Clustering of Multidimensional Data Sets with
Applications to Spatial Distributions of Ribosomal
Proteins

REU Site: Interdisciplinary Program in High Performance Computing

Nil Mistry!, Jordan Ramsey?, Benjamin Wiley?, and Jackie Yanchuck?,
Graduate RAs: Xuan Huang® and Andrew Raim?®,
Faculty Mentors: Matthias K. Gobbert® and Nagaraj K. Neerchal®,
Client: Philip J. Farabaugh®

'Department of Mathematics and Statistics, University of Connecticut
2Department of Computer Science and Electrical Engineering, UMBC
3Department of Mathematics and Statistics, University of New Mexico
‘Department of Mathematics, Seton Hill University
"Department of Mathematics and Statistics, UMBC
SDepartment of Biological Sciences, UMBC

Technical Report HPCF-2013-10, www.umbc.edu/hpcf > Publications

Abstract

Consider ribosomal proteins, each with a three-dimensional spatial location. Pro-
teins related to the cofactor phenotype may be randomly or non-randomly distributed
within the ribosome. To investigate this question, the Mahalanobis distance is com-
puted between each pair of protein locations, and the optimal pairing is determined
by minimizing the sum of the within-pair distances. Since no single code exists that
allows for the computation of Mahalanobis distances, determining the optimal pairing,
and determining whether the two groups are statistically different, we created a code
that allows a user to do just this. The user can also compute an exact p-value for this
distribution rather than rely on an approximation.

1 Introduction

Multivariate distributions are analyzed under different conditions than one-dimensional dis-
tributions which may be considered under the Wilcoxon Mann-Whitney test. Several meth-
ods exist to analyze such sets; in particular, [3] has introduced an exact, distribution-free
test which compares multivariate distributions based on adjacency. Conveniently, one need
not worry about the normality of a data set to rigidly uphold other standard methods for
comparing distributions, and therefore this method offers a convenient algorithm for pro-
ducing a conclusion regarding adjacency of multivariate data without having to worry about
such details.

Our client Dr. Philip Farabaugh provided data on protein locations. His experimental
data is a set of three dimensional coordinates for proteins contained within a ribosome. Each
protein is either phenotype-related or not.
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Optimal Minimum Within-Distance Pairing between Ribosomal Proteins

Figure 1.1: Ribosomal protein types.

In our case, two sets of ribosomal proteins exist, one containing phenotype traits and
another containing non-phenotype traits, whose distributions concerning adjacency between
groups may be interesting to consider. More specifically, the positions of each protein in
a three-dimensional environment compare the clusters of each set, and analysis of relations
between these two groups yield conclusions regarding the similarity of the two sets, as seen in
Figure 1.1. For instance, dissimilar distributions between categories could indicate dissimilar
traits between phenotype and non-phenotype categories.

Comparing the positional distributions to one another in two dimensions is possible if one
considers only two axes at a time. Figure 1.2 shows a scatter plot, histogram, and box plot
for each comparison between any two axes. The p represents phenotype traits present within
the proteins, and correspond to the blue color, while the n represents the non-phenotype
proteins in the pink color. One may notice that each comparison appears roughly similar in
distribution.

Since variance within groups may have an effect on distance, Euclidean distance is not
necessarily an appropriate measurement of adjacency. That is, if one set has a high variability
among elements, or protein types, in comparison to the second group, then a large distance
in the first may be an exaggeration to the second. To account for this possible discrepancy;,
Mahalanobis distance is utilized, which computes the Euclidean distance with respect to the
variability of the two sets. In effect, this is obtained by computing the covariance matrix
between the two groups, and results in an accurate description of adjacency concerning the
sets.

Once the Mahalanobis distance is computed between each possible ribosomal protein
pair, the optimal, minimum sum of within-distances is requested in an attempt to obtain
the most accurate pairing for each couple. As a result, the adjacency of the phenotype set
to the non-phenotype set may be fully considered as members are compared on a large scale
to perceive differences in position. Indeed, if many non-matching pairs are determined as
closest pairs through this process, then there is a higher expectation for similarity between
phenotype and non-phenotype positional adjacency. To compute these closest pairs, an
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Figure 1.2: Two-dimensional comparison.

optimal, non-bipartite matching algorithm is used to sort through each pairing design and
determine the shortest distance between groups.

To yield conclusive evidence regarding the adjacency of phenotype and non-phenotype
groups, a p-value may be determined based on the number of non-matching pairs explained in
the previous paragraph. Intuitively, a greater number of non-matching pairs should provide
evidence to similar adjacency between groups, whereas a low number of non-matching pairs
should likewise lead one to expect dissimilar adjacency. Deriving the exact null distribution
to the set of non-matching pairs, or the probability density function with random variable A;
referring to these non-matched pairs, the null hypothesis upholding equal adjacency between
groups may be rejected if A; is small enough [3]. By this, a z-score may be obtained, and
consequently a p-value, to easily offer a conclusion regarding the adjacency of groups.

2 Background

Univariate data may be completely ordered by scaling elements with respect to a single vari-
able, allowing for straightforward comparisons within the sample. Further, two univariate
groups may be easily compared against one another using the Wilcoxon signed-rank test so
long as certain assumptions have been met. For instance, pairs being compared must be
chosen randomly and independently, and the distribution of data from either group must be
symmetric about the median; however, neither distribution must be normally distributed,
thereby admitting a wider range of data to be analyzable under this method [1]. Conse-
quently, the Wilcoxon signed-rank test is referred to as a non-parametric test under the
above permission.

Nevertheless, multivariate data provides a less straightforward example of group com-
parison. For example, while a single variable from two different sets, such as length, may



be relatively simple to order on a scale, one may have more difficulty comparing multiple
variables, such as age and height, from two different sets. That is, while 6 cm is longer than
5 cm, how may one compare 6 cm north and 4 cm west with respect to a center point, in rela-
tion to 5 cm south and 3 cm east? Indeed, such comparisons may not be completely ordered.
Comparing entire data sets with respect to each other might provide a better approach, but
these “neighbor count” based statistical methods are not distribution free.

Friedman and Rafsky (1979) implemented pairwise distances to construct a minimum
spanning tree, and removed edges in the tree that connected the two different groups. Ac-
cordingly, the resulting number of remaining disjoint sub-trees may be utilized as a test
statistic. Another test created by Schilling (1986) and Henze (1988) paired up data using
the nearest neighbor to each subject, and then counted the number of times that subjects
from the same group were paired together. However, these tests are not distribution-free [3].
To be distribution free, the distribution of the test statistic should be a known distribution
that depends on the sample size, but not on the distributions of the input data.

In 2005, Rosenbaum developed a test statistic to analyze multi-dimensional data that
was distribution free. Computing the Mahalanobis distance within groups, thereby taking
into account variance of each variable, one may optimally divide N data points into % Each
pairing must contain either zero, one, or two points from the first group, and a test statistic
referring to the equality of distributions is produced from the number of pairs with exactly
one data point from the first group.

The ideal pairing is produced from optimal, non-bipartite matching. That is, the sum
of the within-pair distances must be minimized, and to accomplish this, each distance must
be considered in relation to the others. The number of arithmetic operations required to
derive the Rosenbaum test statistic is O(N?) [3]. For example, Papadimitriou and Steiglitz
(1982) provides several various algorithms, such as the Hungarian Method and the Weighted
Matching Algorithm. In this paper, implementation of optimal, non-bipartite matching is
obtained from E. Rothberg’s C algorithm [4].

Applying the above process to a biological application, this paper considers the relation of
distributions between two groups of RNA proteins. About 80 proteins exist within the struc-
ture of the ribosome, each assuming its own unique position. Certain proteins are carriers of
a particular phenotype, while others are not and are identified in this study as non-phenotype
proteins. Phenotypes are physical manifestations of a particular characteristic that results
from a particular genotype and its relationship with the surrounding environment. An impor-
tant question to ask whether the proteins with and without the specific cofactor phenotype
are randomly distributed throughout the RNA molecule or not. This question is answered
for a specific data set containing two groups of RNA proteins, phenotype and non-phenotype,
and the similarity of their positional distributions is considered.



3 Numerical Methods

3.1 Mahalanobis Distance

The Mahalanobis distance computes a non-Euclidean distance between pairs that are located
within groups of distinct data types, with respect to the pooled variance-covariance matrix
of the groups. Let p characteristics in X = (X1, Xs,...,X,)” be discriminated among k
groups. Then, let X; = (X;1, Xig, - ,X,-p)T be defined as the vector of mean responses for
the " sample. Further, let S; be defined as the p-by-p variance-covariance matrix for the
it" sample. Then, the pooled variance-covariance matrix is defined as

5= n—k

(3.1)

The Mahalanobis generalized squared distance (referred to hereon as Mahalanobis distance)
from a particular observation X to the center of the 7" sample is

D} = (X = X;)"S7HX - X)), (3.2)

where it is understood that (X — X;)T is the transpose of (X — X;), and S~ is defined as
the matrix inverse of S [1].

One may notice that redefining the covariance-variance matrix as the identity matrix,
the above equation reduces to the 2-dimensional Euclidean norm, referring to Euclidean
space. In this report, the Euclidean norm is also determined to consider the presence of
variance within the phenotype and non-phenotype groups, and this result is compared to
the Mahalanobis conclusion stated above. Consequently, one may imagine the Mahalanobis
distance as similar to the Euclidean, only also taking into account variance within the set.

In our case, we consider two groups of RNA proteins specifically distinguished by some
elements containing phenotype traits and others containing non-phenotype traits. In this in-
stance there are two groups, and therefore the Mahalanobis distance must take into account
the distance between the centers of the phenotype and non-phenotype clusters. Accord-
ingly, the Mahalanobis distance from the i** group to the j** group reflects the Mahalanobis
distance between the centers of each group, and is defined as

D?(i,j) = D*(j,i) = (Xi — X;)TS7H(X; — X;). (3.3)

This method allows us to derive accurate distances between closest pairs within the entire
dataset, taking into account variance within each separate group.

3.2 Distance Computation

R code was developed that takes the length of the data and ranks each vector of data being
analyzed. In this case, ranks were computed for the z-, y-, and z-coordinates. In order to
break ties in ranks, we took the minimum of all ranks included in the tie. For example,
if there was a tie for first, second, and third place, then all elements included in the tie
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would receive a rank equal to one. The covariance matrix, S, is computed for these ranks.
Since we know the ranks and covariance matrix, we use the Mahalanobis distance for every
combination between pairs within the matrix. The computed data is output to a text file in
order to read it into C code.

3.3 Non-Bipartite Matching

The C code is an optimal non-bipartite combinatorial optimization matching sorting algo-
rithm. The optimal pairing is determined by minimizing the sum of the within-pair distances
between ribosomal proteins. In this case, there are (];7 ) total possible pairings, where N is the
total number of proteins, in this case, 76. The minimum distance that is calculated divides
76 proteins into 38 non overlapping pairs, and minimizes the sum of the 38 distances within
the 38 pairs. From this data we develop R code to match protein pairs, based on phenotype
and non-phenotype matches. Based on the proportion of phenotype and non-phenotype pro-
teins within the data set using the number of non-matching pairs we derive p-value for the
comparison of distribution with respect to the distances.

The optimal, non-bipartite matching algorithm is written in C by Ed Rothberg [4], and
implements H. Gabow’s N-cubed weighting matching algorithm [2]. The algorithm strives to
maximize a total benefit, defined as (3;;, as opposed to striving to minimize a total distance
d;; [3]. In effect, the total benefit is defined as

Bij = H%%X(ébc> — 0y (3.4)

)

3.4 Significant Figures

The optimal, non-bipartite algorithm implemented in C accepts only integers as input values
for distances between two points. If the Mahalanobis distance vector entered into the code
contains decimal places, the C function will remove the additional figures in the conversion
from double precision floating-point numbers to integers. As a result, the optimal number of
non-matching pairs may be inaccurate due to the potential of failing to account for significant
figures contained within the distance sums. One solution to avoiding this error is multiplying
the Mahalanobis distance vector by 10V, for some sufficiently large N, thereby ensuring
that the conversion to integer format encompasses these significant figures that were not
previously considered in the former number conversion process.

At some point, when all distances are different from each other, or reflect the most
accurate number of significant figures obtainable, the solution is most rigorous and may
not be improved for any greater N value. The upper bound for this improvement is the
ability of R to express double precision floating-point numbers, so in the worst case where
two distances are dissimilar but only noticeable after more than 16 significant figures, this
method may not provide sufficiently accurate results. The R function created for this project
requires an input value for /V, so that the user may particularly specify the degree of accuracy
she wishes to obtain from the resulting number of optimal non-matching pairs.



3.5 Exact Null Distribution

Considering the location data of the ribosomal proteins Y, the null distribution for A;, the
total number of crossed-matched pairs, is represented by

24 J1

N
ao! ai! as!
n

where Aj, is defined as the number of pairs with k treated subjects, Ag+ Ay + Ay = I is the
number of total pairs for the entire set of N data points, and n is the number of cofactor
phenotype ribosomal proteins [3].

As proven in [3], the null distribution for A; converges to the normal distribution, where

P?"(Al = a1|Y) =

= Tqy, (3.5)

LA B4

VVar(4y)

(3.6)

3.6 Accuracy of p-value

While it has been shown that the distribution of the cross-match statistic converges to the
normal distribution, we also chose to calculate a more exact p-value than the approximation
provided by using the normality assumption. In order to calculate this p-value, we performed
a permutation test where we randomly assigned each data point to a particular group. We
then ran our cross-match tests in order to see what the distribution of the cross-matches
would be like if the distribution was random. We repeated this process 5,000 times in order
to see how many cross-matches would occur.

4 Results

After computing the Mahalanobis distance between all possible pairs of ribosomal proteins,
the optimal, non-bipartite sorting algorithm determined that there are 17 non-matching
pairs in the closest within-pair distance pairing. Figure 4.1 offers a visual plot showing
the optimal connections between all pairs, where the cyan lines represent the connections
between phenotype and non-phenotype proteins. Since there are 76 proteins in the sample,
the the maximum possible amount for non-matching pairs is 76/2 = 38. In effect, roughly
45% of optimal pairings are non-matching.

Alternately, to emphasize the non-matched pairs between the two categories, Figure 4.2
displays the optimal within-distance pairing while only showing the connections between
phenotypes to non-phenotypes.

In this computation, the number of significant digits for distance were specified as N =
3, which is equivalent to multiplying the Mahalanobis distance vector by 103. The same
conclusion was also obtained for N = 5, and therefore N = 3 is sufficiently large enough to
reflect the most accurate optimal pairing of phenotypes to non-phenotypes in this case.
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Figure 4.1: Optimal within-distance pairing between ribosomal protein types, all matching.
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Figure 4.2: Optimal within-distance pairing between ribosomal protein types, non-matching.

Let the null hypothesis claim that the distribution of three-dimensional positioning is the
same for phenotype and non-phenotype proteins. Computing a p-value using the fact that
the conditional distribution of A; converges to the normal distribution [3] (see Numerical
Methods section), it follows that p = 0.821447. Consequently, the null hypothesis is failed
to be rejected, and therefore the distributions of three-dimensional positions are statistically
similar for both groups.

Determining whether substantial variance is present within the two groups, the Euclidean
distance is computed in place of the Mahalanobis distance and the deviation from the above
result is noted. Using the 3 x 3 identity matrix rather than the variance-covariance matrix,
the 2-norm is determined for all possible within-pair distances and optimal, non-bipartite
matching is utilized to obtain the minimum within-distance sum. The number of non-
matching pairs is equal to 21, which is slightly greater than the above Mahalanobis result.
Computing a p-value from these pairings, it follows that p = 0.236081. Again, the null hy-
pothesis has failed to be rejected at an alpha value of 0.05, and therefore the distributions of



Table 4.1: Summary statistics for non-matching pairs.

Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max.
9.00 | 15.00 17.00 17.61 | 19.00 25.00

three-dimensional positions are still statistically similar even not taking into account inter-
group variance. In this case, the number of significant digits is expressed to four significant
figures in the integer conversion.

Finally, performing a permutation test in which randomly assigned data in the set are
identified as either phenotype or non-phenotype, consistent with the proportion present in
the original set, the number of optimal non-matching pairs was computed at each iteration.
This process was repeated 5,000 times to note the distribution of non-matching pairs from
each instance. Table 4.1 shows the summary statistics of these non-matching pairs in this
experiment, and one should confidently notice that the above number, 17, is well within the
middle range.

Figure 4.3 is the histogram for our permutation test, which allowed us to calculate a more
exact p-value, with a violin and box plot to reinforce the above numerical conclusion.
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Figure 4.3: Histogram for non-matching pairs overlaid with kernel density curve, with violin
and box plots.

5 Conclusions

After computing the Mahalanobis distance between each protein pair within the data set,
it was determined by the optimal, non-bipartite sorting algortihm that there are 17 non-
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matching pairs of ribosomal proteins matching phenotype to non-phenotype traits. Since
the data set contains 76 elements, the maximum possible non-matching pairs is 76/2 = 38
pairs, and therefore one should notice the high proportion of non-matching pairs A; = 17.

Therefore, a null hypothesis may be constructed claiming that the distributions of phe-
notype to non-phenotype positions are similarly adjacent. Computing a p-value based on
the above non-matching pairs, equal to 0.821447, one may reject the null hypothesis at a
standard alpha level equal to 0.05. That is, one may fail to reject the null hypothesis, and
conclude that the distributions comparing adjacency between phenotype and non-phenotype
groups are statistically equivalent. Further, this conclusion is supported by the high propor-
tion of non-matching pairs determined above.
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