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FOREWORD

During the week of September 20-23, 1983, an International Workshop on
Interactive Decision Analysis and Interpretative Computer Intelligence was
held at the International Institute for Applied Systems Analysis (IIASA) in
Laxenburg, Austria. More than fifty scientists representing seventeen coun-—
tries participated. The aim of the Workshop was to review existing approaches
to problems involving multiple conflicting objectives, to look at methods
and techniques for interactive decision analysis, and to demonstrate the use
of existing interactive decision-support systems.

The Workshop was motivated, firstly, by the realization that the rapid
development of computers, especially microcomputers, will greatly increase
the scope and capabilities of computerized decision-support systems. It is
important to explore the potential of these systems for use in handling the
complex technological, environmental, economic and social problems that face
the world today.

Research in decision~support systems also has another, less tangible
but possibly more important, motivation. The development of efficient sys—
tems for decision support requires a thorough understanding of the dif-
ferences between the decision-making processes in different nations and
cultures. An understanding of the different rationales underlying decision
making is not only necessary for the development of efficient decision-
support systems, but is also an important factor in encouraging inter-
national understanding and cooperation.

IIASA is a unique forum for comparison and exchange of approaches
developed in East and West and has built on this in its research on inter-
active decision analysis, having held several international conferences in
this field. The early stages of this research were presented at an IIASA
Workshop in 1975 and recorded in a book Conflicting Objectives in Decisions,
edited by D.E. Bell, R.L. Keeney and H. Raiffa, and published by Wiley in
1977. More recently, a Task Force Meeting on multiobjective and stochastic
optimization was held at ITASA at the end of 198l: a volume containing
the Proceedings of this Task Force Meeting was published by ITASA under the
title Multiobjective and Stochastic Optimization in 1982.

The Proceedings of the 1983 IIASA Workshop are divided into four main
sections. The first section consists of an introductory lecture by Wierzbick?,
in which he describes a unifying approach to the use of computers and com—
puterized mathematical models for decision analysis and support. The paper
presents a mathematical formalization of the interpretative aspect of com—
puter intelligence and proposes an approach which integrates the major for-
mal frameworks for rational decision making.

The second section, which is concerned with approaches and concepts in
interactive decision analysis, begins with a paper by Grauer, Lewandowski
and Wierzbicki reporting on the progress made in the development of the
decision-support system DIDASS at IIASA. The mathematical background is
outlined, methods of implementation and computational aspects are discussed
and three applications are summarized. The next contribution, by Carlsson,
locks at how conflicts (in a management context) can be handled with the
help of models for fuzzy multiple-criteria optimization. He shows that the
theory of fuzzy sets offers a few more degrees of freedom for handling con-
flicts than a traditional operational research model. Forgd then presents
a game-theoretic approach for multicriteria decision making. In the next
paper, Sugihara and Ichikawa analyze the decision-making process from the
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social sciences viewpoint, and show that, to adapt to the environment ef-
fectively and efficiently, the manager should make use of the systems ap-—
proach and adopt what they call the "contingency view'. ZZonts and Wallentus
give an overview of their work over the last ten years and present their
methods for multiple-otjective linear programming, for multiple~objective
integer linear programming, for choosing among discrete alternatives in the
multicriteria case and for handling multicriteria problems involving multiple
decision makers. Peschel and Breitenecker then describe an interactive
structure design principle and a related simulation technique, and in the
last paper in this section Mazur<k discusses how to organize interactive
computer support for the construction of complex models.

The third section is devoted to methods and techniques for interactive
decision analysis, and begins with two theoretical papers. Seraqfini presents
duality results for multiobjective optimization, and shows how these ideas
can be applied to discrete multiobjective problems by introducing the concept
of dual relaxation and using it in a branch-and-bound-type technique. Inthe
next contribution, Vlach shows that the technique developed by Levitin,
Miljutin and Osmolovski can be applied to optimization problems with nonscalar-
valued objective functions. The next two papers investigate the use of
fuzzy set theory in interactive decision making. The paper by Seo and Sakawa
is concerned with fuzzy assessment of multiattribute utility functions, while
Sakawa's individual contribution deals with interactive fuzzy decisionmaking
in multiobjective nonlinear programming problems. Both papers present some
numerical results obtained from computer runs. HNakayama and Sawaragi report
on an interactive method for multiobjective programming called the satis-—
ficing trade-off method, and provide some examples of its use in practice. The
paper by Guddat and Wendler describes a method, based on parametric opti-
mization, for dealing with multicriteria optimization problems. The authors
discuss certain special features of interactive algorithms for the linear
and nonlinear cases. Steuer'’s paper is concerned with operating considera-
tions pertaining to the interactive weighted Tchebycheff procedure. The
strategy of the Tchebycheff approach is to sample a series of successively
smaller subsets of the set of all nondominated criterion vectors—-this paper
gives the results of some computational experiments and describes the es~-
sential features of the method. The paper by Bischoff deals with extensions
to existing reference point methods for multiple-objective decision making
through the incorporation of an a posteriori trade—off analysis. In the
next paper, Korhonen and Laakso propose an interactive method for solving
multiple-criteria decision problems with convex constraints and a pseudo-
concave and differentiable utility function. The last paper of the third
section, which is by Tarvainen, investigates the implementation of the inter-
active surrogate worth trade—off method.

The fourth and final section of the Proceedings contains descriptions
of a wide range of applications of interactive techniques, covering the
fields of economics, public policy planning, energy policy evaluation,
hydrology and industrial development. Lootsma et al. present their ex-—
periences with two pairwise-comparison methods in a multicriteria analysis
of various energy technologies. This study was designed to assist the
Energy Research Council of The Netherlands in deciding on their budget al-
locations. The paper by Isermann presents an -interactive decision-support
system for distributing cash dividends from a firm to the various partners
according to their individual time preferences. Also from the field of
finance, Morse reports on a multiobjective expert system for suppliers of
out-of-the-money options. Hafkamp and Nijkamp present an integrated ap-
proach to regional economic-environmental-energy policy analysis, based on
a triple-layer interactive model. A computerized interactive system which



supports the making of collective decisions in a gaming framework is des-
cribed by Fortuna and Krus; it is illustrated by application to a regional
development model. The papers by Szidarovszky and Kaden deal with the ap-
plication of multiobjective approaches to hydrology and mining. Decision
support via simulation is the subject of the contribution by Breitenecker
and Sehmid; an application to a hydroenergetic system is described. The paper
by Lotov and Stolyarova describes the use of the generalized reachable set
method in forestry management problems. The last paper in the volume deals
with an application from the chemical industry: Gorecki et al. propose a
multiobjective procedure for project formulation and discuss its use.

The Editors would like to thank IIASA for financing, organizing and
running the Workshop and Helen Gasking for her hard work in preparing the
Proceedings. We also wish to thank the authors for permission to publish
their contributions in this volume.

February, 1984 M. Grauer
A. Wierzbicki
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I. INTRODUCTORY LECTURE



INTERACTIVE DECISION ANALYSIS AND
INTERPRETATIVE COMPUTER INTELLIGENCE

A. Wierzbicki
International Institute for Applied Systems Analysis, Laxenburg, Austria

SUMMARY

This paper presents a unifving approach to the issue of using computers
and computerized mathematical models for decision analysis and support. The
interpretative aspect of computer intelligence is an essential part of this
approach; this paper presents a mathematical formalization of this aspect.
Another essential part of this approach is a proposal to integrate the three
major formalized frameworks for rational decision making: wutility theory
(mostly normative), aspiration theory (mostly behavioral), and the (mostly
hierarchical) theory of goal- and program-oriented management. These two
elements lead to the formulation of principles for a broad class of decision
support systems, which includes many existing systems but which also opens
new possibilities. Two main cases of decision support are discussed: joint
decision making (i.e., involving only one decision maker or several decision
makers who have to reach a consensus) and independent decision making (assuming a
game-like situation with several decision makers). These cases are illus-
trated by reference to the DIDASS system, its applications and extensions.

1. INTRODUCTION AND METHODOLOGICAL SURVEY

1.1. General Motivation

Over the last forty years, the development of computers has led to new
opportunities in information processing, research and development, auto-
matization and robotization of technological processes-—the possibilities
are endless. However, it will probably take hundreds of years to take full
advantage of this new technology: several generations must assimilate the
new computerized culture, learn to use and live with computers, adjust the
social fabric to the requirements of the new computer era.

An essential goal for researchers preparing for this change is to
devise new principles for the development of computer hardware and software.
While hardware development is moving ahead rapidly (vis. the Japanese pro-
ject on fifth-generation computers), software and, in particular, general
principles for computer use have been lagging behind. Yet the future will
depend just as much, if not more, on the uses to which computers are put as
on technological hardware developments which we can visualize now.

One broad class of computer use is decision, policy and strategy analy-
sis. Computerized mathematical models of various aspects of human activity
have long been used for these purposes. However, the principles behind
computerized decision analysis and support are by no means universally ag-
reed upon, and there are many different schools of thought about how computers



should be used. Some support the paradigm of predictive models, which give
unique answers but with limited accuracy or validity; some weaken this
paradigm by scenario analysis. Some believe in normative models that pre-
scribe how things should happen (based on some theory), and reinforce this
by exploiting the tools of mathematical optimization and game theory. Others
criticize this approach for its lack of realism and put forward instead the
idea of descriptive, behavioral modeling; this criticism is often directed
without discrimination at both the normative methodological assumptions and
the mathematical tools.. Yet others instinctively dislike any models that
imply hierarchical organizations; some take hierarchy in organizations for
granted and develop methods and tools for handling hierarchical models.

There are even various schools and approaches with regard to mathe-
matical tools: some prefer static models, while others claim that without
accounting for dynamic effects any decision analysis is doomed to failure;
the different mathematical descriptions of dynamic processes (e.g., dif-
ference equations, ordinary or partial differential equations, equations
with delay, differential inclusions, integral equations) all have their ad-
herents. The proponents of linear versus nonlinear models, differenti-
ability versus nondifferentiability, and various methods of handling uncer-
tainty also create dissent. Some prefer to handle uncertainty using determin-
istic models with scenarios and interval analysis, some using statistical models,
others broader probabilistic and stochastic approaches, others adaptive and
learning procedures, while yet others argue for the use of fuzzy sets.*

With all these divisions, increasing numbers of mathematical modellers
and systems analysts have come to the conclusion that mathematical models
for decision or policy analysis must be built and used interactively, that is,
involving the eventual users at all stages of the process. Again, thereare
different interpretations of what is meant by interaction. Some understand
it to mean simply some way of improving communication between a user and a
computerized model. Others stress the educational, learning and adaptive
aspects of computerized simulation, experimenting with models, computerized
simulated gaming, and procedures for organizing interaction between groups
of experts, users, and decision makers. Others understand interaction as a
tool in decision making, and combine multiobjective optimization with nor-
mative decision theory to construct an interactive decision support system.
Others (including the author) try to broaden the principles of interaction
while preserving some mathematical rigour and exploiting a wide range of
existing mathematical tools.

Such a heterogeneity of approaches is not only an inevitable, but also
a desirable consequence of the turbulent history of computer modeling.
However, new directions can often be found by trying to bridge the gaps
between existing approaches. This paper presents an attempt to bridge
various gaps in this field, by proposing a unified approach to the inter-
active use of models in decision and policy analysis. To do this, we first

*I feel compelled to present my own position in this debate. I happen to
believe that a diversity of mathematical tools is necessary, and we should
develop all of them, not narrowly and arrogantly force any one particular
class of tools to be used. However, the development of mathematical tools
should be motivated by substantive and methodological issues. As to the
latter, I would say that a purely normative approach is like searching for
a lost ring only under the lamp, and a purely descriptive approach is like
describing the lost ring in great detail instead of concentrating on
searching for it; denying hierarchical aspects in human organizations is
like saying that the ring should not be lost at all and then there would be
no problem.



analyze the meaning of computer intelligence and try to define one particular
aspect of it: interpretative intelligence. This characterizes the computer
side of a man-computer interactive system. From the human side, we have to
analyze the various types of human organizations, and several competing de-
finitions of a rationaldecision. Integration of these frameworks leads to

a broad principle for organizing man-computer interactions, provides a basis
for many practical applications and introduces several new theoretical ques-
tions.

1.2. The Interpretative Aspect of Computer Intelligence

Different authors--see, for example, Hayes et al. (1982), Latombe (1978)
and Nilsson (1980)--define computer intelligence in different ways. Some of
these definitions deny that this concept can be formalized mathematically, while
others stress only the mathematical aspects, such as the ability to prove theorems.
There are also various schools of thought as to how certain aspects of computer in-
telligence should be formalized. For example, one of the most widely studied
mathematical formalizations is related to the abilzty to learn. This is typically
associated with the problem of pattern recognition, i.e., given a number of
observations consisting of vectors of data which are each linked with binary
outcomes or classifications, what binary outcome or classification should we
assign to a new vector of data? This question has received much attention
and many different answers--see, for example, Zhuravlev (1976, 1977).

However, one of the oldest interpretations of computer intelligence has
not received so much attention. We instinctively undetstand what is meant
by expecting a computer to interpret our commands intelligently--it is similar
to expecting a secretary to respond intelligently to the directives of the
boss. This question of intelligent interpretation is not simply concerned
with quick recognition of a command (which may soon even be given to com-
puters verbally): thisis anelementary requirement. We tend to say that a
software package is intelligent if it does not have to be guided by detailed
commands at each step, or if, given a short command and a context, it provides
the answers most appropriate to the context.

A mathematical formalization of this concept might be linked to the
selection of solutions for ill-defined mathematical problems (Tikhonov and
Arsenin, 1975). The context in which a command is given could be represented
as a set of possible answers, described mathematically by various constraints--
equations, inequalities, and logical relations. This set typically contains
many answers; when a command is given in this context, it also provides ad-
ditional data which guides the selection of an answer. Various selection
principles are possible, going much further than the simplest requirement
of obeying the command exactly. For example, the computer could construct
a logical transformation of the command, or minimize a distance of the
actual outcome from the desired outcome, or maximize a function that para-
metrically depends on the command. The last possibility is closely related
to problems of interactive decision analysis and will be discussed here in
more detail.

1.3. Major Frameworks for Rational Decision Making

Any formalized framework for rational decision making must assume that
the problem has some basic mathematical structure. This structure typically
comprises:

-- a space of decisions (alternatives, policy options, controls, etc.),
here denoted by EX
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-— a constraint set XO Cc EX defining the admissible decisions¥*

-- a space of outcomes (attributes, objectives, performance indices, etc.),
here denoted by Ey

-~ an outcome mapping** f : EX - E , which also defines the set of

attainable outcomes Y. = f(XO) C Ey

0
-- two types of generalized inequalities or preorderings#*** in the space
Ey. The fact that we actually have two different preorderings of out-

comes that jointly define the decision problem is essential and should
be emphasized. These preorderings are:

1. A partial preordering $P that is usually implied by the decision problem
and has some obvious interpretation (for example, increasing gains or
profits, or decreasing outlay or costs are obvious objectives in certain
contexts).

2. A complete preordering $C that is typically not given in an explicit
mathematical form (if it were, the decision problem would be trivial)--
it should be in some form specified by the decision maker.

The main differences between the various formalized frameworks for
rational decison making are concerned with the way in which the completepre-

ordering ‘C is characterized and the various assumptions about its properties
and interpretation.

The most strongly established framework is that of value or utility maximiza-
tion. If the complete preordering were context-free, independent of other factors
present in the decision problem, then (under quite general assumptions--see
Debreu (1959)) it could be represented by a utility function¥#%*u :Ey - R! such

*We often also consider an additional space of constraints EV , a mapping

:E_. = E_ called a constraining mapping, a generalized inequality £ de-
B8y v NE
v

fining a partial preordering in Ev’ and an element v in EV . The set XO

is then defined as Xo={x € EX : g(x)‘ E v}. However, in the context of our
v

discussion this means only that the set X,k might be given implicitly and
may have rather a complicated structure.

**%*Sometimes this mapping is not strictly defined and there are dimensions
of the space E_ which can be quantified only by expert opinion. This leads

to partially quantified decision problems. lowever, the discussion here
will be limited to completely quantified decision problems for which the
mapping f is given.

**%*These are inequality relations % between the elements of the space Ey

such that y'§ y" and y"¢ y' do not necessarily imply y'=y" ; in other
words, there are classes of equivalent elements in Ey that might contain

more than a singleton {y}. This can also be called quasi-ordering (Debreu,
1959). Such preordering is called partiql if there can exist elements
y', y" € Ey such that neither y'< y" nor y"< y' holds, and complete (or

total) if either y'4 y" or y"« y' holds for all y", y' € Ey

*#%*More precisely, a value function; autility function would then be the value
function transformed by the attitude of the decision maker towards risk. However,
we could in principle include randomness in thedefinition of the mapping f and
expectation in the definition of the function u. Thus we need not concern our-
selves with this distinction in our general discussion of the framework.




that y'4 y" ® u(y') € u(y"). By maximizing u(f(x)) over x € X, we can

0
select the decision that is most preferable to the decision maker. The only
difficulty lies in eliciting information from the decision maker in such a
way that either the function u or its maximum can be identified. This pro-
blem is not trivial, since the function u is actually defined nonuniquely
only up to any strictly monotonic transformation (this is the classic dif-
ference between cardinal and ordinal utility functions in economic theory)
and because of the need to take into account both uncertainty and the decision
maker's attitude towards it (Keeney and Raiffa, 1976).

The utility maximization framework is actually the basis of most of neo-
classical economic theory, large parts of game theory, and various branches
of decision theory. However, it has been severely criticized for its key

assumption--that the preference relation $C is independent of the context
of the decision. Many experiments--see, e.g., Tversky (1972)--have shown
that this assumption cannot be justified in practice. The classical way of
defending the utility function framework is to argue that we could include
the context simply by expanding the outcome space Ey and redefining the

function u . However, this is a tautology: we can certainly rationalize any
decision in this way, but we lose any predictive power if weallow theutility
function to be changed arbitrarily. The essential question is how to usefully
characterize the possible (and experimentally observed) nonstationarity of
utility functions induced by changing contexts in decision making.

The second major framework for rational decision making is that of
satisfieing. In this case decisions are made by comparing outcomes to ad-
aptively formed aspiration levels--see Simon (1969), March and Simon (1958),
Selten (1972) and Tietz (1983). With a much stronger experimental and be-
havioral basis than the utility maximization framework, the satisficing
framework has been extended to question the assumption that decision makers
display maximizing behavior and thus the usefulness of more sophisticated
mathematical formalization. The basis of this framework is simply a dynamic
adaptive equation for the formation of aspiration levels, for example:

Yeal = Ve T 0O — YY) M

where §t € Ey is the aspiration level, Ve € Ey is an observed (though not
necessarily acceptable) outcome, and o, is a coefficient. Then a decision
X, € XO is satisficing if §t 4 Pf(xt); clearly, there may be many such
decisions or none. If there are no satisficing decisions, the aspiration
levels are corrected according to (1), and the search for a satisficing
decision is repeated. If one satisficing decision is found, the process is
terminated.

The proponents of satisficing decision making have three main criticisms
of the utility-maximizing approach:

A. It can be shown experimentally that people do form aspiration levels
(sometimes several types of aspiration level for each outcome) and ac-
tually use them in practical decision making. The changing of aspira-
tions may be seen as one of the main indications of the influence of
context on the decision process.

B. It is not possible to find the absolute maximum of a utility function
under practical conditions, when time, information and other resources
are limited.

C. Uncertainty and lack of information mean that the accuracy of any op-
timization is questionable.



While the first of the above criticisms is clearly important, the other
two are rather technical. Anybody familiar with computational optimization
knows that there 1s no such thing as absolute optimization--the accuracy of
the optimization is limited by time and other resources. There are also
various ways of dealing with uncertainty. At one end of the spectrum we have
probabilistic or stochastic models; at the other an admission that informa-
tion is lacking and that there are numerous possible solutions. Of course,
there are several approaches between these extremes. However, in each of
these approaches we can use optimization techniques, not necessarily as a
goal of human behavior (as some strong proponents of utilitymaximization seem to
believe) but rather as tools for selecting a decision. Recent developments
in computer technology have increased the time, information and other re-
sources available for such computations substantially.

We shall therefore accept only point A of the criticism and investigate
quasi-satisficing behavior, where decisions are guided by changes in aspira-
tion levels, but where optimization may be used as a technical tool. Before
we move on to a mathematical description of this type of behavior, however,
we should first mention another major framework for rational decision making,
developed in the Soviet Union.

This framework is called program and goal-oriented (management) action
and has been developed by Glushkov (1972), Pospelov and Irikov (1976) and others.
In some senses, this framework takes aspiration levels (goals) and even trajec-
tories (programs, aspiration levels developing over time) for granted, but
does not allow them to adapt. Instead, this framework assumes that given
goals or programs can always be attained if sufficient resources are avail-
able; the problem is how to select the smallest amount of resources neces-
sary to attaln given goals or programs. There are two possible mathematical
representations of this problem.

One is to assume that the goals and programs define the outcome space
Ey and that the problem is to modify* the constraint set X0 in such a way

that the goals and programs become attainable. However, in this type of
formulation we encounter the problem of defining the minimal change in the

set X0 . The second formulation seems to be more useful: goals and programs

define only a subspace E; of the outcome space; those resources that can be

varied define another subspace E; of the outcome space, and Ey=E; x E;

Thus, variable constraints are interpreted as outcomes*¥; we assume only
that thg outcomes are ordered hierarchically and that those outcomes in sub-
space Ey are associated with more rigid aspirations than those in subspace
E; . This is the essence of program- and goal-oriented action: depending
on the social and cultural conditions, some aspirations are more rigid and
hierarchically dominant than others.

In addition to these three major frameworks for rational decision making,
there are several other schools of thought. For example, we could assume
that a decision maker does not act according to any of the frameworks, but rather
uses some deciston rules that transform the available information into a
decision. In fact, most ordinary, everyday decisions are made in this way.
Such decision rules are rational abbreviations of longer decision processes

*For example, by changing the constraining value v in the constraint space
Ev’ see earlier footnote.

#*This interpretation seems to be appropriate for all types of variable
constraints; after all, what is a constraint that canbe violated or shifted other

than an additional dimension of the outcome space? In particular, it is applicable
to all chance or probability constraints.



that have been proven to be successful in the past. The question 1s: as-
suming that standard decisions are made following certain decision rules,
is it possible to achieve a synthesis of the three major formalized frame-
works for rational decision making in non-standard situations?

This goal can be achieved in the following way. We accept that decisions
are gutded by adaptively formed aspiration levels and that these levels
might, under certain conditions, be elicited from the decistion maker. We
use these aspiration levels y as exogenous parameters for certain special
(quasi) utility functions called achievement functions; these are of the
form u(y)=s(y,¥). This provides an explicit and constructive means of ex—
pressing the dependence of the decision on the context and nonstationarity of
the utility functions. However, we must pay for this: an examination of
the properties of the achievement functions shows that they must necessartily
be nondifferentiable at the points corresponding to aspiration levels.

1.4. An Ideal Organization Analogy

The properties of achievement functions can be understood by analogy
with an ideal organization, in which the boss defines the task and the as-
piration levels, and a highly intelligent, dedicated staff try to perform
the task to the best of their abilities. What properties should the utility
function of the staff have in such an ideal organization? This analogy, in-
vestigated in Wierzbicki (1982), can be taken in a number of different ways.
It can be used to describe the behavior of a decision maker who first forms
aspiration levels (like the boss) and then searches for decisions that are
guided by the aspiration levels (like the staff). It canbeused torepresent
the behavior of an ideal organization, although the assumptions about staff
behavior are probably unrealistic--except in one important case. If the
staff is replaced by an "intelligent" computer and the boss by a computer
user, we might realistically expect that the behavior of the staff will in
some senses be ideal.

In this ideal case, we assume full agreement between the boss and the
staff on goals and basic priorities (the outcome spaces Ey and the natural

partial preorderings-&? of the boss and the staff concide). We assume that
the staff is efficient (it actually maximizes its utility or achievement
function, guided parametrically by the aspiration levels set by the boss).
However, we must make one essential additional assumption: that the staff
takes the boss seriously. This means that if the boss (either by experience
or through pure luck) specifies aspiration levels that can only just be
attained, the staff should not propose action leading to any other outcome.

In other cases, i.e., if the aspiration levels are either too high or too
low, the staff is allowed more freedom in selecting decisions, although they
should be consistent with the agreed basic priorities (that is, with the

natural partial preordering $I3.

This additional assumption is actually very strong and implies that the
utility or achievement function of the staff has certain non-classical pro-
perties—-in particular, that it is nondifferentiable at points corresponding
to aspiration levels. This is expressed more precisely in the next part of
the paper. Figure 1 illustrates the situation graphically.
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FIGURE 1

sly,y)=0

D=&2

» Y4

The consequences of taking the boss seriously. It is assumed that

Ey=IR2 , v $Py" 'y € D=]Rf_ , YO is not necessarily convex, and
s P
YO denotes the set of nondominated elements of ‘.-’0 in the sense of 4 .

If the aspiration level set by the boss is nondominated (y=§ € ?0),

the staff should not propose any other point §'E ¥ thus, the

o
level set {y € Ey : s(y,;r) > 0} of their achievement function
s(y,§) should closely approximate the set y+D, and the function
s(.,¥) will be nondifferentiable at y=y.

2. ASPIRATION LEVELS, ACHIEVEMENT FUNCTIONS, AND THEIR APPLICATIONS IN

DECISION AND GAMING SUPPORT SYSTEMS

2.1. Achievement Functions

We assume here that Ey is a normed space and that the partial preordering

relation § in Ey is defined by a positive (closed, convex, proper) cone

DCE:
y

" ' ] "
y4y ®y-y €D. (2)

We define several other relations in Ey:

yu< yl o yl - ylv c i") = D\ (Dlﬁ _ D) (3)

y'4<y' ¢y - y" €D = int D (4)
11} 1 o ] - " - .

y 4 eV y y € DE {y € Ey : dist (y,D) < e llyll} (5)

1" 1 L c =~ - A
YAy ®y y D D\ (D, D) (6)

1 kod N
Y44,y ®y -y €D_=intD_. (7
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Given the set YO of attainable outcomes in Ey’ we define the set YO of

0
D-maximal elements of YO’ the set Y- of weakly D-maximal elements, the set

A 8 . .
¥% of D -maximal elements, and the set Yg of weakly De—max1mal elements:
€

0

¥, =y €y, Yoﬂ<y+5) = p} (8)
10 = {y €Yy & YNo+D) = 0} (9
5= {y €Yy : YD) = 8) (10)
?ge = iy €y, YNGHB) = 0} . (11)
The following inclusion holds:
o cy ce). (12)
A function s : YO X Ey - r! is called a strict achievement function if
V', v €Y L VY EE L YKy 256" <56 (A1)
Vy € Yq » Yy € Ey » s(y,y) = 0 and (B1)
{yEEy : s(y,y) zo}=so§=§+n
A function s : YO X Ey - Rl is called a strong achievement function if
vy, v €Y, VY EE y'< oy =2 sy <s@hLy) (A2)
Vy € YO ,Vy € Ey , s(y,y) = 0 and, for some small £>0 , (B2)

y+DpC{ye€ : y)=z0l=5_<Cy+ .
y+DC{y Ey s(y,y) 2 0} SOy y + D

A differentiable function s : YO X Ey - ]R1 is called a smooth achievement

function if (A2) and (B2) hold with De replaced by

D - {y € B, ¢ dist (y,0) < e.ndlyl) (13)
where h:]R_}_ -]R_}_ is a monotonic function with lim h(t) = 0 . Without this
0

modification, achievement functions are nondifferentiable at y=y . Anideal
achievement function would combine properties (A2) and (Bl); however, these
properties are mutually inconsistent.
The properties of achievement functions are summarized by the following
theorem (Wierzbicki, 1982): _ ~0
THEOREM 1. If (A1), then Arg max s(y,y) CY

0+ If (A2), then
¥&Y,
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Arg max  s(y,y) Cl70 . If (A1) and (B1) and if y € g’g » then

34
0 ~ —_
y € Arg max s(y,y) C Yg and max s(y,y) = 0 . If (A2) and (B2) and if
¥y, ¥y,
QG?Z, then y € Arg max  s(y,y) C Y, and max s(y,y) =0 .

yey, ¥y,
Further properties of achievement functions are discussed in Wierzbicki
(1977, 1980). Some examples of achievement functions are given below.

Example 1. Let Ey = r" , D= R: . Then sl(y,§) = min (yi—§i) is a strict

1€i<n
- - n -
achievement function and sz(y,y) = sl(y,y) + Ci§1 (yi—yi) for some >0 is a

strong achievement function.
o0
Example 2. Let Ey =L (o0;1]; "), D= {y € Ey:y(t) € Iﬁf a.e.on [0;T]} .

Then sl(y,§) = ess inf min (yi(t) - §i(t))is a strict achievement function
t€[0;T] 1<ign
n
- - T - .
and sz(y,y) = sl(y,y) + IO iEl(yi(t)—yi(t)) dt for some >0 is a strong

achievement function.
Example 3. Let Ey be a Hilbert space, D a closed convex cone in Ey (for

example, Ey = Lz([O;T]; R") and D = {y € Ey : y(t) € Iﬁia.e. on [0;T]D),

q

* _ ok * * * -
and lety €D ={y € Ey = Ey : <y ,y>>0 Vy €D} . Then sl(y,y) =

x - - _
=<y ,y-y>-C “(y—y)Proj D% I is a strong achievement function and sz(y,y)=

* - -
=y ,y-y> - ”(y—y)Proj D* HZ is a smooth achievement functionT.

Example 4. Let Ey =R , D= ]Ri , and let v : ]RE*]R:_1 be such that

yay' =’V(y') > V(y") and v(y) = 0Vy € ]R:\]cili . Then s(y,y) = v(y-y) for

y-y € Iﬁ} and s(y,y) = -z dist (y-y,D) for y-y & Iﬁ} and some >0 represents
a strict achievement function. _

Comments. The argument y in s(y,y) is interpreted as the outcome of a
decision and y as the corresponding aspiration level. Examples 2 and 3 show

that we can also interprete y as an aspiration trajectory for a program of
decisions which is useful in many applications. The second part of Theorem
1 implies that an achievement function can be interpreted as the utility
function of an ideal staff "taking the boss seriously" as discussed in the
preceding section.

Proj D

ﬁ?r p§opertiesofsuchprojectionsseeMoreau(1962),WierzbickiandKurcyusz
977).

* % i *
+(.) * denotes projection on the cone D ={y € Ey=Ey:<y ,y> 2 0 Vyen}.
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2.2. Applications of Decision Support Systems

Using the concepts of aspiration levels and achievement functions, we
can propose principles for organizing user~computer interactionin adecision
support system. These are outlined in Fig. 2.

User

~<1
~<>
x>

Decision-support system

Problem solver: max s(f(x),y)
XEXO

Substantive model: )(0 C Ex,f : EX - Ev’ Y0 = f(Xo)

FIGURE 2 Principles for user-computer interaction in a decision support
system (assuming interpretative computer intelligence).

A decision support system of this type generalizes many of the tech-
niques of multiobjective optimization, such as goal programming (Ignizio,
1978), displaced ideal point (Zeleny, 1976) and many others. It also com-
bines the properties of the three major analytical frameworks for rational
decision making. It requires (i) that a substantive model of the problem
to be analyzed should be constructed independently, (ii) that the user is
familiar--though not necessarily in detall--with the model and can define
the space Ey and the cone D for the variables of the model, and (i11i) that

an efficient and robust problem solver——an algorithm maximizing the (usually
nondifferentiable) function s(y,y)-—is included in the system. The system
itself can then execute many commands: estimate the bounds of the Pareto set Y _;

0
accept aspiration levels y, check whether they are attainable, and respond

with a Pareto-optimal § € Yo;scanthePareto set around some y or ;. It can

= (k)

even help the user to select a sequence of y
3 (=9

These general principles, together with a solution algorithm for linear
and dynamic linear programming problems, were used at IIASA to construct the
decision support system DIDASS* (see, e.g., Kallio et al., 1980; Grauer and
Lewandowski, 1982). This version of DIDASS has been applied tomany problems
--see, for example, Grauer et al. (1982a,b)--and has been made portable.
It has now been transferred to over 40 research institutions throughout the
world.

converging to some preferred

*Dynamic Interactive Decision Analysis and Support System.
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DIDASS is now being extended to deal with nonlinear dynamic problems,
stochastic problems and nondifferentiable problems. A new and distinct
direction of research involves the use of aspiration levels and achievement
functions to analyze multiactor decision situations.

2.3. Satisficing Selections of Game Equilibria and Gaming Support Systems

Although the concept of aspiration levels can also be applied to the
problem of supporting consensus in decision making (Grauer et al., 1983),
we shall concentrate here on applications related to the analysis of gaming
results and general decision support in gaming (Wierzbicki, 1983b).

We consider here a simplified example of a game that has only historical
significance, because most countries now refrain from fishing in eachother's
coastal waters. Two countries, 1=1,2, fish in each other's, f=2,1, coastal
waters. Each country can decide how much to take from foreign waters (we

denote this decision by x ) and what restrictions to impose on foreign boats
fishing in their waters (x ); if the restrictions are disobeyed, both the

offending country and the enforcing country incur additional costs. The
payoff functions have the form:

_ U 1 1 i1 -t
£100 = a7y xjFay oxmay gxhmay, (kX)) -
£ i -1
—als(x1+x2—x )+ (14)

i07211% 1
gain from the country's ovn waters (diminishing with increased fishing by

where (.) denotes taking the positive part, a, represents the net

outsiders, denoted by x ), a represents the net gain from fishing

XX
12% 1 213%2
in foreign waters (d1m1nlsh1ng with increased restrictions), the last but
one term represents the penalties for disobeying the restrictions of other
countries and the last term the cost of enforcing its own restrictionms.
2 4 . i_~1

All decision variables, x = (xl,x;,xl,xz) € R are constrained by OSX;Sx;.

This example serves to 1llustrate the mathematical and computational
difficulties involved in determining sets of noncooperative equilibria;*
however, these difficulties can be overcome and the image of the game, to-

gether with the set of Nash equillbrla Nq, is shown in Fig. 3 for a, 0—2 LA,

=1, a,,=2, a =4, x =0.8, j,i=1,2 . The Nash equilibria in

341 12 i3 147315
this case have a rather simple 1nterpretation: they correspond to the
situation in which each country strictly obeys the restrictions of others.
The Nash outcomes of this game are not Pareto outcomes; Pareto outcomes
correspond to dropping restrictions entirely, or, at the point PO, to the

complete cessation of fishing in foreign waters. It is interesting to
note that the point PO has finally been reached through the historical

=6, a

*This is equivalent to a min-max problem involving nondifferentiable func-
tions that do not remain convex after the first maximization.
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development of fishing practices.* However, in the course of this historical
process there have also been cases in which the worst point SD has been
reached. This point is attained when both countries decide to fish as much
as possible in each other's waters and, at the same time, to impose and try
to enforce extreme restrictions on anybody fishing in their own waters--a
case of open fishing war. There are concepts in game theory that explain
the development of this situation, albeit in a rather simplified fashion.

Pareto cooperative

All game
ga outcomes

outcomes

Nash noncooperative R e Py
outcomes

S Stackeiberg equilibrium
6 with player 1 leading

-7
\\\ B

SD ™~ Stackelberg disequilibrium -8
FIGURE 3 I £ th s qu=F . (%)=2.4mbx Ak - 2% 4 [ (A1) (xP4x 1) ]
mage o egame: q;=f,(x -4=bx +x - 2%, X H=1) -1

_ ~ 1,2 .1 o1 2 2, 1.
qZ_fZ(X)_2'4_6xl+Xl X, 4[(Xl+x2 1)_'_+(x1+'x2 l)+]
XX = [x€R* : 0sx’<0.8}

(=1

*The point P, is not a Nash equilibrium for the one-period game, but can be

0
shown to be an evolutionary stable equilibrium for a repetitive game. Thus
we might hope that all 'prisoner's dilemma', characterized by the difference
of Nash and Pareto points, will finally be resolved in an evolutionary way
(see also Hofstadter, 1983). 1In the case of the arms race, however, it is
but small consolation for us to hope that other races in the universe might
learn from our own evolutionary mistakes.
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An o0ld concept in game theory is that of a Stackelberg equilibrium
(see, e.g., Aubin, 1979). Suppose one of the players has enough information
to compute the responses of the other players (who wish to maximize their
own payoffs) to any of his own decisions. If the responses are nonunique,
he can assume, to be on the safe side, that only those that contribute least
to his own payoff will be chosen. These response functions uniquely deter-
mine the dependence of his own payoff on his own decisions, taking into ac-
count the responses of others, and his own payoff can then be maximized. A
player who makes his decisions in such a way is called the (Stackelberg)
leader; if other players respond as predicted, they are called (Stackelberg)
followers; the resulting outcome is called the Stackelberg equilibrium (this
is one of the Nash equilibria, chosen through the (safe) maximization of the
payoff of the leader). 1In the example considered here, if the first player
wants to be the leader, he concludes that by sending the largest possible
fleet to fish in his opponent's waters and by imposing the severest possible
restrictions on intruders into his own waters, he might force theother player
to "follow" him. Indeed, since both enforcing restrictions and violating
them are very costly in this game, the second player might maximize his own
short-term interests by imposing only the minimal restrictions compatible
with the fleet of the leader (or even dropping restrictions altogether——but
the leader cannot count on this) and sending only the smallest possible fleet
to the leader's waters. !

This interpretation shows, however, that the reasoning of the Stackel~
berg leader is completely unrealistic if no additional legal or institutional
circumstances force the other player to become a follower. A sovereign
country would not accept the follower's role and would denounce as hypo-
critical the explanations of the aspiring leader that the follower's role
is logical from the point of view of economic payoffs. In the example con-
sidered here, the second player might well respond by repeating the actions
of the first—--this would result in a so-called Stackelberg disequilibrium
(a situation in which both players try to become the leader) and corresponds
to an open fishing war in our example.

Thus, the concepts of Stackelberg leadership and Stackelberg disequi-
librium explain how open conflicts can occur--however, the explanation is
not completely satisfactory since conflicts do not usually develop to this
scale immediately. Historical evidence shows that if one country were to
send its fishing fleet to another's waters, the other country would not
necessarily reciprocate; in order to secure international support, the in-
jured country would prefer to limit the fishing war to its own waters. We
therefore need some additional concepts that could explain the processes of
conflict escalation and de-~escalation.

We apply here the concept of quasi~satisficing behavior: players
maximize their objectives, but with a greater intensity below their aspira-
tion levels than above them. Mathematically, such a distinction seems to
have no sense: payoff maximization behavior is not changed by the intensity
of maximization, and the set of Nash equilibria is not changed by assuming
quasi-satisficing behavior. However, quasi-satisficing behavior might in-
fluence the way a player selects a Nash equilibrium: having attained his aspira-
tions he might devote his remaining freedom of action to some other purpose, such
as constructively preventing conflict escalationby letting other players maximize
their objectives, or destructively hurting other players by trying to negatively
affect their objectives.

In the previous example, the satisficing Nash equilibria for player 2,
who has some aspiration level 62, are all of the Nash equilibria above and

including the line q2=a2 (see Fig. 4). Selection of the point SC2 that
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satisfies q2=§2 and is also good for the other player is a constructive
satisfieing strategy; selection of the point 0D,, which is the worst possible
for the other player, is an openly destructive strategy,* selection of the
point SD2 that satisfies q2=az but is the worst choice for the other player

on this line is a hidden destructive satisficing strategy. The interpreta-
tion of the difference between constructive and hidden destructive satisficing
strategies in the example considered is quite interesting. The parameters

All possible
outcomes

Pareto cooperative
outcomes

Nash noncooperative
outcomes

/

FIGURE 4 Satisficing game equilibria that could be selected by player 2:

SC2 represents a constructive satisficing move; SD, represents a

2
hidden destructive satisficing move; OD2 represents an openly de-

structive move. s(q—a) represents a maximized function that helps
to select a constructive satisficing strategy.

*In this case (although not necessarily in general), the openly destructive
strategy OD2 coincides with the Stackelberg maximizing strategy.
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of the example are such that fish stocks are already heavily depleted and
fishing in coastal waters hurts the host country more than it benefits the
fishing country. A constructive satisficing strategy is then to decrease as
much as possible your catch in the coastal waters of others (bearing in mind
your economic aspirations), while imposing the strictest possible restric-
tions on outsiders fishing in your own waters. A hidden destructive strategy
is to achieve the same economic aspiration level by fishing as much as pos-
sible in the coastal waters of others and imposing only such restrictions on
foreigners fishing in your own waters as are necessary to attain your aspira-
tion level. Each hidden destructive strategy can be 'rationalized' by in-
voking some seemingly plausible argument, for example, 'we believe in the
freedom of fishing and restrict it only out of economic necessity'; never-
theless, it still remains destructive in the eyes of the other player.

A satisficing game equilibrium can be selected unilaterally when the
aspiration levels of a particular player and the type of action to be taken
(constructive, hidden destructive, etc.) are known; if themultiple objectives
of the other side are to be taken into account, it is also necessary to have
at least estimated aspiration levels for the other side. In fact, no matter
whether you want to be constructive or destructive, you must have some idea
of the aspirations of the other player~-say, what economic and what ecological
results would satisfy him; only when you assume (simplistically) that the
other player has only a single objective can you disregard his aspirationms.

A satisficing game equilibrium for a given mathematical model of the game
can also be computed by maximizing an achievement function over the set of
Nash (or Pareto-Nash in the multiobjective case) game equilibria. In the
simple example considered here, the constructive satisficing option for player

2 with aspiration level aZ can be computed by solving the following problem:

maxinize % (£,(0-2,), - p@,f,()), + £, (x) (15)
where
Z T i T i
N={x€x: r;én $G,y)=0}; b Gey)= B (F, G x D)=, (e oy™)) (16)
X

. . Syl (4. —5.) -o(a -
and p>>1 is a coefficient. If we denote s(gq-q)= 5 (q2 q2)+ p(q2 q2)++ql ,

then the equivalent problem max s(q-q) can be interpreted in outcome space

N,
as shown in Fig. 4. We see that it is necessary to maximize a nondifferen-

tiable function over a non-convex set.

The concept of satisficing selections can also be applied to the or-
ganization of decision support in gaming, or even support for negotiation
and mediation (Wierzbicki, 1983a; Fortuna, 1984): decision support systems
of this type are currently under development.

3. CONCLUSIONS

The concepts of aspiration levels, achievement functions and satisficing
not only allow a synthesis of the three major frameworks for rational decision
making, but also have further theoretical and practical applications.
Theoretically, these concepts suggest a number of interesting mathematical
questions. More pragmatically, they can be used to construct a variety of
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decision support systems with some aspects of interpretative computer intel-
ligence.
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1. INTRODUCTION

The purpose of this paper is to report on the progress made in the
System and Decision Sciences (SDS) research group at ITASA on the develop-
ment of the declsion support system DIDASS (Dynamic Interactive Decilsion
Analysis and Support System). This system is based on methodology derived
from the paradigm of satisficing decision making and the methodology of
linear and nonlinear programming. The mathematical background to this ap-
proach (based on aspiration formation and the concept of scalarizing func-
tions) is outlined in Section 2. Methods of implementation and computa-
tional aspects are discussed in Section 3. The fourth section summarizes
three applications of DIDASS, and the paper ends with some conclusions.

2. THE ACHIEVEMENT SCALARIZING FUNCTION CONCEPT

In satisficing decision making it is assumed (March and Simon, 1958)
that people set up aspiration levels for various outcomes of interest,
modify them as they accumulate more information, and then make decisions
that satisfy or come close to these aspiration levels. Many of the methods
of multiobjective analysis, such as the displaced ideal point approach
(Zeleny, 1976) and goal programming (Charnes and Cooper, 1977) have more or
less consciously adopted this approach. A generalized method that combines
the satisficing and aspiration level concepts with mathematical optimization
was proposed by Wierzbicki (1980a,b). This approach concentrates on the
construction of modified utility functions (called achievement functions)
which express the utility or disutility of attaining or not attaining given
aspiration levels. We will now give the problem description and show how
the mathematical foundation of the method is derived.

Let EOCEZbe the set of admissible decisions or alternatives to be

evaluated. Let G be a (linear topological) space of objectives, performance

indices, or outcomes. Let a mapping Q : EO*(}be given, which defines

numerically the consequences of each alternative. Let Q0 = Q(EO) denote

the set of attainable objectives. Let a natural inequality (a partial
preordering) in G be given; to simplify the presentation, assume that the
preordering 1s transitive and can be expressed by a positive cone (any
closed, convex, proper cone) D @ G:

9> 9, €6, 9, €9, *®q, -q, €D . ey
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A corresponding strong partial preordering is given by

54

(S < - [
4> 4, €6, 9, <q,®q,-q €ED=D(DN-D) . (2)

o
If the cone D has a nonempty interior D, it is also possible to
introduce a strict partial preordering:

Q

4> 9, €6, q; €q,%q, - q; €D . (3)

Suppose that we maximize all objectives (gains, etc.). A generalized Pareto
(nondominated) objective § is then a D-maximal element of QO:

q € Qo is D-maximal e'Qo N@+D) =6 . %)

A slightly weaker definition, which includes a few points which are not non-
dominated, is that of weak D-maximal elements:

q € Qo is weakly D-maximal “‘QO n @ + 5) =0 . (5)

For a normed space G, we can also have a stronger definition (D —maximallty)
which does not include all nondominated points:

q € Qo is D _-maximal “‘Qo N (g - Be) =9, (6)

where D is an €-conical neighborhood of D:

%

69—— {q € ¢ : dist(q,D) < elql} D \®_N -D) 7
with

dist(q,D) = inf "q - q"
4eD

implied by the norm of the space G .
If the space G is normed, we can define an achievement scalarizing

function (shortened to achievement function) s : G - Rl , where s is as-
sumed to satisfy either (8) and (10) below (the order representation case)
or (9) and (11) below (the order approximation case). Thus, an achievement
function should be
(a) strictly order-preserving: for all q € G , all 4 9, €Q, ¢
4 = -q - q
q; €9, *s(q; -9 <s, -, (8)
or, if possible, strongly order—preserving: for all q €6, all 455 9y € Q0 :
=> —— __.
9, <4q, Tslq; -q) <s@, -, €
where strong order preservation implies strict order preservation.
(b) order-representing:
5o £ {a€C:s@-320=T+D;s(0)=0, (10)

or, at least, order—approximating for some small € > 0 ,
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Sl——f{qEG:s(q—a)zo}gaﬂa;s(0)=o, (11)

q + C
q D S e

0
where, clearly, order representation implies order approximation.

We see that the achievement function s is taken to be a function of the
difference q - q , where q = Q(x), x € EO is an attainable objective but

q € G is an arbitrary aspiration level, which is not comstrained to Q. , nor

0
otherwise constrained. Moreover, an achievement function is usually con-
structed such that, if q & QO—D, then the maximization of s(q - q) over q € QO

represents the minimization of the distance between a + D and QO 3 if
q € QO - D , then the maximization of s(q - q) represents the allocation of

the surplus q ~ ¢ € D . However, these comments are only descriptive and
the axiomatic definition of an achievement function relies on requirements
(a) and (b).

Using the above definition of an achievement scalarizing function we
will now show how this approach can be implemented numerically on a computer.

3. METHODS OF IMPLEMENTATION AND COMPUTATIONAL ASPECTS

Our aim was to develop an interactive decision analysis package based
on standard programming techniques, using the concept of an achievement
function formulated above to support the solution of the multiple criteria
problems that arise in practical situations. In particular, we attempted
to use current mathematical programming techniques in the problem specifica~
tion (standard MPS format for the LP part, and a suitably extended version
of this to provide the additional information), in the storage of data (as
packed data structures) and in the implementation of solution strategies
(using efficient, modifiable and numerically stable implementations of
linear and nonlinear solution programs, e.g., MINOS/AUGMENTED). Although
the system was initially only suitable for linear and nonlinear multiple
criteria problems, we have tried to design it to permit extensions and to
make it portable to various computers with different operating systems. We
have also tried to make it possible to use different solution programs.

We shall assume that the solution of the decision problem under con-
sideration can be obtained by analyzing a general constrained multicriteria
problem in the following standard form:

T T
BpGgp) fopxy Y dx = q
. T T
Bplxpy) +egxy +doxg = qy
max ... .o e 12)
X X
nl’"1 T
fp(xnl) + cpx 1 +d X qp

subject to:

<
g(xnl) + Alxl < b1 (13)
<
Ayx )+ Agx; S b, (14)
X
1< x“l <u, (15)
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_ T
where g(xnl) = [gl(xnl)’ gz(xnl),...,gm(xnl)] is a vector of nonlinear con-
straints and fl(xnl)’ fz(xnl)"'°’fp(xnl) in (12) represents the nonlinear

parts of the performance criteria. The decision variables are divided into
two subsets: a vector of "nonlinear'" variables (xnl) and a vector of "linear"

variables (xl). It is clear that when vectors f and g are nonexistent, for-

mulation (12)-(15) is identical with the standard multicriteria linear pro-
gramming problem. Anoverview of the various ways in which the reference point ap-
proach can be used in the linear case is given in Grauer and Lewandowski
(1982), while the nonlinear case is described in Grauer (1983a).

The current computer implementation of the decision analysis and support
system DIDASS is based on a two-stage model of the decision-making process.
In the first stage-—the exploratory stage-—the user is informed about the
range of his alternatives, thus giving him an overview of the problem. 1In
the second stage--the search stage—-the user works with the system in an

interactive way to analyze the efficient alternatives {Qk} generated by

DIDASS in response to his reference objectives {ak}. The initial information
for the exploratory stage is provided by calculating the extreme points for

each of the objectives in (12) separately. A matrix DS which yields infor-

mation on the range of numerical values of each objective is then constructed.
We shall call this the decision support matriz.

F* 1 1 1

9 q2...qi...qp

2 % 2 2

q1 q2...qi...qp
D, = . . . . 16
s qJ ql.. .3 h| (16)

1 9o i...qp

p P p ®

9 q2...qi...qp

The vector with elements qg = q; , i.e., the diagonal of DS ,» represents

Row j corresponds to the solution vector x? which maximizes objective q, .
J

the utopia (Zdeal) point. This point is not normally attainable (if it were,
it would be the solution of the proposed decision problem), but it is presented

to the user as an upper guideline to the sequence {ak} of reference objec-

tives. Let us consider column i of the matrix DS. The maximum value in the
ale

column is q;. Let q? be the minimum value, where
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. 3 _ n
min ; 9 § =q -
1<3<p

We shall call this the nadZr value. The vector with elements q?,qz,...,q;
represents the nadir point, and may be seen as a lower guideline to the

values of the user's objectives.
In the linear case we use the following scalarizing function s(w), where
minimization results in a linear programming formulation:

P
s(w) =-min {pminw, ; Z w, -ew . an
. i . i
i i=1
Here W, = (qi - ai)/Yi, p is an arbitrary coefficient which is greater than
or equal to p, Yi is a scaling factor, and € = (El,ez,...,sp) is a non-

negative vector of parameters.
In the nonlinear version of the package the following achievement
scalarizing function is used:

P
s(w) = - & 1n —;— T wp®| o, (18)

f i=1

where w, = Yi[(qi - qi)/(qi - qi)], q; is an upper limit to the sequence of

reference points, p22 is again an arbitrary coefficient greater than or equal
to p, and Y4 acts here as a weighting factor. This achievement scalarizing

function meets the following requirements:

-- It yields scaling factors which make additional scaling of objectives
unnecessary.
-- It is a smoothly differentiable function that approximates the nonsmooth
function s = max v,
i
-- It is strongly order-preserving and weakly order-approximating.
The resulting single-criterion programming problems are solved using
the solution package MINOS (Murtagh and Saunders, 1980).
The general structure of the DIDASS system is given in Fig.l. More
details concerning the package can be found in Grauer (1983b).

4, APPLICATIONS
We consider here applications of DIDASS for two prototype decision

situations: (i) the centralized single-actor situation (Sections 4.1, 4.2)
and (ii) the centralized multiple-actor situation (Section 4.3).

4.1. Generation of Efficient Energy Supply Strategies

When analyzing the future development of an energy system it is neces-
sary (i) to consider more than one objective and (ii) to study the time
dependence of these objectives and thus the interplay between monetary
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FIGURE 1 Structure of the DIDASS system.
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outcomes and other factors (such as import dependence, the need to develop
infrastructure, etc.) over time. 1In order to take these two factors into
account we used the idea of reference objectives (Wierzbicki, 1980b) within
the achievement function concept. To do this we have to construct an achieve-

ment functional with G = L2[0,T] and D = {q € L2[0;T]: q(t) =2 0on [0;T)}:

s@- D = /7 {la® - a®1? - s[q3®) - a2 tar, (19)

where a(t) is the vector of reference objectives and T the planning horizon.

The use of DIDASS with an achievement function of type (19) is illus-
trated in Fig. 2. In this case we assume a single decision maker (minister)
who might wish to minimize the use of imported oil and indigenous coal in
energy production to save them as feedstocks for other industries, while also
minimizing investment in the energy sector (Grauer et al., 1982). Since the
energy supply model used in this study was of the linear programming type,
we could use the achievement function (17) and the linear multiple-criteria
part of the DIDASS package.

600 ( 170-r
Costs Response
160 1
550 1
150 r
00 S 500 140
4 V > T &
= S
s 'é' s 130 Coal Response
Zwof § < A3
r =% 1 = . ~
g E 450 < 120 - Coal Reference Level {f 2)
© = o
S 300 T © at 10
1
400 4 Costs Reference Level (7 3)
250 1 st :\
\§ Qil Response
sl O R
200 T N ;:; Oil Reference Level (T 1)
got
150 + 300 1+ 70 + ———

1980 1990 2000 2010 2020 2030
Year

FIGURE 2 Reference trajectories (objectives) for imported oil supply,
indigenous coal supply, and cost (Grauer et al., 1982).

4.2. Macroeconomic Planning under Conflicting Objectives

By its very nature, economic planning must involve the consideration
of multiple criteria. Planners usually either employ alternative objective
functions combined with parametrically varying constraints to determine
several efficient variants of the plan, or they construct a social welfare
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function (a type of utility function) which somehow includes all of the ob-
jectives. However, we believe that an interactive decision support system
provides a better means of communication between planners and modelers and

a better way of analyzing efficient alternatives than the traditional methods
outlined above. We therefore decided to carry out an experiment, using
DIDASS to analyze 1976 data on the Hungarian economy (Grauer and Zalai,
1982) in conjunction with a multisectoral nonlinear programming model. This
model is highly aggregated to simplify the analysis, containing only three
sectors, which correspond roughly to the usual primary, secondary and ter-
tiary sectors. Table 1 gives some indication of the results that can be
obtained using this type of approach. It shows the decision support matrix
(16); the last line gives a compromise solution for the situation considered
by the planner, assuming that he wishes to maximize foreign trade, average
consumption and investment.

TABLE 1 Decision support matrix and compromise solution (values given in
millions of forints).

Average consumption Foreign trade deficit Investment

0bj(1) 0bj(2) 0bj (3)
0bj (1) -~ max 11 730.4 -22 822.1 172 404.4
0bj(2) = max 0.1 14 998.8 157 911.4
0bj(3) - max 0.1 -22 822.1 207 157.6
Compromise 1 486.8 - 1019.3 159 632.3

solution

As the results of the study proved to be useful, the approach was utilized
to examine more disaggregated macroeconomic models.

4.3. Mediation in Long-Term Planning

This example is concerned with multiple decision makers with multiple
criteria. It is possible to structure this decision problem as a negotia-
tion process with a mediator, where the role of the mediator is to attempt
to assist the parties involved through an analysis of the underlying con-
flict (sometimes known as conflict mediation). We therefore studied the
use of a decision support system (DIDASS) as an aid in mediation.

The study was based on a macroeconomic planning model developed at
IIASA. Built as part of an investigation of different options for the
long-term development of the Austrian energy system, the model portrays the
interrelationships between the consumption sphere, the energy production
sector and the rest of the economy. It was designed as a means of examining
the implications of different planning scenarios and as a vehicle for com-
paring different views about the possible development of the energy system.
The approach considered here goes beyond a mere comparison of opinions in
that it attempts to provide support for a process of concession-making which
progresses from an initial situation of diverging views ("incompatible as-
pirations") to a consensus acceptable to all of the parties involved
("compatible aspirations").
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Details of this approach and some results are given in Wierzbicki
(1983) and Grauer et al. (1983).

5. CONCLUSIONS

The interactive decision analysis and support system currently being
developed at IIASA has been shown to be of use in analyzing conflicts and
assisting in decision-making situations. However, much still remains to be
done, in terms of both algorithmic development and theoretical advances.
Our experience has shown that it is possible to combine methodological
reflection on the practical requirements of decision making with develop-
ments in game theory, hierarchical optimization, interactive programming
and multicriteria analysis.
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HANDLING CONFLICTS IN FUZZY MULTIPLE-CRITERIA
OPTIMIZATION

Christer Carlsson
Department of Business Administration, Abo Academy, Abo, Finland

1. INTRODUCTION

Multiple criteria optimization is more and more accepted as the stan-
dard basis for problem solving tools and decision aids, as single criteria
modelling in many cases has been proved to be a special case of some class
of multiple criteria models. Multiple criteria imply multiple objectives,
which in turn imply conflicts among the objectives - it is almost an axiom
that there should be conflicts if we have many objectives. But conflicts
are - or can be made - an asset in a management context: (i) conflicts can
be dissolved by generating new alternatives or an ideal alternative; (ii)
conflicts can be resolved through constructive compromises by reformulating
or creating alternatives; (ii) conflicts can be solved by allowing a single
objective to dominate temporarily, and (iv) conflicts can be neglected, con-
tained, controlled and denied by various forms of power play.

In this paper the various ways of handling conflicts are studied with
the help of models for fuzzy multiple criteria optimization. It is shown
that the theory of fuzzy sets offers a few more degrees of freedom for hand-
ling conflicts than a traditional OR-model; the model is demonstrated with
a fairly simple numerical example, which was run with the interactive IFPS/
Optimum on a Prime computer.

2. FUZZY MULTIPLE CRITERIA OPTIMIZATION

The field of multiple criteria decision making is one of considerable
growth and development, and is one of the fields of research in management
science which show considerable potential for producing essential research
results over the next few years. The growth of the field has given rise to
a corresponding growth in the number of concepts used to describe phenomena
in terms of multiple criteria. In order to avoid some of the confusion of
terminology we will stick to one set of concepts, and apply those introduced
by Zeleny (1982). Thus multiple criteria will be taken to include multiple
attributes, multiple objectives and multiple goals. The differences between
these concepts may be outlined as follows: attributes are descriptors of an
objective reality; objectives represent directions of improvement or pre-
ference in attributes; goals are a decision maker's needs and desires, de-
fined in terms of attributes or objectives; criteria are measures, rules
and standards which are relevant for a decision maker.

In the following we will study situations in which we have multiple
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conflicting objectives, and find out how such situations could be dealt with.
As conflicts traditionally have been handled by loosening up deadlocked po-
sitions, it may be worthwhile to try loose and flexible methods for handling
conflicts in multiple criteria. The theory of fuzzy sets proposes to give the
conceptual and theoretical framework for handling complexity, imprecision and
vagueness (cf Bellman and Zadeh (1970)), and should thus be useful also as a
basis for developing loose and flexible methods.

2.1, Conflicts among interdependent objectives

Let A = {a}, a2, ..., ap} represent a set of alternatives a decision
maker has found to pe relevant in some problem situation at a chosen point
of time t. The alternatives are established through appropriate sets of
attributes, which the decision maker has found to be adequate for describing
the alternatives. Let G be a fuzzy objective, which is represented by a
fuzzy subset of A,

6 = {(aj, “g (aj)} , ¥ie [1,n], and (la)

aje Aandug : A —> [0,1]

The function ug, the membership function, defines a subjective ordering on
the set of decision alternatives, which is intended to show to what degree
an alternative represents an attainment of G. The membership function is
thus thought to cover all the relevant attribute dimensions, but it would
be more realistic to have one membership function for each attribute dimen-
sion; for k dimensions we will then have,

6(3) = { (a;19), wg(@; N1 wi, 5 e [1an] and [1,K] (1b)

It is also possible that several alternatives together represent an attain-
ment of G; for three alternatives we have,

6 ={(aj1» aj2, aj3 ; ¥g (aj1> ajz. aj3)} » ¥i e [1.n] (1c)

so that combining (1b) and (1c) we get,

G ={ (aég) » Mg (a§%) )} #i,3,m e [1.n] and [1,k] (1d)

wherewg is a family of membership functions, which give a fairly rich re-
presentation of combinations of alternatives and their attributes.

If we then have multiple objectives, 6 ={ Gy, G2, ..., Gp} , each of
which is defined as in (1d), the corresponaing families of membership func-
tions Mg would show for each alternative aj, and even for each attribute

dimension of each alternative, aiJ), to which degree it represents an attain-
ment of each one of the objectives. Let us for a moment consider Mg as exist-
ing and well-defined.
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In order to deal with the problem situation at hand the decision maker
should find an alternative which represents an attainment of all the objec-
tives of G. This will be achieved by combining membership functions,

up = A mg . where re [1,p] (2)
r r

where the conjunction is interpreted as,
Hp (aj) = min [“Gr] , ¥r e [1,p] , ¥aj € A, (3)

and "the best" alternative is found through,

*

Hp (a) = max wp (aj) , ¥i € [1,n] (4)
which is a traditional minmax-approach.

The operations defined in (2)-(4) are possible with existing and well-
defined ug. Zeleny (1983) points out that aug normally is not well-defined,
and exists only as a subjective construct which is bound to vary between
problem situations, alternatives and goals. Furthermore "... membership
functions ... should not be functions at all ... multiple membership values
are being assigned by humans to identical levels of variables". In this
statement Zeleny touches the core of an unsolved problem in the theory of
fuzzy sets. So let us stay with the original assumption on an existing and
well-defined ug for one more moment.

In case of conflicts within the G, upf(aj)= 0 in (3). Let us simplify
matters a bit in order to discuss the case of conflicting objectives: (i)
we will not consider multiple dimensions or multiple attributes; (ii) we
will create a space in which evaluation and comparison of conflicting objec-
tives could be carried out: let A be a universe and f an ordinary function
from A to another universe B; now it can be shown that f could be defined
for a fuzzy domain- and given a fuzzy range as well - iff,

M Hy (faj) 2 MGy, (aj) , ¥aje A (5)

where Gy is a fuzzy subset of A, and Hg correspondingly of B. (cf Dubois
and Prade (1980)).

With two conflicting objectives Gy, Gg (€ G) an alternative aj will
have membership values MGy, (aj) = 0 and MG (aj) = 1; with an appropriate

function f it should be possible to find a f(aj) for which MHy (f(aj)) is
"not too close to 0", and MH (f(aj)) is "not too close to 1", i.e. a point
of compromise like “"rather low on H, and rather high on Hg", (“Hr A uHs)
(f(aj)).

The universe B is just for illustrative purposes, the mapping could
be into A; but it demonstrates the use of fuzzy sets as a means for re-
solving conflicts among multiple objectives.
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*
The "most satisfactory" alternative a for resolving conflicts among
multiple objectives is given by,

a = max DMy A My A e AUHp], taj ¢ A (6)

which only outlines the principle: the min-operator gives a rather poor
performance for conflicting goals, and should be modified. According to (5)
it is poss1b]e to establish ranking relations #aj € A relative to each one
of Hy - Hpys let the corresponding fuzzy subset Pe Ay - Ap. Then we have for
every subset Ay, starting with the element a of the h1ghest rank,

uW(V) (aj) : ai(v) —> [0,1], ¥ we [1,p], but v # w, (7)

which is a subjective assessment of how satisfactory the alternative is in
relation to each one of the w objectives other than v, taking into account
the conflicts with v. The membership values in (7) will be systematic - when
taken ¥i and ¥'v - but subjective evaluations by the decision maker of all
alternatives relative to all the objectives.

The next step is to find out how the alternatives perform in terms of
an overall attainment of the objectives. This could be done as follows,

(i} consider an a§V)
(ii) compute ugv) =1 - (AIJ&V) (aj)), #¥we [1,p], but v # w (8)

(ii1) use uy (f(aj)) as an assessment of how satisfactory the alterna-
tive aj is.

Some numerical experiments with this method are reported in Carlsson (1982),
and the method seems to work. It does demonstrate that conflicts in multiple
objectives could be resolved through the use of the theory of fuzzy sets -
with the reservation that we develop some appropriate way for constructing
membership functions.

2.2. Fuzzy multiple objective programming

Let us now describe the set A of decision alternatives with the elements
of a decision space X defined by,

X={x¢e RN f(x) 2 0} (9)

where f(x) = (f1(x), fa(x), ..., fp{x)) are m criteria functions. Consider
X CRN and a criteria space Y = h[X], where y C RLl; for any point y ¢ Y, let
D(y) be a fuzzy set in Rl, with membership function up, such that up(d),

where d = g(y, y),is the grade of membership for y'to be dominated by y

(up (0) =1 forallyeY). The family {D{y)| y ¢ Y} is called the fuzzy domina-
tion structure in Y; it is convenient to decompose D(y) into its constituent
level sets and to assume, without much loss of generality, that D(y) is a
fuzzy convex cone A .
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If now sup up(d), for y € Y, and y'# ¥, is taken to be the degree to which
y' is dominated by y, and ¥n(y') = 1 - sup up(d) the membership function de-
fining the set N of nondominated alternatives in Y, then the level sets of

D (y) are defined as Aq = {d ¢ R}L pp (d) 2 q} - The Tevels a may be chosen
subjectively, and the structure is given by the grade of membership of domi-

nance. If all the aa , V& , are convex cones, the fuzzy set A is also a con-
vex cone (a fuzzy set A in Rl is a convex cone iff up(d) = ua(-d), % > 0,
#d #0, d € Rl and ua(d) = 1 for d = 0).

With these concepts, and as X = h=1(y), it is possible to trace the
fuzzy set N[X|A] of nondominated decision alternatives, which will have a
fuzzy domination structure in the form of a fuzzy convex cone, and each alter-
native associated with a grade of membership representing its relative degree
of dominance. As the domination structure is based on the m criteria func-
tions, this is, in principle, an elegant and efficient way of representing
multiple criteria.

The constructs used here are developed as if the membership functions
exist as objective and well-defined descriptors, which describe and represent
overall relative dominances for the alternatives in relation to the m criteria
functions. As this is not an easy task to achieve the implicit assumption is
rather simplifying, and clearly indicates that some work should be done to
penetrate the problems of fuzzy, relative dominance.

If we stick to the implicit assumption, however, much can be done.
Takeda and Nishida (1980) show that the fuzzy set N of nondominated decision
alternatives can be "squeezed" between two fuzzy sets, the inner and outer
approximates; in Carlsson (1982) it is shown that this "squeezing" can be
carried on to produce a fuzzy set of nondominated decision alternatives,
which is approximated by a fuzzy Pareto-optimal set and a fuzzy set based
on optimal trade-offs between the criteria. These results can be applied as
a basis for forming fuzzy constraints in a fuzzy multiobjective Tinear pro-
gramming model.

Consider the following multiobjective programming problem,

max [C(x) | Al = max [C1(x), Co(x), ..., Cpu(x)] (10)
s.t. Ax= b
x2 0, and xeX
where (=) denotes a fuzzy constraint, i.e. there are membership functions,

1 if (Ax)j < bj
wpi = {1 - (Ax)i - bj if bj < (Ax)j € bj + &
8
0 if (Ax)j > bj + §; (11)

which show that the constraints are not absolute; (Ax); refers to the ith
row of the matrix of constraints.

Let Hp = Up] A Bp2 A ... A Hpk be the fuzzy feasible region, and let
Up, Bg and uy be further fuzzy constraints, which are scalar-valued represen-
tations and approximations of the above-mentioned fuzzy cone-dominance struc-
tures; vp represents the fuzzy set of Pareto-optimal alternatives, and upa
up would be the feasible Pareto-optimal decision alternatives; ug would Be
the fuzzy set of alternatives which give optimal trade-offs between the cri-
teria, and ug A vy the fuzzy set of optimal compromises; up represents the
fuzzy set of nondominated alternatives relative to the m criteria, and uy
A up the fuzzy set of feasible, nondominated decision alternatives. In this
way we could then use the multiobjective programming formulation to "browse"
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through fuzzy sets of decision alternatives and sort them out in various
fashions, according to Pareto-optimality, optimal trade-offs or nondominance.
If we have conflicting objectives fuzzy constraints give a decisive
advantage - we do not end up with infeasibilities as in standard linear pro-
gramming formulations. We will see that illustrated in the next section, but
before that we need one more approximation as there is no software available
which could handle (10) and the various combinations of membership functions.
As shown by Wiedey and Zimmermann (1978) the model in (10)-(11) could
be rewritten in the following form;

max A
s.t. A8 + (A'x)j < by + & (12)

x20

where i denotes the i th row of the system of equations; A' is the matrix A
combined with the criteria functions C{X). This is a standard LP-form; we
will make use of (12) in the following section.

3. A NUMERICAL EXAMPLE

Consider the following plywood production planning problem: we want a
production plan for 5 consecutive periods which attains the following objec-
tives and constraints:

There are 7 standard forms of plywood which according to forecasted
demand will be produced as follows in the five periods,

PLW1I = 1544, % 1.07, % 1.01, = 1.12, = 0.75
PLW2 = 654, « 1.05, » 1.10, %= 1.07, * 1.03
PLW3 = 1580, » 0.85, » 0.93, » 1.25, * 1.13
PLW4 = 825, = 0.85, = 0.75, » 0.90, » 1.10
PLW5 = 576, = 1.10, * 1.12, » 1.15, » 1.20
PLW6 = 286, % 1.12, = 1.30, = 1.50, = 0.90
PLW7 = 138, = 1.04, « 1.04, « 1.04, = 1.04

for which the following capacities are needed in four production lines,
PROD1 = .022PLW1 + .030 PLW2 + .028 PLW4 + .015PLW5 + .045PLW7 - 0OUTL <
90, 40, 95, 90, 90

PROD2 = .039PLW1 + .041PLW3 + .043PLW4 + .045PLW6 + .052 PLW7 - 0UT2 <
180, 170, 200, 195, 195

PROD3 = .041 PLW1 + .044 PLW2 + .037 PLW3 + .042PLW5 + .062PLW7 - OUT3 ¢
185, 185, 215, 215, 220

PROD4 = .062 PLW1 + .059 PLW3 + .070 PLW4 + .082PLW6 + .095PLW7 - 0UT4 £

282, 270, 315, 305, 305
but for which we have the following restriction on overtime:
OVERUSE = QUT1 + OUT2 + 20UT3 + 30UT4 < 30, 30, 5,5,5 (13)
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Production costs are given by,
TCOST = C11 %= PLW1 + C12 % PLW2 + C13 % PLW3 + C14 % PLW4 + C15 * PLW5

+ C16 » PLW6 + C17 % PLW7 (14)
where C11 = 25.2, » 1.10/period C15 = 32.3, = 1.12
Cl2 = 41.2, = 1.07 Cl6 = 58.3, * 1.07
C13 = 31.3, = 1.09 C17 =118.3, * 1.04

Cl14 = 75.4, % 1.02

i.e. the costs are expected to rise with the indicated percentages/periods.
The standard forms are cut into special dimensions for which the mana-
gerial incomes are known, and for which the demand is known:

[0,50] PLWl : 4PLW1l (74,8), 2PLW12 (71.7), 2PLW13 (73.3)
2200 < PLW1x < 6990

[0,200] PLW2 : 2PLW21 (58.8), 2PLW22 (57.9), 6PLW23 (56.2), 4PLW24 (60.2)
1280 < PLW2x < 4760

[0,400] PLW3 : 4PLW31 (68.7), 2PLW32 (70.2)
2860 < PLW3x < 9150

[0,150] PLW4 : 2PLWAL (24.6), 2PLWA2 (26.2)
1200 < PLW4x < 1660

[0,100] PLW5 : 2PLW51 (67.7), 4PLW52 (65.2), 2PLW53 (68.8)
1320 < PLW5x < 4460

[0,125] PLW6 : 2PLW61 (41.7), 6PLW62 (42.5)
560 < PLW6x < 3350

[0,20] PLW7 : 1PLW71 (-18.3)
130 < PLW7x < 165

The numbers in brackets show the minimum and maximun limits of the buffer
stores needed of the standard forms each period.

The total marginal income from the special dimensions is given by,
MARGINAL = i}:j Mjj PLWj; 2 1000000, 1200000, 1200000, 1450000,
2000 000 (15)

and should reach at Teast the indicated levels for the periods 1-5. Cutting
the standard forms will produce trimming losses,
PLW1 : 4PLW11 (0.0), 2PLW12 (0.15), 2PLW13 (0.05)
< 1520, 1550, 1770, 1380, 1300
PLW2 : 2PLW21 (0.40), 2PLW22 (0.125), 6PLW23 (0.05), 4PLW24 (0.10)
$ 650, 720, 770, 800, 800,
PLW3 : 4PLW31 (0.0), 2PLW32 (0.0)
< 1550, 1550, 1800, 2400, 2600
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PLW4 : 2PLW41 (0.05), 2PLW42 (0.05)
< 800, 700, 700, 620, 800

PLWS : 2PLW51 (0.0), 4PLW52 (0.0), 2PLW53 (0.064)
< 560, 650, 840, 1000, 1200

PLW6 : 2PLW61 (0.064), 6PLW62 (0.064)
< 280, 380, 550, 520, 520

PLW7 : 1PLW71 (0.005)
< 138, 140, 160, 160, 170

which are collected in the following expression

= T Eis PLWss
TRIMLOSS = £ Eqj PLUj; € 1000 (16)

The task to be carried out is to find a production programme which is feasible
in relation to all the constraints and represents an attainment of the con~
flicting objectives (13)-(16). For that purpose we used the model in (12),

in which the A's represent "overall buffers" against the conflicts in the
objectives; from the solution below we can see that some of the conflicts
remain, because A = 1 would mean "no conflict" and A = 0 "full conflict"
which simultaneously means "no feasible solution".

1 2 3 b 5
OVERUSE 30 30 2.559 L4278 4,405
1 2 3 y 5
TCOST 230000 239000 290000 315000 355000
1 2 3 4 5
MARGINAL 999999 1200000 1200000 1450000 2000000
1 2 3 b 5
TRIMLOSS 359.9 734.1 1000 961.0 719.7
1 2 3 y 5

SLAMBDA .0589 .2023 .3398 . 4063 .5601



PLW1
PLW2
PLW3
PLWY4
PLWS
PLW6
PLW7

PROD1
PROD2
PROD3
PROD4

STORE1
STOREZ2
STORE3
STORE4
STORES
STORE6
STORE?7

DEMAND1
DEMANDZ2
DEMAND3
DEMANDY
DEMANDS
DEMAND6
DEMAND7

BOARD1
BOARD2
BOARD3
BOARDY
BOARDS
BOARDS
BOARD7

TRIM1
TRIMZ
TRIM3
TRIMY
TRIM5
TRIM6
TRIM7

154
654
1580
825
576
286
138

90
180
183.3
274.0

25.41
61.30
135.7

150
16.47
6.353
8.118

6080
3554
2893
1351
1320

560

130

1544
654
1580
825
576
286
138

1520
593.5
1446
675.6
560
280
130

39

2

1559
719.4
146
618.8
645.1
371.8
143.5

89.35
170
185

262.3

38.30
62.70
59.93

150
12.74
99.01
11.92

4243
4311
6200
1240
1320

560

140

1585
780.7

1605
768.8
661.6
378.2
151.6

1550
720
1550
620.2
650
280
140

3

1747
769.8
183
556.9
741.9
557.7
149.3

94.95
200
213.9
315

50
194.4
250.5
108.2
95.73

125

20

3476
1280
6603
1200
1320
3189
141.5

1785
832.5

1897
706.9
754.6
656.7
161.2

1738
640
1651
600
660
532.5
141.5

y

1310
792.9

2076
612.6
890.3
501.9
155.2

90
193.2
212.4
302.5

200
217.7
101.5
85.94
117.5

20

2723
1576
8442
1240
1801
3053
155. 4

1360
987.2

2326
720.8
986.0
626.9
175.2

1362
788.2
211

620
900.6
509.8
155. 4

5

1127
753.2
2283
735.1
1113
401.5
161.4

90
195
220

304.3

50
160.4
400
38.09
0

20

4321
4760
8424
1600
2400
3114
161.7

1127
953.2
2501
836.6
1199
519.1
181.4

1080
794.9
2106
800
1200
520
161.7
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1 2 3 y 5
LOSS1 0 293.5 480.0 408.5 0
LOSS2 177.7 215.6 128 157.6 238
LOSS3 0 0 0 0 0
LOSSY 69.18 63.51 61.44 63.49 81.92
LOSSS 58.88 81.92 84,48 115.3 153.6
LOSS6 35.84 35.84 204.1 195.4 199.3
LOSS7 .6500 . 7000 .7073 .7768 . 8087

1 2 3 y 5
PLW11 6080 2286 0 0 4321
PLW12 0 1957 3062 2723 0
PLW13 0 0 414, 1 0 0
PLW21 0 0 0 0 0
PLW22 0 0 0 0 0
PLW23 3554 4311 0 0 4760
PLW24 0 0 1280 1576 0
PLW31 0 6200 6603 8442 842y
PLW32 2893 0 0 0 0
PLWL41 1351 1240 1200 1240 0
PLW42 0 0 0 0 1600
PLWS1 0 0 0 0 0
PLWS2 400 40 0 0 0
PLWS3 920 1280 1320 1801 2400
PLW61 560 560 0 0 0
PLW62 0 0 3189 3053 3114
PLWT71 130 140 141.5 155.4 161.7

4. IN CONCLUSION

We have studied the problem of conflicts in multiple criteria and dis-
cussed two methods, both based on the theory of fuzzy sets, for handling
that problem. We found (i) that the methods represent feasible ways of hand-
ling the conflicts, and (ii) that the constructs with fuzzy sets offer a few
more degrees of freedom for handling conflicts than a traditional OR-model.
The second method was illustrated with a numerical example.
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A GAME-THEORETIC APPROACH FOR MULTICRITERIA
DECISION MAKING

Ferenc Forgd
Karl Marx University of Economics, Budapest, Hungary

We address the following decision problem. We have to

choose the "best" out of the alternatives A1,A2,...,Ar each of
which is characterized numerically according to m criteria i.e.
we have r m-vectors -PNY-O WY associated with the alter-

natives. We assume that larger values represent better ones for
all criteria and only Pareto-optimal alternatives are considered.

Our approach for treating this problem can briefly be out-
lined in the following manner. We set up requirements which seem
intuitively rational and which must be met by a "solution". The
system of requirements should preferably be strict enough to
single out a unique solution. Good examples of this approach
can be found in the theory of cooperative games: the SHAPLEY-
value (Shapley 1953, Szép-Forgd 1974) for games given in
characteristic function form and NASH’s solution (Nash 1950,
Szép-Forgd 1974) for games without side-payment. NASH's solu-
tion, originally developed for two-person games, has been
generalized for n-person games by SZIDAROVSZKY (Szidarovszky
1978). In this paper we formulate our decision problem as a
cooperative game without side-payment and investigate some
features of SZIDAROVSZKY’'s solution.

As a first step we enlarge the set of feasible alternatives
i.e. the set of feasible outcomes will be the polytope P spanned

by the vectors 81180008, Then we assign to each criterion a

"player" whose aim is to choose an alternative giving as large
a numberical value as it is possible as to the criterion re-
presented by that particular player. Formally, the strategy set
of each player is the finite set S = {A1, Boreons Ar} and the

2'
pay-off function fi of player i is defined as
a, . if j.=3,=...=3_=3
fi(A.1,A.2,...,A.r)={ 1] 12 T =1, ,m
] J J —oy otherwise

where oy is a suitable /generally large/ positive number

(i=1,...,m).
In other words, this means that if all players choose the
same alternative, say Aj, then they get the corresponding

entries of ay as pay-offs. But if at least one of them "deviates",
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then the pay-off for evervbody gets very "bad", there is a

penalty oy imposed on every player i, (i=1,...,m) for lack of
consensus.
For the game G = {S§,S,...,S; f1,f2,...,fr} thus defined we

look for a cooperative "solution".

For two-person games NASH (Nash 1950) proposed a solution
concept which has been generalized by HARSANYI (Harsanyi 1977)
and SZIDAROVSZKY (Szidarovszky 1978) for n-person games.
Because of its axiomatic development and convincing interpret-
ability we apply SZIDAROVSZKY'’s solution.

We assume that a point £x e R" is given, which we call the
status guo point and which is interpreted as follows: In case
the players cannot come to an agreement they get the components

of £x as pay-offs.

Let L « R™ be a closed, bounded, convex set (the set of
feasible outcomes), £x e R* a vector (the status quo point), for
which £ > £x for some f € L. Let Y be a function assigning to

any pair (L, £x) an m-vector (the "best compromise") which
satisfies the following axioms:

1. ¥(L, £5%) € L (feasibility).
2. ¥(wL, fx) 2 £x (rationality).

3. Relations £ € L and £ 2 ¥(L, £x) imply £ = ¥(L, £
(Pareto- optlmalltyY =

4. If L, S L and ¥(L, £*) € L, then ¥(L, £7) = ¥(L,, £7)

(independence of unfavourable alternatives).

*)

5. Let My > 0, Bk’ (k = 1,...,m) be arbitrary real numbers
and
£ = (g €7 4+ Byrens ug Em B
r’ p—
L' = { (g2, + Byreeortphy * Bm)|(21,...,zm) e L} .
If Y(L, £7) = (¥,,...,¥ ), then ¥(L, £7) = (uy¥, + Byye--

ceon ume + Bm) /independence of monotone increasing linear
transformations/.

6. Suppose that f? = f? for some indices i,j. If the re-
lation f = (f1,...,fm) € L implies the relation

...,q)m) e L, (q)k = fk' k #1i, k # 3, 05 = fj' cpj
¥

i

= (0qs---
fi), then

e

Wj must hold /symmetry/.

SZIDAROVSZKY (Szidarovszky 1978) proved the following
theorem: Theorem 1. There is a unique function ¥ satisfying
axioms 1-6. B

The proof of this theorem also provides a method for find-
ing the best compromise. It is the unique solution of the
programming problem
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m »
il (xk - fk) > max
k= (1)
X = (x1,..., xm) e L
> £

| %

Since the components of the status gquo point £x have been
interpreted as the consequences (penalties) of disagreement it

is only natural to choose £x = —(a1,...,am).
Let g = (a1,...,am) satisfy x > - g for any x € P i.e. any

(mixed) decision is better than the disagreement. We can now
rewrite (1) as

m
F(a): E (xk + otk) -+ max
k=1
x=23 (2)
120
1La=1,
where A = (g1,...,gr).

It is worth noting that the controversal issue of assign-
ing "weights" to the criteria has not emerged explicitly in our
game theoretical setting. It seems to us, however, that without
incorporating parameters providing explicit or implicit inform-
ation about the relative "importance" of criteria we cannot come
to a meaningful solution. Unlike "traditional" methods using
weights of criteria our approach heavily relies on the reason-
able choice of the penalty vector o . The relative importance of
the criteria comes into effect through the choice of the vector
a .

We now mention a few possibilities for choosing o which
seem to be "rational". Of course, in concrete decision situ-
ations it must be thoroughly thought over which one (or possibly
something else) should be applied.

1. Let us suppose that we would like to improve a "situation"
characterized by a positive vector a, and to this end we have r

alternatives to choose from. These are also given by vectors

89r0--42 of the same dimension as a,- We assume furthermore

r
that the situation can really be improved i.e. therg is a convex
linear combination i of 8qs--+02, to satisfy a, < a. Then we set

o = aj which can be interpreted in a straightforward way: if no

decision has been made because of disagreement among players
(criteria), then the situation will not be any better, it still

remains to be characterized by ag-.

2. If we cannot choose from among the alternatives, then a
random mechanism will do so according to a probability distribu-
tion p which is known or can be estimated. If A p > 0 and there

is an 3 € P to satisfy A p < a , then the choice ¢ = A p is
possible.
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3. Let A > Q and a; = min a4+ (i =1,...,m). The vector
o = (u1,...,am) thus defined will be considered the penalty

vector. The rational behind this choice is the following. If we
do not know anything about the consequences of the failure to
reach a consensus, then each "player" (criterion) must even
consider the worst case. Thus going as far as possible from an
"ideally bad point"” which may never realize but its components
express real dangers might be desirable.

4. Finally we consider the case when lack of consensus is
absolutly out of question, some choice among alternatives
should be made and disagreement is to be treated only formally
as a mathematical device. In other terms this means that we are
looking for a solution (if there eXists any) which can be
obtained if the "penalty" tends to infinity. In particular, we
assume that

0 =ar

where r is a positive vector representing the relative share of
the players from the penalty and o measures its magnitude. We
will investigate what happens if o tends to infinity.

Denote x(a) the (unique) optimal solution of (2) if
g = or and take a sequence of real numbers Ogr Onpens tending

to infinity. Then the elements of the sequence {§(ak)} (the solu-

tions of the programming problem F(a)) are uniquely determined
and the sequence has at least one cluster point since P is
closed and bounded. However, it is far from being trivial that
it has only one cluster point. This conceptual difficulty is
resolved by the following theorem.

Theorem 2. If lim ap = ©, then the sequence {g(ak)} has

ke B

exactly one cluster point.

Proof. The objective function of F(a) is a polynomial of
order m of the positive parameter a. Let this polynomial be
m-1

s(x, a) = h_(x) o+ hy 1) «o

m (¥ m +...+ h1(§) o + ho(é)'

We know that for any fixed p051t1ve a s(x, o) is quasiconcave on
the positive orthant Rt ., Let K< R' be an arbitrary convex set.
Let j be the largest index for which hj(é) is not constant on

K. We claim that h.(x) is quasiconcave on K. Suppose on the

contrary that there exist x € K and A (0 < A < 1) such that

10 ¥y
by xq + (1 = 1) x5) <min {hy(x;), hylxy].
This means that for sufficiently large «

s(\ X, + (1 - A)éz, a) < min{s(§1, a), s (X, a)l

contradicting to the fact that s(x, a) is qguasiconcave on rY.

m
Let PP = P and Pk be the set of optimal solutions to the

following programming problem,
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hk(g) + max

3
k+1 (3)

X €P

for k = m-1,...,1,0. Obviously

o™ s L o' op°

and problem (3) is solvable for any k since P is closed and
bounded and hk is continuous (k = O,...,m) being a polynomial.
k+1
!

The set P™ is convex and hj(g) (j 2 k+1) is constant on P
- k

therefore hk(é) is quasiconcave on Pk+1. This implies that P
is convex for any k, as well.

P° consists of a single point since the last problem is

h (x) = x,+x ‘ee.tXp > max

Q
e (4)

which is equivalent to

log x., + log Xy + ... + log X, * max

1
x € pl
which has a strictly concave objective function.
We assert that the only element of Po’ say X is the
unique cluster point of the sequence {é(gk)}' Assume on the
contrary that there is a cluster point Xy of {é(uk)} for which

X, # X, It suffices to show that S(éo’ a) = s(x o) which is

21
impossible since P° has only one element.
Suppose that s(éo’ o) # s(§1, o) and j is the largest index

for which hj(éo) > hj(§1)' Then, there exists an o_ such that

(o}

for any o = a, we have s(éo, a) > s(§1, a). Since X, is a
cluster point, therefore in any e-neighbourhood K1(§1, g€) there
are infinitely many points é(ak). The radius € can be chosen so
small that hj(éo) > hj(é(ak)) and s(éo, ao) > s(é(ak), ao) hold
for any x(o,) € K(x,, €). This implies that s(x,, @) > s(x(oJo))
holds for any a 2 oy and §(ak) € K(§1, €). For sufficiently

o
which contradicts to the assumption that é(ak) is an optimal

large k we have o 2 a and hence s(éo’ ak) > s(x(ak), ak)

solution of F(ak).

From the proof it turns out that to determine the unique
cluster point we have to solve at most m programming problems
having quasiconcave cbjective functions. Since
m

hm_1(§) = ¥ (I r.)x, is linear, therefore the first problem
i=1  Jj#i

to be solved
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hm—1(§) -+ max

(S

[IES

is a linear programming problem which generally (except in the
case of dual-degeneration) has a unique solution. This solution
is a vertex of P i.e. it is an original ("pure") alternative.
The proportion vector r has a crucial role in this model.
We may choose r to represent the magnitude of the numerical
values characterizing the criteria. The simplest idea is to set

r

b aij (i=1,...,m)
j=1

r. =
1

Ri—

i.e. the penalties tend to infinity proportionally to the
average values.

It is worth noting that uniqueness of the optimal solution
to (2) does not imply the uniqueness of A .
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THE SYSTEMS APPROACH AND CONTINGENCY VIEW IN
MANAGERIAL BEHAVIOR AND MANAGEMENT ORGANIZATION

Nobuo Sugihara and Mitsugu Ichikawa
Faculty of Business Administration, Kyoto Sangyo University, Kyoto, Japan

1, INTRODUCTION

Business management has played an important part in industrial society.
Most social interactions are mediated by business. There are, however,
diverse interest groups that take part in social interaction, each having
its own goals and purposes. The managers should reconcile conflicts among
interest groups to be able to carrxy out their policies and operating plans
which are contingent to the situation. The managers with bounded rationality2
cannot reach the best policy, but they are making up better policies enough
to satisfy the expectation of them. In those processes, to adapt to the
environment effectively and efficiently, they should take advantage of
systems approach and contingency view3 as managing tools. Here, we will
inquire into these problems from the standpoint of methodology.

2. MANAGERIAL ABILITY TO RECONCILE CONFLICTS AMONG GROUPS

Management science, so far, set a single objective to solve a problen,
and analyzed it by using mathematical procedures. Sciences, in future, must
tackle with a difficult problem in which managers should integrate various

lrnis paper mainly depends upon an unpublished paper of Prof. N. Sugihara,

a representative of our study group which researches fundamental features
of human behavior from the methodological viewpoint of social science.

2The premise of the theory of Simon (1957) is "Administrative Man". Adminis-
trative Man has only limited rationality. As he does not have enough intelli-
gence and information to reach the best result, he cannot but satisfy with
some level of aspiration. The analysis on the managers with limited ration-
ality is treated more detail in his book (1957) and his joint work with
Marxrch (1958).

3Contingency theory means an adaptive theory to environment. Recently,
contingency theory is developed in each theoretical field of management,
and is treated as the adaptive process of business management. Kast and
Rosenzweig (1979) think business management from the viewpoint of systems
theory and contingency theory. They say that systems approach is effective
for organizational behavior, and contingency view is for the necessary
prediction and control.
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conflicting objectives and solve them simultaneously. In dealing with many
variables, a systems approach as a frame of reference or way of thinking
becomes important for managerial decision-making. The claims of interest
groups to management plans must be concidered in a complex decision-making
problem, thus introducing many factors that cannot be transacted by a single
objective computation.

The problem, here, is how to evaluate systematically the merits of vari-
ous actions or alternatives. On this point, Easton (1973) explains the amal-
gamation procedure of valuation. Amalgamation procedures are treated mathe-
matically in the study of operations research as the problem of weighting
of objectives. The following equation represents the procedures“;

n
V, + OV, +eecrt .= .
ol il 2412 onvln z o v

In this equation, Ojrepresents the jth element of alternative's valu-
ation score-set, and Vijrepresents the weights allocated to the jth element

ith alternative.

This procedure, however, produces difficult problems that can be answer-
ed only by applying subjective judgement. Namely, such weighting is influenced
and decided by the amount of pressure applied by each group. Thus, the calcu-
lation rules of amalgamation are accompanied by the preference attitudes of
managers which are built up in their weighting process. In short, the problem
of weighting should start from the subjective attitude of individual human
being.

The competence of the manager to evaluate, judge and decide the optimum
alternative rests on both innate and acquired talent. As a human being, the
manager senses, perceives and recognizes with his brain. According to the
latest researches in cerebral physiology, the cerebrum consists of two hemi-
spheres, the left one govering computational operations and the right one,
judgemental operations. Thinking operations function for understanding and
explaining. In other words, the right brain accepts the stimuli of informa-
tion in analogue form and the left brain in digital form. Quality and quan-
tity, pattern and numeric; these features of the aspects of the cerebral
hemispheres have to be synthesized in unity. This unification integrates
human actions to adapt to environment and allows systematic behavior.

3. A STUDY IN FORMALIZING MANAGERIAL COMPETENCE: FOUR PROBLEMS IN DEVELOP-
MENT OF BEHAVIORAL TALENT IN MANAGERS

In a complex decision, the manager will be most effective if he makes
use of the standardized procedure and routine work for problem-solving. The
standardized procedure provides a foundation on which the manager exercises

YThese procedures are described in detail by Churchman, Ackoff and Arnoff
(1957) . The problem of how to derive a measure of value of a social group
from its indivisual manager's value is an amalgamation problem, for which
extensive argument is given by Arrow (1951).
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his subjective judgement. In such problem situations, inquiries into the com-
petence of the manager, above all his decision-making ability, should cover

a broad spectrum: (a) matters dealing with multiple interests and other influ-
ences that contribute to the complexity of managerial decisions, {(b) the stage
in the decision process beginning with perception of a need for action and
ending with the presentation of multi-attributes alternative solutions to the
decision problem, (c) the treatment of multi-valued alternatives in prepar-
ation for rannking them in order of attractiveness or classifying them into
merit categories, (d) specific techniques for merit-ordering of multi-valued
alternatives for finding the best or for placing them into merit categories,
(e) a wraping- up and synthesis.

Relating to these inquiries, we should ask what constitutes the compe-
tence of the manager to handle the problem-solving and decision-making, that
is, to compute and judge the situational conditions. The question can be
presented in four forms: (a) explication of the decision process, (b) indi-
vidual differences in decisions, (c¢) computerization of the decision process,
and (d) simulation of the individual decision process. Four questions of
Easton asked whether the decision-making of human being could be left in a
computer's hands®>,

The answers of these questions are conditionally "yes" for one aspect,
and "no" for another. Because, it is very difficult for computer to under-
stand the subjective feeling or a sense of values of human beings. The manager
will be more effective if he can make the most of the various human factors
inside and outside the organization. This is the advantage of socio- psycho-
logical approaches. Both the objective and subjective attitudes of the manag-
er interact to bring managerial decision-making to completion. In short,
management needs to make complex decisions involving multiple objectives,
which have both computational and judgemental aspect of human behavior. Both
aspects are mediated by the subjective decision attitudes or modes which are
formed systematically in the learning process. Integrating function of system
works in the stage of the formation of attitudes.

4. QUANTITATIVE MEASUREMENT OF PSYCHOLOGICAL ELEMENTS

Since it is troublesome to manage problems simultaneously, a single
objective is set in analyzing a problem and seeking a practical result. It
can provide a mathematically expressed result. This decision manner, however,

SEaston’s four questions are as follows; 1) Is it possible to derive a deci-
sion procedure where despite the need for judgement, the procedure can be
fully explicated and each step made defensible? 2) Why is it that men of
good will, presented with identical alternatives and who agree on the es-
sential facts in a problematic situation, still arrive at quite different
choices of alternatives? 3) Is it possible to break down a class of multi-
ple-objectives decision problems so that it can be programmed on a digital
computer and therefore so routinized that complex decisions can be made by
computers? 4) Can the decision processes of a particularly skilled adminis-
trator be simulated and reproduced so that he can delegate many of his com-
plex decisions to subordinates with reasonable assurance that their deci-
sions would not differ materially from those he would have made under
similar circumstances?



50

gives only a "semi optimum" solution, which is of no use in the real world

of management. Dissatisfied interest groups will apply pressure to constrain
the actions of management. The task of satisfying these frastrations and
getting the "total optimum" requires decisions which satisfy multiple object-
ives simultaneously, and which also arbitraite between them by trade-off. The
decision-maker should enlarge the constraint concern in all directions,
including social, moral, political and the living environment, so that he

can reduce pressures on management. And he should develop a flexible and
responsive attitude to adapt to a contingency, disciplining himself in the
accumulation of experience acquired in the trial and error process.

Indeed the objective analysis looks like objective, but it is no more
than a subjective judgement in which we think from the mathematical viewpoint.
In fact, a sense of values enters in most mathematical analysis. In a complex
decision, the manager must leave the enchantment and be involved in the
troublesome problems of the real world, broadening his range of view. Simi-
larly, the manager should relate to real life's affaires with the attitude
of behavior that is called "Alltaglichkeit", mundane life. In this situation,
such attitudes as "muddling through"” complex situation should be a better way
of managing. That is, management cannot take a clear-cut attitude. The
manager cannot draw a picture of business from the beginning, but he should
make a picture contingently.

5. SOME FEATURES OF THE SYSTEMS APPROACH AND SYSTEMS CONCEPTS—— A TAXONOMY
OF SYSTEMS

The systems approach has been broadly used in various areas where human
actions are conducted on a large scale. The concepts used in the systems
approach, however, are not always defined clearly and used appropriately.

We turn now to some meanings of systems approach and a taxonomy of systems.

The systems concepts pertinent to this paper are as follows: (a) a
frame or structure for use in a comparative analysis of management, (b) a
function for integrating interactions among people in a cooperative relation-
ship, and (c) a model that can be operated as a business game and a simul-
ation, synthesized from structure and function.

The systems concept (c), that is, the synthetic viewpoint, emphasizes
the aspect of the system as a going concern that is changing in a continuous
adaptive process. It views the system not as a fixed mechanism, but as a
pattern of adaptation to the supra-system, namely, the environment. It
examines, moreover, the interrelated continuity of succesive patterns of
adaptive behavior that are, at the same time, interconnected interactions
between its parts.

6. SOME METHODOLOGICAL INSTRUMENTS FOR GRASPING THE BEHAVIORAL ASPECT OF
HUMAN ORGANIZATION

The meaning of the systems concept of a mechanism that synthesizes both
rational and irrational factors is too difficult to interpret monistically;
rather, a pluralistic understanding and explanation are needed. Moreover,

a dynamic approach to the system can grasp uncertain and contingent system
behaviors. In view of the theoretical character of the methodology, it is
probably better to use the system as something to be operated in business
games or simulations.

The various tools of business education have been used in training
effective decision attitudes and teaching business policy through role~playing
and case methods. Together with these, the business games are the most effec-
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tive tool. Every participant in the business games will acquire certain atti-
tude that they can make better decisions by playing repeatedly. They cooperate
with their team-mates in choosing among alternative decision items, such as
products, sales volume, price, inventory and advertisement., A coalition of
team members with different attitudes should be instituted in bargaining
processes among members. This coalition itself tends to have its own atti-
tude toward decisions.

Likert (1961) classifies the attitude situations of the system into
four: (a) exploitive authoritative, (b) benevolent authoritative, (c) con-
sultative, and (d) participative. These are his "System Four". He views the
systems concept as the base of comparative analysis, which relies upon the
interaction and influence system. For systems concept, he seems to use an
eclectic analysis.

We have developed the three types of systems concepts so that eclectic
usage of these concepts make it possible to explain and predict through
understanding by experience. That is to say, the functioning process of
thinking consists of such elements as experience, comparison, understanding,
computation, judgement and so on. However, their order in the thinking process
is not clearly defined. Rather, the purpose of eclectic use of the systems
concept is explanation and prediction of human behavior, in the same way as
the study of behavioral science.

7. SUBJECTIVE ATTITUDES REGULATING THE FUNCTIONS AND STRUCTURE OF THE
MANAGEMENT SYSTEM

Managerial behavior is one form of human behavior in industrial society.
To explain and predict managerial behavior, many variables in the complex
organizational context must be incorporated into the system. These variables
contain such human factors as aspiration, sentiment and value. This class of
intermediate variables, which significantly influence such end results as
production, sales, profits, and net earnings to sales, is neglected in the
present measurements made by management. They also reflect the current
conditions of the internal state of management. It consists of such variables
as loyalty, skill, motivation, capacity for effective interaction, communi-
cation and decision-making.

The failure to measure the impact of human factors relates to the prob-
lems with which we are confronted in our study of managerial behavior in
industrial society. These are problems of measuring imponderable human factors
in computable terms. Easton and Likert tried to solve these problems. Other
authers of management theory, especially organization theory, like Luthans
and Miles, analyze the internal state of management system in the same way.

As a human behavior is a many-sided and complex process, we need co-
operation of many disciplines to understand human behavior. For making use
of human resource which recently becomes one of tasks of management, it is
necessary to predict and control the organizational behavior. Thus, Luthans
(1977) shows an eclectic model of cognitive approach and behavioral approach,
as a model of organizational behavior. According to Luthans, cognitive ap-
proach gives some intelligence for understanding of organizational behavior,
and behavioral approach, for prediction and control of it.

On the other hand, Miles (1975) presents the model which shows manager's
theories as a factor influencing the choice of integrative mechanism. In
Pigure 1, he explains that in addition to organization variables and people
variables, manager's theories which concern traditional, human relations,
and human resources viewpoint or attitudes are needed. These attitudes grow
up in the processes of decision-making, and are built in the system. The
processes which make up the attitudes have the psychological features of
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Managers’ Theories
Traditional/Human relations/Human resources
Organization U Direction ll People
variables variables
Organization and job design
Goals Capabilities
Technology Appraisal and development Attitudes, values,
Structure o and needs
etc. Communication and control Demographic
characteristics
Reward systems (age, sex, etc.)
| Effectiveness Efficiency—l

FIGURE 1 Managers' theories as a factor influencing choice of integrative
mechanisms.

stimulus-reaction, senses, perception, and recognition. The experience of
behavior becomes memories, memories form consciousness, and consciousness
is realized as attitude. Attitude is unique to each person and classified
as category of character.

A taxonomy of attitudes of styles of managerial decision-making and the
management system. As Weber (1956) understood, the idealized religious origin
of capitalism, that the Protestant ethic was contingent or relevant to the
capitalistic spirit, so Otsuka (198l) insists that there are human subject-
ively categorized forms of behavior behind or underlying social actions and
the social system, and emphasizes the need for the study of human subjective
factors in social science research.

Miles's theories of managers and Likert's characteristics of management
system are the results of crystallization of managerial attitudes. The
problem of how crystallization occurs is made by research into managerial
practices in various types of management systems. As the result of research
efforts, it follows that various forms of managerial behavior can be class-
ified into categories of management philosophy or managers' theories. These
categories are gathered up into the vocabulary of concepts, Weber's "Kasuis-
tik". This vocabulary of concepts to be applied as criteria in comparative
analysis is necessary for investigation from all angles of the manner of
action of managers and management systems.

8. THE SUBJECTIVE DIMENSION OF ACCOUNTING MEASUREMENT OF SYSTEMS PERFORM-
ANCE

The functions relating to management of the end results of management
performance are important for all kinds of interest groups. The accounting
system takes charge of the execution of these functions, employing a system
of double-entry bookkeeping. Above all, it undertakes to report impartially
enough information to satisfy all interest groups.

The financial accounting measures money, and the end results are summa-
rized in report form. Its purpose is to report impartially, therefore, its
measurement should be objective for calculation of performance. Managerial
accounting, on the other hand, has different characteristics. While it also
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use the data of double-entry bookkeeping in common with financial accounting,
its usage differs in many respects.

Briefly, managerial accounting is more subjective than financial ac-
counting. In managerial accounting, the data derived from the subjectively
processed bookkeeping record should be linked to physical or real terms.
Interpretation and conjugation of data are needed for managerial accounting.
The pragmatic tool for this data application is the systems approach with
the above mentioned meanings.

The function of systematizing the data from double-entry bookkeeping,
through subjective attitudes of the system composed of human behavior, is
to apply the data to the needs of managerial control. Ultimately, one more
direction is to be added to double-entry bookkeeping. It is, so to speak,
three dimensional accounting thought, and might be called "tripple book-
keeping" to bring out its distinctive feature®.

We will use attitude conjugation as the subjective factor and system
mechanism described here. Human resources accounting is a system for cal-
culation the performance and cost of human factors. It is the one of the
behavioral aspects of the accounting system that transforms the data derived
from double~-entry bookkeeping by applying the third dimension to interpre-
tation of management behavior.
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1. INTRODUCTION

Approximately ten years ago we began a study of multiple criteria
decision making at the European Institute for Advanced Studies inManagement in
Brussels. The project started as a way of finding a multiple objective
linear programming method that would work better than those tested by
Wallenius (1975). We did a substantial amount of work on the problem and
came up with such a method (Zijonts and Wallenius, 1976). Wallenius'
(1975) thesis, one of the first outputs of that project, comprises a
rather significant piece of research in the multiple criteria area. Since
that time our work has continued. We have worked together on a great deal
of it; some of it has involved students and other faculty colleagues. In
presenting this update, we make every effort to accurately attribute (and
reference) each piece of research to the appropriate person(s). Though we
have tried not to omit any references or acknowledgments, or both, we
apologize in advance for any inadvertant omissions.

2. THE BACKGROUND OF QUR APPROACHES

Our methods all involve the use of pairwise comparisons by a decision
maker who chooses between selected pairs of alternatives. His choices
reveal a preference to which we locally fit a linear function. The use of
a linear function is not meant to imply that the decision maker's
underlying utility function (if one exists) is linear. In many (perhaps
most) cases it is not. Further since our linear function is not unique
and we may find different functions for different problems with the same
decision maker (even if he is acting in a consistent manner with a
well-behaved utility function), we downplay the importance of the function
we identify. Rather than use this function as a utility function, we use
it to identify good (and hopefully optimal) alternatives, and present
these to the decision maker in helping him to make a decision. Our
approach is in contrast to the utility assessment models which assess the
utility function directly by an interview process, come up with a utility
function, and then rank order the alternatives for further consideration
by the decision maker. The latter methods, developed and maintained by
Keeney, Raiffa among others (see for example, Keeney and Raiffa, 1976),
come up with a utility function that could conceivably be transferred from
one decision situation to another. Though our function could be
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transferred from one decision situation to another, that is not our
intention; we have no evidence to suggest that such a procedure is
worthwhile for our methodological framework.
Our work has three major branches:
A multiobjective linear programming method that assumes
an underlying unknown pseudoconcave utility function;

2. A multiobjective integer linear programming method that
assumes an underlying Tlinear utility function;

3. A multiobjective method for choosing among discrete
alternatives. Here we assume an underlying quasiconcave
utility function;

plus a smaller fourth branch -- a multi-person, multiobjective method for
handling problems of type 1 and type 3.

In this section we have introduced and overviewed what we present in
this paper. In section three we briefly review our original method. Then
in the following section we overview recent results in the branches of our
research. This includes both the theory we have developed and what
practical experience we have had to date. We then draw conclusions.

3. REVIEW OF QUR MULTIPLE QBJECTIVE LINEAR PROGRAMMING MODEL

Our method (Zjonts and Wallenius (1976)) for multiple objective linear
programming uses weights. A numerical weight (arbitrary though generally
chosen equal) is chosen for each objective. Then each objective is
multiplied by its weight, and all of the weighted objectives are then
summed. The resulting composite objective is a proxy for a utility
function. (The manager need not be aware of the combination process.)
Using the composite objective, we solve the corresponding linear
programming problem. The solution to that problem, an efficient or
nondominated solution, is presented to the decision maker in terms of the
levels of each objective achieved. Then the decision maker is offered
some trades (leading to adjacent efficient solutions) from that solution,
again only in terms of the marginal changes to the objectives. The trades
take the form, "Are you willing to reduce objective 1 by so much in
return for an increase in objective 2 by a certain amount, an increase
in objective 3 by a certain amount, and so on?" The decision maker is
asked to respond either yes, no, or "I don't know" to the proposed trade.
The method then develops a new set of weights consistent with the
responses obtained, and a corresponding new solution. The process is then
repeated until a presumably "best" solution is found.

The above version of the method is valid for underlying Tinear utility
functions. However, the method is extended to allow for the maximization
of a general but unspecified psuedo concave function of objectives. The
changes to the method from that described above are modest. First, where
possible the trades are presented in terms of scenarios, e.g., "Which do
you prefer, alternative A or alternative B?" Second, each new
nondominated extreme point solution to the problem is compared with the
old, and either the new solution, or one preferred to the old one is used
fo~ the next iteration. Finally, the procedure terminates with a
neighborhood that contains the optimal solution. Experience with the
method has been good. With as many as seven objectives on moderate-sized
linear programming problems (about 300 constraints) the maximum number of
solutions is about ten, and the maximum number of questions is under 100.
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4. RECENT WORK ON OUR METHODS

In this section we consider the methods in the order outlined in
Section 1. We do this in a series of subsections, one for each method.

4,1 The Multiple Objective Linear Programming Method

Qur earliest computer codes incorporated only the linear version of
our method. To implement the concave and then the pseudoconcave
extensions of the method we made several changes to the method. First we
partitioned the questions to be asked of the decision maker into six
groups. The first three groups consist of questions that are efficient
with respect to old responses; the second three groups consist of
questions that are efficient, but not with respect to old responses.
Within each set of three groups we have a partition of efficient
auestions. The first group of efficient questions are those that lead to
aistinctly different solution vectors of objective functions. Those
questions are asked as scenarios, i.e., "Which do you prefer, solution A
or solution B?" Operationally, distinctly different solutions are not
well defined. We define the term in a working context to mean some
specified minimum difference in at least one criterion. The second group
of efficient questions include those that lead to solutions that are not
distinctly different. We present those questions as tradeoffs: "If you
are at solution A, would you like to decrease the first objective by so
much, in return for increasing the second objective by so much, etc.?"
The third group of efficient questions are those corresponding to
distinctly different solutions that were not preferred to the reference
solution by the decision maker. These are presented to the decision maker
a second time, but as tradeoffs. The decision maker proceeds through the
sequence of questions. Whenever a group of questions is completed and the
decision maker has 1liked a tradeoff or an alternative, a new set of
weights (consistent with responses) is generated and the corresponding
solution that maximizes the weighted objective function is found. The
procedure continues from that solution. If the decision maker does not
prefer any alternative to the reference solutions (and does not like any
tradeoff), then the reference solution is optimal. If the decision maker
1iked one or more tradeoffs, and if an extreme point solution preferred to
the reference solution cannot be found, we know that there are solutions
preferred to the reference solution. To find them we cannot restrict
ourselves to corner point solutions, and some other procedure must be
used. This presentation is of necessity brief; some steps have been
simplified for exposition. For more details on these changes see Zionts
and Wallenijus (1983).

An extension of the method for multiobjective linear programming,
Deshpande (1981) has developed a search procedure for finding optimal
solutions when the procedure terminates at an extreme point solution that
is not optimal. 1In some work currently underway at SUNYAB, Steven
BresTawski, a Ph.D. student, and Zionts are investigating how close the
best extreme point found by the method is to the true optimal solution for
a class (or several classes) of assumed nonlinear utility functions. Our
contention is that the solutions are generally close. Of course, we have
to define close in an operational manner. If the solutions do not turn
out to be close, then we will begin with Deshpande's proposal and make it
into (or evolve it into) an effective approach. Some tests have involved
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the change in order of questions, and the use of middle most weights, as
well as the maintaining of an incumbent or best-known solution. The
results of these tests are still preliminary, though positive. Other
tests currently planned explore the results of our procedure as a function
of decision maker errors in responses. The idea is that a decision maker
can only approximately express his preferences (or have them assessed).
In expressing his preferences he may make errors. We want to see how
robust our procedure is in the face of such errors. We are also exploring
other refinements to our method, such as what use if any to make of "I
don't know" responses of the decision maker, the use of strength of
preference (Malakooti (1982, 1983) and others) in answering questions, and
the use of dominance cones to eliminate solutions.

As far as the application of our method is concerned, we have
programmed the method and have used it in several different forms. We and
various organizations have prepared and adapted programs to solve
different problems. Our most current program is one on the CDC-174 Cyber
that uses Marsten's XMP (1979) package for the linear programming
routines. We are using this code for our tests. We hope to prepare a
user-oriented version of it in due time.

Many practical problems have been solved with variations of the
method. They include problems in both profit and not-for-profit
organizations, and problems in various areas such as financial and
strategic planning. The problems solved have had as many as seven
objectives and several hundred constraints. See Wallenius and Zionts
(1976), Wallenius, Wallenius and Vartia (1978), and Wallenius and
Deshpande (1978) for more information on some of these applications.

The computational requirements for this method involve solving one
linear programming solution plus some additional work for each setting or
revision of weights. The maximum number of settings or revisions of
weights has always been less than ten in our applications. The total
number of questions asked of the decision maker has always been less than
100, and generally less than 50. We believe that fewer questions are
required.

4.2 The Multiple Objective Integer Linear Programming Method

Shortly after we published our initial paper (Zionts and Wallenius,
1976), an extension of our procedure was proposed for solving multiple
criteria integer programming problems (Zionts, 1977). Bernardo Villareal,
a Ph.D. student in Industrial Engineering, SUNYAB, followed upon this in a
thesis under Mark Karwan, a professor in the Industrial Engineering
Department and Zionts. The thesis (Villareal, 1979) developed several
methods, including an improved version of what Zionts had proposed. In
extensive testing, Villareal had found that, although the methods had done
well for small problems, the method did not appear to have promise for
problems of any reasonable size. See also Villareal, Karwan, and Zionts
(1979). The procedure uses a branch-and-bound approach after first
solving the corresponding noninteger Tinear programming problem. The
procedure is like the standard branch-and-bound method, except that it
uses some special approximations in the branch-and-bound process.

As a result of that thesis, Karwan, Zionts, and Villareal (1983) made
several substantial improvements to the earlier work.

1. Eliminating response constraints on weights that have
become redundant.
2. Finding a "most consistent" or "middle most" set of weights
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rather than any set of consistent weights given constraints
on the weights.
3. Finding a heuristic start1ng solution.
We shall now consider these ideas in detail.

4.2.1 Eliminating Redundant Constraints

Constraints on weights are generated by decision-maker responses and
are used for:
a) determining which tradeoff questions are efficient;
b) determining a feasible set of weights;
¢) determining whether a decision-maker's response to a
choice between two solutions can be inferred from previous
responses.
Because the set of constraints on the weights grows with the number of
responses and because the feasible region shrinks, we believed that a
number of constraints become redundant. Although it is not possible to
predict what fraction (or number) of constraints are redundant in general,
we know for certain that with two objectives, there could be at most two
nonredundant constraints. Accordingly, we altered our computer program so
that after each set of constraints was added to the set of constraints on
weights, we used the Zionts-Wallenius (1982) method for identifying
redundant constraints to eliminate whichever constraint or constraints had
become redundant.

4.,2.2 Finding a Most-Consistent Set of Weights

In our multicriteria integer programming procedure we need to find a
new set of feasible weights whenever the decision maker likes an efficient
tradeoff offered by the procedure. Previously, we found an arbitrary
solution to the set of inequalities on the weights using the dual simplex
method. The resulting set of weights, an extreme point of the feasible
region of the weight-space to be sure, was generally quite close to the
previous set of weights. As a result, the new solution or node in the
branch and bound procedure was "close" in terms of objective function
values to the old one. It was proposed to change the procedure to find a
most-consistent or middle-most set of weights by maximizing the minimum
slack of the constraints on the weights. The questions generated are
thereby intended to decrease the set of feasible weights as quickly as
possible.

The results of these simple changes were very good. We ran two
sample sets of 0 -1 multicriteria linear programming problems. The
times to solve problems having two objectives, four constraints, and
twenty variables decreased from 57.7 seconds to 10.8 seconds of CPU time;
similarly, the times to solve a problem having three objectives, four
constraints, and ten variables decreased from 23.7 seconds to 8.6 seconds
(of CPU time). A further improvement was to use various heuristics to
jdentify a good initial integer solution. The empirical results of these
improvements were to further reduce CPU times by an additional factor of
three. We also examined such questions as the relation between
computation time and various problem parameters and the effect on problem
solution times of the initial set of weights. With relatively minor
changes in our approach, we have brought our approach to the threshold of
computational feasibility.
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Karwan and Zionts are currently working with another Ph.D. student in
Industrial Engineering at SUNYAB, R. Ramesh, on a related topic. Ramesh
is exploring various options as to when the weights on objective functions
should be revised. He is also using dominance cones (to be discussed) to
eliminate solutions.

4.3 A Multicriteria Method for Choosing Among Discrete Alternatives

About the time that we published our first article on the Multiple
Objective Linear Programming problem, a colleague not at all familiar with
multiple criteria models said he didn't understand why the linear
programming approach could not be used to solve the discrete alternative
problems -- for example, the choice of a house by a prospective buyer.
This comment lead to the publication (Zionts, 1981), which presented a
model for choosing among discrete alternatives. Some early applications
were made to about four or five different decision problems, each
involving a decision maker in a choice situation. A1l involved a very
small number of alternatives (less than fifteen), so the value of the
method was not clear, although in each case the method seemed to do well.
Zahid Khairullah (1981) in his doctoral thesis did some exhaustive test
comparisons of this and other methods.

In a sequel paper (Korhonen, Wallenius, and Zionts, 1981) we provided
several improvements over the previous method. First, we weakened the
assumption of the underlying utility function to be quasiconcave and
increasing. Second, we use a convex cone based on decision-maker choices
to eliminate some of the alternatives. Simply put, (for two-point cones)
if alternative A is preferred to alternative B, then any solution lying in
or dominatea by the half-line that begins at B collinear with the Tine may
be eliminated.

In a newly completed dissertation at SUNYAB, Koksalan (1983), has
extended some of the concepts of the earlier approaches, including the
cones, the choice of alternatives, and so on. He has been working with
randomly generated problems to evaluate the different methods. Koksalan
has also worked with ordinal as well as cardinal criteria, both together
as well as separately.

Koksalan has some remarkable results, one of which is that for the
size of problems he tested (up to five objectives and 150 alternatives),
the method generally finds the solution that it finds (usually but not
always the most preferred solution) in fewer than twenty questions. He
has also come up with some interesting results for ordinal criteria, and
cardinal criteria treated as ordinal.

4.4 A Multiple Decision Maker, Multicriteria Model

The fourth problem in the area on which we have worked is a multiple
criteria problem in which there are two or more decision makers. This
problem is extremely difficult compared to the earlier problems considered
because of the lack of problem resolution if the different members of the
group cannot reach an agreement. Our approach (Korhonen, Wallenius,
Zionts, 1980) considers both the multiobjective Tinear programming problem
as well as the multiobjective discrete alternative problem. Both are
based on our earlier methods. The procedures work similarly. First each
member of the group uses the method by himself to identify his most
preferred solution. Then a bargaining procedure based on the above
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methods is used to try to achieve agreement among group members. The
procedure has been used in several situations with students at Purdue
University and at the University of Jyvaskyla, Finland. See Moskowitz,
Wallenius, Korhonen, and Zionts (1981). The situation involved a
labor-management negotiation problem where students representing labor and
students representing management had to come up with a mutually
satisfactory labor contract. We experimented in this study to find out
whether our structured approach based on the discrete alternative method
seemed to be better than an unstructured form of bargaining. In every
instance each group used both forms of bargaining. In the first set of
experiments (at Purdue), the structured approach seemed to do slightly
better than the unstructured approach, although the results were not
significantly different. Further, there seemed to be a learning effect;
that is, whichever method was used second was usually preferred. An
improved set of instructions for the methods were used for the second
study at the University of Jyvaskyla, Finland. The results were a bit
more conclusive. There the structured approach was found superior to the
unstructured approach. More work will be undertaken in the multiple
decision maker model; we believe that problem to be extremely important.

5. CONCLUSION

In this paper we have briefly summarized our recent progress in our
multiple criteria decision making project. Work is continuing along all
directions: a linear programming method; an integer programming method; a
discrete alternative method; and a multiple decision maker method. Even
though we have worked on this project for several years, we continue to be
excited and challenged by the problems that remain. The problems provide
us with a challenge that helps us overcome it. On reviewing what work we
have done in the field, we cannot help but say (immodestly) that we have
not done badly in our research. However, as always, even greater
challenges remain ahead.
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1 INTRODUCTION

Peschel and Mende (1981a,1981b,1982,1983) propose an interactive structure
design principle which allows to represent an arbitrary system of (nonlinear)
differential equations by a system of Lotka-Volterra equations.

The structure design principle which is based on an ecological background
offers a large degree of freedom so that one may choose between different
representations in Volterra-form, depending on the aims of the problem.
Choosing a suitable representation is consequently a problem of multiobjec-
tive decision making.

Using instead of the continuous logarithmic differential operator the discrete
approximation of this operator for the structure design yields to an
approximation for the system behaviour by local models consisting of chains
of product-systems based on a reference point in the state space (Breitenecker,
Mende and Peschel,1983; Peschel, Mende and Grauer, 1983). Choosing a suit-
able number of reference points in order to get a sufficient approximation

of any point again is a problem of multiobjective decision making.

The Lotka-Volterra systems can be imbedded into the class of multinomial
systems of differential equations (Peschel and Mende, 1982; Peschel, Mende
and Grauer, 1982). Regular transformations within these multinomial systems
generate equivalence classes with specific properties. Choosing a suitable
equivalence class again is a problem of multiobjective decision fmaking.

A further problem of multiobjective decision making is linked with the
qualitative analysis of Lotka-Volterra systems: Peschel, Mende and Grauer
(1983) make use of shift-cones to construct local Ljapunov functions for
qualitative analysis; choosing a suitable base in the shift-cone is again a
problem for multiobjective decision making.

The outlined "fundamental" problems of multiobjective decision making within
the structure design principle are presented in section 2.

Section 3 deals with interactive decision making using the structure design
principle as simulation tool. Before going into details first implementations
of Volterra- and product-macros replacing all other nonlinear macros within
simulation languages are discussed (Peschel, Breitenecker and Mende, 1983).
After showing the advantage of the simulation of nonlinear systems in Volterra-
form using the macros (Peschel, Breitenecker and Mende, 1983; Peschel,
Breitenecker, Grauer and Mende, 1983) the first problem of interactive deci-
sion making is discussed in approximating a biological curve by a finite sum
of hyperlogistic growth models. Simulating an unstable linear system in
Volterra-form (Breitenecker, 1983a) requires the cancellation of suitable
unstable equations by multiobjective decision. To complete, an interactive
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simulation package based on high-level simulation software is presented
(Breitenecker, 1983b) , where Volterra systems are simulated and analysed auto-
matically: interactive decision supported by automatized decision on Volterra
systems allows to analyse and simulate the system in consideration.

2 MULTIOBJECTIVE ASPECTS OF THE STRUCTURE DESIGN PRINCIPLE

2.1 Structure Design

In our world we meet dynamic processes, interactions and competition on all le-
vels. Growth and structure-building are the impressing phenomena of evolution

in biology, ecology, energy consumption, etc. One approach for the simulation

of these phenomena is based on decomposition of the system to be studied into
subsystems and on the simulations of the subsystems, which are linked in order
to simulate the total system behaviour. As the number of unknown parameters
increases with the number of subsystems this approach soon results in too
complex high-dimensional problems. Another approach is based on the assumption
that the system develops as a whole. Consequently the interrelation between
subsystems has to fulfill a certain uniform evolution law for the entire system.
This approach drastically reduces the dimension of the model to be formulated,
but the appropriate evolution law is much more difficult to find.

In their works Peschel and Mende ((198la,1981b,1982,1983) ) start with the second
approach. Observing a growth process one usually meets a s-formed state
transition, the so-called "evolon" (fig.l). This curve starts with an extensive

phase well represented by an autocatalytic growth law dx/dt = kxP and

approaches a saturation limit B with an intensive phase well represented by

dx/dt = k(B-x)0 . Combining the two phases and generalizing results in the
generalized hyperlogistic growth law

dx/dt = kxP(B-x")9 (1)

which models a large class of "evolons".
Causal reasons for this growth law can be found in chains of rate-coupled
exponentially growing systems (first approach)

dxw/dt = k,xN N
i i

i Xie1 i=0,..,N (2)

where i and N are indices of hierarchical
level and chain length. Basic rate-
coupled chains are the exponential tower

x(t)

OO~
O

~&

Fig.l: Evolon

Fig.2: Chain and Hypercycle
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and the hypercycle (fig. 2), which has been extensively studied by Eigem and
Schuster (1979) as concept for describing biological and physical growth
processes.

Mende and Peschel (1977) found out, that under weak assumption the infinite

exponential tower (2) converges to the solution of dx/dt = kxP with N to
infinity. It is to be noted, that the logarithmic differential operator
F = dln/dt generates these exponential towers and hypercycles where the
coefficients k are related to the initial values of the levels; if all states
x are normalized with xi(0)=l.

i+l

Pxg = ki K57 PXleeo = F %ol koo (3)
The saturation process dx/dt = (B—x)q also can be approximated by an in-
finite chain, so that consequently it can be shown, that the generalized
hyperlogistic growth law (1) can be represented by an infinite chain (2).
Considering the growth law (1) and the representation as infinite chain (which
is not unique) the guestion arises whether the process can be represented also
by a finite structure consisting of coupled finite exponential towers and
hypercycles. Following Peschel and Mende (1981 a,1981 b, 1982,1983) and Peschel,
Mende, Grauer (and Breitenecker) (1983, 1983) and Peschel, Breitenecker and
Mende (1983) such finite structures exist and can be constructed, if in genera-
ting a chain (2) the operator F is used more flexibly.

Instead of applying F consecutively onto each new right- hand side of (2), the
following rules allow to generate a finite structure:

1) F is applied to any intermediate state I in = Ai

The result Ai is not introduced as a new state as in the case of an expo-

nential chain; it i1s an arithmetic expression buildt up from states
already known, states unknown up to this stage of the design process and
nonlinear transformations of states of both types.

2) The known states are identified and linked by a feedback with their pre-
vious appearance only unknown signals and nonlinear expressions of
known und unknown signals are treated as new states.

3) The structure design process comes to an end if all arithmetic expressions
in the last stage of the process contain only known signals.

Consequently the system (2) becomes more complex. But using this structure
designing process it is possible to represent an (system of) arbitrary func-
tion x(t) (obeying e.g. a highly nanlinear differential equation) as (system
of) Lotka- Volterra equations (Lotka, 1920; Volterra, 1931):

n

Representing e.g. the generalized hyperlogistic growth (1) as Volterra system
results in

g _ (= a__- .19
X, - rqkb X sz = (P+r)kb -rgkb X, (5)

q -
F = F =
xo kb xl, xl pkb

q

with b=B-1, p=p-1, Q=g-1l. Figure 3 shows this structure: obviously the
second- order predator- prey model for xl’ X5 "drives" the process x(t).
The Volterra- structure (5) can be used without modification for simulation.
But in other examples the structure design may produce singularities in the
new state variables, because in = dlnxi/dt = >'<i/xi becomes singular if X4

has a zero within the time interval in consideration (in case of ecological
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nrocesses that usually cannot happen).
Sometimes this disadvantages can be
overcome by transformation of the basic
state x(t), if some information about
the process is available.
In general singularities can be pro-
hibited by preserving linear transfor-
mations X, = X _+4T, (r, regularisa-
i i i i

tion parameters) for each new state. If
this requirement is met at all stages
of the structure design process always

Xo ultimatively a unified Volterra repre-
sentation can be obtained. There the
Fig.3: Volterra structure of dimension of the non-tegularized repre-
of hyperlogistic growth sentation (4) is increased because inter-

mediate states ri/ii are generated.

But usually one needs a regularisation only for certain states. Consequently
there exist usually many Volterra representations with different dimension for
a (system of) differential equation because of the ambiguity introduced by
the intermediate states.

The procedure which transforms a given (system of) differential equation into
Volterra representation can be formalized in Backus notation (Peschel and
Mende, 1983) so that a compiler or interpreter for this transformation can be
designed.

Because of the outlined ambiguity the (automatized) structure design has to
be performed in an interactive mode by choosing suitable intermediate states
in order to prohibit singularities.

The outlined decision whether an intermediate state should be constructed has
the character of multiobjective decision making where two different goals
exist. First of all, the number of states should be as small as possible;
that is the case if no regularisation is done. On the other hand side the
procedure should prohibit all possible singularities; that is the case if
each state is reqularized. Let now be

Ql...number of basic states in Fx, = E G, .X., j=0,..,m
. . 1 13
(regularized in parts, m>n)
Q2...number of "parasitic" poles (singularities) generated by zeros of
states and of derivatives of states

The goal is now to find a suitable equilibrium between the two numbers, which
is a problem of multiobjective decision: both numbers should be as small as
possible, but reduction of the states {(decreasing Ql) results in additional
singularities (increasing Q2);on the other hand side singularities can be
prohibited (decreasing Q2) by introducing intermediate states (increasing Ql).

2.2 Equivalence transformation of Lotka- Volterra equations

As outlined before there exist different Volterra representations for a

process because of intermediate states. These representations are in some sense
equivalent because they all represent the trajectories of the same system,
although they have different dimensions. Consequently (usual) transformations
are not sufficient, because they transform only special representations and

not the Volterra equations themselves.

Peschel and Mende (1982) propose another transformation which is based on
imbedding the Volterra representation (4) into the broader class of multi-
nominal differential equations
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a
Fxy = EJ A —|_|—xr T (6)

T

To avoid complex numbers one assumes that all states are not negative. The
driving force of the multinomial differential equation is appearently a
superposition of terms consisting of "power-products" of the states.
A linear regular affine transformation on the space spanned by lnxi

t,
ir
Xx. = z , T = (tij) regular

defines a homogeneous term- consistent coordinate transformation resulting

Da..t
- -1 T
Fz, = E £. 71 a, z Js ST Fz =1 b Al 28 (7)
< ij J3 T
JyJ r
where the second term expresses the transformation symbolically in a short
form. The form of the multinominal equation (6) remains unchanged under these

transformations. Due to (7) matrix pairs (T_lA, aT) now define a class of
multinomial differential equations, where T can to be choosen arbitrarely
(but regular).Consequently these transformations can be used to derive suitable
normal forms for multinomial differential equations an also, indirectly, for
Volterra representations: every multinomial differential equation can imme-
diately be transformed into a Volterra representation after renaming each
different term (as single state).

Using now the matrix T as "resource" one tries to find suitable normal forms,
e.g. normal forms which simplify a given representation.

Obviously one may persue simplification in a number of different ways, so

that a multiobjective decision problem arises

Rewriting the equivalences classes by ((( fl, A 1)), ((a ,ej))),

. .J J.

ej, j=1,..n being a base in R" and f! being the corresponding dual base,
different goals of simplification can be formulated as follows (aJ , A greee
denotes rows or columns of a and A):

Ql.. Number of variables in terms
Matrix a should have as many zero elements as possible to minimize the
number of times variables occur in the terms, that means that many

(aJ.,ej) =0

Q2.. Number of terms
Matrix A should have as many zero elements as possible to minimize the
number of terms occuring in the driving forces, that means that many
(f, A ) =0

Q3.. Dimension- first integrals
Matrix A should have as many zero rows as possible, because every zero
row means that the corresponding transformed state is a first inte-
gral of the motion in term form,so that the dimension is reduced.
Formally that means that many (fl, A J) =0 for all J.

Q4.. Dimension- elimination of states
Matrix a should have as many zero columns as possible, because every
zero column represents a state which can be eliminated, so that the
dimension is reduced. Formally that means that many (aJ ,e.) = 0
for all J. -
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To combine these various types of simplification is really a multiobjective
decision problem because one is interested pursuing several of these goals
Ql, Q2, Q3, Q4 simultaneously, where only one regular matrix T can be used as
control resource. Methods to solve this multiobjective decision problem are
e.g. vector optimization (the goals are non-cooperative) or hierarchical
optimization (Peschel, Mende and Grauer ,1983).

2.3 Qualitative analysis of Volterra- Lotka equations

Rewriting the Lotka- Voiterraequations (4) in the form

Fx = :EEX.G . G ,..j-th column of G, x,>0 (8
i€.50 Ly v Xy )

a qualitative analysis can be done by defining the sets

H ={chc.j| cj>O,ch=l} , k = {cn| hew,c>0} (9)

where H is the convex hull of columns of G j and K is the convex cone spanned

by H (Peschel, Mende and Grauer,1983b).

If now the zero vector is element of H, then there exists a positive statio-
nary solution of (8) with vanishing small forces driving the growth rate.

On the other hand side if there exists a stationary solution of (8) with the
outlined properties then the zero vector belongs to H. Consequently, if and
only if det G = 0 then there exists a stationary solution with the outlined
properties.

If the zero vector does not belong to H, then H and the zero vector span

the cone K. Integrating (8) formally from the reference paoint z(to) results in

t
2(t) = 2(t ) +§(Sto X (0auIG [,z = I xg (10)

Consequently - because the zero vector does not belong to H - there holds

z(t) € z(to) + K for t>tn, z(t) € z(to) - K for t<t0

These formulas construct the so-called "shift-cones" and have the following
meaning: for t>tO and any reference paoint z(to) the velocity vector dz/dt

of any trajectory is directed intoc the cone Z(t0)+K, in case of t<t0 into
z(to)-K (fig. 4) - (the shift canes constructed there are very similar to the

so called "light- cones" in the theory of special relativity). In particular,
the existence of such a shift cone for the
. , transformed Volterra system (10) means
that there exists no cyclical motion (limit
cycles, spirals or combinations).

Now aone has some degree of freedom in
constructing the definition of H and K in
(9) and by using a suitable volterra-
representation (8). That again is a multi-
objective decision praoblem which should
result in the following: if the Volterra
system has a shift cone and if the shift
cone can be choosen as substitute of the
Pareto cone then the Volterra system shows
always an efficiency-oriented behaviour .

Fig.4: Shift-cones
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2.4 Lokal approximation of functions by chains

Generalizing the chain construction (2) by means of an arbitrary differenti-
able and monotonic function f(u) results in a general differential operator F
with

Fx, = df(x,)/dt = f-l(f(k,) + fix, ), f(x,(t )) =0 (11)
1 1 1 1+ 1 e]

1
Discretising (11) in a general way (substituting the differential quotient in
(11) by a difference gquotient with weighting function g(u)) yields to

(Flx, (t)) - f(x,(t 1)) / (g(t) - g(t )) = f-l(f(k') + flx, ),
i i'o ) i i+

1
i=1,2... (12)

For f(u)=g(ul)=u the formula (12) is equivalent to a Taylor series ex-
pansion, in case of f(u)=g(u)=1n(u) with expansion up to order N (12) be-
comes the following local approximation of order N for x(t) (Peschel, Mende
and Grauer, 1983; Breitenecker, Mende and Peschel, 1983):

(lnxi(t)/(xi(to)) / In(t/t ), i=0,..,N

The outlined approximation can e.g. be used for the approximation of functions
in the following way:- (i) spline- like methods by a sequence of local models,
- (ii) approximation by linear superposition.

As example fig. 5 shows a first- order spline- like approximation of a

curve using the local model X = x(to)(t/to)a. As to be seen, this approxi-

mation works better than approximation by tangents (in t+), in e.g. t it
works worse- this disadvantage disappears by using more than one reference
point choosing e.g. t  as second reference point, etc. (corresponding to (i)).
Figure 6 shows the same approximation with a changed reference point

X = (B-x(to))((u—t)/(u—to))a corresponding to (ii).

In order to improve the approximation either the order of the approximation
can be increased or the number of local models (=reference points) can be in-
creased. Consequently one has to deal with a multiobjective decision problem:

Ql.. number of local models
Q2.. order of approximation (second and higher derivatives)

Q1 and Q2 should be as small as possible for obtaining a suitable approxima-
tion. The goals are non- cooperative because decreasing the order of approxi-
mation results in a larger number of local models if the quality of approxi-
mation should remain unchanged. It should be noted that the multiobjective
aspect especially of Ql is linked with the aspiration level methods for the
description of the efficient set (Wierzbicki, 1979).

Fig.6

t, t+ LAl

3 [
\ ¥

Lokal Volterra Approximation
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3 ASPECTS OF INTERACTIVE AND MULTIOBJECTIVE DECISION MAKING IN SIMULATION
WITH VOLTERRA REPRESENTATIONS

3.1 Implementation of Volterra representation for Simulation

The outlined representation of an arbitrary (system of) differential equation
as Lotka- Volterra system is an appropriate tool for computer simulation: the
operator inverse to F = dln/dt, the so- called exponential integrator, as
basic macro is able to replace all other nonlinear elements of the system
description.

Using e.g. a block- oriented simulation language this basic macro can be
implemented easily by a combination of summing, multiplying and integrating
(fig.7). The structure diagrams (fig.2,
fig.3, fig.9, fig.13) can be interpre-
ted as generalized block diagrams where
each node represents an exponential
integrator.

As first example a projection of world
energy consumption and world population
up to the year 2000 is considered.
Kriegel,Mende and Peschel (1983) found Fig.7: Exponential Integrator
out that these processes can be descri-

bed by specializing the hyperlogistic growth (1) by r=1 and p=g. The model is
based on data 1900-1980; the saturation limit B can be expressed in terms of
parameter p and of the value XM of the state at the time tM of maximal growth

rate, which is probably already behind us. Figure 8 shows the (projection of)
world primary energy consumption for three different time instants of maximal
growth rate. Using the volterra representation (5) for simulation no troubles
caused by singularities arise because all states are positive; that means that
for the multiobjective decision of 2.1 there holds Ql1=3 and Q2=0; concerning
the multiobjective decision problem of 2.2 also representation (5) is the

best one.

As outlined before the growth x(t):x0 is "driven" by the states x x, which

17 72
interact as predator and prey; it can be shown that this predator- prey system
is structurally stable if both autocatalytic coefficients are unequal to zero;
in the considered case must hold only k#0 or B#1 or p=q#l in order to make

the system structurally stable. It is to be noted that digital simulation
usually solves structurally unstable systems as well as stable one, while
analog or hybrid computation gets into troubles in simulating structuratly un-
stable systems because the analog model in form of electronic circuits is a
physical model of the process- and structurally unstable models are usually
useless models for any process (Breitenecker and Kleinert, 1983).

TWytlyr: Fig.8: World primary energy
401 consumption
tys1974
tM"Q'IZ
ty,*1970
ti .
o ne Fig.9: Structure
198Q 1980 2000 2030 2050
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An interesting example is the Volterra- representation for the Lorentz
attractor

X = -10x + 10y, ;/ = -y + ax - XZ, 2 - -8z/3 + Xy (13)

resulting in a Volterra- system of order 7 (xozx, Yo=Y z0=z, a=28):

Fx =-10+1 Fx. =9-1 - = = =
xo + Oxl, x| 9 Oxl+ayl y2, X xo/y0 l/yl, y2 xozo/y0

=- - Fy.=- - Fy. =- -
Fy0 l+ayl yz, yl 9+10xl ayl+y2, y2 35/3+10xl ayl+y2+zl

- Fz =- -y - -
on 8/3+z z 25/3+10xl+ayl Y,mZ s z, xOyO/z0 (14)

l,
Figure 9 shows the structure diagram. Starting a simulation in (x,y,z) =
(1,1,1) x(t) and y(t) change the sign in [ 0.45, 0.55] so that X19Y)
and yzlhave poles(fig.10) which can be prohibited by intermediate states.
Consequently for the multiobjective decision problem of 2.1 there holds Ql=7,
Q2=3 before and Ql=10, Q2=0 after the solution of the problem. Simulating
without regularisation shows, that in [ 0.5, 4 ] starting with (-2.7,
-8.4, 28.8) at t=0.5 (corresponding to (l,1,1) at t=0 ) the Volterra-
representation (14) works better than direct solution of (13); the reason for
that seems to be that the additional states "stabilize" the oscillation (fig.
11); in E 0, 0.4 ] xo and Yo of (14) are damped too much because ¥y and Yy

become very large (fig. 12).

To complete, the structure generating principle (section 2.1) also is able to
represent certain integro-differential equations as Volterra systems: for
instance, systems of a Volterra integro-differential equations modelling prob-
lems from virology with a certain intoxication time can be represented and
simulated as system of Volterra equations (Peschel, Breitenecker and Mende,
1983).

Sometimes it is also useful to transform a system of linear differential

equations x = Ax, xél%n into Volterra- representation resulting in

Fu, = E s Fu,. = L U -8, = 15
uy aijulJ, uiJ :E:(agkukj alkuki)’ X =uy (15)

The system (15) is of dimension n+n2 ; but due to numerical reasons

(nz-n)/z equations for uij have to be cancelled (Fuijz—Fu.i) in order to get
a (locally Ljapunov-) stable Volterra system (Breitenecker, 1983 a); choosing

Fig.12

Solutions of
Lorentz attractor
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suitable states to be cancelled again is a problem of multiobjective deci-
sion: the modified Volterra system (reciprocical states occur explicitely! )
has to be stable- the dimension has to be reduced- the modified system should
remain simple). Equ.(l5) is similar to an imbedding method (Breitenecker,1983c).

3.2 Dynamic approximation of (biological) curves using special Volterra

systems

It is well known that (biological) curves vy(t) can be approximated by a
sum y(t) of exponential functions (Braess, 1967; Braess 1970):

-_ m klt .

y(t) =Zj=l ax (1),  x (t) =e (X o= kyxg ) (16)
There usually m=4 is sufficient to approximate y(t) with suitable accuracy
(characterized by eight parameters).

Now it is to be noted that the exponential function is the simpliest form

of the generalized hyperlogistic growth law (1) with p=1, r=0 or p=1l, g=0.
Assuming that the exponential integration (section 3.1, figure 7) is a basic
arithmetic operation (e.g. in case of analog computing) the question arises
whether the approximation can be improved by using more general functions-
described by (1) instead of the exponential functions- or whether the quality
of approximation remains unchanged by using less but more general functions
instead of exponential functions. There exist three stages of generalisation
of the exponential growth:

pP.
X.ok.ox, s Fx, =K,x. , Fx. =K.X. (17)
i i'i io iil il iil
Ty 9
Xp=ky (Boxy 70 T Fxg sk xg s Fxg ek ok Xy Xk mky X (18D
. Pi Ty 93
= B-x, Fx, =h.x, , Fx. =h . x._-h__x. , Fx. =h _x.  ~h_ . x,

xi kixi ( x1 ) —~ xio h1x11’ x1l h11x12 h12x11’ x12 h12x11 h11x12(19>

where (18) and (19) are structure- equivalent (fig. 3, equations (5)), with
three or resp. four parameters instead of one in the case of an exponential
function. But already the simpliest generalisation (17) with a simple
Volterra structure (fig. 13) and with two instead of one characterizing para-
meter may improve the approximation: figure 14 shows the approximation of a
biological curve modelling the glucose production rate of an isolated rat
liver (simulated with glucogan) using a sum of two exponential functions
(§(t), m=2) and using a sum of functions of form (17) (y(t), m=2).

~ Fig.l4: Glucose production
- approximation

X4

X

o T

Fig.13: Structure
diagram
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Again one deals with an interactive multiobjective decision problem:

Ql.. the approximation has to be as accurate as possible
Q2.. the number of terms in the sum has to be as small as possible
Q3.. the approximating functions Xy have to be as "suitable" as possible

It is to be noted that the goals Q1 and Q2 are non-cooperative while Q3 itself
depends on the properties of the curve to be approximated.

3.3 Interactive decision analysis of Volterra systems

The representation of a (system of) differential equation as a Volterra sys-
tem is also an appropriate tool for analysing the properties of the solution

by analysing the solution of the corresponding Volterra system. This analyse
can be done by using well known results on Volterra equations.

This analyse and the simulation of Volterra systems was implemented as inter-
active simulation package within the hybrid simulation language HYBSYS (Klei-
nert,Berger,Stallbaumer and Wittek,1982; Solar,Berger and Blauensteiner,1982).
This interactive simulation package (Breitenecker,1983b) was implemented in the
so-called supermacro-technique (Breitenecker,1983d) where a general macro ini-
tialises and performs special investigations on the model.

Analysing and simulating a Volterra system (representation) starts with the
automatic generation of the differential equations depending on the input of
the dimension. In the moment a "Volterra-precompiler" is in stage of designing
which transforms an arbitrary equation into Volterra representation (inter-
actively taking into account the outlined multiobjective decision problems)

so that one may start with the input of the equation to be analysed.

The simulation of the system and the documentation of the results are then per
formed by standard features of HYBSYS. Additional features allow to analyse the
properties of the system and to perform interactive decision analysis: the main
cases of interest are the questions of stability, limit cycles, equilibrium
solutions, boundedness, sensivity of parameters,etc.

First of all the programm checks whether the system is a conservative one ( G
skew-symmetric) or whether some extended assumptions are fulfilled.

In an interactive way the user may proceed with the following actions:

(i) simulation of the trajectories with (graphic) documentation

(ii) variation of parameters and initial values with (graphic) documentation
(iii) calculation of equilibrium population

(iv) local stability analysis by linearisation around the equilibrium or

initial population

(v) global stability analysis by special investigations on the system

(vi) global stability analysis by a graph-theoretic method
(vii) stability analysis by stochastic methods

The actions (i) and (ii) are performed by standard features of HYBSYS while
actions (iii)-(vii) are additional features which were programmed in overlay
-technique and can be performed by simple command words. Action (iii), the
calculation of stationary solutions,requires the simple solution of a linear
system. The local stability analysis (action (iv)) is the usual local eigen-
value analysis in the neighbourhood of a special point: after linearisation
around this point the eigenvalues and eigenvectors are calculated.

But it is clear that global stability analysis is far more relevant. This
question is tried to be answered by actions (v)-(vii). Action (v) performs
special investigations on the system depending on the dimension: in case of
dimension n=2 the question is answered completely by using the Poincare-
Bendixson theory (Braun,1978); therstability of the three-species case is ana-
lysed by consideration of 34 cases depending on the sign and relative values
of the coefficients in G (Krikorian,1979) so that the system can also be clas-
sified ( food chains, loops, two predators acting for one prey and one predator
acting for two preys); in case of n>3 also a significant body of results for
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A 4

MOPREY / ANNOLI

Load of patching flle [ __,] stability check
Interactive input of thej\
system coefficients

Simulation of the
system by HYBSYS-

by special methods

commands
ANN'TG.R P1,P2 (single Tun with
stability check display)
9 by graph method p-ay

PLOT, SET,

ANLI SCALE, ....
stability check

by linearisation

STSOL
Computation of
stationary solutions

—-
g

Fig.15: Structure of the simulation package

generalized conservative systems (Takeuchi,Adachi and Tojumaru,1978; Yorke and
Anderson, 1973) is used for the stability analysis. Action (vi) makes use of a
graph-theoretic method (Redheffer and Zhiming,1980): the coefficients of G
build up a graph with opened or closed loops where each node represents one of
the populations and is specially marked depending on the sign of the autocata-
lytic coefficient; a fundamental principle establishes rules to reduce the
number of special critical nodes depending on the connections. Action (vii) is
a stochastic analysis for a population where one of the coefficients of G or

a initial value is disturbed with small values obeying a certain statistical
distribution; as result the medium value curve for the population is displayed
and the standard deviation is listed.

Figure 15 summarises the
features of this interactive
simulation package: the dif-
ferent actions are connected
by arrows showing the possi-
ble seriell and parallel
analysis and simulation of
the system.

Usually the user starts with
the macro MOPREY which gene-
rates the model equations de-
pending on the input (dimen-
sion). Then he may proceed
either with simulation of the
system (actions (i),(ii)) or
with analysis of the system i
activating the macros STSOL T
(action (iii)), ANLI (action —
(iv)), ANNOLI (action (v)),
ANNLGR (action (vi)) and Fig.16: HYBSYS - documentation of simulation
ANSTOC (action (viii)).
It is to be noted that simulation can be performed and documentated very com-
fortably using standard HYBSYS features. For instance, the simple command

" PLOT P3 OVER T AND G32=1,2,0.1 " performs ten simulation runs where the
parameter G32 of G varies from 1 up to 2 in steps of 0.1 and displays the
result as threedimensional plot for population P3 (fig.lé6).

P3¢

G32
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HIERARCHICAL MODEL-ORIENTED SYSTEM ORGANIZATION

V. Mazurik
Computing Center of the USSR Academy of Sciences, Moscow, USSR

1. INTRODUCTION

The problems arising in such areas as agriculture, climate, and energy
development are becoming increasingly complex. It is now impossible to
model these problems adequately without using a set of mathematical models.
For example, it is necessary to analyze both linear and nonlinear model
variants, make iterative corrections, and investigate both static and dynamic
aspects.

The use of complex models generally results in a nonlinear growth in
the complexity of the analysis. It becomes impossible to carry out this
analysis for any length of time without letting the user exert some influence
on the model. 1In this paper we shall consider how to organize software sup-
port for complex modeling in order to construct a really useful instrument
for interactive analysis.

2. SEMANTIC COMPLETENESS

The more complex is the model to be investigated, the more important
it becomes to ensure that the subject areas, concepts and operations avail-
able in the interactive dialogue are appropriate to the needs and expectations
of the user. This would make the non-formal interactive control of the
model by the user really effective.

The set of notions constituting the model, and their representations,
are very often artificial due to the attempt to save computer memory. The
new hardware now available simplifies the problem to some extent, but another
problem arises. We are used to fitting the structure of the model to the
needs of calculation procedures. This was reasonable enough in the days of
batch processing, when we had enough time to "decode" the results from their
procedure-oriented form to a form more suitable for analysis. The advent of
interactive modeling has entirely changed the situation, emphasising the need
for procedures for model-based interactive decision making. However, the
problem cannot be reduced simply to the choice of representations: it is
also necessary to provide semantic completeness.

If, for example, the user wishes to extend his optimization model by
including the dual vector, simply adding an array of given dimension to the
model does not solve the problem. To extend the model properly it is neces-
sary to include a description of dual space itself and the relations con-
necting it with initial space, etc.
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Another example is provided by the system which is intelligent enough
to calculate the matrix of second derivatives of a given function, but does
not understand what is meant by the distance between two points in, say,
euclidian space. This may seem rather strange to the user.

Systems lacking semantic completeness are not convenient to use. This
comes across clearly in some comments made by users concerning such systems:
"The system language is too poor and does not adequately reflect my image
of the model”.

"The dialogue is not flexible enough, that's why it is not effective".

"If this system can.... then why can't it....?"

"Why can't this system understand such simple things as....?
"I can't rely on the results obtained with the help of this system".

It is impossible to provide semantic completeness in problem-oriented
systems, because it is difficult or impossible to restrict and formally
describe the semantic area important to the user. However, it does seem
possible to overcome these problems in model-oriented systems based on a
formal mathematical model or a set of interconnected models.

3. MULTILEVEL ORGANIZATION

Let us now consider the technological and structural aspect of system
organization in complex modeling. The usual softwarebase for such a system
is provided by packages of numerical methods. However, the problem of com-
plex modeling cannot be solved simply by extending the list of software
that can be run on a given computer. In this case, due to the qualitatively
different level of complexity, there is no analogy with service program
libraries, where simple extension provides the user with new computing re-
sources. A package is a set of numerical methods connected with a certain
mathematical model, which is represented in a strictly defined form. The
use of the package implies that a problem area is being mapped onto the
structure, and this can be rather a complicated procedure. Complex modeling
makes the task even more difficult by necessitating input-output coordination
of the different models. Thus, there is an evident need to develop a general
approach based on the properties common to models in a given class.

The problem is to formulate a procedure which would allow effective
development of unified model-oriented software based on the semantic scope
of a given class of mathematical models. We suggest the following procedure,
which is based on multilevel software development. First a strict analysis
of the semantic scope of the mathematical models in a given class is carried
out. This defines a set of notions and relations common to all the models
in the class. These fundamental notions are then implemented, creating a
basic software level. A second level, which includes each model in a given
class together with their specific properties and input-output relation-
ships, is then implemented. Note that this implementation is based on high-
level mathematical notions, which simplifies the work and makes the system
more "intelligent".

We shall now demonstrate this procedure for the class of optimization
models which includes unconstrained optimization, nonlinear programming,
optimal control, solution of nonlinear equations, and global optimization.

The semantic scope of the basic software required by this class of
models is actually quite general and could be used for a wide variety of
operations research models.
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4. BASIC SOFTWARE LEVEL

We may treat the basic level as a virtual computer which differs from
ordinary computers in its level of 'mathematical education'.

The memory cells of this computer contain such mathematical notions as
vector spaces and subspaces, coordinate systems, mapping from space to space
(in particular, functions), derivatives at a given point, and so on. The
computer can be instructed to create spaces, to evaluate mappings, to transfer
to indicated subspaces, to change the coordinate system in order to correct
the properties of the functions under investigation, to create complex
functions by superposition, etc.

This basic software level is based on a small number of mathematical
notions, which are listed below.

Vector spaces. Vector spaces are represented in terms of cartesian
products. The simplest vector spaces are real fields and Galois fields, and
they provide the basis for the arithmetic and logical operations of the
virtual computer. An N-dimensional vector space on the field P is re-
presented by the n-th cartesian product of the field P .

Mappings. A mapping is a means of specifying the relations between
vector spaces and their cartesian products. Mappings may be defined in two
different forms: functional and algorithmic. The functional definition is
given in a language which at its most complex approaches the traditional
algebraic notation. The algorithmic form is based on the notions of memory
assignment, and includes structured selection and iteration routines typical
of programming languages such as FORTRAN and PASCAL.

Functions are one of the most important types of mapping. It is possible
to define a new function either by the means mentioned above, or by super-
position. Analysis of the local (differential) and global properties of
functions is actually the main purpose of the virtual computer in question.
In particular, the virtual computer automatically provides a special mapping
which maps any point of vector space to the gradient vector of a given func-
tion at this point. Thus, the notion of a derivative is included in the
semantics at this level.

Linear mapping. BAncther important case of mapping is the linear mapping,
which is recognized as being of particular interest. Mappings of this type
are the basis for efficient implementation of a great number of transforma-
tions designed to correct function properties. These include the reduction
of dimension by fixing coordinates, transfer to subspaces with 'fast grad-
ients' and 'slow gradients' for a given function, and so on.

Vectors, areas. The elements of vector spaces are the vectors and areas
within these spaces. On creating a vector space it is possible to explicitly
define a set of points (vectors) and areas within it. These areas are treated

v
by Boolean algebra 2 for the given vector space V . The fundamental
terms in the algebraic representation are function names for the functions
defined in vector space V . These functions are treated as characteristic

functions of the areas.

The introduction of areas into the semantic scope of the virtual com-
puter makes it possible to treat the problem under consideration in terms
of "geometric images". For example, in a nonlinear programming model each
restriction represents some area and their intersection forms the permis-
sible area for optimization. This area is represented in the virtual com-
puter by an expression in Boolean algebra which has the form of a combina-
tion of function names, each name corresponding to a single restriction.
The computer uses these areas to calculate the inclusion predicate for a
given point, or to find a point which satisfies such a predicate (i.e., it
minimizes the penalty incurred by violation of restrictions).
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The newly created objects in the virtual computer strictly correspond
to their mathematical semantic description. For example, on creating a new
object of the vector-space type, the computer automatically creates the
mappings which define vector addition, subtraction and multiplication of a
vector by a scalar. These operations define the vector space as amathematical
notion. The user thus creates a vector space of a given dimension by one
simple phrase, the rest of the work being carried out by the virtual com-
puter. The particular calculation algorithms are induced by corresponding
operations in the field over which the vector space is defined.

There is one additional virtual computer level, which contains more
specific objects. This level includes, for example, the notion of euclidian
vector space. While creating an object of this type, the computer sets up
the "euclidian" operations of scalar product, norm and distance calculation
in addition to the ordinary vector space operations.

Thus, we have outlined the basic level properties which allow for the
creation, modification and elimination of vector spaces, mappings and their
elements in accordance with the mathematical semantics of these objects. 1In
other words, the virtual computer implements the semantic area of linear
algebra to an extent sufficient to provide a basis for the second, model-
oriented software level.

5. MODEL-ORIENTED SOFTWARE LEVEL

This level contains interconnected optimization models of the type
mentioned above. One of the main characteristics of this level is the
introduction of new notions which are specific to particular models and
therefore were not included at the basic level (e.g., dual variables for
nonlinear programming problems, control vectors for optimal control problems).
This level also includes packages of numerical methods, one for each of the
optimization models considered at this level. The availability of numerical
packages creates its own specific semantics, including, for example, the
possibility of changing methods during problem solution, the notion of
a list of parameters for each method, and the notion of the solution tra-
jectory.

The hierarchical structure of this level is defined first of all by
the properties of the numerical methods required for each optimizationmodel.
For example, nonlinear programming methods are often based on the reduction
of the initial problem to a specific unconstrained minimization problem.

The inner problem is sometimes solved in dual space rather than in the primal
space. Optimal control methods can create a subordinate nonlinear program-
ming problem performing time discretization, etc.

It is often important that there should be interaction with the solution
process on each of these hierarchical levels. In this case the semantic
scope on each level of the hierarchy should no longer be determined solely
by the method, but should be suitable for use in an interactive dialogue.

It is essential that the semantics of initial and subordinate tasks be highly
interconnected.

For the optimization models mentioned above the mapping of these higher-
level notions onto the virtual computer basic-level notions is relatively
simple and consists, in general, of labelling the basic notions. For example,
to define a nonlinear programming problem it is necessary to specify the
function to be minimized in a given vector space and to give two additional
sets of functions which define inequality and equality constraints. Note
that this latter definition creates a specific 'geometrical' image of the
constraints - they become areas with all the associated semantic consequences.
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Of course, the use of the basic level to implement the model-oriented
level automatically makes all the facilities of this basic level available
for treating optimization models. Thus, when solving, say, an optimal con-
trol problem, the virtual computer understands both specific directives such
as "evaluate the initial value of the control vector", and more general ones
such as "change the coordinate system", or "estimate the value of the function
at a given point".

This provides an extremly flexible means of modifying the task at hand.
For example, it is possible to use a linear mapping to fix a certain number
of coordinates and thus to decrease the dimension of the problem. It is
important to note that the virtual computer is designed in such a way that
all task functions are automatically projected onto the appropriate subspace.
This operation corresponds exactly to the semantics implied by using the
notion of fixed coordinates.

Another example: for unconstrained optimization problems it is possible
to create two subspaces, which correspond to subsets containing a certain
range of gradient components for a given function, and to choose the most
suitable optimization method in each subspace.

The virtual computer levels described above form an efficient instrument
for the further implementation of problem-oriented systems in different ap-
plied areas. A two-level virtual computer structure capable of treating
the optimization models discussed above has already been implemented on a
PDP 11/35 computer. It is planned to develop the suggested approach by in-
corporating multicriteria and decision-making models into the semantics of
the virtual computer in the future.
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DUAL RELAXATION AND BRANCH-AND-BOUND TECHNIQUES
FOR MULTIOBJECTIVE OPTIMIZATION

Paolo Serafini
Institute of Mathematics, Informatics and Systems Theory,
University of Udine, Udine, Italy

1. INTRODUCTION

This paper is concerned with duality results for multi objective (m.o.)
optimization problems. The core of the paper is a duality theorem derived by
usual separation techniques. This theorem generalizes known results in view
of the applications to m.o. problems, which are presented in Section 3.

Actually Sections 2 and 3 constitute an attempt toward building a dua-
lity theory for multi objective optimization problems, in the same spirit
of the known duality theory for scalar constrained optimization problems. As
the latter is a powerful theory, it is expected that a duality theory for
m.o. problems would also yield useful results.

Indeed the second aim of this paper is to present in Section 4 an appli-
cation of these ideas to discrete (or in general non convex) m.o. problems
by introducing the concept of dual relaxation for m.o. problems and using it
for a technique of a branch and bound type. Due to the nature of m.o. problems
several incumbents and bounds are present at the same time and interaction
with the decision maker is needed in order to find optima.

2. A GENERAL DUALITY THEOREM

We shall first consider a generalization of the following well known
duality result :

inf Ilyll = max -h(m)
yEK i<t

where K is a convex set in a real normed space Y, OK,m is an element of the

dual space Y* and h(m) is the support functional of K, i.e.

h(r) = sup Ty
y€K

( see Luenberger (1969) p. 136 ).
The generalization consists in replacing the.norm with a convex functi-
onal p ( not necessarily finite ) defined on K , with the property that



85

play) = ap(y) > 0 for a>0 y€K . To this purpose let us define

p¥(m) = sup Imyl/o(y)
yE€K

K ={m:my <0 Vye&k}

Then we have

Theorem 1

Suppose v = inf p(y) < = and p*(w)=0 iff w=0 . Then
y€K

inf p(y) = max ~-h(w) = —h(wo)

y€K p*(w)i1

and T €K

)
Proof

Let ¢={yE¥Y: oayC K for some o >0 } . We may extend p to C by virtue
of its property and define Cc = { y€ C: p(y) < e }. We shall first prove

v>-h(r). It suffices to consider h(w)<0. In this case 7€ K and the hyper-
plane Hp= { y : wy=h(m)} separates strictly the origin and K. Now, for

each w, let ¢ be the largest number such that Hy separates C_ and K for
every 05;5; . Since op(y)=p(ay) and v<» we must have
h(r) = inf wy
yGCE

Obviously &<v . Now, if p*(r)<! , we have

-h(r) = - inf nmy = sup -my = sup Iny| = € sup Iwyl/p(y) = € suplnyl/o(y)
yECE yECE yECE yec y€eK

=& p*(n) <E <V,
Moreover Cv and K are convex sets and K does not contain interior points

of ¢, - Therefore there exists a separating hyperplane H1T (take w.l.0.g.

p*(mg)=t ), i.e. °
oY, > h(mg) Z»”oyz v y1€ CV ,V y2€ K
Obviously WOG K~ . Since h(ﬂo) < inf T,y =~V , we get —h(no) =v
y€Cv a

The motivation for Theorem 1 lies in the fact that for some problems a
concept much weaker than a norm is available, as it will be shown in the
next section.
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3. APPLICATIONS TO MATHEMATICAL PROGRAMMING

In this Section we are concerned with the following m.o. mathematical
programming problem, with objective function f : @ - Y and partial order
> in Y defined by a closed convex cone A :

Problem M

optimize (with respect to A) f£f(x)
s.t. x € Q o

We recall that an optimum is any point x such that f(x') - £(x) & AN{0}
for all x' in Q. We shall use the term optimum also for the image f(x) of an
optimum x.

Let us define K = f(2) - A -{p}, where p 1is any element of Y such
that O € K. It is known that K is convex if f is concave. We shall assume
in this section that K is convex. It is not difficult to show :

K = [£(@) -{p}I~ n (-0~

The key in the application of Theorem 1 is the choice of p. It makes
sense to let p reflect the partial order so that minimizing p corresponds
to finding optima. Therefore we choose

p(y) =min { § : y + §q C A } (p(y)=e if there exists no such §)

where q is a parameter. It is not difficult to derive

p*(m) = mq if w €K

Hence

inf p(y) = max -h(m 1)
yeK mq<1

The left-hand-side of (1) is a scalarization of Problem M studied in
detail by Pascoletti and Serafini (1984). It can be proven that for each opti-
mum y of Problem M there exist q and p such that y minimizes p(y) and that
for every q and p the minimizing subset of p(y) contains, if not empty, at
least one optimum for Problem M. Hence if the minimum of p(y) is strict, it
is an optimum for Problem M. The cases when the minimum of p(y) is not strict
can be viewed as exceptional and actually they affect only marginally the re-
sults of this paper. Hence we assume with little loss of generality that the
minimum of p(y) is strict.

We may therefore consider the 1l.h.s. of (1) as a primal scalarization
and, as it is obvious from our derivation, the r.h.s. as a dual scalarization.

It is immediate to verify from the definitions of p and K and the opti-
mality of y, that, if inf p(y) = o(y,) , one has Y, = -p(y,)q. Hence by (1)

Yo = h(mg) q (2)

In other words we may find optima by solving the dual problem. We shall
exploit this result later. Now let us make the following comments:
If K is strictly convex we have ( by separation property )
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Yo = h(my) q = Tyy0q

and it is more convenient to compute y, directly from h(m ) rather than from
(2). But, if K is just convex, the set

Y, = {y gy = h(no) } (3)

(which consists of optima) may have more than one element and in this case
we have

Y, = h(m) QTTO (4)
with Q = {q : max -h(w )= -h(m )}
o T X1

Computation of Y, is more convenient through (4) rather than (3) and
this is especially true for linear programs.

The above results can be further specialized giving also an insight into
the role played by the objectives and the explicit constraints of a mathema-
tical programming problem.

Thus, let f : Q - Yf be the objective function, g : Q - Yg the constra-

int function, Af <« Yf s Ag <« Yg closed convex cones, and consider the follo-
wing problem:
Problem CM

optimize (with respect to Af) f(x)

s.t. g(x) € A
x € Q & o

( note that Ag=Rf and Ag={0} correspond to usual inequality and equa-—

lity comstraints respectively )

f
A=A A
f ¢ g

Let Y=Y_ &Y
g

k=@ -1y -2
g 0
q =(:z) with qg= 0
p(y) =min { 8§ : y + 8¢ € A }

It can be shown again that strict minima of p(y) are optima for Problem
CM for any choice of Q- Putting w=(wf,ﬁg) and applying Theorem 1 we get

inf p(y) = max -h(m) = max —h(ﬂf,ﬂg) (5)
K <

y€ wq<1 ﬂqufj

Let us comment the above result

a) if Yf= R (single objective) (5) can be rewritten, after some manipula-
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tions :
sup f(x) = min [ sup [ nff(x) +mogx) ] 1
X: me X€EN &
g(x)€A 0<r <1
x€q & re-A"
g g

which is the classical strong duality property of convex constrained scalar
problems (note that if one drops the assumption on p* in Theorem 1,the result
holds with inf instead of min; this accounts for constraint qualification);

b) a closer glance at (5) shows that objectives and constraints differ in
the values of the components of q only, that is one has qi#O for objectives

and qi=0 for constraints. In other words constraints are the limiting case
of objectives and the duality result (5) unifies them into a single concept;

c) the role played by the functional p resembles the one of a penalty fun-
ction. In fact qg=0 implies p&x)=e for g (x) ¢ Ag.

4. NON CONVEX PROBLEMS

If K is not convex, the previous results apply to the convex hull [K]
of K. So we have (both for Problem M and Problem CM)

inf p(y) = max ~-h(m) = d
yE€[K] Tq<1
v =inf p(y}) > max ~-h(m) = d
yeEK mq<1

and (v-d) is the duality gap (for the particular choice of q).
We shall call the family of problems (parametrized by q)

Problem D(q)

max  —h(m)
s.t. mq<1 o

the dual relaxation of Problem CM ( or of Problem M ), in the sense that, for
any optimal y in K there exists an optimal § in [K] given by

§=dy with d = max ~h(m)
A AY

More generally points of the form

§=-dgq-= h(ﬂo) q
with d optimal value of D(g) can be called bounds for Problem CM, because
they are not dominated by points in K.

The possibility of finding bounds suggests to implement a branch and
bound procedure, modified in an appropriate way in order to handle the mul-
ti objective case.
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The main difference consists in the presence at the same time of seve-
ral incumbents and several bounds. It is assumed that the reader is acquain-
ted with branch and bound techniques (just to quote one reference see Shapiro
(1979)). In order to describe the procedure it is convenient to define the
following operations on subsets A,Bc Y :

AUB

{y€AUB:Zx€AUB , x-y¢€ MNo} 1}
A~B={y€A:4x€AUB, x-y¢€mo} }
Moreover let
K, be a subset of K ( K, =K )
[Kk] be the convex hull of Kk
Z, be the optima in Kpe
Z, be the optima in [Kk]
2 .
Ek n K are the incumbents for Kk
Bk=Zk\Wk are the bounds forKk

We shall first define an "abstract" branch and bound procedure as a ge-
neral model for particular implementations.

Abstract branch and bound

k:=0
h:=0
*
(*) compute Wk, Bk
:=WUW
W WUk
for j:=k to hdo B, :=B, ~W
J J
if Bk =@ then I(k is fathomed

else partition Kk=Kh+1UKh+2U...UKh+n

for j:= h+1 to h+n do B,:= Bk
J

h := h+n
k := k+1
if (%=¢ for any k<j<h ) then Stop

else while Bk= ¢ do k:=k+1

*
goto (*) a
This procedure will stop in a finite number of steps if K is discrete,
eventually producing W=Z. If K has infinite cardinality, W will approximate
Z as k tends to infinity.

However an actual implementation requires Wk, Bk to be replaced by fi-
nite subsets ﬁk < Wk s ﬁk < Bk . Besides, as the computation goes on, a di-

rect comparison of W and Bk could suggest not to further partition Kk s



90

when Ek bounds '"not interesting' optima, In this case Bk could be dropped.
We call this operation "forced" fathoming.
By taking into account the above remarks we have

Branch and bound for multi objective problems

k:=0
h:= 0 _ _
(*) compute W, B
W:=wivW
0w, i i
for j:=k to hdo B, :=B, ~W

J J -
if XK. has to be forcedly fathomed set Bj = ¢
J

k " h+1
for j:= h+!1 to h+n do B,:= B
i k

if Bk # ¢ then partition K =K UKh+2U._..UKE+n

h := h+n
k := k+1
if ( ﬁ_= ¢ for any k<j<h ) then Stop
) else while B, = ¢ do ki=k+t

goto (%)

It is clear that even the above procedure is a general model. A real
program requires many non trivial technical details to be worked out. This
is matter of current research.

It is worth to point out that this procedure works interactively. The
interaction comes in for the computation of ﬁk and Ek and for the forced
fathoming.
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LEVITIN-MILJUTIN—-OSMOLOVSKII CONDITIONS FOR
LOCAL PARETO OPTIMALITY

Milan Vlach
Department of Operations Research and Computer Science,
Charles University, Prague, Czechoslovakia

The purpose of this talk is to show that the technique developed by Le-
vitin, Miljutin and Osmolovskii (1974, 1978) can easily be applied to opti-
mization problems with nonscalar valued objective functions.

1. PRELIMINARIES

Let f = {fi}il_)1 be a finite family of real valued functions on a topo-

logical space X. Let us define the sets Bx' B; and B; as follows:

2]
]

v € x| £(y) < f(x), £(y) # £(x)},

B, = {y€ X | £(y) < £f(x), vy # x},

"

B {ve x| £(y) < £(x)}.

Given f and a set S € X, a point x € X 1is called a local Pareto mi-
nimum point for (f,X) if x € S and there is a neighbourhood Nx of x
such that

an si Bx=¢. (1)

1f Bx is replaced in (1) by B;, then x 1is called a strict local Pareto
minimum point for (£,S). If Bx is replaced by B; , then x 1is called a
local weak Pareto minimum point for (f,S).

From now on we shall assume that X 1is a Banach space and S 1is the
set of all solutions to the system

g(x) <0,
h(x) = 0O,
where g = {gj}jgl is a finite family of real valued functions on X and

h is a mapping of X into a Banach space Y. Let x be a point in X and

let us define fX = {f?} by
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£X(y) = £.(y) - £, (x) i=1,2
i Yy i Yy i X) . tZ70001Pe

Let vy be a nonnegative real valued function on X continuous at O and
such that y(0) = O. It is not difficult to verify that:

a) If x 1is a local weak Pareto minimum point for (£,S), then there
are no € > O and no segquence {yn} of points in X such that y, - 0 and
for all n

X .
fi(x + yn) + ey(yn) < 0, i=1,2,...,p

gj(x + yn) + ey(yn) < 0, i=1,2,....,q9

h(x + yn) 0.

b) If x € S and if there is € > O such that there is no sequence
{yn} of nonzero points in X such that y, >0 and for all n

X .
fi(x + yn) - evly,) 20, i=1,2,...,p
gj(x ty) -evly) 20, J=1,2,....q

h + =
(x +y) o,
then x 1is a strict local Pareto minimum point for (£,8).
We recall some notions of convex analysis that will be employed in the
next sections. Let F be a continuous convex function on X, let x* be a

continuous linear function on X and let N(x*,F) denote the negative of the
conjugate function of F, that is

N(x*,F) = inf {F(x) - x*(x)}.
X€X

*
Let JF denote the set {x* € X | N(x*,F) > -} and let n be a nonnega-
tive number. We shall need the following set and function:

*
{x* €x | N(x*,F) > F(O) - n},

3_F
n

Lo |
1]

max {N(x*,F) + x*(x)}.
x*EBnF

2. LEVITIN-MILJUTIN-OSMOLOVSKII APPROXIMATIONS

The main technical tools we shall need are the approximations introduced
by Levitin, Miljutin and Osmolovskii (1974, 1978). See also Ioffe (1979).

We shall say that a real valued function f on a Banach space X satis-
fies Levitin-Miljutin-Osmolovskii condition at x € X if there are a neigh-

bourhood NO of zero and a real valued function Fx on X X X such that
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(i) for every y € No the function Fx(y,-) is convex and continuous on X;

(ii) there is M > O such that IFx(y,z)I < M for all y,z € NO;

(iii) for every y € N and every z € X

0]

a) f(x +y) =E(y,0)
b) f(x +y+2) <F(y,z) + r(y,2ll

where r(y,z) » O whenever (y,z) -» O.
Every Fx with these properties is called an LMO-approximation of f at x.

A mapping Hx: X x X2 Y is called an LMO-linear approximation of
h: X+Y at x if

. b'e
(1) Hx(y,au + Bv) = oH (y,u) + BHx(y,v)
for all y,u,v € X and all o,R € R, a + B = 1;

(ii) H® is bounded in a neighbourhood of O in X X X;
(iii) for every y,z € X

hix +y +2z) = H (y,2) + r(y,2)llz

where r(y,z) + O whenever (y,z) - O.

Examgle: If f 1is continuously F-differentiable at x, then

Fx(y,z) fx+y) + £Y{x + y)z

F(y,z)

f(x +y) + £f'{(x)z

are LMO-approximations of f at x. If £ 1is Lipschitz in a neighbourhood
of x and L 1is a sufficiently large positive number, then

F¥(y,z) = £(x +y) + Uizl

is an LMO-approximation of £ at x. If h: X - Y is continuously F-diffe-
rentiabhle at x, then

B (y,z) = h(x + y) + h'(x)z (2)

is an LMO-linear approximation of h at x. For more sophisticated examples
of LMO-approximations see Levitin et al. 1974, 1978) and Ioffe (1979).

We shall say that an LMO-linear approximation HX of h at x satis-
fies Ljusternik condition if it has form (2) and h'(x)X = Y.

Let (B,<) be a nonempty set directed in the sense that < is a par-
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tial order on B such that for every Bl' 82 € B there is 83 such that
83 < B1 and 83 5.82. A family {FX}BEB of LMO-approximations of f at x
is said to be a net of LMO-approximations of f at x if there is a neigh-
bourhood NO such that

5_82, y € NO' z € X a»FE (y,2z) f_FE (y,z).

1 2

&1

3. OPTIMALITY CONDITIONS. CASE Yy = O

From now on we shall consider a problem (f,S) and a point x satis-
fying the following conditions:

(1) all functions f? ’ gj are continuous and satisfy LMO-condition at x;
(ii) the mapping h has an IMO-linear approximation at Xx;
(iii) g(x) = 0, h(x) = O.

The following theorems follow from the results of Levitin, Miljutin
and Osmolovskii (1978).

Theorem 1
If (a) x 1is a local weak Pareto minimum point for (f,S);

() {F}} i=1,2,...,p

X . .
{Gj} i=1,2,...,9
are nets of LMO-approximations of f: and gj at x;

X . . . . . . .
(c) H is an LMO-linear approximation of h at x satisfying Ljuster-
nik-condition;

then for every B € B and every n > O there is p > O such that the fol-
lowing system has no solution in X x X:

Nyll< o, llzl < p, W (y,z) = O,

n

B(Y’Z) + dlzll <0, i=1,2,...,p

F
1

G?E(y,z) +1lzll <o, 3§=1,2,...,q.

To dualize these necessary conditions we consider the space 2 of all
* *
A = (a,B,u,v,w) where o € Rp, B € Rq, u€ (X )p, v € (X )9 and w€ Y . The

+
set {A€2Z | a>0,8 > 0} will be denoted by Z . Given y € X, n > O, nets
]

(y) 1is de-
1 Y

{F: 1, {G§B} and H' satisfying Ljusternik condition, the set A

fined as the set of all A € Z+ such that
b'e .
ui( BnFiB(Y,'), i=1,2,...,p
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v. €3 G (y,°) j=1,2 q
j njB ? ? ? F AL LY 4
Ta, + LB, + 1wl = 1,
i 3
' < .
HZaiui + Zijj + wh'(xll <n

We shall also define the following functions:

X X
@ (y,\,B) = ZaiN(ui,FiB(y,-)) + ZBjN(vj.GjB(y.-) + w(hix +vy)),
ofw) = s 0.
B
XEAn(y)
Theorem 2

If (a), (b) and (c) of the previous theorem hold, then for every B € B and
n > O there is a neighbourhood NO of zero such that

B8
¢n(y) >0 for all y € Nj.

Theorem 3

If (b) and (c) of theorem 1 hold, then x is a strict local Pareto minimum
point for (f,S) if and only if for every B € B, n > O and every sequence

{yn} of nonzero points converging to zero there is n, such that

B
¢n(yn) >0 for all n > no.

4, HIGHER-ORDER OPTIMALITY CONDITIONS

In addition to the previous assumptions on <y we shall assume that vy
is Lipschitz in a neighbourhood of zero and such that vy(y) > O whenever
y # 0.

Theorem 4
If (a), (b) and (c) of theorem 1 hold, then for every B € B and n > O
B
¢n(yn)

inf lim — > O (3)
ne Y(yn)

where infimum is taken over all sequences {yn} of nonzero elements conver-
ging to zero.

Theorem 5
If (b) and (c) of theorem 1 hold and if for every B € B and n > O the in-

equality (3) is strict, then x is a strict local Pareto minimum point for
(f,S).
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FUZZY ASSESSMENT OF MULTIATTRIBUTE UTILITY FUNCTIONS

Fumiko Seo' and Masatoshi Sakawa?
'Kyoto Institute of Economic Research, K yoto University, Kyoto, Japan
2 Department of Systems Engineering, Kobe University, Kobe, Japan

1. INTRODUCTION

This paper is concerned with deriving fuzzy multiattribute utility
functions (FMUF) based on extensions of the fuzzy set theory. The general
procedure of assessing the MUF is composed of three steps; (i) evaluating
unidimensional (single-attribute) utility functions (UNIF), (ii) assessing
the scaling constants ki’ K on them and (iii) obtaining representation

forms of the MUFs. The step (i) corresponds to the lowest-level system's
decomposition in which preferential and utility independence among the
attributes are assumed. In the step (ii), system's coordination is executed
from the societal point of view and value trade-off experiments among the
attributes are performed. The step (iii) is simply concerned with formal
representation and calculation of numerical (viz. cardinal) MUFs. This method
has shown to be particularly useful for manipulating noncommensurateness and
conflict of the multidimensional objective systems. The main limitation of
this method is to neglect multiple agent problems. The evaluation is exclu-
sively based on individual preferences of the single decision maker. The
method ultimately have some individual assert a set of preference as
"socially" desirable. Collective choice or group decision problems are not
taken into considerations.

This paper intends to fuzzify the value assessment in the step (ii), the
coordination process, by including the social choice problems. In the step
(ii), fuzzification can be performed twofold: before and after the value
trade-off experiments among attributes. First before the experiments, objects
(attributes) should be compared with each other and a preference ordering
should be found. In this process, a fuzzy preference ordering due to diver-
sified evaluations can be explicitly considered and defuzzified. With this
device, a non-fuzzy social preference ordering can be derived. Then according
to the derived preference ordering, the value trade-off experiments can be
executed consistently to find the indifferent point X x in the following.

x_ ) o))

Xgo) = u(xiO’ sx

ulryps xgq
From the representation theorem [Keeney and Raiffa 1976] and (1),

k, =k u (x ) or k./k =u (x ), i=1,...,m, i # s. (2)
i s s sx i' s s sx

Second, after the value trade-off experiments, a numerical value of the
scaling constant ks for the utility function ug of the most preferable
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attribute X should be assessed. In this process, a specific chance lottery

technique is used, and the probability can be assessed as a fuzzy number.
Finally, using the algebraic operations on the fuzzy numbers, the FMUF can be
derived and calculated.

In the following sections, basic concepts for fuzzy preference relations
[zadeh 1971] are reviewed and discussed in relation to a general procedure
for evaluating the FMUF (Section II). Then operations on fuzzy numbers are
discussed for obtainning numerical values of parameters (scaling constants)
of the FMUFs (Section III). Finally a brief summary of the method is provided
and some illustrations to evaluate the FMUF are presented with a computer
assistance (Section IV and Appendix).

2. FUZZY PREFERENCE RELATIONS AND FUZZY ORDERING

A fuzzy binary relation R 1is defined with a fuzzy set of ordered pairs
of objects (attributes) in a set A. Thus the fuzzy (preference) relation R
(& or v ) is a fuzzy subset of X x Y characterized by a membership
function Mg which associates with each pair (x, y), x €X, y € ¥, its

"grade of membership" uR(x, y) in R. We can simply assume that the number
of uR(x, y) takes a range of interval [0, 1]; which represents the strength

of a preference relation between x and y.
Properties of the fuzzy preference relation are defined with the member-
ship function uR(x, y) for all x €X and y €Y in dom R as follows.

(i) connectivity: X#y = uR(x, y) >0 or uR(y, x) > 0. (3)
(ii) reflexivity: uR(x, x) = 1. (4)
(iii) symmetry: uR(x, y) = uR(y, X). (5)
(iv) transitivity: R DR o R. (6)

where o denotes a twofold composition. In alternative expression,
Hp(xs 2) 2 v (up(x, y) A Hp(y, 2)) 7

(v) antisymmetry: uR(x, y) > 0 and uR(y, x) >0 = x=y . (8)

Using those properties of the fuzzy preference relations, classes of the
fuzzy preference ordering are defined as follows:

(a) fuzzy preordering (or fuzzy quasi-ordering): reflexive and transitive.

(b) fuzzy partial ordering: reflexive, transitive and anti-symmetric.

(¢) fuzzy linear ordering: connective, transitive and antisymmetric.

(d) fuzzy weak ordering (complete ordering or total ordering): connective
and transitive.

The fuzzy preference ordering can be used in any permutation operation
on the objects for social choice, In other words, social preference patterns
can be generated by a permutation mapping ¥ : A— A. This permutation
operation can be used for constructing a non-fuzzy social preference ordering
among attributes.

First a hierarchical structure of the fuzzy preference ordering can be
considered in resolution of the fuzzy binary relation R into a union of
several non-fuzzy sets. For a number o« in [0, 1]}, an a-level set Ra of
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a fuzzy relation R 1is defined by
R, = {(x, 21 up(x, ¥) > o} 9)

The Ra is a non-fuzzy set in X x Y and those sets form a nested sequence
of non-fuzzy relations with a, > o, = Ra c Ra .

J i g
The o 1is interpreted as an agreement level in social choice. The proposi-
tion is stated with this decomposition device.

Proposition 1 [Zadeh]

Any fuzzy relation in X x Y admits of the resolution

R = z aRa , 0<acx<l (10)
a
where z stands for the union g and aRa denotes a subnormal non-fuzzy set
o
defined by
uaRa(x, y) = auRa(x, y) (11)

or equivalently

o for (x, y) € Ra

HoR (x, v (12)
Q

0 otherwise

For the resolution of a fuzzy preference relation to subnormal non-
fuzzy subsets, a relation matrix for UR can be constructed. For instance,

consider an objects (attributes) set X = (xl, Xys x3, XA) C A, and assume

a simple majority rule for n voters [Blin and Whinston 1974]. Let O =
{Oij} denote a fuzzy set of preference ordering between X, and xj, and

N(0) 1is a number of a score (vote). The majority rule can be represented as

b, (x,, xj) = %—N(O), n = 20 (number of voters). (13)

RYi

Assume that the following score sheet has obtained in collective choice:

Ol = (xl, Xy, Xqs x4), N(Ol) = 4; 06 = (x3, X X xz), N(06) =1

0, = (xl, Xys X, x3), N(0,) = 2; 0, = (xl, X35 Xy x4), N(O7) =3

05 = (xz, Xps Xgs x4), N(OB) = 2; 0g = (x4, X1s %o x3), N(08) =2 (14)
0, = (xz, Xis Xy x3), N(04) =1; 04 = (x4, X1s X3, xz), N(Og) =1

0y = (x3, X1s %o x4), N(OS) = 2; 010 = (XZ’ X, Ky, xl), N(Olo) =2

The problem is to find a non-fuzzy social preference ordering from the
fuzzy set 0 = {Oij} obtained as a result of the collective choice. The

collective choice (14) will derive a relation matrix for the fuzzy social
preference relation on Xi x Xj’ itj, i,j=1,...,4, as follows.
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1 2 3 4
1 0 .75 .75 .7
2 .25 0 .65 .8 (15)
UR =
3 .25 .35 0 .6
4 .25 .2 .4 0

It is shown that the relation matrix (15) represents the connectivity
but intransitivity has occured in triples (xl, Xy x4), (x4, X5 XZ) and

(x4, X35 XZ)' It means that the fuzzy preference ordering includes some

contradiction. For ensuring the transitivity, the strength (viz. characteris-
tic values) of the binary relations (xl, x4) and (x4, xz) in (15) must be

reexamined and the relation matrix should be interactively revised to obtain

0 .75 .75 .75

U; _ .25 0 .65 .8 (169
.25 .35 0 .6
.25 .35 i 0

Now it is found that the u ensures the transitivity and represents

R
the weak ordering (complete or total ordering). If the revised values are
acceptable to the assessors, a non-fuzzy relation matrix representing a
social preference ordering has been obtained. In other words, by decompos-
ing a fuzzy set of social preference orderings (14) into an union of its
o-level sets, we can derive a non-fuzzy set characterized with the weak
ordering as follows.

Rom.g = (%5 %)

Ram.7 = Ram g U {(xps 350 (xpy x5 (xp5 %))

R_ =R _ u(x,, x;), (x,, x,))

o=.6 a= .7 2 3 3 4 (17)
Ra=.4 = Ra=.6 U(x4’ x3)

Ra=.3 = Ra=.4lJ(x3’ xz)

Roop =R g Uy, %05 (x5 x5 (%45 %705 (%, %,))

If the relation matrix is a partially ordered set, an extension of the
Szpilrajn theorem [Baer and @sterby 1969] guarantees the existence of a
mapping o of the fuzzy partially ordered set xP onto a fuzzy linear-ordered

set XU [Zadeh 1971].
Now we can construct the most agreeable preference ordering for the
objects (attributes) set X = (xl, Xys X3, x4) C A. For this purpose,

classes of the weak (total) ordering set (16) are defined corresponding to
the a-level decompositions (17):

Cl = (xz, xa) ... level .8

C2 = ((xl, xz), (xl, x3), (xl, xé)) v.. level .7 (18)
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Cy = ((x,, x3), (x3, x4)) ... level .6

Taking the intersection, we can find a single ordering

Cl N C2 N C3 = (xl, Xy, Xg, x4) (19)

or in another expression
X > x, }-x3 P X, (20)

which can be called the weak ordered non-fuzzy solution to our problem in
the level 0.6. Or preferably, using the membership function

u (x, y) = .6, we can say about (20) "the degree or strength of

€NC1Cy
agreement is 0.6.".

With this device, the range and degree of disagreement which is included

in the first phase of the step (ii) also can be ascertained. For instance,
counter-ordering classes can be obtained from the a-level set (17):

[

Ci = (x4, x3) ... level .4

Cé = (x3, xz) ... level .3 (21)

Cé = ((Xzy xl)’ (X3, xl)’ (XA, xl), (XA, Xz)) e.. level .2

Taking the intersection,

' ' =
Clr\ C2 C3 (x4, X35 Xy xl). (22)

Then we can say about the social preference ordering (20) "it is disagreeable

in level 0.4" or preferably, using the membership function

uchcgﬁc,(xi, xj) = 0.25, "the degree or strength of disagreement is .25".
After constructing the best-compromized social preference ordering (20)

with the above reservations, the value trade-off experiments between each

pair of attributes can be executed and relative ratios of the scaling

constants are obtained.

3. OPERATIONS FOR ASSESSING THE FUZZY SCALING CONSTANTS AND DEREIVING FMUF
Now the second phase of the fuzzification process in the step (ii)
should be examined. After obtaining the relative values ki/ks of the
scaling constants in (2), a numerical value of ks for the utility function
us(xs) of the most preferable attribute should be determined. For that

purpose, an indifference experiment on m objects (attributes) can be
executed answering the following question:

Question Let consider a lottery which will take alternatively with a proba-
bility P the best values X, for all the attributes i, i = 1,..., m,

or with a probability 1 - P the worst values X0 i=1,...,m, for all
the ones. On the other hand, let consider a certain consequence in which the
most preferable attribute takes its best value x and the other ones take

sl
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their worst values {XEO}’ s=1,..., s-1, s+l,...,m. Then what is the
numerical value of the probability P with which the lottery and the certain
consequence will become indifferent?

The fuzzification device here is to take the probability p, as a fuzzy
number ES = (ES, B, Y), where Es denotes a mean value of 35 and B
and vy denote respectively the left and right-side spreads from P The
parameters B, y and p, can be obtained as minimum, maximum and medium
evaluations of the probability Py in the collective choice or the group
decision making. Then the scaling constant kS can be assessed by

Y Y

p, =k, = (k,, B, V). (23)

We can take the L-R type of fuzzy numbers and perform the algebraic
operations on them [Dubois and Prade 1978]. The corresponding utility value
u in (2) can be also reexamined as a fuzzy number &s = (GS, §, n), where
the parameters 6, n and u, are obtained respectively as minimum, maximum
and medium values of reevaluations in the group decision making. With those
fuzzy numbers ts and ts’ all the fuzzy scaling constants ti’ i=1,..., m,

i # s, in (2) can be obtained.

The fuzzification of the scaling constants will have some effects on
choosing the representation forms (multiplicative or additive) of the MUFs.
Thus the following check should be performed.

m
(@) if § ti > 1, then -1 < K < 0 (multiplicative)
i=1
m 4%
(b) if ) K, <1, then K > 0 (multiplicative) 24)
i=1 *
m Y
(c) if ) k; =1, then K = 0 (additive)
i=1

Because the scaling constant ki is a fuzzy number, the assertion ( > and

< ) for that is still fuzzy. Thus it should be asked that what the truth
value of the assertion " ; ti is greater (or smaller) than 1" is. The
separation theorem of twoizizzy sets [Zadeh 1965, Dubois and Prade 1980] is
applied to the comparison of the fuzzy numbers ? ti and Y- (1, 0, 0).

i

The separation theorem asserts that when M 1is the maximal grade of the
intersection of two bounded convex fuzzy sets, the degree of separation D
of those sets is obtained by D =1 - M. For making an answer to the question
we can choose a threshold level 6., If M > 6 then it is called that
m

N N
X ki =1 in level ©. The FMUF can be represented in the following forms.
i=1



103

additive

=]

" N
U(xl,..., xm) = izl kiui(xi) (25)

multiplicative

I ~8

n
1+ KU(xl,..., xm)~

[AVERLV]
. (Kkiui(xi) + 1), (26)

1

The values of FMUF are calculated for alternative policies in which
different numerical values of attributes X5 i=1,...,m, are assigned. The
values of the single-attribute utility function ui(xi), i=1,...,m, i # s,

N - n -

can be assessed as the fuzzy number u, = (ui, 0, 0) or u, = (ui, £, v)
where Gi’ £ and v are also determined from the reevaluation by the
collective decision making. Based on the assessment of FMUF for the alterna-
tive policies A, B, C, D, a preference relation is found. For instance,

Uec) > U) > U(a) >U(MD) & C¥*B ¥A¥D (27)

Because the comparison (27) on the fuzzy number U is still fuzzy, the

previous procedure for ascertaining if ﬁ(c) is truly larger than ﬁ(B), etc.
should be applied here again. Thus the priority of the best prefered policy C
can be confirmed with the threshold level 6.

4, CONCLUDING REMARKS

The fuzzification of the multiattribute utility analysis can be
considered with its social-choice extensions. Evaluations for the fuzzy
preference ordering and the fuzzy number operations can be executed meaning-
fully in the context of collective decision making. Although many steps of
those evaluations still depend on subjective man-to-man exXperiments, «omputer
programs are available in some aspects for interactive repetitions of assess-
ment and calculations. ICOPSS/F has been newly developed for the fuzzy number
operations in the process of deriving the FMUF based on ICOPSS/I [Sakawa and
Seo 1981]. FKSET command assigns the fuzzy scaling constants and determines
the K. FEVAL command assesses the FMUF and GRAPHF command displays
graphically the FMUF values for the best two alternatives as the fuzzy
numbers; which would largely facilitate the fuzzy comparison and evaluations.
Some illustrations of the computer program ICOPSS/F for the interactive fuzzy
decision making are provided in Appendix.
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APPENDIX Demonstrations of ICOPSS/F

Illustration 1.

COMMAND :
=FKSET
INPUT MNAME:
=KIPAFWT
INPUT FUZZY P SUCH THAT

LOTTERY --- ALL ARE BEST WITH PROBABILITY FUZZY P

!— ALL ARE WORST WITH PROBARILITY FUZIZY 1-P

AND

CERTAINTY CONSEQUENCE —-—- KIPAFWTN IS BEST

'~ THE OTHERS ARE WORST
ARE INDIFFERENT (MEANsSPREAD) :
=0.90 0.005

Illustration 2.

COMMAND :
=GRAPHF
INPUT TWO ALT NAMES :
=ALT1 ALT3
1.00+ o X Bl e +
' '
; !
! o o X X '
' !
! !
‘ o o x X !
! '
' !
' o # X '
0.50- -
1o X 0 X '
] 1
; .
o X o X '
] [}
: i
e X o X '
! +
! t
0. o X ) X ' +
7.3018 7.5018 7.7018 7.9018 8.1018 8.3018

(10E-1)



INTERACTIVE FUZZY DECISION MAKING FOR MULTIOBJECTIVE
NONLINEAR PROGRAMMING PROBLEMS

Masatoshi Sakawa
Department of Systems Engineering, Kobe University, Kobe, Japan

1. INTRODUCTION

An application of fuzzy approach to multiobjective linear programming
(MOLP) problems was first presented by Zimmermann (1978) and further
studied by Leberling (1981) and Hannan (1981). Following the maximizing
decision proposed by Bellman and Zadeh (1970) together with linear, hyper-
bolic or piecewise linear membership functions, they proved that there
exists an equivalent linear programming problem.

However, suppose that the interaction with the decision maker (DM)
establishes that the first membership function should be linear, the second
hyperbolic, the third piecewise linear and so forth. In such a situation,
the resulting problem becomes a nonlinear programming problem and cannot be
solved by a linear programming technique.

In order to overcome such difficulties, Sakawa (1983) has proposed a
new method by combined use of bisection method and linear programming method
together with five types of membership functions; linear, exponential, hyper-
bolic , hyperbolic inverse and piecewise linear functions. This method was
further extended for solving multiobjective linear fractional programming
(MOLFP) problems (Sakawa and Yumine 1983).

In this paper, assuming that the DM has fuzzy goals for each of the
objective functions in multiobjective nonlinear programming (MONLP) problems,
the fuzzy goals of the DM are quantified using the same kind of membership
functions. Then by selecting one of the three possible fuzzy decisions, the
compromise solution of the DM can be derived from among fuzzy or nonfuzzy
Pareto optimal solutions, where fuzzy Pareto optimal solutions are introduced
to deal with the fuzzy goal like "z should be in the vicinity of C". On the
basis of the proposed method, a time-sharing computer program is written in
FORTRAN and an illustrative numerical example is demonstrated together with
the computer outputs.

2. INTERACTIVE FUZZY DECISION MAKING

In general, the multiobjective nonlinear programming (MONLP) problem is
represented as

min f(x)

>

T
(£,(X), £,00,.00y £,(0) W

subject to x €X¢ E"

where fl""’ fk are k distinct objective functions of the decision
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vector x and X 1is the feasible set of constrained decisions. Here, it
is assumed that all fi’ i=l,...,n are convex and differentiable and

constraint set X 1is convex and compact.

Fundamental to the MONLP is the Pareto optimal concept, also known as
a noninferior solution. Usually, Pareto optimal solutions consist of an
infinite number of points, and some kinds of subjective judgement should be
added to the quantitative analyses by the DM. The DM must select his compro-
mise solution from among Pareto optimal solutions.

In order to determine the compromise solution of the DM, there are three
major approaches:

(1) goal programming (e.g. Charnes and Cooper (1977)).
(2) interactive approach (e.g. Geoffrion et al. (1972), Haimes et al. (1975)

Zionts and Wallenius (1976), Wierzbicki (1979), Sakawa (1982)).

(3) fuzzy approach (e.g. Zimmermann (1978), Hannan (1981), Sakawa (1983)).
Each of these approaches has its own advantages and disadvantages relative
to the other approaches.

In this paper, considering that the DM may have fuzzy goals for each of
the objective functions, we adopt the fuzzy approach. In a minimization
problem, a fuzzy goal stated by the DM may be to achieve "substantially less"
than A. This type of statement can be quantified by eliciting a correspond-
ing membership function.

In order to elicit a membership function (x) from the DM for each

M

i
of the objective functions fi(x), we first calculate the individual minimum
len and maximum f?ax of each objective function fi(x) under given
constraints. By taking account of the calculated individual minimum and
maximum of each objective function, the DM must select his membership func-
tion in a subjective manner from among the following five types of functions;
linear, exponential, hyperbolic, hyperbolic inverse and piecewise linear
functions. Then the parameter values are determined through the interaction
with the DM. Here, except for TYPE 3, it is assumed that Mg (x) = 0 if

0 . 1 o ., _=
fi(x) > fi and e (x) =1 if fi(x) §=fi’ where fi is a worst acceptable
i

level for fi(x) and fi is a totally desirable level for fi(x).

(1) Linear membership function (TYPE 1)
f0

ne (0 = [£,00 = £)/18] = £, (2)

The linear membership function can be determined by asking the DM to specify

max min
f

the two points fg and fi within and fi .

(2) Exponential membership function (TYPE 2)

be (9= agll - expls by (5,60 = £/ (65 - 1)) (3)

where ai > 1, bi >0 or a < 0, bi < 0.
The exponential membership function can be determined by asking the DM to

. . 0 0.5 1 co e max min
specify the three points fi’ fi and fi within fi and fi , where

fi represents the value of fi(x) such that the degree of membership func-
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tion e (x) 1is a.
i
(3) Hyperbolic membership function (TYPE 3)
ufi(X) = (1/2) tanh ((fi(X) - bi)ai) + (1/2). (4)

The hyperbolic membership function can be determined by asking the DM to

specify the two points fg.zs and fg'S within f?ax and f?ln.

(4) Hyperbolic inverse membership function (TYPE 4)

b (0 = a, tanh_l((fi(x) - bay) + A/2). (5)
i

The hyperbolic inverse membership function can be determined by asking the

DM to specify the three points fg, fg.zs and fg's within fTax and
min
£,
i
(5) Piecewise linear membership function (TYPE 5)

N.

i
ufi(x) = jzl aij|fi(x) - gij| + Bifi(x) +oyge (6)

Here, it is assumed that e (x) = tirfi(x) + sir for each segment

8ir1 ;=fi(x) §=gir' The piecewise linear membership function can be deter-
mined by asking the DM to specify the degree of membership in each of several
values of objective functions within f?ax and f?ln.

After determining the membership functions for each of the objective
functions, the DM must select one of the following three possible fuzzy
decisions:

(1) a fuzzy decision given by:

min (ug )5 wg (K)5eeny Wp (O )
l<ic<k i 2 k
(2) a convex-fuzzy decision given by:
k k
.Z aiuf‘(x) .2 a; = 1, ay > 0. (8)
i=1 i i=1
(3) a product-fuzzy decision given by :
k
mow 0. 9

In every case, following the maximizing decision which maximizes one
of the three fuzzy decisions, the compromise solution of the DM can be
derived.

If the DM selects a fuzzy decision, the resulting problem to be solved
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is equivalent to solving the following problem:

max A subject to A < Mg (x), i =1,...,k (10)
x € X i

If the DM selects a convex—fuzzy decision, the problem to be solved is:

max
x € X i

I~

@ He (x) (11)
1 i

If the DM selects a product-fuzzy decision, the problem to be solved
becomes:

k

max v (x) (12)
x € X i=1 i

The relationships between the optimal solutions of the above three types
of problems and the Pareto optimal concept of the MONLP can be characterized
by the following theorem.

Theorem 1

* *
(1) If x is a unique optimal solution to (10), then x is a Pareto
optimal solution to the MONLP.

* *
(2) If x is an optimal solution to (11) with 0 < Mg (x ) <1 holding
i

*
for all i, then x is a Pareto optimal solution to the MONLP.

* *
(3) If x is an optimal solution to (12) with O < Ug (x ) <1 holding
i

*
for all i, then x is a Pareto optimal solution to the MONLP.

*
If x is an optimal solution to (10), (11), or (12), and if none of
the sufficiency conditions for Pareto optimality in Theorem 1 are satisfied,

*
then we can test the Pareto optimality for x by solving the following
problem:

max
x €X i

€,
1

I~

1 (13)

*
subject to fi(x) + e; = fi(x ), €.

;20 G=100,0).

- *
Let x be an optimal solution to (13). If all ey = 0, then x is a

Pareto optimal solution. If at least one € 7 0, we adopt the solution x

as the compromise solution of the DM, because it can easily be shown that x
is a Pareto optimal solution.

So far we have considered a minimization problem and consequently
assumed that the DM has a fuzzy goal such as "fi(x) should be substantially

less than ai". In the followings, we further consider a more general case

where the DM has two types of fuzzy goals, namely fuzzy goals expressed in
words such as "fi(x) should be in the vicinity of bi" (fuzzy equal) as

well as "fi(x) should be substantially less than ai" (fuzzy min) are assumed.
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Therefore, the problem to be solved is:

fuzzy min fi(x) (1€1)
Iy I={1, 2,...,k} (14)

fuzzy equal fi(x) (ie E)
subject to x € X.

In order to elicit a membership function from the DM for a fuzzy goal
like "fi(x) should be in the vicinity of bi"’ it is obvious that we can

use different functions to the left and right sides of bi' In this case,

the DM can select his left and right functions from among the same kind of
membership functions described previously (excluding TYPE 3).

After determining the membership functions for two types of fuzzy goals,
the compromise solution of the DM can be derived by solving one of the three
types of problems (10), (11) and (12) according to the DM's decision.

Now, we introduce the concept of fuzzy Pareto optimal solutions which
is defined in terms of membership functions instead of objective functions.
Definition 1 (A Fuzzy Pareto Optimal Solution)

A decision % 1is said to be a fuzzy Pareto optimal solution to (14), if

and only if there does not exist another x € X so that e (x) > g (ﬁ),
i i

1=1,...,k, with strict inequality holding for at least one i,

Note that the set of Pareto optimal solutions is a subset of the set of
fuzzy Pareto optimal solutions.

Using the concept of fuzzy Pareto optimality, the following fuzzy
version of Theorem 1 can be obtained under slightly different conditions.

Theorem 2
* *
(1) If x is a unique optimal solution to (10), then x is a fuzzy Pareto

optimal solution to (14).
*

*
(2) If x is an optimal solution to (11), then x is a fuzzy Pareto

optimal solution to (14).
* *
(3) 1f x is an optimal solution to (12) with Mg (x ) #+ 0 holding for
i

*
all i, then x is a fuzzy Pareto optimal solution to (1l4).
Similar to the minimization case, a numerical test of fuzzy Pareto

*
optimality for x can be preformed by solving the following problem:

k
max Z e
x € X i=1 (15)
*
subject to e (x) - € = Mg (x ), € 20 (i =1,...,k).
i i

— *

Let x be an optimal solution to (15). If all e, = 0, then x is a fuzzy

Pareto optimal solution. If at least one ey > 0, we adopt the solution x
X

as the compromise solution of the DM, because fuzzy Pareto optimality of
can be establised.
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3. AN INTERACTIVE COMPUTER PROGRAM AND AN ILLUSTRATIVE EXAMPLE

Fuzzy decision making processes for multiobjective nonlinear programming
problems include eliciting a membership function from the DM for each of the
objective functions. Thus, mitigation and speed-up of computation works are
indispensable to this approach, and interactive utilization of computer
facilities is highly recommended. Based on the method described above, we
have developed a new interactive computer program. Our new package includes
graphical representations by which the DM can figure the shapes of his member-
ship functions, and he can find incorrect assessments or inconsistent
evaluations promptly, revise them immediately and proceed to the next stage
more easily.

Our program is composed of one main program and several subroutines.

The main program calls in and runs the subprograms with commands indicated

by the user (DM). Here we give a brief explanation of the commands prepared

in our program.

(1) MINMAX: Displays the calculated individual minimum and maximum of
each of the objective functions under the given constraints.

(2) MF: Elicits a membership function from the DM for each of the
objective functions.

(3) GRAPH: Depicts graphically the shape of the membership function for
each of the objective function.

(4) GO: Selects one of the three fuzzy decisions and derives the

compromise solution of the DM by solving the corresponding
maximization problem.

(5) STOP: Exits from the program.
Consider the following multiobjective decision making problem.
fuz equal f.(x) = xz + 2
uzzy equa 1% 1 7%
fuzzy min fz(x) = (x2 - lO)2 + (x2 - lO)2
. _ 2 2
fuzzy min f3(x) = (xl 10)° + X,
fuzzy min f4(x) = (xl + lO)2 + (x2 + 20)2
fuzzy min fs(x) = (xl - 20)2 + (x2 + 10)2
subject to x € X = {(xl, x2)|0 %2 10, i=1, 2}.

In applying our computer program to this problem, suppose that interac-
tion with the hypothetical DM establishes the following membership functions
and corresponding assessment values for the five objective functions.

left: limear, (f3, £]) = (10, 50).
fl . . 0 0.5 1

right: exponential, (fl, fl s fl) = (195, 160, 50).

R 0 1

fz: linear, (fz, f2) = (130, 10).
f3: hyperbolic, (fg'zs, fg's) = (130, 100).
f4: hyperbolic inverse, (fg, f2.25’ fS.S) = (1200, 1100, 900).
f,: exponential, (fg, fg‘S, f;) = (750, 600, 220).

In Appendix, the interaction processes using the GO command are shown,
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where a fuzzy decision is selected by the DM and the corresponding maximiza-
tion problem is solved for his membership functions. Then by performing the
fuzzy Pareto optimality test the fuzzy Pareto optimal solution is obtained
as a compromise solution of the DM.

4, CONCLUSION

In this paper, by selecting one of the three fuzzy decisions together
with the five types of membership functions, we have proposed an interactive
method in order to deal with the fuzzy goals of the DM in multiobjective
nonlinear programming problems. By performing a fuzzy or nonfuzzy Pareto
optimality test, fuzzy or nonfuzzy Pareto optimality of the compromise solu-
tion of the DM is also guaranteed in our method, where fuzzy Pareto optimal
solutions are introduced to deal with the fuzzy goal like "should be in the
vicinity of ...". Based on the proposed method, the time-sharing computer
program has been written to facilitate the interactive processes.

An illustrative numerical example demonstrated the feasibility and
efficiency of both the proposed technique and its interactive computer
program under the hypothetical DM. However, applications to real-world
problems must be carried out in cooperation with a person actually involved
in decision making. From such experiences the proposed technique and its
computer program must be revised.
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APPENDIX

INTERACTIVE FUZZY DECISION MAKING PROCESSES

COMMAND s
=G0
SELECT YOUR DECISION:
(1) A FUZZY DECISION
(2) A CONVEX-FUZZY DECISION
(3> A PRODUCT-FUZZ2Y DECISION
=1

( KUHN-TUCKER CONDITIONS SATISFIED )

MAXIMIZE THE MINIMUM MEMBERSHIP

1 OBJECTIVE FUNCTION I MEMBERSHIP
—————————— e ————— e e —_—
FC 1) I 0.4692505135D0+02 I 0.9231262836D+00
FC2) 1 0.5781600373D0+02 I 0.60153330220+00
F( 3) 1 0.3128849023D+02 I 0.9252727426D+00
FC 4) 1 0.8095065855D+03 1 0.60153330220+00
F(C5) 1 0.3891244156D+03 I 0.8602914496D+00

MINIMUM= 0.6015333022D+00

( KUHN-TUCKER CONDITIONS SATISFI1ED )

FUZZY PARETO OPTIMALITY TEST

X( 1)= 0.5782640165D+01 X( 2)= 0.3673082918D+01
EPS( 1)= 0.13535163300-03 EPSC 2)= 0.
EPS( 3)= 0.2741271073D-04 EPS( 4)= 0.

EPS( 5)= 0.4235596267D-04

1 FUZZY PARETO OPTIMUM I MEMBERSHIP
—————————— + ——— ot e e e e e e o i ——
FC 1) I 0.4693046541D+02 1 0.92326163520+00
F(2) I 0.5781600373D+02 I 0.6015333022D+00
FC 3 1 0.3127766210D+02 I 0.9253001553D+00
FC &) 1 0.8095065855D+03 I 0.6015333022D+00
FC5) I 0.3890865172D+03 I 0.8403338056D+00
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1. Introduction

In recent years, many kinds of interactive optimization methods have
been developed for solving multiobjective programming problems. Such
interactive programming methods have also a role of the interface between
men and computers. In developing them, therefore, it is important to make
the best use of the strong points of ability of men and computers.
However, it seems that many of existing interactive optimization methods
require too high degree of judgment to decision makers, and too large
number of auxiliary optimizations to be applied to practical problem.

For example, in structural design problems, function forms of several
criteria can not be obtained explicitly, but their values are usually
obtained by complex structure analysis. Therefore, much computation cost is
usually required for each auxiliary scalar optimization. In design of
camera lens, the number of criteria is over one hundred, and in addition
their values can be evaluated by simulation of ray trace. For these
problems, many of existing interactive optimization methods become invalid.

On the basis of the above consideration, we shall suggest in this
paper a new type of interactive method for multiobjective programming
called the satisficing trade—off method.

2. Satisficing trade—off method

As long as we take an approach of optimization, we can not help
requiring decision makers such high degree of judgment as marginal rate of
substitution or ordering among a set of alternatives. Therefore, we shall
take another approach for interactive programming methods in order to
decrease the load of decision makers. H. Simon asserted that human
behavior is not always based on optimization but in many cases on
satisficing due to limitation of ability of human judgment and available
information [9]. Let X be a set of alternatives, and let each alternative
xeX be evaluated by criteria f=(f1,.n.fr) for which higher level is more
desirable., Then satisficing is to find a satisfactory solutions x in the
senge that the inequality

f(x) 2 F (2.1)
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holds, where T is the aspiration level of the decision maker. However, it
seems more natural to consider that even among satisfactory solutions, the
betters are better than just satisfactory solutions. Accordingly, we shall
find a solution among satisfactory solutions as better as possible.

Definition 2.1 Eet T be an aspiration level of the decision maker.
Then an alternative x is said to be a satisfactory Pareto solution if
£f(x) ¥ £(3) for all xeX
and
£(x) 2 .

In general, satisfactory Pareto solutions constitute a subset of X.
However, we can narrow down the set of satisfactory Pareto solution set and
obtain a solution close to the optimal one by increasing the aspiration
level, if necessary. On the other hand, even if there does not exist any
satisfactory Pareto solution for the initial aspiration level, we can
attain one by relaxing the aspiration level. On the basis of the above
consideration, the author have proposed a method called the satisficing
trade—off method which finds a reasonable satisfactory Pareto solution by
an appropriate adjustment of the aspiration level [5]. 1Its algorithm is
summarized as follows:

Step-1 (setting the ideal point) The ideal point f‘=(ff seees£2) is
set, where f% is large enough, for example, f%=Max {fi(x)l xeX}. This
value is fixed throughout the following process.

Step—2 (setting the aspiration level) The aspiration level Tﬁ of each
objective function fi at the k—th iteration as asked to the decision maker.
Here T should be set as I; < f§. Set k=1.

Step—-3 (weighting and finding a Pareto solution by the Min—Max method)

Set
k _ 1
Wy = __k , (2.2)
f! - Ii
and solve the Min-Max problem
Min Max wklfy -f,(0l (2.3)
xeX 1(ilr
or equivalently
Min 2z
X,z
subject to w‘i(f; - £,(x)) £z, i=l,..r (2.4)
xeX
Let xK be a solution of (2.4).
Step~4 (trade-off) Based on the value of f(xX), the decision maker

classifies the criteria into three groups, namely,

(i) the class of criteria which he wants to improve more,
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(ii) the class of criteria which he may agree to relaxing,
(iii) the class of criteria which he accept as they are.

The index set of each class is represented by I%, Iﬁ, IA' respectively. If
II—0, then stop the procedure. Otherwise, the decision maker is asked his
new acceitable 1eve1 of crxteria Tf for the class of

IX and If For ieIf, set T&=f (x%).

Step-5 (feasibility check) Let A; (i=l,...,r) be the optimal Lagrange
multipliers to the problem (2.4)., If for a small nonnegative e

p o
R T LT (2.5
i=1

then set the new aspiration level f§+las ?E and return to the step 3.

Otherwise, f% might be infeasible in the sense of linear
approximation as will be explained later. Then, by taking the degree of
difficulty for solving the Min-Max problem into account, we choose either
to trade—-off again or to return to the step 3 by setting f T In case

of trading off again, the acceptable level of criteria for I} and/or I%

should be reset lower than before, and go back to the beginning of the step
5.

Now we shall give two theorems providing basis to the above algorithm
in the following.

Theorem 2.1 Suppose that for any xeX
fe 2 fi(x), i=1,...,r. (2.6)

If we set for a given aspiration level T

1

W, =— i=1,...,r (2.7)
-
then the solution X to
Min Max 'ilfg - fi(x)l (2.8)
xeX 1Lilr

is a satisfactory Pareto solution in case of T being feasible, while it is
assured to be a Pareto solution even in case of T being infeasible.

Proof See [5].
Theorem 2.2 Let (X,z) be a solution to
Min 2z
X,z
subject to wi(f% - £,(x))  z, i=1l,...,r (2.9)

xeX

which is equivalent to the Min-Max problem (2.8), and let X=(X,,.. .x ) be
the optimal Lagrange multipliers. If X is of the interior to the set and
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each fi has appropriate smoothness, then we have

I
> %=1, % 20, i=1,...,r (2.10)
=1

I
i=1

Moreover, if the problem (2.9) is convex, namely, if each f; is concave and
the set X is convex, then for any xeX

) o
.21 v (£2(x) = £,(5) £ 0. (2.12)
1=

Proof See [5]1.

We shall 1list outstanding features of the satisficing trade—off method
in the following:

1) We do not need to pay much attention to setting the ideal point f*,
It suffices to set f* sufficiently large enough to cover all or almost of
all Pareto solutions as candidates for a decision solution in the following
process. In case of Max {f,(x) | xeX)} being finite, for example, set
f4=Max {f (x) | xeX}. Otherwise, set f$ to be sufficiently large.

2) The weights w; (i=1,...,r) are automatically set by the ideal point
f* and the aspiration level . For the weight with (2.2), the value of
'1(f! ~ f;(x)) can be considered to present the normalized degree of non-
attainability of fi(x) to the ideal point f!. This enables us to need not
to pay an extra attention to the difference among the dimension and the
numerical order of criteria.

3) By solving the Min—Max problem with the above weight, we can get a
satisfactory Pareto solution in case of the aspiration level T being
feasible, and just a Pareto solution even in case of T being infeasible.
Interpreting this intuitively, in case of T being feasible the obtained
satisfactory Pareto solution is the one which improves each criterion as
much as possible equally in some sense, and in case of T being infeasible
we get & Pareto solution nearest to the ideal point which share an equal
normalized sacrifice for each criterion. This practical meaning encourages
the decision maker to accept easily the obtained solution,

4) At the stage of trade-off, the new aspiration level is set in such a
way that

f§+1 > fi(xk) for any iaI%,
™ ¢ g B for any 1leI,

In this event, if Tk+1 is feasible, then in view of Theorem 2.1 we have
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fi(xk+1) > fi(xk) for any ieI%.

In other words, the solution to the Min~Max problem with wk+1=1/(f¢ - Fktl,
assures the improvement of criteria f; for any ielj. In setting the'new
aspiration level, therefore, it is desirable to pay attention such that it
becomes feasible.

5) In orxder that the new aspiration level fk 1 may be feasible, the
criteria f; (ieIX g) should be relﬁ:ed sufficiently enough to compensate for
the 1mprovement of f. (x ) (ieI To make this trade—off successful
without solving a new Min— Max problem, we had better make use of
sensitivity analysis on the basis of Theorem 2.2, Since we know already x
is a Pareto solution, the feasibility of x *1 can be checked by (2.5).
Here ¢ is introduced to make (2.5) available for nonconvex cases where
(2.12) does not necessarily hold. Moreover, observe in view of (2.11) that

a1 = li'i' i=1‘---‘r (2-13)

represents the semnsitivity which reflects the mutual effect of change of
each criterion restricted to the Pareto surface. Based on this
information of sensitivity, the decision maker can easily judge how much
the criteria f, for ieIy should be improved and how much the criteria f;
for isIR should be relaxed. In particular, since a little relaxatign of fj
with j such that l =0 fan not compensate the improvement of f, (ieIi) under
the condition that T should be on the Pareto surface, we have to relax

at least one fj for j such that lj#O.

Roemark 2.1 The stated feasibility check is just for the purpose of
decreasing the number of solving Min-Max problems, and is not necessarily
performed strictly. In some cases, several trials for trade—off can not
succeed in holding (2.5) and the decision maker would tend to be tired of
trading off again and again. In this circumstance, we had better go to
solving Min-Max problem immediately even if (2.5) does not hold. However,
in cases where it is necessary a lot of effort to solve Min—-Max problems, a
few retrials of trade—off could not be helped.

Remark 2.2 One may notice that the satisficing trade—off method is
along a similar line as STEM ([1]) and interactive satisficing method based
on scalarizing functions ([11]). In STEM, however, the aspiration level is
not treated explicitly, and at phase of trade—off the decision maker is
asked just to relax some of criteria. In practical situations, however,
we encounter many cases where decision maker want to improve acutely some
of criteria. The Min—Max problem, which plays an important role in the
satisficing trade—off method, is a special type of scalarizing functions by
Wierzbicki [11]. As was stated above, it has a useful practical
implications and good features for interaction. Without going so far as to
modify it in a complex form, therefore, the Min—-Max problem sufficiently
fits our purpose. These points enable the satisficing trade-off method
simple and easy to treat.

3. Illustrative examples

In order to show the effectiveness of the satisficing trade-—off
method, we consider a hypothetical water quality control problem which was
previously solved by the interactive relaxation method [9]. A river basin
in the middle—western part of Japan is modeled: there are three branches
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necessary. Each of other two branches in the upper reach have its own
treatment-plant which is supported by a local government in the upper
reach. Another local government around the lower reach takes care of a
treatment—plant in the lower reach. Under this situation, we have three
objectives to be minimized:

1) treatment cost in the upper reach
£1(x) = 287.58 + 2295.59(x; - 0.45)2+ 404.46(x, - 0.45)2 (10%yen/day)
2) treatment cost in the lower reach
fa(x) = 1050.73 + 10035.34(xg - 0.45)2 (104yen/day)
3) BOD concentration at the inflow point into the sea
f3(x) = 36.03 - (8.05x1 + 1.04x, + 24.00x3) (ppm)
Here X1, Xg denote the percent treatment to be used at the two treatment

plants in the upper reach, and x5 denote the one in the lower reach. Our
congtraints are as follows:

0.45 é 21. 121 13 é 1.0

It is natural to consider that the two local governments are both
decision makers in this problem who share the cost for maintaining clear
water. However, suppose here that we have a central authority who is
responsible for the final decision.

One of results of our experiment is as follows: The ideal point is
set as (fy, f§, £f4) = (0.0, 0.0, 0.0). The initial aspiration level was

given by (fi. i, f%) = (700.0, 3000.0, 5.0). By solving the Min-Max
problem we have the following Pareto solution.

XXXXKXXXX PARETO SOLUTION BY MIN-MAX METHOD ¢ 1) XXXXKXKX

F¢ 1)= @.78986D0+83 ASPF( 1)= 8.7a88080+03
FC 2)= 8.33817D+04 ASPF(¢ 2)= 8.30008D+84
F¢ 3)= 8.563610+81 ASPF(¢ 3)= @.5@ae880+81

DO YOU COMPPOMISE WITH EACH F(I) ? (YsN)? N

Observing this result, one may see that the initial aspiration level
took too much for granted. Since this result is not satisfactory, however,
the central authority classifies the criteria into three groups.

XKKKKXXX CLASSIFICATION OF CRITERIA XKXXXXXX
PLEASE CLASSIFY THE CRITERIA INTO THREE GROUPS (I,R,AJ:
I: IF YOU WANT TO IMPROUVE FCI)

R: IF vOU MAY RELAX F(ID
Aa: IF YOU ACCEPT F<(I), AS IT IS

AN

F¢ 1)

F¢ 2) 7

I
a
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Xkxkkkxk CONFIRMATION XkXkkXkXkx

LLEVEL WHICH YOU WANT T0 IMPROVE
F¢ 3)= B.56361D0+01

LEUEL WHICH YOU MAY RELAX
FC 1)= 8.789860+83
F¢ 2)= @.33817D0+824

LEVEL WHICH YOU ACCEPT, AS IT IS
NONE

DO YOU WANT TO CHANGE YOUR JUDGE? (YsN)? N

The central authority wanted to make BOD concentration to be less than
5.0 by all means, and to this end he agreed to relax the cost of two local
governments, Now the central authority answers the quantity how much he
wants to improve or how much he may relax by taking sensitivity of each
criterion into account.

AXXXXk)kkX TRADE OFF XXXXXXXX

————— PLEASE IMPROVE —-—--

F¢ 3= 9.56361D+01 SENSITIUITY( 3)= @.658290-81
NEW ASPF= ? 8.5D1

————— PLEASE RELAX ~——--

F¢ 1)= B8.78906D+83 SENSITIUITYC( 1)= 8.258380-83
NEW ASPF= 7 B8.8D3

F¢ 2)= @.338170+824 SENSITIUITY( 2)= 8.16333D-83
NEW ASPF= 7 @.35D4

Although the improvement of f3, 5.64-5.00=0.64, 1looks to be small at a
glance, we can see in view of the sensitivity of f; that ordinary sacrifice
of £f; and f, could not compensate for it. According to the feasibility
check based on Theorem 2.2, in order to compensate for the improvement of
f; we have to take fy and f5 in such a way that

0.258<1073 xafy + 0.163:2073x4f, 3 0.658x1071x(5.64 - 5.00)

Otherwise, it can not be expected to realize a Pareto solution which
attains £3=5.00. Therefore, by taking several circumstances into account,
the new aspiration level of f; was relaxed to 800.0 (increasing by about
1.4%) and the one of f, to 3500,0 (increasing by about 3.5%).

The feasibility check is made for the answered level of criteria.

KKXXKXXXKk FEASIBILITY CHECK XXk¥XXX¥X
NOT FEASIBLE —--- AS LINEAR APPROXIMATION
WHICH DO YOU WANT TO GO 70 1, OR @ 7

ar MIN-MAX PROBLEM
1: TRADE-OFF AGAIN
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——————— INPUT AGAIN ~—=----

Since the new aspiration level of each criterion is not feasible in
the sense of linear approximation, we asked the central authority to trade-—
off again. Here the effort of the local government at the upper reach was
admitted to be reasonable, and therefore the central authority requested
the one at the lower reach further sacrifice

KXKKXKXKX TRADE OFF XAXXKXXK
----- PLEASE IMPROUE —~—---
FC 3)= @.563610+01 SENSITIVITYC 3)= @.658290-01
NEW ASPF= ? @.5D1
————— PLEASE RELAX --=---

FC 1)= 8.782060+83 SENSITIUITY( 1)= 8.258380-83
NEW ASPF= ? @.8D03

F¢C 2)= 8.33817D0+84 SENSITIUITY( 2)= @.163330-83
NEW ASPF= ? 8.37D4

KXkKkXKkk¥ %X FEASIBILITY CHECK ¥XXX¥Xxx
FEASIBLE —--- A4S LINEAR APPROXIMATION

The revised trade—off is now feasible in the sense of linear
approximation, and therefore we solved Min—Max problem with the weight v
based on the new aspiration level.

XXXXXXX¥X PARETO SOLUTION BY MIN-MAX METHOD (¢ 2) XX¥kXkkx

FC 1)= 8.79183D+83 ASPFC 1)= 8.8080608D0+83
F¢ 2)= 0.36622D+84 ASPF( 2)= 8.37008080+84
F¢« 3)= 8.49489D+01 ASPF( 3)= @.508v8D+a1

00 YOU COMPPOMISE WITH EACH FC(I) 2 (Y/N)? ¥
END OF GO, SEVERITY CODE=08

The obtained result was compromised by all local governments, and
hence the iteration was stopped here. Note that if omne of 1local
governments could not agree with this result, the other local government
was forced to bear a bigger cost or f3 was to be sacrificed. The final
compromise was made by considering this matter quite enough.

Throughout the experiments, we can observe several nice features of
the satisficing trade—of method:

1) The judgment required to decision makers is only their aspiration
levels. This is much easier than marginal rate of substitution and ranking
vectors.

2) Decision makers can trade—off among all objectives at the same time.

Therefore, they can easily adust the total balance among objectives.

3) Decision makers can easily accept the obtained solution because the
auxiliary Min—-Max problem gives it a practical meaning: if the aspiration
level is feasible, the solution is in a situation desirable as much as
possible, while it is nearest in a sense of equality to the aspiration
level in case of the aspiration level being infeasible.
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4) The number of auxiliary scalar optimization to be solved is quite few.
This encourages us to apply the method to practical problems with a large
number of objectives.

4. Concluding romarks

In this paper, we showed the effectiveness of the satisficing trade-
off method for multi-objective programming along a hypothetical example of
water quality management problem. the method is very easy and simple to
carry out in comparison to many existing methods. On this point, it is
competitive with the reference point method proposed by Wierzbicki [11].
However, the satisficing trade—off method has a merit that it provides a
practical meaning of equality to the solution by using Min—Max problems as
an auxiliary scalar optimization. The effectiveness of the method has been
also confirmed by other applications to, for example, a system reliability
problem and a bridge design problem [6],[8].

Even in cases with multiple decision makers, it can be applied
similarly. In fact, recall that we have two local governments as decision
makers in the hypothetical problem in the previous section. In our
experiments, however, we considered the central authority as a single final
decision maker. On the other hand, the role of the central authority can
be weakened more. For example, we can consider the central authority just
as a mediator between two local governments. Then, in our method the
supply of a Pareto solution by solving Min—-Max problem is considered to be
the role of the mediator. Like this, the satisficing trade-off method can
be expected to be applied to wide range practical problems.

Incidentally, the tandem quasi-Newton method for nonlinear
optimization, which was developed by one of the authors and others [7], was
used for solving auxiliary Min—Max problems.
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ON DIALOGUE ALGORITHMS FOR LINEAR AND NONLINEAR
VECTOR OPTIMIZATION FROM THE POINT OF VIEW OF
PARAMETRIC OPTIMIZATION

Jiirgen Guddat and Klaus Wendler
Department of Mathematics, Humboldt University, Berlin, GDR

1. INTRODUCTION

In treating vector optimization problems, dialogue methods play an
ever increasing role (see e.g. R. Dupré et al /2/, A. Wierzbicki /11/,
A. Lewandowski et al /8/, S. Zionts et al /13/).

Our research group at the Humboldt-University Berlin has done re-
search work in parametric optimization (see for instance /9/ and /1/)
for many years.

For this reason we consider vector optimization from the point of
view of parametric optimization.

Moreover, we ask ourselves what we can do for the vector optimi-
zation with our knowledge and experience in parametric optimization.

We consider the following vector optimization problem

(VOP) max {(z.l(x),...,z(x))’ xeM} |

where M€R" and Zj : RT—» R (j = 1,...,1) are given functions.The

corresponding parametric optimization problem then reads
|
P(A ) : max {Z ).J.zj(x) ' xeM} , Ae A
=1

where

A= {Aer' 1A 20, 5=1,...0, = AJ-=1} :

We denote by"f’opt()) the set of all global maximizers and by
*loc { A ) the set of all local maximizers,

It results from the well-known relation between vector optimization and
parametric optimization that all points of the set

A:i/\fopt (A) resp. kje.lt."f'oc (A)

are interesting for decision making.
In our opinion, a dialogue method should satisfy at least the fol-
lowing demands:
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1) An efficient algorithm to compute polnts of

A Y opt(N) rese. l\:j\_’\hoc (N)

should be avajlable.

2) Dialogue control should be easy and clear and performed approxi=
mately as follows:

. . k k
(1) Computation of a point x € '}ejj\.’\yopt (A) (x ea\{A’Yloc (A
(1) Estimation of the point xK basing on certaln additional informa=

tion like K
a) values for the individual ob jective functions at x,
b) derivations from the values

.z'J.=max {zJ.(x)/xeM} , Ji=1,...,]
(and possibly also
Ej = min { zJ.(x)/xeM} , di=1,....,1),

we assume that these problems are solvable,

c) dual information etc.

k+1
(g
(1i1) Computation of a point xk+1é JtLej./L x)‘/opt(y\')()< eJ\eAYloc()‘))
by taking Into account
a) the pleces of Information (ii) a),b),c) concerning xk, and
such points xk-1 , xk-z, -

already before,
b) the preference ldeas of the decision maker.

. which where possibly computed

We want to try to find an answer to the following two questions.

1. Are there efficlent algorithms to compute points of
/ / ?
A FoptM) () Vo AD) 7

2. How can we organize a dialogue in the sense described above?

Our experience shows that already in the linear case the solution of
the multi=parametric optimization problem P(A) demands considerable
computational expense, hence we take another way.

In our approach to the computation of points of

s
e A (\Popt(l) ( Dtejjl.\rloc(l))

we use algorithms basing on parametric optimization, where, contrary
to M. Zelemy /12/ and other authors, we 'solve" a series of one=
parametric optimization problems.

For fixed 7\0, }\16_/\_ , D\oi‘ 7\1 we conslider the one~parametric

optimization problem along the connecting line between A° and 11
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P(t, 2%, A : max { E ()\oj + 3\].1 —'Xj.’))zj(x)/xeM ,te[o,1]
In the’llnear case, there exist efficlent solution methods (see e.g.
F. Nozicka et al /9/, Bank et al /1/, C. van de Panne /10/).

Then we obtaln a point of
Vopt(A): AeA

after each simplex step. In the nonlinear case, we can apply methods
for the pointwise approximation of continous selection functions from

the polnt-to-set mapping Wloc : t —>'\P|oc(t) of the one-parametric

optimization problem P{(t, J\o, '.X_1) which have the advantage that lo-
cally convergent algorithms with a least superlinear rate of conver-
gence can be used here (see e.g. J. Guddat et al /6/, H.Gfrerer
et al /7/). In this way we provide a positive answer to the first
question.

To glve an answer to the second question, we consider the problem

P(‘t,7\°,>\4). Here we have first of all the parameter vectors

ACand 11 for the control of the dialogue.

Basing on this, a dialogue algorithm, which we want to denote by A1l
here, Is proposed. As this algorithm has the disadvantage that only
the improvement of one ob jective function value can be guaranteed
and, in the linear case, only efficient extremal points are computed.
We introduce a dialogue method eliminating these disadvantages in
chapter 3.

2. THE ALGORITHM A1

We assume that P{2 ) is solvable for all AeA (that means there
exists a global resp. local maximizer):

Step 1:

Solve the | optimization problems

max{zj(x)/ XGM} ,

J

and let x” be a solution'

'zj=zj(xj) (j=1,...,0).

Step_2:

Input of a start-wight-vector A° e A for the ob jective functions,
i = 0.

Solve P(A°). Let x!

' be a solution of P(A°).

Step 3:
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Step 4:

Input of a goal-weight-vector A 1 6l for the objective functions,

k=0, t =0, - N L

Step 5: ( for linear vector optimization problems)

Determine an upper bound tk+1 for the parameter t such that the
linear parametric optimization problem P(t, Ao, A1) has the solution
i,k i<

x for tk t_tk+1
instance /9/)).
Compute)"k+1 =A% + ¢

(by using a modified simplex method (see for

(AT =29, 20K = @ 9, ).

k+1 |

Step 5: (for nonlinear vector optimization problems)

Determine tk+1 and compute an approximation xi’k+1 of x(tk+1) as a
solution of P(tk, )o, }1) by using the imbedding algorithm proposed

in /6/ and /7/.
i k+1 _ 1
Compute A = Ao + tk+1 (A - )\o),

Zi,k+1 = (21(Xi'k+1), . .,Zl(xi,k+1))-

Step 6:

Evaluate the solution x 'K (linear case) and xi k1 (non-linear case),
respectively, by the decision maker. Decision about the print and
storage of the solution.

Decision about the continuation of the dialogue:

(i) further increase of the parameter t —» step 7,

(ii) choice of a new goal-weight-vector Al step 3,

(iii) continuation of the dialogue with an already determined and
stored solution as a start solution —» step 8,

(iv) choice of a new goal- and start-weight vector —» step 2,

(v) finishing the dialogue —» step 9.

Step_7:

k = k+1, if t, * 1 —» step 3.

k

if tk< 1, then a) in the nonlinear case —» step 5,

b) in the linear case, by carrying out a simplex step,

let xi'k be the solution —» step 5.
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Step 8:
Read in an already calculated and stored solution xp"k' from the

"1
working memory (Inclusively the weight vector lp'k ),
=1+ 1, x 10 = XPK , A° = APK step 4.

Step 9:
End of the dialogue

The dialogue is essentlally controlled by selecting mo and )..1 on the
basis of the deviations of the objective function values of the

computed points from already determined bounds zj(j = 1,....,1),
Ej = max { zj(x)/xe M} (i =1,...,1).
For the evaluation of the solution x"k, the decision maker gets

for instance the following information:

z 2(x11K) % x,k li,k+1
z, 2 (x k) 100 z, (' ")z, ALk 2k
E| zl(x]’k) 100 zl(xi’k)/f| .'A_Il'k JLiI’k”

k b

By a particulardetermination of 7\.1 the improvement of exactly one
ob jective function value can also be guaranteed. For detailed ex-
planations the reader is referred to the work mentioned above.
Telescreen-pictures are contained for the linear case in J. Guddat
et al /4/. The algorithm was implemented for the linear case.

3. ON THE ALGORITHM A2

In order to eliminate the disadvantages mentioned in the introduc-

tion, we consider a known efficient point x', which was computed

with the algorithm A1 for instance. By K ¢ {1,. ..,I}we denote the
index set of those objective functions whose value is to be in-
creased. Further, let K = i 1,... ,I} \K.

Analogous to the proceeding described above we formulate the fol-
lowing parametric optimization problem

Px* . A M) : max { g A.z.(x)/xem(x',,u)} ,
g (R) ('ff) jekR (R (K)

Ae A u e M)
K (K (K (K '
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where
M(x*,(siJ())={x€M/z(><) Z(X)+EJK)J' JeK},
A {2/ 230, 6%, Z 2. -1}
K) (K (K jeR (k)
My - /0<€y €T, - 2.0x"), j€K
) {’(Jm (i T A }
If we choose a? ;\‘ € -A- po Q_M_(x*) fixed, we can again
K)  (K) ®) ' (K) (K)
investigate a one-parametric optimization problem, namely
4 ©
P(x*, 2%, 2% o « (AT - A% )z (x)/
® ' ® " (K {J;R R TR R

x-eM(x ,p t)} tG[O,1],

* 0 - > "o, o .
MO p 00 - frem/z () z,(x") + t NE iex}.

In this case the dlalogue is mainly controlled by the choice of the

vectors , /“o and the index set K.
(‘K) (K) K)
Figure 1 illustrates the set M(X*,p , t) geometrically for an example
(K)
with 4 objective functions LT N and the set K = {3,&}
x, 4 25 = 2,(x")

—_ *
2y =12,(x"}

. 0
2, =2,(x")+ u
37 (K3

possible solutions

n | —z(x)+l-l
s (k14

Z3

M(x*, u% 0
u‘i‘) Mix*, 4% 1)

] : —p X

\{H

FIGURE 1 Geometrical example
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Basing on this, we give an algorithm A2 eliminating the disadvantages
of the algorithm A1 metioned at the end of section 1.

Algorithm A2:
Step 1:

. see A1
Step 5:

Step 6: See A1, and we add a possibility (vi) for the decision maker:

(vi) improvement of several objective functions(let x" be
computed by A1) —> step 9
Step 7:
] see A1
Step 8:
Step 9: input of the index set K,
input of the vector oe _M (x") .
bo€u
Step 10: Input of the welght vector A° € A p=20

(K) (K)

Solve P(x , (:Z\K')o , 0). Let y1’°

P(x" (-'}7-(\)° . 0)

be a solution of

Step_11: Input of the weight vector (}%\)1 ¢ ({Q-) . p = p+l,

p,o y1,o,

y = q=0,t =0.

o

Step 12: (for linear vector optimization problems)
Determine an upper bound tp+1 for the parameter t such

that the linear parametric optimization problem

* Ao al o
PR @ Y

has the solution y?'9(t) for tp €t < tp+1 (with the same

basls as yp’q(tp), yP%0) = yP'9)

by using a modified simplex method.

Compute zP'9(t) = (z1(yp ), ... ,ZI(Yp 1 9())).
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Step 12: (for nonlinear vector optimization problems)
anologue to step 5 for nonlinear vector optimization

problems
Step 13: |If tp+1 > 0 — step 14.
If tp+1 = 0 decision about the continuation of the dialogue:

(i) choice of another index set K and choice of another

vector po 6

(K) '(l:%(x*) —> step 9,

(i) possibilities (ii) - (iv) of step 5,
(iii) finishing the dialogue —> step 16.

Step 14: Evaluation of the solutions y®*9(t), t €t €t . by the

dicision maker . Decision about the print and storage of

special solutions yP'9(t) for fixed parameter values t
(only in the linear case).
Decision about the continuation of the dialogue:

(i) further increase of the parameter t (if t< 1)
—> step 15,

(ii) choice of other vectors 2_7_\:’ € A —> step 11,
(K) {K)
)

(iii) choice of other vectors A, }‘ € A_— —> step 10,
(R) (K) (K)
(iv) choice of another index set K and another vector

° € MAx') — step 9,

(K) (K)
(v) possibilities (ii) - (iv) of step 5,
(vi) finishing the dialogue —> step 16.
Step 15: g =g + 1,

carry out a simplex step, let yP9(t) be the solution
(only in the linear case) —> step 12.

Step 16: End of the dialogue.
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OPERATING CONSIDERATIONS PERTAINING TO THE
INTERACTIVE WEIGHTED TCHEBYCHEFF PROCEDURE

Ralph E. Steuer
College of Business Administration, University of Georgia, Athens, Georgia, USA

1. INTRODUCTION

The interactive weighted Tchebycheff method for solving the multiple
objective program

max {fl(x) = zl}
max {fz(x) = 22}
max {fk(x) = zk}
s.t. X € S

is described in [11]andf12]. & multiple objective linear proaramming appli-
cation of the weighted Tchebycheff procedure is given in [10]. Multiple ob-
jective integer and multiple objective nonlinear programming applications
are also possible with the Tchebycheff approach.

The strategy of the Tchebycheff approach is to sample a series of
successively smaller subsets of the set of all nondominated criterion vec-
tors. The name "Tchebycheff" is used in the title of the approach because
variations of the Tchebycheff (L ) metric are used to conduct the sampling,

The procedure concludes when a criterion vector has been identified that is
close enough to being ootimal for the decision maker to be willing to termi-
nate the decision process.

The effectiveness of the Tchebycheff method is derived from its en-
deavor to sample the subsets of nondominated criterion vectors in a maximally
dispersed fashion., Bv maximally dispersed we mean that the criterion vectors
comprising the sample are as far apart as possible from one another in the
subset in question. In this way, such samples can be expected to provide
better coverings of the nondominated subsets than random samples,

In the next section is summarized the weighted Tchebvcheff procedure
followed in Sections 3 to 2 bv a discussion of some of the finer points
pertaining to the effective overation of the method.
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2, WEIGHTED TCHEBYCHEFF ALGORITHM

In neqgotiation with the decision-naker, let o be the number of criterion
vectors presented to the decision-maker at each iteration and t be the in-
tended number of iterations the vrocedure is to run. The analyst then selects
a value for w which is the final iteration A-vector interval width (of the

[lit), u;t)]). This is done so that a A-reduction factor r, the factor that

controls the convergence of the algorithm, can be computed. It is recom-
mended that all four quantities be set in accordance with the guideline re-
lationships

]
RV
=

1/(2k)

kv’l/p

A
£
A

b 3/(2k)
t'—l/‘;

A

r

RA

where ¥ means approximately and k is the number of objectives, Then from
[12] we have the weighted Tchebycheff algorithm. X
Step 1: Solve for the ideal criterion vector z** ¢ R where

z** = max {f, (x)|x € S} + ¢,
i i i
in which it suffices for the ey to be moderately small positive

scalars.
Step 2: Normalize (rescale) the objective functions.

Step 3: Let h = 1. Let [zil), uil)] = [0, 1] for all i,
Step 4: Let h = h + 1. Form
k
—(h) _ k (h)  (h) ~
A= ve R Ay e Lo wy 1. izlxi =1}

Step 5: Randomly generate 50 x k weighting vectors from K(h).

Step 6: Filter the 50 x k weighting vectors to obtain the 2 x k most

different,

Step 7: Using the 2k weighting vector representatives of K‘h), solve the
2k associated augmented (or lexicographic) weighted Tchebycheff
programs

k
min + *h
{a +p .z (z¥ z,)}
i=1
or
k
lexmin {a, z (z** - z.)}
i=1
s.t. a 2 Xi(z;* - zl) l<iz<k
w, = z%k - 2z l1<i<k
i i i = =

Hh
[
x
]
N
=
[,
A
~



Sten 8:

Step 9:
Step 10:

Step 11:

Step 12:

Step 13:
Step 14:

Step 15:
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X e S

where p is a sufficiently small positive scalar,

Filter the criterion vectors resultina from Step 7 to obtain the
p most different. Then present the p nondominated criterion vec-
tors to the decision-maker.

From the sample of p nondominated criterion vectors, the decision-

X . . X h
maker selects his most preferred designating it z( ).

1f the decision-maker wishes to stop iterating prematurely, go to
Step 15. Otherwise, go to Step 11,

Let X(h) be the A-vector whose components are given bv
k -1
1 m 1 ) .. . if zih) # z;* for all i
|z** - 2, ' i=1 |z** - z, |
i i i i
e B th) = z¥*
i i
. & o th) # z%* but
i i
(h)
j € Z, = z%*%
33 5 3
Let k(h) be the weighting vector computed in Step 11. Form
—(h+1) K (h+1)  (h+l)7 ¥
A ={X e R |X, e [2] , M, 1, E X, =1}
i i , i
i=1
where h
[o, rh] e e e e e e .. if xih) - %%-; 0
+ +
[zi(h Y P P S I P L +yEp1
i h h i

[Xih) - %;-, th) + E—J . otherwise

in which rh is r raised to the hth power.

If h < t, go to Step 4. If h > t, go to Step 1l4.
If the decision-maker wishes to keep iterating, go to Step 4.
Otherwise, go to Step 15.

With x(h) an inverse image of z(h), stop with (z(h), x(h)) as the

final solution,

In Step 5 we generate the weighting vectors using the LAMBDA code from
the ADBASE [9] package. To obtain the most different representatives in
Steps 6 and 8 we use the FILTER code from the same package. If the oroblem
to be solved is a multiple objective linear or integer program, we can use
MPSX-MIP [4] for the repetitive optimizations of Step 7. If the problem to
be solved is a multiple objective linear or nonlinear program we can use
MINOS [7 and 8]. The advantage of MPSX-MIP and MINOS is that subsequent
optimizations in a sequence of similar problems can be commenced from a
"flying start" using information from the previous optimal solution.

To understand some of the finer points of the Tchebycheff algorithm,
we now discuss the following topics:

(a) criterion value ranges over the efficient set
(b) early fixation on a candidate solution
(c) number of solutions presented at each iteration
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(d) scaling the objectives

(e) most preferred criterion vector as filtering seed point
(f) insertion of criterion value lower bounds

(g) ei values in integer and nonlinear cases

3. CRITERION VALUE RANGES OVER THE EFFICIENT SET

Prior to the commencement of any interactive procedure (such as [l, 2,
3, 12 and 14]) it is advisable to schedule some sort of problem "warm-up"
stage for the decision-maker. One goal of the warm-up stage is to adapt the
decision-maker's (perhaps overoptimistic) aspirations to the confines of his
feasible region. One thing that can be done in this regard is to display
the different criterion value ranges over the efficient set in bar chart
fashion as follows.

Objective 1 Objective 2 Objective 3 Objective 4

1842 7 " 7 236 7 140 7
968 // ° % -42 /A 8> A

The difficulty with the bar charts, however, is in obtaining the minimum
criterion values over the efficient set, Methods such as computing minimum
criterion values from payoff tables as in STEM [2] can result in values that
substantially overestimate the minimums. The challenge is to find a method
that will yield a global minimum over the efficient set, not a local minimum.
Currently no such method, apart from computing all efficient extreme points
En]the linear case, exists in the literature, but one is being worked on in
5].

4. EARLY FIXATION ON A CANDIDATE SOLUTION

Step 10 of the Tchebycheff algorithm provides for an early exit. Step
14 allows the decision-maker to override the originally intended number of
iterations and continue iterating as long as he wishes, The early exit has
been provided because the author has noticed in the behavior of some users
a tendency to fixate on one of the early candidate solutions presented to
him, It is as if the decision-maker decides he likes one of the solutions
and then adapts his utility function to it, Then he spends the rest of his
iterations trying to see whether or not minor improvements can be made upon
the criterion wvector. It almost seems to this author that a decision-maker
is more likely to select a given criterion vector as his final solution if
he sees it early rather than discovers it late. On large problems requiring
six or eight iterations, a decision-maker exhibiting such behavior may very
well ask, to the consternation of the analyst, for an early exit claiming
that he has already seen what he wanted to see. This type of behavior is
not seen with all users, but it happens often enough to warrant comment.

5. NUMBER OF SOLUTIONS PRESENTED AT EACH ITERATION

In Miller [6] we have the article about the number "seven, plus or minus
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two." This article is well-known in the multiple objective literature. Its
influence is that it has caused many people to feel that multiple criterion
problems should not be modeled with more than about seven objectives. Also,
a decision~maker should not be presented with more than about seven solutions
at a time. Otherwise, the limits to his information processing abilities
might be surpassed and he would suffer from "information overload." This
may be true for some decision-makers, but it is not true for all. Some
decision-makers, people who are familiar with the concept of nondominance
and know what they are looking for, can process up to 20 criterion vectors
in one sitting. This author has found that the objectives and the number of
solutions that can be presented at one time does not so much depend on the
number seven, plus or minus two. Rather it depends more upon the problem
and type of decision-maker with which one is working. This is encouraging
because the larger the number of solutions that can be presented to the
decision-maker at each iteration, the faster algorithms such as the Tcheby-
cheff method can converge.

6. SCALING THE OBJECTIVES

In most iterative procedures, the Tchebycheff method included, it is
advisable to scale the objective functions. One way to do this is to multiply

the ith objective by

il3=1 %

. h . , . s
where Ri is the range of the 1t criterion value over the efficient set and

then add an appropriate constant

K.
i

to the objective function. The LA weights equalize the criterion value

ranges of the objectives over the efficient set and the constants Ki equal-

ize the midpoints of the scaled ranges. Since the scaling need not be per-
fect to achieve good numerical results, we may wish to use the powers of 10
closest to the ﬂi as scaling factors. 1In this way, we only move the decimal

point in the objective function coefficients--we do not change any of the
significant digits. The w, weights are considered to be better than scalina
factors derived from the family of Lp—norms. With normalization scaling

factors there is no assurance that the criterion values or their ranges will
be brought into the same order of magnitude, particularly when there are
both positive and negative coefficients in the objective functions.

7. MOST PREFERRED CRITERION VECTOR AS FILTERING SEED POINT

Consider any iteration other than the first. If we filter in Step 8
the criterion vectors produced in Step 7 without regard to the decision-
maker's most recent criterion vector selection, one of the criterion vectors
presented in Step 9 may be similar to this criterion vector. To prevent
this (in the interest of extracting the most out of each Tchebycheff itera-
tion), we should use the most recent criterion vector selection as the
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filtering seed point (see [13]) in Step 8, Then as the decision-maker ex-
amines the p new criterion vectors versus his most recent selection, he is
assured that none of the p+l vectors is unnecessarily similar to any of the
others. In this way, given that we can only present p criterion vectors at
a time, we are presenting the maximum amount of information possible per
iteration.

8. INSERTION OF CRITERION VALUE LOWER BOUNDS

In the process of examining solutions iteration to iteration, the
decision-maker may conclude that values below certain levels for some of
the criteria would never be acceptable under any circumstances. In such
cases it would behoove procedures such as the Tchebycheff method to add
lower bounding constraints on the criterion values of the pertinent objec-
tives before proceeding with subsequent iterations. Of course, it would
make no sense to add lower bounding constraints with RHS's less than the
minimum criterion values over the efficient set. By giving the decision-
maker the option to configure any scheme of lower bounds on his criterion
values, the efficient set is reduced and convergence of the algorithm only
can, if anything, be favorably affected.

9. Ei VALUES IN INTEGER AND NONLINEAR CASES

In Step 1 of the algorithm it suffices for the e to be moderately
small positive scalars. The idea of such Ei is to make each z;* > max
{fi(x)lx e S}. 1In the linear case there is no problem, but in integer and

nonlinear cases, we may have to work with approximations of the
max {fi(x)|x e S} because of CPU time or infinite convergence difficulties.

However, if we are able to obtain upper bounds on the maximal criterion
values as in branch and bound integer programming, we can set the si to

values greater than the difference between the current criterion values
and the upper bounds thus assuring that z;* > max {fi(x)|x e S}.
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A POSTERIORI TRADE-OFF ANALYSIS IN REFERENCE
POINT APPROACHES

Eberhard E. Bischoff
International Institute for Applied Systems Analysis, Laxenburg, Austria
and Department of Management Science and Statistics,
University College of Swansea, Swansea, UK

1. INTRODUCTION

This paper is concerned with extensions to existing reference point
methods for multiple objective decision making (MODM) through the incorpor-
ation of an a-posteriori trade-off analysis, i.e. an examination of the trade-
of fs between objectives which are implied by a given, tentative solution to
the problem under consideration., The term reference point method is used
in this context to include both conventional goal programming approaches,
where the reference point represents the decision maker's actual aspiration
levels (cf. Lee 1972; Ignizio 1976), and the more recent interactive proced-
ures where the reference point is used as a primarily technical means of
exploring the feasible region (Wierzbicki 1979a, 1979b; Lewandowski and
Grauer 1982),

The principal motivation for the paper derives from the observation
that there is a strong tendency in the literature to treat weighting and
reference point methodologies as mutually exclusive and basically incompat-
ible. The choice between the two types of approach is usually made on the
basis of qualitative considerations in which the analyst's subjective prefer-
ences often play a not insubstantial role. The aim here is to show how by
integrating the concept of weighting the objectives with that of setting
aspiration levels this problematic choice can be avoided. Moreover, such
an integrated approach, in allowing different rationales to be applied
simultaneously, has considerable advantages over the use of either methodology
separately.

While the conceptual issues raised are of relevance to both linear and
nonlinear MODM problems, the chief concern here is with the linear case.

More precisely, it is assumed that the problem to be solved has the form

max ¢, X

max ¢ X (1)

where x represents the n-vector of decision variables, Cl’ cz,...,c are
r
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n-vectors, A is an mxn matrix, and b an m-vector.

The remainder of this paper is divided into four sections. The next
section takes a critical look at the way in which reference point methods
are used in practice and identifies the benefits to be gained from supple-
menting current procedures by a trade-off analysis. The following section
describes in detail the approach suggested. This is illustrated in the
fourth section by a numerical example. The fifth and final part summarizes
the main points raised.

2. CURRENT PRACTICE

The usual reference point approaches require the decision maker to
express his preferences with respect to the objectives involved through two
sets of parameters:

(i) aspiration levels representing desirable values for the objectives; and
(ii) weighting factors indicating the relative degree of importance accorded
to the attainment of the aspiration levels set.

In goal programming approaches both cardinal and ordinal ('pre-emptive')
weighting systems may be employed. Denoting cardinal weighting factors by
W (wi z20),1i=1,...,r, and using the symbols Pj’ j=1,...,k, to denote
pre-emptive weights (with the property that Pj >>> Pj+1’ i.e. that Pja > Pj+1b
for any two positive numbers a and b) the model used can be expressed in
general form as follows:

1 1
min P1 [ 'ZC (widi)p ] /p +e.ot P [ iZ (wi di)p ] /P

ieCy eCk
t .
s.t Ci X + di 2 gi , 1 =1,..,,r
(2)
d.20,i=1,...,r
i
Axsb,

where 85> i =1,...,r, represents the aspiration level (goal) for

objective i,
di' i=1,...,r, stands for the shortfall with respect to 8>

Cj’ j=1,...,k, denotes the goals assigned to priority class j, and

p is the order of the Lp—norm used (typically p =1 or p = »),

In a substantial proportion of goal programming applications reported
in the literature a supposed solution to (1) is determined on the basis of
a single set of aspiration levels and associated weighting factors, i.e. the
decision maker is actively involved only once, at the outset of the analysis,
and then merely presented with the solution of model (2). A number of
authors have argued that results obtained in this way could be rather
arbitrary, since without a prior exploration of the set of feasible altern-
atives the specification of appropriate goals and weights is a very difficult
task (e.g. Zeleny and Cochrane 1973; Morse 1978; Zeleny 1981). Viewed from
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a slightly different perspective a more far-reaching criticism can be levelled
at such an approach: Apart from trivial cases in which the solution obtained
satisfies each of the aspiration levels set, the decision maker is not
provided with any information which helps him to decide whether to accept

the solution presented to him or whether to attempt somehow to find a better
solution.

This same criticism also holds true essentially for applications where
the decision maker is actively encouraged to experiment with different
combinations of aspiration levels and/or weighting factors. While he will
clearly obtain a larger set of potential solutions from which to make a final
choice, the repeated use of model (2), as such, does not necessarily help
him to form a rationale for deciding when to terminate the search for improved
solutions. In making this decision he may therefore have to rely on his
intuition or resort to setting an arbitrary limit on the number of iterations
to be carried out.

It is suggested here that information about the trade-offs implied by
the solutions obtained can guide the decision maker in determining whether
to end the search or not. More concretely, it is proposed to provide him

with information about the set of weighting vectors A = (Al,...,A )t for
which the additive weighting model r
r

max A, C, X

i=] 1+ 1 (3)

s.t. Ax =D

would lead to the same solution as produced by the goal programming formul-
ation (2). The ratios Ai/x', i,j=1,...,r, i # j, can clearly be interpreted

as trade-offs between the respective objectives. A comparison with the trade-
offs the decision maker is willing to make, therefore, provides a simple means
of testing whether the current solution may be acceptable.

The basic idea of using a trade-off analysis of this kind as part of
a MODM procedure is certainly not a new one (cf. Kornbluth 1974), but it has
received only very little attention in connection with reference point
approaches. The reference point procedure proposed by Wierzbicki (1979a,
1979b) comprises a rudimentary form of such an analysis. The approach, in
its most widely applied version (the computer package DIDASS, see Grauer
(1983)), uses the following formulation:

t d' i e (4)

where 8, and oo i=1,...,r, stand for (as in (2) above) the goal for

objective i and the associated (cardinal) weighting factor,
di’ i=1,...,r, represents the weighted deviation (in either direct-

ion) from goal i,
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© is an arbitrarily chosen coefficient greater than or equal to r,
€ is a (usually small) positive constant.

The method is put forward as a tool for exploring the feasible region,
i,e. the idea of experimenting with different aspiration levels etc. is
fundamental to the approach. At each iteration the decision maker is
presented with both the solution of (4) and the optimal values of the dual
variables associated with the first r constraints of (4), i.e. the shadow
prices of the aspiration levels specified. These immediately give rise to
a weighting vector A which can be interpreted, in the sense outlined above,
as a set of trade-offs that is compatible with the current solution. However,
as the following simple example illustrates, knowledge of only a single such
vector — out of a possibly very large set - may not be of much assistance
to the decision maker.

Assume a two-variable problem where the objective functions to be
considered are

fl(x) = (1,2) x and fz(x) = (2,1) x

and the constraints are given by

11 1
0 1 Xl 4
1 3 = 18
301 *2 30 » Xy X3 2 0

Moreover, assume that the decision maker specifies aspiration levels of, say,

8, = 16 and 8,y = 25 with weights of W=, = 1. If this problem is tackled

using model (4) (with any value of p 2 2) the solution is x* = (9,3) - which

is also the point where both f1 and f2 attain their maximum over the feasible

region. As the constraint relating to 8; is not active at this point, the
dual leads to weights of Al = 0 and AZ = 1, but the weighting model (3)

clearly produces the solution (9,3) with any non-negative combination
(Al,xz) #z (0,0). In other words, the single weighting vector derived from

the dual does not show the decision maker that the solution obtained is
actually compatible with any trade-off ratio AI/AZ between f1 and f2.

This example is, of course, a rather extreme one as the objective
functions involved assume their maximum at the same point, but the basic
argument applies equally to cases where the objectives are truly conflicting.

If the coefficient of X, in fl’ for instance, were 5 instead of 2, then the

maximum of f1 would lie at the point (6,4). Assuming that the decision maker

chooses aspiration levels of 8 = 27 and g, = 25 with Wy =W, = 1, the

solution of (4) is again X = (9,3) and the dual also yields the same
weighting factors as before, i.e. Al =0, AZ = 1. The complete set of

weighting vectors which lead to that solution, however, is given by
(A, + 2A
M= (O[3 s 0 2)/<5*1 ) 53

3. THE PROPOSED PROCEDURE

The procedure suggested requires the decision maker to state explicitly
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the trade-offs he is prepared to make. However, he is not required to provide
one single vector, but merely upper and lower bounds on the acceptable trade-
off ratios between any two of the objectives. More precisely, the procedure,

. . * . 3
at a given solution x of the reference point approach used, consists of the
following steps:

Step 1: Determination, from the dual of the model employed, of a vector A0
for which the additive weighting model (3) produces the solution X,
Step 2: Computation (via multi-parametric sensitivity analysis based on A%

of the complete set of weighting vectors A which lead to the solution x*,
i.e. determination of the linear inequalities which define the set

A = {A| model (3) has the solution X
Step 3: Specification, by the decision maker, of lower and upper limits
(1ij and uij) on the trade-off ratios >\i/>\_, i,j=1,...,r, i > j. (At later

iterations of the reference point procedure the decision maker need only
consider whether he wants to change any of the limits previously specified.)

Step 4: Consistency check of the information provided by the decision maker,
i,e. feasibility test of the system of linear constraints defined by the
intervals specified in step 3:

ALl = A, A

i3 M z A, i,j=1,.00,r , 1> (5)

LU
J 1] 1
If no feasible solution exists step 3 has to be repeated.

Step 5: Test for joint solutions of (5) and the set of inequalities obtained
in step 2.

The results of step 5 can be presented to the decision maker in various
forms. It may be sufficient to inform him whether joint solutions of the
two systems of constraints exist or not. On the other hand, it requires
little additional computational effort to carry out more detailed analyses
of the relationships between the respective feasible sets.

4, AN EXAMPLE

The following numerical example is intended to illustrate the procedure.
The problem assumed involves four decision variables and three
objectives, The latter are given by

fl(x) = (1,2,-2,1) x, fz(x) = (2,1,3,-0.5) x, and f3(x) (-1,2,2,3) x,

and the feasible region is defined by the constraints

-1 1 2 -1 x; 4
0 1 1 0.5 % | < 6

1 3 0.5 2 x; | T |18

3 1 1 -0.5 x, 30 ) XpseeesX, 20

Assume that by some reference point approach the solution

Xt = (9.12, 0, 4.32, 3.36) has been obtained. Details of the method used

in arriving at this solution are of relevance only in as far as they can have
an influence on the results of step 1 of the analysis, the computation of

an initial weighting vector A°. This vector, however, is of no significance

for the results of subsequent steps. As can easily be checked, A° = (1,1,1)
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fulfiis the required conditions.
Step 2 of the procedure calls for the determination of the set A,
consisting of all weighting vectors X for which model (3) yields the solution

x*. By applying the simplex method to model (3) with A = A% the inequalities
defining A can be obtained directly from the final tableau (see Kornbluth
1974). Here one has the following conditions:

-1.2 0.4 2.0 N
-2.52  2.44 2.2 N -
1.12 -0.64 0.8 2 !
~0.04 0.88 -0.6 A3
A Ays A3 2 0, (Aps Ayn Ag) # (0, 0, 0) .

The third step of the analysis requires the active involvement of the
decision maker. He is asked to set lower and upper bounds on the trade-off
ratios acceptable to him. This might produce the following constraints:

1/)\2 z 2 ,i.e, Al - 2A2 20
Moo s5 i.e. A + 5\, 20
Mo 21 ies A - Ay 2 0

/hg e A 5 2
etc.

As the decision maker might not be consistent in his replies (he could,
for instance, conceivably stipulate that AZ/A3 £ 1/3 , which directly contra-

dicts the limits set above), ithe system of inequalities obtained is next
checked for feasibility. If it is found to be infeasible, the decision maker
is asked to reconsider the limits given,

In the final stage of the analysis the inequalities obtained in the
second and third steps are combined and the complete system checked for
feasibility. If no feasible solution of this system exists than the trade-

offs implied by x  are inconsistent with the decision maker's conceptions
in this respect so that further iterations of the reference point procedure
are necessary.

5. SUMMARY AND CONCLUSIONS

An attempt has been made to demonstrate how reference point methodologies
for tackling MODM problems may be combined with procedures based on the
concept of weighting the objectives involved. A concrete approach has been
described. The only additional information demands which this approach
places upon the decision maker in excess of what is required in the usual
reference point procedures is a set of bounds on the trade-offs he is
prepared to make between any two of the objectives. The main benefit of the
approach suggested is seen in the fact that it provides the decision maker
with an additional perspective from which he can evaluate potential solutions
to his problem., It may thus be of greater assistance to him in the task of
constructing a rationale for the final choice.
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A VISUAL INTERACTIVE METHOD FOR SOLVING
THE MULTIPLE-CRITERIA PROBLEM

Pekka Korhonen and Jukka Laakso
Helsinki School of Economics, Helsinki, Finland

1. INTRODUCTION

In this paper we propose an interactive method for solving multiple criteria deci-
sion problems with convex constraints and a pseudoconcave and differentiable utility
function. The general framework of our method is similar to that of the so-cal-
led GDF method (Geoffrion, Dyer and Feinberg 1972). However, the Frank-Wolfe
algorithm used by Geoffrion et al. does not operate solely with efficient soluti-
ons. Since comparisons between inefficient solutions may not seem relevant from
the decision maker's point of view, we use a modified gradient projection method
instead of the Frank-Wolfe algorithm. However, instead of the gradient vector
we use reference directions that reflect the decision maker's preferences, as
suggested by Andrzej Wierzbicki (1980), instead of trying to estimate the gra-
dient. The reference directions are projected on the efficient surface and an inte-
ractive line search is performed. The values of the objectives on the efficient
surface are displayed for the decision maker's evaluation both numerically and
graphically.

If the decision maker cannot find a feasible point at which his utility is higher
than at the current point, we check whether certain sufficient conditions for
optimality are fulfilled or not. If not, an improved feasible solution can always
be found. The sufficient conditions are also necessary conditions, if the feasible
region is defined by linear inequalities. They are a generalization of the optimality
conditions for extreme solutions used by Zionts and Wallenius (1983).

In the next section and in section 3 we present the details of our method. The
fourth section contains discussion.
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2. THE ALGORITHM

Let us consider the following problem:

max u(q) (1)

subject to q Q =1 f(x) | xeX },
where f(x) = (f1(x), f2(x),eee, fr(x)) is @ vector whose elements are the objective
functions, u is the decision maker's (unknown) utility function, x is a decision
vector and X is the set of feasible decisions. Without loss of generality we
assume that all the objective functions are to be maximized. In addition, we
assume that X is a convex, compact set and u is differentiable and pseudoconcave

on X. Moreover, each function fj is assumed to be concave. The set of feasible
and efficient vectors, Q*, is defined as follows:

Q* = [q jac Q and q efficient } (2)

The outlines of the algorithm are as follows.
Step O. Find an arbitrary efficient solution q@ = f(x9), x0 £ X. Let k=1.
Step 1. Give a reference point dX and find an efficient solution pk that
solves the problem min D1(pk, d¥)
subject to pk eQ* ,

where D is a distance function.

Step 2. Find the set QK of efficient vectors q that solve the problem
min D2(q, z)
subject to z = tpK + (1-t)gk-1, qe Q¥,

as t is increased from zero to infinity.
DZ ijs a distance function that is not necessarily identical

to DL
Step 3. Find the most preferred solution qk in QK.
Step 4. If qk':l = qk check the optimality conditions. If the conditions

are true, stop; qk is an optimal solution. Else put k=k+l and go
to step 1.
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In step 0 the first efficient solution can be determined using any convenient
method. For instance, Wierzbicki's reference point approach will presumably gene-
rate a very good starting point. It does not matter whether the initial solution q®
is an extreme point or not. The only requirement is that q® belongs to the
efficient set Q.

Step 1 is carried out in the spirit of Wierzbicki's reference point approach, too.
For minimizing the distance between the reference point and the corresponding
efficient solution, an achievement (penalty) scalarizing function is defined and
maximized (minimized), as Wierzbicki has suggested. A particular objective function
that will generate efficient solutions is the weighted Chebysev norm, which can
be expressed as follows:

(di-q)/ Idi!, if dj #0
s(d,q) = max{w; } wj = (3)
- w» otherwise,

where d = (d},d2,...,d;) is the reference point given by the decision maker and q
= (91,92y-+-9p) is the corresponding feasible solution. If this function is minimized
the resulting efficient solution q has one convenient property: the relations bet-
ween its components are the same as those of the vector d, if the line connecting
d and the origin traverses through the efficient surface. In other words, units of
measurement are irrelevant.

Step 2 is the point of departure from the original reference point approach to-
wards the GDF method. Instead of concentrating merely on the efficient points
that are "close" to the decision maker's reference objectives, an entire efficient
curve connecting two efficient points is examined. This is clearly a more effi-
cient way of scanning the efficient surface: if q' and q" are both efficient soluti-
ons and q' is preferred to q", one is inclined to believe that there is a feasible
point q* that is preferred to q" and satisfies the following equation:

q*:P[tq"+(l-t)q'] ,t >0 (4)

where P is a projection operator.

The values of the objective functions on the curve defined by equation (4) are
presented to the decision maker and he is asked to select the most preferred
point. If the efficient surface can be represented with linear inequalities and q'
and q" are both on the same facet, the above procedure is completely analogous
with line search in nonlinear programming with linear constraints. A line search
is required in the GDF method as well, but all the points on the line to be
searched are not necessarily efficient.
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However, there is no reason to restrict the line search to the feasible points on
the line defined by (4). Indeed, we might make more rapid progress if we were
able to "peek around the corner", i.e. extend our line search to the projection of
the entire half-line (4). If the set of feasible decisions X is defined by a set of
linear inequalities and all the objective functions f; are linear, the projection of
the line defined by (4) can be computed using parametric linear programming and
the unweighted Chebysev norm as the objective function to be minimized. Again,
we can make use of Andrzej Wierzbicki's approach. First, we set up the follo-
wing problem:

min [ max (zj-qp) ] (5)
subject to z = tpK + (1-t)gk-1

q=f(x), xeX, 2z =(z1, 224eesy Zp)

The above problem can be converted to a linear programming problem, provided
the set X is defined by linear inequalities and f; is linear for all i. The equiva-
lent linear program will read as follows:

min y (6)
subject to z = tpK + (1-t)gk-1

y >zi-Qqj i= L2,.,r

q = f(x), x €X

As parameter t in problem (6) is increased from zero to infinity, we obtain an
efficient curve emanating from point qk'l and traversing to the boundary of the
efficient surface. This can be done using any commercial LP code with paramet-
ric linear programming.

The unweighted Chebysev norm has been chosen the objective function in prob-
lem (5) mainly on the grounds that the resulting parametric linear programming
prablem is easy to solve as only the right hand side vector of the problem needs
to be parametrized.

Geoffrion et al. suggested the use of a graphical representation of the objectives
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as a possible method for solving the step-size problem as early as 1972. Howe-
ver, to our knowledge a computer implementation of this approach has been none-
xistent so far. We have implemented the line search procedure described above
for Apple IlI microcomputer. The values of the objectives along the feasible
curve to be examined are plotted on the screen using a distinct colour for each
objective. The cursor can be moved to any point on the line and the correspon-
ding numerical values of the objectives are displayed simultaneously. The graphics
give the decision maker an overview of the behaviour of the objectives along an
efficient curve. At the same time he can have recourse to exact numerical
information.

So far, every step of the algorithm has been rather straightforward with little
theoretical content., It is step 4 that is the most complicated part of our algo-
rithm and it deserves a section of its own.

3. OPTIMALITY CONDITIONS

In this section, we limit our attention to problems with linear constraints and
linear objective functions. To put it differently, the efficient surface can be
represented with a set of linear inequalities.

Let us suppose that in step 4 qk'l = qk. That is to say, the direction pk - qk‘l
projected on the efficient surface is not a direction of improvement. The obvious
thing to do in such a case is to try the opposite direction. This requires very
little extra work: just repeat step 2 with the modification that t is decreased
from zero to minus infinity, After that step 3 is executed in the usual manner.
Alternatively, t can be varied from minus to plus infinity in the first place if so
desired.

If an adequate number of directions are examined systematically, an improved
solution can always be found, if qk is not an optimal solution. This fact is
presented formally in the following theorem.

Theorem. Let q* be a feasible solution and dl, dZ, «ey dP a set of vectors in IRT
that define the cone
C = {qlq = q* + Eajdi, a; > 0},

which is the cone spanned by the set of constraints that are active at q*. (Note
that each vector dl is a feasible direction and @* C.) Further, let us assume
that u is a pseudoconcave and differentiable function, and that

ul@®) > u(@® + ajdl) for all a; > 0 and i=1,2,...,p.

Then q* is an optimal solution.
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Proof. Assume that there is a feasible solution q*& Q@* such that u(q*) > u(qQ¥).
From the assumptions that u is a differentiable function, and that u(q*) > u(q® +
a;d!) for all a; > O and d!, i=1,2,...,p, it follows that

Vu(g*)-di < 0 for all i (see, e.g., Zangwill (1969), p. 24)

Because the vector (q* - q*) is a feasible direction, it can be expressed as
q* - q* = Zwidl , wj > 0 ¥i=1,2,...,r.

Since u was assumed to be pseudoconcave and
u(q*) - u(q*) > 0, it follows that
Vu(q®)(q* - q*) > 0, because Vu(q¥)<(q* - q*) = (0 would imply
ulgq®) < u(q®) according to the definition of pseudoconcavity.

Hence, Vu(q*)- Ew;d! > 0, which is a contradiction. This implies that q* is a
locally optimal solution. Because u is assumed to be pseudoconcave and the set
of feasible solutions is a convex, compact set, q* is also a globally optimal
solution.

Thus, we have proved that in the case where all the constraints and objectives
are linear, we can always find a feasible direction of improvement, provided the
current solution is not an optimal one.

4. DISCUSSION

The greatest merits of our method presented in this paper are that it is relatively
easy to implement and very convenient to use. We neither assume the utility
function to be linear nor deal with inefficient solutions. In fact, in steps 1, 2
and 3 we need not make any assumptions whatever concerning the properties of
the utility function. The decision maker is free to examine any part of the
efficient surface he pleases, i.e. he is not confined to evaluating only extreme
solutions.

We have tacitly assumed that it is relatively easy for the decision maker to
indicate which solution he likes best, once he is presented with a set of alterna-
tives. If this is not the case, our method cannot tell the decision maker what he
likes and what he doesn't like! But if our assumption were true, it would imply
among other things that bicriteria problems are almost trivially simple: only one
iteration is required for finding a globally optimal solution to any bicriteria prob-
lem, be the utility function what it may.

The performance of our method will no doubt depend very much on how good
the decision maker is at specifying reference directions that lead to improved
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solutions. If the user is not familiar with the problem, he may have difficulty in
specifying directions that result in rapid progress of the algorithm. In this case
it may be wise to use random directions insted of user-specified reference direc-
tions. One advantage of using random directions is that the user does not have to
think of some "reference objectives" every time he wants to evaluate a new set
of efficient, possibly improved solutions. Specifying reference directions at every
iteration may be a hard task, if the number of objectives is large. In addition,
the user may specify his reference points in a biased manner, which prevents
him from making any progress to speak of. Using random directions in conjunction
with user-specified reference directions will probably be an efficient strategy in
many cases.

The fact that the consistency of the decision maker's behaviour is not checked
during the process may cause the algorithm to cycle. On the other hand, it may
be a merit, too, After each iteration the decision maker is still free to return
to the parts of the efficient surface he has examined already. The alternatives
are not limited by his previous choices. This is no doubt a very useful feature if
one just wants to find out what sort of outcomes are feasible and does not
necessarily want to attain an "optimum". However, consistency of the decision
maker's behaviour can be checked using results presented by Korhonen, Wallenius
and Zionts (1983), if desired.

We believe that the method presented in this paper is a very powerful one in

solving practical problems. It is very easy to use, it is not based on too restrictive
assumptions, and it has a firm theoretical basis.
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ON THE IMPLEMENTATION OF THE INTERACTIVE
SURROGATE WORTH TRADE-OFF (ISWT) METHOD

Kyosti Tarvainen
Institute of Mathematics, Helsinki University of Technology, Helsinki, Finland

1. INTRODUCTION

People who are not familiar with the multicriteria optimization theory
often deal with multicriteria problems in the following way. One objective
is taken as a single criteria to be optimized and some 1imits are set for the
values of the other objectives. That is, the other objectives are treated as
constraints in an ordinary optimization problem. After the optimization, a
trade-off analysis may be carried out with respect to the active constraints.
That is, the level of an active constraint -- the 1imit of an objective -- is
changed a Tittle and the optimization is done again to see how much the Tlevel
of the optimized objective will change.

In many cases, the Timits for all criteria but one are set by others. For
example, for a company, the goverment may have set minimum wages, pollution
limits and so on, so that the company is left with an ordinary programming
problem. Sometimes companies do a trade-off analysis to get, e.g., the pollu-
tion standard lowered; that is, a company calculates how much the economical
result would improve if the pollution 1imit would be raised by a certain
amount.

The way of handling a multicriteria problem by the constraint approach
seems to be very informative and reliable approach to solve multicriteria
problems. A suggestion to formalize this approach to obtain a multicriteria
optimization algorithm was made by Chankong and Haimes (1978). They called
the derived scheme the Interactive Surrogate Worth Trade-off Method. In this
paper, the ISWT method is derived in a slighty different way in Section 2,
which results in a version of the method that is faster in convergence and
perhaps more convenient for the decision maker. An exampie 1s given in Section
3.

2. DERIVATION OF THE ISWT METHOD

2.1. Mathematical Problem Formulation

We will consider the following multicriteria problem:
min  (fi(x),...,f (x)) (1)
subject to g(x) <0, (2)
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where x € RN, fi : RN - R (i=1,...,n), g: R
A main mathematical assumption made later concerns the existence of

trade-offs. This assumption usually implies that the fi and 95 functions are

differentiable and that the feasible region specified by Eq. (2) is compact.

Furthermore, it is assumed that, for the decision maker solving the above
problem, there exists an underlying (but not known) differentiable utility
function.

N-»Rm.

2.2 The Constraint Problem

At the beginning, the decision maker is asked to specify an objective
with respect to whose values he is flexible; that is an objective that does
not have any sharp limit under which the values of the objective are satis-
factory and above which limit the values are unsatisfactory (note: we are
minimizing). Let us renumerate the objectives so that this objective is f1.

The objective f1 will be taken as a primary objective for the constraint

problem. This selection will be explained later.
The decision maker is then asked to specify a desirable upper bound, de-

noted by el , for each other objective fi (i=2,...,n).
Given tnis information, the following optimization problem is solved:

min f1(x) (3)
subject to fi(x) <e}, i=2,...,n, (4)
g(x) < 0. (5)

Let this problem have a unique solution x1. Then, x1 and the corres-
]),...,fn(x1)) are Pareto optimal (for the pro-

perties of the above problem, see Chankong and Haimes 1983).
In a typical case, all objectives conflict so much that the inequalities

in Eq. (4) are binding at x1. If this would not be the case for an sl, let us,
for the following trade-off calculations, respecify el = fk(x1) - e, where e
is a small positive number so that the solution x of the constraint problem
does not change considerably.

ponding objective vector (f1(x

2.3 The Trade-offs

The objective vector f1 2 (f](x),...,fn(x)) given by the above optimi-
zation is a starting point given to the decision maker. In addition, local

information about the alternatives around f1is given in a form of trade-offs.
It is assumed here that we have trade-offs, not only total trade-offs (for
trade-off concepts, see Chankong and Haimes 1983). 1

The trade-off between the objectives 3 and fi (i=2,...,n) at £, deno-

ted by A}i , is easily obtained, for example, by solving the problem given

by Egs. (3),...,(5) with (81 - ei) instead of e} (ei is a small number).

If the corresponding change in f1 is df1, then, approximately, A}i = df1/ei.
In some cases, we get the trade-offs as dual variables in the optimi-
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zation algorithm. If the constraint (5) is treated via the augmented Lagrangian
technique, it is also useful to treat the constraints (4) with this technique,
whereby the trade-offs are obtained at the same time.

Trade-offs as marginal rates may be difficult to grasp by a decision
maker. The trade-off information should, therefore, be presented in an

incremental form. That is, instead of giving X}i a phrase like the following
can be used: "If the objective fi is improved by Afi, then the objective f1
will be deteriorated by x}iAfi.”

The increment Afi (i=2,...,n) should be about the size of the changes
that are relevant to consider in fi in the problem. This is often clear to

the analyst from the context; if not, the decision maker is asked to give
this information.

2.4. The Decision Maker’s Response to the Trade-offs

Given the objective vector f1 = (f1(x]),...,f’n 1)) and the trade-off
information around this point, there are certainly many possibilities to
elicit the deciosion maker’s response to this information. Chankong and
Haimes propose that the decision maker gives a number between -10 and 10
for each trade-off indicating how much the decision maker prefers the trade-
off in question. Chen and Wang propose that the decision maker only specifies
whether he wants to Tower or higher the objectives or leave unchanged (Chen
and Wang 1983).

In our experiments, the following verbal questioning has worked well.
Given the trade-off information between the objectives f1 and fi in a form

(x

such as "If you win Afi in fis you will loose A}iAfi in f1, and viceversa",
the decison maker is asked to answer verbally in one of the following ways:

"I am much in favor of increasing f. by Af." 2 "

"I am slightly in favor of increasing fi by Afi" 1

"I cannot say; doesn®t matter" 0 (6)
"I am slightly in favor of decreasing fi by Afi" -1

"I am much in favor of decreasing fi by A i“ -2

In the column on the right are numbers which are attached to these states-
ments. The numbers are explained in the next section.

The above questioning is done for the (n-1) calculated trade-offs. Note
that here we ask a questidon about a specific increment (Afi) in fi’ not about
the change of fi in general.

2.5 Changing the Levels of Objectives

After the decision maker®s response, new values for the levels of
objectives are determined based on the following reasoning.

Consider theoretically the multicriteria problem at hand as an optimiza-
tion problem of the underlying utility function in the fz---fn space (the

associated f1 values are determined as solutions of the problems (3),...(5),
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where the fz,...,fn values are constraints).
In addition to the fz---fn space, we also consider its dimensionless
counterpart, the fé---f; space, where f% = fi/Afi (i=2,...,n; the Afi’s are

defined above). 1
In the Tast section, we associated with each fi (i=2,...,n) a number wH

(called surrogate worth), which codifies the decision maker®’s willingness to
trade-off the objectives fi and f1. It is evident %hat every time the
decision maker is slightly in favor of a change (N1i =1 or -1), the absolute
change in the underlying utility function is approximately the same. We can
always scale the utility function so that this change is 1. That is,in this
case (w}i =1 or -1), and naturally in the case where w}i is zero, the N}i’s
express approximate changes in the underlying utility function.

In the case where w}i = 2 or -2, we will also use the N}i value as an
approximation of the change of the underlying utility function when fi is
increased by Afi and f] is decreased by x}iAfi. We will discuss this

assumptiort in a moment.

With this reasoning, the gradient of the underlying utility function
in the f5...f ) space is, thus, (w]z,...,w}n). The corresponding line in the
fz---fn space, in which the utility function increases fastest, is, then, in
a parameter form, { (tw}zAfz,...,tw}nAfn) t>01.

The information elicited so far from the decision maker only specifies
this gradient direction. Therefore, some points in this 1ine with corres-
ponding f1 values are presented to the decision maker. That is, objective

vectors of the following generic form are presented to the decision maker
(t: =ty t,,...):
i 1 72

1
(f](ti), fz(x

1 1

:
) + M Ay el SF (X)) + Ny AF ) (7)

where f1(ti) is determined as a solution of the problem given by Egs. (3),..,

(5) when the other objectives are held as constraints.
The decision maker selects a value of ti (that is, a t; where the

utility function reaches its maximum). The corresponding objective vector is
denoted by fz. This completes the first iteration, and the procedure is re-

started at f2 with trade-off calculations. 1
In the above, a rather arbitrary value (w]i = 2 or -2) was selected

for the "much in favor'-statesments. Extensive experimentation would probably
suggest another number. But we are always increasing the utility function
anyway; and it is good to have more than two absolute values (0 and 1 ) for

the w}i's. On the other hand, the values -2,-1,0,1,2 are probably sufficient:

for example, in the case n = 3, we have 12 possible gradient directions
on the f2f3 plane.
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2.6 Convergence of the Scheme

It is clear from the derivation of the scheme that we are always
attempting to increase the underlying utility function. So, we should at least
end up with a local maximum. A more mathematical proof of the convergence
uses trade-offs (not their discretized counterparts, as above) along the
Tines of Chankong (1977).

However, as pointed out by Nakayama et. al (1982) in a similar context,
the use of finite changes may cause the scheme stop before the maximum of the
utility function is achieved.

The discretization of trade-offs naturally always causes some losses in
the optimization of the utility function. The f1 objective plays a central

role here; all other objectives are traded against it. Therefore, f1 should

be selected in the above mentioned way. In other words, the utility function
should not be highly nonlinear with respect to f1 , because high nonlinearity
implies larger errors in discretization.

To illustrate this point, assume that f1 has a 1imit fi above which its

values are highly unsatisfactory and under which its values are all very satis-
factory. Assume we are in the iteration at an objective vector, where the
value of f1 ’ fi', is slightly less than fi so that all positive f1 increments

of the discretized trade-offs causes f1 to exceed the limit fi. This would
imply that f1 is not increased. On the other hand, if fi' is highly satis-
factory, f1 would not be decreased at the expense of other objectives. So, in

this case, the algorithm would stop. However, it is quite possible that we
are not close to the preferred solution (it may be clear to the decision
maker that he would trade-off the fz,...,fn objectives).

2.7 Summary of the ISWT Scheme

STEP 1. Ask the decision maker to specify one objective with respect to
which he is flexible. Denote this objective by f1

Ask the decision maker to specify desirable limits £ for other
objectives.

Ask the decision maker to specify increments Af (i=2,...,n) which
are small but still relevant to consider.

STEP 2. Solve the optimization problem (3),...,(5), and generate the
associated trade-offs.

STEP 3. Interact with the decision maker to obtain worth values N}i (6).
If all N} *s are zero, stop.

STEP 4. Generate new alternatives (7), and let the decision maker select one.
Repeat the procedure from Step 2 on.

3. AN EXAMPLE

The following time allocation problem for the entire college period for
M.Sc. has been used by students at the Helsinki University of Technology (an
original version is credited to Haimes and Mike Corey). The objectives are:
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= leisure time (hours in a week)

—
I

learning, measured by GPA (0...5, 5 best)
fy = net earnings (Fmk in a month)

f4 extension of study time (years)

The decision variables are:

X = hours per week spent with studies
y = hours per week spent in part-time work
z = extension in years of the study time

The systems equations are:

fl =91 -x-y (8)
f,=a/(1 + bEXP(-cx(1 + z2/5)) (9)
fy = 86y (10)
f,=2 (11)

In Eq. (8), "91" stands for the weekly available time that is left after
sleeping and domestic chores. In Eq. (9), a, b and c are parameters of the
learning curve (in this example, a = 4.5, b = 3.5, ¢ = 0.05). The extension
of the study time for M.Sc. is counted from 5th year and above. In the Finnish
university system, it is possible to study at one’s own pace. In Eq. (10),
"86" converts weekly working hours into a monthly net salary (1 Fmk equals
0.2 US-dollars).

The following table shows one typical run of the ISWT method in a con-
densed form . Information given by the decision maker and numbers attached
to his statesments are underlined. The ISWT method usually converges in a
couple of iterations as shown here.

TABLE 1T A run of the ISWT method.
Step 1. Flexible objective: f1

Limits: f, = 4 grade points
f3 = 1500 Fmk
fy = 0 years
Increments: Af2 = 0.1 grade points
Af3 = 100 Fmk

Af4 0.1 years
Step 2. f] = 6.5 hours, f2 = 4 grade points, f3 = 1500 Fmk, f4 = (0 years
Xp = 4.6 hours/0.1 grade points
M3 1.2 hours/100 Fmk
Mg = 1.3 hours/0.7 years

Step 3. W], = =2

|
W3 =22
1

Wyg

2
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Step 4. T leisure grade earn. ext.
time
0 6.5 4 1500 0
1 11.6 3.96 1350 0.1
2 16.5 3.93 1200 0.2
3 21.1 3.89 1050 0.3
4 25.5 3.85 900 0.5
5 29.7 3.81 750 0.6
6 33.7 3.77 600 0.7
7 37.6 3.73 450 0.9
8 41.4 3.7 300 1
9 45 3.66 150 1.1
10 48.5 3.62 0 1.3
T=2

Step 2. f] = 16.5 hours, f2 = 3.93 grade points, f3 = 1200 Fmk, f4 = 0.2 years
Ao = 3.8 hours/0.1 grade points, M3 = 1.2 hours/100 Fmk,
Mg = 1.2 hours/0.1 years

Step 3. Wy, = 0 , Wy, = -2, W, =1

Step 4.
T leisure grade earn. ext.

time

0 16.5 3.93 1200 0.2
1 18.6 3.93 1080 0.3
2 20.6 3.93 960 0.3
3 22.7 3.93 840 0.4
4 24.7 3.93 720 0.5
5 26.7 3.93 600 0.5
6 28.8 3.93 480 0.6
7 30.8 3.93 360 0.6
8 32.7 3.93 240 0.7
9 34.7 3.93 120 0.8
10 36.7 3.93 0 0.8

T=4

Step 2. f1 = 24.7 hours, f2 = 3.93 grade points, f3 = 720 Fmk, f4 = 0.5 years
12 = 3-6 hours/0.1 grade points, M3 = 1.2 hours/100 Fmk,
Mg = 1.0 hours/0.1 years

Step 3. 3 3 3
ep Wy3 = 0, Wi, = 0. (stop)

=
j—
N
I
(o]
-
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1. INTRODUCTION

The Energy Research Council of the Netherlands (with 18 members
representing government agencies,research institutes, universities, industries,
trade unions, consumer organizations, and environmental groups) has been
established by the Minister of Economics and the Minister of Science,

28 January 1980, to draw up, among other things, energy-research plans for
several years ahead. A major task of the Council is to advice the Ministers
on the allocation of the available budget to various energy technologies.

The Council has invited us to apply multi-criteria decision analysis,
first, to identify and to weigh the relevant criteria, second, to rate the
energy technologies, and finally, to compute a package
of projects with maximum total weight. The underlying idea is, of course,
that the preliminary discussions and the confrontation with the calculated
results will eventually enhance the consensus in the Council.

This paper presents our experiences, so far, with two pairwise-compa-
rison methods in the field of multi-criteria analysis: the Bradley-Terry
(1952) method and the method of Saaty (1980) using logarithmic regression.
Various methodological questions had to be considered again: the collection
and the scaling of human judgement, the sensitivy of the calculated results,
and the treatment of the budget constraints. In addition, we also concerned
ourselves with the features of a decision support system for multi-criteria
analysis.,

2. CRITERIA AND ALTERNATIVES

The energy problem of the Netherlands is briefly characterized by
abundant supply of natural gas, high dependence on natural gas and oil
imports, and strong public opposition against nuclear energy.

In preceding years, the Council formulated four criteria for the
evaluation of a research plan. The experiments with multi-criteria analysis
led to a reformulation of the criteria; moreover, two new ones were added
to the set. The energy technologies, the alternatives being considered for
possible research support, were finally reviewed on the basis of their
possible contribution to
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1. the security of energy supply:;

2. the energy efficiency;

3. the social acceptability;

4. the creation of an innovation-based industry;

5. the energy management (in the long term)}

6. the establishment of a high-level scientific activity.

These criteria had to be ranked and rated according to their impact on the
national economy.
The Council was concerned with the following energy-technology areas:

energy saving;

oil and gas;

coal;

uranium;

solar energy;

wind energy;

biomass energy;
geothermal energy;
supporting technologies.

WO U b WN -

Some areas have been subdivided but a further hierarchization was felt to
be unnecessary (at least for the time being). The energy technologies under
consideration (a total of 23) will be shown in the tables 3 and 4.

3. METHODS OF PAIRWISE COMPARISON

In a method of pairwise comparison, stimuli (criteria, alternatives,
for example) are presented in pairs to one or more referees (decision makers).
The basic experiment is the comparison of two stimuli S; and S; by a referee
who must choose one of them; we usually say that the referee prefers the
stimulus he chooses. Suppose that there are N referees; let 0;; denote the
number of referees preferring S; over S5, then 0,; =N - ;. %e assume that
the stimuli S; have respective values V; on a numerical scaie; the objective
of the experiments is to estimate these values.

In the Thurstone (1927) model, the perceived value Xj of Sj, averaged
over the referees, is taken to be normally distributed with mean Vi and
variance 02; the X; are supposed to be equi-correlated with correlation
coefficient p. In order to approximate the V;, we take aij/N to be an
estimate of

(X,-x,) - (v,-Vv)) -(v,-v.)
1>(x.—x.30)=1>(lJ = J > 1 )
+ 3 ovZ(1-p) T o/2(1-p)

Setting the multiplicative constant 0v2(1-p) arbitrarily to 1, we estimate
the difference of vy and Vj by the value Bij such that

P(Z Z - Blj) = aij/N 12

where Z denotes a normally distributed variable with zero mean and variance
1. Estimates vj of the weights V; are now obtained by minimizing the sum
of squares

bX (Bi' v+ v,)2 .
i<y J J
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The estimates are not unique: there is an additive degree of freedom since
we have only considered differences of stimuli.

In the Bradley-Terry (1952) model, we take aij/N to be an estimate of
the preference for Sj over S4, which is written as Vi/(Vi+V3); it is assumed
that the V;j are positive and sum to unity. The maximum-likelyhood function
used to find estimates vj of the V; is given by

n a; N

L=Cc(Il v, /(I (v.+w35)) , (1
. i . i ]
i=1 i<j

where C denotes a constant, and

a, = )X ai' .
=1

Maximization of 1nL subject to the normalization constraint (X vj = 1)

yields the v; (for further details,see David (1963)).

An obvious extension of the above models is to consider the case that
some referees sometimes abstain from giving their preference: then we

merely replace N by Nj4, the number of comparisons between Si and S+.
In the priority t%eory of Saaty (1980), gradations in the compgrative

judgement are easily handled. First, we consider the case of one referee

who is requested to estimate the ratio Vi/Vj by a positive number denoted

as rj;; we assume again that the Vi are positive and sum to unity., Equality
of the stimuli S; and Sy is expressed by setting r;. = 1. If s; is believed
to be somewhat stronger, much stronger, .... than S, then ris is accordingly
given a value higher than 1 (the numerical scale is discussed insec. 5. Of
course, we have rij <1 if 54 is felt to be weaker than S., and normally

the judgement satisfies the reciprocal condition

Fij 3i

Finally, we set the diagonal elements T (i =1, ...., n) to 1. This
completes the assignment of values by exactly one decision maker who
estimates each pair of decision factors. When we are dealing with a decision-
making committee, and allow for the possibility that some members sometimes
abstain from giving their opinion, we proceed as follows. We let di' stand
for the number of estimates of V;/V; obtained in the committee, and Xiax

k=1, ..., Gi.) for the k-th estimate of_Vi/Vj. We approximate the vector
vV = (Vl""’ Vn? by the normalized vector v which minimizes
S, .
ij 2
by z (1n r_,k - 1n vi + 1ln v.) =
i<j k=1 +J ]
S, .
1]

¥ b3 (yi.k

2
- %y +x.),
i<y k=1 I ]

where Yijk = 1ln rijk.and X, = 1n Yi' Now, observing'that yijk = - yjik and
Gij = 417 we can write the associated normal equations as
n n n Gij
X, )y (S . ¥ 6 , X = 3 ¥ Y. - (2)
i 5=1 ij =1 ij 3 j=1 k=1 ijk
J#L j#L j#L
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These equations are dependent (they sum to the zero equation). Taking the
vector X to denote a particular solution of (2), we can write the components
of the general solution as ii + N, with arbitrary n, and we approximate Vi
by

_ _ n B _ n

v, = exp(xi+n)/i}i1 exp(xi+n) = exp(xi)/i}i1 exp(xi) .

We note in passing that there is an explicit solution X to (2) with components

in the case that éij = 1 for each factor pair; then we approximate V; by the
normalized geometric row mean

It is worth noting that an overall ranking and rating of the stimuli
is impossible (both mathematically and in practice) if the stimuli can be
split up into a number of disjunct groups without mutual (intergroup)
comparisons.

Obviously, Saaty's method with logarithmic regression has certain
advantages over the Bradley-Terry method (solution of a linear system only
to find the values V;, gradations in the comparative judgement possible),
but it remains questionable how the gradations should be expressed on a
numerical scale.

4. THE EVALUATION PROCEDURE

We are dealing with a decision problem where m alternatives Byreee By
must be ranked and rated in the presence of n possibly conflicting criteria
Cys.-+,Cq. In the first step, we approximate the values p; of the respective
criteria Cy, i=1,...,n, by weights 0y calculated via a pairwise~comparison
method. In the second step we judge the performance of the alternatives
Al,...,By under each of the criteria separately. When criterion C; is under
consideration, we approximate the values qu of the AJ j=1,...,m, by
weights B 3 calculated via the same pairwise-comparison method. Obviously,
the performance ratio dij /ajx of the alternatives A: and Ay under criterion
C; is approximated by the ratio Bl /Blk. We want to obtain final scores s:J
and Sk for AJ and Ay, such that §, /Sk estimates their overall performance
ratio. When the computed weights Qj,..., O, happen to be equal (§; = 1/n},
an appropriate expression would be

that is, the computed &i appear exponentially. Generalizing this, we set
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Hence, the final scores can be defined by

Using first-order approximations and the normalization of the ai
(i =1,...,n), we can easily find

n
s, = expl X a, In B,.] =

J i=1 13
n — -
=1+ ¥ a, lnB,, =
i=1 T ]
n _ _ n _ _
~ 1+ X oy (Bi.-l) = X oy B.. - (3)
i=1 J i=1 +

This is a well-known result: multiplying the weights éij of alternative A5 by
the weights a; of the criteriaCj (i = 1, ..., n) and adding the products,

is the traditional method to obtain the final scores §j (3 =1,...,m).

These numbers can be used to rank and to rate the alternatives, but we have
the impression that checking for inconsistencies is more important than
anything else in actual applications of the method. The user can readily
detect cyclic judgements and underlying controversies in a committee. He can
also solve the weights ai from (3) by estimating (a holistic approach) the
final scores_E- and the performance weights Bijl whereafter he may consider
whether the aj so obtained reflect his preferences.

5. MAGNITUDE SCALING

Saaty's original scale as shown in Table I (with intermediate values
2,4,6,8 assigned to Tiq in cases of doubt between two adjacent qualifications)

TABLE 1 Saaty's scale for pairwise comparison

equal impact
somewhat more impact
S much more impact S, r
dominance
absolute dominance

O ~Junwrr

has a number of disadvantages. First, it is not easy to maintain the
transitivity property
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rlk rl] r]k ’

which is plausible because

<

v, v,
x x _3J
v v, ° -
k j Vk

If, for instance, S;{ has somewhat more impact than S;, and S; somewhat more
than Sy, so that both rij and r4g are set to 3, then the assignment of 9 to
rjk, implying absolute dominance of S; over Sy, is mostly felt to be out of
proportion. A geometric scale with powers of a suitable base number is more
appropriate. Second, the Saaty scale is rather short. Magnitude scaling of
words and phrases expressing grades of approval or disapproval has shown that
the response range (the ratio of the extreme stimuli) can easily be up

to 100 (see, for instance, Lodge (1981)). Saaty's scale allows a response
range of 9 only. Hence, we have employed a few geometric scales based on
powers of e and 10. In our experiments, we distinguished five different cases.

TABLE 2 Numerical Scales

Case Scale
I Saaty 1 2 3 e e e e e 9
II Geometric 1 eE e e e e e e e e

IIX Geometric 1 1074 1012 . . . e 102
v Geometric 1 e e? e e e e e e e 68
\Y Bradley-Terry %- 1 1 e e e e s e e

Note. A sound arqument for the above-named transitivity property can be
obtained from psycho-physical experiments, demonstrating that the response
Y (s), the impression of brightness of light, loudness of sound, etc., is a
power function of the stimulus s because the ratio ¥ (ks) /¥ (s) depends on the
positive number k only (Roberts (1980)). Hence, the scale value rj4 may be
considered as an approximation of (Vi/V-)a, with an unknown power . In our
study, we have not pursued the determination of o. Instead, we concentrated
on the sensitivity of the calculated results when various scales are

employed.

6. RANKING AND RATING OF ENERGY TECHNOLOGIES

In our preliminary experiments, eight members of the Energy Research
Council made pairwise comparisons of the criteria by using the documents as
shown in Figure 1. They were requested to consider the randomly generated
pairs of criteria, and to tick their judgement in a box or on the separating
line. Qualifications like "dominance" and "absolute dominance" were felt to
be unnecessary; the judgement ranged from "much higher" to "much lower"
impact. We assigned numerical values to the qualifications according to
the scales of case I-IV (see also Table 3). In case V, the Bradley-Terry
method, we interpreted "much higher" and "somewhat higher" impact as a
preference for the first-named criterion.
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R.E.J.-project

Mr.
S=S===z= ==+
FOR ] Compare the impact of the following pairs of CRITERIA angd
OFFICE | mark the approgriate box.
USE ONLY |
] | has | has ABOUT | has |
| | SOMEWHAT | EQUAL | SOMEWHAT |
A diadd | has | HIGHER | impact as | LOWER | has |
1-4] 4] | MUCH | impact +---¢ +---+ 1impact | HUCH |
tomot | HIGHER | than | | than | LOWER |
| | impact #--==------- + | | Sttt + impact
| 1 | | | I
56 78 | L e D L] + | I | | L +
1 | I | | | | |
mwrn ] ) | | \i \i \i
+===+ L e R LT e ]
3- 2] | Social Acceptabili | [} | ! ] | Fnergy Efficiency
4=+ P e it et TR Y
2- 5] ] Energy Efficiency | | | | | { Long-~term Contribu
+4z===4 R L it e
4- 2) | Innovation-based I } | | | } | Fnergy Efficiency
+===4 L R S et b 2
4- 3] | Innovation-tased I | ] i | ] | Social Acceptabili
+===4 D R N et sttt J
2- 6| | Fnergy Efficiency | | | | | | High-level Scienti
+==S4 L R L R e Attt d
1- 2] | Security of Fnergy | ] | | | | Eneroy Efficiency
+==T4 L e bt Rt T 3
5- 6| ] Long-term Contribu | 1 | ] | | High-level Scienti
+4===9 Rt il R ke Lt b b
5~ 3] ] Long-term Contribu | | | ] | | Social Acceptabili
+z===+4 P N e et ]
1- 6| I Security of Fneroy | | | | | | High-level Scienti
4=+ L R e e e T L]
4- 6] | Innovation-based 1 | | | ] | | High-level Scienti
===+ D ik it Ratabal et T 3
1- 5] | Security of Energy | | ] | | | Long-term Contribu
+T== 4 L ek b Rttt Sttt d
3- 1) | Social Acceptabili | 1§ | | | | Security of FEnergy
+===4 il d LDl XL R Sabdad g ]
1- 4} | Security of Energy | | { i | | Innovation-baced I
===+ R R T T ST
5- 4 | Long-term Contribu | t 1 1 | { Innovation-based I
+z===4 D R e t Rt 3
3~ 61 | Social Acceptabili | | | | | | High-~level Scienti
+===+ L S e Rt Tt Y

FIGURE 1. Computer-generated Form for Pairwise Comparison

The resulting weights, and particultarly the rank numbers of the criteria,
inspire confidence in the geometric
scales II and III, for which reasonable arguments have been brought forward
in sec. 5. The geometric scale IV is too long, and the Bradley-Terry method,
case V, does not employ all the information which is available. Nevertheless
the shift in the results remains moderate.

For the pairwise comparison of the energy technologies under the six
criteria separately, we have adopted a simplified procedure because the
complete task would be unfeasible. Each of the REO participants concentrated
on 12 energy technologies only; they made a controlled selection so that
the whole set of 23 technologies was still reasonably covered. Gradation of
their judgement was not requested; effectively, the participants followed the
mode of operation for the Bradley-Terry method, stating their preference for
one of the two technologies, or indifference. Returning to Saaty's method
we interpreted "preference" as "somewhat higher impact”, and used the values
3, 2.72, 3.16, and 7.39 respectively.
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Weights and Rank Numbers of Criteria and Alternatives under

Various

TABLE 3.

Scales.
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The resulting weights (the final scores) and the rank numbers of the
energy technologies are also displayed in Table 3. Again, there is a
promising robustness, not only in the cases I-III (as one might expect), but
also in the cases III-V (with widely disparate scales).

7. BUDGET ALLOCATION

The final scores of the energy technologies can be used, not only as a
basis for discussion in the Council, but also as a tool for the allocation
of the research budget. Suppose that an investment level pj has been given

for the j-th technology; let S5 denote its final score. The problem to be
solved is the simple knapsack problem of maximizing the total benefit

subject to the budget constraint

TPy Xy B

3
with zero-one decision variables xs. We have calculated an optimal package
of technologies for the cases I-V and for three values of the total budget
B. The results displayed in Table 4 demonstrate again the promising
robustness, which is necessary for a workable tool in decision analysis.
Sensitivity to the scale and the method is only revealed when deep cuts are
made in the required budget. Obviously, the cheaper projects are more likely
to be selected than the expensive ones.

There are various possible extensions of the problem formulation:
financial support of the technologies at distinct investment levels (a
minimum and a dzsired level with intermediate steps), a budget allocation
over several periods, the addition of capacity constraints, etc. Basically,
the criteria are conflicting objectives, so that we are running up against
a multi-objective intecer-programming problem.

8. CONCLUDING REMARKS

At the time of writing, the Energy Research Council is subject to a
major reorgqanization. We have noticed that multi-criteria analysis triggered
deep-going discussions about the criteria; the final scores of the
technologies and the allocation of the budget are still on the agenda.

It is our impression that Saaty's method with logarithmic regression
is sufficiently robust for practical purposes. The scale sensitivity remains
within reasonable limits. Further advantages are that human judgement can be
given with certain gradations, and that it can also be used by a single
decision maker. An extension, that has been dropped from consideration
here, is to use fuzzy numbers with triangular membership functions
(Laarhoven and Pedrycz (1982)) in order to meodel the fuzziness of human
judgement; this also provides a useful type of sensitivity analysis.
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Allocation of Research Budget to Energy Technologies under

Scales I-V.

TABLE 4.

An asterisk marks the technologies which are dropped because of

the budget limitation.
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INVESTMENT AND FINANCIAL PLANNING IN A
GENERAL PARTNERSHIP
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ABSTRACT

The paper presents an interactive decision support system in order to
distribute cash dividends from the investment and finance activities of the
firm to the partners of the firm according to their individual time prefer-
ences. We first introduce a basic multiple objective investment and finance
planning model and indicate that several well-known models of investment and
financial planning are members of the same class of compromise models for
our basic multiple objective model. We then introduce an interactive decision
support system for the indivudual as well as the collective decision process.

1. INTRODUCTION

A partnership is an woluntary association of two or more persons for
the purpose to manage and share profits (or losses) in a business enterprise.
In a general partnership each partner is a general partner whose liability
is not limited to the amount contributed to the firm as capital. We shall
assume that each general partner takes part in the investment and financial
planning of the firm and that each partner participates from the total cash
dividend payments according to his proportional share in the firm's capital.
As a partnership can be regarded a woluntary aggregation of persons doing
business under a common name, the structure of the collective decision pro-
cess will be keyed to a fair compensation among the general partners with
regard to their individual time preferences. Thus we desist from majority
or coalition concepts in the course of the collective decision process.

In Section 2 we shall formulate a multiple objective investment and
financial planning model where the arguments of the objectives are the anti-
cipated dividend payments to all owners of the firm.

A class of compromise models which includes the prominent compromise
models discussed in the finance literature is presented in Section 3. In
Section 4 we outline a decision support system for an individual decision
maker to plan the investment and finance acitivities and the anticipated
dividend payments according to his individual time preference. This decis-
ion support system will then be utilized in the course of a collective de-
cision process. The decision support system for the collective decision
process will be the topic of Section 5.
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2. THE BASIC MODEL

In order to formulate the basic multiple objective investment and finance
model we shall apply the following notation:

a; - net cash flow obtainable from one unit of investment or finance pro-
ject i at time t (i =1,...,I; £t =1,...,T), where ati > O denotes

an inflow of cash and ati < O denotes an outflow of cash

bt : amount of cash made available from projects outside this planning
model and from other sources at time t

dji : amount of the j-th scarce material required by one unit of project i
(J =1,...,J)

dj : total amount of the j-th scarce material

X, : number of units of project i to be undertaken

X : vector of the finance and investment activities to be undertaken,
X = (xl,...,xI)'

ci : upper bound imposed on X,

yt cash dividend to be paid to the owner(s) at time t

y : vector of cash dividends, y = (yl,...,yT)‘.

There is widespread agreement in the literature on finance (cf. Albach
(1962), Baumol-Quandt (1965), Bernard (1969), Hax (1964), Manne (1968),
Weingartner (1963, 1966)) that the anticipated dividend payments to the
owner (s) of the firm are the arguments of the appropriate objective in the
planning of a firm's productive investment and financing policy. As for each
t =1,...,T higher dividend payments are preferred to lower dividend pay-
ments the general objective will be to

maximize ¥y

maximize yT

which will be denoted by

"max" y = (yl,...,yT)'. (1)

Achievement of these T objectives is limited by the following set of
restrictions. For t = 1,...,T we assume a liguidity requirement which says
that the sum of the firm's outflow of cash for the investment and finance
projects to be undertaken and the cash dividend to be paid to the owner(s)
at time t is equal to the amount of cash made available from projects out-
side this planning model and from other sources. Then, the general form of
the cash balance restrictions will be

T
- ) a . X, +y_ =b for t =1,...,T. (2)

We also assume a general scarce material restriction of the form



177

T
£ j = cen
§1 dji X, < dj or j 1, ,J (3)

i
This restriction is, of course, merely illustrative. In a particular appli-
cation, an investment and financial planning model could have many restrict-
ions of this type. For example, there could be a set of restrictions for
each of a number of scarce materials, or, for a given such material, there
could be different restrictions in different periods. Moreover, we impose
an upper bound on the number of units of each investment and finance pro-
ject i (1 = 1,...,I) to be undertaken:

x, < ¢, for i =1,...,I. (4)
i="1i

Finally, it is required that all of the variables be greater than or
equal to zero. Thus, we add the following requirements:

X 2 O fori=1,...,1I; Y >0 for £t =1,...,T. (5)

Throughout this paper we assume that the investment and finance activi-
ties of the basic model include lending activities at some positive lending
rate of interest from time t to time t+1 and borrowing activities at some
positive borrowing rate of interest from time t to time t+l1 for all t =1,
e, T-1.

In summary, then, our basic investment and finance model requires the
"maximization" of the cash dividend vector y = (yl,...,yT)', subject to the
constraints specified above, i.e.

max" y

s.t. (2) - (5) (BM)

By "maximizing" the cash dividend vector y we want to determine all ef-
ficient cash dividend vectors y*. Let x* be a feasible investment and finance
program for (BM) and y* the corresponding cash dividend vector. Then y* is
an efficient cash dividend vector for (BM), if and only if, there exists no
feasible investment and finance program x" for (BM) such that the correspond-
ing cash dividend vector y" satisfies y" >y and y" # y . Let Y denote the
set of all feasible cash dividend vectors and v* denote the set of all ef-
ficient cash dividend vectors for (BM). Y* contains (infinitely) many effi-
cient cash dividend vectors. Thus additional information about the time pre-
ference of the 1nvestor(s) is necessary in order to select a compromise cash
dividend vector § from Y*.

Several compromise models have been proposed (cf. e.g. Bernard (1969),
Hax (1964), Weingartner (1966)) which assume that the investor is able and
willing to specify his time preference in such a way that his preference
system can be represented by a scalar-valued preference function which is to
be maximized.

3. A CLASS OF COMPROMISE MODELS

The most prominent compromise models belong to a class of compromise
models of the following form:
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. t. 2) - (5 CM
s (2) (5) (p)

with p # O , at >0 for all t=1¢,...,T.

For p = + o and at =1 (t=1,...,T) we obtain (cf. Isermann (1974))
0oly) = max {y}
t
= Yo oo

i.e. a compromise objective function which represents the terminal wealth.
Thus the compromise model (CM«m) provides for the maximization of the ter-

minal wealth of the investment and finance program.

For p = - o and at =1 (t=1,...,T) the general compromise objective

function ¢P assumes the form (cf. Isermann (1974))

¢_ y) = min {y}.

t
In the compromise model (CM ) an investment and finance program is to be
determined such that the annulty is maximized. Instead of maximizing a vector
of cash dividends which are equal at each point of time t a different time
pattern of the cash dividends is readily attained by assigning different

t-1

values to the respective at (t=1,...,T). Let e.qg. at := (1+4K) (t=1,
...,T), then the optimal vector of cash dividends y will have the structure:
- t-1 .

¥, = (1+K) ¥, (t=1,...,T).

In order to determine an optimal solution for (CM_m) we can apply the

following linear program
max v

s.t. (2) - (5) (cM* )

"
-

_ 1 unit cash in t*
" 1 unit cash in t

For p = 1 and o > 0 with dim (at)

we obtain the compromise function
T
¢1(y) = @ Yoo
t=1
which represents the total present value of the finite stream of dividend
payments. By applying the compromise model (CM } we determine a cash divi-
dend vector ¥ with maximal present value.
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1 unit cash in T
1 unit cash in t

If we assign to at dim (at) ¢1(y) represents the terminal

value of y.

The construction of a compromise model is based on the fundamental as-
sumption that the decision maker is able and willing to represent his valu-
ation system by means of a compromise function. As this preference function
- by assumption - comprehends the complete information on the investor(s)'
time preference, the selection of an efficient compromise cash dividend
vector can be performed via a solution procedure for the respective mathe-
matical programming problem.

Our own experiments support the hypothesis that the formation of the
decision maker's valuation system is neither complete nor definite at the
beginning of the decision process. Rather the formation of the decision
maker's implicit valuation system develops in the course of the decision
process (cf. e.g. Dinkelbach-Isermann (1980)) and it was observed in our
experiments that the formation process of the decision maker's valuation
system is attended by consecutive modifications of one or more objectives.
Moreover, even in the case that the decision maker's valuation system com-
plies with the requirements which are necessary in order to represent the
valuation system by means of a preference function, it does not seem neces-
sary to demand full information on the decision maker's valuation system.
In other words: The compromise models presume information on the decision
maker's valuation system which he is unable to provide or which is mainly
redundant.

4. OUTLINE OF AN INTERACTIVE DECISION SUPPORT SYSTEM

The process of goal formation and decision making can be characterized
as a cognitive process of information processing. Thus the structure of a
decision support system has to consider the decision maker's specific needs
for information on the efficient cash dividend vectors of the underlying
multiple objective investment and finance model as well as his specific abi-
lity to express partial information about his implicit valuation system. Com-
parative evaluation of some interactive approaches are e.g. reported in
Dyer (1973) amd Wallenius (1974). Our findings which partly differ from the
reproted results lead to conjecture that problem-specific as well as decision-
maker specific aspects should determine the structure of an interactive de-
cision support system.

For these and other reasons interactive decision support systems have
been developed which provide an interactive dialogue between the decision
maker and the computer. The basic technique of the interactive procedures
is to elicit partial information from the decision maker about his valuation
system and to provide partial information on the criteria configuration of
the underlying multiple objective decision model. Thus in the course of an
interactive procedure the decision maker articulates partial information on
his valuation system which leads to some progress with respect to the se-
lection of a compromise cash dividend vector while a numerical procedure
provides a suggested cash dividend vector which has been generated on the
basis of the partial information provided by the decision maker so far. The
interactive procedure terminates with the selection of a compromise cash di-
vidend vector by the decision maker or the outcome that the multiple object-
ive investment and finance model does not provide an efficient cash divi-
dend vector, which is accepted by the decision maker.
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We propose a modified version of the STEM method (cf. Benayoun - de Mont-

golfier-Tergny-Laritchev (1971)). In order to introduce into the structure
of the proposed interactive decision support system, we shall first assume
that only one investor owns the firm and that he wants to determine a com-
promise cash dividend vector. The following notation will be applied:

L: index of the current stage of the interactive decision process
£ =1,2,...)

;f: current lower bound on the cash dividend yy which has been fixed by
the decision maker in the course of the first (£-1) stages of the
interactive decision process.

D(z): index set of those cash dividends y, , for which the decision maker has
not yet specified a lower bound ;(K up to the (£-1)th stage of the
interactive decision process. (D(l) = {1,2,...,T}).

The interactive decision support system is outlined as follows:
Step 1: Initialization
Step 2. In order to generate an efficient cash dividend vector proposal

£ y(Z))

for the decision maker determine an optimal solution (x ,
for the linear program

T
max w+ € L Y,
t=1
s. t. 2y - (5) (LP)
Wy, <0 for all t € D(z)
Y, z'{;’éz) for all t € {1,...,T} ~ ),

with ¢ being a sufficiently small but positive scalar.

Present the efficient cash dividend vector y(z) to the decision

maker.

Step 3. If £ = 1 go to Step 5; otherwise go to Step 4.

Step 4. Does the investor want to modify one or more lower bounds
;ﬁﬂ) t€ {1,...,T} ~ D(z) in order to provide for more attractive

values for the cash dividends Y, (t € D(z))? If "yes", go to Step

9. If "no", go to Step 5.

Step 5. Does the investor accept the cash dividends yéz) for all t=1,...,
T? If "yes", go to Step 12. If "no", go to Step 6.
Step 6. Does the investor accept for at least one t € D(z) the cash divi-

L
dend yé )? If "yes", go to Step 7. If "no", go to Step 13.
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Step 7. The investor is asked to specify yt < vy for at least one
t € D(z) which imposes a lower bound on Y-
Step 8. Actualize D(z) and the program (LP) of Step 2 and to to Step 11.
Step 9. The investor is asked to reconsider the lower bounds ;ﬁﬂ) and spe-
cify actualized values for §i€) (t € D(z)).

Step 10. Actualize the program (LP) of Step 2.
Step 11. Set £ := £+1 and go to Step 2.

Step 12. The investment and finance program x(z) yields a compromise cash

dividend vector y(z). Stop.

Step 13. The multiple objective investment and finance model does not pro-
vide a compromise cash dividend vector for the investor. Stop.

5. AN INTERACTIVE COLLECTIVE DECISION SUPPORT SYSTEM

We shall now consider the case that K > 1 decision makers participate
in a collective decision process. Let us first introduce the notation:

k : index of the decision makers (k = 1,...,K);
aﬁl): proportional share of the k-th decision maker in the general partner-
(1) S
ship (0 < « <1, X a =1);
k k
k=1
m : index of the current stage of the collective decision process
(m=1,2,...);
A(m): index set of the decision makers who are involved in the m-th stage of
the collective decision process, (A(l) = {1,...,K}).

The principal conditions for the collective decision process are the
following:
1. Let the k-th decision maker individually determine an investment and
* *
financial plan x according to his individual time preference, where y

is the corresponding vector of the total stream of dividend payments.
Then in the course of the collective decision process the k-th decision

maker will realize a vector of cash dividend payments §k such that §k >

a(l) *
x Y
2. For the total vector of cash dividend payments
- K -k - *
y = y y ey has to hold.

k=1
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3. If in the course of the collective decision process § ¢ Y*, each decision
maker k who participates in the collective decision process participates
from the additonal dividend payment potential according to his relative
share.

At the beginning of each stage of the collective decision process the
decision makers involved in the collective decision process determine si-

s . . -k
mul taneously an individual compromise cash dividend vector y in the course
of an interactive decision process as outlined in Section 4. As the k-th
- . 1 .
decision maker holds a proportional share of aé ) of the general partnership,
he can make his disposition with respect to his proportional share of the
total cash dividend payments. Thus in order to generate an efficient cash

dividend vector proposal for the k-th decision maker (k € A(m)), program (LP)

of Step 2 of the interactive decision support system for an individual de-
cision maker obtains the form

T
max w+ g 2 Yy
t
t=1
s.t. (3) - (5) (LPy )
- (m)
- Loay Xty =bg te=1,....7)
i=1
£
w - a(m) y, <0 for all t € D( )
k t =
(m) ~(£) - &)
o v, > Y, for all t € {1,...,T} D .
. (1 _ ) (m) (m) _ . -
with bt := bt' The expressions bt and ak (m=2,3,...) will be defined

in the sequel. Let x*, y*, w
-k m
:= aé ) y* has been accepted as a compromise dividend vector by the k-th

decision maker (k € A(m)).

be an optimal solution for (LPk) such that

If each decision maker has determined his individual compromise cash
- -k
dividend vector y (k = 1,...,K) the resulting vector of the total cash

dividend payments is § = X §k. § is a convex combination of efficient
k=1

cash dividend vectors and may not be efficient. In order to test the effi-

ciency of y we apply the following efficiency test program:

T
max w + £ Y. u
t
t=1
s.t. (3 - (4) (TP)
I —_—
- + = -
i§1 a; X u bt Yo
u 2 0 (t=1,...,T),
w-u <0
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Let X, W, U = (ﬁl,...,ﬁT)' be an optimal solution for (TP). If u = O,

- K -
our current y =k21 yk is efficient for (BM). The collective decision process

terminates. If, however, U * O our current § is not efficient for (BM) but
§ + @ € Y*. Thus all decision makers involved in the collective decision pro-
cess can improve their current cash dividend vector. It is proposed to dis-

-k
tribute the additional stream of cash dividend payments such that ynew :=
-k (m) - (m))

Yora * % u (k € A

Now we have to distinguish 3 cases:

(m)

(1) Each decision maker k € A accepts the actualized cash dividend

-k :
vector y . Then the collective decision process terminates as the re-
sulting total vector of cash dividend payments is efficient.
(ii) At least one decision maker k € A(m) accepts the actualized cash divi-

(m) . (m)

-k
dend vector y . We actualize A , i.e. k is excluded from A if

-k
the k-th decision maker has accepted the actualized y , and start a
new stage of the collective decision process:

Let m := m+l.
Th . (m) (m) | s
e expressions bt and ak in (LPk) are defined as follows:
K
m 1 -k
b() :=b() - y (t=1,...,T) (6)
t t t
k=1(m)
k€A
(1)
*x (1) (m)
(@) )3 (m) @ for each k € A
o 1= kEA (7)
k
o] for each k ¢ A(m)
(iii) No decision maker k € A(m) accepts the actualized cash dividend vector

y . We start a new stage of the collective decision process:

Let m := m+tl.
: (m) (m) . .
The expressions bt and ak in (LPk) are defined as follows:
K
(m) _ (1) P —
b/ .—bt b Yo (t=1,...,T
p=1
p*k
1 for each k € A(m)
W,
k 0 for each k & A(m)
All decision makers k € A(m) determine simultaneously a new compromise

cash dividend vector §k.
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Let y = 2 y . In this case it may happen that y € Y.
k=1
In order to test the feasibility and efficiency of ; we apply the fol-

lowing lexicographic linear program (Isermann (1982)):

T
-z - 20 v
t=1 t
lex max T
w+e 2 u,
t=1
s.t. (3) - (4) (LTP)
I -
“Loay X - v tu o =b -y
i=1
vt 2 0]
z - vt 2 o}
(t=1,...,T)
ut 2 0]
- o]
w ut g
Let X, W, z, u, v= (51,...,§T)' be an optimal solution for (LTP).

If v = 0 and 1 = O, our current

K
§ =1 yk is efficient for (BM) and the collective decision process
k=1
terminates. Let Vv # O or U # O. Then it is proposed to distribute the
total cash payments (U - V) to the decision makers involved in the
collective decision process in the following way

-k -k (1) -~ ~ (1)
Yy =Y + a (a-v/ L o .
new old k k€A(m) k
The actualized cash dividend vectors §k (k € A(m)) are presented to

the decision makers and the collective decision process is continued
in the described mode.
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A MULTIOBJECTIVE EXPERT SYSTEM FOR SUPPLIERS
OF OUT-OF-THE-MONEY OPTIONS

Joel N. Morse
Loyola College, Baltimore, Maryland, USA

ABSTRACT

The proliferation of telecommunications and computing capability has
sparked speculation about dispersing work. The electronic cottage industry
approach has potential in the area of office and professional services.
This paper proposes that certain functions of a centralized financial
market can be decentralized. To relocate an element of an information
processing system, its functions as well as its 1linkages must be
duplicated. For that purpose, we draw on the theories of multiple criteria
decision making (MCDM), artificial intelligence, and finance.

On the trading floors of the world's options exchanges, people called
market-makers provide liquidity; when a buyer cannot find a seller, or a
seller cannot find a buyer, these functionaries sometimes fill that void by
trading for their own account. The physically grueling work of transacting
on the exchange floor is often delegated to lower level employees. These
people act with supervision from senior people, or perhaps with a set of
decision rules formulated by the suppliers of capital.

This paper will attempt to outline the features of an automated,
remotely~sited system that emulates the market-making function which is
normally performed on the site of centralized options exchanges. To make
the task less formidable, I will concentrate on one very specialized
market-making function, namely supplying uncovered out~of-the money
options. The system is intended to promote useful communication between
man and computer. Although it would be presumptuous to say that the system
can learn, it can decide to query a human when certain conditions are
present. From these situations, a richer array of decision rules will
develop.

I. INTRODUCTION

An option is the right, but not the obligation, to purchase a
specified asset at a specific price. The institutional details, as well as
the mathematical valuation theories can be found in any modern finance text
(see, for a particularly careful exposition, Chapter 16 of Sharpe [1978]).
Options exchanges exist in Canada, the U.S.A., Europe and Asia. The
contracts, known as puts and calls, are associated with wide variety of
underlying assets. Among these are common stock, market indices, gold,
foreign currencies, various futures contracts, and several fixed income
securities.
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Purchasers of options seek speculative potential or the safety of
hedging. Or they may be involved in a complex series of transactions
involving both options and securities. Suppliers (i.e. sellers) of options
are similarly motivated. 1In addition, it is possible to generate a stream
of income by performing this economic function on a regular basis. This
paper will outline the design of a system for managing the portfolio of
such an economic agent, who could be a market-maker on the exchange floor
or an investor located elsewhere. In either case, the agent could be a
firm or an individual. I will identify and address the particular concerns
of the supplier of uncovered out-of-the-money options. This is a
well-defined market segment currently of interest to market-makers,
investment advisory firms, brokerage houses and sophisticated individual
investors.

II. UNCOVERED OUT-OF-THE-MONEY OPTION WRITING

In this section I will cover the terminology and the particular
requirements of this chosen market niche. Some of this is available in
depth in modern finance texts, such as Sharpe [1978]. Less documented
parts of this information set have been gleaned from actual market
participation. The supplier (or seller) of an option contract is called a
writer. For the privilege of receiving the option premium, the writer must
present evidence that he has the financial ability to deliver the asset
covered by the option contract, For the covered writer, this is
demonstrated by ownership of the asset. For the uncovered writer, this is
accomplished by posting margin, which is normally in the form of cash or
U.S. Treasury Bills. The rules for computing margin requirements are
complex, and will be dealt with later. Options are of two types, puts and
calls. A call is the right to buy an asset under specified conditions. A
put is the right to sell. The writer of an option is said to be short that
option. Thus, his benefit is precisely the opposite of someone who is long
(i.e. owns) an asset. The call writer gains when the underlying asset
moves down. The put writer gains when the underlying asset moves up.

The short option position also benefits from the passage of time,
since an option is a wasting asset. In addition, any decrease in
prevailing interest rates favors the writer. The terms of the option
contract specify a price at which the underlying asset will be transfered,
at the request of whoever holds the option (i.e. the long position). That
price is called the strike price. When the market price of an underlying
asset is the same as the strike price, the option is at-the-money. When
the market price exceeds the strike price, a call is in-the-money, and a
put is out-of-the-money. When the market price is lower than the strike
price, the call is out-of~the-money, and the put is in-the-money. When
options are deeply (i.e. extremely) out-—of-the-money, they sell for very
low prices, since the probability of profitable exercise is very Ilow.
Because of institutional features, namely margin rules and commissions,
writing these options is not particularly profitable for the covered
writer. However, it can be quite profitable for uncovered writers. A
specialized group of market participants has recognized this potential.
This paper addresses their needs.

IIT. OBJECTIVES, CONSTRAINTS AND CONCERNS

In this section, I will try to explain more of the workings of
uncovered option writing. Although there are objectives and constraints,
certain concerns do not fit mnaturally into this framework. We will see



188

that this leads to a natural extension of what at first appears to be a
mathematical programming problem.
The objective of our system is clearly to maximize the stream of
option premia received. Specifically, we want to maximize the quotient
z , where

premium received
margin requirement

That margin requirement, for equity (i.e. stock) options, is 30% of the
market price of the stock, plus (or minus) the number of points that the
option is in (or out of) the money, subject to a $250 minimum. The premium
itself may be applied to the margin requirement. The calculations for
non-equity options are somewhat different. It is this return on margin, or
return on capital employed, which motivates our option writer. Let us turn
now to his constraints.

The most obvious danger to an uncovered option writer is the risk of
exercise. In addition to transacting at a price that represents an
immediate loss, both a buy-side and a sell-side commission must be
absorbed. Control of this risk is accomplished by imposing a constraint on
the standard deviation of the stock price. 1In less formal terms, the
option writer recognizes that the stream of premia received will turn into
losses unless his portfolio is constructed from a 1list of stocks of
suitable risk. Since there is a positive correlation between =z and the
volatility (normally measured as a standard deviation) of the underlying
security, formulating this constraint involves assessing the option
supplier's risk tolerances; it may also be necessary to distinguish between
policies for efficient and inefficient markets.

Whether the approach is mathematical or intuitive, it is demonstrably
possible to manage the risk described above. For example, by prescribing a
sufficiently wide corridor between market price and striking price, and by
constructing a partially hedged diversified portfolio including both puts
and calls, the exercise risk can be fine-tuned. A subtle risk of far
greater concern is the volatility of the writer's margin requirement. As
described above, margin is computed as a function of both the stock price
and the corridor between that market price and the strike price. Thus, the
variance of the margin to be posted is a function of the variance on the
assets on which the portfolio of options is written.

The Options Clearing Corporation, and in turn the writer's broker or
clearing agent, mark the portfolio to market on a daily basis. When the
underlying securities fluctuate to the extent that the posted margin is
insufficient, a margin call is issued. At this point, the option writer
must put up more cash or Treasury bills, or he must reverse some of his
short positions. In other words, he can reduce his margin requirement, by
buying back, or covering some of the options he has written.

The most obvious defense is to maintain a reserve fund from which
these margin calls could be met. Since this reduces the number of options
which can be written, this strategy has a positive opportunity cost; it is
only one of several strategies that must be considered at each decision
iteration.

The process of portfolio construction must include an acute awareness
of this risk of margin variability. This is accomplished by the following
constraints:

1) Hold down the number of options written so that a non-negative

free cash balance is maintained;
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2) As in the classic Markowitz portfolio problem, the writer must
strive to diversify the elements in his portfolio; he must seek
low pairwise correlations among the holding period returns of the
underlying assets.

3) We will define a target, or desired level of margin volatility
for the portfolio. To achieve it, various mixtures of individual
options will be evaluated, keeping in mind our maximand z.

The difficulty of building these constraints will be discussed in a later
section.

In this portfolio construction phase, it is necessary to be aware of
certain financial costs of portfolio revision, or updating. As described
above, one way to meet a margin call is to cover a portion of the short
options. The release of margin is governed by the rules discussed earlier,
with a few exceptions. I call this process portfolio unwinding. There is
an inter-relationship between the premium paid to cover the options, the
margin released, the commission paid to transact, and the bid-asked spread.
These latter two are very significant, in a percentage sense. The
commission can be as high as ten percent of the option premium. A typical
bid-asked spread is 1/8 - 1/4. 1In dollar terms, this is $12.50 bid (what a
party will pay for the option) and $25.00 asked (what a seller wants) per
contract. Even these spreads widen when a writer wants to transact in
volume in a thin options series. If you were to write an option on Monday
at 1/4, and be forced to reverse that trade on Tuesday, you would have
shrunk your capital, in one day, by over half of the premium you originally
sought by writing that option.

Portfolio unwinding is to be minimized under any successful expert
system. But it will be necessary as capital markets fluctuate. Should the
option writer unwind by covering high-priced or low-priced options? Should
he cover a few options which tie up large amounts of margin, or instead
cover many options, each of which ties up a small amount of margin. An
acceptable path through this network of choices is a formidable task.

Let us now relax the assumption that the portfolio is constructed de
novo. In fact, a portfolio of short options usually already exists during
all but the initial run of the system. Typcially, free credit balances
become available for use for two reasons. First, market movements in the
underlying assets may release funds. Second, option expirations take place
every month. For a portfolio that was diversified over time, each of these
inevitable expirations generates funds to be used for option-writing. Then
a set of options must be added to the existing portfolio, in accord with
our notions of diversification, margin volatility for the portfolio, and
all the other features previously described. Thus the term portfolio
revision includes both portfolio unwinding and portfolio updating.

In section IV we will discuss this investment activity in terms of
mathematical programming, expert systems and artificial intelligence.

IV. MATHEMATICAL PROGRAMMING AND EXPERT SYSTEMS

At first glance, the objectives and constraints of Section III would
appear amenable to formulation as a mathematical programming problem. The
programming problem would be to maximize z, subject to the several stated
constraints. Alternatively, a large master problem could be formulated,
with sub-systems which were not necessarily of a programming format. For
example, various modules of computer code could calculate the margin
requirements for each candidate option, calculate the standard deviation of
the underlying asset, and gather all necessary price data automatically
from machine-readable financial databases. Part of the problem could be
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solved by quadratic programming methods, or more direct routes such as
those suggested in Morse [1982, 1983] or Karney, Morse and Ben-Israel
[forthcoming]. Since the constraints I have elaborated are intimately
involved with the preference structure of the option supplier, it could be

profitable to express them as multiple objectives. In that case, the
natural paradigm would be multiobjective mathematical programming (Zeleny,
[1982]).

Rather than subject the reader to an avalanche of notation and
equations, I will move directly to the shortcomings of this type of
approach. The heading for Section III included the word concern because
the issues that are relevant to the option writer are not really
constraints as that word is used in mathematical programming. They are
extremely transitory, difficult to assess and redolent with information
feedback mechanisms. The concerns lead to price and volatility discovery.
They can lead to increases or decreases in the amount of capital the
investors devote to the option selling operation. As time passes, the
investors' experiences with option exercise or margin calls may lead to a
new multiattribute utility function.

Here are some examples. During the summer of 1982, the z ratio
(recall that this is the premium divided by the margin requirement) for
Cities Service Corporation was extremely high by historical standards.
This was due to swirling rumors of a takeover attempt. This presented the
option writer with an exceptional opportunity for high return on invest-
ment, given an historical standard deviation for that stock. But expert
intervention was required (either human or artificial intelligence) to
project a new judgmental volatility based on the particular bidding war
occurring that summer. In such cases, the model's normal sensitivities
must factor in some consciousness of the gambler's ruin problem. An
example of a feedback loop is that some option market participants used a
volatility that was implied (via the option pricing equations) by the
observed option premia. This, however, was itself unstable, and the
problem became very unstructured. There even was a spillover effect to the
prevailing option premia for Getty 0il and Mesa Petroleum.

Another important feature of an option management system 1is the
stimulus and direction it can provide for associated fundamental research.
When the volatility computing module observes that the wvolatility for
certain assets is going up, the investment group 1s often alerted to seek
information which may not yet be fully reflected in asset prices (for a
study of information contained in option premia see Beckers [1981]). In a
more technical sense, as thinness, which is a lack of 1liquidity and
widening bid-asked spreads, appears in various sectors of the options
markets, new strategies for portfolio unwinding will be tested.

The difficulty with the mathematical programming approach is that its
very rigid structure causes some information to be discarded, some to be
damaged, and some to be linked by modeling rather than financial insights.

Artificial intelligence (AI) and expert systems (ES) may offer an
attractive expansion of the above model. Numerous articles (for example,
Alexander [1982], Nau [1983], Business Week [198la, 1981b], Manage Today
[1982], and Datamation [1980]) tout the power and insight of these systems
in a time of ever more powerful computers. Nau [1983, p. 68] describes the
"propagation of constraints" method of AI. In this approach, the solution
is successively bounded by an ever-increasing set of constraints. Some of
them are initially built into the system. Others are implied by fellow
constraints. Still others are learned during interaction with changing
markets and human operators.
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In their Society of Minds theory (a ready summary is Fortune [1982]),
Minsky and Papert propose an approach for AI. They believe that natural
minds employ distinct but communicating agents. Every agent governs an
aspect of human behavior. To extend this concept to computer-based expert
systems, one imagines modules of code. Some of these are 'doers," and
address functional areas, decision modes, or information searches. Other
modules are 'critics" which compare and check the effectiveness of the
"doers." Finally, a set of "censors" actually turns off the doers that the
censors determine to be unnecessary or draining elements of the system.
This outlook, because of the fresh modeling design that it implies, may
hold promise for an option writing system, as well as for other automated
trading systems.

V. SUMMARY AND DIRECTION OF FUTURE RESEARCH

There is some risk that AI and ES have become facons de parler. These
fashionable concepts take a tremendous programming effort before they
become operational in any one field. 1In the area of man-machine dialog, or
in other communications taks, scientists are deriving intelligent
principles of language design and comprehension. However, in the area of
allocation, design (such as CAD/CAM) and decision models, the progress is
evolutionary rather than revolutionary.

Just as mathematical programming approaches generate alternatives and
then search that space, AI and ES methods attempt that same task.
Mathematical programming tactics exploit the structure that is often
evident in the mathematical representation of the problem. The AI/ES
methodology seeks to reduce problem complexity by using the structure of
much less formal representations. By defining a limited domain of
discourse, these systems save work by intelligent (i.e. non-routine)
branching rules and calls for human interaction. Naturally, there are more
various strategies that prove efficient in each applications area. Unlike
mathematical programming, there are few rules that can be generalized.
AI/ES has probably been reasonably successful because modern computers have
become so powerful that brute force methods are economically feasible.

This paper has outlined a computer-based system for an economic agent
who supplies uncovered out-of-the-money options. The terminology, the
objectives, the constraints and concerns, as well as the institutional
environment of this agent have been discussed. These items were placed in
a mathematical programming framework. Next, several organizational
principles from the fields of artificial intelligence and expert systems
were proposed as extensions which might do a better job of meeting the
needs of this decision problem.

The development of an operational model that combines human input,
optimization modules and an AI/ES macro model awaits a serious commmitment
by an option-writing individual or group.
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I. INTRODUCTION

Economic-environmental-energy modelling has become increasingly compli-
cated over the last decade. Systems-theoretic concepts, optimal control mod-
els and multidisciplinary analyses have become necessary tools for environ-
mental-economic-energy analyses. There is a strong tendency towards more
integrated policy analysis, in which economic - environmental - energy aspects
are brought together in one coherent framework of a spatial context (see
Lakshmanan and Nijkamp, 1980). This tendency towards integrated modelling is
mainly caused by the fact that the post-war economicgrowth paradigm inter-—
twined with technological, scientific and educational progress and rising
population numbers, has neglected the social and ecological dimensions of
this process and hence has led to a serious threat for the man-made and
natural environment. This development does not only take place in the de-
veloped countries, but also in the Third World countries, especially in
those areas where a rapid industrial expansion is not accompanied by mone-
tary resources for environmental protection. Integrated planning and policy
models are essentially necessary means to restore the balance in favour of
more emphasis on environmental dimensions (cf. also Guldman and Shefer,1981).

In this paper we will attempt to develop an integrated approach to
regional-economic—environmental-energy policy analysis by discussing the
Triple-Layer Model (TIM) (see Hafkamp and Nijkamp, 1982, and Hafkamp,1983).
It will be shown that recently developed interactive, integrated economic—
environmental—-energy policy models appear to provide a promising perspec-—
tive for an integrated environmental policy analysis. Two elements are cen-
tral in these approaches, viz. efficient solutions for conflicting objec—
tives and interactive strategies among analysts and policy-makers. The
operationality of the TIM will be illustrated by presenting also some em—
pirical and illustrative results for the Netherlands.

2. INTERACTIVE MULTIPLE OBJECTIVE PROGRAMMING MODELS

In this section, a brief introduction to interactive multiobjective
decision analysis will be given, as this approach makes up one of the foun-
dation stones of the abovementioned TLM. Interactive decision analysis is
one of the fruitful results of modern high speed computer technology. This
approach to decision analysis aims at including in a stepwise manner var-
ious political (or subjective) considerations in formal optimizing models
characterized by multiple policy objectives. After a specification of con-
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flicting objectives and the identification of a feasible (not necessarily the

most desirable) compromise solution, a set of additionalpolicy desires (for

instance, minimum achievement levels, reference points, or aspiration levels)
may be introduced so as to find a new feasible compromise solution that is
more satisfactory.

Interactive approaches have several advantages: a closer involvement of
actors in the choice process, a procedural view of planning, a 'satisficing'
instead of an optimizing behaviour, a greater flexibility by means of sim-
ulation experiments or scenario analyses, and a greater potential for prac-
tical applications (especially because no policy weights have to be speci-
fied). The majority of these interactive approaches are based on a refer-
ence point optimization technique, in which an attempt is made at minimizing
the discrepancy between a series of points on the efficiency frontier and a
reference point. It has to be added that especially procedural interactive
policy analyses may be very helpful tools in policy negotiations on conflic-
ting issues.

Fortunately, in the field of mathematical programming and mathematical
economics, in recent years much work has been undertaken to formulate oper-
ational optimization procedures forproblems with multiple objectives (see
among others, Keeney and Raiffa, 1976; Cohon, 1979; Rietveld, 1980, and
Nijkamp and Spronk, 1981). At present, there is a whole spectrum of differ-
ent multiobjective methods available, both in the field of continuous pro-
gramming analysis (see, e.g. Nijkamp, 1979) and in the field of discrete
plan and project evaluation methods (see, e.g. Voogd, 1982).

Many problems in an integrated policy analysis do not require an un-
ambiguous solution that represents once and for all the optimal state of the
system concerned: compromise strategies appear to prevail. In the light of
the process character of many decision problems, an interactive policy anal-
ysis may therefore, be a reasonable and operational approach. This approach
is usually composed of a series of steps based on a systematic exchange of
information (based on computer experiments) between decision-makers and anal-
ysts. Such interactive approaches are normally characterized by the follow-
ing pair of steps:

- the analysts propose meaningful and feasible (trial) solutions on the
basis of a well~defined compromise procedure.

- the decision-makers respond to each (trial) solution by indicating in
which respect (i.e., in regard to which effects) the proposed compromise
is still unsatisfactory (given their views on minimum achievement levels,
etc.).

These pairs of steps are then successively repeated, until after sev-
eral computer experiments, a final satisfactory compromise solution has been
identified . As mentioned before, a large number of interactive models has
recently been developed (see among others, Rietveld, 1980 and Spronk, 1981).

Interactive policy analyses based on multiobjective programming methods
have already demonstrated their meaning in various policy problems, also in
a macro—economic context. They may be regarded as having many significant
advantages compared to traditional optimization methods (see Nijkamp, 1980
and Spronk, 1981),

In the present paper, only one specific interactive policy method will
be dealt with, viz., the method of displaced ideals (see Zeleny, 1976 and
Nijkamp, 1980). It is a method which needs no explicit information on the
trade—-offs between objectives expressed by the decision-makers in the pro-
cedure. If they are presented with a possible solution to the multi-objec-
tive problem, they only need to choose an objective which has to be improved
in the next iteration of the procedure. Fig. | contains a concise presen-
tation of the stages of this optimization procedure.
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FIGURE 1 Stages of an interactive optimization procedure.

More details regarding this method can be found in Hafkamp and Nijkamp (1982).

3. A TRIPLE-LAYER MODEL (TLM)

TIM is a model of a spatial system where economic, environmental and
socio-political aspects are integrated. The spatial elements implies that the
system is analyzed at the level of regions interacting with the national level,
Consequently, TLM is a national-regional economic environmental model. TIM
is a result of projecting a complex reality on three mutually interacting par-
allel layers:

- an economic layer
- an employment layer
- an environmental layer

Several elements in human (individualor collective) behaviour can thus
be depicted in three submodels, according to their respective different as—
pects and consequences (an extensive description of TIM can be found in
Hafkamp, 1983).

The operational version of the TIM is built up by means of 3 modules:

- an economic module; this is a national-regional economic model of the
(Dutch) economy. It is the result of coupling the so-called Secmon-
model to a multi-regional input-output model of five Dutch regions. The
Secmon-model has been developed by Driehuis (1978). It is primarily de-
veloped as a simulation model of the Dutch economy which analyses long-
term effects of various alternative economic policies. Main goal vari-
ables included in this model are: inflation, unemployment, economic growth
and current accounts. Main policy instruments are: taxes and public ex-~
penditure, monetary instruments, exchange rate, wages and price control,
and labour market policy.

The relationships between the compoments of the economic module are described

by means of 10 sub-models:
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~ production (based on a multiregional input-output table)

- final demand (consumption, investment, public expenditure and exports)
- imports (final products, raw materials and manufacturing inputs)

~ production capacity

- labour market (various demand and supply categories)

- wages and prices

- income

- government expenditure

- social insurances

- monetary systems

- a labour market module; this describes employment (supply and demand) in
all regions and sectors. The demand for labour is analyzed through the
production structure; gross production, capacity and capacity use in cap-
ital - intensive sectors, as well as import substitution constitute major
elements in this module. Supply of labour is analyzed through wages,
prices and growth of income. Also demographic data play an important
role on the supply side.

- an envirommental module describes 3 aspects of environmental quality:
i. Emission of air pollutants caused by:
a., combustion of fossil fuels
b. process emissions, etc.
ii. Concentration of air pollutants (via diffusion)
iii. Reduction of emission by:
a. saving energy, selective growth, etc.
b. alternative choices of energy sources
c. anti-pollution technology.

Pollution of water and soilis not taken into account here, neither is
any attention paid to the phenomenon of synergetic effects. The following
pollution categories are taken into account: sulphur dioxide, nitrogen
oxides and dust particles.

The choice of energy source also has an important influence on the
emission of air pollutants. For example: SO, emissions in the Netherlands
decreased drastically after a large-scale intfoduction of natural gas, but
since a switch back to coal or oil took place, a drastic increase occurred.
Especially the shift of electricity producers from natural gas to oil, coal
or nuclear energy and the further exploration and introduction of alterna-
tive energy sources (solar energy, wind, etc.) are of great importance to
environmental quality.

4, EMPIRICAL RESULTS

In the present section, results based on an empirical application with
3 objectives (production, employment and environmental quality) will be pre-
sented. The results serve only as illustrative outcomes, as they refer to
the period from which the data are taken (1970-1977). Furthermore, they are
not yet entirely realistic because regional sectoral production volumes are
allowed to vary widely around their starting values.

The information given per iteration in the tables has been limited to
the values of objectives on a national and on a regional level. In addition,
for the sake of simplicity, the procedure has been modified for this occa-
sion by optimizing objectives at a national level (which reduces the number
of optimizations per iteration) and - after identification of an unsatis-—
factory objective value - adding (or changing) constraints on the regional
objectives.
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The first step of the analysis was the identification of a first com-
promise solution (Table 1). After the first iteration, employment was taken
to be the objective which needed to be raised most urgently. Therefore, the
compromise values of regional employment were added to the constraint set as
lower bounds on employment. As a result, national employment was raised in
the next iteration, though apparently not all regional employment variables
were necessarily increased in value (Table 2).

For the last iteration the compromise values of the regional environ-
mental quality indicators in the second iteration were added to the con-
straint set. From Table 3, it can be seen that the values of objectives
showed very little variation across the columns of the pay-off matrix. Clear-
ly in this way the consequences of many policy decisions, of various policy
preferences or of various policy scenario's can easily be identified.

5. CONCLUDING REMARKS

The interactive multiobjective approaches to integrated economic-environ-
mental decision-making in a spatial system presented and applied in the pre-
vious sections, have several advantages over traditional approaches:

- They reflect the process character of complex economic-environmental poli-
cy problems; they constitute learning aids for policy-makers as well as for

modelers,

- They emphasize an active role of policy-makers in specifying and solving
choice problems, Znter alia by making policy objectives and trade—offs more
explicit.

~ They are able to take into account the variety and the conflicting nature
of policy options or criteria without requiring a prior specification of
weights.

- They provide an integrative framework for eliminating less relevant alter-
natives and for choosing consistent compromise solutions.
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1. INTRODUCTION

This paper deals with a computerized interactive system which supports
the making of collective decisions in a gaming framework. The basic idea of
the system was proposed by Wierzbicki (1982), although several modifications
have also been tested. The system has been implemented for a simple decision
problem concerning the allocation of funds for regional development.

2. THE DECISION PROBLEM AND ITS INTERPRETATION

We assume that there are two decision makers, each of whom has two ob-
jectives. Their models can be described as follows:

Decision maker 1l:

g, = gl(xl, x2) -+ max (net production)
gy = 8y(x)s X2) —~ max (consumption level)

subject to

xll < 3 < Xlu R

where X, is a given value (fixed by the second player).

Decision maker 2:

g3 = 83(x)» X2) -+ max (net production)
8, = 84(X1, X2) -~ max (consumption level)

subject to

Xy <Xy < Xy o

where Xy is a given value (fixed by the first player). The decision var-

iables for the first and second decision makers are denoted by X, and X,
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respectively, and are constrained to lie in the rectangle defined by the
values X110 Xy Xopo Xy, - The problems of the decision makers are as-

sumed to be interrelated.

This decision problem can be studied in more detail using a practical
example. We shall consider a problem taken from the Notec Project, a study
of integrated development in the Notec region carried out jointly by the
Systems Research Institute of the Polish Academy of Sciences and IIASA. The
final report of the Notec Project is given in Albegov and Kulikowski (1980).
The project involved the construction of a system of models, one of which is
a regional development model (RDM).

Relatively high rural-to-urban migration, particularly among people of
working age, is one of the main features of the Upper Notec region. This
causes changes in the distribution of the labor force and influences pro-
duction and consumption processes significantly. The RDM (see Krus, 1981)
describes these processes in an aggregate way, taking the migration into ac-
count. In this paper the RDM is reformulated as a problem of allocation of
funds between capital expenditure and aggregate consumption in rural and
urban areas.

One expert (decision maker) is considered to be responsible for the
rural part of the region, and another for the urban areas. Each allocates
his given budget Zi between capital expenditure z; and aggregate consumption

z , i=1,2 , trying to achieve his two objectives: maximum net production

i+2
and maximum consumption level.
The net production is described by the relation:

vy =1y ¥y(@p)z (00,

where vy is the size of the labor force, z; represents capital expenditure,
. a., are n positive parameters.

0i * T1i known p P

The labor force is a function of the migration rate m

and r, , @
i

yi = yi(m) )

where the coefficient m is assumed to be the ratio of the net migration to
the population in the rural area.

The consumption level (see also Kulikowski, 1981) is defined as a func-
tion (i) of expenditure in the aggregate consumption sphere (in a centrally
planned economy this sphere includes all services supported by the govern-
ment, such as education, health care and cultural services), (ii) of the
wage fund (which depends on capital expenditure), and (iii) of demographic
factors (in particular, the migration rate). Thus the functionmay bewritten
as follows:

U, = Ui( , m) .

z, z,
i i+2? “i

The rural-urban migration flow links the two parts of the region, and
is assumed to be a result of unequal consumption levels in these areas.
The migration rate has been econometrically estimated to be a function of
the consumption ratio:

m= f(Ul/UQ) .
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Software elaborated within the RDM model takes given values of z1=Zl-x1 .

z,=7 = and uses them to compute the values of the objectives,

3% BT BT
i.e., the net production g1=Y

zZ.=X zZ =X

and the consumption level g2=U1 in the rural

and the consumption level g4=U2 in the urban

1
area; the net production g3=Y2
area.

The above description of the model allows us to interpret the decision

problem defined in this section in terms of the RDM.

3. INTERACTIVE SYSTEM

3.1. Assumptions

The interactive system is considered to be a tonol available to support the
decisions of experts trying to solve the problem presented in the previous
section. These experts are treated as players in a game. It is assumed that
each of them has his own private utility function (unknown to the other players)
based on maximized objectives. For each player, the system generates a
function which scalarizes his objectives. At every step of the game, each
player obtains information on the Nash equilibrium calculated with respect
to the scalarizing functions, and can test any neighborhood of this equilib-
rium.

Using this information, the player expresses his preferences in the
space of his objectives. It is assumed that he does this according to his
private utility. The scalarizing functions are then modified and the pro-
cedure is repeated.

3.2. Structure of the Procedure

The procedure can be structured as follows:
Step 1. Choose the scalarizing functions from the assumed family of func-
tions, e.g.,
s, = 5@ 895 Py)

Sy = S,(85, 845 Py s

where vectors P;s Py contain parameters, e.g., reference points

&, and scaling points g

Step 2. Compute the Nash equilibrium for s, versus s

1 2 finding the objective

vector .
gn

Step 3. (DIALOG)

3a. Ask player 1 to change his parameters (e.g., the reference points
81 and ng)' Ask him to select the best solution from those ac-

tually tested.
3b. Repeat this procedure for player 2.

Step 4. Modify parameters Py and p, on the basis of the solutions selected
by the players.
Repeat steps 1-4.
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The exchange of information that occurs at step 3 of the procedure is il-
lustrated in Fig. 1. In essence, the players supply values of the para-
meters Py and P, and obtain the Nash solutions g, The values of the ob-

jectives for given decision variables are calculated using the RDM, which
is linked to the decision support system (DSS).

Player 1 Player 2

h

91902 Py 903/ 9na Py

Decision Support System

Model

FIGURE 1 Exchange of information between the players
and the decision support system.

3.3. Details and Comments

The above procedure has been modified in various ways: different
scalarizing functions have been assumed, different methods for computing
the Nash equilibria have been used, and the parameters of the scalarizing
functions have themselves been modified in different ways. The results ob-
tained on testing these modified procedures are summarized below.
Scalarizing functions. The following forms of the scalarizing function
were tested:

17 51080 8y Py
P P 1/p
8,18 8. ,8
-lo.s sl_ 1 + sZ_ 2 1)
Bs178r1 €5278r2
1

' = —
s Sl(gl’ g8,» P;) = - log lsll , 2)

where P, = {grl’ 8.9 gsl’gSZ} . The above formulas are given for player

1; analogous equations can be constructed for player 2.

We observed that the algorithms computing the Nash equilibrium diverged
when we used form (2). This is because this function does not preserve
concavity for certain concave functions &) and gy - A simple example has
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been found for which the function is not concave with respect to variables

Xy and x2 .

General concavity of function (1) can be proven, and this formula was
used in the final version of the DSS. The power p was set equal to 20, but
other tests were successfully carried out for p up to 80. It is however
necessary to reduce the size of the terms raised to a power, dividing (or
multiplying) them by properly chosen powers of 2. Without such "scaling"
the computed value of the scalarizing function may be very inaccurate and/or
overflow may appear.

Computation of Nash equilibria. Two methods have been used to compute
Nash equilibria. The first version of the algorithm utilized the MINOS/
Augmented system because nonlinear constraints appeared in the formulation
of the Nash conditions. Unfortunately, due to the linearization of these
constraints, the convergence of MINOS became dependent on the starting points
and the chosen values of the accuracy parameters. This means that MINOS
could not be used as part of the DSS without '"manual' control of convergence.

Eventually we chose a scaled steepest—descent-like method. The solu-
tions are obtained iteratively, using quadratic approximations of the original
scalarizing functions. The method is general but directly applicable to
problems with "rectangle' constraints.

A more detailed amalysis of the problem of calculating the game equi-
libria can be found in the description of the GEDASS system (Fortuna, 1984).

Modification of the scalarizing functions. Two approaches to the prob-
lem of modifying the parameters of the scalarizing functions were tested:

(a) Automatic choice of parameters Py and P, combined with simple trunca-

tion of the feasible rectangle.
(b) Direct choice based on the decisions of the players.
We shall first consider approach (a). In Step 3 (DIALOG) the player
investigates the neighborhood of the actual solution &n and then informs the

system which objective he would like to take higher values (e.g., gz). Be-~
cause each solution &, is the Pareto solution for each player (due to the

form of the chosen scalarizing function), the system assumes that the original
value of the other objective (in our case, gl) can be taken as an upper bound

for this objective in future manipulations.

x®

»

»
C 94

FIGURE 2 Simple truncation of the feasible rectangle.
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Consider the example presented in Fig. 2. Here the rectangle ABCO,
which represents the feasible region in the space of the objective values
Bl ~ 8y » is truncated to AB'C'Q after the player has indicated that the
value of objective g, should be increased. The parameters of the scalarizing

function were calculated in the following way:
—- The reference point 8, is equal to the geometrical center of the feasible

rectangle (the point g_ in Fig. 2).
-- The scaling point &g whs chosen in two different ways; in the first

version it was assigned a fixed large value (outside the original rec-
tangle ABCO) while in the second version this large value changed when
the rectangle was truncated.

We found both versions very inefficient, with very slow convergence due
to saturation effects. Simple examples were eventually found which explain
this effect. Thus, the whole method involving automatic choice of parameters
is not very efficient.

Now let us consider approach (b), which requires direct choice of para-
meters. This means that the value of the reference point selected by the
player after examining the neighborhood solutions is used in the subsequent
iteration without any modification.

This method of parameter selection has the following features:

--— It allows the player to correct bad solutions assumed in earlier steps
due to inconsistent decisions in DIALOG. Version (a) above did not
allow such correction and one mistake could cut off the region con-
taining the proper Nash solution.

-- The method is linearly convergent if the influence of the other player
is sufficiently small (it is possible to evaluate the rate of conver-
gence from the size of the derivatives), and if the accuracy of maxi-
mization of the player's own utility function is not decreasing.

—— If a player gives inconsistent answers there is a possibility of
cycling, which may mean jumping over the region of feasible solutions.
This is certainly one of the weaknesses of the method. In version (a)
the truncation of the feasible region prevents such cycling or jumping.

4. EXAMPLE

The system was tested a number of times with human players who took
decisions according to their own personal preferences, as well as withplayers
simulated through utility functions. In the example considered here, these
utility functions were of the form:

Player 1:
o B
1 1
1- 4 X8 X8y

[+~
I

where al/Bl = 1.809.

Player 2:
a g
2 2
Ay X gy Xg,

where ocz/B2 = 2.356.

Note that the ratio of o and B coefficients defines the direction of a ridge
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in the space of objectives. The ridge increases with increasing objectives.
Figure 3 presents the sequence of Nash equilibrium points obtained in six
consecutive iterations. _

The Nash points converge relatively quickly to the ridges of the utility
functions of the players. The ridges are represented by lines on the figures,
and describe the plavers' preferences between the objectives of maximum net
production and maximum consumption level.

A a, 4 o]
92 4 N3
10+ 15—
N, N
ON, Ny Ng 576
O N,
b ON,
lo) N4 14— O N2
9.0
Ridye of U, Ridge of uy
13+
8.5 1 o N1 o] N1
— T > T T T -
45 5 6 44 6 7 8 93

FIGURE 3 Sequence of Nash points obtained in six consecutive iteratioms.

5. IMPLEMENTATION

In addition to carrying out numerical experiments which demonstrate the
properties of the procedure, we also prepared a program package whichsim-
ulates a game between two players, using the computer as an interactive tool.

Only the nonlinear and linearized versions of the RDM model have as yet
been included in the system. However, the players may prepare their own
simple FORTRAN procedure to compute the values of their objective functions,
allowing the system to be applied to other models.

The system allows work from remote terminals, thus providing a better
simulation of independent negotiations. The system of programs is constructed
on two levels:

~- The upper-level program computes temporary Nash solutions, sends the
results to the players, receives their new reference points and the
selected best solutioms.

-- The lower-level (local) program provides "user-friendly" communication
with each player and prepares messages for the upper-level program.
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A MULTIOBJECTIVE OBSERVATION NETWORK DESIGN
PROCEDURE AND ITS APPLICATION IN HYDROLOGY AND MINING

Ferenc Szidarovszky
Department of Mathematics and Computer Science, University of Horticulture,
Budapest, Hungary

l. INTRODUCTION

In geosciences a large set of data has to be usually
collected and its structure has to be examined. In many
applications, the observations are very expensive. In the
mining industry drillhole data are used for exploration, and
in underground hydrology water well data are analysed for
monitoring water quality parameters. The data examined in
these applications are usually spread out in space or /and
time, and they are considered as realizations of certain
regionalized variables.

The theory of regionalized variables has been developed
by Matheron /1957, 1971/.

During the last few years increasing attention has been
given to the application of this theory in various fields of
applied sciences. For example, in hydrology the works of
Delhomme /1978/, Gombolati and Volpi /1979/, Carrera et al
/1983/; in mining the books of David /1977/, Journel and
Huijbregts /1978/; in soil mechanics the paper of Webster and
Burgess /1980/ are noteworthy. On the theoretical basis
developed by Matheron a sequence of estimation processes have
been developed which are called kriging in honour of Krige
/1951/ who first proposed a gpecial regression procedure to
mining problems. The different variants of kriging give an
optimal, unbiased, linear estimate under quite general
asgsumptions. By usging kriging, not only the estimates of the
natural phenomena can be obtained, but the uncertainty of the
egtimates can also be characterized by the estimation
variances.

In this paper we shall introduce a special minimization
procedure to determine the optimal locations of the messurement
points which minimizes the estimation variances. This is a
typical multiobjective programming problem, since in applied
gciences usually more parameters are gimultaneously estimated.
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2. AN OUTLINE OF KRIGING

Let D denote a subset of a finite dimensional ZFuclidean
space and let Z/x/ be a random variable for all x 6 D.
Then Z/./ can be considered as a random function. Function
Z2/./ is called an intrinsic random function, if

/a/ E\Z /x+h/ - Z/x/] = 0; /1/

/v/  Var{z/x+db/ - z/x/] = 2Y/b/ /2/

f 11 x,x+h8D. F ti ./ 1 lled th i % .
or a X,X+ unction ¥ /./ is calle e vario r:m

Let V denote a bounded subset of D, and define
average value of Z/./ on V by the relation

Z/V/ = —\%— é z/x/dx, /3/

where |V| is the measure /length, area, or volume/ of V.
Assume that a relization of the random function Z/./ has been
measured in k distinct points x,,X_ ye..,X, and let
Zl’Z2’°'°’Zk denote these measu}emgnts. IE using kriging the

average value Z/V/ is estimated by the linear estimator

k
7® = ¥ NZ. /4/
j=1 J J
where the unknown coefficients '%l,...,iﬁk are determined in

the following way /Journel and Huijbregts, 1978/.
Introduce the folloing rotations:

$yj = Blryxs/s Ayy =TT ) ¥/xgmiax, ¥, -
v
= 1 &
T;Tﬁ_ A Y/x-x*/dxdx’,
0 1 1 ... A 1 /57
S " fn
A = . 11 ‘12 '"Xlk TR RN AS A ’
.o » 7
. L] L] Vk
L ¥ ko oo Bk

then the kriging coefficients can be obtained by solving the
linear equations

B2 = &y /6/
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and the variance of the estirator /4/ is given by
T
Var /xlsovoyxk/ = X_k ) -X ’ /7/

-k vV

which is called the estimation variance.
Before introducing the network design procedure, some
basic properties of kriging will be discussed.

a/ Assume first that a new observatien point > is
included into the kriging process. Then an additional Tow and

column is added to matrix ék , and one additional component
should be added to vectors P and ¥, . For solving the new
kriging equation we do not need to repeat the entire

computations /which needs 0/k3/ operations/, because the well
known numerical technique known as "inversion by blocks"
/Szidarovsezky and Yakowitz, 1978/ can be applied in this case.

As it is known, it requires only O/k2/ operations. Observe

furthermore that the new estimation variance is smaller than
that based on only k observation points.

b/ Assume next that the point X, is dropped from kriging.

Then the solution of the new kriging system can be solved by
the method "inversion by blocks" which requires only O/k2/

operations, and the new estimation variance is larger than
that based on the original k observation points.

¢/ It can be verified that the above properties also hold
for cokriging, when the average values of the intrinsic random
functions Zl/'/"“’zm/°/ are simultaneously estimated on

the sets V,,...,V , where some of the functions Zi/'/ or gets
Vi may be identical., In this general case relation

2,5/ = T V2, /8/

i Vi

defines the average valdes, and let

Vari/xl,...,xk/ /9/

denote the estimation variance in estimating Zi/Vi/ for

i=l,.ee,m0 « In the case of cokriging the kriging system
and estimation variances have to be modified so that the
elements of matrix ék and vectors Zk ’ Xk are replaced by

amaller dimensional matrices and vectors, respectively.
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3. THE MULTIOBJECTIVE OBSERVATION NETWORK DESIGN MODEL

Agsume again that Vi C D for i=l,ses,m , and Zi/'/ are
intrinsic random functions defined on D. Let Zi/Vi/ denote
the average values of functions Zi/‘/ on V.. Assume further-

more that the kriging estimation process has been applied for
estimating the average valdes Zi/vi/ on the basis of the

existing data points /xi, Zl/xi/,...,Zm/xi//, and the

estimation variances are not satisfactory small. Then the
estimation variances, that is, the uncertainty of the
estimators can be improved by performing further measurements
and repeating the kriging process with the increased number
of data points. The question arises now can be stated as
follows. How to select the additional measurement points so
that the estimation variances will be as small as possible?

The mathematical model of this problem can be formulated
in the following way. Let Xiseee Xy denote the existing

observation points and assume that further n points should be
selected from the finite set T = {tl,...,tN} of alternatives.

Then our problem is equivalent to the m-objective minimization
problem:

minimize Vari/x

l,...,xk, til)-o-,ti / /i=l,-..,m/

n

subject to t. ,e..,t. € T . /10/
i i,

In hydrologic applications, the set T of alternatives
is given e.g. by the existing water wells, while in mining
exploration it has to be specified on the basis of prior
geological informations known about the region under
consideration.

The single-objective version of this problem has been
earlier discussed by Szidaroveszky /1983 a/, and a special
multiobjective approach has been introduced by Szidarovszky
/1983 b/. These special methods were applied in underground
hydrology by Carrera et al /1983/.

The solution of problem /10/ can be solved by a special
branch and bound procedure which is a simple generalization
of the algorithm presented e.g. is Szidarovszky /1983 b/.

4, CASE STUDY IN HYDROLOGY

In our first numerical example a subregion of the river
basin of the Tajo river /Spain/ is investigated. This river
bagsin has been investigated earlier by Carrera and
Szidarovszky /1983/.

Two variables are considered, Zl/x/ denotes log-~trans-
miggivity and Z2/x/ denotes the water quality measured

by the TDS. It is also assumed that monitoring water quality
is important only in a subset of the subregion. The whole
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subregion is denoted by Vl and the subset for monitoring
water quality is denoted by V2.
The variogram for log-transmissivity is given as

0 if \nl =0

¥1/0/ =3 0.08+0.1 /3 . qo - 3 +/qpeg—/>/ if 0 <|bl< 40.0

2z

0.18 if |n{ £ 40.0 ,

and the variogram for water quality is given as
0 if lhl =0

Xo/b/ =R 1.0+4.0/3 « 15 - % ./l?fjrﬁ/ if 0< |hl< 12.0

5.0  if |h) 2 12.0

The correlation between log-transmissivity and water quality

ig very law, they are assumed to be independent. Two
measurement points are considered, and the eight candidates

for additional observation points have been selected as the
locations of the existing water wells in the close neighborhood
of Vl and V2. Their locations are given in Figure 1.

The multiobjective branch and bound procedure has been
applied for these data. Three selections are efficient, they
are presented in Table l. If the weighting method is used, then

the "best" solution depends on the weights selected. In this
case the composite objective

o(Varl + [l=-x/ Var2

ig minimized. The results are summarized in Table 2.

e Existing points

1 O Candidates for additional

%2 8 observation point
( ] o]
o® Oy
Vv,
OG
\Y)
2
C4
o]

Figure 1 Existing and candidate observation points
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Table 1., Efficient solutions

gelection Varl Var2

t3,t4,t5,t8 0.0319 2.7618
t3,t4,t5,t7 0.0322 2.7600
t4,t5,t7,t8 0.0326 2.7532

Table 2 "Besgt" solution as function of

"begt" selection

<- .

0$x< 0,92 tyatgatyaty

& = 0.92 tyobssbyity  and  tgat,,tosty
0.92< S 1

t3,t4,t5,t8

The.details of applying another multiobjective
programming technique for solving this problem, are not
discussed in this paper.

5. CASE STUDY IN MINING

In our second numerical example a test case used by a
major mining software vendor is investigated. Figure 2 shows
the existing 59 drillhole locations and the 10 candidate
drillhole sites for additional drilling. The drillhole data
represented the average grade /%/. Two blocks are cengidered,
they are shown in Figure 3 and it is assumed that the block
grades for these blocks should be estimated with minimal
estimation variances.

On the basis of the existing drillhole data the block
grades has been estimated as

z] = 0.023846 %~ 2.38 % and zg = 0.010204 ~ 1,02 %,

and the estimation variances are obtained as

Varl = 0.,000804 and Var2 = 0,000383.
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Figure 2 ©Existing and candidate drillhole sites

t

D

16,000
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Figure 3 Blocks for estimating block grades

The optimal locations of five sadditional drillhole sites have
been determined from the ten alternatives. The weighting
method has been selected again. If equal weights / &« = 0.5/
are chosen, then the "best" selection is as follows:

t2,t3,t4,t5,t6 with estimation variances
Varl = 0.000718 and Var2 = 0.000306
If x=1 is the "besgt"

ig gselected, then tl’tz’tj’tS’tB
choice, and if = O then the best choice is given as
t4’t5’t6’t8’t10 .

Finally we remark, that this case study has been earlier
investigated by Szidarovszky /1983 a/.



217

References
Matheron,G. /1957/ Theorie lognormale de l’enchantillonnage
systematique des gisements. Ann. Mines, 577.

Matheron,G. /1971/ The theory of regionalized variables and
its applications. Cahiers du CMM, Fasc. no.5. ENSMP, Paris

Delhomme,J.P. /1978/ Kriging in the hydrosciences. Advances
in Water Resources, 1/5/,251.

Gambolati,G. and G. Volpi /1979/ Groundwater contour mapping
in Venice by stochastic interpolation, l. Theory. Water
Resources Research, 15/2/, 281.

Carrera, J.,E. Usunoff and F. Szidarovszky /1983/ Optimal
observation network design for ground water management:
application to the San Pedro River Basin, Arizena.
Submitted for publication.

David, M. /1977/ Geostatistical ore reserve estimation.
Elsevier, Amgterdam, Jo4.

Journel A.G. and Ch.J. Huijbregts /1978/ Mining geostatistics.
Academic Press, New York, London, 600,

Webster, R. and T.M. Burgess /1980/ Optimal interpolation and
isaritmic mapping in soil properties, III. changing drift
and universal kriging. J. of Soil Sci, 31, 505.

Krige, D.G. /1951/ A statistical approach to some basic mine
valuation problems on the Witwatersrand. J. Chem, Metall.
Min. Soc. S. Afr., 52, 119.

Szidarovsezky F. and S. Yakowitz /1978/ Principles and
procedures of numerical analysis. Plenum, New York.

Szidarovszky F. /1983 a/ Optimal observation network in geo-
statistics and underground hydrology. Appl. Math. Modelling,
7’ 25-32.

Szidarovszky F. /1983 b/ Multiobjective observation network
desing for regionalized variables. To be published in
International Journal of Mining Engineering.

Carrera, J. and P. Szidarovszky /1983/ Numerical comparison
of network design algorithms for regionalized variables.
Accepted for publication.



ANALYSIS OF REGIONAL WATER POLICIES IN OPEN-CAST
MINING AREAS — A MULTICRITERIA APPROACH

S. Kaden
International Institute for Applied Systems Analysis, Laxenburg, Austria

1. INTRODUCTION

Within the Institutions and Environmental Policies Program at IIASA, a
project is underway which focuses on concepts, procedures, and methods in the
area of resource and envirommental policy analysis and design with special
regard to groundwater management and protection strategies.

The research concentrates on the following generic issues that dominate
virtually all problems in environmental and natural resource policy design.
First, these problems always involve controversy among interest groups. Second,
even for each of these groups it is difficult or impossible to select a single
criterion for appraising alternative courses of action. Not all objectives
concerning human health and fundamental environmental equilibria can be tran-
slated into Dollar and Cents. Third, uncertainty and imprecision due to limi-
ted understanding, data base and predictive capabilities are common.

One objective of this project is the development of relatively simple
policy-oriented methods and computerized procedures that can assist in addres-
sing the above-mentioned generic issues. Thereby, the project team is working
with, and attempting to synthesize experience from national studies concerned
with environmental and resource policies carried out in several National Member
Organization (NMO) countries. One of these studies is the Analysis of Regional
Water Policies in Open-Cast Mining Areas undertaken in collaboration with in-
stitutes in the GDR. The study is directed at the development and implementa-
tion of methods and models for analyzing the use of water resources and envi-
ronmental problems in open-cast mining areas. Conflicts caused by open-cast
lignite mining in middle and eastern Europe, in particular in the GDR, FRG,
CSSR, USSR, and Poland, are one of the conspicuous examples for interactions
in socio-economic—-environmental systems with special regard to groundwater
and surface water.

2. PROBLEM DESCRIPTION

In the GDR, more than two-thirds of the total output of primary energy
is based on lignite extracted exclusively by strip mining. The annual output
of lignite amounts to more than 250 million tons/annum. Thereby it is neces-—
sary to pump out 1.5 billion m3/annum water for dewatering of the open-cast
mines. For 1990, a coal output of about 300 million tons/annum is planned;
the rate of mine water pumping is estimated at about 2 billion m3/annum. The
stable runoff of the GDR runs to 9 billion m3/annum. That means that the amount
of mine-water is about 207 of the stable runoff (see, for instance, Luckner
et el. 1982). Hence in the mining area itself the water resources system is
mainly determined by the lignite mining.

The impact of mining upon water resources creates significant environmen-
tal and resources use conflicts between different users in such regions. The
most important interest groups are mining, municipalities, industry, in many
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cases located downstream, and agriculture. The activities of each of these
interest groups modify the water resources system, as well as the conditions
for resources use by other groups. Figure 1 gives a general view of the inter-
dependencies between the water users and water resources subsystems in mining

areas. Recreation and environmental protection also represent conflicting
users.

WATER RESOURCE SUBSYSTEM

asneers

Inflow
Soil/Plant Groundwater Surface Water
: System Resources Resources T :
: e
N PO OO TU TSP NI I
N U Outflow
S
; Water [ Water : W
: : ater
: Y M Treatment Treatment :
: : « - Municipial Industrial : Import
: Agriculture Mining Water Supply Water Supply { Water
Waste Water Mine Water Waste Water Waste Water ; Lossiels
H Treatment Treatment Treatment Treatment :
. - L » - - Ll - Ll

WATER RESOURCE USER :

Figure 1. Interdependencies between water users and water resources sub-
systems in mining areas.

Under the typical hydrogeological conditions in lignite mining areas,
mine dewatering becomes a significant cost and energy factor. The amount of
water to be pumped exceeds ten to one hundred times the output of coal [m37!
That means a considerable part of the energy produced by lignite is used for
dewatering the mine itself. Since the mines are about 40 to 60 meters deep
(sporadically 100 meters or more) large regional cone-shaped groundwater de-
pressions are formed. One of the consequences is that the wells for municipal
water supply are becoming dry. Hence the objective "satisfying drinking water
supply in a certain quality and quantity" conflicts with the mining objective
"lowering the groundwater table in given areas in a given time'. Management/
technological alternatives are, for instance, the limitation of groundwater
depression areas with the help of side walls, switch to alternative water

supply sources (e.g. surface water, water transfer from other regions, reuse
of mine water, etc.).

There are also water quality problems caused by mining. Mine drainage
water characteristically contains both high quantity of suspended and dis-
solved solids, particularly iron and sulphate ions resulting from the oxida-
tion of ferrous sulphide in the host rocks. Chloride concentrations may also
be high because of connate water trapped within the sedimentary rocks. Com-
monly the conspicuous quality problems are connected with mine spoils. For
example, in the Lusatia area in the GDR, sulphate concentrations up to 700
mg/l have been estimated in the drainage water of spoils, Starke (1980). Pol-
luted mine water may effect downstream water yields significantly.
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In general, the water resources and environmental problems in mining
areas include long-term planning (management) and short-term control aspects.
They are embedded in a hierarchical policy-making process with interdependent
policy makers. For saort-term control problems the policy makers as well as
the environmental subsystems can be assumed independent. Based on the dif-
ferent time characteristics of the water resources subsystem, above all the
significant retardation in the system due to the groundwater flow, these
problems usually can be solved separately for the different water resources
subsystems (considering other subsystems as constraints). A lot of efficient
methods for modeling of these subsystems exist. The long-term planning pin-
points the general targets, thereby setting up the margins for short-term
control activities. It is characterized by significant interdependencies in
the socioeconomic enviropmental system and policy-making process and it will
be the main focus of our study. The planning horizon 1is 30-50 years. The
time interval to be adopted for analysis may vary from month to year. The
area affected by open-cast lignite mines amounts to some 10,000 km*.

The above described problems elucidate the importance of effective
management alternatives and means of regulating the interactions within the
socio— economic-environmental system. Mathematical, computerized methods and
models as methods for multiobjective decision analysis are a necessary and
useful tool.

The choice of a suitable test area determines both the theoretical and
the practical value of the study, therefore the first research topic of the
study is a detailed analysis of the socio-economic-envirommental processes
in the test area.

As the second research topic, suitable submodels for these processes will
be developed. The third research topic is the choice and development of the
mathematical and computer framework for a policy-oriented interactive deci-
sion support model system.

The fourth research topic will be the development of an approach for the
integration of the decision support model system in the policy making process.

The final (fifth) research topic will be the use of the developed methods
and models for policy design in the test area.

3. METHODOLOGICAL APPROACH

3.1 Integration of the Decision Support Model System into the
Policy-Making Process

The policy-making analysis for regulating the dynamics of the socio-
economic-environmental system of the type discussed in this paper requires
consideration of a complex hierarchical socio-economic system with multiple
interdependent interest groups or decision-makers having different preferences.
A simplified structure of this hierarchy is illustrated in Figure 2. We as-
sume that for long-term planning purposes we can neglect lower levels like
factories, mines, etc., and consider only a two-level system as in Figure 3.
Three types of interactions between the interest-groups will be considered.

The first type involves a regulating body. We assume the following se-
quence of decision-making in this structure. First, the regulating body
chooses its policies (required production levels, etc.), and then the lower
level elements knowing these policies, with their own goals in mind, choose
their behaviour. The general problem for this structure lies in the analysis
and/or determination of regionally rational policies capable of coordinating
the activities of the lower level interest groups to achieve a sustainable
long—term development of the whole system.
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Figure 2. Schematic policy-making process in mining areas.
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Figure 3. Idealized two-level policy making system.

The following approach (see Hughes et al. 1983), based on a two-stage
decomposition of the problem, can be used: The first stage of the analysis
based on this approach is directed towards generating scenarios of the poten-
tially rational development of the system under study.

At the second stage this scenario serves as a 'target" scenario, and the
analysis at this stage is concerned with the search for those feasible regu-
latory policies that can provide for the development of the whole system
along the lines specified by the scenario obtained at the first stage, con-—
sidering the interests and reactions of users.

In the second type of interactions in the policy-making process we neg-
lect the regulating body and we look for a cooperative behaviour of multiple
decision makers. Finally, the third type is concerned with analyzing the
system from the viewpoint of a separate interest group.

A decision support model system is needed, having a high flexibility
which allows its use for the above mentioned types of interactions in the
policy-making process.
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3.2 DECISION SUPPORT MODEL SYSTEM

3.2.1 Conception

The following general goals should be considered:

- The model must integrate the essential interactions between, both,
the socioeconomic subsystem (water users) and the environmental sub-
system (water resources system).

- The model must fit in the policy-making process, that medns it has
to reflect the goals and policy-making reality of the policy-makers
in mining areas. Therefore interactive and user—-friendly systems are
needed.

It is reasonable to assume that common surface water-supply models which
are based on the stochastic simulation of inputs (streamflow) and the deter-
ministic simulation of water usage (considering the priorities of certain
users), will form the basis for the proposed model. Such models found exten-
sive practical application in the GDR for long-term planning purposes (see,
for example, Kozerski 1981). These models combine stochastic inputs with
deterministic simulation using the Monte-Carlo method.

Figure 4 characterizes the practical application of the long-term water
management models. Management/technological alternatives have to be included
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Figure 4. Typical long-term water management approach.

exogenously. The decision-makers perform the analysis by evaluating the econ-
omic and technical efficiency of the fixed alternatives, and by selection of
new alternatives, occasionally through changes in priorities. Without conflic—
ting interest groups this is a helpful tool. In the case of multiple objec-
tives or decision-makers, the exogenous selection of rational alternatives

is very difficult, often impossible.

The further development of this approach toward a decision support model-
system for the socio-economic-environmental processes in mining areas neces-—
sitates the integration of submodels for all water resources subsystems and
the integration in, or combination with, normative models for a partial auto-
matized choice of scenarios or selection of technological/management alterna-
tives.
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The main difficulties implementing these models evolve from the dynamic,
and at the same time uncertain systems behaviour. To avoid these difficulties
the following two level model systems may be used:

time-discrete multiobjective model for planning periods (ome to five
years), aggregating long-term decisions and objectives;

simulation model for the monthly systems behaviour in the planning
period using stochastic input simulation and deterministic allocation
of water resources between users (with given priorities).

Figure 5 characterizes in a simplified way, the application of this
approach. Based on an exogenous selection of fundamental technological/
management alternatives by the decision makers, the choice of scenarios for
the planning period can be donme with the help of an appropriate time-discrete
multiobjective model used interactively. For estimation of the parameters of
the multiobjective model and the verification of its results, the simulation
model with stochastic inputs capturing monthly system behaviour will be used.
For the model system characterized in Figure 5 an effective multiobjective
model is needed, the use of DIDASS (Grauer 1983) based on the reference point
approach (Wierzbicki 1983) is presumed.
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Figure 5. Two-level approach for long-term planning.

3.3 The Use of DIDASS

To test the possibilities of DIDASS a schematized, simplified test area
has been chosen, which is characterized in Figure 6.
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The test region is characterized by a deep open-pit mine, located near
a river. The main impacts on the water resources system are:

STREAM

qq = 150

GROUNDWATER RESERVOIR

9 ¢—|—»
ap a1
45 «—|—»
A8
hy <30 s . USER 1
WATER | 910 [ ag » 412 | WATER
¥ 43
EXPORT ¢y N ¢y IMPORT
MINE
a13
hy > 60
97 «—{—»
C3 a4
q — flux
¢ — concentration USER 2

h — groundwater table

Figure 6. Schematized test region for the use of DIDASS.

regional lowering of groundwater table which essential effects the
river flow (infiltration losses) as well as a groundwater-waterwork

in this region;

high mineralized mine drainage water which is needed for river flow
augmentation but effects the downstream water use.

Possible technological alternatives are for instance:

water import for water supply and/or flow augmentation

export of high mineralized water

selective mine drainage

treatment of high mineralized water

The following nonlinear static model has been used for first test runs:
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Objective functions

Minimizing deviation between water supply and demand
objl = 1000—(q8+q11+q12+q13) USER 1
obj2 = 1000-q, USER 2

Minimizing costs for mine drainage
obj3 = 2q8+q9+1.5q10

Minimizing costs for water supply
objh = (1.O+O.01-cl)-q8+1.5q11+q12+q13 USER 1
0bj5 = 0. Oleq,cy  USER 2

Constraints

Flux balance for river sections
150-4574,=0 4579g7d)77d3 = O d3*dg74779, = O
Groundwater tables (response functions)

2 2
30 >h1 = 50—0.5(q9+q10)—0.1q8—0.01q13+0.001(q9+q10)

2
+O.0002q8+0.1q5+0.3q6+0.2q7
60 <h, = 80-0.2q,3-0.1(qg*qg*d;4)+0.01q5+0.02q(+0.03q,
Bank filtration

q5 = 27 -20 exp(—O.Ol(q8+q9+q10)—0.001q13+0.002q6+0.01q7)

qg = 22.2-20 exp(—O.02(q8+q9+q10)—0.002q13+0.001q5+0.001q7)

q; = 44.2-40 exp(-O.OZ(q8+q9+q10)—0.005q13+0.001q5+0.002q6)
Mineralization

ey > 100+0.1q8 c, >200+0.2(q9+Q10) c3* q, <Cy *qq

Bounds

O_iqiﬁizoo, i=1,13 c;> 0, i=1.3 ;< 500 €y< 1000 cg< 200

The results of some test runs are summarized in the Appendix.

on different reference points and scaling factors efficient solutions have

been computed,
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APPENDIX. DIDASS - Test runs

u T S e T s e T s e
obj. 1.| 581.0 |581.0 1 815.0 |900.0 1 875.0 [900.0 7 849.0
obj. 2 | 800.0 |800.0 1 902.0 [900.0 1 919.0 [900.0 6 923.0
obj. 3| 0.0| 0.0 1 172.0 |[100.0 1  80.0 |100.0 5  73.0
obj. 4 | 82.0 | 82.0 1 253.0 |200.0 1 169.0 |200.0 1 230.0
obj. 5| ©0.0| 0.0 1 145.0 |100.0 1 105.00 | 100.0 2 102.00
1, 127.3 129.7 129.0
a3 73.1 72.3 71.6
q, 98.5 80.8 77.3
qs 22.7 20.3 22.0
1 21.4 20.2 21.1
1y 42.6 40.5 42.0
ag 92.5 44.9 78.3
1 68.0 49.0 47.7
410 0.0 20.0 17.4
a, 32.8 37.2 27.1
1, 30.5 0.0 0.0
9 5 29.4 42.6 37.8
o 109.2 104.5 105.2
c, 213.6 213.8 213.0
e 147.4 129.7 131.4

utopia point, r = reference point, s = scale,

e = efficient point.




DECISION SUPPORT VIA SIMULATION FOR A
MULTIPURPOSE HYDROENERGETIC SYSTEM
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ABSTRACT

A program package for the simulation of a hydro-energetic multipurpose system
consisting of dams, reservoirs, rivers and pumps is implemented within a
hybrid simulation language. The aim of the program is to support decisions
about the operation ot these systems in an interactive and practical way.

Few commands allow to define and examine the model automatically. Documenta-
tion can be done by usual features of the simulation language.

1. INTRODUCTION

A hydro- energetic system consisting of dams. pumps, reservoirs and rivers
can be modelled by a set of nonlinear differential equations. The multipurpose
profits of the system can be analysed by different cost functionals (section
2).

At the Rybrid Computation Centre of the Technical University Vienna a program
package for the simulation of this model is implemented within a simulation
language. The simulation package is realized in "supermacro"-technique: one
or only few commands which are added to the commands of a (hybrid) simulation
language activate and perform the simulation. Consequently the definition of
the model equations is done automatically according to the input of the user
(number of dams, connections between dams).

A lot of preprogrammed functions allow to choose between different natural
inflows and between different inflows and outflows (control strategy). The
values of the cost functionals representing the multipurpose profits can be
compared directly using another (preprogrammed) module. The implementation

is described in section 3. Section 4 deals with a simple example describing

a hydro- energetic system consisting of three dams.

2. MATHEMATICAL MODEL OF A HYDRO- ENERGETIC SYSTEM

In this section a deterministic continuous model for the simulation of a

hydro- energetic multipurpose system is described. Such a system may consist

of rivers, reservoirs, power-plants, water users and pumps.

To get a model which can be implemented with reasonable effort, it is

necessary to make some simplyfying assumptions:

1) All the pumps and water- users take the water directly out from the reser-
voirs and give it back there, too.

2) River- plants are only situated at the outlets of the reservoirs.

3) Evaporation losses and water quality are neglected.
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4) wWater inflows and the demands of users are assumed to be statistically
known.

Due to the above assumptions the system is described by state equations for

the reservoirs, which are obtained by the continuity principle ((4),(5),(9))

Si(t) = zi(t) - ai(t)

< si(t) S s, i=1,...,n (1)

S,
i,min i,max’

with si(o) given and time t € [0O,T].
There si(t), zi(t), ai(t) denote storage, inflow and outflow of the i-th

reservoir, n the number of reservoirs and T the end of the simulation inter-

val. The storage of each reservoir is limited by s, ., and s, .
i,min i,max

The inflow zi(t) consists of four parts, namely of natural inflow, inflow

from upstream reservoirs, inflows from pumping (k pumps) and from users (m

users) :
zi(t) = yi(t) + E uij(t_ti,oj) + E pik(t—tp,ik) +

3 k (2)

* ZE e (ttg,im)

m

There yi(t), u (t) and eim(t) denote the natural inflow, the inflow

1380 Py
coming from upstream j-th reservoir, the pumped inflow from the k-th pump and
the inflow from the k-th pump and the inflow from the m-th user respectively.

titi s t i time- de .
The quantities tu,lj' tp,ik' e,im characterize me- delays

The outflow ai(t) consists of three parts through the outlet of the reservoir:

ai(t) =Zvij(t) + E qik(t) +Z fim(t) (3)
J k m

There Vij(t)' qik(t) and fim(t) denote the outflow to the j-th reservoir,
the outflow to the k-th pump and the outflow to the m-th user.
Consequently inflows (2) and outflows (3) are related by the following equa-

tions:
uij(t_tu,ij) E vij(t) (4.a)

J
Pik(t—tp'ik) = qjk(t) (4.b)
eil(t—te,im) = rmfjm(t) (4.c)

In (4.a) one has to summarize only over these values of the index j, if the
j-th reservoir is upstream of the i-th reservoir. Equation (4.b) characteri-
zes, that the k-th pump takes water from the j-th reservoir and gives it back
to the i-th reservoir with the time delay tp ik Equation (4.c) describes,

14

that the 1-th user takes water from the j-th reservoir and gives it back only
in parts to the i-th reservoir with a time delay te im' where rm(o s r £1)
14

measures, how much water is given back.
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In this model (1) - (4) all the variables are bounded technically, the varia-
bles Vit yji and fji are the controls and the s characterize the state of

J
the system.

Consequently an implementation of the model should allow to study the reac-
tions of the system to the application of different controls.

This aim makes it necessary to define measures for the quality for the opera-
tion of the system.

Those measures are due to the purpose of the system and are modelled as

follows:
T
c = J b_(t) E c.h, (t) E v, ,(t)dt + max (5a)
en p 11 1]
[o} i h]

describes the benefit of energy production. There bp(t) is a price coeffi-

cient function, the constant c¢; includes the efficiency of the plant of the
i-th reservoir. The effective head h, (t) of the i-th power plant depends on
the actual volume and on the geometr§ of the i-th reservoir ([9]).

The cost functional

T
Ceq = J E (si'max - si(t))dt -+ max (5b)
o i

should be maximized, if the flood control is very important. From the point
of the recreational use the "contrary cost" functional

T
c .= f E (s, (t) - s, . )dt + max (5¢)
re i i,min

0 i

is to be maximized.
Also other cost functionals describing e.g. the benefits of withdrawal of
water of the costs of pumping can be considered ([4],[8]).

3. IMPLEMENTATION OF THE SIMULATION PACKAGE

The model (1) - (3) of the hydro- energetric system together with the equa-
tion (5) modelling the multipurpose profits is implemented as simulation
package on the Hybrid Computer of the Technical University Vienna within the
(hybrid) simulation language HYBSYS.
HYBSYS has been developed at the Hybrid Computation Centre of the Technical
University Vienna. It provides model declaration and problem investigation
in a simple and hardware- independent manner ([10],[11]). If analcog integra-
tion is choosen as integration algorithm, HYBSYS performs automatically the
problem set-up using an autopatch system and automatic online scaling ([2]).
HYBSYS is supported by the hybrid time- sharing system MACHYS developed at
the Hybrid Computation Centre of the Technical University Vienna ([7]), too.
The simulation package is implemented in "supermacro"-technique ([3]). The
concept of supermacros, developed in conformity with the CSSL-Standard 1968
([12]) and with the proposals for the new CSSL-Standard 1981 ([5]), can be
implemented in parts within HYBSYS ([3]).
A supermacro is a special kind of a macro of a simulation language,which per-
forms

a) definition of the model equations according to the input of the

user
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b) specification of "methods" describing useful actions which can
be done with the model
c) initialization or initialization and performance of experiments
using the defined model and the defined "methods”.
A supermacro can be implemented within HYBSYS as macro in overlay technique:
a user~ written FORTRAN- subroutine describes all actions of the macro
(change of parameters, simulation run, etc.), the name of the subroutine is
an additional command to HYBSYS commands. So an arbitrary complex (preprogram-
med) action can be invoked by a single command.

The HYBSYS- supermacro HYDRO simulates the hydroenergetric system (1) - (5)
(fig 1).
Invoking the supermacro by the command HYDRO first the equations (1) - (5) are

defined automatically according to the input of the user: in dialogue the
user types in the number of reservoirs, pumps, users, followed by the
connections.

After the problem set- up the macro displays the actions, which can be done
now ("methods") and performs them conditionally.

HYBSYS supermacro HYDRO

input coefficients
and dimension of CHCON cocosTt
the system

‘ Choice of Comparison of
Load model data controls different costs
base with corre- for the
sponding model reservoirs

Fig.1: HYBSYS- supermacro HYDRO

The submacro CHCON allows to define and change point by point the values of
natural inflows and of the controls.

The submacro COCOST reads out the usually different values of the cost func-
tionals (5). These submacros can be activated also independently from the
supermacro HYDRO.

Simulation runs, displays and plots are performed by usual HYBSYS commands.

4. EXAMPLE

In this section a characteristic (small) example is described, which consists
of three reservoirs, two rivers and a water user (fig 2). Only for the water
user a time delay is taken into account. This yields to the following system
equations:

1 7 ¥ T Y3

S2 T ¥y T U3 T G2

s, = u +r1e

35 Y3 Y Y3 12188 420~ ag

where r, is the percentage of the water returned by the user and all the
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other variables are functions of time t, tE [CLTJ. As simulation horizon a
time T of two years was chosen, starting in October.

Y4 Y2

N o=/

23 A 4

user 1

e {t—t )
12 €10

a3

Fig.2: Hydro- energetric system with three reservoirs

The input data for Yir¥y and r, were taken from statistical reports, ((1}),

1
while the controls a3, u13, u23,(e12) were implemented felxibly, so that one

could apply all his experience with such systems. Activating the supermacro
HYDRO, the model equations are set up on the hybrid computer. Performing
CHCON allows to define the natural inflows and the controls (fig. 3, fig.4).
The plots are generated by the usual HYBSYS- PLOT- command (PLOT Y1,Y2; PLOT
u12,u23,a3), fig.5 (PLOT E21,DE21) shows the value of water taken by the user
(E21) and given back with time-delay (DE21); fig.6 shows the contents of the
reservoirs (51,52,53).

The values of the benefits can be computed by activating COCOST, fig. 7 shows
their values over time: the benefit of flood control is very high, the benefit
of energy production increases monotonely, the benefit of recreation use seems
to approach a maximal value and to decrease for T > 24.

Furthermore the final values of the benefits can be observed in dependency of
different (parametrized) operation rules for the system which is shown in fig.8.
So this simulation package seems to be a powerful tool to study the behaviour
of a multipurpose hydro-energetric system and to decide about its best opera-
tion in a multiobjective sense.
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Fig.4: Controls: Outflows of the reservoirs
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MULTIOBJECTIVE ANALYSIS OF FORESTRY MANAGEMENT
MODELS USING THE GENERALIZED REACHABLE SET METHOD

A.V. Lotovand HM. Stolyarova
Computing Center of the USSR Academy of Sciences, Moscow, USSR

1. INTRODUCTION

Regions witha significant wood-processing industry based on the pres-
ence of large local supplies of wood will necessarily experience a gradual
reduction in forest reserves. A point may be reached at which there is a
conflict between the industrial demand for raw materials and the need to
reduce felling volume. This may eventually have to be resolved by importing
timber into the region to supply the wood-processing industry with raw
materials. It is clear that a more rational method of forestry management
should be sought.

To increase the efficiency of forest management we developed the idea
of a forest plantation. On these forest plantations trees are planted and
grown in some optimal fashion and then felled. Mathematical methods should
provide the optimal growing strategy as well as an effective felling policy.
This paper is concerned with the development of an effective felling policy
of this type. We assume that the forest growth strategy (that is, the
method of plarting, care of the forest, thinning etc.) has already been
formulated and implemented. We are concerned only with a policy for felling
and replanting trees on various parts of the plantation. Furthermore, we
assume that an adequate mathematical model of forest growth is available.
Using this model decision makers and experts can forecast the consequences
of different policies.

It should be stressed that there are many objectives involved in any
decision on the use of forest reserves. There is a conflict between demand
for forest products at the present time and future demand. Moreover, the
state of the forest is very important, especially at the end of the planning
period. Thus, the formulation of an effective felling and replanting policy
is a multiobjective problem. .

The models which provide an accurate description of the processes of
forest growth are very complicated and thus simplified models must be used
to formulate policies; these policies are then checked in simulation ex-
periments. Within the framework of a simulation system (Moiseev, 1981),
decision makers and experts can employ a wide range of operational research
methods (simulation, optimization, game theory, informal techniques) to
address multiobjective problems, using the hierarchical array of models of
the system under study.

This paper presents a new approach to multiobjective problems based
on the so-called generalized reachable set (GRS) method of investigating
controlled systems (Lotov, 1980, 198la). The first papers dealing with
this method were published in the early seventies (Lotov, 1972, 1973a,b).
The basic idea of the GRS approach is to construct a set of all combinations
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of aggregated variables which are reachable (or accessible) using feasible
combinations of the original variables of the model. This is called the
generalized reachable set. When used in multiple-criteria decision making,
the GRS approach employs an explicit representation of the set of all acces-
sible objective values. Unlike other multiobjective methods, the GRS ap-
proach is based on linear inequality techniques. This approach was developed
at the Computing Center of the USSR Academy of Sciences and has already been
applied to several problems (see, for example, Bushenkov et al., 1982;
Moiseev et al., 1983).

Here we present the first application of the GRS approach to controlled
systems described by partial differential equations. The applicability of
the GRS approach to problems of this type has already been proven (Lotov,
1981b). The problem studied in this paper is rather simple, but it clearly
demonstrates the potential of the GRS approach.

2. STATEMENT OF THE PROBLEM

We shall consider a forest plantation of total area S. We assume that
the state of the plantation at time t can be described in terms of the area
x(t,T) occupied by forest of age T. The age distribution of the forest is
the main variable in the model. The dynamics can be described by the fol-~
lowing equation:

ax(t,T)

ot +

D - y(e,D), £ € (egut), TE (O,T ), )

where u(t,T) are the areas of forest of age T felled at time t and Thax is

the maximum age of trees. The system operates over some time interval
[to,tl]. The initial age distribution of trees is taken to be

x(ty,T) = ¢(0) , TE€l0O,T T, (2)

where ¢(T) is the area occupied by forest of age T at time t It is clear

0
T
that fomax o(1T)dT < S.

In the model it is assumed that felled areas are immediately replanted
with new trees in accordance with

T
max

x(t,0) = fo

u(e,T)dT , t € [tO’tl] . 3)

The control variable u(t,T) satisfies the following constraints:
0 < u(t,T) < x(t,T) . 4)

The dependence of the output of wood on the age of the forest is described
by the function B(t), which characterizes the volume of timber obtained from
unit area of forest of age T. This curve is presented in Fig. 1.

The overall performance of the plantation is evaluated on the basis of
the following performance indices:

T
£,(0) = S ™ B(Du(e,mdt , € € leg,t] (5)
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£,(1) = x(t,1) 5 T S [O,Tmax] . (6)

Function fl(t) describes the total quantity of timber obtained from the
plantation at time t. Function fZ(T) characterizes the state of the planta-

tion at the end of the planning period -

Bmax 7

—p
r
FIGURE 1 The function B(T), which characterizes the volume of timber ob-
tained from unit area of forest of age T.

3. INVESTIGATION OF MULTIOBJECTIVE PROBLEMS USING THE GENERALIZED
REACHABLE SET APPROACH

The general idea of the GRS approach is as follows. Let the mathe-
matical model of the system under study be

yEGCY, (7)

where Y is a linear topological space of variables y and G is the set of
feasible variables y. We will not specify the nature of the space Y at
present. Let the set G be nonempty. In models of controlled systems there
are many variants of variables y satisfying (7). Let the mapping F : Y - V
describe new aggregated variables:

t=Fy, (8)
where V is also a linear topological space. The set Gf = F(G), 1i.e.,
Gf={f€v:f=Fy,yEG}, (9)

is called the generalized reachable set (GRS). This set represents all
variants of aggregated variables f which can be '"reached" or "accessed",
i.e., can be obtained by means of (8) using feasible variables y. The GRS
approach has been developed for convex sets G and linear continuous mappings
F.
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The GRS approach may be used for various purposes: for evaluation of
the possibilities of controlled systems (Lotov, 1981b; Moiseev et al., 1983),
for aggregation of economic models (Lotov, 1982), and for coordination of
economic models (Lotov, 1983). It can also be effectively applied to
multiple-criteria decision making (MCDM). If we treat f € V as the per-
formance indices (objectives), the mapping F defines the consequences of each
decision or altermative y. The set Gf in this case is the set of all acces-
sible objective values.

The approximate construction of the GRS is carried out as follows. We
shall approximate the model (7) by the finite-dimensional model

. s
v €g CRrY, (10)

*
where R" is an n-dimensional linear space and G 1is a polyhedral set, i.e.,

* * *
¢ ={y €R":ay <B}.

We approximate f € V by the finite-dimensional objective vector £ € Rm,
*
while the mapping (8) 1is approximated by F : R" - §" , 1.e.,

* EE

f =Fy , (11)

3
where F is an m*n matrix. The GRS for model (10) with mapping (l1) is
defined as

& * * % b3
{(f €R":f =Fy , Ay <B}. (12)

C¢

%
The set G_. is used to approximate G_., and can be constructed in the explicit

form: £ £

KN
®

% *
6, = {f €R":pf g<d}. (13)

%
To construct Gf in the form (13), that is, to construct the matrix D and
the vector d, we use linear inequality techniques. If the graph of the

*
mapping F is defined as

* * X % % *
z=1{z={y,f }ERM™ : ¢ =Fy, Ay <B}, (14)

*
then the set Gf is an orthogonal projection of the set Z described by the

system of linear equalities and inequalities on R". To construct the pro-
jection we can use methods for excluding variables in systems of linear in-
equalities (convolution of systems of linear inequalities). The first con-
volution method was introduced by Fourier (1829) and was later modified by
Motzkin et al. (1953) and Chernikov (1965). These methods and alternative
convolution methods complemented by methods for removing inactive inequal-
ities have been implemented in the program system POTENTIAL (Bushenkov and

Lotov, 1980), which constructs the set G; in the form (13).

The GRS approach as applied to MCDM problems belongs to the class of
generating methods of interactive decision making (Cohon, 1978; Hwang et al.,
1980). 1In contrast to preference-oriented methods based on a formal pro-
cedure that should lead the decision maker (DM) to a solution of the problem,
generating methods present the set of all efficient points in objective space
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to the DM. Generating methods provide the DM with information on the pos-
sibilities of the system under study. The nonformalized process of choosing
a compromise between competing objectives is then left to the DM. Methods
of this type have a clear advantage if the DM has no consistent preference
or if the concept of the DM is only a convenient abstraction (for example,
if the decision is reached by compromise between a group of decision makers,
each with his or her own different goals).

Generating methods can vary in the manner in which they present the
efficient set. There are four main groups of generating methods (Cohon,
1978): weighting methods, constraint methods, multiobjective simplex methods,
and noninferior set estimation methods. The generalized reachable set (GRS)
approach discussed here has two main features that distinguish it from the
methods listed above. First of all, this method can be used to construct
the entire set of reachable objective values of the system, the efficient
set being part of its boundary. The second distinguishing feature of the
approach lies in its use of linear inequality techniques rather than the
optimization techniques usually employed in multiobjective methods.

The display mechanism in generating methods usually provides the DM
with various two-dimensional projections and cross-sections (slices) of the
efficient set. When the set G; has been constructed, it takes only a few
seconds to display selected slices of the set to the DM, so it is possible
to present abtout 100 two-dimensional pictures to the DM in a relatively
short time. Our experience shows that this number is sufficient for a proper
understanding of the structure of a convex set in five-to-ten-dimensional
space.

The GRS approach has several advantages over other generating methods
of interactive decision making. Firstly, it is easier to imagine a convex
set (the GRS) than a nonconvex efficient set. Secondly, it is easier to
construct two-dimensional slices for a set presented in the form (13) than
for an efficient set given by individual points. Thirdly, in many cases the
DM may be interested not only in the efficient set, but also in dominated
points. The use of linear inequality techniques rather than optimization
techniques in a generating method seems quite natural since optimization
is related to the search for individual points rather than for an entire
set.

4. ANALYSIS OF THE FORESTRY MODEL

The original model (1)-(6) is approximated by its finite-~dimensional
analogue. The period covered by the investigation is divided into T steps

(decades). All the trees are distributed into T groups. Trees less than
ten years old belong to the first group, trees 10-20 years old to the second,

and so on. Let XE be the area occupied by trees of the T-th group at the

end of the t-th decade, where T=l,2,...,Tm ; t=1,2,...,T. Let Xg ,

T=1,2,...,Tm , be some initial age distribution. Then the main equation
of the model is a difference approximation of (1), i.e.,

= x -u_, (15)

where t=1,2,...,T , T=1,2,...,Tm -1, and ui is the area occupied by trees
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in age group T felled during period t. All of the trees in group 1M are
assumed to be felled:

m m
T T

ut = xt1 , t=1,2,...,T . (16)

The initial and boundary conditions are:

xg = ¢T , t=1,2,...,1" , (17)
_[_m

x; - ui , t=1,2,...,T . (18)
T=1

0<ut < xi_l , t=1,2, ..., 3 T=1,2, ..., 70 = 1 . (19)

The performance indices (objectives) are based on the quality of timber ob-
tained in each decade:

T
fr= Z B u_, t=1,2,...,T . (20)

as well as the final state of the forest:

fT t m .

=x 5 =1,2,...,1 (21)

Given the values of T and Tm, the coefficients BT, and the initial age
distribution ¢T, it is possible to study the system by constructing the GRS
in the space of objectives f; , t=1,2,...,T , and f; , T=1,2,...,Tm .

The DM can then analyze the situation and come to a decision by studying
the displayed slices and projections of the GRS.
The GRS for model (15)-(21) was constructed for various values of T

and Tm, for various functions BT and initial conditions ¢T. It is clearly

impossible to present here the hundreds of projections and slices obtained
during the investigation, and for this reason we shall illustrate the analysis
using a simple example for which it is possible to construct the GRS in
analytical form.

Let Tm=8, T=8, and let BT=1 for 1=5,6,7,8. We shall assume that trees

in the first four age groups are not felled. In this case it is possible
to construct the GRS in the form (13) for the parametric function ¢T. In

objective space {fi, t=1,2,...,8 ; £, 1=1,2,...,8} , the GRS has the fol-

lowing form:
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koo k
b = -
e21 By 2 TEI Ogp » K=12,00007
koo 8
t§1 £ < T=%Lk ¢, » k=1,2,...,5 (22)
6
P t . -
i B 58 -6
3 8 6
- <
£ -f, <f,
8 T
TEI f2 =85
fE >0, t=1,2,...,8
T
> =
f2 >0, t=1,2,...,8 .

In this case the GRS is a polyhedral set in l6-dimensional space and
is given by six equalities and 33 inequalities.

If the DM is interested in a scalar index of the final state of the
forest, say,

(which describes the potential timber production for the period T+1), rather
than in a detailed description of the final state (given by f;, T=l,2,...,Tm),
then it is possible to construct the GRS in nine-dimensional space

{ff, t=1,2,...,8 3 £,} . In this case the GRS is described by:

k

L EL 2B by s k=1,2,...,8

k
ZofS< T ¢, k=1,2,...,5

<5, k=1,2,3 (23)

v

0, t=1,2,...,8 .
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In other words, the GRS is described by one equality and 24 inequalities.
Some projections of the GRS described by equations (23) are represented in
Figs. 2 and 3 (they are also projections of GRS (22)).

FIGURE 2 A projection of the generalized reachable set described by
eqns. (23).

4

3

2D

14

- ., 5 i YUY

0 1 2 3 4 5 f!

1

FIGURE 3 A projection of the generalized reachable set described by
eqns. (23).

The projections given in Figs. 2 and 3 refer to a particular case with
a uniform initial age distribution, i.e., ¢TEl (the total area of the

plantation is taken to be 8), and with equal areas xi for the first four and

. T_ T T_ T
last four age groups, i.e., X,=X.=X,=X,=

T:
1727374

2y xT+xg+x 4xgely , where 1y<2.

T
5 7




244

It is also assumed that felling in the first and second decades is the
same: fi = ff = 61 3 an analogous assumption is made for the third and fourth
decades: fi = f? = 62. The set of reachable values of 61 and 62 (for dif-
ferent values of y¥) is illustrated in Fig. 2. We can see that only one in-
equality depends on y. If y > 1.75, the set of reachable values of 61 and
62 is empty. If y = 1.75, the set coincides with the segment 61 + 62 = 3.5,
1 <6, £2.5.

1
Let us now consider Figure 3, which shows the set of reachable values
of £, t=1,2 , assuming that ff - f? —2-vy. If 1<y <1.5, this set is

non—-empty; if v > 1.5 , the set is empty.

0f course, Figs. 2 and 3 alone cannot give a full picture of the nine-
dimensional set (23)--to do this it would be necessary to investigate about
100 slices and projections. The DM can obtain this information in an inter-
active dialogue with the computer. He may also wish to consider the super-—
aggregated performance indices wl and wz , which represent timber production

for the first and last 40 years, i.e.,

The GRS in objective space {wl, wz, fz} can be described simply as:

f2 + wz =S
8

wl TES ¢T

wl + wz > S

wl <S5 (24)
8

Uyt U, S84 k00
6 8

wl t wZ =S+ T§3 ¢T + rza ¢T

The projection of set (24) on the plane {wl, wz} is given in Fig. 4 for the

case ¢TEI . Since the values of wz and f, satisfy the equation f2 + wz =5,

2

it is possible to calculate f_ from wz .

2

Now let us consider another initial distribution of tree ages: ¢1=3,
¢2=3, ¢3=0, ¢4=0, ¢5=1, ¢6=1, ¢7=0, ¢8=0 . The projection of set (24) on
the plane {wl, wz} is given in Fig. 5. This allows the DM to first make a

decision in terms of wl, wz, f2, and then proceed to an analysis of the
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problem in terms of fi, t=1,2,...,8 , and f; , T=1,2,...,8 , where wl’ wz,

f2 are fixed.

wz A
10

g_.
8
7.—

AR R

6 —1
5_

HH Tt

4
3—-
2

N\

14

T — T »
0 1 2 3 4 5 6 7 8 910 ¥,
FIGURE 4 The projection of set (24) on the plane {wl,wz} for the case
¢.=1, T=1,2,...,8.
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FIGURE 5 The projection of set (24) on the plane {wl,wz} for the case
8,23, 0,73, 6,70, 9,20, d=1, d5=1, 6,=0, $4=0.

The example presented in this paper gives a general idea of the GRS
method. In more complicated models the system of inequalities describing
the GRS is very bulky, so that the GRS can be investigated only through
the display of projections and slices.
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5. CONCLUSION

The GRS approach provides the DM with a general understanding of the
sets of accessible and efficient points for rather simplified models of the
system under study. On the basis of this information the DM can identify
his goal (aspiration level) in objective space. The next step in thedecision-
making procedure is the construction of a decision which will lead to the
achievement of the goal. This can be done by means of preference-oriented
multiobjective methods. We have found that the most convenient preference-
oriented method for use in conjunction with the GRS approach is the reference
objective method developed by Wierzbicki and others (Wierzbicki, 1979;
Lewandowski, 1982; Grauer, 1983). For this reason we have included the
reference objective method in the POTENTIAL program system, in the form
given by Lewandowski (1982). The joint application of the methods has proved
to be very successful,
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1. INTRODUCTION

Industrial Development is a Strategic lManagement Decision
Area which can be looked upon as a chain of hierarchical deci-
Sion problems.

As an output from a Decision Analysis on a given higher
level comes formulation of problem (or most often set of pro-
blems ) to be analysed and solved on the lower level. Such pro-
cess 1s continued on down the hill levels. Appropriate feedback
links assure a possibility of verification of problews formu-
lated on the higher level,

This common sense approach however general may easily be
accepted both by theory and by practitioners. It also seems to
be a natural field for application of Multiobjective Inter-
active Decision Analysis.

But the picture becomes less bright when one looks into
reality. They are various factors affecting logic and smooth-
ness of operation of such a decision system. Three of them are
of the fundamental importance. First is the long time which
elapses before a sequence of decision cycles on various levels
can be performed. This stems from the nature of the development
decision processes that are evolving for nany years1/.

Second is also a feature of the "nature of the system"
and this is sometimes a very bilg qualitative difference between
objects of analysis and methods used even on neighboring le-
vels. Therefore we may speak about problem of communication
and understanding between various levels. Third factor which
is here the last but far from being least it is the problem of
methodology or rather lack of methodology. This would be
twofold:

- a problem of methodology for solving particular problems on
a given level which is equivalent to formulating problems
for sublevels down the hierarchy,

1/ So called industrial development cycle which includes
periods of research, design, investment and production covers
for various branches of the chemical industry from approx.
10 to 35 years.
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- a problem of "“overall methodology" which could help to in-
tegrate whole system.

While impacts from first and second factor cannot be in-
fluenced directly since they form a core of the area investi-
gated and come from its nature, the real job can be done in
the field of methodology. In particular a methodology for
project formulation for the design of an industrial installa-
tion would be a good example.

In this paper we concentrate on project formulation stage.
This stems, from an experience gained in the research on deve-
lopment strategy of industrial structure 1in the chemical in-
dustry. Development strategy deals with rather large areas co-
vering whole branches of the industry called Production Dis-
tribution Areas (or PDAs) and can be described by specially
devised models called PDA models. Nevertheless the basic ele-
ment for development in such a PDA is a ( eventually proposed
for investment ) chemical installation. The problem is how to
devise and formulate a design task of such a new chemical plant
which would be in a natural agreement with the development
strategy designed for the whole PDA, The process of design of
a development strategy for PDA is to be carried out as a pro-
cess of quest for concordance between available technologies
and resources that are critical for the development (see
Gérecki et.al./1980/). This is to be continued down through
several levels with narrowing field of the quest, while accura-
cy and number of details of the analysis are supposed to be
growing. It is our intention to show the very nature of such a
decision analysis process which is aimed at generating develop-
ment alternatives for the process industry.

The next section gives a general view of the problem.
Levels are distinquished and their respective activities des-
cribed showing basic inputs, outputs and interactions as well
as feedbacks. This is done to show how from such a multistage
activities evolves a project formulation as an opening to the
design of a chemical installation.

In the section 3 a new more general formulation of the
problem of quest for concordance is described this time it is
aimed at assuring a homogenous approach for all levels involved
and for interface between the levels. This is done through
formal description of the criteria and their properties. This
properties can be used for the appropriate choice of criteria
and for establishing preferences within a chosen set. Following
section is devoted to more detailed description of the last
level which is the project formulation level. A real life
example is also given to illustrate the point.

2. PROBLEL OF GENERATING CONCORDANT DEVELOPMENT ALTLRNATIVES

We should now look more closly into problems of generating
concordant development alternatives in order to reveal applica-
bility of the Interactive Decision Analysis. This will anable
us to show the main point of our paper it is importance of me-
thodology of project formulation, and to describe our attempt
to propose such a methodology. It would be displayed as an
integral part of a much broader decision activity.
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Fig. 1. Process of generating concordant Development Alter -
natives on Three Levels as Multiobjective decision
Analysis.

On the Fig. 1 there is shown a process of generating con-
cordant industrial development alternatives. It integrates our
earlier findings obtained in the course of research on this
subject ( see Borek et.al. /1978/ , Dobrowolski et.al. /1982/,
Dobrowolski et.al. /198%/, Kopytowski et.al. /1981/). There can
be distinquished three levels of an interactive decision
analysis:

1. Production Distribution Area level,

2. Comparative Analysis of technology level,

3, Project formulation level.

On each level activity is aimed at finding concordance between
available resources and corresponding technologies.

In the considerations below we do not intend to repeat our
earlier findings. These will be used as a reference. Intention
here is however such an interpretation and explanation of a de-
cision process ( see Fig. 1) which is relevant and important for
the project formulation.

To accomplish this let us try to lay down what is nece-
ssary and what 1s to be made known in order to formulate a
project for the chemical installation., This will be simplified
only to main lines.

They are basically three directions of approaching the
problem:
~ first is from raw materials to products,

- second is opposite: from products to raw materials,
-~ third would be a combination of the above.

In the first case the question is how could we best pro-
cess raw materials that are available?

In the second case it would be - how to obtain demanded
products? And naturally the third would be equivalent to a
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question: how could we best obtain demanded products from the
given array of raw wmaterials?

Chained to those would be naturally questions about
availability levels of raw materials and range of demand as
well about other resources, necessary for production such as
energy, manpower; terms of trade also bring in a specific set
of factors.

Analysis structured along above questions or those similar
to them seems to be an obvious professional rule in design and
its marketing: those projects should be initiated which provide
not only a good design in strictly technical terms. Design must
produce technologies and installations well fitted to demand
steming from true not apparent trajectory of the industrial
development.

Here a circle closes: we come back to the problem of in-
dustrial development and problem of fitting project formula-
tion to it. It is not at all a simple procedure of fulfilment
of clients will. Only then design may become what it should
be: a creative act in decision activities for development.

An important factor in this considerations is, mentioned
already, a long time span of industrial development cycle.

It makes interactions between project formulation ( and
consequently design) and a development strategy formulation
even more important, since resulting impacts last for many
years and can be corrected with proportionally long delays.

We may now look again at Fig. 1 and this time interpret
it not only for its meaning as one representing idea of inter-
active methodological steps, but at the some time a conceptual
view of model of the complex development process. An ideal
methodology would be such which would enable for control of
the process. It means change it from a process of development
into the decision process of development.

The first level to be considered is level of PDA ( Fig. 1)
or Production Distribution Area. The concept of a PDA and its
model was developed since some years ( see Borek et.al. /1978/,
Dobrowolski et.al. /1982/, Dobrowolski et.al /198%/), similar
wodels are also finding their way both in research and appli-
cations ( see Kendrick et.al. /1978/, Sophos et.al. /1980/).

An appropriate methodology was worked out for heandling
PDA models aimed at generating development alternatives for
PLA ( see Dobrowolski et.al. /1983/). By a definition it con-
siders a PDA development problem as problem of quest for con-
cordance., Let us briefly lay down what comes out of a PDA
level from the project formulation point of view,

PDA represents a whole branch of an industry and there-
fore for the whole set of technologies it contains ( model
describes existing and potentially available plants) a problem
of quest is to be solved. We leave for the next section a dis-
cussion of criteria for evaluation of optimum, concordant so-
lution. The heart of the matter in the case of a PDA can be
described exactly in terms of questions we have just formulated
when analysing what has to be known in order to formulate the
project. This time however we deal not with single case (of a
raw material, technology or product ) but with the whole strong-
ly interlinked set of technologies, incluaing flows of appro-
priate raw materials, products and intermidiates. For such a
network, a balance of production and distribution is established.
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Levels of flows and capacity utilisation are described and
corresponding to the state of network amounts of ordinary and
critical resources are calculated. These include amounts of
investment, energy, labor etc.

For the purpose discussed here, from a PDA level we obtain
a list of technologies which, for a given development thesis
(it is within conditions and goals of a given development sce-
nario), are feasible and should be taken for further investi-
gation. Basic conditions for their mode of operation are also
specified. With this preselected list we may continue analysis.
This should be done in two directions:
~ first for creating a feedback to PDA level,

- second to further select and deepen knowledge for project
formulation.

Second level ( see again Fig. 1) deals with problem of
quest for concordance at the stage of a comparative study of
technologies. We can characterise this case very briefly how-
ever without diminishing its importance. It is very similar to
the case of a PDA but this time a structure of a PDA is limited
to the technologies for obtaining same product from various raw
materials, or containes technologies for processing same raw
material., Case study of methanol production from various re-
sources such as crude oil, natural gas, coal etc. serves as a
good exaumple ( see Dobrowolski et.al. /1983/). From this stage
more details are known, some additional estimates such us de-
mands for construction materials, land and hardware can also
be obtained.

3. PROBELM OF QUEST FOR CONCORDANCE

The problem of gquest of concordance was formulated and
studied in our research both from methodological and formal
point of view ( see Gérecki et.al. /1982/, Dobrowolski et.al.
/1983/). There we aim at another insight of this key issue in
decision making process for development. As was shown above it
is performed on various levels as well as through interactions
between these levels.

The key point is the choice of criteria and their respec-
tive preference for a decision maker.

It is this choice that settles a question about quantified
transformation of a development thesis, aspirations, preferen-
ces etc. - 1t is "soft" elements of the decision process into
"hard" elements - it is quantities of resources and relevent
industrial structure as well as expected gains.

Choice of criteria is very much open to the invention,
knowledge and experience of a decision maker and later can be
verified through methodological steps. Through solving problem
of preference of criterial functions within initially assumed
set, decision maker can review his primary choice and modify
it. The fundamental importance of this choice underlines the
indispensible role of a decision maker. Therefore application
of any theoretical tools in order to improve and ease a de-
cision process is a matter of a great responsibility. It is to
be made clear to a decision maker what are exactly limits of
theory, its advantages and drawbacks. What can be achieved and
what can be neglacted or missed?
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They are two basic factors which have to be consi%;red and
compromised if preference of criteria is to be settled</.

First is intensity factor and second is a robustness
factor.

Let F be a criteria under consideration and u be re-
sources available,

For the simplest one dimentional case:

FeR' ; ueR'
intensity
dr

S =35 (1)

while 2z represents a disturbance where zeR1 then

-1
robustness R = (%%) (2)

For the case of a linear model 2z represents in the model
changes in matrix coefficients or in the right hand side coeffi-
cients. Robustness analysis can be in such case helped through
post optimal analysis. This illustrates how theoretical pro-
perties of a model could be used in selection and evaluation
of criteria.

While selecting and evaluating criteria decision wmaker
takes into account those that are most intensive and most
robust.

Let us discuss properties of criterial functions F star-
ting from simplest form of F and then generalising results.

Let ceIﬂ represent total available amount of a critical
resource. 1
If an amount ueR of the resource ¢ would be consumed

it would produce gain g(c,u)elfl, and would deplete ¢ by
h(c,u)€ R'. Total gain F(c)&R' which could be obtained may
be found from Bellmans (1961) procedure:

F(c) = max[g(c,u) + F[c—h(c,uﬂ} (3)
u

under assumption that:

h(c,u) » 0 and is sufficiently small with respect to c¢ , and
assuming that derivative F’(c) > O ( at least at the start of
the process) eq.(3) can be approximated by the following:

Fc = max{g(c,u) + F(c) - h(c,u)F'(c) + ... +] (4)
u

This leads to the following formula for the approximated

optimal strategy:
. _ c,aU
F'(c) = mix [ e ] (5)

The above formula shows that in the process of development
the suboptimal strategy is one which assures maximum gain from

2/ Due to space limitations the time factor is not discussed
here. Naturally the more important with respect to time
would be these criteria which persist their significance
aver assumed time horizon.
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a unit of the resource.

It is very fortunate that this formula is in agreement
with approach applied by experienced practitioners.

The above generalised for a multidimentional case:

EeRn ’ E_GRn ’ E(EoE)eRn ’

F(e)e R , g(e,u)eR’ ,
formula (3) may be written as follows:

F(c) mSX[es(g,g) + F[c - 2(9.2)]] (6)

and

F(e)

finally suboptimal strategy will be given by:

max{g(c,u) + F(e) - grady F(Oh(e,w)} (7)
2 e

grad, F(c)min h(e,u) = max g(c,u) (8)
= u u

Further generalisation can be obtained for case where:
c&R" , u&R® , n(c,u)er”
F(c)eR" , g(c )& R" , and formula (3) will have form:

E(c) = maX{ﬁ(g.g) + B - 1_1(9,5)]} (9)
u
which leads to suboptimal strategy:
Jac E(c) min h(c,u) = max g(c,u) (10)
u u

for multiobjective, multiresource development problem.

4, PROJECT FORMULATION

4,1, The problem

As explained in previous sections decision process attains
level of project formulation after a complex analysis of
various factors and their interdependencies. In fact the re-~
sults of this analysis stand for "initial conditions" when pro-
cess of quest of concordance enters the stage of project for-
mulation.

Let us enumerate knowledge gained so far and describe the
"initial conditions".

This can be done in the following manner:

There is a demand for production of a product P on the
assumed level ( or within certain range). P can be obtained
from a raw material(s) M - available on the certain level ( or
within certain range). Preference list of technologies chosen
for this purpose is known. From this follows also knowledge
about relevant production capacities, consumption coefficients
etc.

Informations that can be obtained from a comparative study
were alveady mentioned ( for more detail, see Dobrowolski et.al.
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/1983/, Gérecki et.al. /1982/).

There also should be known a sensivity of the development
alternative of the higher level to the changes of the values
of the respective parameters of the considered technology.

At this moment additional information has to be supplied
for a project to be formulated. This concerns informations
about regional and environmental conditions about potential
sites for the installation, information about constraints and
preferences on energy supplies, investment rates etc. For each
technology in case this additional knowledge is assumed, spe-
cifically a process data from existing plants may serve as a
reference.

Some of the above parameters may be not stated explicite
when problem is formulated. For example a production capacity
may be left open. This seems surprising but may happen when
raw material availability due to regional conditions or gover-
ment policy is more restrictive then a technology itself. In
such a case production level of a product P as well as raw ma-
terial demand M which stem from previous stages are not treated
as constraints ( or objectives). Simple comparison of results
may be carried out after a lower level ( it is project formula-
tion) analysis 1is completed.

The above information is to be confronted with the infor-
mation previously obtained in order to clarify any contradic-
tions. 1f necessary feedback channels have to be activated as
was discussed when Fig. 1 was described.

The above knowledge is to be transformed into a model.
This model is to enable a decision maker for a multiobjective
analysis of a particular technology with the assumptions and
conditions which were implied by results of previous analysis
and its further modifications due to additional information.

An important issue at this stage of analysis is finding
a source for acquiring the technology in trade.

They are two basic possibilities of acquiring a technology:
- through own design,
~ through technology transfer it is via negotiating a contract.

At this stage both should be considered on equal basis
with help of the practically same model.

In the real case discussed below only one alternative is
completly covered namely the one which assumes acquiring a
technology through own design. The remaining one was discussed
in detail in another paper (see Gérecki et.al. /1983/) it has
to be underlined however that the main body of procedures
applied is the same in both cases.

4,2, Real life example
A scope

The case presented here is a real life one., It was simpli-
fied, however without altering elements significant both from
technological and design point of view. The example was chosen
due to its fair generality, and since it represents wide range
of chemical installations as well as a process type technolo-
gies, Owing to its specific features it can also be described
by a simple, understandable model which enables to show a
flexibility of structure or alternative configurations of a

technical system as expressed in terms of resources involved.
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Object of a potential project

Technological scheme of the process is shown on the Fig. 2.
The character of the process offers a possibility of assembling
a whole set of installations each with different values of
process parameters. Specific tradeoffs between process para-
meters are sustained of course and that creates a zone for
design or as we would rather say the zone for multiobjective
project formulation procedure.

Fig. 2. Technological scheme of the installation: 1 - heating
section; 2 - 1-st step reaction section; 3 - cooling
cycle; 4 ~ condensation-absorption section; 5 - split-
ting section; 6 ~ purification section; 7 -~ 2nd step
reaction section; 8 - cooling cycle 2.

In the process shown on the Fig. 2. its main characteri-
zing parameter is the conversion level c¢ . The maximum con-
version is 100 %. At lower levels of conversion the fraction
which was not transformed into final product P is again trans-
formed in second reactor (unit 7) also closed in closed cycle
(unit 8). Lower the conversion level ¢ of the raw material M
into product P a more powerful units ( numbered 4 - 8) are ne-
cessary for the process, allowing however, for some reduction
of hardware used in the first stage (units 2 and 3). At lower
conversion level higher becomes energy consumption but at the
same time lowers raw material consumption.

It is assumed that some data describing dependence of
consumption of raw material M, energy E and investment I on the
conversion level ¢ are available. This empirical data can be
approximated analytically:

2

M(e) = 0,000018 ¢~ + 0,0016 ¢ + 0,556 (11)

E(C) = &% (12)
1e) = 552ter (13)

Practically to stay in agreement with reality one has to assume
a certain deviations from this characteristics which can be
considered to be "ideal".

To describe criterial function one should start from
finding a simplified unit cost of production of a_final pro-
duct P. Simplified unit cost (measured in [m.u/Mg]) would be:

B(c) = ot M(c) + PE(c) + TI(c) (14)

where
R = BOOOO[m.u/Mg] - price of raw material M;
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P = 231O[m.u/1O9J] - price of energy E;

¥ = 2000 [1/Ng] -~ depreciacion coefficient calculated for
the period of 10 years, and assumed average production capacity
of 50000 Mg/year.

60,000]
58,000

T T T T T T TTT
10 20 30 40 50 60 70 80 90 100 c(%)

Fig. 3. Value of unit cost of production as a function oI
conversion level ¢ .

Fig. 3 shows dependence of B(c) on conversion level ¢
for the ideal functions of M(c), E(c) and I(c). The unit cost
is at minimum for ¢ = 65% which is B(65) = 59339,89[m.u/lg]
and for the c¢ = 15% at its highest: B(15) = ?20300[wm.u/Ng].

In the case discussed here they were following constraints.
due to domestic policy there was given a guaranty for availabi-
lity of energy amounting to the level corresponding to techno-
logy run at conversion ¢ = 100%. Since raw material M would
have to be imported and it is an energy carier itself then
authorities policy allowed for additional supply of energy
under the condition that for a saving of 0,1[Mg/Mgl]1,75 - 109
[J/Mg] increase in energy consumption would be covered. This
policy can be expressed by the following equation:

E(c)€ E(100) + §(M(100) - m(c)) (15)

where 1 = 1,75[10° J/Mgl, E(100) = 4,3[10% J/Mg] and M(100) =
= 0,9[Mg/Mg] . The above condition can be satisfied by ce[20,100].
Second constraint came from bank policy. Bank was ready to

provide a minimum, low interest credit at the level 3,6 -109
[m.u] which corresponds to lowest investment (for ¢ = 100 %).
Any higher credit was to be accepted under the condition that
unit cost of production would be lowered according to the
following rule.

For each saving of a magnitude_of 1000[m.u] from unit pro-
duction cost, of B(100) = 62133[m.u}] and additional credit of

0,5 -109[m.u] could be made available. This in fact ment that
bank imposed constraint of effectiveness of investment setting
it above certain acceptable level:

I(c) & 1(100) + §(B(100) - B(c)) (16)
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where -3
1¢(100) = 3,6 &= 0,5 .10 and
B(100) = 62133

This can be satisfied for ¢ e[55,100]. Therefore, constraints
narrow down a set of possible solutions to the technological
structures which belong to the range ce[55,100]. It contains
global minimum of function B, at ¢ = 65%. This is an important
assignation in project formulation.

The above procedures complete problem of one criterion
analysis. It has to be underlined that all forms of criteria
used are of a general type devised in section 3, where cri-
terial functions were discussed.

Conditions for project formulated so far are to certain
extent inflexible. To find degree of acceptable flexibility
more then one criterion should be admitted in the analysis. The
simplest in this case would be to add as a criterion investment
level I(c) therefore a multiobjective problem would be:

B(¢) — min , I(c¢) — min “7)

with constraints remaining unchanged.
Solution to this problem yields to Pareto compromise (Fig.4).

} mu
B(M—>—>m|n
70,000 — 9 #5
/
/120
y
/
y
100 /
10
- /
58,000 70755
65
1 .
I i 1 T T T 1 T T T »
1 2 3 4 5 6 7 8 910 1{10°mu) > min

Fig. 4. Pareto compromise solution: B - unit cost, I - invest-
ment.

5. CONCLUDING REMARKS

Our basic thesis that project formulation goes far beyond
the strict limits of design was confirmed in view of our re-
search and experience as was displayed in the paper. It resul-
ted in creating a basic methodology which shows the way how to
synthetise knowledge indispensable for project formulation. It
is to be done along a decision process of an industrial deve-
lopment. Moreover it makes a project formulation an integral
part of such a decision process.

It is very important to realise that philisophy and
approach presented are to far extent independent from the type
of economy. Form or set of criteria may be different but gene-
ral fromework and mechanism as well as multilevel structure
would remain. The following rule has to be accepted: prior to
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design an understanding of development phenomena and relevant
behaviour of industrial structure is indispensable and has to
result in project formulation.

We feel obliged to mention at the and that a very important
inspiration to our work came from a management system which was
initiated by the chemical industry ( see Kopytowski et.al./1972/)
relativly long ago - in early seventies. However it was based
on teams of experts not an algorithms and computers its very
pragmatic core was in agreement with philosophy which led us
to the approach and conclusions presented here.
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