future transformation of operating system

based applications to run on a bare PC or a bare machine. It also lays a foundation to

build an automated tool to replace the manual process outlined in this research.

vii

TABLE OF CONTENTS

TABLE OF CONTENTS……………………………………………………………..vii

LIST OF FIGURES……………………………………………………………………x

Chapter1 MOTIVATION……………………………………………………………..1

Chapter 2 INTRODUCTION………………………………………………………….2

Chapter 3 THE PROBLEM AND THE HYPOTHESIS……………………………...5

3.1 The Problem…………….……………………………………….…………...5

3.2 Hypothesis .. 6

3.3 Approach ... 6

Chapter 4 SQLITE DBMS STRUCTURE AND CHARACTERISTICS…………….8

Chapter 5 BARE MACHINE COMPUTING AND INTERFACES………………..9

5.1 BMC Computing Paradigm .. 9

5.2 BMC Application Development. .. 11

5.3 Direct Hardware Interfaces. .. 14

5.3.1 Static and Dynamic Memory…………………………………………….14

5.3.2 User Interfaces…………………………………………………………...15

5.3.3 Network Interfaces……………………………………………………….15

5.3.4 Process Interfaces………………………………………………………...16

5.3.5 File Interfaces…………………………………………………………….17

5.3.6 Boot and Load Interfaces………………………………………………...17

5.3.7 Compile, Link and Library Issues………………………………………..17

viii

5.4 Bootable USB ... 18

5.5 Memory Map. ... 20

Chapter 6 TRANSFORMATION STRATEGIES…………………………………...23

6.1 Same Executable ... 24

6.2 Trap System Calls ... 25

6.3 Resolve at Assembly Level ... 26

6.4 Remove all Header Files ... 27

Chapter 7 TRANSFORMATION PROCESS……………………………………….29

7.1 Scaling Down Features ... 31

7.2 Visual Studio Application ... 31

7.3 Bare PC Application ... 36

Chapter 8 RESULTS AND DISCUSSION………………………………………….41

Chapter 9 RELATED WORK……………………………………………………….48

Chapter 10 SIGNIFICANT CONTRIBUTIONS…………………………………….51

Chapter 11 SUMMARY……………………………………………………………..53

APPENDICES………………………………………………………………………..54

APPENDIX A: SQLITE RESOURCES…………………..…………………...55

APPENDIX B: THE TWO DEVELOPMENT PLATFORMS…………………56

REFERENCES……………………………………………………………………….68

CURRICULUM VITA………………………………………………………………72

ix

LIST OF ABBREVIATIONS

 OS Operating Systems
VS Visual Studio

BMC Bare Machine Computing

PC Program Counter
(bare) PC bare Personal Computer

API Application Programming Interface

DBMS Data Base Management System

x

LIST OF FIGURES

Figure 1 Conventional OS and Bare Machine Computing…….……………………25

Figure 2 Steps in Developing Bare Machine ……………………………………….27
Figure 3 USB Layout ..………………………………..33
Figure 4. Memory Map ………………………………….……………………. …..35

Figure 5 Transformation Strategies……………………….…………………………41

Figure 6 Transformation Methodology ……………………………………………..44

Figure 7 Visual Studio (VS) application platform…………………………………. 47

Figure 8 OS related Calls and Library Functions ………….……………………… 49

Figure 9 Bare PC application platform…………..……….…………………………52

Figure 10 Batch Files ……………………………….………………………………52

Figure 11 Simple Queries QQ1 on bare PC …………….……………………….....57

Figure 12 Matching results on Visual Studio for QQ1 …..…………………………57

Figure 13 Error E1 flagged by Parser on bare PC ………………..…………………58

Figure 14 same error E1 on Visual Studio - see Fig 13…………..………………....58

Figure 15 More Simple Queries on bare PC …………………………………..….....59

Figure 16 same queries on Visual Studio as in Fig 15…………………………….....59

Figure 17 Bare PC Output Display of more complex queries QQ2 …. …………… .60

Figure 18 same complex queries QQ2 on Visual Studio…..…………………….....60

Figure 19 asm.bat file……………………………………..………………………….66

Figure 20 cpp.bat file……………………………..…………….…………………….67

Figure 21 ln.bat file…………………………………………………………………...68

Figure 22 mk.bat file………………………………………………………………….69

Figure 23 System Calls from using NODEFAULTLIB option…………… ……… ..71

Figure 24 bare PC memory object - Initialization…………………………………….72

Figure 25 bare PC memory object – Allocate………………………………………...73

Figure 26 bare PC memory object – Allocate Continued…………………………….74

Figure 27 bare PC memory object – free memory……………………………………75

Figure 28 bare PC memory object – Reallocate…………………………………......76

Figure 29 bare PC memory object – Reallocate Continued………………………….77

 1

Chapter 1 MOTIVATION

 A variety of bare PC applications were developed at Towson University [3, 7, 10,

17] that run on a bare PC without using any operating system (OS), kernel, or any

embedded system. These applications need a database management system that runs on a

bare PC. The bare PC architecture is simple, application-centric, extensible, lean and

independent of any operating environment. At present, it is based on a single

programming language C/C++ with some low-level interface code written in C or

assembly language. The SQLITE database management system (DBMS) [26] application

is a system-level program with reasonable complexity and it is written in C. The

developers of this application created an amalgamation package, delivered as two source

files with all environment parameters included in them. This application is suitable for

transformation to a bare PC, as it is complex, and provides insight for developing an

automated tool for transforming other applications. This application also does not involve

graphics or networking, which enables us to focus on transforming the application itself.

 2

Chapter 2 INTRODUCTION

Application programs written in a high level programming language are translated to

machine code by a compiler based on underlying machine architecture and operating

system environment. Each program also needs system calls/libraries to access hardware

resources. An operating system acts as a middleware to provide hardware abstractions to

application programs. Thus, application programs are not truly independent of its

execution environment. When application programs are made totally independent of

execution and operating environments, they become portable across many pervasive

devices. This is a different way of achieving ubiquity without using a virtual machine.

When applications are made to run on a bare machine, they are not susceptible to rapid

changes in operating systems and computing platforms. This will bring a revolution in

computing where application programs are polarized on applications instead of

computing environments and platforms. This is not same as ubiquity paradigm provided

by Java or other virtual machines as they are not bare machine systems!

In essence, an application program is intertwined with OS and also its underlying

machine architecture. Ideally, application programs should be independent of OS and

also machine architecture to make software reusable and portable across pervasive

devices. The system calls/libraries inserted by the compiler are provided by an underlying

OS in addition to other hardware abstractions. The high level language translation to

machine code is dependent upon the machine architecture. This dissertation focuses on

eliminating hardware abstractions (OS or middleware) by providing direct hardware

interfaces to application programs [15]. A unified compiler approach is needed to

 3

generate machine code for different machine architectures, which is not part of this

dissertation.

The transformation process in the beginning stages explored several methodologies

and avenues. Many of these methodologies ended in road blocks in the transformation

process. In one approach, where we start the transformation process in a bare PC, there is

no working code in the beginning of transformation. There are no development

environments (e.g. Visual Studio for bare PC applications) for developing, testing,

validating and debugging the code. When the code does not work, it is hard to determine

whether the problem is in the SQLITE or in our transformation. In a bare PC, system

calls/libraries are replaced with direct hardware APIs so that applications can directly

communicate with hardware. These APIs were not tested before for transformation

process.

Another approach experimented with, was where you go through step-by-step testing

of the code in a bare PC and compare with the same steps in the original code running on

Visual Studio IDE. This was very tedious and time consuming process due to the

complexity of SQLITE DBMS code and its internal structures. As example, in some

instances, there were several thousand lines of code within a single switch statement and

all the cases associated with it. This approach fell apart quickly because it was tedious

and frustrating.

The SQLITE DBMS code size also caused us problems on the bare PC platform; the

search for the needed solutions on bare PC forced us into re-engineering the bare PC

platform several times. The code size being larger than 64K, old Visual C++ compilers

cannot compile code of this size. The new C/C++ compiler obtained from Visual Studio

 4

8.0 also caused many issues with executable layouts. In this exe model layout, code and

data are not contiguous – we discovered that there is a gap between code and data. The

starting of the data after code was on a page boundary (4K or 0x1000). The loader should

take this into consideration while loading code and data.

The frustration from the transformation process almost forced an end to our effort on

this research many times. As we progressed, another problem for transformation was

identified to be the lack of a testing and validation tool. The Visual Studio tool is already

available for testing OS based applications and was not meant for testing on a platform

without an OS. And then, we discovered how to test a bare PC application using Visual

Studio. To use the same (Visual Studio) tool for bare PC development that is used

normally for applications running in a regular OS-environment turned out to be the right

approach to make the transformation easier and faster. However, it is not possible to

completely transform an application to bare PC application on Visual Studio as it uses

many hardware resources from its underlying OS but discovering how to use Visual

Studio for any portion of the total transformation task was still a game-changing event. It

was a significant achievement that gets us off the ground delivering to us, an application

that was almost completely transformed; the discovery of this pseudo-transformation

approach indeed gave us momentum in the right direction.

The above introduction is necessary and essential to understand the research process

and the stumbling blocks in the process. The rest of the sections in this dissertation

provide more details of theories and methodologies of application transformation, the

transformation process itself, the issues and results.

 5

Chapter 3 THE PROBLEM AND THE HYPOTHESIS

3.1 The Problem

In BMC laboratory at Towson University, many BMC applications have been

developed from scratch, which have demonstrated significant improvements in

performance over conventional applications that run on an OS platform. Up to this point,

we do not have a DBMS that runs on the bare PC platform. To have a complimenting

DBMS running on the same (bare PC) platform spells overall advancement and progress

in this environment. If we can develop this DBMS, it would be the first of such a badly

needed application in our bare environment; we would have blazed a trail. Any one of the

applications that have already been completed in bare PC environment would now have a

database that it may use.

The approach of starting from scratch requires intimate understanding and expertise in

the BMC programming paradigm. It does not – but should – take advantage of existing

applications and freely available source code and resources for these applications. We

believe it is much less work, time and cost – if an existing application with all of its

functionalities is transformed to run in our environment.

 The BMC paradigm is behind all the work that has already been completed on bare

PC processing. Not surprisingly, the (BMC) paradigm continues to drive for even more

device drivers that do not use code related to an OS platform or any OS related calls.

Developing such BMC drivers has been a daunting obstacle causing a shortage of BMC

drivers. This in turn contributes to the difficulty in making the BMC applications popular

and marketable in the world. One solution to the scarcity in such BMC drivers is to

 6

transform existing drivers which now run in an OS environment to make them run in a

bare PC environment.

3.2 Hypothesis

The hypothesis of this dissertation is as follows. Most of the computer applications

today run on top of the existing operating system and require either system calls or some

sort of API to reach the hardware. A Bare Machine Computer application runs directly on

top of hardware without any need for a centralized operating system or a kernel. But, it

has its own hardware interfaces for communicating between application program and

hardware. It simply avoids the OS middleware altogether to operate directly on the

hardware. The hardware interfaces provided in Bare Machine Computing applications

are very similar to system calls and kernel interfaces. Thus, we claim that we should be

able to transform any OS or kernel based application to a bare machine application. This

hypothesis will be investigated during this research and the proof of it will be validated.

3.3 Approach

The approach taken to demonstrate the above hypothesis stems from the background

and experience gained in building BMC applications over the past decade. In the big

picture, there is a plan for four stages. (1) The first step involved selecting a large

application (that is written in C/C++ code only), and transforming it to run on a bare PC;

this process enabled us to understand the intricacies and hurdles involved in the

transformation process. (2) In the second step, transformation tools were designed and

built that helped this process. (3) In the third stage, the transformation process was

studied and its net effect regarding gain in performance or loss of functionality and

 7

reduced code sizes. (4) In the final phase, transformation strategies and methodologies

are laid out for further research in this area.

 8

Chapter 4 SQLITE DBMS STRUCTURE AND CHARACTERISTICS

 SQLITE DBMS application is chosen to demonstrate the transformation process as

it is a very large C programming application and consists of complex structures and

styles. SQLITE is a standalone single user database engine which runs on Windows or

Linux operating systems. It is a commonly used database system across many academic

institutions. It has an amalgamation package which consists of two files; shell.c and

sqlite3.c. The size of shell.c and sqlite3.c is 86, 016; 4,323,826 bytes respectively. The

total number of lines of code in both source files is 129,003, commented lines of code are

55,691 and executable statements are 40,297. This code has numerous code complexities

such as over 6200 lines of code inside the scope of a switch statement, hundreds of

macros, and user defined OS related functions. There are dozens of pre-processor

statements that include and exclude various part of the code. We used Windows version

of the code that runs in Microsoft Visual Studio 2010 Express environment. When the

application runs, a user can perform standard database functions such as create tables,

insert data and query a database. The output will be displayed in a Microsoft Window

(there is no graphics interface). Our task is to transform this application code so that it

can be run on a bare PC without using any operating system.

 9

Chapter 5 BARE MACHINE COMPUTING AND INTERFACES

 The transformation process used in this dissertation was motivated by BMC paradigm

[14] and its related applications. It is also very much at the background of the

development of bare PC applications and in making direct hardware interfaces available

to programmers. One can rightly think of BMC as a converging point for all bare PC

applications, whether developed from scratch or created through the transformation

process. This dissertation validated some of the BMC paradigm concepts and developed

new interfaces that are relevant to the transformation subject, which is addressed in this

research. It is essential, therefore, to understand BMC connection to the transformation

process.

5.1 BMC Computing Paradigm

BMC paradigm was originally referred to as dispersed operating system computing

(DOSC) [14], but further evolution of DOSC into BMC concepts has occurred over the

years. Fig. 1 illustrates concepts of an application object (AO) [12] and describes the

building blocks for a BMC application. A conventional OS, kernel or embedded software

acts as middleware between the hardware and an application. An application programmer

is isolated from an application’s execution environment, resource control and

management.

That is, the programmer has no direct control of the program’s execution or the

resources needed. In the BMC paradigm shown in Fig. 1, the OS is eliminated; the AO

programmer is totally capable of directing application execution, control and

management; the AO programmer has knowledge and full control over a given

application as well as its execution. The BMC paradigm differs from conventional

 10

computing in two major ways. First, the machine is bare, with no existing software and

protected resources. Second, an AO programmer controls the program’s execution and

manages the hardware.

The BMC paradigm makes a computing device owner-less and simplifies the design

of secure systems since there are less avenues of attack and no underlying middleware

that an attacker can control. Viewed another way, when a device is bare and contains no

valuable resources such as a local hard disk or kernel, there is nothing to own or protect.

In BMC, mass storage is external and detachable. The mass storage can also be on a

network. In this approach, an AO is built for a given set of applications to run at a time

on a machine as a single monolithic executable. The boot, load, executable, data and files

are stored on a mass storage device such as a USB. When a USB is plugged into a

computer, the machine boots and runs its own program without using any extra software

or external programs. This implies that no dynamic link libraries (DLLs) or virtual

machine code are allowed in this approach. What runs in the machine, is exactly what has

been loaded (and nothing else).

This computing paradigm is again different from conventional computing approaches

since it is based on applications instead of computing environments. This is not a mini-

OS or kernel, as there is no centralized program running in the machine to manage

resources. Instead, the resources are managed by the applications themselves and run

without using any OS/kernel or intermediary software.

 11

 Figure 1 Conventional OS and Bare Machine Computing

5.2 BMC Application Development.

In BMC, a suite of applications such as a text processor, Webmail server and Web

browser can be bundled together and run without any OS or kernel support. Fig. 2

illustrates the major steps involved in developing BMC applications. First, a choice has to

be made about the suite of applications; next, the architecture of the CPU on which they

will run has to be identified. Using today’s CPUs, constructing a BMC application is a

daunting task because they provide neither direct hardware interfaces nor support for a

development environment that facilitates building applications independent of an OS. For

 12

example, a bare PC requires the BIOS to boot and an ARM processor requires a Uboot

tool. The program counter (PC) of a given processor is not directly accessible to the

programmer. In an x86 architecture machine, a program counter can only be loaded by

jumping to the task segment, where the PC value is stored and updated by the CPU. In a

BMC application, the PC must be handled inside an application and not controlled by

middleware.

Memory requirements must be considered for the code, data and stack of a given

application. It is necessary for the application programmer to do this as these applications

run in real memory, which is cheap and affordable today, therefore making it feasible to

avoid paging, virtual memory overhead and management. The absence of any

middleware or an OS in the system eliminates other OS features commonly found in

today’s technology. Most BMC application suites therefore require small amounts of

memory compared to OS-based applications. For very large applications, one can use

mass storage to provide extended storage using swapping techniques. Section 5.5

describes details of the memory map created for some real world applications using the

BMC paradigm.

The next step is to construct the application suite using programs that are independent

of any OS. The application programs should be able to run on any compatible CPU

without changes or adaptations. Different CPU architectures have different compilers to

compile code. This requires identifying I/O related code and deploying direct hardware

interfaces. One of the key elements in writing BMC code is being able to differentiate

between code that is OS dependent, code that is OS independent and code that is I/O

related. For example, file I/O is OS dependent code and a for-loop is OS independent

 13

code. User interfaces to support keyboard, mouse and display are all I/O related code.

Once OS dependent code and I/O related code are written (as hardware interfaces), they

can all be integrated with the rest of the OS independent code and run as a single

monolithic executable. The above approach poses many challenges in developing BMC

applications. They include the boot-up process and loading of an application suite. Each

computing device is different in its boot process and the internal details are often hidden.

Similarly, loading an application on a bare device also poses difficulty as it requires

readily available tools that are OS dependent. Developing an OS independent loader

requires thorough knowledge of the CPU architecture and its development environment..

 Figure 2 Steps in Developing Bare Machine Applications

 14

Domain knowledge and some expertise for each CPU device are required to develop

the bare boot and load processes.

5.3 Direct Hardware Interfaces.

Conventional computer applications and programming languages use OS calls or

system calls injected at link time from an OS such as Windows [27] or Linux [9]. These

calls include memory, keyboard, terminal screen, network, mass storage, and interrupts.

There are also modern OS systems that include in their repertoire other commonly used

OS independent functions such as memory copy, string operations and concurrency

control as if these are system calls. Today’s computer applications and the programmer

expect these calls or interfaces to be included at compile and link time by a given

compiler and linker. Direct hardware interfaces related to SQLITE DBMS were

developed as part of this dissertation as described in [20].

5.3.1 Static and Dynamic Memory

Static memory needs depend on the size of code, data and stack needed to run a

program. When an executable is created, this information is available to the programmer.

Thus, for a given executable, one can specify its requirements for memory. An AO can

also be designed so that it can read the existing memory and restructure its code, data and

stack in real memory and external mass storage or network. The code image is small as

there is only one AO running at a time in the machine, and applications that are related

are grouped to run together.

Dynamic memory needs are however not known until run time. In a bare machine

application, an AO programmer estimates the dynamic memory. Appropriate exceptions

for memory can be set to manage dynamic memory; when large dynamic memory needs

 15

arise, one can use secondary storage in place of large dynamic memory. System calls

similar to malloc() and free() can be designed to support dynamic memory management.

One can allow the memory controller to communicate with an AO and thus provide

appropriate memory interfaces to manage memory in the AO. As the memory technology

improves and becomes cheaper, it is also conceivable to assume full address space (4GB

in a 32-bit architecture) in a machine to avoid all memory management issues and

provide direct control to a given AO.

5.3.2 User Interfaces

The most common user interfaces are keyboard, mouse, touch-screen and terminal

screen. These resources are managed by the OS in conventional systems. In bare machine

applications, keyboard interfaces are part of an AO where the keyboard interrupt code

places the data in a user buffer. Similarly, mouse data is also placed in a user buffer. An

AO programmer designs the code to directly interface with a keyboard or a mouse. The

terminal screen is usually controlled by a video memory or its graphics adaptor. An AO

programmer can directly store output in video memory or write a bare video driver to

control the screen. All device drivers supporting a bare application have to be bare and

provide direct hardware interfaces to applications. They cannot be hidden from the

application programmer as it is done in an OS environment. Other user interfaces have to

be handled in a similar manner to the above interfaces.

5.3.3 Network Interfaces

Most ordinary computing devices today have one wired and one wireless network

interface. The device drivers for a network interface are controlled by underlying OS.

Bare machine device drivers that provide direct network interfaces to an AO are needed

 16

in BMC. Instead of current OS dependent network drivers, an AO programmer can

initialize a network driver, configure relevant internal registers, and read or write to

buffers and control registers. Such a design allows direct communication to applications

and avoids the need for any middleware. As the drivers are now encapsulated within an

AO, the network hardware is not accessible to other applications when a given

application suite is running in the machine. A bare PC USB device driver and its

implementation is described in [13].

5.3.4 Process Interfaces

Many computer applications require process creation, deletion and management,

which are usually controlled by an OS. In Intel x86 processors, process control and state

are maintained by the CPU in a task segment. Interrupt gates are used to switch from one

task to another. That cannot be done in a bare environment since these interfaces are

accessible to an AO programmer. Control of the CPU is placed in an application program

for creation of a new process (or a task). The global descriptor table (GDT) and local

descriptor table (LDT) entries are used by the AO programmer to control task memory.

Thus, when a machine becomes bare, the CPU and tasks are managed by an AO

programmer. Task management in a bare machine is much simpler than in a conventional

system, and the code size is also smaller compared to an OS managed system.

Conventional Web server systems are complex and may create over 7000 tasks (in an x86

box) to provide high performance [10]. Process interfaces can be generalized in the near

future and made available to an AO programmer for any given CPU architecture. Current

systems hide all these interfaces under an OS or some form of similar middleware.

 17

5.3.5 File Interfaces

In conventional systems, a file system is part of the operating system. File systems use

some standard specifications such as FAT32 or NTFS. Files can be transported across

multiple operating systems and applications if they use standard specifications in their

design. In bare machine applications, persistent data is under the control of an AO

programmer and the data itself is part of an AO. Programmers can use their own file

storage specification or use a standard specification to transport files to non-bare systems.

One can also do a raw file system in an AO to avoid all file management complexities

and hide the files within an AO (the only visible AO to the files). This may be the most

secure way to implement a file system. File transfers can also be accomplished through a

network or by message passing. A given file system interface uses a bare device driver

and controls the relevant device operations.

5.3.6 Boot and Load Interfaces

Boot and load facilities are usually under the control of the OS and the underlying

BIOS calls. In BMC, these interfaces are controlled by the AO programmer to facilitate

bare machine applications. Soft and hard boot can be used to control the machine when

needed in bare machine applications. These interfaces also vary across platforms; ideally,

a standard boot and load mechanism to run bare machine applications across multiple

CPU architectures and machines is the best solution (what is described in Section 5.5 is a

method that has been implemented for x86 Intel CPUs)

5.3.7 Compile, Link and Library Issues

Compilers and linkers generate different formats for executable, which pose problems

in loading and running bare machine applications. There is a need for homogenization in

 18

these tools to develop common bare machine applications that can run on many pervasive

devices. New programming tools can be developed to compile bare machine applications

using existing libraries and batch files, or new features can be added into existing

Microsoft Visual Studio and Eclipse development tools to provide bare machine

compilation options. Common libraries such as string operations, memory operations,

locking, shared memory, message passing, and concurrency control are OS dependent

and part of the OS libraries. However, they can be generalized and designed to run across

many CPU architectures.

5.4 Bootable USB

In the BMC paradigm, applications are carried on a removable storage medium such

as a CD/DVD or a flash drive. This device also carries a boot program to boot and load

its own application object suite. A typical way to create a bootable USB is as follows. A

bootable USB is created using a special tool written in C and assembly language. This

tool is a batch file that runs in a DOS window. The USB is formatted for FAT32 before

its use. The bootable USB should have three files as shown in Fig. 3(b). The boot file is

stored in the boot sector (#0), the prcycle.exe file is stored at 0x3be000, and the

application file (shown in Fig 3(a) as shell.exe), is stored at 0x3c4000.

 19

 Figure 3 USB Layout

 The prcycle.exe file (22, 037 bytes in size) contains assembly code to boot a bare PC,

provides the user interface/menu, and facilitates the loading of AOs (in this instance,

shell.exe). It enables the switching from real to protected mode and vice versa for

handling low-level interfaces. It also contains, IDT, GDT, TSS and BIOS interrupts to

provide the AO programmer with direct control of the CPU. This part of the application

code thus plays a key role in enabling the programmer to manage the hardware resources

in a bare PC. In summary, the batch file copies files onto the USB, installs a boot

program, and creates a bootable USB. This entire process does not require any software

other than what resides on the USB (and is thus part of the bare PC application). There is

no dependence on any specialized commercial tool or software. This enables BMC

applications to be independent of any OS-related environments and tools. It is also

possible to use existing boot tools to create a bootable USB; however those tools must

guarantee high security if needed in a system. The approach proposed here demonstrates

 20

building bare machine computer applications in a single environment where every aspect

of software development is controlled by an AO programmer with no other dependencies.

This approach facilitates enhanced security to computer applications.

5.5 Memory Map.

As discussed in section 5.2, the AO programmer needs to design the real memory

layout when developing a BMC application. Fig. 4 shows a typical memory layout for a

given application suite. An AO programmer prepares this map before designing a given

application suite. The prcycle.exe program is used on the bare platform to load the AO at

0x600 in real mode memory. The main() entry point for prcycle.exe is located at 0x3100,

which can be obtained from the prcycle.map. When the PC is booted, it must jump to

0x3900 as instructed by this memory map. A user loads the example application

(shell.exe) by using the menu provided by prcycle.exe (not shown here). The executable

for this AO is loaded at 0x00111E00 as shown in Fig. 4. The reason for using this

particular address for loading shell.exe is discussed below. Visual Studio 8.0 (and later

editions) of compilers behave differently than the previous versions when generating an

exe file. In previous versions, when the entry point in shell.map indicates

0001:00000000, it usually implies that the main entry point in shell.exe is at 0x1000. In

newer versions, this is not the case. In Visual Studio 8.0 (C++ versions), the executable

starts at address 0x400 instead of at 0x1000. In Fig. 4, the AO (shell.exe) is located at

0x00111E00. The higher 16-bit address 0x0011 indicates that it is loaded above 1MB to

load it in a protected mode memory address.

 21

 Figure 4 Memory Map

The lower 16-bit address 0x1E00 is derived as follows. The compiler start address for

shell.exe is 0x0000, but it actually starts at 0x400. It was observed in the executable that

the offset used by this compiler is 0x1e00 more than the actual offset in the executable.

Thus, when the executable is relocated at 0x1e00, the references to the variables were

correct as it was generated by the compiler. The main entry point for shell.exe should be

at 0x1e00 + 0x400 – see Fig. 4. A generic tool is needed to resolve such intricacies

involved in generating a memory map for a mass storage device. This tool should

consider compiler options, executable formats and map files to create a memory map that

is suitable for a given bare machine device.

To summarize, this section described, in general, the development of BMC

applications and identified the generic direct hardware interfaces needed to develop these

applications. It also illustrated a bare machine application architecture that enables a

 22

BMC device to be used for many pervasive applications. This approach will save time,

energy, resources and the cost of developing applications for each pervasive device. The

BMC approach enables these hardware interfaces to be incorporated in the hardware thus

making the latter more intelligent and able to communicate with the software. The

proposed hardware interfaces were used to construct complex BMC applications proven

to be small in code size, simple to use, yielding high performance, and inherently secure

in design. The BMC paradigm demonstrates a new approach to future computing based

on completely self-supporting applications that eliminate all forms of middleware. This

paradigm also served as a backbone to conduct code transformations as described in this

research.

 23

Chapter 6 TRANSFORMATION STRATEGIES

 Software is routinely ported from one platform to another as cited in [6]. What is

the difficulty then in porting SQLITE DBMS to run on a bare PC system? When an

application is ported from one OS or kernel-based platform to another, we need to only

worry about the OS discrepancies in implementation as the basic structures are similar

across many platforms. When porting a given application to a bare PC, many challenging

issues arise depending upon how the original application code was written. We generally

find that if the code has minimal OS-dependencies, it is significantly easier to port it to a

bare PC or a bare machine in general. We also find that it is not very difficult to write

code that is OS independent; however, most application programmers do not have or see

a need to do this. If a conventional application is developed that needs to be run in future

on a bare system, it is beneficial to write the original code with little or no OS

dependencies. Then most of this code is easily ported across many pervasive computing

devices with only minor additions or modifications. For example, we have ported the

code for numerous security algorithms from Windows or Linux to a bare PC with

minimal effort [7] because such security code is much less dependent on the OS than

would be the case for other applications. We have been hitherto unsuccessful in our

attempts to directly port drivers, Web servers and e-mail/Webmail servers that run on

OS-based (e.g., Linux-based) systems. Consequently, we have had to design and

implement our own bare PC code for the above applications.

The code transformation process described here should not be confused with the

notions of ubiquity and/or portability as in the ability to run a Java application anywhere

using the Java run-time environment (JRE). A transformed bare PC application needs to

 24

run directly on the bare hardware without any operating system/kernel support or any

form of centralized control. In contrast, Java programs require a Java Virtual Machine

(JVM) and byte code interpreters and loaders. If a Java program is written without any

OS dependencies, and a bare JVM is available, then one can readily port Java

applications to run on a bare PC. However, building a bare JVM is itself a formidable

task and we decided not to pursue transformation approaches that deal with Java.

We also investigated using a virtual machine on Linux and trapping OS-related entry

points and environment variables. We did not continue this approach since modern Linux

systems are typically quite complex and the effort for us to build even a small kernel with

the necessary properties would be considerable.

As can be seen from the above discussion, there are many similar strategies that can be

potentially used for the bare transformation. We evaluated many of these, deliberating

their respective pros and cons. We also developed an informal system of “passing or

failing” a given strategy depending on the results of our evaluation. At the end, we were

left with just the following four strategies that are shown in Fig. 5.

6.1 Same Executable

One can use the same executable as the one built in Microsoft Visual Studio, which

runs on Windows. This executable includes or carries all the system libraries and its

computing environment (environment variables). This is not directly loadable or

executable in a bare PC as there is no OS or kernel running in the machine.

In a bare PC system, we can use a bootable USB (with our own boot code on it) that

can be used to boot the PC. Once the bare PC boots, we can load the E1 executable into

memory through a simple menu interface. From the menu, we can also jump to the main

 25

program in the shell.c file. This methodology has been and is still used with success in

numerous bare PC applications. However, those applications were originally written

following the bare PC programming paradigm.

The SQLITE DBMS executable contains numerous system calls, Microsoft Windows

attributes, data types, and timers/interrupts that cause the executable to hang immediately

since there are no system libraries for resolving them. Even though, we made some

progress using this approach, we ran into many debugging issues. It was very tedious to

dive into the internals of SQLITE DBMS to debug the code. We also tried to do reverse

engineering: using the same code running on Visual Studio and inserting break points in

the code. This approach immediately failed as the code uses standard OS-based

mechanisms and techniques including caching, paging, dynamic memory, locking,

mutual exclusion logic, access mechanisms, threads, file system, and memory mapped

files. This approach requires a thorough understanding of the Windows-based code to

debug and make it run on a bare PC. Considering these issues, we abandoned the use of

this approach for transformation.

6.2 Trap System Calls

Using the same executable, one can load it into memory using the bare PC menu and

loader as described above. Whenever a system call causes an interrupt, it can be trapped

in the AO and appropriate bare PC interfaces can be substituted. This approach assumes

that the transformation only requires the substitution of bare PC interfaces for system

calls. This assumption is not valid because SQLITE DBMS contains a variety of compile

options, pre-processor statements, and optimization parameters, and requires local cache

management as well as local memory allocation/management. In essence, the SQLITE

 26

DBMS application creates its own “mini-OS” within the application to achieve higher

performance and to control resources optimally. Thus, trapping system calls alone is not

sufficient to achieve a complete transformation. Moreover, trapping system calls in a bare

PC is by itself a daunting problem since one has to be aware of all the (numerous)

Windows system calls. The SQLITE application, like many complex applications,

incorporates its own system program features, and can do its own memory, cache and

thread management. We found that it is very difficult to isolate these system

dependencies, resulting in a situation with issues similar to those discussed in 6.1 above.

6.3 Resolve at Assembly Level

It is also possible to attempt code transformation at the assembly level. Assembly

language translators can be used to build tools to translate from one processor type to

another. For example, one can use DisIRer tool [11] to translate from x86 to ARM.

However, such tools do not consider OS dependencies that have to be eliminated to

enable the code to run on a bare PC. Furthermore, assemblers provide little help at any

level higher than the machine language level. This approach requires a thorough

understanding of Microsoft MASM assembly language and knowledge of the internals of

compiler implementation: passing parameters, register layout, interrupts, base and limit

registers, real and protected modes, TSS (task segment state), and kernel and user modes.

It also requires knowledge to control the PC at the lowest practical level (the operating

system, the BIOS, and even the hardware level where necessary). We did not consider

this approach further due to such issues.

 27

 Figure 5 Transformation Strategies

6.4 Remove all Header Files

BMC applications run on a bare PC without any OS or kernel support, and thus do not

have any OS-related interfaces. This implies that one should build the application without

any OS-dependent header files in it. Once all such header files are removed, the resulting

program has to be compiled and linked. SQLITE uses many kernel data structures and

OS-dependent constructs: variable arguments, mutual exclusion, threads, and others

 28

noted earlier. Some header files are OS dependent and some are not. This approach

requires that we identify data types and functions that are OS dependent, and replace

them with bare PC types and structures.

 After considering the above strategies we had chosen the last option to transform

SQLITE DBMS by eliminating header files.

 29

Chapter 7 TRANSFORMATION PROCESS

The transformation process involves making the SQLITE DBMS code to compile and

run on a bare PC. We have studied many strategies as initially proposed in [19]; these

strategies have been reviewed again in section 6, but they did not result in a successful

transformation. Many challenges are encountered when transforming large OS-based

applications with complex code to run on a bare PC (testing, validation and debugging

can pose problems especially since there is no environment such as an IDE to support

bare application development, and only a few primitive tools that can run on a bare

system). Some issues are partially resolved by using the Visual Studio (VS) environment

for testing, validating and debugging the code during the transformation process. For

example, we coded methods and bare PC interfaces in a fashion that is independent of the

OS and tested such pieces in the VS environment using the Additional Library override

feature. The VS environment does not allow the complete bare machine code to run, as it

requires resources from its Windows environment through system calls. It is difficult to

eliminate all system calls when using the VS/Windows platform. For example, memory

allocation (malloc()) uses virtual memory and it is obtained from heap space. In a bare

PC, this is physical memory; it is allocated and controlled via the AO code by the bare

software developer (the file system is also managed by the application if it is required).

There are hundreds of header files included in a Windows program, even if the

application program does not require all of them. The header file “Windows.h” is an

example for this.

 30

The general transformation process model is shown in Fig. 6. VS 10 (C/C++ compiler)

is used as the development platform for the bare PC application, with batch files to

compile bare PC programs. The bare PC hardware API to support the application is also

built during the transformation process (some interfaces may be reused from other bare

applications). The main objective behind the transformation approach is to eliminate OS

dependencies without understanding code details relevant to application logic, and to

minimize changes to the original code.

 Figure 6 Transformation Methodology

 31

Two development environments were set up: one for the VS application and the other

for the bare PC application. In the VS application, as many header files as possible are

eliminated; this code is then used to transform to a bare PC. Then the remaining system

header files are removed by adding the bare PC interfaces and fixing any bare PC-related

issues until the application runs successfully on a bare PC. This means the bare PC

application now runs and has the same results as the OS application. More details

regarding the transformation process are given below.

7.1 Scaling Down Features

By scaling down some functionality in SQLITE, the transformation process is

simplified. For example, an “in-memory” database was used to eliminate file-related

code in the transformation. Floating point and shared cache options were also turned off.

Complex concurrency and locking mechanisms were not used since these are avoided in

the BMC paradigm and illustrated in bare PC applications [3, 10, 21]. The scaled-down

options apply to both the VS and the bare PC SQLITE applications during

transformation.

7.2 Visual Studio Application

For the VS application, baseline code was downloaded from the SQLITE Web site and

scaled down as noted above. A test case suite was developed to test query results that

includes standard commands such as create table, insert (multiple) rows, and select table.

This suite was used to test correctness of database operations after each step of the

transformation in VS. Fig. 7 shows the steps in this transformation process, whose goal is

to remove as many OS dependencies as possible.

 32

VS offer numerous compile and link options that help to transform an application so

that it runs on a bare PC. For example, the NODEFAULTLIB option is used to identify

system calls that are in the application. All these system calls must be resolved in the bare

PC application to make it run without OS support. There were 85 unique system or

library calls in SQLITE DBMS. These system calls/library interfaces can also be

obtained from a linker when NODEFAULTLIB option is used, which show up as link

errors. These link errors are due to different types of system calls: we categorize them as

shown in Fig. 8. Some of these calls will show up as duplicates in the original link error

list as they are referenced in two different source files (shell.c and sqlite3.c). The nature

of system calls varies according to the particular OS environment in use. For example,

542 system calls are cross-referenced for Linux systems in (FreeBSD/Linux) [9]. In our

application, we do not need to handle all system calls that are available in a commercial

OS. The above system calls are implemented in BMC as direct hardware interfaces [15]

which are controlled by an AO programmer.

There were additional dependencies due to Link options, which were handled by

including a bare PC user library to be used during compilation i.e., bare PC direct

hardware interfaces were put in a library (rkkvs.lib) to replace the original system

libraries. The Assemble Machine Code and Source Listing option, /FAcs, is used to

generate the assembly listing and .asm files (this is very useful to understand the role of

system calls in the code).

 33

 Figure 7 Visual Studio (VS) application platform

The process to transform the VS application is similar to that of developing an

ordinary C/C++ application (except that the main focus of transformation is to eliminate

all system calls/libraries). One header file at a time in the VS application is removed by

commenting it in the source code. When the program is compiled and linked, it shows the

missing system calls in the application. These calls are replaced with bare PC direct

hardware interfaces and recompiled. Only one system call at a time is resolved since the

bare PC interfaces are not yet fully tested. When the bare hardware API becomes more

robust, it will be possible to resolve multiple (or all) system calls together to speed up the

transformation process. The VS application uses a large number of libraries and DLLs. It

 34

is necessary to guarantee that the system calls handled by the bare hardware API are used

by the linker.

These system calls or interfaces used come in three forms: (1) the name of the call has

single underscore and it is explicit in the code (e.g strcmp(), _strcmp()): in this case, all

strcmp() methods in the source code must be replaced by AOAstrcmp() to guarantee the

usage of the bare API; (2) the name of the system call has a double underscore and it is

not explicit in the code (e.g. __allmul): in this case, this call must be added to the bare PC

library and it must be removed from the system libraries; (3) the name of the call

sometimes is simply a constant such as __fltused: in this case, that constant and its value

are provided if needed. During the transformation, system header files are removed and

bare PC hardware API are added until no more header files can be removed. Some header

files invoke other header files and invocations may be indirectly recursive. For example,

it is not possible to remove the “windows.h” file during VS compilation.

 35

_beginTimer _endTimer _hasTimer
_QueryPerformanceCounter, _Sleep
_GetSystemTime, _gmtime _strftime
_GetSystemTimeAsFileTime
_GetTickCount

Timer

_printf, _putc
Standard I/O _chkstk

Stack

_GetLastError

Error

__fltused, __ftol2

Floating

_SetEndOfFile _SetFilePointer _DeleteFileA _fclose _fgets

_FlushFileBuffers _fopen _fprintf _fputc _access _isatty _DeleteFileW ,
_WriteFile _GetFileAttributesA, _fflush _GetFileAttributesExW, _ReadFile,
_GetFileAttributesW _GetFileSize _GetFullPathNameA
_GetFullPathNameW _GetTempPathA , _UnlockFileEx, _GetTempPathW

_LockFile _LockFileEx _UnlockFile

File

_GetVersionEx

_assert

System

_malloc, _memcm , _memcpy
_memset _LocalFree_free
_CreateFileMapping, _realloc,
_MapViewOfFile, _UnmapViewOfFile

Memory

_CloseHandle
Object Handles

_atoi, _isalnum , _isalpha
_isdigit, _isprint, _tolower
_isspace

Types

__alldiv , __allmul
__allrem, __aullrem ,
__allshl, __aulldiv
__allrshr, __aullshr

Arithmetic Assembly

_MultiByteToWideChar
_WideCharToMultiByte

Unicode & Char Set

_FreeLibrary
_LoadLibraryA
_LoadLibraryW

Library

_GetDiskFreeSpaceA

_GetDiskFreeSpaceW

Disk Management

_GetProcAddress , _Exit
_GetCurrentProcessId

Process
_strcmp, _strcpy
_strncmp, _strncpy

String

 Figure 8 OS related Calls and Library Functions

 In general, every system call needs a header file, but every header file may not have a

system call. There can be different types of header files: e.g., user header files, constant

header files, and structure header files. The 85 system calls in the SQLITE application, as

shown in Fig. 8, were classified into the following types: 8 Arithmetic Assembly, 2 Disk

Management, 2 Standard I/O, 1 Error, 27 File Function, 2 Floating Point, 1 Object

Handle, 3 Library, 10 Memory, 3 Process, 1 Stack, 4 String, 2 System, 10 Timer, 7 Type,

 36

and 2 Unicode and Character Set calls. According to [9] and [27] respectively, Linux and

Windows systems have three to four hundred system calls.

The header files that could not be removed were: windows.h, stdarg.h, stdio.h,

stdlib.h, and assert.h. Since we scaled down the application, we were able to provide all

bare PC hardware interfaces except for malloc(). In VS, malloc() call gets memory from

memory management and it is a virtual memory with paging. In a bare PC, all memory is

real and the AO programmer manages it at program time. There were a large number of

malloc() calls used in the code. We used the bare PC memory object to replace all the

calls except for a single system malloc() to obtain memory as required by the application.

The total memory obtained by this call was used by the bare PC memory object to

provide memory for SQLITE DBMS calls invoked within the program. The pseudo bare

PC code for SQLITE was then tested to verify that its results were the same as for the

original VS code. Next, the transformed VS code was transferred to the bare PC to

determine other modifications that were needed.

7.3 Bare PC Application

The transformation process on a bare PC is shown in Fig. 9. During the pseudo

transformation in VS, system calls such as malloc() transferred from the VS system were

eliminated and replaced with calls in the bare PC API. There were also other header files

that could not be removed in the VS application.

Again, one header file at a time was removed from the list (windows.h, stdarg.h,

stdio.h, stdlib.h, and assert.h) and replaced with appropriate bare PC interfaces until all

header files were removed. The transformed SQLITE application was compiled, run and

tested after each modification of the code to remove the remaining header files. In some

 37

cases, header file removal required a new header file in the bare PC application that

defines constants, variables, structures and data. In the SQLite transformation, we defined

header files such as sqlite.h, sqlite21.h, sqlite22.h and stdarg.h for this purpose. In this

case, once header files were removed and the VS system malloc() (just one system call)

was used to provide memory, the application successfully ran in a bare PC. To verify

success, we tested the bare PC application with a variety of create, insert and select

statements and validated their functionality. We also checked that the results matched

with the original VS application model for every instance of testing.

 38

.

 Figure 9 Bare PC Application platform

In general, once all header files are removed and replaced with appropriate interfaces,

it should be possible to successfully run the application in a bare PC. If not, then there

must be some issues with the bare PC interfaces or the transformation itself. Usually,

 39

these arise from system problems related to the bare PC executable module and its

memory layout. They may also be related to the bare PC loader and the BIOS, or the

processing of system interrupts

 Figure 10 Batch Files

The /bin files from Visual Studio 10 Express Version are used for compilation and

linking of the transformed bare PC application. The actual make file used to compile, link

and generate a bootable USB for running the bare PC SQLITE DBMS application is

shown in Fig. 10. Most of the statements in the figure are self-explanatory, except for the

last statement. The rwhd.exe module installs a bare PC boot record after all other files

are copied onto the USB. The USB is also formatted before copying the files. The

 40

prcycle.exe file is the startup menu for bare PC applications, and the shell.exe file is the

actual bare PC application (main component of the AO) for SQLite.

The data.txt file is a data file that can be used in the application for receiving

additional parameters from the user. One can also store the persistent database files on

the USB after they are used. The persistent database files are not shown here as we only

demonstrated the SQLITE application with an “in-memory” database. A full-scale

version of the SQLITE transformation would include persistent storage containing the

database schema and data.

 To summarize, the transformation process as described above used two steps: one

using VS, and the other using batch files to compile bare PC code. It was not necessary

to modify the SQLite application code, or understand the underlying application logic or

the internal details of database structures. The transformed bare PC application was tested

and validated for correct operation by running sample queries in a VS (Windows)

environment, and on a bare PC, and comparing the results as shown in section 8. The

methodology may be used to transform other complex applications to bare PC

applications, making the code independent of any OS or environments. The currently

manual transformation process could be modified in the future to build a tool for

automatically transforming C/C++ or other programming applications. The methodology

will also serve as a basis to transform applications that can run on a variety of systems

and devices. The initial successful transformation of a complex application such as

SQLITE DBMS indicates that future research into bare PC application development for

performance, security, or other reasons may benefit from the new transformation

methodology.

 41

Chapter 8 RESULTS AND DISCUSSION

The SQLITE DBMS application is transformed to run on a bare PC (“in-memory”

database) [21] with the methodology proposed in Figure 6. We did not modify any code,

or understand any internal details of database structures or components in the code. After

the transformation, the database application ran on a bare PC without any problems, as

had been expected. The Visual Studio IDE was instrumental in completing the pseudo

transformation phase, from which was output resulting source code that was very close to

the bare PC source code. Fig. 11 and Fig. 12 show the same simple queries consisting of

CREATE, INSERT and SELECT statements, executed on Bare PC and Visual Studio

platforms respectively. Figure 11 demonstrates the creation of a t100 table with 6

columns and different data types on line 02. The parallel on the Visual Studio platform is

shown in Fig 12.

In Figure 13, Line 03 shows an insert statement, with an error as it does not have

“values” keyword in the statement. This demonstrates the parser detected a syntax error

in the bare PC code. We replicate the same error on Visual Studio platform in Figure 14.

 Lines 04-07 of Figure 15 show inserting of more values into the table successfully.

Line 08 shows the creation of a different table successfully. Line 09 shows insert data

into t200 table with syntax error (error message overwritten by subsequent query results)

and Line 10 shows the corrected insert into the table. Line 11 shows more inserts into

t100 table. Line 12 shows the select statement for t100 table. Lines 15-20 correctly print

the query results for t100 table. Lines 23-24 show some debugging and testing display

information. Results from the bare PC screen shot in Figure 15 have been complimented

with similar results from Visual Studio in Figure 16. As noted in any of the screen shots

 42

from the bare PC platform, the screen is divided into 8 columns and 24 rows to display

the SQLITE outputs. A bare PC screen is, currently, a text-based window in bare PC

similar to “stdout”.

 Fig. 17 shows a complex query on the bare PC platform consisting of the creation of

two tables and insertion of some data. The complex query on Line 10 shows a join and

the printing of some attributes. The results of this query are correctly shown on Lines 15–

18. The .tables meta-command in SQLITE is also tested and its results are shown on

Line 22 (two table names: dept and employee). The sample screen outputs shown in Figs

11, 13, 15 and 17 demonstrate the correctness of the functionalities in the transformed

code that runs on a bare PC; that is to say, functionality in the original source code has

not been compromised in the course of the transformation. We also tested more queries

and meta-commands to further validate the correct functionality of the transformed code.

These results serve to verify that this transformation approach - using the VS IDE to

test, validate and debug bare PC code - is a viable approach. Since the model and

methodology are very general, it is expected that they can be used to transform other

complex applications. The scaled-down approach used in this paper will be extended to

transform the full SQLite application with a file system and other features. The bare PC

hardware API also needs to be enhanced to deal with other components of the standalone

database engine and multi-threaded applications. The transformation process and the

feasibility of it, demonstrate that it is possible to make existing applications to run on

bare machines thus achieving a different form of ubiquity without using virtual machines.

This observation infers a great potential for existing applications to make them

 43

independent of OS or environments – especially when an automated tool is made

available in the future.

 44

 Figure 11 Simple Queries QQ1 on bare PC

 Figure 12 Matching results on Visual Studio for QQ1

 45

 Figure 13 Error E1 flagged by Parser on bare PC

 Figure 14 same error E1 on Visual Studio - see Fig 13

 46

 Figure 15 More Simple Queries on bare PC

 Figure 16 same queries on Visual Studio as in Fig 15

 47

 Figure 17 Bare PC Output Display of more complex queries QQ2

 Figure 18 same complex queries QQ2 on Visual Studio.

 48

Chapter 9 RELATED WORKS.

Earlier discussions in section 5 have already identified BMC paradigm as the

foundation used to develop complex applications such as Web servers, Webmail servers,

and VoIP soft-phones. These applications use lean versions of standard network

protocols, and security protocols such as TLS, if needed. Several of them have been built

and shown to outperform their OS-based counterparts [1, 3, 7, 10, 23]. With these, full

BMC guidelines apply and there is a complete elimination of any underlying OS or

middleware.

Another category of applications uses approaches that merely reduce OS overhead

and/or use lean kernels. These include Exokernel [8], IO-Lite [22] and Palacios and

Kitten[18]. With this category, there is still some OS presence, hence some difference

with the BMC approach which represents complete elimination of underlying OS or

centralized middleware.

There is a considerable amount of work relating to code transformation and translation

e.g., Intel x86 programs can be translated from binary code to ARM and Alfa binaries

with reasonable code densities and quality [11]. In [24] the Java virtual machine is

implemented directly on hardware in an embedded system (as extensions of standard

interpreters and hardware objects, which interface directly with the JVM). SoulPad [4]

presents a new approach based on carrying an auto-configuring operating system along

with a suspended virtual machine on a small portable device. With this approach, the

computer boots from the device and creates a virtual machine, thus giving users access to

their personal environment, including previously running computations. BulkCompiler

[2] is a simple compiler layer that works with group-committing hardware to provide a

 49

whole-system high-performance sequential consistency platform. They introduce ISA

primitives and software algorithms to drive instruction-group formation, and to transform

code to exploit the groups. None of these approaches provide a technique to transform

OS-based code to run on a bare PC or a bare machine.

BMC application development process has been described above in chapter 5;

previous work on BMC and its characteristics are described in greater detail in [16].

For the purposes of transformation, application software is modeled simply as code

that undergoes resolution of system calls/libraries during the compilation/link process so

that appropriate bare machine interfaces to the hardware can be included with the

application itself. Currently, this process is done manually as illustrated in this

dissertation. Developing tools for automated transformation is the target of the next phase

of the research on transformation; it is expected that such tools can transform a variety of

applications to run on bare machines.

In [6], there is a description of how to port SQLite to new operating systems or how to

create custom builds of SQLite.

In [25], a model to analyze tradeoffs between feature-rich and minimalist lean or

“barebones” is presented as a cost/benefit analysis.

 More and more transformation solutions are being offered on the web – some to

accelerate growth in the enterprise, some to enhance the value of the organizations and

some to help to drive growth and innovation; there are product offerings dealing also with

transformations for different purposes. But in the end, we have not yet found any related

research directly dealing with code transformation of an OS based application to a bare

 50

PC application. This dissertation provides a foundation to transform OS applications to a

bare PC or a bare system, in general.

 51

Chapter 10 SIGNIFICANT CONTRIBUTIONS

 Transforming SQLITE DBMS application to bare PC poses daunting challenges. This

dissertation addressed many design issues and paved the way to further research in

transformation process, where other applications can be transformed to run on bare

machines. Some significant contributions of this research are outlined as follows:

 It discovered Visual Studio environment to be used as a first step in transformation

process (during this step 1, it replaces as many system calls/libraries as possible with

bare PC calls)

 In the second step of transformation a bare PC environment is used to transform the

rest of the code from step 1 (step 2 transformation process is much smaller than step

1)

 Transforming SQLITE DBMS to run on a bare PC allows users to run their DBMS

without having any OS on their computer (they can simply plug-in a detachable

storage such as a USB and run their database system on a bare PC starting with a

boot)

 It provided a standard methodology to transform an OS based application to a bare PC

application

 It has blazed a trail for the transformation of other applications.

 A foundation is laid for the construction of tools that automate transformation (this

dissertation demonstrated a manual version)

 It takes the code porting concept to the extreme level, where once a code is

transformed, there may not be any need to port code from one platform to another

 52

 It takes the ubiquity concept to the extreme level, where transformed code is

ubiquitous without having a need for a virtual machine (like JVM)

 The direct hardware interfaces used to transform to bare PC code provide a new

avenue, that leads towards building these interfaces into the hardware, thus making

applications able to communicate directly with the hardware – and without any

middleware

 When programs are made independent of OS or other computing environments, the

resulting programs can be saved as archive files for the future where they can run on

compatible CPU architectures, without a need for OS

 The transformation approach laid a ground work for future research in transformation

of other programs written in other programming languages (instead of C/C++).

 53

Chapter 11 SUMMARY

This doctoral dissertation presented a novel approach to transformation and a

demonstration of a transformed SQLITE application that runs on a bare PC. Visual

Studio platform was discovered as a medium that can be used to pseudo-transform code

from Windows to bare PC applications, as was described fully in section 7. The pseudo

transformation performed most of the transformation needed for bare PC environment.

The transformation process did not require any understanding or modification of the

existing source code other than removing the #include files. As a way to check our

results, the same sample queries are performed on VS and bare PC; the results from the

transformed application are compared and validated against those from Visual Studio to

make sure functionalities have been preserved. The successful transformation

demonstrated in this dissertation offers potential means to transform other complex

applications and systems.

The research presented here opens new avenues for making existing code independent

of any operating systems or environments. The manual process used in transformation

was in itself proof of concept; it also provides a methodology to construct a

transformation tool for C/C++ or other programming applications.

This doctoral dissertation constitutes a trail blazer and serves as a cornerstone for

future application transformations and related tools.

 54

APPENDICES

 55

APPENDIX A: SQLITE RESOURCES

1. Download link:

http://www.sqlite.org/download.html

 This is the link for the source code downloaded for this research. It provides

 the ZIP archive containing all C source code for SQLite 3.7.16.1 thrown together

 into a single source file, usually referred to as the amalgamation.

 In general, any information that is relevant to this research will be found by starting

with the SQLITE Home page itself: http://www.sqlite.org.

2. Amalgamation package (available in [28])

 This package comprises:

 shell.c (main source file)

 sqlite3.c (database source file)

 sqlite3.h (header file)

 sqlite3ext.h (header file)

3. User Interface

The SQLITE DBMS transformed in this dissertation is based on Windows platform.

This package offers a user window interface, where SQL commands can be typed in and

the results are displayed in the window. This package supports most of the standard SQL

commands.

http://www.sqlite.org/download.html
http://www.sqlite.org/

 56

APPENDIX B: THE TWO DEVELOPMENT PLATFORMS

1. Visual Studio Development Environment

Visual Studio Development environment consists of a desktop PC with

 Windows XP and VS 10. The header files from the test environment are removed one

 at a time until most of the files are removed. NODEFAULTLIB option is used along

 with user libraries to create a test environment for removing the header files.

2. Bare PC Development Environment

 Bare PC development environment uses Visual Studio 10 /bin directory only and

does not use any /lib or /include files. The /bin directory provides the compilation and

linking facilities. Compilation and linking in the bare PC environment is done using

batch files which are simple and easy to use without depending upon any development

IDE. The assembly files are compiled using asm.bat file. The C files are compiled using

cpp.bat file. The programs are linked using ln.bat file. The mk.bat file provides means

to create a bootable USB along with the application. Below follows a brief description

of the critical files used in the bare PC platform.

1. asm.bat file listing is as follows:

 Figure 19 – asm.bat file

 The asmfiles.asm contains all the direct hardware interfaces required for most of

 the bare PC applications. The assembly calls are made through a C function call.

rem asm.bat file

..\bin\ml /c /Cx /Fl asmfiles.asm asmfilesb.asm chkstk.asm

 57

 asmfilesb.asm file contains the specific direct hardware interfaces needed for

 SQLITE DBMS. The chkstk.asm is needed to provide a bare PC interface for stack

 checking.

2. cpp.bat file listing is as follows:

 Figure 20 – cpp.bat file

The shell.c and sqlite3.c are the two source files needed for SQLITE DBMS. The

 cfiles.c and aaa.c provide generic bare PC hardware interfaces through C functions.

 The aaab.c file provides specific bare PC hardware interfaces to SQLITE DBMS

 through C functions. The memobj.c file provides memory interfaces that are unique to

 bare PC environment. The bare PC applications use real memory and they manage

 their own memory map. The same memory object is also used in VS environment

 during the transformation process. However, in VS environment, one single malloc()

rem cpp.bat file

cls

rem needs microsoft visual c++ environment.

erase *.obj

erase *.*~

erase *.lst

erase shell.exe

call asm.bat

..\bin\cl /c /FA /Zl /Os /Gy /GS- /F64000000 shell.c sqlite3.c cfiles.c aaa.c

 aaab.c memobj.c

 58

 is used to obtain a large memory needed for SQLITE DBMS. This large memory is

 used to allocate memory needed within the SQLITE DBMS application.

3. ln.bat file is as follows:

 Figure 21 – ln.bat file

All bare PC applications use their own loader to load programs in memory. The

 BASE address is predefined in bare PC applications. The SQLITE DBMS is loaded at

0x00100000. However, a compiler always starts the starting address of the code at

0x1000. The real starting address in memory is thus 0x01001000. The

NODEFAULTLIB options are used to completely eliminate OS libraries.

4. mk.bat file listing is as follows:

rem ln.bat

cls

 rem Needs Microsoft Incremental Linker (Microsoft Visual C++ Linker)

 rem base address is 0x00100000

 ..\bin\link /MAP /BASE:0x00100000 /NODEFAULTLIB /OPT:NOREF

 /MERGE:.rdata=.data /OPT:NOICF /STACK:32000000

 /ENTRY:main shell.obj sqlite3.obj cfiles.obj aaa.obj aaab.obj asmfiles.obj

 asmfilesb.obj memobj.obj chkstk.obj dir shell.exe

 59

 Figure 22 – mk.bat file

 The mk.bat file provides means to generate a bootable USB with boot, application

 and data. Initially, the USB flash drive (e.g. which is located in E drive) is formatted

 with FAT32 format. The pcycle.exe and shell.exe are copied to the USB. The

 prcycle.exe contains a menu program that facilities a user to load and run programs.

This program provides all boot, IDT, GDT and TSS code in assembly. This code is

written in TASM. The shell.exe is the SQLITE DBMS application single module. The

data.txt file used to get any user data for the application. The rwhd.exe is used to

create a bootable disk. This program is written in VS C++ and it does not depend

upon any other boot code programs. All batch files described here run in a DOS

window. All the development is done on a Windows Desktop.

3. How to get a list of system/library calls

The transformation process, in general, requires removing all the header files in the

source files to make it compile for a bare PC environment. Some header files may

rem mk.bat file

format e: /FS:FAT32 /q

copy prcycle.exe e:

copy shell.exe e:

copy data.txt e:

rwhd -m 5 newbootf32.bin

 60

be independent of OS, but they contain all the definitions that may or may not be

needed for a given application set. Thus, we remove all header files and substitute

with header files that are only used in the application set and also needed for

transforming to a bare PC application. The transformation process described in this

dissertation clearly illustrated this process. However, when a new application is

given for transformation, one need to immediately find the system/library calls

needed which may or may not be available in the bare PC interfaces. These calls can

be simply found by compiling the code and linking the code using

NODEFAULTLIB option. In order to compile the code, you may need to provide

some header files that contain some definitions and data types and structures. One

can also use a VS environment to find the system/library calls by simply linking

with NODEFAULTLIB option.

 The following Fig.23 shows a list of some (we have shown only as many as can

be contained in a simple text box) of the system/library calls for SQLITE DBMS

after the SQLITE DBMS was successfully transformed to run on a bare PC.

 61

 Figure 23 – System Calls from using NODEFAULTLIB option.

[c:\home\student\UZO\sqliteuzobV81\interfaces]

CSBMC01$ cls

[c:\home\student\UZO\sqliteuzobV81\interfaces]

CSBMC01$ rem Needs Microsoft Incremental Linker (Microsoft Visual C++ Linker)

[c:\home\student\UZO\sqliteuzobV81\interfaces]

CSBMC01$ rem To link in 32-bit we need to use the above said linker

[c:\home\student\UZO\sqliteuzobV81\interfaces]

CSBMC01$ rem Run the Batch file MSDN.BAT

[c:\home\student\UZO\sqliteuzobV81\interfaces]

CSBMC01$ rem base address is 0x00100000

[c:\home\student\UZO\sqliteuzobV81\interfaces]

CSBMC01$..\bin\link /MAP /BASE:0x00100000 /NODEFAULTLIB /OPT:NOREF /MERGE:.rdata=.data /OPT:NOICF /STACK:32000000

 /LIBPATH:"rkkvs.lib" /ENTRY:main shell.obj sqlite3.obj

Microsoft (R) Incremental Linker Version 9.00.30729.01

Copyright (C) Microsoft Corporation. All rights reserved.

shell.obj : error LNK2019: unresolved external symbol _AOAfree referenced in function _main

sqlite3.obj : error LNK2001: unresolved external symbol _AOAfree

shell.obj : error LNK2019: unresolved external symbol _AOAmalloc referenced in function _main

sqlite3.obj : error LNK2001: unresolved external symbol _AOAmalloc

shell.obj : error LNK2019: unresolved external symbol _printf referenced in function _main

sqlite3.obj : error LNK2001: unresolved external symbol _printf

shell.obj : error LNK2019: unresolved external symbol _AOAmemcpy referenced in function _main

sqlite3.obj : error LNK2001: unresolved external symbol _AOAmemcpy

shell.obj : error LNK2019: unresolved external symbol _AOAPrintText referenced in function _main

shell.obj : error LNK2019: unresolved external symbol __AOAaccess referenced in function _main

_main

shell.obj : error LNK2019: unresolved external symbol _AOAmeminit referenced in function _main

shell.obj : error LNK2019: unresolved external symbol __AOAisatty referenced in function _main

shell.obj : error LNK2019: unresolved external symbol __allmul referenced in function _main

sqlite3.obj : error LNK2001: unresolved external symbol __allmul

shell.obj : error LNK2019: unresolved external symbol _AOAisdigit referenced in function _isNumber

shell.obj : error LNK2019: unresolved external symbol _AOAisprint referenced in function _output_c_string

shell.obj : error LNK2019: unresolved external symbol _fputc referenced in function _output_c_string

shell.obj : error LNK2019: unresolved external symbol _putc referenced in function _output_csv

shell.obj : error LNK2019: unresolved external symbol _fclose referenced in function _do_meta_command

shell.obj : error LNK2019: unresolved external symbol _fopen referenced in function _do_meta_command

shell.obj : error LNK2019: unresolved external symbol _AOAmemset referenced in function _do_meta_command

sqlite3.obj : error LNK2001: unresolved external symbol _AOAmemset

shell.obj : error LNK2019: unresolved external symbol _AOAstrncmp referenced in function _do_meta_command

referenced in function _seekWinFile

_winShmSystemLock

sqlite3.obj : error LNK2019: unresolved external symbol _AOAGetFullPathNameA referenced in function _winFullPathname

sqlite3.obj : error LNK2019: unresolved external symbol _AOAGetFullPathNameW referenced in function _

[c:\home\student\UZO\sqliteuzobV81\interfaces]

CSBMC01$ dir shell.exe

 Volume in drive C has no label.

 Volume Serial Number is 725A-AECD

 Directory of c:\home\student\UZO\sqliteuzobV81\interfaces

 62

4. Sample bare PC direct hardware interfaces – Memory Objects

 Figure 24 bare PC memory object - Initialization

/***/

/* memobj.c file name */

/* coded by Dr. Ramesh K. Karne */

/* November 29, 2012 */

/* Towson University */

/* BMC LAB */

/***/

#include "memobj.h"

void AOAfree(void *ptr);

void * AOAmalloc(unsigned int size);

void * AOArealloc(void *ptr, unsigned int size);

void AOAmemint (int tablebase, int membase);

//--

// memory object initialization

//--

void AOAmeminit(int tablebase, int membase)

{

 int i = 0;

 mem_alloc_table_base = (int*)tablebase;

 global_mem_addr_base = (char *)membase;

 for (i=0; i < MAX_MEM_ALLOC_TABLE_SIZE; i++)

 {

 mem_alloc_table_base[i] = 0; //reset table

 }

 for (i=0; i < GLOBAL_MEM_SIZE; i++)

 {

 global_mem_addr_base[i] = 0; //reset dynamic memory

 }

 mem_alloc_table_ptr = (int*)tablebase; //initialize ptr

 global_mem_addr_ptr = (char*)membase;

};

//---

 63

 Figure 25 bare PC memory object – Allocate

//AOAmalloc()

//---

void * AOAmalloc(unsigned int size)

{

 char *ptr;

 int i=0;

 int tablesize;

 unsigned int memsize;

 unsigned int entry;

 int *table;

 if (size > 4096*4096) //16MB limit

 {

 printf("Memory allocation request exceeds limits: %x \n", size);

 return (void*) -1;

 }

 memsize = size + global_memory_size;

 if (memsize > GLOBAL_MEM_SIZE) //16MB limit

 {

 printf("Memory allocation failed, ran out of memory: %x \n", memsize);

 return(void*) -2;

 }

 tablesize = 8 + mem_alloc_table_size;

 if (tablesize > MAX_MEM_ALLOC_TABLE_SIZE*4) //1000 entries

 {

 printf("Memory allocation failed, table is full: %x \n", tablesize);

 return(void*) -3;

 }

 64

 Figure 26 bare PC memory object – Allocate continued

 entry = 0;

 table = (int*)mem_alloc_table_ptr; //current pointer for table

 ptr = (char*)global_mem_addr_ptr; //current pointer for allocated memory

 entry = (unsigned int)ptr; //current address

 *(table + 1) = entry; //store the allocated address

 entry = size;

 entry = entry << 8; //shift address by one byte

 entry = entry + 1; //add valid bit for the entry

 *table = entry; //store the record entry

 mem_alloc_table_ptr = mem_alloc_table_ptr + 8; //increment the pointer

 global_mem_addr_ptr = global_mem_addr_ptr + size; //add the current size

 if (ptr >= (char*) 0x28000000)

 {

 AOAPrintText("Memory problem", 3800);

 AOAExit();

 }

 //printf("size: %x memptr: %x tableptr0: %x tablepointer1: %x \n", size, ptr, *table,

*(table+1));

//scanf_s("%d", &i);

 return ptr;

};

//--

 65

 Figure 27 bare PC memory object – Free memory

//Memory Object Function

// free memory

//--

void AOAfree(void *ptr)

{

 int flag = 0;

 int i=0;

 unsigned int entry;

 unsigned int addr;

 unsigned int addrtable;

 int *table; //uzo

 int index;

 int valid = 0;

 return;

 entry = 0;

 addr = (unsigned int)ptr; //address to be free

 table = (int*)mem_alloc_table_base; //base of the table

 //printf("table base: %x ptr: %x \n", table, ptr);

 index = 0;

 while (flag == 0 && index < MAX_MEM_ALLOC_TABLE_SIZE*2)

 {

 addrtable = *(table+1); //get the address in the table

 valid = *table & 0x000000ff; //extract valid byte

 if (valid == 0x01 & addrtable == addr)

 {

 //entry found in the table

 *(table+1) = 0;

 *table = 0;

 flag = 1;

 break;

 }

 index++;

 table = table + 8; //next entry

 }

 printf ("free entry: %x address released: %x \n", index, ptr);

 return;

}

 66

 Figure 28 bare PC memory object – Reallocate

//--

//MEMORY OBJECT realloc()

//--

void * AOArealloc(void *ptr, unsigned int size)

{

 int flag = 0;

 int i=0;

 unsigned int entry;

 unsigned int addr;

 unsigned int addrtable;

 int *table; //uzo

 int index;

 int valid = 0;

 unsigned int oldsize = 0;

 unsigned int lesssize = 0;

 int count = 0;

 char *nptr;

 char *optr;

 entry = 0;

 addr = (unsigned int)ptr; //address to be reallocated

 table = (int*)mem_alloc_table_base; //base of the table

 //printf("table base: %x ptr: %x \n", table, ptr);

 index = 0;

 if (ptr == 0)

 {

 return AOAmalloc(size); //null pointer, do a new malloc and get the new address

 }

 if (size == 0)

 {

 return 0;

 }

 while (flag == 0 && index < MAX_MEM_ALLOC_TABLE_SIZE)

 {

 addrtable = *(table+1); //get the address in the table

 valid = *table & 0x000000ff; //extract valid byte

 67

 Figure 29 bare PC memory object – Reallocate Continued

 if (valid == 0x01 & addrtable == addr)

 {

 oldsize = *table & 0xffffff00; //remove valid byte

 oldsize = oldsize >> 8; //extract old size from the record

 optr = (char*)addrtable; //old memory ptr

 if (oldsize >= size)

 lesssize = size; //capture less size

 else

 lesssize = oldsize;
 nptr = AOAmalloc(size); //get a new address, new memory ptr

 for (i=0; i<lesssize; i++)

 {

 nptr[i] = optr[i]; //restore memory in new memory

 }

 flag = 1;

 break;

 }

 index++;

 table = table + 8; //next entry

 }

 //printf("newsize: %x oldsize: %x lesssize: %x optr: %x nptr: %x \n", size, oldsize,

lesssize, optr, nptr);

 return (void*) nptr;

};

 68

REFERENCES

[1] A. Alexander, R. Yasinovskyy, A. L. Wijesinha, and R. K. Karne, "SIP Server

Implementation and Performance on a Bare PC," International Journal in Advances

on Telecommunications, vol. 4, no. 1 and 2, 2011.

[2] W. Ahn, S. Qi, M. Nicolaides, and J. Torrellas, "BulkCompiler: High-Performance

Sequential Consistency through Cooperative Compiler and Hardware Support,"

IEEE/ACM International Symposium on Micro Architecture, 2009.

[3] P. Appiah-Kubi, R. K. Karne and A.L. Wijesinha, “The Design and Performance of a

Bare PC Webmail Server,” The 12
th

 IEEE International Conference on High

Performance Computing and Communications, AHPCC, pp. 521-526, Sept. 2010.

[4] R. Cáceres, C. Carter, C. Narayanaswami, and M. Raghunath, "Reincarnating PCs

with Portable SoulPads", IBM T.J. Watson Research Center, New York

[5] C Language Library, http://www.cplusplus.com/reference/clibrary/.

[6] Custom Builds Of SQLite or Porting SQLite To New Operating Systems,

http://www.sqlite.org/custombuild.html.

[7] P. A. Emdadi, R. K. Karne, and A. L. Wijesinha. Implementing the TLS Protocol on

a Bare PC, ICCRD2010, The 2nd International Conference on Computer Research

and Development, Kaula Lumpur, Malaysia, May 2010

[8] D. Engler, “The Exokernel Operating Systems Architecture,” Dept. of Elec. Eng. and

Computer Science, Massachusetts Institute of Technology, Ph.D. Dissertation, 1998.

[9] FreeBSD/Linux Kernel Cross Reference,

http://fxr.watson.org/fxr/source/kern/syscalls.c.

http://www.cplusplus.com/reference/clibrary/

 69

[10] L. He, R. K. Karne, and A. L. Wijesinha, “Design and Performance of a bare PC Web

Server,” International Journal of Computer and Applications, vol. 15, pp. 100-112,

June 2008.

[11] Y. Hwang, T Lin., R. Chang, "DisIRer: Converting a Retargetable Compiler into a

Multiplatform Binary Translator. In ACM Transactions on Architecture and Code

Optimization," vol. 7, issue 4. 2010.

[12] R. K. Karne, “Application-oriented Object Architecture: A Revolutionary Approach,”

6th International Conference, HPC Asia, Dec. 2002.

[13] R. K. Karne, S. Liang, A. L. Wijesinha and P. Appiah-Kubi, “Bare PC Mass Storage

USB Driver,” International Journal of Computer and Applications, March 2013.

[14] R. K. Karne, V. Jaganathan, T. Ahmed and N. Rosa, “DOSC: Dispersed Operating

System Computing,” OOPSLA, Onward Track, 20th Annual ACM Conference on

Object Oriented Programming, Oct. 2005.

[15] R. K. Karne, V. Jaganathan and T. Ahmed, “How to run C++ Applications on a bare

PC,” 6th ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing (SNPD), pp. 50-55,

May 2005.

[16] G. H. Khaksari, A. L. Wijesinha, and R. K. Karne, “A Bare Machine Development

Methodology,” International Journal of Computer Applications, vol. 19, no.1, pp. 10-

25, Mar. 2012

[17] G. H. Khaksari, A. L., Wijesinha, R. K., Karne, L., He and S. Girumala, “A Peer-to-

Peer Bare PC VoIP Application,” IEEE Consumer and Communications and

Networking Conference (CCNC), pp. 803-807, Jan. 2007.

 70

[18] J. Lange. et. al, “Palacios and Kitten: New High Performance Operating Systems for

Scalable Virtualized and Native Supercomputing,” 24th IEEE International

Parallel and Distributed Processing Symposium , Apr. 2010.

[19] U. Okafor, R. K. Karne, A. L. Wijesinha and B. S. Rawal, "Transforming SQLITE to

run on a bare PC," ICSOFT, 2012.

[20] U. Okafor, R. K. Karne, A. L. Wijesinha and P. Appiah-Kubi, "Eliminating The

Operating System via the Bare Machine Computing Paradigm," IARIA, 2013.

[21] U. Okafor, R. K. Karne, A. L. Wijesinha and P. Appiah-Kubi, "A Methodology to

Transform an OS-based Application to a Bare Machine Application," IUCC, 2013.

[22] V. S. Pai, P. Druschel and Zwaenepoel, “IO-Lite: A Unified I/O Buffering and

Caching System,” ACM Transactions on Computer Systems, vol.18 (1), pp. 37-66,

Feb. 2000.

[23] B. Rawal, R. K.Karne, A. L. Wijesinha, “Mini Web Server Clusters for HTTP

Request Splitting,” IEEE International Conference on High Performance Computing

and Communications, pp. 94-100, Sep. 2011.

[24] M. Schoeberl, S. Korsholm, T. Kalibera and A. P. Ravn, “A Hardware Abstraction

Layer in Java,” ACM Transactions on Embedded Computing Systems, vol.10, no. 4,

Article 42, Nov. 2011.

[25] S. Soumya, R. Guerin and K. Hosanagar, “Functionality-rich vs Minimalist

Platforms: A Two-sided Market Analysis”, ACM Computer Communication Review,

vol. 41, no. 5, pp. 36-43, Sep. 2011.

[26] SQLITE Download: http://www.sqlite.org/download.html, sqlite-amalgamation-

3071000.zip.

 71

[27] Windows System Call Table, Googlecode.com, retrieved Feb16,2012,

http://miscellaneouz.googlecode.com/svn/trunk/winsyscalls.html

[28] www.sqlite.org

http://miscellaneouz.googlecode.com/svn/trunk/winsyscalls.html
http://www.sqlite.org/

 72

CURRICULUM VITA.

Uzo Okafor

1573 Ingleside Ave,

Gwynn Oaks MD 21207

973-332-0997(cell).

email: uo07041@yahoo.com

OBJECTIVE: Lead Developer, Technical Project Manager or Branch Chief in an area

 requiring use of skills in both mainframe and Web processing and/or

 a position as a Professor of Computer Science, Research in mainframe and

 WebSphere applications.

SKILLS: Application Systems Analysis, Design and implementation on MVS, IMS

 DB/DC, CICS command level programming, COBOL2, JCL, TSO/SPF,

 Panvalet, Librarian, DB2, Excelerator, Microsoft Windows software (NT, Word,

 Access, Excel, Exchange), MicroFocus Cobol workbench/XDB and familiarity

 with PowerBuilder, Object Oriented Design. Object Oriented Programming in

 C++, JAVA, Oracle8, Visual Basic.

EDUCATION:

 2009 – 2013: D.Sc, Information Technology, Towson University. Towson, MD.

 02/2000 - 08/2000: Complete-Pro course Certification at Comp-u-learn, Edison NJ.

 Programming concepts in C and object-oriented concepts in C++, design, develop

mailto:uo07041@yahoo.com

 73

 and program relational databases using Oracle8, SQL and PL/SQL, Design and

develop Web pages using HTML, develop Windows and Internet applications using

JAVA and Visual Basic.

 1974 – 1976: M.S in Computer Science, Indiana University, Bloomington, Indiana.

Earned tuition and living expenses through departmental teaching assistantship

(tuition waiver + stipend). Basic courses studied included Operating systems,

Systems Design and implementation, Numerical Analysis, Computational logic,

Automata theory, Formal grammars, Optimization techniques.

1971 – 1974: B.Sc. (Upper 2nd class Honors) in Pure & Applied Mathematics,

University of Dar-es-salaam, Tanzania. Was sponsored through the African

Universities scholarship program (AFGRAD equivalent at the undergraduate level)

PUBLICATIONS

(1) Uzo Okafor, Ramesh K. Karne, Alexander L. Wijesinha, and Bharat S. Rawal,

Transforming SQLITE to Run on a Bare PC, ICSOFT, page 311-314. SciTePress,

(2012)

(2) Uzo Okafor, Ramesh K. Karne, Alexander L. Wijesinha, and Patrick Appiah-Kubi,

Eliminating the Operating System via the Bare Machine Computing Paradigm,

IARIA 2013.

(3) Uzo Okafor, Ramesh K. Karne, Alexander L. Wijesinha, and Patrick Appiah-Kubi,

A Methodology to Transform an OS-based Application to a Bare Machine

Application, Submitted

RESEARCH EXPERIENCE:

 74

 2010 – 2013: Doctoral Research: Bare Machine Computing on Applications.

 SQLITE Transformation to run in a Bare Machine Computing Environment.

 Department of Computer and Information Science

 Towson University, Towson, MD

 Advisor: Ramesh Karne Ph.D.

 This research deals with transforming SQLITE DBMS system to run in an

 environment without an operating system.

INDUSTRY EXPERIENCE:

April 2003 – Present: Information Technology Specialist, Social Security

Administration, Baltimore, Md. 21235.

Provide technical advice to managers of the Human Resource Department, create

alternative systems solutions to user requirements and needs, attend user meetings,

review and evaluate periodic systems needs/change requests of the department,

participate in subsequent Design meetings within the application teams, design

programs, code COBOL programs, perform unit testing and provide general technical

support to Integration Testing groups prior to implementation in production. Since

hiring into SSA, I have also completed several change requests in the Mainframe

Time and Attendance System (MTAS), the Human Resource Management

Information System (HRMIS/HRODS). Lately I work on both the RMTAS, SPARS

and TPPS projects which are supported by large DB2 databases. My work requires

strong skills in CICS COBOL, DB2 databases, SQL and VSAM file processing.

 75

Jun 1994 – May 2002: Senior Technical Member of Staff, CSC/AT&T Account,

Somerset, NJ RMMS application. Design meetings, designed programs, coded

COBOL programs for several re-engineering projects in the Vendor Update

Processing (VUP) subsystem. Was the leader for application development effort for

several releases of the VUP subsystem, which provided new functionalities.

Supervised the production support work of junior developers in the VUP team, led

many investigations for clients. Assignments were completed in IMS DB/DC (batch

and online), DB2, COBOL II on MVS and included writing program specs, physical

program design, coding and Implementation. MicroFocus Cobol/XDB was used as a

development tool. Was a member of the CSC team in the CSC/Federal sector which

at the time completed a major outsourcing transition work with the Army - the

WLMP/LOGMOD project.

1983 – 1994: was a level A5 Technical Member of Staff, Harris District, AT&T, East

Brunswick in CCS/CIS organization. Was Project Leader of Common Tables group

(CTS). As such was responsible for providing new application Systems and

Production Support for the reference table data needed for AT&T’s Residence Long

Distance billing. Responsibilities as a Project Leader included receiving and fulfilling

requirements from user community, overseeing analysis, design, coding and testing of

software changes required, from the user groups, for each release. Was responsible

for planning, directing and supervising the work of nine other developers, and

continually interfacing with peers in other support groups such as DBA, CMCC

Installation, Corporate ITS (Alpharetta and Orlando), coordinating critical interfaces

between CTS and other AT&T sub-applications such as RAMP, IDB, RIPS and NPP.

 76

 1981 - 83: Senior Programmer/analyst Cameron Iron Works, Houston, Texas. I was

 assigned the dual responsibility of maintaining the old Sales Order system on MVS

 and the rewrite of the system to use an IMS database master file with real time online

 processing in Command Level CICS/VSAM file interface. Maintained old system

 with changes requested for current production submitted proposal for a new database,

 created a logical model for it, worked with a DBA group to create test physical data

 base. Coded programs for conversion to the new database file, wrote specifications

 for other programs required for new project. Trained new hires for the project

HONORS AND AWARDS:

 1971 - 74 Sponsored through the African Universities scholarship program

 (AFGRAD equivalent at the undergraduate level) for undergraduate studies at

 the University of Dar es Salaam

 1974 – 76 A Departmental teaching assistantship (tuition waiver + stipend) at Indiana

 University, Bloomington, Indiana.

 April 2004 - Social Security Administration: Commendable Act or Service

 (CAS) award. This is a Special Act or Service Award which recognizes

 individuals for major accomplishments or contributions, during the current

 assessment cycle, that have promoted the mission of the organization

 May 2005 – Social Security Administration: similar award to the above

 October 2007 – Social Security Administration: Associate Commissioner’s Citation is

 an award for outstanding support to the Office of Personnel (OPE) in

 77

 maintaining the Human resources Management Information System (HRMIS)

 and Human Resources Operational Data Store.

 March 2010 – Social Security Administration: Deputy Commissioner’s Citation is an

 award for outstanding dedication and support in developing the Agency’s

 new and improved web-based Perfomance Assessment & Communication

 System (PACS)

.

 78

