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Personal monitoring systems can offer effective solutions for human health. These

systems require sampling and significant processing on multiple streams of physiological

signals to extract meaningful knowledge. The processing typically consists of feature ex-

traction, data fusion, and classification stages, which require a large number of digital signal

processing and machine learning kernels. In order to be used in a wearable environment,

the processing system needs to be low-power, real-time and light-weight. In this thesis,

we present a personalized stress monitoring processor that can meet these requirements. A

dataset provided by Army Research Laboratory (ARL) that contains multi-physiological

signals is used for design exploration. Various physiological features are explored to max-

imize stress detection accuracy using two machine learning classifiers including Support

Vector Machine (SVM) and K-Nearest Neighbors (KNN).

Among different extracted features from four physiological sensors, heart rate and

accelerometer features have 96.8% and 95.8% detection accuracy for SVM and KNN clas-

sifiers, respectively.



Two fully flexible and multi-modal processing hardware were designed which consist

of feature extraction and classification algorithms using SVM and KNN for stress monitor-

ing. We demonstrate the ASIC post-layout implementation of both designs in 65 nm CMOS

technology. The proposed SVM processor occupies 0.17 mm2 and dissipates 39.4 mW

at 250 MHz. The KNN processor has an area of 0.3 mm2 and consumes 76.69 mW at

250 MHz.

Next, we explore the choice of low-power programmable embedded processors for

energy-efficient processing of physiological signals for a wearable multi-modal stress de-

tection system. The entire system which consists of feature extraction and classification

for all 15 participants’ data, which is implemented on a number platforms including Artix-

7 FPGA, NVIDIA TK1 ARM-A15 CPU and Kepler GPU, and a domain-specific many

core named Power Efficient Nano Clusters (PENC). The comparison of performance met-

rics among all platforms shows that PENC architecture has the highest throughput (deci-

sion/sec) over all platforms due to existence of task-level and data-level parallelism present

in its architecture. PENC improves the throughput by 4.6x and 4.05x over the Artix FPGA

for the KNN and SVM implementations respectively. The experimental results also indi-

cate that for a larger design such as KNN with 16K training data, PENC accelerator is the

most energy efficient platform. For KNN implementation, PENC manycore improves the

energy efficiency by 4.7x and 268x over the FPGA and GPU, respectively. However, for the

SVM implementation with 6000 support vectors as a smaller design, the FPGA improves

the energy efficiency by 1.2x and 630x over the PENC and GPU, respectively. These find-



ings suggest that the PENC manycore can be used as an energy-efficient, programmable

and real-time platform for biomedical applications with large amount of data and similar

computation-intensive parallel processing.
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Chapter 1

INTRODUCTION

1.1 Motivation

In daily life, stress is a normal reaction of the human body to external events of dif-

ferent kinds. However, if this reaction is too great or if it lasts too long, there is a risk of it

resulting in physical or mental disorders. To avoid the critical effects of stress, continuous

estimation of the stress level of individuals could provide an early warning.

With the vast improvement of semiconductor technology, the usage of personalize

wearable biomedical devices has become significantly more popular. Personalized biomed-

ical systems provide the ability to monitor multi-physiological signals, perform data fusion

and processing and real time analysis. They have potential impacts on long-term health

assessment and medical intervention.

In wearable health monitoring devices, accuracy and the individuals’ convenience are

the main priorities. To fulfill the patient’s convenience requirement, the power consump-

tion, which directly translates to the battery lifetime and size, must be kept as low as possi-
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ble. Meanwhile, adopted improvements in power consumption should not impact accuracy.

Therefore, reducing the energy consumption of these devices has already been the subject

of a significant amount of research in the past few years [AHR] [LAC] [Viseh2014]. Trans-

mitting all raw data to a computer to execute the required processing needs vast amount of

communication, which leads to considerable power consumption and the need for a bulky

battery (which hinders the device’s practicality and the individuals’ convenience).

Wearable devices need local processors to process the raw data and either transmit the

important extracted features or the final classification result. Applying a local processor

to the system helps reduce the power consumption and consequently, the size and weight

of the device. Naturally, designing a very energy efficient on-board processor becomes

challenging.

Figure1.1 compares power consumption and battery life of raw data transmission

through local processing with the post layout implementation of a personalized stress detec-

tion system. This system uses the heart rate and three accelerometer signals with 100 Hz

sampling rate and resolution of 16 bits. The local processing with one low-power ASIC

processor decreases the total power consumption by 81% compared to raw data transmis-

sion. Furthermore using the local processing increases the battery life by 66% over raw

data transmission.
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FIG. 1.1: The comparison between raw data transmission and local processing in aspect of
power consumption (mW) and battery life (hour). For the entire system power consump-
tion decreases by 81% and battery life increases by 66%.

1.2 Contributions

In this thesis, we propose a low-power reconfigurable processor which performs all

signals processing at the sensor level for the case of wearable stress detection. For this

purpose we investigated different physiological sensors and their corresponding features.

We choose the most appropriate features set based on classification accuracy to design and

implement the accurate stress detection processor.

We evaluated two popular machine learning classifiers, SVM and KNN, for stress

monitoring in terms of accuracy, execution time and power consumption requirements. We
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implemented efficient personalized stress monitoring processors for two classifier using

standard cell post-place and route flow in 65 nm CMOS technology.

We explored the programmable accelerators for generalized models of KNN and SVM

versions of stress detection application using Artix FPGA and NVIDIA TK1 CPU and GPU

as well. In response to all computing challenges of biomedical application, we utilized the

a programmable energy-efficient, domain-specific accelerator named Power Efficient Nano

Cluster (PENC) to map both machine learning kernels for the case study of stress moni-

toring application. This research provides analysis in terms of performance and resource

utilization of the DSP and machine learning kernels on ASIC, FPGA, PENC manycore and

multicore CPU and GPU based state-of-the-art embedded computing platforms.

1.3 Organization of Thesis

In the second chapter, we review concepts and previous research on stress monitoring.

We discuss and analyze the different sections of the multi-modal stress detection in chapter

3. Chapter 4 describes the implementation results of wearable stress detection using several

hardware-based and software-based platforms including ASIC, FPGA, PENC manycore,

CPU and GPU. Chapter 5 concludes the thesis with the discussion of future work.



Chapter 2

BACKGROUND

2.1 Stress

Stress is a physiological response to the mental, emotional, and physical challenges

that everyone encounters in daily life [Sun et al.2010]. There are strong links between

stress and overall health, concentration and ability to perform tasks. In modern society,

more and more people are suffering from stress. More than 56% of Americans reported

stress as a source of personal health problems [Deng et al.2012]. 94% of adults believe that

stress can contribute to the development of major illnesses, such as heart disease, depres-

sion and obesity, and that some types of stress can trigger heart attacks, arrhythmias and

even sudden death (particularly in people who already have cardiovascular disease) [Ollan-

der2015]. Identifying the stress of human being by using physiological sensors has been a

hot research topic in recent years [Deng et al.2012].

5
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2.2 Physiological Signals for Monitoring Stress

Various physiological signals are used for continuously measuring stress, includ-

ing galvanic skin resistance (GSR), skin temperature, electrocardiogram (ECG), elec-

troencephalography (electrical activity of brain, EEG), respiration (RESP), electromyog-

raphy (EMG), oxygen saturation (SpO2), blood pressure, pupil diameter and accelerometer

(ACC) [Zhai & Barreto2006] [Riera et al.2012] [Wac & Tsiourti2014]. Thus there is a

large choice of possible signals that one can acquire from the human body including mea-

suring properties of the eye, the face, the brain, the muscles, the skin, the heart and even

movement of the body as a whole (Figure 2.1).

2.2.0.1 Electrocardiogram (ECG) An ECG records the electrical activity of the

heart using electrodes placed upon the body (Figure 2.2). The ECG signal is usually peri-

odic, consisting of three parts: the P wave, the QRS complex and the T wave. The graphical

representation of ECG is shown in Figure 2.3. The primary purpose of the ECG is to cal-

culate the heart rate (HR), normally done through the inter-beat intervals (IBI) of the R

waves. The heart rate variability (HRV) is a denotation that combines all measures related

to how the heart rate varies, e.g. its standard deviation or the difference between successive

HR values. An alternative to ECG is measuring the blood volume pulse (BVP), from which

HR also can be derived.
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2.2.0.2 Electromyogram (EMG) An EMG records the electrical potential gen-

erated by skeletal muscle cells. Needle electrodes are used in this purpose, usually placed

on an arm, a leg or a shoulder. Facial electromyography is also possible. In this case the

electrodes are placed upon various facial muscles. Several studies have shown the signifi-

cant changes of EMG features in stressful conditions [Healey & Picard2005] [Wijsman et

al.2011].

2.2.0.3 Electrodermal Activity (EDA) also Known as Galvanic Skin Response

(GSR) or Skin Conductance Response (SCR) The sweat glands and the skin blood

vessel are only connected to the sympathetic nervous system, not the parasympathetic.

Sweat secretion increases the conductance of the skin proportionally, thus the EDA is mea-

sured by the conductivity of the skin. The density of sweat glands is highest around the

palms of the hands or the feet, so this is usually where it is measured. Two systems for mea-

suring the GSR are presented in Figure 2.4 including finger electrodes and the Empatica

E4 wristband, with wrist electrodes [Ollander2015].

2.2.0.4 Respiration It is possible to measure the respiration (RESP) of a person by

recording chest expansion. This can be done using a resistor, by measuring its impedance.

The respiration of a person might influence the ECG signal, by causing peaks in the low

frequencies (< 0.3 Hz) of the ECG spectrogram [Shi et al.2010].
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2.2.0.5 Acceleration An accelerometer (ACC) can be used mainly in combination

with other sensors to record whether an individual has been moving or not. In this way it

is possible to distinguish between physiological reactions caused by movement, and those

caused by other means (e.g. psychological stress).

2.3 Multi-Modal Stress Detection

Effectively detecting the stress of a human being provides a helpful way for people to

better understand their stress condition and provide physicians with more reliable data for

intervention and stress management. Existing findings have indicated that psychological

stress can be recognized by the physiological sensors [Deng et al.2012]. The physiological

information can be acquired by multiple biological or physiological sensors. Figure 2.5

shows the multi-modal stress monitoring system which uses various physiological sensors

including respiration, EMG and EDA.

2.3.1 Structure of Personalized Stress Detection System

A stress detection system, such as a personalized bio-medical device, typically con-

sists of three main circuit blocks: 1.Signal Acquisition block including analog to digital

converter, 2.Digital Signal Processing blocks which typically contain a feature extractor

and ML classifiers 3.Radio transmitter to transmit the processed data or prediction to the

user or medical personnel (Figure 2.6).
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2.4 Related Prior Work

Several research studies have been undertaken in driver stress detection. Rigas et al.

proposed a method based on Bayesian Network for the estimation of vehicle driver stress

production due to specific driving events [Rigas et al.2008]. Shiwu et al. proposed a system

that can actively monitor the driver’s fatigue level in real time using the SVM based on

physiological features [Shiwu et al.2011]. Jeong et al. developed a device which detects the

ECG signal of driver in real time as well as degree of stress through analysis of Heart Rate

Variability (HRV) [Jeong et al.2007]. Healry et al. [Healey & Picard2005] collected and

analyzed physiological signals like ECG, GSR, EMG, and RR continuously during real-

world driving tasks and determined drivers’ relative stress level. Deng [Deng et al.2012]

proposed a feature selection approach based on Principal Component Analysis (PCA) and

evaluated their effectiveness in terms of correct rate and computational time using five

classification algorithms including linear discriminant analysis (LDA), C5.4 induction tree,

SVM, Naı̈ve Bayes and KNN. Shi [Shi et al.2010] built a personalized stress detection

based on SVM and evaluated it on the collected data and results showed that their model

can detect stress with high precision.

Zhai [Zhai et al.2005] focused on the use of physiological signals including blood

volume pulse (BVP), GSR and pupil diameter to automatically monitor the stress state

of computer users. Several other studies used multi-physiological signals to detect the

stress [Sun et al.2010] [Wagner, Kim, & Andre2005] [Salai, Vassányi, & Kósa2016].
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FIG. 2.1: Common physiological signals that might be used for stress detection. EKG =
electrocardiogram, EEG = electroencephalogram, EMG = electromyogram , GSR = Gal-
vanic Skin Response.

FIG. 2.2: ECG electrodes (figure obtained from [Ollander2015])
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FIG. 2.3: An ECG signal representing a heartbeat, with the usual elements: P wave, QRST
complex and T wave.

FIG. 2.4: GSR electrodes and Empatica E4 wristband [Ollander2015]

FIG. 2.5: Monitoring the stress level using various physiological sensors
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FIG. 2.6: Block diagram of a multi-physiological stress detection system containing data
acquisition by sensor, feature extraction, and machine learning classifier to generate result.
The application also shows inherent data-level and task-level parallelism.



Chapter 3

MULTI-MODAL STRESS DETECTION SYSTEM

3.1 ARL Dataset

We used the dataset that was collected by Army Research Laboratory (ARL) in this

project. This dataset consists of multi-physiological and behavioral recordings from 15

individuals.

Participants performed a shooting task in a simulator in which they had to discriminate

enemy versus friendly targets and decide to shoot or refrain respectively. Each participant,

one by one, participated in several pre-programmed scenarios. Each scenario lasted ap-

proximately 10-22 minutes and provided 300 degree of visibility in the simulator.

Target pairs were presented in various locations within each simulated scene (e.g.

behind a car, wall, building, natural terrain, rocks). The foe targets pointed and fired a M-9

pistol at the participant. The friend targets performed actions like handing over a soda,

pulling out a wallet, or showing the “I surrender” hands. The target pairs were either two

friends or one enemy and one friend (two enemy targets were not presented). The interval

13
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between display target pairs varied between two, four and six seconds. This inter-trial

interval was used to minimize a pattern effect. There were a total of 128 target pairs that

could be presented. There were 64 friend target pairs and 64 foe target pairs.

Three types of feedback were induced to participants during the experiments based

on their success or failure in performing the shooting task. These feedback types included

shock (tactile feedback on belt), lifebar (visual feedback display, turning a green light to red

on errors) and nofeedback conditions. In shock and lifebar conditions, a shock or change in

the life bar occurred when a foe was not hit and a minimum of 30 seconds had passed since

the last shock or change in life bar respectively [Patton2013]. Target pairs were presented

on the same screen for two seconds.

During the experiment, participants wore a physiological monitor (Equivital EQ02TM),

which captured 3 axis accelerometry data, ECG, chest expansion (Respiration), peripheral

capillary oxygen saturation (SpO2), and EDA [Attaran, Brooks, & Mohsenin2016]. Fig-

ure 3.1 shows the 300-degree simulator and the embedded sensors that were used to collect

physiological signals.

3.2 Labeling the Data based on the Stress Measurements

The ARL team used two different approaches for stress measurement: salivary amy-

lase and the Multiple Affect Adjective Check-list Revised (MAACL-R) (analyzing the

questioners’ responses).



15

FIG. 3.1: 300-degree simulator to collect the multi-physiological data during different lev-
els of stress using the embedded sensors in wearable life-shirt (Figure obtained from [Pat-
ton2013]).

3.2.1 Salivary Amylase

The salivary amylase test was performed to derive a quantifiable level of stress. Saliva

samples were collected during the shooting task for all participants in different conditions.

The saliva samples were used to calculate physiological stress levels. For each sample

collected from the specified times, the same saliva sample was used for amylase assays.

Figure 3.2 illustrates the amylase level of each condition.

3.2.2 Multiple Affect Adjective Check-list Revised (MAACL-R)

The Multiple Affect Adjective Checklist-Revised [Lubin & Zuckerman1999] consists

of a list of 132 adjectives in which participants are instructed to check all the words describ-

ing how they “feel right now” or “during the simulation”. The MAACL has six validated

subscales, including anxiety, depression, hostility, sensation seeking, positive affect, and
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FIG. 3.2: Mean+SEM (standard error of mean) salivary amylase. Baseline indicates the ini-
tial condition. Pre represents the pre-shock condition (figure obtained from [Patton2013]).

dysphoria. A univariate ANOVA was used to identify specific measures with significant

differences among conditions. Finally, paired t-tests were used to identify the differences

between conditions [Patton2013]. The anxiety level in the five different conditions is shown

in Figure 3.3.

3.3 Preprocessing of the Data

First, we needed to narrow down the raw data. In this research, we are interested

in digging into different physiological recordings of 15 participants. As was mentioned

in the previous section, various physiological signals were recorded during the shooting

experiment. The sampling frequencies of collected signals are very diverse. The ECG

channel has the highest sampling frequency (200 HZ) among all signals in the dataset and

is used as a base timeline. There are many NaN values for other sensor data to fill out the
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FIG. 3.3: Mean+SEM MAACL-R Anxiety subscale by condition including baseline, pre-
shock, shock, lifebar and no-feedback. The Mean MAACL-R Score for anxiety parameter
is highest in shock condition. (figure obtained from [Patton2013])

time periods that have no data. In this study, we focused on three periods of the shooting

experiment: shock, lifebar and nofeedback. Thus we needed to remove the unnecessary

portions from the recordings.

The other preprocessing steps is to visualize various physiological signals which are

affected mostly by stress. After evaluating various available sensor data in the ARL dataset,

we chose HR, RESP, ACC, and SpO2 physiological signals for stress monitoring.

3.4 Feature Extraction

When working with large data quantities (e.g., physiological signals over a large time

duration), it is essential to utilize feature extraction and feature selection approaches. Using

raw physiological data as inputs for classifiers or clustering models results in low accuracy.

Thus, we need to extract an effective feature set from raw data. Feature extraction means
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reducing the raw data into more comprehensive measures. Computing features of signals

by statistical methods is one way of feature extraction. Some features are signal-specific,

e.g. rise time of the GSR after a stressful event, while others are more general, e.g. the mean

value of a signal during a time window. To choose a feature set, we can search the raw data

for patterns in the signals, especially between different classes [Ollander2015]. Feature

extraction is a critical step in most data analysis applications. Working with recognizable

properties in the signals rather than raw data makes the models easier to understandable,

while they are more likely to be generalizable.

Fig 3.4 shows the raw accelerometer, heart rate and oxygen saturation signals in all

different situations during the shooting experiment for the individual 2 in the given dataset.

Table 3.1 shows the physiological signals and their extracted features which are most cor-

related to the stress level in different previous studies.

3.4.1 Data Segmentation

During the shooting task, each participant took part in several trials in which a tar-

get pair appeared in the simulated shooting task. We divided the physiological recordings

based on the average length of trials. The trial duration (and the corresponding windows) is

around 6 seconds. We extracted several time-domain and frequency domain features from

different physiological signals for all 6 second windows of data in each of the three feed-

back conditions. Each of these windows were assumed to represent a period of low, high or

medium stress depending on the feedback modality provided during that time period. For
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(a)

(b)

(c)

FIG. 3.4: Raw signal representation: (a) Accelerometer (3-axes), (b) HR and (c) SpO2
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Source Signals #Feat. Important feat.

[Holzinger, Bruschi, & Eder2013] BVP, EDA 12 GSR: mean, sum

[Frank et al.2013] ACC, ECG, 16
HR, RESP, ST

[Shi et al.2010] ECG, GSR, RESP, ST 26

[Sharma & Gedeon2012] BP, BVP, EMG, GSR, 13 ECG features,
HR, ST, RESP GSR features, HRV

[Setz et al.2010] ECG, EDA, RESP 16 EDA: mean peak height, slope

[Riera et al.2012] EEG, EMG, face 5 EEG: alpha asymmetry,
alpha/beta ratio

[McDuff, Gontarek, & Picard2014] BVP, EDA, 5 HR: mean, mean RESP rate,
PPC, RESP HRV: LF power, HF power, LF/HF

Table 3.1: Features of physiological signals commonly used for stress detection. BP=
Blood pressure, face: face measurement, HRV= heart rate variability [Ollander2015]

each participant, we segment each channel of data into a 6-second window to obtain the

data windows w1, w2, ..., wn. We denote Fi as the feature vector extracted from the data

window wi. We created a set of feature vectors F for each participant.

3.4.2 Feature Set

For monitoring the stress level during the shooting experiment we extracted 16 fea-

tures from ECG, respiration rate, oxygen saturation and accelerometer physiological sig-

nals. We will explain the extracted features from these four physiological signals with more

details as follows.

HRV Analysis: Heart rate (HR) was determined as the duration between peaks of the

QRS complex in ECG. RR indicates the interval between two consecutive QRS complex in



21

the ECG signals. Both HR and RR were recorded for all participants during the shooting

experiment. HRV analysis can be categorized into time domain and frequency (spectral)

domain analysis. Time domain analysis is calculated directly from RR-intervals and HR

over the 6 second window. In this research, we found the mean value of the HR (mean HR),

standard deviation of HR (Std HR), mean value of RR-interval (mean RR) and Standard

deviation of the RR-interval (Std RR).

Moreover, in the spectral domain method, a power spectrum density (PSD) estimate is

calculated for the RR interval series. We applied a Fast Fourier Transform (FFT) to convert

the time-domain RR-interval sequence to the power spectrum. The low frequency band (0-

0.08 Hz) represents sympathetic nervous system activity. The high frequency band (0.15-

0.5 Hz) which is modulated by the parasympathetic system activity. The LF to HF ratio

(LF/HF) is used as an index of automatic balance (increase in stress level will increase this

ratio) [Healey & Picard2005] [Sun et al.2010]. Thus we extracted three frequency domain

features from RR-interval including LF, HF and LF/HF ratio.

Accelerometer Analysis: Six accelerometer features (mean and standard deviation)

were derived from each of the 3-axis accelerometer signals. The magnitude feature is

calculated based on (3.1) as well.

(3.1) magnitude =
1

n

n∑
i=1

√
x2i + y2i + z2i
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Feature No. Sensors Features

1 to 7 ECG Mean HR, Std HR, Mean RR, Std RR
LF-HRV, HF-HRV, LF/HF ratio

8 to 14 Accelerometer Mean of X,Y and Z axis
Standard deviation of X,Y and Z axis
Magnitude of three axes

15 Resp. Rate Mean RR

16 SpO2 Mean SpO2

Table 3.2: 16 extracted features from four physiological sensors per each 6 second window.

Respiration and oxygen saturation analysis: The mean value of respiration rate (mean

RR) and the mean value of SpO2 per each window were also derived as two other time

domain features. The List of extracted features from the four physiological channels are

elaborated in Table 3.2. Figure 3.5 indicates the representation of three different features

including mean HR, mean ACC.Y and SpO2 for participant 2 in the shock and nofeedback

conditions.

3.4.3 Feature Normalization

Physiological signals are dependent on each individual’s initial physiological level.

Even if we measure physiological signals such as HR and GSR baseline levels for a single

individual, these signals may still vary due to mental state and the sensor’s connectivity.

To eliminate these factors, we normalized each feature. There are different methods for

features normalization. In this study, we utilized the min-max scaling to normalize the
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(a)

(b)

(c)

FIG. 3.5: Representation of three features for participant 2 in shock and nofeedback condi-
tions : (a) mean HR, (b) mean ACC.Y and (c) SpO2
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feature set (3.2).

(3.2) Xnorm =
X −Xmin

Xmax −Xmin

3.5 Machine Learning Classification and Feature Selection

One of the most important parts of the stress monitoring systems the same as other

health monitoring systems is classification. The performance of classification algorithm

has a significant role on the effectiveness of the entire system. In this research, we utilized

the SVM and KNN machine learning algorithms as two well-known classifiers to find the

best feature set for stress monitoring.

First, we reviewed these two binary classifiers, then we shown how to choose the best

features from 16 extracted features.

3.5.1 KNN Machine Learning Classifier

The KNN algorithm uses the K nearest samples to “vote” for the class membership of

a new sample (Figure 3.6). K is usually chosen as a small number, and different weighting

of each neighbor is sometimes used. A small K is more sensitive to noise, but a large K

makes the algorithm computationally expensive. For binary classification, odd K is a good

idea since this prevents ties in the voting process. Note that the KNN usually works in

the feature space. If new data points are introduced, relearning the KNN is simple, since
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it simply means rechecking the neighbors. The most commonly used distance to decide

which class is nearest is the Euclidean distance (3.3) ( [Ollander2015]).

(3.3) d =

√√√√ n∑
i=1

(xi − yi)2

FIG. 3.6: KNN classifier with the two classes: blue (hexagonal) and green (square) sym-
bols. The class of the new point (marked by “?”) is shown by voting using its K = 3 and
K=5 nearest neighbors.

3.5.2 SVM Machine Learning Classifier

Support vector machines work by finding the maximum margin hyperplane, i.e., the

linear separator that is as far as possible from the closest positive and negative training

instances (3.7). Kernel functions can be used to project the data into a high dimensional

space such that the linear separator is highly non-linear in the input space. The default
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linear and polynomial kernels are in (3.4) and (3.5), respectively [Page et al.2015].

(3.4) K(Si, x) = Si · x

(3.5) K(Si, x) = (γ × (Si · x) + b)d

Samples are then classified using the function shown in (3.6), where Si is a support vector,

x is a test vector, K(si, x) is the kernel function, αi and γi are the weight and label of the

support vector, and b is the bias.

(3.6) f (x ) =sign(
NUM SV∑
i=1

αiγiK(Si, x) + b)

3.5.3 Cross Validation

Cross validation is a model evaluation method. In this technique, some of the data is

removed before training begins. When training is done, the data that was removed can be

used to test the performance of the learned model. This is the basic idea for the whole class
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FIG. 3.7: The representation of the SVM classifier with the two classes: blue and red
symbols.

of model evaluation methods called cross validation.

3.5.3.1 k-fold Cross Validation In k-fold cross-validation, the original sample is

randomly partitioned into k equal sized subsamples. Of the k subsamples, a single sub-

sample is retained as the validation data for testing the model, and the remaining k-1 sub-

samples are used as training data. The cross-validation process is then repeated k times

(the folds), with each of the k subsamples used exactly once as the validation data. The k

results from the folds can then be averaged to produce a single estimation. In this study, we

used this validation technique to evaluate the accuracy of the general model (when we use

all participants’ data).

3.5.3.2 Leave-one-out Cross Validation Leave-one-out cross validation (LOOCV)

is k-fold cross validation taken to its logical extreme, with k equal toN , the number of data
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points on the set. That means that N separate times, the function approximator is trained

on all the data except for one point and a prediction is made for that point.

In this research, due to limited samples for each individual, we use this technique to

evaluate the accuracy of personalized stress detection model.

3.5.4 Features Selection based on Accuracy

When the features are extracted, one needs to examine which ones contain the most

useful information, and remove those that are not contributing to improving the model.

Feature selection means choosing a subset among the extracted features that provides

a good prediction performance and a small generalization error. The generalization of a

machine learning measures its capacity to predict unseen data. A high generalization error

means that the model does not perform well on new data.

Too many features might lead to overfitting (overly complex models) while including

too few features means a risk of losing useful information (underfitting). One must also

keep in mind that some features can perform poorly alone, but can prove very useful in

combination. Thus, one must be careful while analyzing features one by one. In this

research, as we mentioned previously, we defined two classes.

• Class 1: “less stress (nofeedback mode)” label 0

• Class 2: “high stress (shock mode)” label 1

The automated method to choose the most appropriate features is classification accu-
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racy. We find the best feature set by adding or removing features based upon if they are

making prediction easier or harder (by evaluation of the classification accuracy).

In order to find the best combination of features, we examined the classification ac-

curacy of each feature for all individuals independently. We utilized two popular binary

classifiers, SVM and KNN, to analyze the accuracy of each feature for all participants.

We developed custom MATLAB scripts to train the classifiers and determine the accu-

racy of the classification for both KNN and linear SVM algorithms. In the KNN classifier

the k parameter was set to 3 and Euclidean distance measurement was used to find the

nearest neighbors. We also utilized the linear kernel for SVM model implementation. For

both models, we used The LOOCV technique to measure the accuracy for each participant.

Figure 3.8 shows the average accuracy for all 15 individuals for each feature when

using the SVM and KNN classifiers. The mean heart rate, mean RR-interval, mean ac-

celerometer data in all 3 axes, accelerometer magnitude, and mean SpO2 achieve the high-

est accuracy across all individuals.

3.5.4.1 Forward and Backward Feature Selection Algorithms Forward and

backward feature selection algorithms are the two main approaches to choose the most

important features from a given feature set. As it was shown it the previous section, after

evaluating the single-user accuracy results for all features using both SVM and KNN, we

selected seven features. Since our final goal is to implement one low power and low area

processor for stress detection, we are interested in applying some feature selection method
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FIG. 3.8: Average of two-level stress detection accuracy using multi-physiological sensors
and corresponding features for 15 individuals. The features with highest accuracy (more
than 65% for both SVM and KNN) are highlighted.

on this feature set to find the most important features.

The forward algorithm starts with an empty feature space, successively adding the

feature that increases the classifier performance the most. This is done until all the features

have been added and afterward one can observe the performance to decide which combina-

tion of features was most efficient. The backward algorithms work identically, except that

they start with all the features, successively deleting the features that decrease the classifier

performance the least.

We utilized the “Attribute Selection” function from Weka tool and chose the backward

feature selection to find the best feature set for both SVM and KNN classifier. The Weka’s

returned 4 features from HR and accelerometer including mean HR, mean ACC.X, mean

ACC.Y and mean ACC.Z as the most effective features to detect two level of stress.
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Classifier mean HR mean ACC.X mean ACC.Y mean ACC.Z Combined feature set

SVM 78.99% 88.79% 72.83% 74.38% 96.7%

KNN 83.06% 92.13% 76.66% 87.56% 95.81%

Table 3.3: The average accuracy of the four most important features plus combined feature
set across all 15 participants.

Figure 3.9 shows the average accuracy for individual features including mean HR,

mean ACC.X, mean ACC.Y and mean ACC.Y, as well as the combined feature set when

using the KNN and SVM classifiers across all 15 participants. The average accuracy of

KNN and SVM classifiers for the combined features set are 95.81% and 96.7% respectively.

Table 3.3 shows the average accuracy of each separate feature and the combined feature set.

3.6 Hardware Complexity Analysis of SVM and KNN

We examined the supervised machine learning algorithms including linear SVM and

KNN for stress detection case study. In this section, we perform complexity analysis of

these supervised machine learning classifiers. For the KNN algorithm, the training step

cannot be performed offline. With the SVM, the training step can be performed offline to

find the required support vectors, which are much smaller in size compared to training data

in the KNN data. Table 3.4 compares the memory and arithmetic operation requirement

by KNN and SVM. The memory requirement and arithmetic operations are larger for the

KNN classifier. Given the increased computational and memory requirement which leads

to larger footprint and increased power requirements for KNN implementation.
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(a)

(b)

FIG. 3.9: The comparison of accuracy level for multi-modal feature set with separate
features from HR and accelerometer for two classifiers: (a) KNN-3 (b) Linear SVM
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Table 3.4: Hardware complexity analysis of KNN and SVM, n: size of training data, m:
size of test data, p: No. of features, and s: No. of support vectors.

Algorithm Multiplications Additions Memory Requirement

KNN p× n×m (p− 1)× n×m n× p

Linear SVM p×m× s m× (p− 1)× s p× s



Chapter 4

PROCESSOR ARCHITECTURE EXPLORATION FOR

WEARABLE LOW-POWER STRESS DETECTION

In this section, we explore design and implementation of a low-power and low-area

processor for wearable stress detection using several hardware-based and software-based

platforms. In the personalized stress monitoring system, we use each participant’s train-

ing data so that the size of memories to store the training data in KNN or support vectors

in SVM are smaller. In contrast with the personalized model, in the generalized model for

stress monitoring we use all participants’ data to train the classifiers, so we need large mem-

ories. Artix FPGA, PENC manycore, and NVIDIA TK1 platforms provided the enough

memory to design and implement generalized stress monitoring system.

For a hardware based solution, we will present the post-layout ASIC designs for both

SVM and KNN processors for personalized stress detection in the 65 nm CMOS technol-

ogy. We utilized the Artix 7 FPGA to implement these two processors as another choice

for a hardware-based platform.

34
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We will explore the choice of software-based processors for energy-efficient pro-

cessing of physiological signals for a wearable multi-modal stress detection system as

well. These platforms provide task-level parallelism for biomedical application with large

amount of processing. To meet this goal, the entire stress detection system which consists

of feature extraction and classifier is implemented on programmable accelerators including

NVIDIA TK1 ARM A15 CPU and Kepler GPU, and PENC domain-specific many core.

4.1 Hardware-based Solutions

4.1.1 Proposing Scalable and Pipeline SVM Processor

Figure 4.1 shows a detailed architecture of the linear SVM processor used for a stress

monitoring system based on four extracted features from the heart rate and accelerometer

sensors. The proposed parallel pipelined architecture is flexible for variable number of

features. The support vectors (S), bias (b) and other required coefficients were calculated

offline using the SVMtrain MATLAB function. Each memory block is loaded with precom-

puted weighted support vectors from a trained model for each feature. There are sufficient

registers in this design to store the intermediate results in the pipeline scheme. The clas-

sifier receives the features derived in 6 second windows as testing input. The dot product

operation runs between the testing data and all supporting vectors available in RAM mem-

ory blocks. This is followed by the parallel dot product operation, which is added with bias

parameter at the final stage to find the predication result.
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FIG. 4.1: Block diagram of the hardware implementation of SVM classifier for person-
alized stress detection system. Block RAMs on the left (1 Kbit each) store 64 support
vectors.

4.1.2 ASIC Implementation Results for SVM Processor

In order to lower the overall power consumption, we use a standard-cell RTL to GDSII

flow, using synthesis and automatic place and route. The hardware was developed using

Verilog to describe the architecture, synthesized with RC compiler, and placed and routed

using Cadence SOC Encounter in the 65 nm TSMC CMOS technology.

Figure 4.2 shows the post-layout view and results for the proposed SVM processor

for a stress monitoring system. The SVM processor runs at 250 MHz and consumes the
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FIG. 4.2: Layout view and post-layout implementation results of the proposed multi-modal
SVM processor (64 support vectors) + feature extraction. The highlighted regions indicate
the location of four dot product components and feature extraction on the chip.

power of 39.4 mW. The prediction for each window of data (6 sec) takes 0.3 us resulting in

13.4 nJ energy consumption per window.

4.1.3 Proposing Configurable KNN Processor

Figure 4.3 shows a high-level block diagram of the KNN-3 processor used for the

stress monitoring system based on four extracted features from the heart rate and ac-

celerometer sensors.

In this architecture we store the training samples (256 training samples for personal-

ized stress monitoring) and their corresponding labels in the ROM block. The extracted

feature set (4 features) from testing samples from the 6-second window was stored in the

buffer component. The four subtractors, four multipliers and adder modules are used to

find the Euclidean distance between the given test sample and training data.
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FIG. 4.3: Block diagram of the hardware implementation of configurable KNN processor.
x represents the testing sample and y represents a training sample.

The sorting block is responsible for finding the K smallest distance between the test-

ing sample with all training data. The vote module generates the label of testing sample

based on the majority voting at the final step.

The Finite state machine (FSM) module is responsible for syncing and controlling all

modules. This design is fully configurable for variable number of features and variable size

of training.

4.1.4 ASIC Implementation Results for KNN Processor

The post place and route results of KNN implementation is shown in Fig 4.4. The

KNN processor runs at 250 MHz and consumes 76.69 mW. The prediction for each window

of data (6 sec) takes 4.1 us resulting in 0.31 uJ energy consumption per window.
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FIG. 4.4: Layout view and post-layout implementation results of the proposed multi-modal
KNN processor (256 training data) + feature extraction. The highlighted regions indicate
the location of training memory, sorting, distance calculation and feature extraction on the
chip.

4.1.5 Xilinx Artix-7 FPGA

FPGAs are highly flexible, allowing on-the-fly configuration to optimize bit resolu-

tion, clock frequency, and parallelization for a given application. In addition, modern

FPGAs provide accelerators to boost the performance for operations such as multipliers,

generic DSP cores, and embedded memories.

The main disadvantages of FPGAs, however, are that they have substantially higher

leakage power and require writing low level logic blocks in HDL. For stress detection case

study, complete FPGA hardware solution which consists of machine learning classifier and

feature extraction was developed in Verilog that utilized highly parallel, highly pipelined

DSP and ML kernels. Both real-time and simulated projections using commercial tools

were used to perform timing and power analysis when running test stimulus. For stress

detection, the smallest Artix-100T, is targeted on the Nexys platform. Table 4.1 summarizes
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Design SVM KNN

FPGA package XC7A100T XC7A100T

Registers (#) 340 446

LUTs (#) 199 705

Memory (Kb) 512 1040

Operating Freq. (MHz) 166 166

Latency (cycles) 6084 64084

Dynamic Power (mW) 26 149

Leakage Power (mW) 82 83

Total Energy (uJ) 3.9 89.58

Table 4.1: Artix-7 FPGA performance for Stress detection case study consisting of features
extraction (4 features) for KNN-3 and linear SVM classifier. Both Dynamic power and total
results are presented for FPGA core only.

the results of implementation of stress detection for both SVM and KNN kernels on the

Artix FPGA.

4.2 Software Solutions for Stress Detection

In order to study how embedded off-the-shelf processors can efficiently process

biomedical applications, we conducted the experiments on NVIDIA ARM A15 CPU and

GPU to implement the entire stress detection system.

To address the need for programmability, low power consumption, area efficiency

and parallel computing platform, we adopted the PENC many-core platform. In order to

determine the best platform for stress detection, this case study with both SVM and KNN

classifiers is implemented on various software-based platforms.
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4.2.1 Power Efficient Nano Cluster (PENC) Manycore

PENC manycore accelerator is a homogeneous architecture that consists of in-order

tiny processors with a 6-stage pipeline, a RISC-like DSP instruction set and a Harvard

Architecture model [Bisasky, Chandler, & Mohsenin2012], [Bisasky et al.2013], [Tavana

et al.2014], [Kulkarni et al.2016c], [Kulkarni et al.2016b] which is designed and imple-

mented in the EEHPC laboratory [EEH]. The core operates on a 16-bit data-path with

minimal instruction and data memory suitable for task-level and data-level parallelism.

Furthermore, these cores have a low complexity, minimal instruction set to further reduce

area and power footprint. The lightweight cores also help to ensure that all used cores are

fully utilized. The processor can support up to 128 instructions, 128 data memory, and

provides 16 quick-access registers [Page et al.2016].

In the network topology, a cluster consists of three cores that can perform intra-cluster

communication directly via a bus and inter-cluster communication through a hierarchical

routing architecture. Each cluster also contains a shared memory. Figure 4.5 shows the

block diagram of a 16 cluster version of the design, highlighting the processing cores in

a bus-based cluster. Each core, bus, shared memory and router was synthesized and fully

placed and routed in a 65 nm CMOS technology using Cadence SoC Encounter and results

for one cluster are summarized in Figure 4.5.E. The processing core contains additional

buffering on the input in the form of a 32-element content-addressable memory (CAM).

It is used to store packets from the bus and allow a finite state machine (FSM) to find a
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101111 10001100 10001011 
101111 10001011 10001010 
101111 10001010 10001001 
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FIG. 4.5: (A) Power Efficient Nano Clusters (PENC) Manycore Architecture (B) Bus-
based Cluster Architecture (C) Post-layout view of bus-based cluster implemented in 65
nm, 1V TSMC CMOS technology (D) Block Diagram of core architecture (E) Post Layout
implementation results of optimized bus-based cluster (consisting of 3 cores + bus + cluster
Memory) (F) PENC simulator and compiler flow high-level diagram.

word where the source core field corresponds to that in the IN instruction itself, where

the IN instruction is used to communicate between the cores. For example, if the core is

executing IN 3, the FSM searches through the CAM to find the first word whose source

core is equal to three. This word is then presented to the processing core and processing

continues. PENC manycore architecture has 3 light-weight processing cores and a shared

memory in a single cluster. Our initial manycore architecture design had 4 processing cores

without shared memory, which was ideal for DSP kernels for minimal data storage. Since

bio-medical applications use ML kernels which often require large amount of memory for

their model data, the proposed PENC manycore architecture replaces the fourth core with

a shared memory to accommodate the memory requirements.
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4.2.1.1 Bus based Cluster Cores use the IN and OUT instructions to communicate

with each other. When a core executes an OUT instruction, the data and relevant addressing

information is packetized and sent to its output FIFO through a bus. When data is present

in a core’s output FIFO, it requests to use the cluster bus. The bus then arbitrates between

requests, only granting those whose transactions can be completed. The bus treats each

transmission of data as a single transaction since it behaves with a simple push or data-

driven protocol. The bus is used for intra-cluster communication. This includes a round-

robin arbiter which chooses the next node to grant access based on round-robin scheme.

Once the node gets access, it wraps the processing core pipeline with layers of buffering

and is the main level in the PENC architecture that interacts with the bus. The destination

core is used by the bus to forward the packet to the appropriate location, and the source

core is used by the requesting node to satisfy its corresponding IN instruction. Based on

the destination address and the data fields, the recipient core stores the address of the data.

4.2.1.2 Efficient Cluster Memory Access Architecture While the lightweight

cores are ideal for DSP kernels that require minimal static data [Bisasky, Chandler, &

Mohsenin2012], [Bisasky et al.2013], ML kernels often require larger amounts of memory

for their model data. This is addressed with the distributed cluster-level shared memory

(DCM), that is interfaced to the bus. The shared memory within a cluster consists of 3

instances of SRAM cells of memory size 1024x16 bits making up a total of 3072 words

and can be accessed within the cluster using the bus and from other clusters through the
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router. To access the memory, cores use two memory instructions: LD and ST [Kulkarni et

al.2016a]. Using data memory as operands for instructions is still beneficial to using LD

and ST from an efficiency standpoint because of the one-cycle read/write capability. Refer-

encing data from the cluster memory has latency and requires a separate instruction, which

reduces the overall instructions per cycle that the pipeline can complete. However, the LD

and ST instructions enable the use of a much larger addressable space, which allows the

PENC to support many applications. The next section provides empirical results showing

how these manycore specific features are well suited for biomedical applications. PENC

manycore architecture is ideally suited for most biomedical applications as it addresses the

inherent characteristics and challenges. As previously discussed, biomedical applications

process a large number of physiological signals. Each signal can be processed in parallel

in different designated clusters.

4.2.1.3 PENC Platform Evaluation Setup For the PENC manycore, we devel-

oped a stand-alone simulator and compiler that take user’s code and post-layout hardware

results (Figure 4.5.F) [Page et al.2017]. Careful attention was paid to this hardware simu-

lator for a fair comparison. The simulator provides cycle accurate results including com-

pletion time, instructions, and memory usage per core. It also serves as a reference imple-

mentation of the architecture; its purpose is to make testing, refining, and enhancing the

architecture easier. Each task of algorithm is first implemented in assembly language on

every processing core using manycore simulator. The simulator reads in the code as well as
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initializes the register file and data memory in each core. It then models the functionality of

the processor and calculates the final state of register files and data memories. Binary files

generated by manycore compiler are used to program each core individually. For execution

time and energy consumption analysis of the algorithm, binaries obtained from manycore

compiler are mapped on to hardware design of the manycore platform (in verilog) and sim-

ulated using Cadence NC-Verilog. The activity factor is then derived and is used by the

Cadence Encounter tool for accurate power estimation of application. The manycore sim-

ulator reports statistics such as the number of cycles required for Arithmetic Logic Unit

(ALU), branch, and communication instructions which are used for the throughput and

energy analysis of the PENC manycore architecture.

4.2.2 Mapping of Stress Detection using the KNN and SVM Classifiers on

PENC Manycore

4.2.2.1 Feature Extraction Mapping on Manycore In both KNN and SVM ac-

celerator, a single core from PENC manycore is used to process the window of samples into

test vectors of 4 features. Due to a limitation in the current instruction set, it is not possible

to send the test vector to all other cores which are responsible for classification. We mea-

sured that the broadcasting to 47 cores (16 clusters) for SVM and 72 cores (24 Clusters) for

both KNN takes 513 and 770 cycles respectively. This measurement is slightly optimistic

because there is not any other traffic.
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4.2.2.2 KNN Classifier on PENC Manycore The task graph for mapping of the

KNN version of stress detection application onto the PENC manycore can be seen in Fig-

ure 4.6.b. The mapping highlights the parallelism that exists in each cluster (3-cores) and

inter clusters. One cluster was assigned to perform the feature extraction task from the

HR and accelerometers signals. The extracted features were broadcasted to 24 clusters

(24 × 3 = 72 Processing cores). Every core inside one cluster finds the three minimum

distances between the test sample and a part of the training data (the amount of training

data and its corresponding labels which were stored in the shared memory with size of

1024 words). One core in each cluster finds three minimum distances for the given cluster

and sends them with their corresponding stress labels to the next cluster. All clusters can

perform the minimum distance exploration in parallel while they are serially dependent on

receiving data from one another. It means that one core in each cluster is responsible for

receiving the three minimum distances from the previous cluster. Most of required calcu-

lations in KNN classifier are executed in parallel using the PENC manycore.

The general KNN model for this given dataset has 16K training data. It needs 24

clusters on PENC manycore to map the entire classifier plus the feature extraction unit.

4.2.2.3 SVM Classifier on PENC Manycore The same as the KNN classifier,

the test vector (4 feature set) is generated by feature extraction core which is the input

to an SVM classifier. The classifier is trained offline and the support vectors and their

corresponding coefficients are stored in the shared memory of each cluster. Figure 4.6.a
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presents the task graph of SVM mapping on PENC manycore. Each cluster finds the partial

dot product results. The final cluster received all these partial results and sums up them to

generate the final dot product result. At the end stage this result added with bias value to

determine the test sample’s label. The general SVM model for the given data set with 6000

support vectors and their coefficients were mapped on PENC manycore with 16 clusters.

4.2.3 Off-the-shelf Platforms and Experimental Setup

To better gauge the performance of PENC many-core processor for stress monitoring

applications, we compared against several commercial off-the-shelf general purpose and

programmable processing platforms. In order to do this, we targeted a number of platforms

that contain low-power ARM-based CPUs and embedded GPUs.

We measured in real-time both the execution time and power consumption required

to classify sample data across a variety of processor combinations. This is achieved by

actively recording these metrics for a large number of samples and then averaging to derive

the per classification performance. For power results, we measure the power consumption

of both the processor and any external memory required. While the Jetson TK1 includes

built-in monitoring capabilities, we utilized an external TI INA219 voltage and power IC

connected to each system’s main power rails to ensure measurement consistency which is

shown in Fig 4.7. For each platform, great care was taken to disconnect and power off

all other peripherals including HDMI, debug circuitry, and Wi-Fi/Bluetooth. The follow-

ing discusses details of the targeted platforms including the board capabilities, processors

included, and application mappings.
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((a)) SVM task graph. ((b)) KNN task graph.

FIG. 4.6: Task graphs of SVM and KNN classifiers for stress detection case study. The
graphs highlight the task-level parallelism.
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4.2.3.1 Implementation of KNN and SVM Classifiers on NVIDIA Jetson TK1

CPU and GPU NVIDIA’s Jetson TK1 is a System-on-Chip (SoC) combining the Ke-

pler graphics processing unit (GPU) and a 4-plus-1 ARM processor arrangement. The

4-plus-1 processor configuration consists of five Cortex ARM-A15 processors, four high

performance and one low power processor. Each ARM A15 CPU has a 32KB L1 data

and instruction cache supporting 128-bit NEONTM general-purpose single instruction and

SIMD instructions. All processors configuration have shared access to a 2MB L2 cache.

Kepler GPU consists of a single Streaming Multiprocessor (SMX) which has a

CUDATM compute capability of 3.2. The Jetson TK1 has 2GB of DDR3 memory that

is shared between the CPU and GPU and is rated up to 933MHz. Torch, a scientific com-

puting framework was used to efficiently implement both of these applications on the CPUs

and embedded GPU.

We used C and PyCuda to perform stress detection application on Jetson TK1 using

its Cortex CPU and Kepler GPU respectively. A complete serial C code was executed on

CPU while the data-level parallelization was implemented on the GPU by utilizing multiple

threads at the same time. By exploiting the GPU, we were able to achieve several orders of

magnitude improvement over the ARM CPU counterpart.

The blocks are completely utilized by mapping data to threads. We mapped the data

to multiple blocks and used global memory to establish communication between threads in

different blocks.

The SVM classifier was mapped on both CPU and GPU with 6000 support vectors.
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FIG. 4.7: Experimental setup to obtain power and execution time measurements for
NVIDIA Jetson TK1 using T1 INA219 and Arduino. For the experiments both ARM A15
CPU core and embedded GPU are targeted.

The entire stress monitoring ill was mapped on 6 blocks The KNN classifier with 16K

training data was implemented using the CPU and GPU as well.

4.3 Implementation Results and Platform Comparison

For stress detection application, the feature extraction plus classifier are implemented

on different hardware-based and software-based platforms including ASIC, Artix-7 100T

FPGA on Nexys board, PENC manycore with Intel Edison acting as host and NVIDIA

TK1 ARM CPU and Kepler GPU.

The ASIC implementation was proposed for personalized stress detection which uses

each participant’s data. The other platforms were used to examine the generalized stress

detection model which utilizes the data from all participants.

The post layout design for SVM and KNN indicates that the SVM processor outper-

forms the KNN processor in aspect of power consumption, execution time and the accuracy
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for personalized stress detection. At the same frequency of 250 MHz the proposed SVM

processor consumes 23x less energy and requires 12x less execution time to make one

decision compared to the KNN processing.

For a fair comparison among different platforms, the power of Nexys board is added to

FPGA results and the power of the Atom processor was added to PENC. Tables 4.2 and 4.3

demonstrate the comparison results for all platforms for both KNN and SVM versions

(generalized model) of stress detection respectively. Due to the presence of task and data

level parallelism in PENC architecture, The throughput of PENC accelerator is significantly

higher than other platforms (56,691 dec/sec for KNN implementation and 111,111 dec/sec

for SVM implementation). The experimental results indicate that for larger design such as

KNN with 16K training data, PENC accelerator improves the energy efficiency by 4.7x and

268x over the FPGA and GPU, respectively. For SVM Implementation with 6000 support

vectors as a smaller design, the energy consumption of PENC and FPGA are in the same

rang.

To better understand the benefit of PENC manycore 4.8 provides comparisons of

PENC manycore to processor combination in terms of energy-delay-product (EDP) for

stress detection case study with KNN and SVM classifiers. The PENC has significantly

lower EDP than all other processors for both ML kernels. Minimizing EDP is very im-

portant for biomedical applications as it is critical to both promptly making decisions and

doing so with minimal energy. The custom FPGA solution achieves the second best EDP

but has the main disadvantage of long development time to design hardware-defined solu-
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Processor Clock Power Chip Area Throughput Energy Energy Efficiency Energy Efficiency Improvement

(MHz) (mW ) (mm2 ) (dec/sec) (mJ) (dec/sec/watt) (over baseline)

TK1 CPU (baseline) 1,092 3,746 529 3.17 1,180 0.84 1x

TK1 GPU 852 5,832.225 529 244.44 23.86 41.91 49x

Artix-7 100T FPGA 166 833 361 2,000 0.41 2,400 2835x

PENC Manycore 1,000 5,050 175 56,961 0.088 11,279 13,318x
+ Atom

Table 4.2: Breakdown of hardware results from running stress detection applications on
a variety of processing platforms (Feature Extraction + KNN classifier with 16k training
samples). Results include throughput, energy and energy efficiency. CPU has a fully serial
implementation on a single A15 core and is used as baseline. For FPGA the power of
Nexys board is added. The power of Atom processor is added to PENC.

Processor Clock Power Chip Area Throughput Energy Energy Efficiency Energy Efficiency Improvement

(MHz) (mW ) (mm2 ) (dec/sec) (mJ) (dec/sec/watt) (over baseline)

TK1 CPU (baseline) 1,092 3,746 529 14.28 262.22 3.81 1x

TK1 GPU 852 5,723 529 350.5 16.33 61.23 16.05x

Artix-7 200T FPGA 166 708 361 27,394 0.025 38,692 10,145x

PENC Manycore 1,000 3,341 175 111,111 0.028 33,251 8,719x
+ Atom

Table 4.3: Breakdown of hardware results from running stress detection applications on
a variety of processing platforms (Feature Extraction + SVM classifier with 6000 support
vectors). Results include throughput, energy and energy efficiency. CPU has a fully serial
implementation on a single A15 core and is used as baseline. For FPGA the power of
Nexys board is added. The power of Atom processor is added to PENC.

tion. Furthermore, the PENC manycore requires 133x and 3.5x lower EDP compared to

FPGA solution for stress detection with KNN and SVM kernels respectively.
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FIG. 4.8: Comparison of energy-delay-product (EDP) for stress detection case study with
KNN and SVM classifiers when implemented on several processor combinations including
Jetson TK1 CPU and GPU, Artix-7 FPGA and PENC manycore.



Chapter 5

CONCLUSION

5.1 Result Summary

Health monitoring applications share strong commonalities, including requiring sam-

pling from several physiological signals at various rates, preprocessing as well as removing

noise, feature extraction and machine learning kernels. In this research, we demonstrated

an accurate stress-monitoring system by utilizing multiple physiological signals. Our anal-

ysis indicated that using heart rate and accelerometer signals for determining the level of

stress generated the most accurate classification with both KNN and SVM classifiers.The

average accuracy of the personalized stress monitoring system with KNN and SVM classi-

fiers are 95.8% and 96.7% respectively.

We also presented the post-layout (ASIC) implementation of the SVM and KNN pro-

cessors which minimizes power consumption and maintains a low-area footprint for for

personalized stress monitoring. This is particularly critical when real-world applications

are considered.

54
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This research also explored the choice of embedded processors for energy-efficient

processing of physiological signals for the multi-modal stress detection application. Three

software-based (CPU, GPU and PENC manycore) and one hardware-based (FPGA) plat-

forms were compared. This comparison was based on throughput, power and energy effi-

ciency. To further push the energy-efficiency, we utilized a custom lightweight, symmetric

manycore architecture which enables exploiting task-level and data-level parallelism within

ML kernels.

The implementation results revealed that the PENC improves the energy efficiency by

5x and 268x over FPGA and TK1 GPU. For KNN mapping with 16K training data, as a

large design, The PENC manycore was found to have the highest throughput (decision/sec)

and lowest energy usage among other platforms. The small EDP value for PENC makes it

an appropriate candidate for stress detection and similar wearable biomedical applications.

5.2 Future Work

There are several options to extend this research. Firstly, this dataset has several per-

formance recordings including correct decisions (The number of shooting to enemy targets)

and incorrect decisions (The number of shooting to friend targets) per each participant in

three different conditions. We started working to find an appropriate model for task per-

formance based on the heart rate variability (sympathetic and parasympathetic activities)

and the received feedback. Our primary model showed the relation between the correct

decision and parasympathetic activity. This approach can be extended to explore different
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effective parameters on task performance.

Secondly, there are other physiological recordings in this dataset which we did not

evaluate. We chose the most important signals according to previous research on stress

detection.

Thirdly, we can investigate utilizing the deep neural network approach for both feature

extraction and stress classification.

Further, we can apply the features and classifiers of this research to other larger

dataset, to find a more precise model to detect the level of stress.

Finally, we can extend this research to predict individuals’ emotional states (more

than the stress level) using the physiological sensors in combination with face and voice

features.
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Appendix A

ABBREVIATIONS

b bias parameter in SVM classifier

K Number of nearest neighbors in KNN classifier

RR The interval between successive R peaks in ECG

S support vector in SVM classifier

ACC Accelerometer

ARL Army Research Laboratory

ASIC Application Specific Integrated Circuit

BVP Blood Volume Pulse

CAM Content-Addressable Memory

CMOS Complementary Metal-Oxide-Semiconductor

DCM Distributed Cluster-level Shared Memory

DSP Digital Signal Processing

ECG or EKG Electrocardiogram

EDA Electrodermal Activity

EDP Energy Delay Product

EMG Electromyogram

FIFO First In First Out

FPGA Field Programmable Gate Array

FSM Finite State Machine
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GPU Graphic Processing Unit

GSR Galvanic Skin Conductivity

HDL Hardware Description Language

HR Heart Rate

HRV Heart Rate Variability

KNN K Nearest Neighbor

LDA Linear Discriminant Analysis

PCA Principle Component Analysis

ML Machine Learning

PENC Power Efficient Nano Cluster

RESP Respiration

RTL Register Transfer Level

SCR Skin Conductance Response

SOC System on Chip

SpO2 Oxygen Saturation

STD Standard Deviation

SVM Support Vector Machine

TSMC Taiwan Semiconductor Manufacturing company
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