

ABSTRACT

Title of thesis: CONNECTING DEEP NEURAL NETWORKS
WITH SYMBOLIC KNOWLEDGE.

Arjun Kumar, Master of Science, 2016

Thesis directed by: Dr. Tim Oates
Department of Computer Science and
Electrical Engineering

Neural networks have attracted significant interest in recent years due to their

exceptional performance in various domains ranging from natural language process-

ing to image identification and classification. Modern deep neural networks demon-

strate state-of-the-art results in complex tasks such as epileptic seizure detection

[14] and time series classification [18]. The internal architecture of these networks,

in terms of learned representations, still remains opaque. This research addresses

the first step in the long term motivation to construct a bi-directional connection

between the raw input data and their symbolic representations. In this research, we

examined whether a denoising autoencoder can internally find correlated principal

features from input images and their symbolic representations which can be used

to generate one from the other. Our results indicate that using symbolic represen-

tations along with the raw inputs generates better reconstructions. Our network

was able to construct the symbolic representations from the input as well as input

instances from their symbolic representations.

CONNECTING DEEP NEURAL NETWORKS WITH SYMBOLIC
KNOWLEDGE.

by

Arjun Kumar

Master’s thesis submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Master of Science in Computer Science

2016

Advisory Committee:
Dr. Tim Oates, Chair/Advisor
Dr. Charles Nicholas
Dr. Samuel Lomonaco

c© Copyright by
Arjun Kumar

2016

Table of Contents

List of Figures iii

1 Introduction 1

2 Background 4
2.1 Autoencoder . 4
2.2 Deep Learning . 8
2.3 Related Work . 10

3 System Overview 13
3.1 Input Images . 13
3.2 Autoencoder . 14
3.3 Loss Function . 15
3.4 Description Vector . 17
3.5 Manipulations of the input . 19

4 Experiments 21
4.1 Experiment 1: Basic Autoencoder test 23
4.2 Experiment 2: Description Vector Implementation 25
4.3 Experiment 3: Construction of Description Vector from Pixel Values . 27
4.4 Experiment 4: Construction of Image from Description Vector 31
4.5 Experiment 5: Setting the values for various Hyper-parameters 37

4.5.1 Batch Size . 37
4.5.2 Learning Rate . 38

5 Conclusion 40

Bibliography 42

ii

List of Figures

2.1 Sample auto-encoder[1] . 5
2.2 Sample denoising auto-encoder[16] . 7
2.3 Sample Deep Neural Network[12] . 10

3.1 Description Vector . 18
3.2 Sample Input . 19
3.3 Graph of function y=log(x) . 20

4.1 Training input instance and its reconstruction 23
4.2 Test input instance and its reconstruction 24
4.3 Training input instance and its reconstruction 25
4.4 Test input instance and its reconstruction 26
4.5 Test input instances . 29
4.6 Variation of cross entropy values during testing phase for different

percentage of pixels turned off . 32
4.7 Standard deviation of cross entropy values during testing phase for

different percentage of pixels turned off 33
4.8 Variation of Gaussian difference values during testing phase for dif-

ferent percentage of pixels turned off 33
4.9 Standard deviation of Gaussian difference values during testing phase

for different percentage of pixels turned off 34
4.10 10% pixels turned off . 35
4.11 20% pixels turned off . 35
4.12 30% pixels turned off . 35
4.13 40% pixels turned off . 35
4.14 50% pixels turned off . 36
4.15 60% pixels turned off . 36
4.16 70% pixels turned off . 36
4.17 80% pixels turned off . 36
4.18 90% pixels turned off . 37
4.19 100% pixels turned off . 37
4.20 Graph (a) shows the variation of cross entropy values whereas graph

(b) shows the variation in the mean pixel difference with change is
the size of the batch. 38

4.21 Variation of cross entropy values per epoch during training phase for
different learning rates . 39

iii

Chapter 1

Introduction

Deep neural networks are a form of artificial neural network which consists of

many layers of hidden units between their input and output layers with the aim to

capture a complex hierarchy of features of the inputs [10]. Using multiple hidden

layers, deep neural networks extract features of inputs at multiple levels, allowing

the network to learn complex mappings between these inputs and their expected out-

puts [2]. Recent advancements in the architecture and training mechanisms of deep

neural networks have made them replace state-of-the-art systems in many fields.

Although deep neural networks present world class results in many domains, the

internal representations these networks learn are still opaque. We intend to address

this problem by trying to connect symbolic representations of the input to neural

networks to understand and reason about what is learned by these networks.

An autoencoder is an artificial neural network which consists of identical input and

output layers with one or more hidden layers which present themselves as limited

capacity channels used to abstract complex features of the input space [4]. In its

simplest form, an autoencoder first ’encodes’ the input into a lower dimension latent

representation and then tries to ’decode’ these encodings back to their original form,

learning the hierarchical mappings of the features of the inputs along the way [2].

There is prior work on studying the internal workings of deep neural networks by

1

visualizing pixels of the input images that cause activation of units in Deep Belief

Networks [6] and feature maps in Convolutional Neural Networks [19]. CNNs have

also been used in recent literature to generate images from their descriptions [5].

Systems have been developed to annotate images with a single sentence [11, 7] and

even to describe the content of images with one or more sentences [17].

Using supervised training, deep neural networks have been used to refine horn clauses

[15] and even derive new symbolic rules using classified examples [13].

This thesis is the first step into understanding how a deep neural network can relate

to symbolic knowledge of the input. It contributes to the long term goal by inves-

tigating whether an autoencoder network can utilize the symbolic representations

along with the raw input to produce better reconstructions. Further, it also deter-

mines whether the network can construct symbolic representations from the input

images or input images from their symbolic representations.

In our work, we have trained a denoising autoencoder with blocks-world images and

their symbolic representations to find the effect of these symbolic representations in

terms of image reconstruction by the network. Each image in our input set consists

of two blocks, one on top of the other. These images are represented symbolically

in the form of a boolean vector which describe various aspects of the blocks and

have bits on or off depending on the values for these aspects. Our results indicate

that the autoencoder network when trained with input images and their symbolic

representations is able to derive input images given their symbolic representations

and also use input images to derive their symbolic representations.

Section 2 starts by describing the basics of an autoencoder and also introduces a

2

variation of the same used in this research. Further, this section gives an overview

of deep learning and some insight into previous related work done. In section 3,

we give a detailed description of out experimental setup describing the inputs used,

the networks trained and various modifications done to the data. Section 4 presents

results and analysis of various experiments and their results. Section 5 provides a

summary of the work done in this thesis.

3

Chapter 2

Background

This chapter begins with a overview of an autoencoder before introducing the

concept of a denoising autoencoder which we have used in our system. Further, the

chapter includes a summary about deep learning and deep neural networks before

concluding with a brief discussion on the previous work that relates to our objectives

in this thesis.

2.1 Autoencoder

In this thesis, we trained an autoencoder to determine whether we can use

symbolic representations along with the raw input to train the network, whether

these symbolic representations can be reconstructed from the network, and to what

degree the symbolic knowledge can be used to reconstruct the raw input itself. As

introduced in [4], an autoencoder network’s aim is reducing dimensionality via auto-

association. As further explained in [4], the network achieves its goal by communi-

cating the values for its input units to its output units, which are of the same size,

through one or more hidden layers with a limited capacity bottleneck, encouraging

the network to optimally encode the input vectors. These networks are trained to

encode the input ’x’ into some internal representation f(x) in such a way that the

input can be reconstructed from this representation. Hence, the target output for

4

an auto-encoder is its input [2].

Figure 2.1: Sample auto-encoder[1]

As shown in figure 2.1, in its simplest form, an auto-encoder consists of two

phases, an encoding phase followed by a decoding phase. In the first phase, the

auto-encoder takes an input x ε [0, 1]n and encodes it to a hidden representation

y ε [0, 1]ń by mapping it deterministically using y = fθ(x). A non-linear function,

such as the sigmoid function S(t) = 1
1+e−t , is used as fθ(x) parameterized by θ =

[W, b] where ’W’ represents the input weights of the network and is a ń× n matrix

(where ’ń’ is the size of the hidden unit), whereas ’b’ represents the input bias vector

of size ’n’. Equation 2.1 summarizes the encoding phase (when a sigmoid function

is used as the mapping function).

y = fθ(x) =
1

1 + e−(Wx+b)
(2.1)

5

The second phase of the auto-encoder, namely the decoding phase, takes the latent

representation y ε [0, 1]ń, passed as the output by the hidden layer(s), as its input

and decodes it into the final output z ε [0, 1]n which ideally is the reconstruction

of the input given to the network initially in the first phase. This reconstruction is

done via a deterministic mapping z = gθ́(y) of the encoded representation of the

input to its reconstruction using a non-linear function parameterized by θ́ = [Ẃ , b́].

Where ’Ẃ ’ and ’b́’ are the weight matrix and the bias vector of the decoding phase.

The weight matrix of this second phase can be tied to the weight matrix of the

previous phase by taking it as a transpose of the latter, i.e, Ẃ = W T . Equation 2.2

summarizes the decoding phase (when a sigmoid function is used as the mapping

function).

z = gθ́(y) =
1

1 + e−(Ẃy+b́)
(2.2)

Various loss functions LH(x, z), as discussed in section 3.3, can be used to measure

the reconstruction error between the input and the output of the network. Along

with this loss function, stochastic gradient descent is used to train the network to

produce better reconstructions. As mentioned in [2], the findings of [4] suggest that

when the auto-encoder network has one hidden layer and uses the mean squared

error criterion, the hidden layer of ’k’ units learns to project the input on the first

’k’ principle components of the input. Further, [2] also states that according to the

findings in [8], making the hidden layer non-linear changes the behavior of an auto-

encoder from PCA by giving the former the ability to capture multi-modal aspects

of the input distribution.

6

The model discussed above is similar to the one used in [3] for building deep net-

works. The authors of [16] present a simple enhancement to this basic auto-encoder.

The network is now trained with noisy input and is expected to reconstruct a clean

output. Input x is first corrupted, and then this corrupted input x̃ is given to the

network. The network is now trained to produce a noiseless output z = x. This is

called a denoising auto-encoder. Equations 2.3 and 2.4 represent the encoding and

decoding phase of a denoising auto-encoder network respectively (’s’ represents a

non-linear function like the sigmoid function).

y = fθ(x̃) = s(Wx̃+ b) (2.3)

z = gθ́(y) = s(Ẃy + b́) (2.4)

Image 2.2 gives a diagrammatic overview of a sample denoising auto-encoder net-

work. The loss function evaluates the performance by comparing the reconstructed

output with the clean input rather than the corrupted input that is fed into the

network. qD represents a function used to introduced noise into the original input.

Figure 2.2: Sample denoising auto-encoder[16]

7

2.2 Deep Learning

As explained in [2], deep learning is a set of methods that typically use multi-

layered artificial neural networks to learn multiple levels of representations. These

representations correspond to a hierarchy of concepts where the higher levels of con-

cepts are composed of lower level concepts in that hierarchy. Deep learning systems

try to learn in multiple levels which corresponds to different levels of abstraction of

the data [10]. Extracting features at multiple levels allows deep learning systems

to learn complex mappings between the input and the expected output with little

dependence on features that humans come up with for the system. [2]. As further

explained in [10], the work done in deep learning methods can be classified into

the following three categories based on the type of task the method is intended to

accomplish:

• Deep Networks for unsupervised learning:

When used for unsupervised learning, the purpose of these networks is to

analyze or synthesize patterns in the input by capturing high-order correlation

of features in the data.

• Deep Networks for supervised learning:

When used for supervised learning, these networks are intended to break-down

the hierarchy of concepts in the input in order to provide high discriminating

power for classifying the data into various target classes which are provided

directly or indirectly to the network.

8

• Hybrid Deep networks:

These types of networks can come in two flavors. First, where an unsupervised

deep learning method is used to assist the classification task of the overall

supervised categorization model. Second, where the classification capabilities

of the supervised deep learning methods is used to estimate the parameters in

the overall generative model.

The perceptron is one of the most basic types of machine learning agents and is

inspired to mimic a neuron firing when the input received from the activation units

reaches a threshold. To mimic the activities of a human brain, a collection of neurons

are chained together to form a network consisting of one input layer and one output

layer along with a small amount of hidden layers, usually 1 between them. All

these layers are formed by one or more perceptrons tied together in a complex feed-

forward system. A deep neural network consists of multiple hidden layers between

the input and the output layer. This multilayer network has a set of fully connected

weights which are sometimes initialized by supervised or unsupervised pre-training

techniques. Figure 2.3 depicts a deep neural network with 3 hidden layers between

an input and the corresponding output layer.

9

Figure 2.3: Sample Deep Neural Network[12]

2.3 Related Work

There is prior work on visualization of a deep network. Although studying vi-

sualization of the first-layer representations is very common in the literature, recent

works have started to go beyond the first layer in understanding a neural network.

The authors of [6] present an analysis of Stacked Denoising Autoencoders and Deep

Belief Networks by visualizing the pixels at each layer of the network that maximize

the activation of a given unit. A similar approach was taken in [19] for CNNs where

the authors used a reverse convolutional network, Deconvnet, as mentioned in [19],

to map the feature activities of the intermediate layers of the CNN back to the input

state with the goal of finding input patterns that originally caused a given feature

map activation. We intend to investigate the internal workings of a deep neural

network by trying to find how and to what degree the final weights and bias of a

10

trained deep neural network relate to symbolic knowledge about the input space

provided to it at the beginning of the training phase along with the raw instances.

This thesis is the first step towards that goal.

Research in the field of computer vision worked on generating descriptions from an

image. The first system to annotate images was presented in [11] where a collection

of simple images and their descriptions was given to the network at training. The

complex images were then divided into regions. These simple regions accumulated

words from previously seen images into a vector which was quantized to produce

the final result. A much later system presented in [7] parses an object, an action

and a scene from an image and uses this ’triple’ to retrieve a sentence from a pool

of sentences written for similar images. Among the most recent works in this area is

the research presented in [17] that uses a deep CNN and a recurrent neural network

to annotate images with one or more sentences. Research presented in [9] uses a

deep auto-encoder network to map images to short binary codes based on the lev-

els of features extracted by the network. These binary codes are then combined

with semantic hashing to find similar images. We have used description vectors,

as described in section 3.4, to give symbolic details of the input images with each

instance to the network. One of the experiments performed in this work is to test

whether the auto-encoder network is able to construct these description vectors for

the input images.

Work has been done regarding refining and deriving horn clauses using neural net-

works. Most noteworthy among them is the system called KBANN [15] which works

by inserting a few hand written symbolic rules into a neural network, then refines

11

these rules by training it in a supervised fashion with classified examples resulting in

a highly-accurate classifier network. The authors have extended their work in [13] to

add the capability to their network, KBANN, to dynamically add new horn clauses.

Our description vectors are represented with propositional logic. Our network is

expected to learn meaningful representations of the input images which are able to

reconstruct these description vectors along with the images.

The authors of [5] have presented a deep deconvolutional architecture which takes

type, camera position and additional transformation values as tuples and produces

an image of a chair. We explore the concept of generating images from their sym-

bolic representations in this thesis by testing the percentage of input image our

network is able to reconstruct using just the description vector for that instance.

12

Chapter 3

System Overview

This chapter gives a detailed description of our experimental setup before

we talk about the actual experiments and their results in section 4 below. We

used a denoising autoencoder to reconstruct colored blocks-world images and their

symbolic representations. We begin this chapter by describing the images that are

given as input to the network in section 3.1. Section 3.2 presents the specifications

of the autoencoder used while section 3.3 gives an overview of a few loss functions

considered. Along with the input images, we passed to the network a boolean

vector which describes the physical attributes of the content of these input instances.

Section 3.4 gives a detailed overview of how this symbolic representation is created

for each input instance. Finally, section 3.5 concludes this chapter by presenting a

few manipulations done to the input data before it is passed to the autoencoder.

3.1 Input Images

The input consists of simple blocks-world images of size 28 x 32 pixels. Each

image consists of two blocks, one paced on top of the other. The blocks differ from

each other based on the values of the following aspects:

1. Shape

Each block can take any shape from:

13

(a) Cone

(b) Box

(c) Sphere

2. Size

Relatively, the size of each block can be:

(a) Small

(b) Medium

(c) Large

3. Color

The blocks are colored singularly with one of the following colors1:

(a) Red

(b) Green

(c) Blue

3.2 Autoencoder

The network consists of a denoising autoencder with the following aspects:

1. Input Layer - Each input instance given to the network consists of pixel values

of a single image. Therefore, the input layer has a total size of

3 x (28 x 32) = 2,688

1Two blocks of same color have the same shade of that color in all instances.

14

(Values of the Red, Green (Size of each

and Blue component) image in pixels)

2. Hidden Layer - The network has one hidden layer of size 2000.

We conducted experiments, using the cross entropy measure (equation 4.2) to

evaluate the results, to determine the size of the hidden layer of the network.

Our experiments showed that instances of our network with hidden layer of size

less than 1950 resulted in underfitting, whereas instances with hidden layer

of size greater than 2800 resulted in overfitting. Therefore, we selected from

among the lowest set of values from the range that produced the optimum

results regarding these sets of experiments as the size of the hidden layer for

out network.

3. Output Layer - Since the network tries to regenerate the input, the size of the

output layer is same as that of the input layer.

3.3 Loss Function

A loss function quantifies how good or bad the network is performing in terms

of the target output at the point where this function is encountered, in any phase

of learning. For example, the loss function can quantify the network’s performance

after processing of every n instance(s) during the training phase and after processing

of every m instance(s) during the testing phase. Based on the measure returned by

this loss function, the parameter(s) of the network are updated during the training

phase to drive it towards making more generalized predictions over the instance

15

space. Our network encounters the loss function after processing every mini-batch

of instances during the training phase and after processing every instance during

the testing phase. The network’s performance is assessed based on the input image

instance and its reconstruction produced by the network. While setting up the

network, we considered the following loss functions for evaluating the performance

of our network:

1. Cross Entropy: This measure is a combination of the entropy of input (i.e,

x) given the received output (i.e, z) summed with the relative entropy of the

input with respect to the output. When used as a loss function, cross entropy

aims to increase the likelihood of receiving the desired output for each given

input.

CCE(z, x) = −
∑
k

(xk ln(zk) + (1− xk)ln(1− zk)) (3.1)

2. Sum of Squared Errors: This measure sums up the squares of deviations of

the actual data received from the expected data. In case of an autoecoder, we

expect the output of the network to be the input itself. Therefore, when used

as a loss function, this measure aims to increase the similarity of the output

received to the inputs given to the network.

CSSE(z, x) =
∑
k

(zk − xk)2 (3.2)

3. Exponential : This measure can emulate the simplicity of the sum of squared

error measure and also the non-linearity of the cross entropy measure. When

16

used as a loss function, this measure adds more robustness against outliers to

the system.

CEXP (z, x) = τ exp(
1

τ

∑
k

(zk − xk)2) (3.3)

In equations 3.1, 3.2 and 3.3 above, ’k’ represents the total number of instances in

a particular set over which the measure is used. xk and zk represent the kth input

instance and its respective reconstruction produced by the autoencoder.

We chose to use the cross entropy measure to be used as a loss function as our

experiments indicated that it outperformed the other two in terms of Gaussian

difference between pixel values (explained in section 4) of the input and its respective

reconstruction.

3.4 Description Vector

The symbolic knowledge is provided to the network in the form of a vector.

This vector is concatenated with each input instance and provides information to

the network regarding the content of that instance. Figure 3.1 describes this input

vector.

17

Figure 3.1: Description Vector

As shown in figure 3.1, the description vector is eighteen bits long. It uses the

first nine bits to describe the block on the top and the last nine bits to describe the

block on the bottom. Each of these nine bits sets consists of three units of three

bits each describing the size, color and the shape of the block respectively. Each

of these sets of three bits is called an aspect set. Each aspect set has only one bit

on while the other two are off. The bit that is on corresponds to the value that

the object possesses for that particular aspect. For example, if the top object is of

size big, only bit 1 will be on, while bits 0 and 2 will be off. The following example

illustrates how the complete description vector is created for a sample image

Figure 3.2 consists of a Medium Blue Sphere on top of a Big Green Box. To

describe the block on the top, bits 0, 5 and 8 are set indicating that this block has the

18

Figure 3.2: Sample Input

values Medium, Blue and Sphere for the size, color and shape aspects respectively.

Hence, the description vector half for this block will be 100 001 001.

Similarly, for the block at the bottom, bits 10, 13 and 16 are set indicating that it

is a Big Green Box 010 010 010.

Therefore, the complete description vector for this input figure is

100 001 001 010 010 010.

3.5 Manipulations of the input

The red, green and blue content values of each pixel was divided by 255 to

bring each value of the image vector between 0-1. This was done so that these values

could be used with the log function in the Cross Entropy Error function.

The description vector of the input images contains 0 in most places. This yields

an infinite number exception when used with the log function. To mitigate this

problem, each value in the description vector was increased by 0.1.

For example, the description vector for figure 3.2 in section 3.4 (100 001 001 010

010 010) will now become

1.1 0.1 0.1 0.1 0.1 1.1 0.1 0.1 1.1 0.1 1.1 0.1 0.1 1.1 0.1 0.1 1.1 0.1

19

As shown in figure 3.3 below, the log function shows maximum difference (is most

sensitive) in the y-axis for values 0.25 and 0.75 on the x-axis. Therefore, the input

vectors and the description vectors were multiplied by 0.25 and 0.75 respectively in

addition to the manipulations mentioned previously. Continuing with our example,

finally the description vector that is sent as input to the network is

(1.1 0.1 0.1 0.1 0.1 1.1 0.1 0.1 1.1 0.1 1.1 0.1 0.1 1.1 0.1 0.1 1.1 0.1) x

0.75 = 0.825 0.075 0.075 0.075 0.075 0.825 0.075 0.075 0.825 0.075 0.825 0.075

0.075 0.825 0.075 0.075 0.825 0.075

Figure 3.3: Graph of function y=log(x)

20

Chapter 4

Experiments

This chapter describes the experiments that we performed, the evaluation

metrics used to analyze the results, and the conclusions drawn from them. The

inputs to the network are taken as described in section 3.1 above. Out of this

input set, 15 percent of instances are randomly chosen to be included in the testing

set, whereas the other 85 percent form the training set. A description vector is

then created for each instance as described in section 3.4. Thereafter, the training

and testing set instances are randomized to change their positions in their respective

set. Finally, the manipulations mentioned in section 3.5 are applied to each instance

before starting the training and testing phase.

Result evaluation metrics:

• Gaussian difference between pixel values

For each input instance, its reconstructed output is represented in the network

in the form of a vector of size 2688. We then take a Gaussian difference between

these two vectors to measure the similarity between the input instance and its

reconstruction produced by the network. A mean of this Gaussian difference is

calculated across the training and testing sets along with standard deviation of

the instances for each set. Equation 4.1 below is a mathematical representation

of the Gaussian difference between an input instance and its corresponding

21

output.

CGD(z, x) =
1

n

∑
n

√
(‖Pnz − Pnx‖)2 (4.1)

’n’ refers to the size of the instance vector. Pnx refers to the nth bit in the

input instance whereas Pnz represents the nth bit in the reconstruction vector

produced by the network for that instance.

• Cross Entropy error between input and output instances

To measure how well a model has performed, average cross entropy error is

calculated between input instances and their respective reconstructions gen-

erated by the network for both the training and testing sets. As mentioned in

section 3.3, Cross Entropy is also used as a loss function to train the network.

When used as a result evaluation metric, the cross entropy loss is calculated

for all the instances in the final epoch during the training phase and then the

mean of this loss value is calculated over the whole training set. When using

this metric to calculate the performance for the testing set, the input instances

are encoded and then decoded back using the trained network weights and bi-

ases. The cross entropy is then calculated between the input test instance and

its representation constructed by the network which again is averaged over the

whole testing set. This metric can be summarized by equation 4.2 below

CCE(z, x) = −
∑
k

(xk ln(zk) + (1− xk)ln(1− zk)) (4.2)

In the equation above, ’x’ and ’z’ represent an input instance and its recon-

struction produced by the network respectively. Since this measure is calcu-

lated over a complete set (training set or testing set) at one time, ’k’ refers

22

to a particular instance in that set. Hence xk and zk represent the kth input

instance and its reconstruction in a set. A mean of this cross entropy error is

calculated across the training and testing set along with standard deviation of

the instances for each set.

These evaluation metrics are used to analyze the results of experiments 4.1, 4.2, 4.4

and 4.5. Evaluation metrics for 4.3 are described in section 4.3 itself.

4.1 Experiment 1: Basic Autoencoder test

Aim: The aim of this experiment is to run a simple denoising autoencoder to find

a baseline to evaluate further experiments.

Manipulations: The input consisted of only the image pixel values and no descrip-

tion vector was added.

Result: Image 4.1 below shows a sample training instance and its reconstruction

produced by the autoencoder.

Figure 4.1: Training input instance and its reconstruction

The values for Cross Entropy and Gaussian Difference obtained over the com-

plete training set are as follows:

23

Cross Entropy

Mean Value: 1199.174497

Standard Deviation: 72.71138798

Gaussian Difference

Mean Value: 1.101731193

Standard Deviation: 0.2576063209

Image 4.2 below shows a sample test instance and its reconstruction produced by

the autoencoder.

Figure 4.2: Test input instance and its reconstruction

The values for Cross Entropy and Gaussian Difference obtained over the com-

plete test set are as follows:

Cross Entropy

Mean Value: 1149.818023

Standard Deviation: 105.1876571

Gaussian Difference

Mean Value: 1.081603678

Standard Deviation: 0.3212884685

This experiment was done to get results from the network by using only the raw

24

input and no symbolic representations of the input were added. We found that the

mean values for both the cross entropy and Gaussian difference were similar over the

testing and the training set. This suggests that the network is stable. Comparing

the standard deviation values for both the metrics between the train an test sets

suggests that although the network is able to reconstruct the these sets equally as a

whole, it is not able to reconstruct some instances as good as the others in the test

set.

4.2 Experiment 2: Description Vector Implementation

Aim: The aim of this experiment is to test whether the autoencoder is able to

reconstruct the input images when the description vector for each instance is con-

catenated to it.

Manipulations: A description vector, as explained in section 3.4, is created and

concatenated to each instance before giving it as an input to the network.

Result: Image 4.3 below shows a sample training instance and its reconstruction

produced by the autoencoder.

Figure 4.3: Training input instance and its reconstruction

The values for Cross Entropy and Gaussian Difference obtained over the com-

25

plete training set are as follows:

Cross Entropy

Mean Value: 1202.462661

Standard Deviation: 71.73612782

Gaussian Difference

Mean Value: 1.105054967

Standard Deviation: 0.1757282312

Image 4.4 below shows a sample test instance and its reconstruction produced by

the autoencoder.

Figure 4.4: Test input instance and its reconstruction

The values for Cross Entropy and Gaussian Difference obtained over the com-

plete test set are as follows:

Cross Entropy

Mean Value: 1178.745283

Standard Deviation: 121.5242428

Gaussian Difference

Mean Value: 1.095618494

26

Standard Deviation: 0.163169406

Comparing the results mentioned above with those of experiment 4.1 we saw that

the value for Cross Entropy increases when the description vectors are also included

along with the image pixel values. This is attributed to the network now having

18 more values per instance to reconstruct. The fact that the Gaussian Difference

between an image and its reconstruction is almost similar in both the experiments

suggests that including description vectors in the input does not hamper the perfor-

mance of the network. Rather, looking at the standard deviation of the Gaussian

Difference values between the two networks, it can be said that with the help of

the description vectors, the network can now make better predictions for even those

instances for which it was not able to do so previously in experiment 4.1.

4.3 Experiment 3: Construction of Description Vector from Pixel

Values

Aim: The aim of this experiment is to test whether the network is able to construct

the description vector from the pixel values of the input image.

Manipulations: The training input instances consist of values for both the image

vector and the description vector. The test input instances however, consist of only

the image vector, with all the values turned off in the description vector, i.e., the

last 18 values of the input consists of all zeros.

Result evaluation metrics:

Maximum Pooling Hamming Distance

27

As mentioned in section 3.4, each set of three bits is used to describe one aspect of

the block and only one bit among these three is set indicating the value the block

holds from the three possible values for that aspect. The output consists of the

description vector constructed by the network using the pixel values from the input

image only. Each aspect set of three bits in the output however might not consist

of two zeros bits and one set bit. Maximum pooling is done to find the highest

value bit in each aspect set of this description vector. These bits are then compared

with the maximum pooled bits for each aspect set from the corresponding expected

description vector for each instance and a Hamming distance is calculated between

the two description vectors to evaluate how many aspect sets are constructed ac-

curately by the network. For example, if the size of the bottom block is Big, then

the values [0.1 0.6 0.2] or [0 0.4 0] for bits nine, ten and eleven respectively are

considered correct whereas value [0.6 0.2 0.1] is considered incorrect for these bits

in the output description vector. The Hamming distance of maximum pooled bits

of the description vectors is calculated for each instance in the set and then a mean

is calculated across the entire set along with the standard deviation of the instances

that belong to the set.

Examples:

28

(a) Input instance 1 (b) Input instance 2

Figure 4.5: Test input instances

Input figure 4.5a consists of a medium red sphere on a small blue box. The

expected description vector for this instance is

(0.075 0.825 0.075 0.825 0.075 0.075 0.075 0.075 0.825 0.075 0.075 0.825

0.075 0.075 0.825 0.075 0.825 0.075)

The description vector constructed by the network for this instance is

(0.3 0.4 0. 0.7 0. 0. 0.1 0. 0.4 0. 0. 0.6 0. 0. 0.7 0. 0.7 0.)

Since each aspect set has the maximum value in the correct bit position, this de-

scription vector is considered to be constructed correctly.

Whereas, the instance in figure 4.5b is a medium blue cone on a medium green box.

The expected description vector for this instance is

(0.825 0.075 0.075 0.075 0.075 0.825 0.825 0.075 0.075 0.825 0.075 0.075

0.075 0.825 0.075 0.075 0.825 0.075)

The description vector constructed by the network for this instance is

(0.2 0. 0.3 0. 0. 0.5 0.4 0. 0.1 0.7 0. 0. 0. 0.4 0. 0. 0.7 0.)

Among the first three bits, bit 0 should have the highest value indicating that the

size of the top block in the instance is of size medium. Instead, bit number two has

29

the highest value among the first three in the constructed vector. Therefore, for this

instance, the description vector generated by the network is considered to have a

Hamming distance of 2 with the expected description vector.

Result: In our experiments, we had sixteen test instances. Therefore, the network

was expected to construct 16x6 = 96 aspect sets correctly. In the results we got a

total error of 8 aspect sets which were constructed incorrectly over the whole test

set. Out of these incorrect aspect sets, 62.5% were for the size, 25% were for the

color and 12.5% were for the shape of the object. Thus, each description vector

constructed by our network had an average Hamming distance of (8x2)/16 = 1 from

the expected description vector. Therefore we can infer from the results of this

experiment that the network is able to symbolic descriptions for the images from

their pixel values with an accuracy of 88/96 = 91.67%. On further evaluation of

the results we found that when the network made an error in predicting the value

for an aspect set depicting the size of the object, it was uncertain of the values it

generated for the three bits in that set. This is evident in the example mentioned

above where the network generates values 0.2 0. and 0.3 for the aspect set depicting

the size of the block on the top. In contrast to this, when the network made an

error in predicting the value for an aspect set depicting the color or the shape of the

object, it was certain of the incorrect values it generated for the three bit is the set.

For example, in one of the test instances, the network was expected to generate an

aspect set (0.075 0.075 0.825) for the shape of the block depicting it to be a sphere.

The network incorrectly generated the value (0.5 0.0 0.1) for that respective aspect

set being certain of the incorrect value.

30

4.4 Experiment 4: Construction of Image from Description Vector

Aim: The aim of this experiment is to test whether the network is able to construct

the image from the description vector of the input instance.

Manipulations: Starting from 10 percent, pixels of the input images are turned off

in the increments of 10 percent for each iteration of the experiment. The description

vector of each instance is provided to the network.

To make the network more sensitive to description vectors, equation 4.2 mentioned

above was modified to equation 4.3 hence penalizing the network more for when

the reconstruction of the description vector compared with the related image pixel

values.

CCE(z, x) = −
∑
k

(α×(xi ln(zi)+(1−xi)ln(1−zi))+(xd ln(zd)+(1−xd)ln(1−zd)))

(4.3)

In the equation above, ’x’ and ’z’ represent an input instance and its reconstruction

produced by the network respectively. Since this measure is calculated over a com-

plete set (training set or testing set) at one time, ’k’ refers to a particular instance

in that set. Each instance is represented as a vector consisting of by ’i’ bits for

representing the pixel values and ’d’ bits representing the values of the description

vector for that instance. A mean of this cross entropy error is calculated across the

training and testing set along with standard deviation of the instances for each set.

Result: Graphs 4.6 and 4.7 show the mean and standard deviation values respec-

tively for the cross entropy value between testing instances and their related outputs

received from the network in variation with the percentage of pixels turned off in

31

each repetition of experiment. Graphs 4.8 and 4.9 similarly represent the Gaussian

difference readings received.

Figure 4.6: Variation of cross entropy values during testing phase for different per-

centage of pixels turned off

32

Figure 4.7: Standard deviation of cross entropy values during testing phase for

different percentage of pixels turned off

Figure 4.8: Variation of Gaussian difference values during testing phase for different

percentage of pixels turned off

33

Figure 4.9: Standard deviation of Gaussian difference values during testing phase

for different percentage of pixels turned off

The graphs above suggest that the network is able to reconstruct the images

when only some (0%-30%) of the pixels are turned off. Image reconstructions be-

come more lossy when the percentage of pixels that are turned off goes up from

40% to 90%. When all the pixels are turned off, the network is able to produce

reconstructions that are less lossy than those produced by turning only 30% of the

pixels off. We attribute this behavior of the network to the modification done to

basic cross entropy method (i.e., equation 4.3) which enables the network to focus

more on learning the description vectors and find connections to generate image

pixels using the same. Therefore we can infer from the results of this experiment

that the network is able to construct images from their symbolic descriptions.

Figure 4.10 to 4.19 below show an original test instance concatenated with the

actual test instance given to the network with a certain percentage of pixels turned

34

off followed by its reconstruction generated by the network.

Figure 4.10: 10% pixels turned off

Figure 4.11: 20% pixels turned off

Figure 4.12: 30% pixels turned off

Figure 4.13: 40% pixels turned off

35

Figure 4.14: 50% pixels turned off

Figure 4.15: 60% pixels turned off

Figure 4.16: 70% pixels turned off

Figure 4.17: 80% pixels turned off

36

Figure 4.18: 90% pixels turned off

Figure 4.19: 100% pixels turned off

4.5 Experiment 5: Setting the values for various Hyper-parameters

The following experiments were done to determine the different hyper-parameters

which would yield the best input reconstruction from the network. The results

demonstrate the effect of varying the values of these parameters and the selection

criteria for their optimal values.

4.5.1 Batch Size

Aim: The aim of this test is to determine the size of the batch that the autoencoder

should process before updating its weight and bias matrices.

Result:

37

(a) (b)

Figure 4.20: Graph (a) shows the variation of cross entropy values whereas graph

(b) shows the variation in the mean pixel difference with change is the size of the

batch.

In our experiments, as seen in graph 4.20a and 4.20b, batch of size ’2’ gives

the optimum values for both cross entropy as well as pixel difference between the

input and output images. Hence we used a batches of size ’2’ in our experiments.

4.5.2 Learning Rate

Aim: The aim of this test is to determine the rate at which the network should

update its weight matrices and bias vectors.

Result:

38

Figure 4.21: Variation of cross entropy values per epoch during training phase for

different learning rates

As seen in graph 4.21 above, keeping the learning rate 0.1 reduces the cross

entropy as the number of epochs increase in the training phase. Therefore we kept

the learning rate as ’0.1’ in our experiments.

39

Chapter 5

Conclusion

With their capability to learn multiple levels of representations corresponding

to a hierarchy of concepts of the input domain, deep neural networks have replaced

state of the art systems in multiple domains. The next step in understanding these

multi-layered complex systems is to analyze their internal workings. In this thesis,

we presented the first step in the long term commitment to construct a bi-directional

connection between the raw input data and their symbolic representations.

An autoencoder tries to optimally encode its inputs into their reduced dimension

latent representations and then tries to successfully decode these representations to

reconstruct the provided input.

We trained an autoencoder by using images along their symbolic representations

to find whether the network can internally represent images and their symbolic

representations in the form of their principal features that can not only reconstruct

the image and also whether it can correlate the principle features of the image to that

of its symbolic knowledge to reconstruct one from another. Our inputs consisted

of blocks-world images and we represented the symbolic knowledge of these input

images in the form of a description vectors. The results of our experiments indicate

the following:

• The network when trained with input images and their description vectors

40

was able to construct description vectors for test instances from only the pixel

values of the images.

• Similarly, the network when trained with input images and their description

vectors was able to construct image pixel values for test instances from only

their description vectors.

• Description vectors passed to the autoencoder along with the input images

enabled it to find less lossy latent representations for more images in the input

space.

41

Bibliography

[1] Cross validated: ”what is the difference between convolutional neural networks,
restricted boltzmann machines, and auto-encoders?”.

[2] Yoshua Bengio. Learning deep architectures for ai. Foundations and trends R©
in Machine Learning, 2(1):1–127, 2009.

[3] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al. Greedy
layer-wise training of deep networks. Advances in neural information processing
systems, 19:153, 2007.

[4] Hervé Bourlard and Yves Kamp. Auto-association by multilayer perceptrons
and singular value decomposition. Biological cybernetics, 59(4-5):291–294, 1988.

[5] Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. Learning to
generate chairs with convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1538–1546,
2015.

[6] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visu-
alizing higher-layer features of a deep network. University of Montreal, 1341,
2009.

[7] Ali Farhadi, Mohsen Hejrati, Mohammad Amin Sadeghi, Peter Young, Cyrus
Rashtchian, Julia Hockenmaier, and David Forsyth. Every picture tells a story:
Generating sentences from images. In European Conference on Computer Vi-
sion, pages 15–29. Springer, 2010.

[8] Nathalie Japkowicz, Stephen Jose Hanson, and Mark A Gluck. Nonlinear au-
toassociation is not equivalent to pca. Neural computation, 12(3):531–545, 2000.

[9] Alex Krizhevsky and Geoffrey E Hinton. Using very deep autoencoders for
content-based image retrieval. In ESANN, 2011.

[10] Dong Yu Li Deng. Deep learning: Methods and applications. Technical report,
2014.

[11] Yasuhide Mori, Hironobu Takahashi, and Ryuichi Oka. Image-to-word trans-
formation based on dividing and vector quantizing images with words. In First
International Workshop on Multimedia Intelligent Storage and Retrieval Man-
agement, pages 1–9. Citeseer, 1999.

[12] Michael A. Nielsen. Michael A. Nielsen, ”Neural Networks and Deep Learning”.
Determination Press, 2015.

42

[13] David W Pitz and Jude W Shavlik. Dynamically adding symbolically mean-
ingful nodes to knowledge-based neural networks. Knowledge-based systems,
8(6):301–311, 1995.

[14] Siddharth Pramod, Adam Page, Tinoosh Mohsenin, and Tim Oates. Detect-
ing epileptic seizures from eeg data using neural networks. arXiv preprint
arXiv:1412.6502, 2014.

[15] Geoffrey G Towell and Jude W Shavlik. Knowledge-based artificial neural
networks. Artificial intelligence, 70(1):119–165, 1994.

[16] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. In
Proceedings of the 25th international conference on Machine learning, pages
1096–1103. ACM, 2008.

[17] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and
tell: A neural image caption generator. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3156–3164, 2015.

[18] Zhiguang Wang and Tim Oates. Encoding time series as images for visual in-
spection and classification using tiled convolutional neural networks. In Work-
shops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[19] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolu-
tional networks. In European Conference on Computer Vision, pages 818–833.
Springer, 2014.

43

	List of Figures
	Introduction
	Background
	Autoencoder
	Deep Learning
	Related Work

	System Overview
	Input Images
	Autoencoder
	Loss Function
	Description Vector
	Manipulations of the input

	Experiments
	Experiment 1: Basic Autoencoder test
	Experiment 2: Description Vector Implementation
	Experiment 3: Construction of Description Vector from Pixel Values
	Experiment 4: Construction of Image from Description Vector
	Experiment 5: Setting the values for various Hyper-parameters
	Batch Size
	Learning Rate

	Conclusion
	Bibliography

