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Abstract –This paper presents an innovative approach to 

the field of information fusion. Fuzzy mediation 

differentiates itself from other algorithms, as this 

approach is dynamic in nature. The experiments 

reported in this work analyze the interaction of two 

distinct controllers as they try to maneuver an artificial 

agent through a path. Fuzzy mediation functions as 

fusion engine to integrate the two inputs to produce a 

single output. Results show that fuzzy mediation is a 

valid method to mediate between two distinct controllers. 

The work reported in this article lays the foundation for 

the creation of an effective tool that uses positive 

feedback systems instead of negative ones to train 

human and non-human agents in the performance of 

control tasks. 

Keywords: Fuzzy mediation; Information fusion; Shared 

control; Supervised learning; Collaborative learning. 

1 Introduction  

Technology plays a dominant role as each new product is 

designed and placed on the market. We can find high-end 

technological solutions in any types of objects, from fuzzy 

logic-powered rice cookers to the advanced fly-by-wire 

controls in jet planes. When technological solutions 

oversee the cooking of rice, we may or may not require 

much improvement. On the other hand, when we talk 

about an automated flight system that controls a passenger 

jetliner, we need to be sure that the concepts and solutions 

are well founded.  

The fly-by-wire airplane idea is similar to the one of an 

automobile that operates with little input from the driver, 

or a joystick-operated heavy-duty machine that performs 

heavy jobs. The common denominator in these three 

examples is the existence of a computer mediating 

between signals from the operators and the actual 

sequence of actions taken by the machine in response to 

the operator. At times, the response of the machine 

depends on the operator’s input, but there are times when 

the controls are autonomous responses to analyses of 

situations at hand.  

Historically, the machine automation started by having the 

machines listen to either the input of the operator or to the 

one of a central controller. People realized that it was 

better to allow the operator and the electronic controller 

share control as much as possible. [1] points out that what 

we understand as shared control is not really shared. For 

example, in early stages of development, the machine used 

to supervise and control any part of the operations in fly-

by-wire airplanes, and now they oversee operations and 

still control flight, but as the conditions don't meet the 

standards of operations, the pilot is left alone. Therefore it 

is either the pilot controlling the plane on his/her own or 

the control system, and there is no interaction between the 

two. As we head for the future, we need a system that 

allows for greater interaction between the human operator 

and the digital one. Currently we have examples such as 

Caterpillar machines that allow operators to perform 

certain tasks only through automated systems [2]. Also, 

the two major airliner producers, Airbus and Boeing, are 

gearing towards advanced fly-by-wire technologies [3], as 

the auto industry is attempting to infuse automation 

concepts in their products [1]. 

Several aspects need to be addressed at this time, as the 

evolution of the interaction between machines and digital 

controllers increases. We need to 1) find a better way to 

mediate control in dual control systems, when two (or 

more) operators are controlling the same machine, and 2) 

then, replace one of the human operators with a digital one 

and investigate the interaction between the two entities 

using a mediation system (such as the proposed one in this 

paper). This can be done if we: 3) Create a framework for 

training using simulation and virtual reality to test-drive 

solutions and 4) implement these systems as a part of the 

actual operations of the machines under scrutiny. This list 

(1-4) outlines the goals that we have with this work. 

Control is a concept that involves the interaction of 

multiple entities (by definition at least two). In a situation 

of control we can usually identify one subject who 

interacts directly with one object, directing the object's 

every move [4]. In environments where there is more than 

one operator controlling one object, we turn to the 

discipline of information fusion for solutions on joint 

control. Information fusion is defined as the process of 

taking multiple inputs and creating a single output [5]. As 

[5] states, many information fusion algorithms are biased 

in their operations. As they are designed, their operations 

are set and the fusion is carried out by simply running the 



algorithm. In most cases, the algorithms are pre-defined 

and static, and there is no adaptivity to the circumstances 

that influence the object. Adaptive information fusion 

systems, on the other hand, would offer an alternative 

where control can be effectively and truly shared between 

two (or more) operators. 

A shared-control environment would allow for higher-

level applications to higher levels, in cases where 

supervised and collaborative learning is required, as in [6]. 

Supervised machine learning techniques represent a set of 

operations that "learn a task starting from a suite of 

examples" [7]. Information fusion would provide for 

supervised machine learning algorithms that learn from 

examples as the expert (operator) is operating 

(controlling) the machine. This approach represents a 

paradigmatical shift, as the learner becomes capable of 

interacting efficiently with the environment. It is an 

effective shift from the supervised learning domain to the 

collaborative learning one [8, 9]. It has been noted, that 

many proposed solutions promote individual, instead of 

true collaborative learning [10]. [11] explored interaction 

between humans and computing when learning is 

performed by means of an apprentice model; however 

their focus is on the classification of items. 

Another relevant concept to this paper is the concept of 

agent, as they attempt to solve issues of coordination, 

cooperation and learning [12]. Multiple agents’ 

performance in an unknown environment is discussed by 

[13], where online collaborative learning is applied to 

several agents, facilitating the learning process itself. 

2 Fuzzy Mediation 

The concept of fuzzy mediation is an innovation that 

brings to the static world of information fusion a dynamic 

component that extends greatly the possibility of 

applications of this field of computing [14]. 

 
 

 
Figure 1. Typical scenario for fuzzy mediation 

 

Fuzzy mediation aims to solve problems that are innate 

with the concept of shared control among multiple agents. 

The birth of this concept was set in a training environment 

where two agents are interacting. Both agents can be 

human, non-human or a mix of the two. In the typical 

scenario, depicted in Figure 1, the first controller functions 

as a pilot, or expert user, and the second controller 

functions as a copilot, of novice user. It is our assumption 

for this work that the expert controller is the one that 

performs actions as expected, and the novice controller is 

at an early phase of learning the tasks. 

As it would be impossible for a vehicle to be controlled 

simultaneously by two different controllers, we looked at 

concepts of information fusion for a solution. The fuzzy 

controller performs three distinct operations. The first is 

the analysis of the inputs to determine the closeness of 

control; it then performs a revision of the weight of control 

between the expert and the novice controller; finally it 

computes the value of the single output. 

2.1 Analysis of the inputs 

Cantorian set theory leaves little room for gray areas; a 

room’s temperature can be classified as hot, medium or 

cold. This system does not take into consideration the 

possibility of the same room being perceived as 

comfortable or chilly by two different persons. Fuzzy sets 

provide a solution that takes into consideration values that 

fall within multiple sets [15]. These kinds of sets can be 

utilized within the field of information fusion applied to a 

situation of multiple controllers trying to interact with a 

vehicle by a means of comparison. 

The analysis of the inputs coming from the two controllers 

aims at understanding the distance between the values. 

The input coming from the expert user is mapped to the 

center of the range [-10, 10], as shown in Figure 2. 

 

 
Figure 2. Breakdown of the sets used for comparing 

controller inputs 

 

The range of [-10, 10] represents the highest possible 

deviation between the input of the expert and the one of 

the novice. After the input of the expert becomes the 

center of this domain, we calculate the difference between 

the value of the original input of the expert and the one of 

the novice. This value is then also mapped to the domain 

shown above. 

When the distance between the inputs is mapped, it will 

fall within one or two sets that span over the range, as 

shown in Figure 2. The five sets we deal with are: WL 

(Wide deviation to the left), SL (Slight deviation to the 

left), S (Similar), SR (Slight deviation to the right), and 

WR (Wide deviation to the right). In fuzzy set theory, the 

value can belong to a set with a certain degree of 

belonging. Such degree of belonging is calculated by a 

membership function. In our case, we use a simple 

membership function, also shown in Figure 2. 



The application of a linguistic modifier to the deviation 

between the controller inputs also keeps in consideration 

the degree of belonging of the difference to the different 

sets. It is important to note that a value may fall 

completely (degree of belonging = 1) within one set, or the 

value may belong mostly (.80) to the set of deviations 

deemed as Similar (S), and partly (.20) to the set of Slight 

deviations to the left (SL). 

2.2 Revision of the weight of control 

Fuzzy mediation sees the fusion of the inputs of the expert 

and the novice as a balance between the two. The more the 

novice performs similarly to the expert, the more control 

will shift in favor of the second controller. Likewise, the 

more the control of the novice differs from the one of the 

expert, the more control will shift back towards the expert. 

 

 
Figure 3. Fuzzy sets that regulate the balance of control 

between the expert and the novice controller 

 

Given this preamble, this second part of the fuzzy 

mediation algorithm analyzes the linguistic modifiers 

applied to the deviation of the inputs during the first 

phase. Control is mapped to the range of [-1, 1], where a 

control weight of –1 identifies a control fully in the hands 

of the expert, a value of 1 instead refers to control 

managed by the novice. Figure 3 shows the visualization 

of this concept. As we apply the concept of fuzzy sets to 

this section of the algorithm, a value in the range (-1, 1) 

identifies a control that is mixed in a certain proportion 

between the expert and the novice. The arrow in Figure 3 

shows a possible weight of the mediation of control 

between the trainer and the trainee. At the beginning of the 

simulation the weight has a value of –1. 

When the classification of the distance between inputs is 

analyzed, there are several actions that can be taken. If the 

inputs are classified as similar, control is given more to the 

novice. If the deviation between inputs is slight, then 

control stays unvaried. If instead the deviation is wide, 

more control is given to the novice. The shifting of the 

weight from one controller to the next occurs in a linear 

fashion, with increments or decrements of 0.2 points on 

the range [-1, 1] presented earlier. In the case of a distance 

between inputs that belongs to two sets, then we will 

multiply the degree of belonging to each of the sets to the 

action associated with that particular set. Using the 

example given earlier, a value that belongs to the set S 

with membership 0.8 will receive an increase in control of 

0.2 (the standard increment) multiplied by the membership 

value, which means an increase of the weight of control of 

0.16. The same value also belongs to the set SL with 

membership 0.2. The action associated with a deviation 

that is classified as slight is a movement of 0 of the 

balance between controllers, so the action for this set is 

calculated by multiplying 0.2, the membership value, to 0. 

The addition of these values, 0.16 and 0, shows the overall 

shift in control, which is of 0.16 in favor of the trainee. 

2.3 Calculation of the single output 

After the weight of control is updated, we need to 

calculate a value that will serve as a single input stemming 

from the original inputs of the two controllers. For this 

computation we need to refer to the original values. 

Equation 1 regulates the third section of this algorithm. 

 

 MO = µT * EI + µt * NI  (1) 

where MO symbolizes the mediated output, µT refers to 

the membership value of the weight of control to the 

Trainer set (Expert) and µt refers to the membership value 

of the weight of control to the trainee set (Novice). The 

inputs of the two controllers are represented by EI for the 

Expert’s input and NI for the Novice’s. 

In the case of a driving simulator, we may have an expert 

applying a turn of 15 degrees to the right and a novice 

applying a turn of 25 degrees. If the weight of control has 

a value of –1, the mediated output will have a value of 15 

degrees to the right. Likewise, if the weight of control has 

a weight of 1, the mediated output will be of 25 degrees to 

the right. If the weight is anywhere in between, for 

example µT = 0.5 and µt = 0.5, the mediated output will 

be of a 20 degree turn to the right. 

 

 
Figure 4. Path of the simulation 

3 Experimental setup 

The environment used for these experiments is a simple 

agent that follows a line. Figure 4 shows the pattern that 

was used. The pattern contains only the white background 

and the black line. The areas that have been highlighted 

show the sections of most interest. Section 1 was created 

to see the behavior of the agent in a mild turn to the right; 

section 2 instead simulates a sharp turn to the left followed 



by a moderate turn to the right. Section 3 mimics a straight 

path. Section 4 reveals a tight turn to the left, just like 

section 5. Section 6 is another tight turn to the right after a 

straightway and finally section 7 shows quick changes in 

direction. 

In these experiments we use different levels of control. 

When we want to create an environment when the two 

inputs need to be closer in order to shift the weight from 

the expert to the novice we simply need to set the 

boundaries of the sets shown in Figure 2 to tighter limits. 

The three levels of control we use are the following: Tight 

control, Moderately loose control and Loose control. 

Table 1 shows the values associated with each level of 

control. Each set carries four values, (OL, IL, IR, OR), 

where OL refers to the outer left boundary, IL to the inner 

left, IR to the inner right and OR to the outer right. 

 

Table 1. Description of fuzzy sets used in classifying the 

difference between the expert and the novice inputs 

 
 Tight Moderate Loose 

WL (-∞, -∞, -5, -3) (-∞, -∞, -6, -4) (-∞, -∞, -8, -6) 

SL (-5, -3, -2, -1)  (-6, -4, -2, -1) (-8, -6, -4, -2)  

S  (-2, -1, 1, 2) (-2, -1, 1, 2) (-4, -2, 2, 4) 

SR (1, 2, 3, 5) (1, 2, 4, 6) (2, 4, 6, 8) 

WR (3, 5, +∞, +∞) (4, 6, +∞, +∞) (6, 8, +∞, +∞) 
 

 

 

The simulated agent is composed of a central unit that 

contains sensors. The sensors check the terrain in front of 

the agent for color. The sensors can either pick up white, 

which is the background, or black, which is the line. The 

sensors are arranged on a probe that scans the range [-45, 

45] in front of the agent at 5-degree intervals. Figure 5 

shows an image of the agent that is following a line. The 

light gray is the body of the agent while the dark gray 

spots in front of it represent the range of action of the 

sensors. 

 

 
Figure 5. Diagram of the simulated agent with its 

sensors 

 

The sensors communicate to the agent the color of the 

terrain at each angle. Then the agent will group together 

the angles that recorded a reading of a line and will 

calculate the average. The value calculated will then be 

analyzed by the agent, which will select the new heading. 

An agent can perceive changes in direction up to ± 45 

degrees, given the layout of the sensors. 

In order to simulate the behavior of agents we assigned 

them a preset behavior that allows them to navigate 

successfully through the pattern selected. In order to 

simulate an expert agent and a novice one, we chose 

equations that are slightly different. The typical expert is 

represented by a simple linear function. When the agent 

receives the reading from the sensors, the difference in 

heading is applied directly to the heading, so if the sensors 

read that, in order to follow the line the agent needs to 

apply a 15-degree turn to the right, the agent will perform 

a 15-degree turn to the right. 

 

 
Figure 6. Control functions associated with the expert 

(dotted) and the novice (solid) controllers 

 

The simulation that represents the case of a novice is 

powered by an agent that relies on the cube of the 

difference normalized to the range [-90, 90]. The two 

equations that are used to drive the agents are reported in 

Figure 6. The dotted line represents the behavior of the 

expert and the solid one the behavior of the novice. 

 

Table 2. Controllers used for the simulations 

 
Num Equation Simulation 

1 Y = X Expert agent 

2 Y = X3 Simple novice agent 

3 

If X > 0 Then 

Y = X 

Else 

Y = 0 

Agent that turns to the right, but 

can’t turn left. Instead it goes 

straight. 

4 

If X > 0 Then 

Y = X3 

Else 

Y = 0 

Agent that turns to the right, but 

can’t turn left. Instead it goes 

straight. 

5 Y = |X| 
Relatively novice agent that only 

turns right 

6 Y = |X3| Novice agent that only turns right 
 

 

 

This interpretation of the agents shows an expert that acts 

as expected, with a linear response to the situation. The 

novice instead reacts more slowly only to overcompensate 

as the deviation required in order to remain on track 



increases. We also carry out other simulations where the 

difference between the inputs of the expert and the one of 

the novice are very different. The equations reported in 

Table 2 show the driving engines we used. 

4 Experiments 

The first experiment we performed involves an agent 

navigating through the pattern using fuzzy mediation to 

blend the controls of the expert powered by controller 1 

and the novice simulated by controller 2. The elements we 

studied were the differences in behavior of the agent based 

on different levels of control, as described above. The 

element we monitored is the value of the mediator’s 

weight. Table 3 shows the average value for the three 

levels of control using the very same controllers to 

simulate the controllers’ inputs. 

 

Table 3. Agent performance for one lap using different 

control levels 

 

 
Tight 

control 

Moderate 

control 

Loose 

control 

Average 

mediation 

weight 

0.59 0.62 0.82 

Average 

difference 

between inputs 

2.4 2.56 4.21 

Average 

difference 

between 

expected and 

actual path 

1.73 1.9 3.74 

 

 

 

We can see that a tighter control reports an average weight 

of the controller that is lower when compared to the other 

indices. This means that, when we use the sets that 

correspond to a tight control of the novice’s inputs, the 

expert retains control for more sections of the patters than 

in simulations performed using the moderately loose or 

loose controls. 

Table 3 also reports two more values that are important to 

analyze. The first is the average difference between inputs, 

or the expert’s input and the novice’s. The next element of 

interest is the average difference between the expected and 

the actual path, measured by the difference between the 

expert’s input and the mediated output. As we can observe 

from these values, the difference between the expected and 

the actual path is always smaller than the average 

difference between the trainer and the trainee’s inputs. 

This shows that fuzzy mediation is successfully mediating 

between the two controllers, by letting the agent stay on 

track, and it is also reducing the error that would have 

been present if this algorithm was not in place. 

It is important to note that the values that define the 

averages between the expert and the novice controllers are 

always different due to the fact that, with looser control, 

the agent finds itself further away from the track. The 

averages reflect the fact that the expert controller wants to 

over-steer in order to return to the path to follow, while 

the overall agent does not.  

 

 
Figure 7. Shift in mediator weight during section 2 of 

the simulation with tight control 

 
Figure 8. Shift in mediator weight during section 2 of 

the simulation with moderate control 

 
Figure 9. Shift in mediator weight during section 2 of 

the simulation with loose control 

 

In all the experimental runs we noticed that the area that 

consistently showed the most shift in control was number 

2 in Figure 4. Figures 7, 8 and 9 show the shift in control 

weight as the agent goes through the turn. The X-axis 

identifies the number of steps included in the analysis, 

while the Y-axis identifies the range of the possible weight 

of the controller’s mediation. It is important to note that 

the agent was following the pattern in a clockwise motion. 



These figures show that, in the case of a tight control, the 

expert will regain significantly the control of the agent and 

will perform the steeper section of the turn, as shown in 

Figure 7. Figure 8 instead shows that the fuzzy mediation 

that uses a moderately loose control still allows the expert 

to retain quite a bit of control, but overall the input of the 

novice is evaluated with a higher importance. Finally, 

Figure 9 shows that a loose control allows the novice to 

take care of the majority of the control in this situation. 

The different nature of the controllers, as described 

earlier, does not allow the novice to be in control through 

the entire turn, as the difference in controllers’ inputs are 

quite different. 

 

Table 4. Agent performance in section 2 of the simulation 

 

 
Tight 

control 

Moderate 

control 

Loose 

control 

Average 

mediation 

weight 

0.21 0.31 0.57 

Average 

difference 

between inputs 

2.62 3.11 4.83 

Average 

difference 

between 

expected and 

actual path 

1.41 1.91 3.72 

 

 

 

Table 4 shows the average weight of the controller’s 

mediator weight for the values plotted in Figures 7, 8 and 

9, showing the control over section 2 of the track. 

As we review the performance of the agent over this 

section of the track, it is important to note that, even in this 

case, the difference between the inputs of the two 

controllers is greater than the difference of the expected 

and the actual output of the agent. 

The following experiments were performed in order to 

study the interaction between an expert and a novice 

controller when the novice behaves quite differently from 

the expert. This was done in an effort to study the behavior 

of the fuzzy mediation architecture when placed in an 

environment where the novice controller acts in a manner 

that is radically different from the expert user. 

The first simulation was performed with the expert 

controller based on controller 1, while controller 3 

powered the novice. In the case of a turn to the right the 

agent showed no problems. We recorded that in this case 

the agent was leaving the pattern completely in the case of 

a slight turn to the left. In the case of a sharp turn to the 

left the agent showed some problems at the beginning of 

the turn, but no problem after that. This is probably due to 

the fact that, in the case of a slight deviation control stays 

unaltered, thus leaving control for a longer period of time 

to the novice. The second setting involved a novice 

controller powered by controller 4. This simulation 

performed very similarly to the previous one, since both 

simulations for the novice controller show the same 

response to a left turn. 

The third set of experiments focused on controllers that 

behaved completely different in the case of a left turn. In 

order to simulate this situation we used controllers 5 and 6 

to simulate the novice controllers. We were unable to 

record extensive data for these experiments because the 

agent was not able to complete a full loop of the pattern. 

Our observations show that in the case of controller 5 the 

agent would initially follow the line, but at the first left 

turn it would lose control, turn completely around and then 

get stuck looping around itself. The same behavior was 

observed when controller 6 powered the novice. We then 

increased the value by which the weight value of the 

control is shifted from 0.2 to 0.5 At this point the agent 

with the novice controller with controller 6 performed 

almost a full trip around the pattern. It showed problems 

when it was presented with a slight turn to the left. At that 

point it would also start looping around itself. 

The findings reported in the experiments that used novices 

powered by controllers 3 through 6 indicate the need to 

explore thoroughly fuzzy mediation environments that use 

different increments in the shift of mediation. We 

performed several other experiments that dealt with the 

shift in control, not included in this work. 

5 Possible applications 

The possible applications of this research are quite varied, 

given the possible applications in training, stressing those 

that involve machinery. This system may be used as a 

training environment as well as a monitoring one. Several 

types of machines require "check rides", where the user 

needs to perform certain operations under scrutiny of 

evaluators. If the operator fails to perform a certain 

number of tasks correctly, the license to operate that type 

of machine will be revoked. With this framework, the 

operator and the check ride officer may use this approach 

for evaluation. We may even push the technology a bit 

further, and allow the operator to be checked by a 

machine, supervising the operator's performance. 

Moreover this framework will create a system that learns 

from the driver's everyday performance. Upon reaching a 

certain level of confidence for the "autopilot" system, this 

system will then become the monitor when the driver 

seems to be impaired in any way and correct the actions of 

the driver. Should the actions of the driver lead to 

dangerous driving, the car may calculate the best route to 

stop and do so to ensure the safety of the passengers as 

well as other drivers. 

Such framework will be extensible to an embedded system 

that will allow an autopilot type of controller to take over 

when the machine (automobile/airplane) is capable of 

producing a path of motion similar to the one followed by 

the human operator. Such autopilot will also be able to 

learn from the human controller, so that, the next time 

similar conditions arise, the machine will be able to 

foresee the path required to avoid the problem. 



This research will be extensible to other fields, such as the 

creation of an autopilot system that uses “drives” as 

parameters to control an automated robot, as explained in 

[16]. Such robot will also be able to detect and avoid 

obstacles in an unfriendly environment using the structure 

described in [17]. Many of the applications within this 

section are highly dependent on elements that are not in 

place yet. For example, a digital system that can drive a 

car efficiently within a regular urban environment is not 

existent. The authors envision this happening within a few 

years though, and believe that, when the times are ready, 

this research will show its true power in its applications. In 

the mean time, we will create simulations that will allow 

us to recreate some of the high-end sensors still 

unavailable to us. 

6 Conclusions and future work 

This article introduced the concept of fuzzy mediation, an 

innovative and dynamic branch of the field of information 

fusion. The simulations that were reported in this work 

show the potential of this algorithm when applied to an 

agent controlled by two different computational engines. 

We also identified areas that become of concern as the 

difference between the controllers increases. We already 

started experimenting with different solutions for 

transition strategies between controllers, and the results 

seem very promising. 
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