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ABSTRACT 
 

SPLIT PROTOCOLS IN BARE MACHINE COMPUTING 
 

Bharat Singh  Rawal Kshatriya 

 This thesis extends on-going Bare Machine Computing (BMC) research at Towson 

University.  BMC applications run on a bare machine without any commercial operating system, 

kernel, or other centralized support.  This research consists of splitting protocols and their impact on 

performance, its applicability to servers and clients, ability to construct scalable mini or large server 

clusters. The split protocol principle discovered in this dissertation laid a basic foundation for 

protocol splitting and demonstrated unexpected performance improvements in constructing split 

protocol based servers.  This dissertation will also serve as a cornerstone for future split protocol 

architectures, design and implementation for all OS based systems.  

The split protocols found and investigated in this thesis fall into two main categories.  First, 

a protocol may be split based on a connection and data interactions.  One server handles connection 

establishment and closing and the other handles data for each transaction. Both servers stay online 

until a given request is complete. A given client does not see such splitting during its transactions. 

We refer to this approach as a server level split protocol. Second, a protocol may be split such that a 

connection server will provide connection establishment and a data server will provide data and 

termination of the connection.  In this case, the client is fully aware of connection and data servers.  

This approach is referred to as a split protocol at client server architecture level.  The later technique 

modifies the existing client server protocol and makes the client aware of splitting protocols.  Both 

of these approaches have pros and cons of their usage. This thesis investigates these two approaches 

in detail and derives numerous key impacts of protocol splitting.  

The two approaches outlined above are demonstrated using a bare PC implementation that is 

conformed to a Bare Machine Computing paradigm invented by Dr. Karne at Towson University. 

Numerous performance measurements are conducted during the research and it was found that two 

split servers perform about 25% more than a conventional two independent servers. This is the most 

surprising result found in this research, where such dramatic improvements in performance in Web 

servers were never discovered before. In addition, this work demonstrated an efficient way to 

construct mini clusters ranging up to 4 servers and large clusters ranging up to 16 servers. This 

dissertation work will also serve as a cornerstone for building scalable server clusters based on split 
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protocol discovery.  The Split Protocol concept explored hear will provide a generic idea to split 

transactions in general to achieve higher performance in distributed servers on the network. 

Numerous applications such as file servers, database servers and webmail servers may benefit from 

Split Protocol concept.   Finally, the split protocol architecture may also result in more reliable 

server clusters due to its redundant nature of dual servers having complete state of each request in 

processing.  
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1. MOTIVATION 

     A protocol assumes a continuous communication between two communicating entities. It is 

also a set of interactions between these two entities. This implies that these two entities are tightly 

coupled to process a given transaction and communicate in a request response manner to finish 

the transaction.  This is a very general way to describe a protocol.  However, most commonly 

used protocol on the Internet is a client server protocol. This in turn consists of some high level 

protocols such as HTTP and some low level protocols such as TCP and so on. Similarly, there are 

many other protocols such as FTP, TLS, SMTP, POP3, and so on. In general, most of these 

protocols seem to conform to a generic principle that a given protocol is intact or in-separable 

and defines a rigid interaction between two communicating entities.  

The in-separable characteristics of protocols motivated us to develop a split protocol where the 

conventional wisdom of intactness is broken. A protocol can be broken in many ways as 

illustrated in this dissertation.  The split protocol concept resulted in surprising results and paved 

the way into unknown territories resulting in novel characteristics that will be useful to build 

future client server technologies and clusters.  
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2. RELATED WORK 

 

2.1 Bare Machine Computing Background 

     Bare Machine Computing (BMC) first invented by Dr. Karne at Towson University is 

motivated by the unique concept to make a computing box bare and carry the software 

application in a portable device such as a flash-drive.  Bare machine applications use the BMC or 

dispersed operating system concept [28]. That is, there is no operating system (OS) or centralized 

kernel running in the machine. Instead, the application is written in C++ and runs as an 

application object (AO) [27] by using its own interfaces to the hardware and device drivers. 

     When computing hardware is made bare, the bare hardware can be used to run any given 

application on the fly.  There is no need to protect the bare box as it does not have any valuable 

resources.  The bare box simply has memory, CPU, user interface (input/output) and a network 

interface. All persistent data is stored externally on a mass storage device or on the network.  This 

BMC approach is applicable to any pervasive device including: desktop, laptop, hand-held, or any 

other electronic equipment.  

     The BMC concept is not an embedded approach as it is applicable to generic computing.  The 

software application(s) can be modeled as a single monolithic executable as an application object 

(AO), which is based on a single end-user application or a set of end-user applications that are 

required at a given time. For example, a Web browsing is an end-user application.  One can 

design an AO that consists of simply a Web browser, or a composite of applications including: 

Web browser, Web Mail, E-Transaction and Text processing. The computers carry their 

applications as AOs on a flash-drive. In this computing, the information technology world is 

application centric rather than environment dependent as AOs can be run on any bare machines.   
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     One can develop AOs based on end-user applications and they can be made tailored to suit 

individual needs. The AO is written in a single programming language and compiled into a given 

bare machine code. These AOs can be run on any bare computers which have no particular 

ownership. For example, one can walk into an organization and use their computer by using their 

own AO, without harming the bare computer.  This computing paradigm will change the way we 

do business today and make the computing devices standard and universal. The AOs can be open 

ended application domains. The computer programming languages will become standard and 

extensible as the applications grow. There will be a greater need for standardizing hardware, 

software and interfaces for bare machines.  

     The bare machine computing applications are small, end-user centric and application centric. 

Once an AO programmer is trained, it is easy to write AOs, as it requires a single programming 

language expertise and only the AOs domain knowledge, and there is no need to know other 

computing platforms or environments. The AO programmer is in total control of a given 

application set’s design and its execution order. No centralized OS or kernel is involved in its 

execution. As the AO controls the application aspect as well as the execution aspect; these 

applications will be inherently more secure. The AOs are quite suitable for peer-to-peer secure 

communications. In fact, the bare to bare communication reaches the ultimate security one can 

achieve in peer-to-peer communication, as it avoids all the system related vulnerabilities by 

making the device bare. The AOs can be tailored on the fly for a given set of users or group of 

users. The communication and security protocols can also be tailored to provide more secure 

communications. The computing aspect of bare machines becomes standard and limited, but the 

network and security aspect of computing becomes more open for efficient protocols that are 

suitable to end users.  

 



 

16 

 

2.2 Bare Machine Computing Applications 

     The feasibility of BMC paradigm has been demonstrated by building complex applications in 

the bare machine computing laboratory at Towson University.  Several doctoral dissertations 

have been completed in this area. Long He [22] developed the first bare PC Web server and 

demonstrated the feasibility of building complex software that runs on a bare PC with thousands 

of threads and outperforms other compatible commercial Web servers. Gholam Khaksari [29] 

developed first VoIP soft-phone that runs on a bare PC and provides a secure communication on 

an end-to-end basis. Andre Alexander [1] built a SIP server and a bare SIP agent to demonstrate 

the feasibility of high performance SIP server with secure communication using SRTP protocol. 

George H. Ford built first Email server that runs on a bare PC and provides compatible 

performance related commercial email servers [20]. Ali Emdadi [11] implemented the TLS 

protocol on top of bare Web server. TLS is a complex protocol and requires numerous security 

algorithms that run on bare PC. Roman Yasinovskyy [48] implemented IPv6 protocol that runs on 

a bare PC. These doctoral works discovered many novel characteristics that are unique to BMC.        

2.3 Other Related Work 

     Since the inception of large mainframe computers; the software complexity has been growing 

exponentially. The enormous growth in computing hardware and software has created 

unmanageable electronic dump [31] without any reuse of hardware and software. There are over 

30 versions of OS releases in last 25 years from Microsoft Corporation alone. Software 

applications, operating systems, tools and gadgets come and go on a daily basis without serving 

their useful life cycle.  The OS code sizes have reached close to one hundred million lines of code 

resulting in rapid upgrades, version releases, errors and security flaws.  

     Many researchers now focus on coping with small kernels and lean operating systems or 

dedicated applications. While the BMC concept resembles approaches that reduce OS overhead 

and/or use lean kernels such as   OS abstraction [15,16,17], Exokernel OS [8, 9, 14],  Also in IO-
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Lite [38], Palacio [33], Libra [3],  bare-metal Linux [45], OS Kit[44],  Factored OS [47] and 

TinyOS [43],  Fast and flexible  networking [ 21], there are significant differences such as the 

lack of a centralized code that manages system resources and the absence of a standard TCP/IP 

protocol stack. In essence, the AO itself manages the CPU and memory, and contains lean 

versions of the necessary protocols. Protocol intertwining is a form of cross-layer design. Further 

details on bare PC applications and bare machine computing (BMC) can be found in [18, 19].    

     Splitting protocol at a client server architecture level is different from migrating TCP 

connections, processes or Web sessions; splicing TCP connections; or masking failures in TCP-

based servers. For example, in migratory TCP (M-TCP) [42], a TCP connection is migrated 

between servers with client involvement. In process migration [6], an executing process is 

transferred between machines. In proxy-based session handoff [35], a proxy is used to migrate 

web sessions in a mobile environment.  In TCP splicing [10], two separate TCP connections are 

established for each request.  In fault-tolerant TCP (FT-TCP) [49], a TCP connection continues 

after a failure enabling a replicated service to survive. Per our knowledge, no work on splitting 

protocol connections at client server architectural level has been done before. 
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3. INTRODUCTION 

 

     A Web server serves static and dynamic content to clients. Its performance and reliability are 

essential and crucial to its survival in today’s world. In addition, its maintenance and longevity 

are also essential to reduce its operating cost and management. Web servers are also focused 

products where they only perform certain functions and do not require much user interfaces. 

Thus, Web servers or servers in general are design-friendly to bare PC applications.  

     Considering the above characteristics of Web servers, it is obvious that there is no need to use 

a full-blown OS based servers that require periodic maintenance, updates, and prone to OS based 

attacks. Many alternatives to server design have been proposed in the literature. Google-cluster 

proposed its own lean Linux kernel [4]; SWILL [32] suggests a special Web server library to run 

their server applications. Exokernel [8] recommends to move network intensive applications from 

kernel to applications to gain high speed-up. Many server systems disable the usual OS functions 

such as shell scripts, logs, remote logins, and so on. Commercial servers such as Apache focus 

their designs to optimize for performance and provide API to hardware resources instead of 

system calls. Instead of trying all these approaches, we propose to avoid any OS, kernel, or any 

centralized software to manage resources and give the control back to the application programmer 

thus resulting in the BMC paradigm. The BMC approach is the extreme end of OS a spectrum 

where there is no OS related control running in the machine.  When the machine is made bare, 

then it provides immense potential to develop applications that are independent of computing 

environments. It only depends upon the underlying CPU architecture. The application 

programmer job made more complex by making the programmer to deal with application and 

system’s knowledge. However, the applications themselves are simple and easy to code once the 

programmer understands underlying principles of BMC.     
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     The design and implementation of bare PC Web server was presented in [22].  The static and 

dynamic performance of this server was also presented in [23].  The direct hardware interfaces 

through an AP were described in [15].   

     Web server reliability and load distribution among Web servers are important problems that 

continue to be addressed using a variety of techniques. In particular, load balancing techniques 

are used at various layers of the protocol stack to share the load among a group of Web servers 

[2], [10], and [16]. Alternatively, in approaches such as Migratory TCP (M-TCP) [42], a client 

connection is migrated to a new server and an adaptation of TCP enables migration of the 

connection state. We propose a technique for splitting a TCP connection between Web servers 

that allows one server to handle connection establishment and another to handle data transfer. 

Splitting also allows a server to self-delegate a percentage of its connection requests to another 

server for data transfer. Splitting TCP connections in this manner enables servers to share the load 

without a central control and without any client involvement. 

     To explain splitting, we note that in essence, Web servers process client requests and provide 

data (resource) files to clients. These files are transferred via HTTP that runs as an application-

level protocol on top of TCP. A typical message exchange over TCP to handle a single HTTP 

request (such as a GET request) is shown in Figure 1. The HTTP and TCP protocols are shown in 

an intertwined manner corresponding to the coupling of these protocols in a bare machine (or 

bare PC) Web server [23] that runs applications without an operating system (OS) or kernel. 

Protocol intertwining in BMC has been previously shown to improve Web server performance 

[22], [23]. The application-centric BMC Web server design and architecture [22] includes 

protocols as part of the application and facilitates inter-layer protocol communication. 

     To explain how a TCP connection is split by a BMC Web server, consider the message 

exchange in Figure 1. When an HTTP GET request arrives after the TCP connection is 

established, the BMC Web server sends a response (GET-ACK) to the client, and updates the 

client’s state. The GET request is then processed by the server and the requested file is sent to the  
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Figure 1. HTTP/TCP Protocol Interactions 

client during the data transfer. This process differs somewhat based on whether the HTTP request 

is static or dynamic. Although we address splitting only for static requests, the techniques apply 

to dynamic requests as well. Once the data transfer is complete, the connection is closed by 

exchanging the usual FIN and FIN-ACK messages. Although multiple GET requests can be sent 

using a single TCP connection, for ease of explanation, we only consider the case of a single GET 

per connection. A single HTTP request and its underlying TCP messages can thus be divided into 
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connection establishment (CE), data transfer (DT), and connection termination (CT) phases as 

shown in Figure 1.   

     The novel splitting concept presented here is based on splitting the HTTP request and 

underlying TCP connection into two sets {CE, CT} and {DT}. This split allows one server to 

handle connections and the other to handle data without a need for too many interactions between 

servers. The data could reside on only one server or on both servers if reliability is desired. 

Splitting a client’s HTTP request and the underlying TCP connection in this manner also provides 

the additional benefit of data location anonymity in addition to enabling load sharing among 

servers. Furthermore, server machines optimized to handle only connection requests and others 

optimized to handle only data transfer could be built in future to take advantage of splitting.  

    

 

     Load balancing is frequently used to enable Web servers to dynamically share the workload. 

For load balancing, a wide variety of clustering server techniques [25, 12, and 46] are employed. 

Most load balancing systems used in practice require a central control system such as a load 

balancing switch or dispatcher [12, and 25]. Load balancing can be implemented at various layers 

in the protocol stack [10], [25].Various clustering approaches demonstrated for improving 

productiveness [5, 7]. We consider a new approach to load balancing that involves splitting HTTP 

requests among a set of two to four servers, where one or more connection servers (CSs) handle 

TCP connections and may delegate a fraction (or all) requests to one or more data servers (DSs) 

that serve the data [40]. For example, the data transfer of a large file could be assigned to a DS 

and the data transfer of a small file could be handled by the CS itself.   

     One advantage of splitting is that splitting systems are completely autonomous and do not 

require a central control system such as dispatcher or load balancer. Another advantage is that no 

client involvement is necessary as in migratory or M-TCP [42]. In [40], splitting using a single 

CS and a DS was shown to improve performance compared to non-split systems. Since the DSs 
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are completely anonymous and invisible (they use the IP address of the delegating CS), it would 

be harder for attackers to access them. In particular, communication between DSs and clients is 

only one-way, and DSs can be configured to only respond to inter-server packets from an 

authenticated CS. We study the performance of three different configurations of Web server 

clusters based on HTTP splitting by measuring the throughput (in requests/s) and also connection 

and response times at the client.  

     In real world applications, some servers may be close to data sources, and some servers may 

be close to clients. Splitting a client’s HTTP request and the underlying TCP connection in this 

manner allows servers to dynamically balance the workload. We have tested the splitting concept 

in a LAN that consists of multiple subnets connected by routers. In HTTP splitting, clients can be 

located anywhere on the Internet. However, there are security and other issues that arise when 

deploying mini clusters in an Internet where a CS and a DS are on different networks [40].  

      



 

23 

 

4. INSIGHT INTO BARE PC WEB SERVER 

     Throughout this dissertation we have used BMC Web server as a baseline to conduct 

experiments and measurements for split protocol concept. Thus, it is essential to provide insight 

into the BMC server [39] in this thesis. Another reason for the justification of this section is also 

that the BMC server has been optimized for performance during this study. The optimized Web 

server is crucial to conduct performance measurements for scalable servers.   

     The following section presents an insight into a Bare PC Web server and describes the internal 

details. The novel architecture and design principles outlined here will serve as the future models 

of computation where systems can be designed for ultimate performance and optimization. This 

work will demonstrate a potential for building computer applications, which can inherently 

possess longevity thus reducing obsolescence.  In addition, some new measurements for the Bare 

PC Web server such as CPU utilization, and maximum queue sizes are presented to demonstrate 

the potential of bare machine applications. Critical comparison of the Bare PC Web server as 

published before [22] is not the focus of this work. 

 

4.1 Background of Bare PC Web server 

     The strength of BMC applications is derived from its simplicity, smaller code, design by 

obscurity, design for longevity, and inherent security.  The BMC Web server is based on these 

principles. A Web server serves static and dynamic content to clients. Its performance and 

reliability are essential and crucial to its survival in today’s world. In addition, its maintenance 

and longevity are also essential to reduce its operating cost and management. Web servers are 

also focused products where they only perform certain functions and do not require much user 

interfaces.  
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4.2 Web Server Architecture 

     The conventional Web servers devise intricate mechanisms [38] that either bypass OS or 

design special API to improve their performance. Sometimes, they use techniques such as Web 

caching [30], real memory instead of virtual memory, single monolithic executable (Linux), 

memory mapped files, and so on. The bare machine or bare PC applications do not have any OS 

and thus there is no need to devise any such mechanisms to achieve higher speeds.  The novelty 

in BMC applications stems from its inherent characteristics.  The BMC applications assume a 

standard underlying CPU architecture such as Intel X86 or similar.  The applications directly 

communicate to this hardware.  The boot, load, execute, multi-processing, exceptions, interrupts, 

error controls, memory management, file management, and I/O are part of the application object 

(AO).  There will be direct interfaces to hardware [26], which will provide communication to 

hardware, which is keyboard, mouse, display, CPU, memory, and interrupts. 

     The direct hardware interfaces to the AO programmer is available at C/C++ programming 

level. These interfaces are not same as system libraries, which require some sort of underlying OS 

calls (e.g. INT 21H). The interfaces directly communicate with keyboard buffer, video memory, 

Ethernet card (NIC), interrupts through call gates or interrupt gates, tasking through TSS (task 

state segment), thus directly accessing hardware.  The device driver for the NIC is also 

independent of any OS related controls or interrupts. The bare NIC driver allows the AO 

programmer to directly read UPD (upload) and DPD (download) buffers. In BMC applications all 

memory is real and dynamic memory is managed by the AO programmer and the memory map 

for the application is done a-priori with a required limit and allocations for a given set of 

applications.  

     The novelty of architectural features of the bare PC Web server as shown in Figure 2 can 

be described as follows. As Web server requests are independent of each other, each request is 

modeled as a separate task (which uses separate TSS) and these tasks do not share any data. The 
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task code can be shared by many tasks and thus these shared program variables are stored in a 

TCP table entry (called TCB entry).The concurrency control issues are solved by using a separate 

TCB entry for each request. In addition to the program variables, the TCB entry also carries some 

state variables for each request. The TCB entry in the bare PC Web server is about 200 bytes. 

This entry is independent of any particular machine or node that it resides; it can be easily 

transported to another node thus making the entry migratory.   

     There are a total of three types of tasks in the Web server. The Main task is always running 

which checks for any received packets. When a packet is received, it gives the control to a RCV 

task, where the received packet gets processed in a single thread of execution without any 

interruption and returns to Main task. When a GET request comes from a client, the RCV task 

inserts a HTTP task so that the HTTP request can be served. Main task and RCV tasks are 

independent entities and all HTTP tasks are placed in a single circular list to be processed first 

come first serve. When an HTTP task waits for an acknowledgement from a client, then it gets 

suspended and gets back into the circular list. When an ACK arrives from a client, then the 

suspended task will be resumed. The task structure and its implementation are tuned to serve only 

Web server requests. The architecture does not allow any other unrelated functionality in the Web 

server.  

     The TCB entry also keeps track of client’s IP and Port Number as a unique hash entry into the 

table. All packets to be transmitted are placed in the UPD buffer once and tracked through a 

sliding window protocol for a required window size.  Only transmit interrupts are used to confirm 

the transmitted packets.  

     The resource files for the Web server are transferred from a Microsoft Windows machine to 

the bare PC using trivial FTP. The files are stored in memory for access and updated as needed 

from a USB flash memory.   



 

26 

 

     In summary, the architectural insight to the bare PC Web server is simple and designed for 

performance. The architecture is limited to its intended functionality. There are no open ports, no 

way to create unrelated tasks, and no way to get the control of CPU from its AO execution. The 

AO is a single monolithic executable created at compile time. There are no dynamic capabilities 

to modify or alter the program execution of the intended AO function. Thus, we believe that this 

Web server architecture is inherently secure and this model can be used to build any other servers 

in general.   

4.3 Design and Implementation 

     The Web server design is focused around the intertwined HTTP client/server protocol as 

illustrated in Figure 1. For dynamic Web requests there will be a PHP protocol between the Web 

server and DB server [30] which is not shown in this thesis.  A client request starts with a SYN 

packet which is received by the RCV task and an immediate ACK response is sent to the client.  

When an ACK comes from the client, then a connection is established, and it is noted in the 

corresponding TCB entry. When a GET arrives, the RCV task will insert an HTTP task as 

mentioned before and the HTTP task will handle the data transfer part of the protocol. When all 

the data is successfully sent then the server sends FIN-ACK and closes the connection. The 

protocol interaction as shown in Figure 2 is modeled as a state transition diagram (STD), and it is 

implemented as part of the HTTP task. The HTTP task and TCP protocol are intertwined to 

accomplish the total protocol. This intertwining of protocol is similar to cross-layering [40], 

instead of layers provides close to optimal in response time for the clients.  

     The design of the bare PC Web server consists of implementing the HTTP and PHP protocols 

and updating the TCB entries for each request.  Main task, RCV task, and HTTP tasks together 

accomplish the total function required for processing client requests. Notice that simplicity of the 

design also stems from the single circular list and the first-come-first-serve priority approach. The 

simplicity is carried all over the design phase of bare PC Web servers.    
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     The Bare PC Web server implementation was done using a standard MS-Windows 

environment, Visual C++, and the MASM Assembler for software development.  

     However, this approach does not include any OS-related libraries and system calls.  Instead, 

the AO uses direct hardware interfaces designed for Bare PC computing. Most of the direct 

hardware interfaces are implemented in C/assembly language using software interrupts. 

 

Figure 2. Architecture of the Bare PC Web Server 
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     The size of this assembly code is approximately 1,800 lines. These direct hardware interfaces 

include: display, keyboard, timers, task management, and real/protected mode switching.  The 

3COM 905CX NIC driver code is approximately 1400 lines of assembly code, with the rest of the 

code written in C.  The implementation of the Web server architecture depicted in Figure 1 is 

written in C++ in an object-oriented fashion.  The numbers of executable statements for this 

server are about 9000 not including comments. The resulting size of this single monolithic 

executable AO is 304 sectors of code (155,648 bytes). 

     The software is placed on the USB and includes: the boot program, startup menu, AO 

executable, and the persistent file system (used for resource files).The USB containing this 

information is generated by a tool (designed and run on MS-Windows) that creates the bootable 

Bare PC application for deployment. The tool, which generates the boot load sector, and copies 

the executable and associated files to the USB, consists of only 469 lines of C++ code.  

4.4 Performance Measurements 

4.4.1 Experimental Setup 

     The experimental setup involved Dell Optiplex GX260 PCs with Intel Pentium 4, 2.8GHz 

Processor, 1GB RAM and Intel 1G NIC on the motherboard. A LAN network is set up for the test 

using a Linksys 16 port GB switch. Linux clients are used to run http_load [24] stress tool. Each 

http_load stress tool can run up to 1000 concurrent requests per second. Multiple clients are used 

to measure the maximum load. For fair comparison, unnecessary services, processes and 

programs that add overhead to the OS-based client systems are disabled.  

4.4.2 Measurements and Analysis 

     Figure 3 shows the plot for the number of requests per second versus the connection and 

response times. These measurements are made for a client file size of 3593 bytes. Note that these 
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times are very similar and follow the same pattern for variable requests. The bare PC Web server 

saturates at 6000 requests per sec, which indicates the maximum capacity of the server. 

     Figure 4 shows a graph for the variation in circular list queue size with respect to number of 

client requests. It is expected that as the number of requests increases, the maximum queue size 

increases which in turn increases the response time as shown in Figure 3. When more requests 

arrive in the RCV task gets busy thus making the response time slower.  Currently, we only 

process one request for each invocation of the RCV task; if we modify the RCV task to process 

multiple requests, which already arrived then our response time will increase to some extent. This 

approach can be studied in further optimization. Notice that the queue size has much less effect 

on the connection time as it is the total processing time of a request and once a request is started it 

will complete sending data in a single thread of execution.  Also, when an ACK comes from a 

client during the data transfer period, this triggers a resume operation thus taking the task from 

the queue and immediately processing it.  

 

Figure 3. No. of Connections versus Processing Time 
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Figure 4. No. of Connections vs Max Queue Size 

 

     The Figure 5 shows the task utilizations with respect variation of requests for a file size of 

3593 bytes. There are three types of tasks in the bare PC Web server:  RCV, HTTP, and Main 

task. The Main task invokes RCV and HTTP tasks and there is very little processing involved in 

this task. As the graph indicates, the RCV task does more work than the HTTP task for this given 

file size.  The Main task time shown in the chart indicates that as the number of requests 

increases, the Main task time reduced, which is an idle time in the Main task. When the idle time 

reaches close to zero, then the server saturates in its performance. Some of the idle time is also 

used to do some work in the Main task itself, which is negligible.   For 6100 client requests, the 

CPU utilization for RCV, HTTP and Main task are 55%, 36%, and 9%.  

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

1000 2000 3000 4000 5000 6000 

M
a

x
 Q

u
eu

e 
S

iz
e
 

Number of Http Requests/Sec 



 

31 

 

 

Figure 5.  No. of Connections versus Task Utilizations 

 

     Figure 6 shows an interesting plot for HTTP and RCV tasks CPU utilizations. Notice that this 

chart indicates an almost a linear relationship of HTTP task with respect to a RCV task CPU 

utilization. This is quite unique to the bare PC Web server as there are only two dominant tasks 

running in the system.  When more packets are received by the RCV tasks then there are more 

GET requests for the HTTP task. As the system is an application centric and runs only the 

intended functions, it is quite possible to predict the capacity of the bare PC Web server by using 

the above linearity behavior of RCV and HTTP tasks.   Our future research can focus on studying 

such analytical model and compare it with the empirical results.  

     The insight into bare PC Web Server indicates that it is possible to design close to optimal 

systems when bare machine computing principles are used. It is also evident that the bare 
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Figure 6.  HTTP/RCV Task Utilization Plot 
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5. SPLIT SERVERS 

     The novel splitting concept presented in this research is based on splitting the HTTP request 

and underlying TCP connection into two sets {CE, CT} and {DT}. This split allows one server to 

handle connections and the other to handle data without a need for too many interactions between 

servers. The data could reside on only one server or on both servers if reliability is desired. 

Splitting a client’s HTTP request and the underlying TCP connection in this manner also provides 

the additional benefit of data location anonymity in addition to enabling load sharing among 

servers. Furthermore, server machines optimized to handle only connection requests and others 

optimized to handle only data transfer could be built in future to take advantage of splitting.  

     The experiments described in this research demonstrate that split connections were done with 

servers and clients deployed on the same LAN. However, splitting can be also used (without any 

modification to the servers) when clients are in a WAN or Internet environment provided the 

servers are on the same LAN. We have conducted experiments to verify that splitting works with 

clients on different networks communicating with servers through a series of routers. The reasons 

for requiring servers to be on the same LAN are discussed further in split architecture section.  

     The following sub-sections describe all initial work done in split servers including 

architecture, design and measurements. 

5.1 Split Protocol Architecture  

     The split architecture used for the experiments described in this research is illustrated in 

Figure 7. Although these experiments were conducted in a LAN environment, the proposed 

splitting technique does not require that the set of clients {C} be connected to a LAN (they can be 

located anywhere on the Internet). The only requirement is that the servers be connected to the 

same LAN for the reasons discussed below. However, this requirement does not limit the scope 

or scalability of splitting since many real-world Web server clusters are located within the same 
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LAN. The clients send requests to servers S1 or S2. S1 and S2 are referred to as split servers. For 

a given request, the connection server (CS) or S1 handles the {CE, CT} phases of a connection, 

and its delegated server S2 (DS) handles the {DT} phase. Similarly, S2 can act as a connection 

server for a client’s request and its DS will be S1. The clients do not have any knowledge of a 

DS. A given request can also be processed by the CS without using the DS. In general, there can 

be a set of n (≥ 2) servers that can delegate requests to each other.  

     A given request is split at the GET command as shown in Figure 7. The CS handles the 

connections, and the DS handles the data transfer. In addition to connections, the CS also handles 

the data ACKs and the connection closing. The CS has complete knowledge of the requested file, 

its name, size, and other attributes, but it may or may not have the file itself. However, the DS has 

the file and serves the data to the client. When a TCP connection is split in this manner, the TCP 

sliding window information is updated by S1 based on received ACKs even though the data file is 

sent by S2. Likewise, S2 knows what data has been sent, but it lacks knowledge of what data has 

been actually received by the client. Thus, retransmissions require that ACK information be 

forwarded by S1 to S2 using delegate messages as described below. The number of delegate 

messages exchanged should be kept to a minimum since they add overhead to the system and 

degrade performance.  

     When a client makes a request to S1, its connection is based on (IP3, SourcePort) (IP1, 80). S1 

can serve this request to a client directly, or it can utilize its DS, which is S2, to serve data. The 

decision to use a DS can be made based on several factors such as the maximum number of 

requests that can be processed at S1, the maximum CPU utilization at S1, or resource file 

location. 
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Figure 7. Split Architecture 

          Alternatively, a load balancing algorithm could be used. When S1 chooses to use S2 as a 

DS, it proceeds as follows. After the GET command is received, it sends an ACK to the client and 

also sends a delegate message DM1 to S2 (e.g. DM1). The message DM1 contains the state of the 

request that is stored in S1 in the form of an entry in the TCP table (referred to as a TCB entry). 

When DM1 reaches the DS, it creates its own TCB entry and starts processing this request as if it 

was initiated in the DS itself. When a DS sends data to the client it uses the CS’s IP (IP1).  

     In principle, the Internet setting is not different from a LAN environment since the DS does 

not need to receive any packets sent by the client to IP address IP1. A client located anywhere on 

the Internet can communicate in the usual manner with the CS. Since it is unaware that the DS is 

actually sending the data, it sends the ACKs as usual to the CS with whom the TCP connection 

was established. From the client’s point of view, it has established a connection with IP address 

IP1. Now consider the information that is present in the local routers and switches assuming that 

both S1 and S2 are located in the same LAN. Note that only S1 should respond to ARP requests 



 

36 

 

for IP address IP1. This ensures that any local router receiving the response will have a single 

ARP entry (IP1, MAC S1) in its ARP cache and correctly forward ACKs and connection requests 

sent with destination address IP address IP1 to S1. Note also that the switch to which S1 is 

connected will have the entry (MAC S1, INT1) in its forwarding table, where INT1 is S1’s 

interface to the switch. Likewise, the switch to which S2 is connected has the entry (MAC S2, 

INT2) in its forwarding table, where INT2 is S2’s interface to the switch. When S1 sends a 

delegate message to S2, if they are both on the same LAN, S1 can simply encapsulate the 

message in a MAC layer frame addressed to MAC S2 (i.e., S2 does not need an IP address to 

receive delegate messages from S1). Thus, with these assumptions, switches and routers do not 

need any special configuration for split connections to work. 

     However, if S1 and S2 are on LANs with different subnet prefixes (or in general, on WANs or 

different networks) and communicate through routers, S2 is not reachable using IP address IP1 

since its prefix is not consistent with the network it is on. So it will need to use its own IP address 

IP2 to receive packets including delegate messages from S1. This means that the router for S2 

must have an ARP entry (IP2, MAC S2) for forwarding to S2, which will only be present if S2 

has responded to ARP request for IP address IP2 with its MAC S2. But in this case, if S2 is also 

sending data to a client using IP address IP1 as source, it raises a security issue on S2’s network 

due to IP address spoofing. Such spoofing may cause problems with firewalls due to sending 

topologically incorrect packets. For splitting to work, S2’s network must allow S2 to send with IP 

address S1 and receive with IP address S2; it may also need to send other packets with its own IP 

address IP2 (S1 sends and receives as usual with IP address IP1). Now if S1 and S2 both delegate 

to each other, IP spoofing has to be allowed for S1 (on S1’s network) as well. There are also TCP 

issues with splitting due to its sliding window, duplicate ACKs, fast retransmit, and congestion 

control that need further study. More delegate messages could be used to address some of these 

TCP issues, but this would have a negative performance impact.  
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     As the connection and data transfer are split in the architecture, there is a need to send one or 

more DM messages (DM2s) to DS. At least one DM2 message is needed to indicate that CS 

received the FIN-ACK. If a received ACK indicates that data is lost, retransmission is needed. 

One or more DM2s are needed to handle retransmissions since the DS does not receive any data 

ACKs. The CS monitors the data ACKs and makes a decision to send DM2s as needed. 

Throughout the splitting process, the client is not aware of DS, and there is no need to involve the 

client (unlike M-TCP). The last DM2 message to DS is used to terminate when all data has been 

acknowledged by the client.  

     Splitting results in two possible overheads. Network traffic due to sending DMs to DS, and the 

latency encountered at the client due to DM transmission on the LAN (or WAN) from CS to DS. 

In a LAN environment, this latency is negligible, but may be larger in a WAN or Internet 

environment. The network traffic generated for each request is at least two DM packets; in most 

cases it is two packets assuming no retransmissions. If the DM packet is small (168 bytes in a 

bare PC), the network overhead will be reduced. However, one needs to consider the above two 

overheads of the split request architecture for a given application.  

5.2  Design and Implementation  

     The detailed design and implementation of static and dynamic Web servers that run on a bare 

PC is described in [23]. We only describe the additional design and implementation details that 

are pertinent to splitting the HTTP request and the TCP connection. As mentioned before, the 

TCB entry stores all the state information needed for each request in the split servers. The state 

information captures all the information needed by a bare PC server to process a request. When 

the state is transferred to another server, this is not a process migration [35] since there is no 

process attributed to the request. The state in the TCB entry captures all the information related to 

the client request, and also the state of the request as indicated in the state transition diagram 

(STD) for the HTTP request. The TCP code written for bare PC is a re-entrant code that does not 
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use any local variables. Thus, the STD drives the server engine to process client requests 

independent of any information related to a given executing node. This approach is unique to bare 

PC applications and provides a simple mechanism to move requests from one bare PC server to 

another by simply sending the TCB entry to the other server. This section only addresses delegate 

messages sent from CS to DS to achieve and support the splitting. However, although not 

discussed here, the same mechanism can be used for load balancing in a distributed system.  

     The original bare PC Web server design has three task types: a main task, a receive task, and 

the HTTP task for each request. We found that having a separate HTTP task for each request 

limits the maximum number of requests processed by the Web server. We have changed this 

design to facilitate splitting by eliminating the HTTP tasks. Thus, splitting requires having only 

the main and receive task. This approach resulted in better throughput for the server as it reduces 

task overhead. However, under high load conditions, the response time for the client increases as 

the receive task handles the entire request. We do not investigate the relationship between task 

design and response time in this research. 

     In the new design for splitting, the main task gets control when a PC is booted and it executes 

a continuous loop.  Whenever a new packet arrives or a timer expires, the main task invokes the 

receive task. The receive task processes the incoming packet and updates the TCB entry status. It 

invokes a procedure that handles packet processing. This entire process is executed as a single 

thread of execution (no threads in the system) without any other interrupts except for hardware 

interrupts including timer, keyboard, and NIC transmitter. This simple server design avoids all 

complexity that exists in an OS or kernel-based system. 

 

     The CS can make its decision on whether to split an HTTP request and TCP connection based 

on several factors as mentioned before. When it makes a decision to split, it will assemble DM1 

and send it to its DS. The DM1 (and other DMs) can be sent over UDP or directly as a special 
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message over IP since this message is between bare PC servers. Alternatively, a permanent TCP 

connection could be established between CS and DS to send DMs. However, this will increase 

splitting overhead. DM packets are sent from CS (master) to DS (slave). The CS will process the 

GET message and do appropriate checking before sending the DM packet. Similarly, the CS will 

also check the data ACKs and FIN-ACKs, and monitor the state of data transmission to send DM 

packets when retransmissions are needed. In a LAN environment, retransmissions are rare.     

     The BMC Web server design for split operations is simple and extensible. It does not have any 

unnecessary functionality or overhead due to any other software running in the machine. The 

Web server application object (AO) is the only code running in the bare PC. The AO has 

complete control of the machine and communicates to hardware directly from its application 

program without using any interrupts.  

     The implementation of split servers is done using C/C++ code, and the code sizes are similar 

to our previous designs [40]. The state transition diagram (STD) approach is used to implement 

the HTTP protocol and the necessary network protocols. The bare PC Web server runs on any 

Intel-based CPUs that are IA32 compatible. It does not use any hard disk, but used BIOS to boot 

the system. A USB is used to boot, load, and store a bare PC file system (raw files at this point). 

There was no need to change any hardware interface code during Web server modification to 

handle splitting.  

     The software is placed on the USB and includes the boot program, startup menu, AO 

executable, and the persistent file system (used for resource files). The USB containing this 

information is generated by a tool (designed and run on MS-Windows) that creates the bootable 

Bare PC application for deployment.  
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5.3  Performance Measurements  

5.3.1  Experimental Setup 

     The experimental setup involved Dell Optiplex GX260 PCs with Intel Pentium 4, 2.8GHz 

Processor, 1GB RAM and Intel 1G NIC on the motherboard. A LAN is set up for the experiments 

using a Linksys 16 port GB switch. Linux clients are used to run the http_load [24] stress tool and 

a bare PC Web client. Each http_load stress tool can run up to 1000 concurrent HTTP requests 

per sec. Each bare PC Web client can run up to 5700 HTTP requests per sec. A mixture of bare 

and Linux clients along with bare split servers are used to measure the performance. In addition, 

we tested the split servers with popular browsers running on Windows and Linux (Internet 

Explorer and Firefox respectively).  

 

 

`Figure 8. Internal Timings for HTTP/TCP 
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5.3.2  Measurements and Analysis 

5.3.2.1 Internal Timing Comparison 

     Figure 8 shows the HTTP protocol timing results including the TCP interactions for non-split 

and split servers. A client request is issued to S1, which acts as a CS, and it can delegate the 

request to S2, which is the DS. The client request involves a resource file size of 4K. A 

Wireshark packet analyzer was used to capture and measure timings. The results were used to 

determine the latency overhead involved in splitting. The typical latency measured between GET-

ACK and Header data is about 20 microseconds without splitting and 78 microseconds with 

splitting. That is, the split message and delegate server latency result in about 58 microseconds 

additional delay. The network overhead is two packets: one DM1 message and one DM2 message 

(168 bytes each).  The split and non-split servers have the same behavior except for the additional 

latency mentioned above that contributes to the delay at the DS in sending the header.  

 

                                              

                                                Figure 9. Response/Connection Times 
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5.3.2.2 Response/Connection Times 

      Figure 9 shows the response time and connection time at the client for varying HTTP request 

rates. S1 splits 50% of requests (with 0.5 probabilities) and delegates them to S2. Similarly, S2 

splits 50% of its requests and delegates them to S1. For a 4K resource file size, the non-split 

server can handle up to 8000 requests/sec.  Note that the connection and response times are 

similar. However, these times start increasing rapidly at 5500 requests/sec for the non-split server 

until it reaches its peak performance at 8000 requests/sec. For split servers, similar behavior is 

exhibited by a rapid increase starting at 11000 requests/sec and reaching a peak at 13000 

requests/sec. The split servers provided a performance scale up of (13000/8000 = 1.625). 

However, we found that this is not the maximum capacity of split servers as shown later. The 

split server approach also demonstrates that it can be used for load balancing.   The increase in 

response time and connection times are due to accumulating a large number of requests under 

heavy load conditions, and also due to the high CPU utilization as discussed below.  

5.3.2.3 CPU Utilization 

      Figure 10 shows CPU utilization with respect to load variations for split and non-split cases. 

The CPU utilization reaches 93% for a non-split server and 92% for the split servers. The main 

and receive tasks together take 100% CPU time (93% for the receive task and 7% for the main 

task). When 50% requests are sent from one server to other in both directions, the maximum 

capacity of both servers is reached at 13000 requests/sec.  

5.3.2.4 Varying Split Percentage One-way 

 A non-split server provides a maximum capacity of 8000 requests/sec.  When a split server is 

added, S1 (CS) can split requests and delegate them to S2 (DS). This is one-way from S1 to S2 

only. That is, the S1 server is handling connections and data, and the DS server is only handling 

data transfers. We vary the split percentage at S1 and measure the maximum capacity of this 

server as shown in Figure 11. Note that the maximum capacity of S1 server is 12000 requests/sec. 
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Thus, the S1’s capacity is increased by 50% (12000 instead of 8000 requests/sec) by adding a DS. 

The CPU utilization chart for S1 and S2 is shown in Figure 12. The CPU utilization for S1 did 

not decrease rapidly as it is handling the maximum number of connections in all cases in addition 

to serving data. When it is not serving data at all (split 100%), it shows a drop in CPU utilization 

of about 5%. Also, when S1 acts as a data server it is not consuming much CPU time as the 

sending of data is also part of the receive task.  As the number of split requests increases, the S2 

server is utilized more, and eventually reaches close to saturation as well.  The CPU utilization 

for S1 is 90% and for S2 is 86% at 100% split.  That means, S1 is saturated, but S2 can handle 

more requests as it is only doing data transfers. In this situation, the data server (DS) is not 

saturated as much as the CS. This also implies that the work done by the data server is about 1000 

requests/sec less than the connection server (if both servers share the load equally then the 

capacity of two servers would have been 13000 instead of 12000 requests/sec).  In other words, a 

pure data server has 8.33% more capacity than the connection server (1000/12000).   

5.3.2.5 Varying Split Percentage Both Directions 

      As seen above, varying the split percentage on server S1 increases server capacity to 12000 

requests/sec. Similarly, when the split percentage is kept constant at 50%, the split server capacity 

increases up to 13000 requests/sec as shown in Figure 9. It is apparent that the optimal split server 

capacity should depend on the split percentage and its effect on server overhead. Thus, we 

continued the experiments to find the maximum server capacity by varying split percentage in 

both directions. Figure 13 show the chart for number of requests successfully processed by 

varying the split percentage.  As there are two servers involved here, if each server’s maximum 

capacity is 8000 requests/sec as shown in Figure 9, the theoretical maximum capacity of the 

servers should be 16000 requests/sec. The measurements indicate that the optimal split server 

capacity occurs at 25% (i.e., 25% requests are split by S1 and S2). We measured a combined 

capacity of 14,428 requests/sec when 25% of requests are split. That is, the scalability of split 
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approach is 1.8035 for two servers (maximum can be 2.0). Thus, the two-server system loses only 

20% capacity (10% for each server). 

 

Figure 10. CPU Utilization 

 

 

Figure 11.  Split % (S1 Delegates to S2) 
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Figure 12. Split Server Utilization 

 

Figure 13. Equal Split in Servers    
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     It is evident that the overhead due to splitting operations is about 10% in this system. The CPU 

utilization for S1 and S2 are very close to each other, and the range varies between 95% through 

89%. Figure 14 shows the CPU utilization with respect to varying split percentage. At 25% split, 

the CPU utilization is 92% (which is not the maximum CPU utilization). The CPU utilization 

drops as the split percentage increases, because the data transfer is reduced at the server.  

However, when the split percentage is 100%, the utilization goes back up due to sending and 

receiving delegate messages.  

 

 

Figure 14. Varying Split Ratio on Both Servers 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 20 40 60 80 100 

C
P

U
 U

ti
li

za
ti

o
n

 %
 

Split % 



 

47 

 

5.3.2.6 Varying Resource File Size 

     We varied the resource file size from 4K bytes to 32K bytes to determine its effect on 

splitting. Figure 15 shows the maximum number requests successfully processed with and 

without splitting. In this experiment, S1 and S2 get an equal number of requests, and 25% of the 

requests are split. The splitting percentage of 25% is used as it maximizes split server capacity. 

The results indicate that as the file size increases, the maximum capacity of the server to handle 

requests drops dramatically. This behavior is expected as the HTTP request processing time as 

shown in Figure 9 increases due to processing a large number of packets. The NIC transmitter 

also gets very busy and saturated while handling large number of packets. Figure 16 shows the 

corresponding processor utilizations for S1 and S2 servers.  Notice that the utilizations drop as 

file size increases (since there are a fewer number of requests). 

 

 

Figure 15. File Size Variations 
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Figure 16. CPU Utilization 25% Split 

      

     Our empirical results demonstrate that splitting is feasible in a LAN environment and can be 

used for load sharing without any client involvement or central control. The split server 

scalability as shown (up to 90%) will enable us to develop a scalable BMC cluster architecture 

that can provide reliable service for clients. The architecture can also support the concept of 

delegating requests to other servers (for example to servers storing the data). The splitting 

concept can also be used in cases where one server (connection server) can be a master, and 

another server (data server) can be a slave. Server load balancing can be done based on splitting 

HTTP requests and the underlying TCP requests instead of dispatching requests to other nodes.       

 

     The experimental results also indicate that when HTTP requests are split using two servers and 

delegation is done in both directions (25% delegation to each other), the maximum capacity is 

14,428 requests/sec (the  theoretical limit is 16,000 for two servers). Splitting scalability was 

found to be 1.8035 for two servers (i.e., there is an approximately 10% overhead due to splitting). 

With respect to increasing the file size, it was seen that performance is similar with or without 
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splitting. Moreover, the splitting percentage does not have much impact for larger file sizes. The 

novel splitting technique and associated Web server architecture introduced in this section have 

potential applications in distributed computing and improving server reliability.    
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6. MINI-CLUSTER CONFIGURATION STUDY 

     The initial studies conducted on split servers as shown in section 5 helped us to conceive 

mini-cluster configurations as described in this section. The following sections describe cluster 

configurations, architecture, design and implementation and performance measurements 

conducted on mini-cluster configurations. Also varieties of protocols are proposed for reliable 

multicast with changing topology for a multi-hop mobile radio network [13]. Mini-Cluster 

configuration also offers better reliability because of interchangeable nature of CSs & DSs.     

6.1  Cluster Configurations 

     Figure 7 illustrates generic request splitting [40] and shows the messages exchanged by the 

intertwined HTTP and TCP protocols. Connection establishment and termination are performed 

by one or more connection servers (CSs), and data transfer is done by one more data servers 

(DSs). When a request is split, the client sends the request to a CS, the CS sends an inter-server 

packet to a DS, and the DS sends the data packets to the client. Inter-server packets may also be 

sent during the data transfer phase to update the DS if retransmissions are needed. With partial 

delegation, the CS delegates a fraction of its requests to DSs. With full delegation, the CS 

delegates all its requests to DSs.  

     We consider mini Web server clusters consisting of two or more servers with protocol 

splitting. We then study cluster performance by measuring the throughput and connection and 

response times of three different server configurations with a varying number of CSs and DSs.  

     Configuration 1 in Figure 17 shows full delegation with one CS, one DS, and a set of clients 

sending requests to the CS. The DS and CS have different IP addresses, but the DS sends data to 

a client using the IP address of the CS.   

     Configuration 2 in Figure 18 shows a single CS with two or more DSs in the system with 

partial or full delegation. In partial delegation mode, clients designated as non-split request clients 
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(NSRCs) send requests to the CS, and these requests are processed completely by the CS as usual. 

The connections between the NSRCs and the CSs are shown as dotted lines. With full delegation, 

clients designated as split-request clients (SRCs) make requests to the CS, and these requests are 

delegated to DSs. For full delegation, there are no NSRCs in the system. When requests are 

delegated to DSs, we assume that they are equally distributed among the DSs in round-robin 

fashion. It is also possible to employ other distribution strategies. 

 

 

Figure 17. Split architecture configuration 1 

     Configuration 3 in Figure 19 shows two CSs and one DS with both SRCs and NSRCs. For this 

configuration, we used small file sizes to avoid overloading the single DS. Although we have not 

done so, multiple DSs could be added as in Configuration 3. 
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Figure 18. Split architecture configuration 2 

 

Figure 19. Split architecture configuration 3 
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6.2 Performance Measurements 

6.2.1     Configuration 1 (1 CS, 1 DS, full delegation) 

     In Figure 15, the performance of HTTP splitting with Configuration 1 was evaluated using 

various file sizes up to 32 KB. Here, we study the performance of Configuration 1 by varying the 

file size up to 128 KB and measuring the throughput in requests/sec. Figure 20 shows the results 

of these experiments. It can be seen that the performance of this configuration is worse than that 

of a two server non-split system for all file sizes. This is because the DS is overloaded resulting in 

performance degradation. However, the CS is underutilized since it is only handling connection 

establishment and termination.  For a two server non-split system, we show the theoretical 

maximum performance (throughput) as being double that of a single (non-split) system, which 

was determined experimentally to be 6000 requests/sec. In practice, this theoretical limit for non-

split systems will not be attained due to the overhead of load balancers and dispatchers.     

 

Figure 20. Throughput with increasing file sizes (Configuration 1) 

     Figure 21 shows the CPU utilization for the CS and DS in Configuration 1. The DS’s CPU 

utilization for 64 KB files is close to the maximum, indicating that this configuration cannot 
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handle more than 1500 requests/sec. To get further insight into the performance limitations in this 

case, we determined the impact of connection and response time at the client due to increasing the 

request rate. The results are shown in Figure 22. The response time degrades as the number of 

requests increases starting at 1300 requests/sec and is largest at 1500 requests/sec as expected. 

These results suggest that performance may be improved by adding more DSs and utilizing the 

remaining capacity of the CS.   

 

Figure 21. CPU utilization with increasing file sizes (Configuration 1) 

 

Figure 22.   Connection and response times (Configuration 1, file size 64KB) 
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6.2.2  Configuration 2 (1 CS, 1-3 DS, full delegation) 

     Figure 23 shows the DS throughput for this configuration by varying the number of DSs with 

full delegation for 64 KB files. Adding more DSs improves the throughput as seen in the figure. 

With one DS (i.e. a two-server cluster), 1500 requests/sec can be handled versus the theoretical 

capacity of 2000 requests/sec for two non-split servers ignoring dispatcher or a load balancer 

overhead (about 75% of the theoretical non-split performance). With two DSs, the throughput 

increases to 2500 requests/sec (about 83.3% of the theoretical non-split performance). With three 

DSs, the maximum throughput is 3700 requests/sec compared to the theoretical limit of 4000 

requests/sec for a non-split system (about 92.5% of the theoretical non-split performance). 

     Figure 24 shows connection and response times for Configuration 2 with 64 KB files. 

Although the response time for a single DS is poor, the average response and connection times 

improve significantly when the number of DSs is increased. A single (non-split) server has 

connection and response times of 1.62 ms and 2.38 ms respectively, compared to 365 µs and 922 

µs respectively for a split system with three DSs and one CS (i.e., connection and response times 

are improved by factors of 4.4 and 2.6 respectively). 

 

Figure 23. DS throughput (Configuration 2, file size 64KB) 
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Figure 24. Connection and response times (Configuration 2, file size 64K 

     Figure 25 shows the CPU utilization in Configuration 2 for the CS and DSs with 64 KB files. 

The DS utilization drops as expected due to load sharing, while the CS utilization increases due to 

the increased request rate. However, the CS still has unused capacity to support additional 

requests.  

     The preceding experiments show that the performance of a split system with a single CS and 

three DSs is close to the theoretical limit of a four-server non-split system with respect to both 

throughput, as well as connection and response times. In addition, the CS is still underutilized.  

6.2.3    Configuration 2 (1 CS, 1-3 DS, partial delegation) 

     Configuration 2 with partial delegation and additional clients whose requests are not split (i.e., 

NSRCs) allows more load to be added in order to efficiently utilize the remaining capacity of the 

CS. The requests from NSRCs are completely processed by the CS, while the requests from SRCs 

are split. In this system, we have used 64KB files for requests.  

     Figure 26 compares the throughput for split servers with full and partial delegation. The 

throughput of the split system with partial delegation is more than the theoretical limit for a non-

split system due to fully utilizing the capacity of the CS. For a split system with a single CS and a 
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single DS for 64 KB files, partial delegation improves the throughput by 25%. However, this 

performance gain does not scale up when more DSs are added since the CS is now close to 

capacity. For example, a split system with 3 DSs improves the throughput only by about 10%. 

These measurements indicate that a mini-cluster can only have a limited number of DSs if the 

system is to be self-contained (i.e., without using an external load balancer).   

     Figure 27 compares the throughput for split servers with full and partial delegation by varying 

the file size. The maximum throughput and a performance improvement of 25% are attained for 

64 KB files with partial delegation.  For 100 KB and 128 KB files, the performance 

improvements due to splitting are 17.7% and 12.5% respectively with partial delegation. Figure 

28 shows connection and response times with partial delegation for 64 KB files. As with full 

delegation, response time with partial delegation is poor with only a single DS. However, the 

response time improves dramatically for split systems with two or three DSs and partial 

delegation. Figure 28 shows connection and response times with a partial delegation for 64 KB 

files. As with a full delegation, response time with the partial delegation is poor with only a single 

DS. However, the response time improves dramatically for split systems with two or three DSs 

and partial delegation.  

 

Figure 25.  CPU Utilization (Configuration 2, file size 64KB) 
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Figure 26. Throughput with full/partial delegation (Configuration 2, file size 64KB) 

         

 

Figure 27. Throughput with full/partial delegation for varying file sizes (Configuration 2) 
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Figure 28. Connection and response times (Configuration 2, file size 64KB) 

6.2.4  Configuration 3 (2 CS, 1 DS, partial delegation) 

     As before, requests are generated by a set of SRCs and NSRCs. For this configuration, 4 KB 

files were used since larger file sizes will overload the single DS. Figure 29 shows the throughput 

for three servers with full and partial delegation. Configuration 3 achieves a 6.5% throughput 

improvement over three non-split servers with full delegation; with partial delegation, it achieves 

a 22% improvement in throughput compared to three non-split servers. 

     Figure 30 shows the connection and response times for Configuration 3. As expected, response 

time is poor since the single DS gets saturated with the high request rate that be supported with 

two CSs. With partial delegation, response times improve significantly as the unused CS capacity 

is used to handle requests from the NSRCs without delegation. While the connection and 

response times using Configuration 3 are worse than for non-split servers, this disadvantage 

should be weighed against the increased throughput, cost, and security benefits of using a split 

system. Also, non-split servers will incur a reduction in response and connection times due to the 

overhead of using a dispatcher or load balancer. 
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Figure 29. Throughput with full/partial delegation (Configuration 3, file size 4KB) 

 

 

Figure 30. Connection times and response times with full/partial delegation 

 (Configuration 3, file size 4KB) 

     We studied the performance of mini Web server clusters with HTTP request splitting, which 

does not require a central load balancer or dispatcher, and is completely transparent to the client. 

Throughput as well as connection and response times with full and partial delegation of requests 
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were measured for a variety of file sizes. A split system with one CS and three DSs, and full or 

partial delegation, can be used to achieve response times, connection times and throughput close 

to, or better than, the theoretical limit of non-split systems. For example, this configuration with 

partial delegation achieves a 10% throughput increase for 64 KB files compared to four non-split 

servers and response times that are only slightly less. The same configuration with full delegation 

improves response times for 64 KB files by a factor of 2.6 over the equivalent non-split system, 

while achieving 92.5% of its theoretical throughput.  For a split system with two CSs and one DS 

and partial delegation, a 22% improvement in throughput over three non-split servers is obtained 

for 4 KB files with response times that are close to those of a non-split system.  

     We also discussed the impacts of splitting. When evaluating the tradeoffs of splitting versus 

non-splitting, it is necessary to consider the overhead and cost of load balancers and dispatchers, 

which will result in less throughput and worse response times than the theoretical optimum values 

we have used for non-split systems. The experimental results appear to indicate that scalable Web 

server clusters can be built using one or more split server systems, each consisting of 3-4 servers. 

The performance of split servers depends on the requested file sizes, and it is beneficial to handle 

small file sizes at the CS and larger files with partial delegation to DSs. It would be useful to 

study performance of split server systems in which resource files of different sizes are allocated 

to different servers to optimize performance. More studies are also needed to evaluate the security 

benefits of split server clusters, and their scalability and performance with a variety of workloads. 

While these experiments used bare PC Web servers with no OS or kernel for ease of 

implementation, HTTP requests splitting can also be implemented in principle on conventional 

systems with an OS. 
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7. MODIFIED CLIENT/SERVER ARCHITECTURE 

7.1 Background 

     In today’s Internet world, client server architecture is very well-known in networking. It 

assumes a persistent connection between a client and a server. The design and implementation of 

clients and servers make this assumption to monitor their connections and provide appropriate 

responses. We modify this paradigm slightly to suit for split protocol concept. Our approach 

proposes this modification to accommodate split protocol implementation. The following sub-

sections describe background, design and implementation, and experimental results.  

 

     An HTPP protocol intertwined with a TCP protocol is shown in Figure 1.  The split protocol is 

studied in Section 5 and Section 6.  In those cases, the CS handles all connection related to 

interfaces and communicates to the client in two directions.  The DS only communicates to the 

client in one direction, i.e. sending data to the client. The CS also sends an inter-server packet to 

DS to provide client’s request and its state. The CS is connected to the client throughout its 

session or during its processing of a given request. In such architecture one CS interfaces with 

one or more DSs to provide client services and thus becomes a bottleneck in a given mini-cluster 

configuration [41].  

     To address such bottleneck, we propose a split protocol at an architectural level thus resulting 

in a modified client server architecture, where connections and data transfers are separated 

entirely. In this approach, the data servers (one or more) can be located at a separate location than 

their counter part connection server. The CSs can be monitored for ongoing connections and the 

clients are isolated from data servers. The CS and DS servers can have a tight connection to serve 

client requests thus providing increased security at a server level. When a connection is 

established between a client and a CS, the CS will send an inter-server packet to a DS and 

terminate its connection processing, where a DS can finish the rest of the session to send 
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data and close the connection.  Such modified client server interactions are shown in 

Figure 31. Notice that client sends interactions SYN, SYN-ACK-ACK and GET to CS and CS 

sends SYN-ACK and GET-ACK only to the client. After CS processes the connection, it sends a 

message to DS through an inter-server packet and eliminates this connection at CS. The rest of 

the connection and related interactions related to DATA, ACK and FIN-ACK will be dealt by 

DS. We have freed up CS completely after the GET is processed.   

     In real world applications, some servers may be close to data sources, and some servers may 

be close to clients. Splitting a protocol request and the underlying TCP connection in this manner 

allows servers to dynamically balance the workload. We have tested the splitting concept in a 

LAN that consists of multiple subnets connected by routers. In protocol splitting, clients can be 

located anywhere on the Internet. However, there are security and other issues that arise when 

deploying clusters in an Internet where a CS and a DS are on different networks [40].  

     Splitting protocol at a client server architecture level is different from migrating TCP 

connections, processes or Web sessions; splicing TCP connections; or masking failures in TCP-

based servers.  As per our knowledge, no work on splitting protocol connections at client server 

architectural level has been done before. 

 

Figure31. Split Protocol Architecture 
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7.2    Design and Implementation 

     Split protocol client server architecture design and implementation differ from traditional 

client and server designs. As the traditional client server architecture is modified in this approach, 

we have designed and implanted a client and a server based on a bare PC, where there is no 

traditional OS or kernel running in the machine. This made our design simpler and easier to make 

modifications to conventional protocol implementations. Figure 32 shows a high level design 

structure of a client and server in a bare PC design. Each client and a server consist of a TCP state 

table (TCB), which consists of the state of each request. Each TCB entry is made unique by using 

a hash table with key values of IP address and a port number. The CS and DS TCB table entries 

are referred by IP3 and Port#. The Port# in each case is the port number of the request initiated by 

a client. Similarly, the TCB entry in the client is referenced by IP1 and Port#.  

     The TCB tables form the key system component in the client and server designs. A given entry 

in this table maintains complete state and data information for a given request. This entry requires 

about 160 bytes of relevant information and another 160 bytes of trace information that can be 

used for trace, error, log, and miscellaneous control. This entry information is independent of its 

computer and can be easily migrated to another PC to run at a remote location. This approach is 

not same as process migration [36] as there is no process information contained in the entry. The 

inter-server packet is based on this entry to be shipped to a DS when a GET message arrives from 

the client.      
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Figure 32. Design Structure 

 

     Notice that the client uses IP1 and Port# to address the TCB entry.  That means, when DS 

sends data or other packets, then it must use IP1 as its source address and its own MAC address in 

the packet. However, a client must be aware of IP1 and IP2 addresses to communicate to two 

servers for different purposes. Client knows IP1 through its own request and by resolving the 

server’s domain name. The client does not know IP2 address to communicate during the data 

transmission.  We solved this problem by including the IP2 address in the HTTP header using a 

special field in the header format. In this design, a client could get data from any unknown DS 

and it can learn the data server’s IP address from its first received data (i.e. header). This 

mechanism simplifies the design and implementation of split protocol client server architecture.  

This technique also allows the CS to distribute its load to DSs based on their CPU utilization 

without resorting to complex load balancing techniques [41]. 



 

66 

 

     We have taken an existing bare PC server design and created CS and DS elements. The CS 

design turned out to be fairly simple as its sliding window and data transmission logic is 

removed.  The DS design also became somewhat simpler by removing the connection logic.  

     For a bare client implementation, a bare PC server design is modified by swapping the roles of 

client and server interactions. We had to create client request generator logic in addition to the 

server logic. The code and environment used for bare client and server are similar to split 

protocol servers described in Section 5 and Section 6.  

      

7.3    Experiment Results  

7.3.1   Experimental Setup 

     The experimental setup involved a prototype server cluster consisting of Dell Optiplex GX260 

PCs with Intel Pentium 4, 2.8GHz Processors, 1GB RAM, and an Intel 1G NIC on the 

motherboard. All systems were connected to a Linksys 16 port 1 Gbps Ethernet switch. Bare PC 

clients were used to stress test the servers.  The bare PC Web clients capable of generating 5700 

requests/sec were used to create workload.  

7.3.2   Configurations 

     Figure 33 shows a general configuration for connecting one CS, one or more DSs and one or 

more clients. All units are based on bare PC applications. Resource file size of 64K is used 

throughout our measurements. The CS will delegate all its requests to one or more DSs for data 

processing.  
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Figure 33. Split Architecture Configurations 

 

7.3.3      Measurements: 1-4 DSs, Performance 

     Figure 34 shows our first set of measurements which are conducted using CS, 1-DS; CS, 2-

DSs; CS, 3-DSs, and CS, 4-DSs.  A minimum configuration of a split protocol client server 

system consists of one CS and one DS (a server pair). We measured that this pair can serve up to 

900 Requests/sec for 64K file size. When the number of DSs is varied, then it shows a linear 

behavior in its performance improvement.    

     Figure 35 shows CPU utilizations for CS and DS. Notice that the CS utilization gradually 

increases up to 20% for 4 DSs. The DS utilization is maximized as we stress the server with peak 

capacity to conduct this experiment.  

      We expect the linear performance of the pair to continue until the CS gets saturated. The 

linear performance is also expected because the CS causes no bottleneck and all DSs execute 

concurrently and independently to process client requests.  The number of servers connected to a 

single CS server can be estimated to be 15, by extrapolating from the above charts, the CS CPU 

time and the number of DSs. In similar study for split protocol based on conventional client 

server architecture, it is shown that one CS can support up to 4 DSs before it gets saturated [42]. 

The one CS and 4 DS configuration was referred to as a mini-cluster.  This study based on split 
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protocol for the modified client server architecture indicates that the CS and DS based clusters 

can scale up to 15 DSs thus forming large cluster configuration for split protocols. Such clusters 

can be potentially used in building large server clusters similar to Google clusters [4].  

 

Figure 34.Varying DSs, Performance Chart     

 

 

Figure 35.   Varying DSs, CPU Utilization 
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7.3.4      Measurements: 1-4 DSs, Actual Times 

     Figure 36 shows the actual real time taken by a client server configuration for processing 

1,620,000 total requests. Once again, these configurations indicate that the amount of time taken 

to process the total requests is inversely proportional to the number of DSs added to the system. 

Such behavior is very difficult if not impossible to realize in a typical cluster for servers. A 

typical cluster of servers also requires some external load balancing techniques and thus are prone 

to load balancing overhead. The proposed CS, DS cluster manages the load balancing internal to 

CS operation thus eliminating the load balancing overhead. In addition, the partitioning of the 

load for DSs at CS level is simpler as it has a tight communication with all its DSs. In our 

measurements, we used a round robin approach to delegate requests which costs no penalty in 

load distribution.  

 

Figure 36.   Varying DSs, Actual Times 
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Figure 37. Varying ACKs, Performance Chart 

Measurements: 1-4 DSs, Varying Acks 

 

     In order to improve DS performance further, we varied client responses (ACKs) for data by 

modifying the client code. Instead of sending ACK for each data packet received, we limited the 

ACKs to one for the entire data and one for closing the connection (FIN-ACK-ACK). This 

approach is similar to the concept of negative ACKs (ACK is only sent when data is not 

received). By reducing the data ACKs to a minimum, we measured the performance for one to 

four DSs as shown in Figure 37.  This graph also plots the number of requests/sec for normal 

ACKs to make a relative comparison of data with ACKs and with limited ACKs.  Observe that 

the limiting the ACKs for data, the performance improved by 48% at DS level.  



 

71 

 

 

Figure 38.   Varying ACKs, Utilizations 

 

     Figure 38 plot shows the CPU utilizations for CS and DSs with varying ACKS.  The DS 

utilization has peaked due to maximum stress of the load from the clients.  Surprisingly, the CS 

utilization increased with limited ACKs because now the CS is handling more requests than 

before. 

     With limited ACKs, the linear performance improvement continues up to 4 DSs. This is also 

expected as CS poses no bottleneck for 4 DSs. For limited ACKs, the number of DSs connected 

to a single CS can be estimated to be 13 by extrapolating the CS CPU time and the number of 

DSs.   

     Thus, a typical CS-DS cluster may contain up to 13 DSs with limited ACKs and 15 DSs with 

normal ACKs. As per Figure 37, variation of ACKs resulted in 48% improvement for 4 DSs. 

However, as per Figure 38, the CPU utilization increased from 24% to 29%, for the four DS 

system due to handling additional load.  Thus, the 48% improvement shown for 4 DSs may not 

continue for large number of DSs in the system.  
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7.3.5 Lack of comparison with OS based systems 

     We could not provide any measurements for comparison of bare machine computing based 

servers and clients with respect to OS based systems, as it is very difficult to implement split 

protocols on them. Most of the OS based server and client systems do not provide easy access to 

split the protocol as we demonstrated in this section, and also in [41].  The bare machine 

computing and its application base allow easy access and modification to underlying protocols 

and their implementation. Our research findings provided in this section may provide motivation 

for other investigators to tackle the daunting task to implement split protocols on OS based 

systems.  

7.4 Impacts of Modified Splitting Protocol  

     Splitting is a general approach that can be applied in principle to any application protocol that 

uses TCP (it can also be applied to protocols other than TCP to split the functionality of a 

protocol across machines or processors). In particular, splitting the protocol within a client server 

paradigm requires modification in the client server architecture. This approach impacts current 

server and client architectures and designs. However, this approach adds a new dimension and 

alternatives to current client server computing. Some of the issues and impact related to this novel 

approach are listed below: 

 Split protocol configurations based on connections and data can be used for constructing 

large server clusters (4-15 DSs) 

 A scalable performance can be achieved by adding DSs to the cluster without paying any 

penalty to load balancing overhead 

 A uniform response time can be achieved by adding additional DSs as they work 

independently and concurrently in the system  
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 Complex load balancing techniques and dispatchers are not needed  

 Connections and data transfers can be completely isolated in reference to clients (this may 

provide additional security due to data server isolation)  

 Connection and data servers can be located in different places, especially data servers can 

be located in close proximity to data  

 Client connections can be easily monitored without interrupting the client data 

communication  

 Server designs can be simplified, especially the CS design is much simpler and 

manageable 

 This approach can also be used for database servers and file servers. 

     

The configurations studied and the results obtained in this section can be viewed as a first step 

to validate the applicability of splitting connections and data transfers as a general concept. In 

future, it would be of interest to investigate its applicability to other protocols and applications.   

 

     In this section we studied the performance of split protocols for connection and data servers 

for a modified client server computing system. This approach requires modifications to current 

client and server designs and implementations. We demonstrated scalable server architecture to 

construct large cluster of servers.  We have shown some design and implementation details of 

constructing a bare PC based client server elements. We have shown performance improvements 

up to 48% in DS when a limited number of ACKs used for data transmissions.  

      

    We also discussed the impacts of splitting. When evaluating the tradeoffs of splitting versus 

non-splitting, it is necessary to consider the overhead and cost of load balancers and dispatchers, 
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which will result in less throughput and worse response times. We could not compare this 

approach with conventional servers and clients due to the difficulty in implementations. More 

studies are also needed to evaluate the security benefits of split server clusters, and their 

scalability and performance with a variety of workloads. While these experiments used bare PC 

Web servers and clients with no OS or kernel for ease of implementation, it may be possible 

implement these concepts in an OS based Web applications.  
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8. SIGNIFICANT CONTRIBUTIONS 

 

    Splitting is a general approach that can be applied in principle to any application protocol 

that uses TCP (it can also be applied to protocols other than TCP to split the functionality of a 

protocol across machines or processors). In particular, splitting the HTTP protocol has many 

impacts in the area of load balancing. We discuss some of these impacts below.  

 Split protocol configurations can be used to achieve better response and connection times, 

while providing scalable performance. Splitting also eliminates the need for (and 

overhead/cost associated with) external load balancers such as a dispatcher or a special 

switch.  

 Split protocol Configuration 2 (with one CS, one DS) and partial delegation achieves 25% 

more performance than two homogeneous servers working independently. This performance 

gain can be utilized to increase server capacity while reducing the number of servers needed 

in a cluster. 

 Split server architectures could be used to distribute the load based on file sizes, proximity to 

file locations, or security considerations. 

 The results obtained in this section (using specific machines and workloads) indicate that 

mini-cluster sizes are in the single digits. More research is needed to validate this hypothesis 

for other traffic loads. However, if we assume that mini-clusters should contain a very small 

number of nodes, they would be easier to maintain and manage (compared to larger 

clusters). Using mini-clusters, it is possible to build large clusters by simply increasing the 

number of mini-clusters.  
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 Splitting protocols is a new approach to designing server clusters for load balancing. We 

have demonstrated splitting and built mini-cluster configurations using bare PC servers. 

However, the general technique of splitting also applies to OS-based clusters provided 

additional OS overhead can be kept to a minimum (and that undue developer effort is not 

needed to tweak the kernel to implement splitting).  

 When protocol splitting uses two servers (CS and DS) it dramatically simplifies the logic 

and code in each server (each server only handles part of the TCP and HTTP protocols 

unlike a conventional Web server that does both protocols completely). Thus, the servers are 

less complex and hence have inherently more reliability (i.e., are less likely to fail).  

 Splitting can also be used to separate the “connection” and “data” parts of any protocol (for 

example, any connection-oriented protocol like TCP). In general, connection servers can 

simply perform connections and data servers can provide data. It can also be used to split the 

functionality of any application-layer protocol (or application) so that different parts of the 

processing needed by it are done on different machines or processors. Thus, a variety of 

servers or Web applications can be split in this manner. This approach will spawn new ways 

of doing computing on the Web.        

 

   In addition to the above list of items, we also consider some of the impacts of modified 

client server architecture innovations as listed in 7.4 are also our major contributions to the 

split protocol server and client arena.  The configurations studied and the results obtained in 

this section can be viewed as a first step to validate the applicability of splitting as a general 

concept. In future, it would be of interest to investigate its applicability to other protocols 

and applications either on bare or OS based systems.   
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9. CONCLUSION 

This doctoral dissertation introduced a novel concept called split protocol. The split protocol 

proposed here divides current single server architecture into a connection server (CS) and a data 

server (DS). The CS handles connection establishment and termination, and the DS handles data 

transfers. When a single server is divided into dual servers, it was discovered that it offers many 

unforeseen benefits. It was found that dual servers (CS, DS) outperform two single servers. In 

some cases, it outperformed about 25% more than two independent servers for the same 

workload. When dual servers are used, the CS has much less work to do and has more capacity 

left over. And the DS doing data transfers gets saturated at high workloads. Thus, a single CS can 

communicate with multiple DSs to constitute a mini-cluster configuration.  The mini-cluster 

consists of one CS and 1-3 DSs providing better response time, connection time, and throughput 

than non-split systems. 

 In mini-cluster configurations, a CS can delegate all requests to DS to process data or it can 

also process some requests on its own resulting in a partial delegation. The variation of split can 

provide a new design option in server designs. When a CS performs partial delegation, we found 

that the mini-clusters always result in higher performance than conventional non-split servers.  

The split protocol concept was further extended to modify current client server paradigm. If 

we make CS only provides connection establishment and DS provides data transfer and 

termination, then the CS has much more capacity to handle connection establishments. Also, 

there is no need for CS to wait for a request to be completely processed. However, this poses 

more workload on DS thus requiring more DSs in the cluster. This approach also results in a 

larger clusters consisting of one CS and many DSs. This technique requires the client to be aware 

of more than one DS, whom ever provides data for its connection. The client server architecture 

needs such modification to accommodate this new concept. We have demonstrated the idea by 
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using the HTTP header where we included the DSs address, so that the client now can 

communicate with this DS for ACKs and closing connections. This modification results in a 

greater benefit than one can expect. Now, there can be more than one DS providing the data for 

clients in an interleaved fashion.  

The split concept demonstrated in this dissertation offers numerous benefits as mentioned 

before. As CS and DS consist of the entire state of a given request, it can be used as a fault-

tolerant system. When a CS crashes, DS can function as CS and vice versa. There is no need to 

shadow servers if you use split server or mini-cluster configurations. There can be greater 

reliability of clusters achieved used split server configurations.  The data can be placed on DSs 

and DSs can be located close to clients. The data locality can be used to configure clusters. The 

load balancing is done inherently without using any complex dispatching or load balancers in the 

clusters. The mini-cluster configurations are also easy to manage as they have small number of 

servers. The split protocol concept can also be used for other communicating systems and 

protocols. When split protocol servers and clients are used in the Internet environment, one can 

easily track user for connections without disrupting the data communication.  The clients are 

completely shielded from DSs as they do not have direct communication with them during 

connection establishment. We also believe that this will provide more security to servers than a 

non-split protocol based servers. We have demonstrated split servers using the bare machine 

computing paradigm and run on bare PCs. The demonstrations were also limited to LAN 

environment as current WAN architecture is not amicable to the split architecture. However, the 

concept can be extended to OS based systems and WAN with some architectural modifications. 

When split protocol concept is widely used on the Internet, it could bring a major revolution in 

networking architectures and protocols and provide inherent security, load balancing, tracking, 

reliability and distributed clusters.      
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APPENDIX DATA TABLES 

 

 

No  of Requests / 

Seconds 
 

Connection Time 

(Micro Seconds) 

Response Time 

(Micro Seconds) 

1000 151.1 130.5 

2000 144.4 137.9 

2500 155.2 143.8 

3000 154.2 153.3 

3500 154.9 163.4 

4000 159.7 198.9 

4500 165.5 199.3 

5000 167.4 208.9 

5500 173.7 244.6 

6000 325.54 327.6 

 

Table 1 for Figure 3:  No. of Connections versus Processing Time 

 

 

 

No  of Requests / Seconds 

 

Maximum Queue Size  

 

1000 33 

2000 37 

2500 45 

3000 49 

3500 52 

4000 55 

4500 62 

5000 74 

5500 78 

6000 91 

 

 

Table 2 for Figure 4:  Maximum Queue Size  
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Table 3 for Figure 5: Connections vs. Max Queue Size 

 

 

RCV % HTTP% 

10.303 7.1345 

19.6492 13.3443 

28.9999 19.0995 

37.7314 24.7629 

46.2538 30.1946 

54.7714 35.7696 

55.1409 36.0885 
 

Table 4 for Figure 6:  HTTP/RCV Task Utilization Plot 

Processing  Time No-Split Split 

Syn 0 0 

Syn-Ack 96 83 

Ack 118 108 

Get 295 349 

Ack 401 451 

Header 421 529 

Data 601 697 

Ack 627 720 

Data 716 815 

Last -Data 861 952 

Ack 906 987 

Fin-Ack 2155 2304 

Ack 2190 2364 
 

Table 5 for Figure 8:  Internal Timings for HTTP/TCP 

 

No of 

Requests RCV % HTTP% Main % 

1000 10.303 7.1345 82.5625 

2000 19.6492 13.3443 67.0065 

3000 28.9999 19.0995 51.9006 

4000 37.7314 24.7629 37.5057 

5000 46.2538 30.1946 23.5516 

6000 54.7714 35.7696 9.459 

6100 55.1409 36.0885 8.7706 
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No of Requests 

CT-Non-

Split CT-Split 

RT-Non-

Split RT-Split 

1000 0.125716 0.113994 0.105708 0.12407 

2000 0.127928 0.120679 0.119219 0.12541 

3000 0.134485 0.118946 0.124039 0.1309 

4000 0.165464 0.134295 0.133748 0.14495 

5000 0.171535 0.13335 0.13789 0.15034 

6000 0.257208 0.138479 0.176372 0.14768 

7000 0.368291 0.138479 0.32637 0.17445 

8000 5.90293 0.151729 6.49287 0.17445 

9000  0.153822  0.18135 

10000  0.153822  0.22161 

11000  0.235445  0.21355 

12000  3.32499  3.49526 

13000  5.7493675  6.84714 

 

Table 6 for Figure 9:  Response/Connection Times 

 

No of Requests Non-Split  CPU % Split CPU % 

1000 22 13 

2000 39 24 

4000 64 44 

6000 89 61 

8000 93 76 

9000 
 77.5 

11000  85.5 

12000  89 

13000  92 

 

Table 7 for Figure 10:  CPU Utilization  
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Split% No of Requests 

0 8000 

25 8400 

50 9000 

75 10500 

100 12000 

  

                     Table 8 for Figure 11: Split % (S1 Delegates to S2)  

 Split% 

S1  

CPU Utilization 

S2   

CPU Utilization 

0 93 0 

25 93 24 

50 89 37 

75 95 80 

100 90 86 

 

Table 9 for Figure 12: Split Server Utilization 

Split Ratio No of Requests 

0 16000 

25 14428 

50 13000 

75 11918 

100 10600 

                                           

Table 10 for Figure 13:  Equal Split in Server 

Split % CPU Utilization 

0 95 

25 92 

50 92 

75 89 

100 95 

 

Table 11 for Figure 14:  Varying Split Ratio on Both Servers 
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                                             Table 12 for Figure 15:  File Size Variations  

 

File Size in KB 

S1 

Utilization S2 Utilization 

4 95 87 

8 74 72 

16 72 73 

32 35 35 

 

Table 13 for Figure 16:  CPU Utilization 25% Split 

 

File Size (kb) Two Non-Split Servers Two Split Servers 

4 12000 11333 

10 8800 6000 

64 2000 1500 

100 1600 1200 

128 1333 766 

 

 

Table 14 for Figure 20:  Throughput with increasing file sizes (Configuration 1) 

 

 

File Size (KB) No_Split 
Split 

4 8000 14428 

8 4500 7400 

16 3000 5000 

32 1833 2000 
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File Size in 

KB CS DS 

4 78 55 

10 49 74 

64 25 92 

100 12 93 

128 10 95 

 

Table 15 for Figure 21:  Throughput with increasing file sizes (Configuration 1) 

 

No of Requests Connection Time Response Time 

1000 1.616961 2.38289 

1100 0.338735 1.19293 

1233 0.347395 1.40013 

1300 0.35902 1.5338 

1400 0.38095 11.9675 

1500 0.35362755 12.59415 

 

 

Table 16 for Figure 22:  Connection and response times (Configuration 1, file size 64KB) 

 

No  of Servers No of Requests 

0 1000 

1 1500 

2 2500 

3 3700 

 

Table 17 for Figure 23:  DS throughput (Configuration 2, file size 64KB) 
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No DSs Connection Time Response Time 

1 0.35362 12.594 

2 0.3702625 1.07056 

3 0.36521 0.92209 

 

Table 18 for Figure 24:  Connection and response times (Configuration 2, file size 64K) 

 

DSs DS CS 

1 98 18 

2 91 27 

3 87 25 

 

Table 19 for Figure 25: Connection and response times (Configuration 2, file size 64K) 

 

No of DSs No Split Full Delegation Partial Delegation 

1 1000   

2 2000 1500 2500 

3 3000 2500 3300 

4 4000 3700 4400 

 

Table 20 for Figure 26: Throughput with full/partial delegation 

 (Configuration 2, file size 64KB) 

 

File  Size  No  Split Partial Delegate 

64 2000 2500 

100 1600 1883 

128 1333 1499 

 

Table 21 for Figure 27: Throughput with full/partial delegation for varying file sizes 

(Configuration 2) 
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DSs Connection Time Response Time 

0 1616 2382 

1 1208 7382 

2 1008.33 2248.79 

3 1041.02 1952.13 

 

Table 22 for Figure 28: Connection and response times (Configuration 2, file size 64KB) 

 

 

 1 Server 3 Servers 

No Split 6000 18000 

Full Delegation  19166 

Partial Delegation  22000 

 

 

Table 23 for Figure 29: Throughput with full/partial delegation  

(Configuration 3, file size 4KB) 

 

 Connection Time Response Time 

1 Server 346.4333333 340.4666667 

Full  Delegation 582.171 5916.86 

Partial Delegation 1099.592 1731.14 

 

 

Table 24 for Figure 30: Connection times and response times with full/partial delegation 

(Configuration 3,4KB) 

 

No  of  Ds No of Requests/Sec 

1 900 

2 1800 

3 2700 

4 3600 

 

 

Table 25 for Figure 34: Varying DSs, Performance Chart 
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No  of  Ds CS-CPU DS-CPU No of Requests 

1 5 95 900 

2 11 94 1800 

3 17 95 2700 

4 24 95 3600 

 

 

Table 26 for Figure 35: Varying DSs, CPU Utilization 

 

 

No of DS Total  Time In Sec 

1 604 

2 301 

3 204 

4 106 

 

Table 27 for Figure 36: Varying DSs, Actual Times  

 

 

 

 

No DSs No of Requests- A No of Requests- B 

1 900 1332 

2 1800 2664 

 3 2700 3996 

4 3600 5328 

 

 

Table 28 for Figure 37: Varying ACKs, Performance Chart 
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No DSs 

CS- Limited 

Acks 

DS-Limited 

Acks 

CS- Normal 

Acks 

DS-Normal 

Acks 

1 6 95 5 95 

2 13 96 11 94 

3 21 96 17 95 

4 29 96 24 95 

 

 

 

Table 29 for Figure 38: Varying ACKs, Utilizations 
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two ways; it results in one server providing the connection establishment and closing and 

the other server providing the data transfer. The communication between a client and its 

original connected server remains the same, and the session is totally transparent to the 

client. This approach has resulted in many interesting server configurations and   

advocates optimal mini-cluster configurations for designing high performance clusters. 

This thesis focus on studying and conducting performance measurements on various 

connection and data servers and developed optimal load balancing techniques based on 

Web server resource file sizes and full or partial delegation of client requests. The split 

protocol concept demonstrated in this thesis has broader implications in general on any 

protocol design and its implementation.  It also allows users to dedicate servers which 

only supply data, and they are completely hidden from their clients.  This approach may 

also suggest better techniques for achieving more security in servers. This work also 



 

94 

 

serves as a cornerstone for developing and implementing future network protocols based 

on a split concept.    

Research Experience 

Over the three year period, the doctoral thesis work has provided me with incredible 

experience and knowledge. During this time, I have learned how to identify and solve 

problems in real word. The split protocol thesis was implemented on a bare machine 

server, where there is no operating system or a kernel.  Understanding and mastering the 

bare machine computing posed me with a daunting challenge. Building bare machine 

Web servers and clients based on the split concept provided me with vast knowledge and 

experience in software development and testing. It also enabled me to master various 

networks protocols including: HTTP, TCP/IP, and Ethernet. Numerous benchmark tools 

such as “httpref,”  “htpp_load,” and “Wire-shark” were used during the research. Other 

network elements such as Gateways, Switches, and Routers were used to build a local 

Internet to conduct performance measurements. Installation and configuration of Linux 

expertise were needed to set up and run clients on Linux systems.  

In addition to the above practical experience, I have mastered the academic aspect of 

research including: literature search, identifying research issues, solving technical 

problems, planning and executing research plans, writing peer reviewed papers and 

presenting at professional conferences.    

Research Publications 

(1) B.Rawal, R. Karne, and A. L. Wijesinha.  “Splitting HTTP Requests on Two Servers.” 

The Third International Conference on Communication Systems and Networks: 

COMPSNETS 2011, January 2011, Bangalor, India.  

(2) B. Rawal, R. Karne, and A. L. Wijesinha. “Insight into a Bare PC Web Server.”  

CAINE-2010, 23nd International Conference on Computer Applications in Industry 

and Engineering,  November 8-10, 2010, Imperial Palace Hotel, Las Vegas, Nevada 

USA. 

(3) B. Rawal, R. Karne, and A. L. Wijesinha. “Mini Web Server Clusters based on HTTP 

Request Splitting”   HPCC 2011 : The 13th IEEE International Conference on High 

Performance Computing and Communications ,Sep 2, 2011 - Sep 4, 2011, Banff, 

Canada 

(4)  B. Rawal, R. Karne, and A. L. Wijesinha. “Split Protocol Client/ Server Architecture” 

Submitted  to ISCA. 

Teaching Experience 

I have taught a variety of courses at an undergraduate level over past four years during 

the graduate study at Towson University. The teaching experience spreads across 

multiple disciplines, including: computer science, physics, and information management.  

This background clearly reflects my undergraduate and graduate education. Some of the 

courses include COSC109 (Computers and Creativity), PHY100 (Understanding 
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Physics), PHY212 (General Physics II – Electricity, Magnetism, & Light), MGMT 337 

(Information Technology Management).  In addition I have also acted as a substitute 

teacher for graduate courses at Towson University for COSC519 (Operating Systems-I) 

and COSC650 (Data Communication Networks).    

Teaching Methodology 

My teaching methodology focuses on various aspects of teaching and learning 

strategies. In the beginning of a class, I learn the student background and their depth of 

knowledge. Clear objectives of a course will be given to students in the beginning of 

class. In every class student will be given an opportunity to ask questions and make the 

class interactive and live. The teaching will involve state-of-the art tools and Web-based 

learning. Many hands-on experiments and challenging homework assignments and 

projects will be given to students. Students will be always encouraged to explore new 

ideas and participate in discussions and group learning. Each semester, I take student 

evaluations seriously; consider their comments and criticism, and take appropriate actions 

to correct my teaching style and methodology. I relentlessly improve my teaching 

knowledge and methodology by reading, involving in research, attending professional 

conferences, participate in professional organizations and working with other peers.      

Industrial Experience 

Over a ten year period, I have gained value added experience in a pharmaceutical 

company in India. Starting with a junior level marketing job, I was rapidly promoted to a 

high level manager in the organization, where I made significant contributions to the 

organization. This experience improved my personal, communication and managerial 

skills. During this period, the broad experience gained varied from marketing new 

products, branding products, dramatically improving sales, managing employees 

successfully, help employees to increase their productivity and job retention. This broad 

people’s skills helped me to become an effective teacher and a researcher.    

Professional Affiliations 

Member of International Society for Computers and Their Applications (ISCA),  

IEEE, American Marketing Association (AMA), Honor society of Marketing Mu Kappa 

Gama and International Student Organization,   

Service Activities 

- Department seminars and presentations 

- Marketing research for WYPR public radio, 2008 

- Developed various educational tools (Inertia-less magnetometer) 

- Student Advising  

- Tutoring.  
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Honors and Awards 

- World’s coolest business writing competition “Moshpit,“ Grater Baltimore 

Technology Council, 2008  

- International Student Scholarship award for Books: Merick Business school 

academic achievement scholarship awards 2008  

- Merit Scholarship, South Gujarat University, India.  
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