
Applications of Tensor Decompositions
REU Site: Interdisciplinary Program in High Performance Computing

Sergio Garcia Tapia1, Rebecca Hsu2, Alyssa Hu3, Darren Stevens II4,
Graduate assistant: Jonathan S. Graf5, Faculty mentor: Matthias K. Gobbert5, and

Client: Tyler Simon6

1Department of Mathematics, University at Buffalo, SUNY
2Department of Mathematics, University of Maryland, College Park,
3Department of Mathematics and Department of Computer Science,

University of Maryland, College Park
4Department of Computer Science and Electrical Engineering, UMBC

5Department of Mathematics and Statistics, UMBC,
6Laboratory for Physical Sciences

Technical Report HPCF–2016–17, hpcf.umbc.edu > Publications

Abstract

This report explores how data structures known as tensors can be used to perform
multidimensional data analysis. If a matrix can be thought of as a two-dimensional
array, then a tensor can be thought of as a multi-dimensional array (with more than
two dimensions). Tensor decompositions are algorithms and tools that can allow the
user to directly perform analysis on this type of data. After explaining the basics of
tensors, we work with two different three-dimensional data sets and decompose the
tensors in order to provide analysis and interpretations of various aspects of the data.

Key words. Tensors, Tucker tensors, Principal component analysis.

1 Introduction

Many application problems in data analysis inherently contain multi-dimensional data. Po-
tential examples can include behavioral studies across different situations, facial recognition
algorithms, and signals processing and analysis. Matrices are oftentimes used to organize
the variables reorded after having found an appropriate way to express the data in the two-
dimensional array. On the other hand, one can also directly perform analysis on the data by
using multi-dimensional arrays that preserve the inherent structure of such multi-dimensional
data represented by tensors.

The basics of how to use and operate with tensors are similar to operations with regular
two-dimensional matrices. With third-order (three-dimensional) tensors, it is clearer to
visualize them as slices of matrices overlayed on top of each other. Multiplying tensors
requires an extra step; one must unfold the tensor into a matrix before proceeding with
traditional matrix multiplication and then refold the result back into a higher order tensor.
For multi-dimensional data, one would normally perform dimension reduction techniques
to organize the data into a matrix. Then, a method such as principal component analysis

1

hpcf.umbc.edu

(PCA) would be applied on the matrix in order to provide analysis of the data. However,
we can apply what is known as a tensor decomposition to all of the multi-dimensional data
at once. One specific tensor decomposition for N -dimensional tensors is called the Tucker
decomposition [6]; specifically for 3-dimensional data, Kiers et al. [4] also refer to it as 3-
mode-PCA (3MPCA). This decomposition factors the original data into a core tensor that
is typically smaller, as well as three factor matrices that measure the level of interaction
between the data [6]. Section 2 introduces some basic facts and properties of tensors and
explains the Tucker decomposition more in-depth.

The Matlab Tensor Toolbox1 has many functions available for creating and operating
with tensors, some of which we will discuss in Section 3. The Tensor Toolbox can be used
to create sparse or regular tensors. Sparse tensors are tensors for which most of the entries
are zero. If most of the elements of a tensor are nonzero, the tensor is considered regular
or dense. In addition, there are commands to multiply tensors with other tensors and with
other vectors or matrices. There are in fact functions for working with tensors that have
specific properties, as well as relevant decompositions, such as Tucker or Kruskal tensors.
Section 3 discusses the features of the Matlab Tensor Toolbox in more detail.

In order to provide an illustrative example, Kiers [4] provides a fictitious set of data
as a behavioral study for six different individuals measuring five behavioral responses in
four different scenarios. This data is naturally multi-dimensional and can be expressed as
a 6 × 5 × 4 tensor. Kiers applies the 3MPCA decomposition to this data to generate the
component matrices and desired core tensor. Labels were given to each of the components
after seeing the column groupings in order to provide a clear interpretation of the data.
Kiers demonstrates mathematically how to use the results of the decomposition in order to
retrieve the original data. This is shown in detail in Section 4.

Section 5 introduces data from a Dutch psychological experiment with a 326 × 5 × 2
tensor. We apply the Tucker decomposition also to this data set and then use additional
steps to use the result. Kiers used the component matrices’ columns to group data and
generated labels for those columns. For the Dutch data set, we take the dot product of the
original data with the column(s) of the component matrix B to better summarize the data.
We note how we can input different core tensor sizes and if that affects resulting component
matrices and interpretation.

2 Tensor Analysis

2.1 Tensor Basics

We now formally introduce tensors. Material presented here is based on the Kolda and Bader
paper [6]. Recall that a matrix U ∈ RI×J can be thought of as a 2-dimensional array, where
I, J are positive integers. A tensor X ∈ RI1×...×IN is a generalization of a matrix; that is, it is
an N -dimensional array. As such, many properties and operations of matrices are retained
in higher dimensions with some concepts being more intricate. Tensors are denoted by Euler

1Version 2.6, http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html

2

http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html

Figure 2.1: A tensor of order 3.

script characters as first done above in the usage of X. An element in a tensor is denoted
by xi1,...,iN , where in = 1, . . . , In (that is, the subscripts range from 1 to their corresponding
uppercase equivalent). An N -dimensional tensor is also referred to sometimes as a tensor
of order N , or a tensor with N modes. Addition is done element-wise as one would expect,
and the Frobenius norm of a tensor is the same as that of a matrix, satisfying

||X|| =

√√√√ I1∑
i1=1

· · ·
IN∑

iN=1

x2
i1,...,iN

for X ∈ RI1×...×IN .

For N -way tensor X, fibers and slices are defined by fixing N − 1 and N − 2 indices,
respectively. The fibers then are 1-dimensional tensors or arrays (vectors), and the slices are
2-dimensional tensors or arrays (matrix) obtained from X with some orientation that depends
on what indices have been fixed. For illustrative purposes, we limit our discussion to 3-way
tensors and provide Figure 2.1 as a way to visualize them. For a tensor X ∈ RI×J×K of 3
dimensions, on the one hand, a fiber is obtained by fixing two of the indices. The possible
choices then are vectors X(:, j, k), X(i, :, k), and X(i, j, :), for i = 1, . . . , I, j = 1, . . . , J ,
and k = 1, . . . , K; these correspond to columns, rows, and tube fibers, respectively. In
Figure 2.2, we see that fibers of a 3-way tensor are pillars with some orientation. On the
other hand, a slice of a tensor X is obtained by fixing one of the indices and the choices
would be matrices X(i, :, :), X(:, j, :), and X(:, :, k) that correspond to horizontal, lateral, and
frontal slices, respectively. In Figure 2.3, we see that the the slices of a 3-way tensor are
represented as planes with certain orientations.

Introducing fibers also allows us to introduce the idea of unfolding tensors. Visually, the
mode-n unfolding or matricization of a 3-way tensor G ∈ RP×Q×R, where n = 1, 2, or 3,
means to take the mode-n fibers, to rotate them into column orientation, and then line them
up sequentially. The result is that we express a tensor G as a matrix G(n) with dimensions
that depend on n = 1, 2, 3, as well as P,Q,R. The benefit of this is that it allows us to
consider mode-n matrix multiplication. The mode-n product between a tensor and matrix
is defined if certain dimensions match as is the case for matrices. If G ∈ RP×Q×R is a tensor

3

Figure 2.2: Fiber representations of a 3-way tensor.

Figure 2.3: Slice representations of a 3-way tensor.

of 3 modes, and if G(3) ∈ RR×PQ is its mode-3 unfolding, then the mode-3 product with a
matrix C ∈ RK×R is expressed as

Y = G×3 C ⇐⇒ Y(3) = CG(3).

where Y ∈ RP×Q×K , and Y(3) ∈ RK×PQ is its mode-3 unfolding. An example of this is
explored in detail in Section 4.

2.2 Principal Component Analysis

In spite of tensors having the ability to inherently represent multi-dimensional data, it is
commonplace for matrices to be preferred. As a result, many methods for dealing with
multi-dimensional data by using matrices have been developed. Among them is principal
component analysis (PCA), a technique that seeks to find an appropriate representation for
data that has been collected and organized in a matrix. Generally, data is arranged in a
matrix U such that each column constitutes a different type of measurement performed and
each row a different trial. The goal is then to find a matrix P such that its vectors (known as
the principal components of U) are a basis for the row space of U where the trial vectors are
contained. Since each principal vector is associated with a corresponding variance between
measurement types in A, the independent directions related to a large variance suggest
underlying patterns in the data. A generalization of this technique to higher-order tensors
has been developed and it is known as a Tucker decomposition [6] or 3MPCA [4]. The
convenience is that we are then able to retain the multi-dimensional nature of data and
perform analysis on thit directly, instead of having to represent it as a matrix to use matrix
analysis techniques.

4

Figure 2.4: Visual representation of Tucker decomposition.

2.3 Tucker Tensor Decomposition

We mentioned that tensors can be decomposed. Here, we concern ourselves with a method
resembling PCA, known as the Tucker decomposition. Given a tensor X ∈ RI×J×K , a Tucker
decomposition attempts to express it as

X ≈ G×1 A×2 B ×3 C (2.1)

for core tensor G ∈ RP×Q×R, and with A ∈ RI×P , B ∈ RJ×Q, and C ∈ RK×R being factor
matrices that are orthogonal visually represented by Figure 2.4, for integers 1 ≤ P ≤ I,
1 ≤ Q ≤ J , and 1 ≤ R ≤ K. The numbered subscripts indicate the mode of multiplication
in which the product between the tensor G and the matrices are being multiplied that was
discussed in Section 2.1. The entries themselves are given by

xijk ≈
P∑

p=1

Q∑
q=1

R∑
r=1

gpqraipbjqckr.

By saying the decomposition resembles PCA, we mean that it is a form of higher-order
principal component analysis where the component matrices are principal components [6],
which is why Kiers [4] refers to it as 3MPCA. Therefore, we oftentimes use 3MPCA and
Tucker decomposition interchangeably. The way in which to interpret the components of the
decomposition is also sometimes dependent on the data set in question. Since the component
matrices measure the level of interaction [6] between the information recorded, the technique
can be used to group several variables that are most closely related to one another, as we
demonstrate in Section 4. Alternatively, the decomposed result can be used jointly with the
original data to provide insight into the recorded information, as shown in Section 5.

The Tucker decomposition for a given tensor is defined for different core tensor sizes, and
therefore the decomposition is not unique. The decomposition can be computed through
numerical methods such as Alternating Least Squares (ALS), which is an iterative method
that depends on an initial guess, a stopping tolerance, and more, thus the result is not unique
even for one choice of core tensor size.

5

3 Matlab Tensor Toolbox

The Tensor Toolbox has many functions available for creating and operating with tensors
in Matlab. In particular, there are specific functions for working with tensors of specific
structures, including regular tensors, sparse tensors, and Tucker-decomposed tensors.

3.1 Literature Review

The Tensor Toolbox for Matlab has been used and referenced in different research papers.
Kolda and Bader’s paper on Tensor Decompositions and Applications served as background
reading for our research [6]. Other papers with interesting applications of the Tensor Toolbox
will be briefly discussed. Fitzgerald, Coyle, and Cranitch investigate the separation of drum
sounds from music with tensor factorization models [2]. Also, a lot of data can be represented
with links and graphs, especially those involving relationships such as online connections in
social networks. Thus, the Tensor Toolbox can be applied to predict future links, specifically
by using a CP tensor decomposition (involving Alternating Least Squares) [1]. The Tensor
Toolbox is compared to GigaTensor, an algorithm used to deal with large tensors and their
decompositions, using Hadoop MapReduce [3]. Tensor Toolbox runs faster than GigaTensor
when the size of the tensor (with same-size modes) is less than 107. However, any tensor of
size greater than 107 and the Tensor Toolbox runs out of memory; thus, GigaTensor is helpful
to use, as it appears to support tensors at least of size 109 [8]. Furthermore, Kolda and Sun
previously commented on memory issues of applying Tucker on a large sparse tensor in a
2008 paper and propose a Memory Efficient Tucker method to avoid memory overflow [5].

3.2 Regular (Dense) Tensors

The tensor command is the most basic, which converts an existing array A into a tensor.
Additionally, the user is allowed to pass an array argument specifying the desired size (e.g.,
[2 3 4] for a 2 × 3 × 4 tensor). Alternatively, one can use the tenrand function to create
a random tensor of a size determined by the passed array argument. Similar to functions
ones and zeroes for matrices, the functions tenones and tenzeros create tensors of a
desired size filled with ones and zeros, respectively. Having created a tensor, a user might
be interested in information about it, such as its size or the information stored in it. Such
inquiry can be done for a tensor X by X.size and X.data (or double(X)), with the former
returning an array with the size and the latter a multi-dimensional array with the data that
the tensor contains. In fact, using these two in conjunction is an easy way to replicate the
tensor by passing the data array and size array. The extraction of elements is the same as
for matrices, since one can just pass specific indices (or array of indices). Lastly, component-
wise operations can be done with the dot operator, such as X.*Y for multiplication, or X./Y
for division. Some functions, like the sqrt function for matrices, cannot be used; instead,
the tenfun(@foo, X) is needed to perform the component-wise operations defined in some
custom @foo function (note the character preceding the function name) to an existing tensor
X. For instance, tenfun(@sqrt,X) takes the square root of every element in X.

6

3.3 Sparse Tensors

The syntax for the construction of sparse tensors is similar to that of regular tensors. The
sptensor function is used, with the appropriate arguments being an array of subscripts
(separated by a semicolon) for where to put non-zero entries, an array for the value desired at
each subscript, and another to specify the size of the sparse tensor. If no size array argument
is given, then the function will create a sparse tensor just big enough to hold the non-zero
elements. Instead, one might be interested in using sptenrand to create a sparse tensor with
random entries from a normal distribution on the interval (0,1), with some default mean and
standard deviation. For this, one need only pass an array of the desired size, as well as an
integer representing the number of non-zeros wanted on the sparse tensor. If, instead, such
a number is not an integer and is instead a real number between the interval (0, 1), then
it is treated as a percentage of non-zeros in the sparse tensor (which, therefore, depends
on size). Analogous to the case of normal tensors above, one can use X.subs, X.vals, and
X.size to obtain the subscripts of the non-zero entries, the values of these entries, and the
size of the sparse tensor, respectively. Another useful function is find (not limited to sparse
tensors) which takes as input a tensor whose entries are subjected to a certain condition,
such as find(X>0.9), which considers the entries of tensor X that are greater than 0.9, and
then extracts the corresponding subscripts. The nnz function also allows the user to obtain
information on the tensor, in this case, the number of non-zeros. The elemfun function
works for the nonzeros in sparse tensors the same way as the tenfun function works for
regular tensors. For instance, to obtain the square root for nonzero elements in a tensor X,
one would do elemfun(X, @sqrt).

3.4 Tucker Tensors

Another tensor construction that will be represented here is that of a Tucker tensor. Recall
that a Tucker decomposition expresses a tensor of, say, order 3, as

X ≈ G×1 A×2 B ×3 C

for core tensor G and matrices A, B, and C.
One simply creates a tensor G with the tensor function, and a set of matrices as in

U = {A, B, C} for matrices A, B, C. Then, passing these arguments in that order to the
ttensor function creates the Tucker tensor, though only its components are output and not
the full tensor. The components can be accessed by the dot operator, such as in X.G for the
core tensor, and U{i} for the i-ith component matrix, i = 1, 2, 3. It is interesting to note
that a Tucker tensor can be used as a core for another Tucker tensor.

Aside from being able to create a tensor whose Tucker decomposition components are pre-
specified at the input phase, one can attempt to find the Tucker decomposition of a regular
tensor by using the tucker_als function. The function takes a tensor and an array that
specifies the best-rank approximation desired, so that it can output a Tucker-decomposed
tensor by trying to fit an alternating least squares model. Other arguments the function can
take (which have certain default values if not explicitly specified) are tolerance, the maximum

7

number of iterations, and an initial guess. The idea is that if we know the rank Rn of the
matrix obtained from each mode-n unfolding of the tensor and provide this as input, then
the decomposition is more likely to be accurate.

3.5 Tensor Products and Miscellaneous

Tensor operations such as multiplication are handled with the ttv, ttm, and ttt. The first
takes as arguments a tensor, a vector, and a number indicating the mode of multiplication (so
that the product is defined). One can pass multiple vectors at once if enclosed in curly braces,
such as {A, B, C, D}, followed by an array specifying the mode in which the vectors will
be multiplied with the tensor. In the context above, it could be as [1 3], which suggests
the multiplications that will take place are the tensor with A in mode-1 and with C in
mode-3, with the other multiplications not carried out since they are unspecified. The ttm

multiplication works the same way. Lastly, the ttt function is used to multiply two tensors.
One simply passes the two tensors as arguments and two arrays specifying which modes will
be multiplied with each other (the order matters, for this might be the difference between
the product being handled as an outer product or an inner product).

If at any point one wishes to unfold these tensors (that is, matricize them), one can do
so with the tenmat function. Simply pass as arguments the tensor, X, and two arrays; one
specifying the modes to be converted to rows, and the other specifying the modes to be
converted to columns. Additionally, any type of tensor can be converted into a regular type
of tensor via the full command, which takes as input any type of tensor and returns a dense
(regular) tensor.

4 Illustrative Example of Tensor Decomposition

As discussed, the purpose of utilizing tensors and their decompositions is to make analyzing
multi-dimensional data easier. Kiers et al. [4] provide several data sets that illustrate the
Tucker decomposition and their respective interpretations, and they provide one particularly
small illustrative example, for which the multiplication of the Tucker decomposition can be
explicitly checked. Note that the article refers to this decomposition as 3MPCA and we will
use this term while referring to tables from this article.

4.1 Original Input Data

Table 4.1 shows the original fictitious data provided in the Kiers article that will be used for
the decomposition [4]. This table shows the scores of

• I = 6 individuals — Anne, Bert, Claus, Dolly, Edna, and Frances — displaying

• J = 5 behavior types — emotional (E), sensitive (S), caring (C), thorough (T), and
accurate (A) — in

8

Table 4.1: Fictitious data set of scores of six individuals on five response variables for four
situations.

Doing an exam Giving a speech Family Picnic Meeting a new date
Individual E S C T A E S C T A E S C T A E S C T A
Anne 0.0 0.0 1.2 3.0 3.0 0.6 0.6 1.3 2.4 2.4 3.0 3.0 1.8 0.0 0.0 3.6 3.6 2.5 0.9 0.9
Bert 0.0 0.0 0.8 2.0 2.0 0.2 0.2 0.8 1.8 1.8 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.4 1.8 1.8
Claus 0.0 0.0 0.8 2.0 2.0 0.2 0.2 0.8 1.8 1.8 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.4 1.8 1.8
Dolly 0.0 0.0 1.2 3.0 3.0 0.6 0.6 1.3 2.4 2.4 3.0 3.0 1.8 0.0 0.0 3.6 3.6 2.5 0.9 0.9
Edna 0.0 0.0 1.0 2.5 2.5 0.4 0.4 1.1 2.1 2.1 2.0 2.0 1.4 0.5 0.5 2.4 2.4 2.0 1.3 1.3
Frances 0.0 0.0 1.2 3.0 3.0 0.6 0.6 1.3 2.4 2.4 3.0 3.0 1.8 0.0 0.0 3.6 3.6 2.5 0.9 0.9

• K = 4 different situations — doing an exam, giving a speech, family picnic, and
meeting a new date.

The data is presented in Table 4.1 in the form of the original (fictitious) psychological
experiment. It gives naturally rise to a tensor of data X ∈ R6×5×4, where the matrix of
numbers in each subtable of the four situations is one slice X(:, :, k) ∈ R6×5 for each k =
1, . . . , 4, that is,

X(:, :, 1) =


0.0 0.0 1.2 3.0 3.0
0.0 0.0 0.8 2.0 2.0
0.0 0.0 0.8 2.0 2.0
0.0 0.0 1.2 3.0 3.0
0.0 0.0 1.0 2.5 2.5
0.0 0.0 1.2 3.0 3.0

 , X(:, :, 2) =


0.6 0.6 1.3 2.4 2.4
0.2 0.2 0.8 1.8 1.8
0.2 0.2 0.8 1.8 1.8
0.6 0.6 1.3 2.4 2.4
0.4 0.4 1.1 2.1 2.1
0.6 0.6 1.3 2.4 2.4

 ,

X(:, :, 3) =


3.0 3.0 1.8 0.0 0.0
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
3.0 3.0 1.8 0.0 0.0
2.0 2.0 1.4 0.5 0.5
3.0 3.0 1.8 0.0 0.0

 , X(:, :, 4) =


3.6 3.6 2.5 0.9 0.9
1.2 1.2 1.4 1.8 1.8
1.2 1.2 1.4 1.8 1.8
3.6 3.6 2.5 0.9 0.9
2.4 2.4 2.0 1.3 1.3
3.6 3.6 2.5 0.9 0.9

 .

4.2 Illustrative 3MPCA Decomposition

Now, recall that a Tucker decomposition of a 3-way tensor X expresses the tensor as in (2.1).
Since we specify the size we want our core tensor to be, that will also determine the sizes of
our component matrices. We specify the size based on how many classifications or groupings
we want to use as our comparisons within each mode. For two groupings in each mode,
Kiers [4] chooses the core dimensions to be 2× 2× 2 and then states one choices of possible

9

Table 4.2: Component values from 3MPCA.

Component matrix A Component matrix B Component matrix C
Individual Femininity Masculinity Response Emotionality Conscientiousness Situation Social Performance
Anne 1.0 0.0 Emotional 1.0 0.0 Exam 0.0 1.0
Bert 0.0 1.0 Sensitive 1.0 0.0 Speech 0.2 0.8
Claus 0.0 1.0 Caring 0.6 0.4 Picnic 1.0 0.0
Dolly 1.0 0.0 Thorough 0.0 1.0 Date 1.2 0.3
Edna 0.5 0.5 Accurate 0.0 1.0
Frances 1.0 0.0

component matrices

A =


1.0 0.0
0.0 1.0
0.0 1.0
1.0 0.0
0.5 0.5
1.0 0.0

 , B =


1.0 0.0
1.0 0.0
0.6 0.4
0.0 1.0
0.0 1.0

 , C =


0.0 1.0
0.2 0.8
1.0 0.0
1.2 0.3

 ,

and the faces of the core tensor G ∈ R2×2×2

G(:, :, 1) =

[
0.0 3.0
0.0 2.0

]
, G(:, :, 2) =

[
3.0 0.0
1.0 1.0

]
.

In A, rows 1, 4, and 6 are identical, and so are rows 2 and 3. In B, rows 1 and 2 are identical,
as well as rows 4 and 5. In C, rows 1 and 2 are very similar, and so are rows 3 and 4. In
terms of the application, the mathematical result of (4.2) can be put in the form of Table 4.2,
where the classification into two groups in each component resulting from the core tensor of
size 2× 2× 2 are expressed in labels inspired by the application.

Each component shows the relationship between the elements within each mode and cat-
egorizes them based on the dimensions that we choose. For component A, we are simplifying
our 6 people into 2 categories. Looking at the resulting matrix above, we can see that Anne,
Dolly, and Frances have the same values, as well as Bert and Claus. From what Kiers tells
us about these individuals [4], this split could be interpreted as grouping femininity against
masculinity. Since Edna’s original values lie between the masculine and feminine values, her
component values are also half in each category and Kiers interprets this to mean that Edna
is androgynous.

Component B shows the relationship between the qualities of behavior (Kiers refers to
them as response variables). Notice how columns E and S of the original data match and
columns T and A match. On the other hand, C is its own entity. Intuitively, we can say
that emotional and sensitive behaviors could be grouped together and we could label that
with Emotionality. We can also intuitively say that thorough and accurate behaviors could
be grouped together, so we will label it as Conscientiousness. As shown in the Kiers paper,
these two labels form the 2nd mode. Caring does not neatly fit into either label, so as in the
case with Edna, it exhibits a combination of the two labels.

10

Table 4.3: Core G resulting from 3MPCA (Tucker decomposition).

Performance Situations Social Situations
G: Core Emotionality Conscientiousness Emotionality Conscientiousness

Femininity 0.0 3.0 3.0 0.0
Masculinty 0.0 2.0 1.0 1.0

The final component C shows the relationship between the different situations and groups
them into two categories. Here, the data appears slightly harder to interpret since none of the
entries match perfectly and cannot be grouped just based on that. Instead, we can interpret
the entries here as part of each category with preferences towards one or another. From the
labels Kiers used, the interpretation is that doing an exam is purely a performance situation,
as opposed to a speech which is mostly performance but still has a social aspect. Looking at
the original data, we can see that doing an exam and giving a speech have little or no scores
in the E or S columns (social), with high scores in the T and A columns (performance). A
picnic is an entirely social affair with almost no performance aspects, while a date is also a
largely social affair that still has some performance aspects.

Table 4.3 again collects the faces of the core tensor from (4.2) in terms of the application.
Based off our labels for the components, we use the same labels for the core. The core tensor
gives a summary of all the interactions among the three sources of variation in the data.
The front face G(:, :, 1) is related to performance situations, and the columns are labeled
in [4] as conscientiousness and emotionality, respectively. The back face G(:, :, 2) on the
other hand is related to social situations, and its columns are labeled as emotionality and
conscientiousness, respectively. The first row of each face is related to femininity and the
second row of each face is related to masculinity.

From the core tensor, we can summarize that females have very strong conscientiousness
in performance situations and strong emotionality in social situations, but little emotion-
ality in performance situations and low conscientiousness in social situations. This sounds
intuitively correct. One might expect males to have similar conscientiousness in performance
situations, but perhaps less emotionality in social situations. We look back at the original
data to see that females do have higher scores on the conscientiousness responses (T and
A) in the performance situations (Exam, Speech) and higher scores on the emotionality re-
sponses (E and S) in the social situations (Picnic, Date). Also in the original data, we note
that the two males have lower scores on the conscientiousness responses (T and A) in the
performance situations (Exam, Speech) and lower scores for emotionality responses (E and
S) for social situations (Picnic and Date).

4.3 Verifying and Understanding Results

For clarity, we explain how to carry out the computations necessary to obtain the tensor that
corresponds to the Kiers table displayed earlier. First, the multiplication with the tensor
that is taking place is dependent on the mode being considered. The idea is that a tensor has

11

Figure 4.1: Unfolding of mode-3 fibers.

3 dimensions, or modes, and subscripts indicate the mode of multiplication considered when
taking the product with the factor matrices. For instance, mode-3 multiplication satisfies

Y = G×3 C ⇐⇒ Y(3) = CG(3)

where C ∈ RK×R, the G(3) ∈ RR×PQ, and Y(3) ∈ RK×PQ are mode-3 unfoldings of G ∈
RP×Q×R and Y ∈ RP×Q×K . Hence, carrying out the mode-3 multiplication corresponds to
unfolding or matricizing G and multiplying by C on the left (assuming the dimensions match
for the product to be defined). Intuitively, unfolding a 3-way tensor G means to consider the
fibers (that is, the columns, rows, or tubes) of a certain mode and making such fibers the
columns of Gn (see Figure 2.2 for clarification of fibers). One can visualize this unfolding as
taking the tube fibers, rotating them so as to make them columns, and then lining them up
sequentially to obtain columns that form the tensor as a matrix; as presented in Figure 4.1.
Thus, recall that the third component matrix in the decomposition mentioned in this section
is

C =


1.0 0.0
0.8 0.2
0.0 1.0
0.3 1.2


and that the displayed frontal slices of core tensor G are

G(:, :, 1) =

[
0.0 3.0
0.0 2.0

]
, G(:, :, 2) =

[
3.0 0.0
1.0 1.0

]
.

Since the mode-3 unfolding means we make the tube fibers of G into columns of the unfolded
matrix G(3), then tube fibers can be thought of as columns going into the page (towards the
other slices), so that we get

G(3) =

[
0.0 3.0 0.0 2.0
3.0 0.0 1.0 1.0

]

12

And the multiplication yields

Y(3) = CG(3) =


0.0 3.0 0.0 2.0
0.6 2.4 0.2 1.8
3.0 0.0 1.0 1.0
3.6 0.9 1.2 1.8


We can then follow this procedure for the other modes by unfolding the tensor represented
by these slices in the appropriate mode, so that one can carry out the multiplications in
modes 1 and 2 with component matrices A and B, respectively.

For a better understanding of how to interpret the scores we should use some examples.
The score of Anne (fully feminine) on sensitive (pure emotionality) when meeting a new date
(mixture of performance and social) is 0.3 × 0.0 (score of feminine persons on emotionality
in performance situations) + 1.2 × 3.0 (score of feminine persons on emotionality in social
situations) which is 3.6. The score of Claus (fully masculine) on sensitive (pure emotionality)
when at a family picnic (purely social situation) can be read directly from the core matrix,
and it is 1.0. The score of Edna (half feminine, half masculine) on accurate (pure consci-
entiousness) when doing an exam (only performance) is 0.5×3.0 (score of feminine persons
on conscientiousness in performance situations) + 0.5 × 2.0 (score of masculine persons on
conscientiousness in performance situations) which is 2.5. Though Tucker decompositions
are approximations for the original, they can still potentially be exact.

The matrices in this section were not calculated, but chosen by hand in Kiers [4]. Their
product is nearly equal to the original tensor, which is not common, in particular for a core
tensor with smaller dimensions than the original data tensor. So, the data and decomposition
in this section provides an example of (2.1) with nearly equality instead of approximation.

4.4 Computed Tucker Decomposition

Using the same original data in Table 4.1, we ran the tucker_als function from the Tensor
Toolbox with core dimensions 2× 2× 2. The obtained matrices and faces of the core tensor
are

A =


0.4869 −0.2690
0.2697 0.6151
0.2697 0.6151
0.4869 −0.2690
0.3786 0.1617
0.4869 −0.2690

 , B =


0.4615 −0.4646
0.4615 −0.4646
0.4472 −0.0678
0.4324 0.5309
0.4324 0.5309

 , C =


0.3844 0.6853
0.4013 0.4577
0.4746 −0.4531
0.6826 −0.3400

 ,

G(:, :, 1) =

[
16.3956 −0.5072
0.8613 3.4340

]
G(:, :, 2) =

[
0.5610 9.9596
0.1826 −1.255

]
.

We will assume that the labels for the columns in the component matrices are the same as in
the Kiers article. We can see that the females have the same values and the males have the
same values, with only Edna being different. It also makes sense that females have larger

13

values of femininity as opposed to masculinity (note the negative signs for masculinity),
though it’s surprising that the males have much higher values of masculinity, but still some
femininity (note the positive signs). We can see something similar with the grouping of the
response variables. From this, we might also interpret that an exam is mostly a performance
situation, with still some social aspects which sounds unintuitive.

Looking at the core tensor, we decided to reverse the labeling for the columns in order to
preserve the interpretation under the assumption that the high value of 16.3956 corresponds
to what should be the high value for female conscientiousness in performance situations.
Just as in the example from Kiers, we can summarize that females have very strong con-
scientiousness in performance situations and strong emotionality in social situations, but
little emotionality in performance situations and low conscientiousness in social situations,
which is similar to results in the Kiers article. One might also expect males to have similar
conscientiousness in performance situations, but perhaps less emotionality in social situa-
tions. Surprisingly, this decomposition tells us that males have a fairly strong emotionality
towards performance situations, with little response at all towards social scenarios. Looking
back at the data, we can see that females do indeed have higher scores on the conscien-
tiousness responses (T and A) and higher scores on the emotionality responses (E and S) in
the performance situations (Exam, Speech) and social situations (Picnic, Date) respectively.
While the two males do show low scores on everything in the social situations, they don’t
show comparatively higher emotionality on the performance situations. This iterative pro-
cess leads to a different interpretation than the Kiers article and is a potential nuance for
further study.

4.5 Other Core Tensor Dimensions

Since the Tucker decomposition allows us to specify the dimensions we want to use, we are
not limited to cube cores (such as 2× 2× 2). Say, for instance, we wanted to see if using 3
classifications for people beyond male and female would be a better fit to represent Edna as
opposed to being a composite between male and female. We would specify the core tensor to
be 3×2×2, and the first component should have 3 columns. The individuals who are purely
one or the other should have the same if not very similar values in their original columns,
while Edna should undergo a drastic change in both of the 2 original columns now that Edna
is freed from the constraint of 2 classifications.

Comparing the A matrix from Section 4.4 to Table 4.4, we see our original columns for
everyone except Edna are the same, and everyone has negative values in the third column,
except for Edna in this instance. If the Kiers article did something similar, we could expect
the third column to have a 1.0 for Edna with 0.0 in masculinity and femininity. A similar
component matrix could be generated for the response variables. Since Caring has a different
value from all other response variables, it may have a strong correlation to the third category
if we specified our core to have dimensions of 2× 3× 2. It should be noted that having core
dimensions very close to the original data’s dimensions serve little purpose since the goal
is to shrink the original data to a size that can be summarized. Having any of the core
dimensions as 1 would also be unproductive, since we would not be categorizing the modes

14

Table 4.4: Component matrix A for the Tucker decomposition with 3 categories.

Component matrix A
Individual Femininity Masculinty Other
Anne 0.4869 −0.2690 −0.1546
Bert 0.2697 0.6151 −0.2211
Claus 0.2697 0.6151 −0.2211
Dolly 0.4869 −0.2690 −0.1546
Edna 0.3786 0.1615 0.9114
Frances 0.4869 −0.2690 −0.1546

or showing any useful numbers for comparison.

5 Practical Application of Tensor Decomposition

We now look at a larger data set that still has the same structure as the illustrative example
in Section 4. This data set is one of many available through the Three-Mode Company [7],
a website devoted to providing three-mode data sets to motivate the use of three-mode
data analysis. We discuss a couple ways in which one can make use of the results of the
decomposition to obtain meaningful information.

5.1 Dutch Children Psychological Experiment

The data set consists of results from a Dutch psychological experiment involving:

• I = 326 children who exhibited

• J = 5 behaviors — Proximity Seeking (PS), Contact Maintaining (CM), Resistance
(R), Avoidance (AV), Distance Interaction (DI) — in

• K = 2 stressful situations where the children were put in a room with a stranger and
the mother was later brought back.

Hence, the data can be represented in the form of a 3-way tensor X ∈ R326×5×2. A score
between 1 and 7 is given to each child to rate their behavior in each of the 5 categorical
scales. Data collected for the first 5 children in situation 1 is displayed in Table 5.1 for
example.

5.2 Applying Tucker decompoisition

We compute a Tucker decomposition using tucker als with a requested core tensor size of
2× 2× 2. The 2 for the first mode attempts to split the children in 2 groups. For the second
mode, the 2 attempts to place the more closely related behaviors together. For the third

15

Table 5.1: First five rows of Dutch data.

Individual PS CM R AV DI
1 3 2 1 2 7
2 6 7 1 1 1
3 1 2 1 2 7
4 7 7 7 1 1
5 6 4 4 1 1

mode, we pick it as a default since there are 2 situations. Thus, we obtain core G ∈ R2×2×2,
and component matrices A ∈ R326×2, B ∈ R5×2, and C ∈ R2×2.

A =


0.0476 −0.0663
0.0571 0.0811

...
...

0.0556 −0.0236
0.0547 −0.0455

 , B =


0.5444 −0.3705
0.4363 −0.5090
0.3391 −0.1313
0.3919 0.3124
0.4947 0.6992

 , C =

[
0.7342 0.6789
−0.6778 0.7342

]
,

G(:, :, 1) =

[
0.3376 16.3568
−1.7602 0.7655

]
G(:, :, 2) =

[
178.6889 −0.6780
−0.0978 −80.4707

]
Oftentimes, the interest in psychological experiments is to understand behavioral pat-

terns. With this motivation, we restrict our attention to the B matrix because it corresponds
to the 5 response variables:

B =


0.5444 −0.3705
0.4363 −0.5090
0.3391 −0.1313
0.3919 0.3124
0.4947 0.6992


Proximity Seeking

Contact Maintaining
Resistance
Avoidance

Distance Interaction

By sign and magnitude, the second column of B noticeably groups the first three behaviors
of Proximity Seeking, Contact Maintaining, and Resistance and the last two behaviors of
Avoidance and Distance Interaction.

We project the first 5 children’s data onto the second column of B. In other words, we
take the dot product of each row of the children’s data with the second column of B:

X(1 : 5, :, 1)B(:, 2) =


3 2 1 2 7
6 7 1 1 1
1 2 1 2 7
7 7 7 1 1
6 4 4 1 1



−0.3705
−0.5090
−0.1313

0.3124
0.6992

 =


3.2583
−4.0955

3.9993
−6.0638
−3.7725

 .

Negative values correspond to the extent to which behaviors of Proximity Seeking and/or
Contact Maintaining are present. Positive values correspond to the extent to which behaviors

16

of Avoidance and/or Distance Interaction are present. This projection helps summarize
information about the behavior of each child in situation 1.

The Tensor Toolbox allows us to request different tensor core sizes. For further explo-
ration, we compute a Tucker decomposition by requesting a core tensor of size 2 × 3 × 2,
which results in

A =


0.0476 −0.0667
0.0570 0.0807

...
...

0.0552 −0.0240
0.0546 −0.0458

 , B =


0.5444 −0.3706 0.6470
0.4363 −0.5084 −0.5573
0.3391 −0.1316 −0.3101
0.3919 0.3111 0.3238
0.4947 0.7001 −0.2643

 , C =

[
0.7342 0.6790
−0.6790 0.7342

]

G(:, :, 1) =

[
0.3369 16.3405 4.6376
−1.7663 0.7502 1.3683

]
, G(:, :, 2) =

[
178.6895 −0.0863 0.0055
−0.1397 −80.4702 0.9545

]
We also compute a Tucker decomposition for a core tensor of size 2× 4× 2, which gives

A =


0.0476 −0.0663
0.0570 0.0809

...
...

0.0552 −0.0242
0.0546 −0.0456

 , B =


0.5444 −0.3713 0.6499 −0.0087
0.4363 −0.5086 −0.5581 −0.4555
0.3391 −0.1305 −0.3113 0.8760
0.3919 0.3128 0.3178 −0.0483
0.4947 0.6990 −0.2612 −0.1509

 , C =

[
0.7342 0.6789
−0.6789 0.7342

]

G(:, :, 1) =

[
0.3446 16.3399 4.6349 −0.4621
−1.7529 0.7657 1.3615 1.6279

]
, G(:, :, 2) =

[
178.6896 −0.0853 0.0051 0.0168
−0.1362 −80.4694 0.9541 −0.0784

]
In this instance, the first and second columns of B do not drastically change across the

different sizes of the core tensor.
It is important to note at this point that we have performed a similar decomposition

on two different sets of data, but used them for different methods of interpretation. With
the Kiers article, the decomposition was used to show how all of the components related
to each other and is an illustrative example on how to label the columns given that the
properties of the individuals are known. For the Dutch experiment, we chose to only focus
on the B matrix that corresponded to the response variables. Due to the similarity of sign
and magnitude of the first column in B, we chose to focus on the second column. We have
extended the analysis done with Tucker by projecting the rows of the original data onto
the second column of the second component matrix B. Doing this allowed us to provide a
summary of the children’s behavioral tendencies. How one chooses to analyze and interpret
the results depends on the data that is being used as well as what the user wants to look for.

Acknowledgments

These results were obtained as part of the REU Site: Interdisciplinary Program in High Per-
formance Computing (hpcreu.umbc.edu) in the Department of Mathematics and Statistics
at the University of Maryland, Baltimore County (UMBC) in Summer 2016. This program

17

hpcreu.umbc.edu

is funded by the National Science Foundation (NSF), the National Security Agency (NSA),
and the Department of Defense (DOD), with additional support from UMBC, the Depart-
ment of Mathematics and Statistics, the Center for Interdisciplinary Research and Consulting
(CIRC), and the UMBC High Performance Computing Facility (HPCF). HPCF is supported
by the U.S. National Science Foundation through the MRI program (grant nos. CNS–0821258
and CNS–1228778) and the SCREMS program (grant no. DMS–0821311), with additional
substantial support from UMBC. Co-author Darren Stevens II was supported, in part, by
the UMBC National Security Agency (NSA) Scholars Program through a contract with the
NSA. Graduate assistant Jonathan Graf was supported by UMBC.

References

[1] E. Acar, D. M. Dunlavy, and T. G. Kolda. Link prediction on evolving data using
matrix and tensor factorizations. In 2009 IEEE International Conference on Data Mining
Workshops, pages 262–269, Dec. 2009.

[2] D. Fitzgerald, E. Coyle, and M. Cranitch. Using tensor factorisation models to separate
drums from polyphonic music. In Proceedings of the International Conference on Digital
Audio Effects (DAFX09), 2009.

[3] U. Kang, Evangelos Papalexakis, Abhay Harpale, and Christos Faloutsos. Gigatensor:
Scaling tensor analysis up by 100 times — algorithms and discoveries. In Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’12, pages 316–324. ACM, 2012.

[4] Henk A. L. Kiers and Iven Van Mechelen. Three-way component analysis: Principles
and illustrative application. Psychological Methods, 6:84–110, 2001.

[5] T. G. Kolda and J. Sun. Scalable tensor decompositions for multi-aspect data mining. In
2008 Eighth IEEE International Conference on Data Mining, pages 363–372, Dec. 2008.

[6] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, 2009.

[7] Pieter M. Kroonenberg. The three-mode company. http://three-mode.leidenuniv.

nl. Accessed September 12, 2016.

[8] Evangelos E. Papalexakis, U. Kang, Christos Faloutsos, Nicholas D. Sidiropoulos, and
Abhay Harpale. Large scale tensor decompositions: Algorithmic developments and ap-
plications. IEEE Data Engineering Bulletin, 36(3):59–66, 2013.

18

http://three-mode.leidenuniv.nl
http://three-mode.leidenuniv.nl

	Introduction
	Tensor Analysis
	Tensor Basics
	Principal Component Analysis
	Tucker Tensor Decomposition

	Matlab Tensor Toolbox
	Literature Review
	Regular (Dense) Tensors
	Sparse Tensors
	Tucker Tensors
	Tensor Products and Miscellaneous

	Illustrative Example of Tensor Decomposition
	Original Input Data
	Illustrative 3MPCA Decomposition
	Verifying and Understanding Results
	Computed Tucker Decomposition
	Other Core Tensor Dimensions

	Practical Application of Tensor Decomposition
	Dutch Children Psychological Experiment
	Applying Tucker decompoisition

