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Abstract 

A hypothetical framework to characterize statistical knowledge for teaching (SKT) is described. 

Empirical grounding for the framework is provided by artifacts from an undergraduate course for 

prospective teachers that concentrated on the development of SKT. The theoretical notion of 

“key developmental understanding” (KDU) is used to identify landmarks in the development of 

SKT subject matter knowledge. Sample KDUs are given for the subject matter knowledge 

categories of common content knowledge, specialized content knowledge, and horizon 

knowledge. The theoretical notion of “pedagogically powerful idea” is used to describe how 

KDUs must be transformed to become useful in teaching. Examples of pedagogically powerful 

ideas for the pedagogical content knowledge categories of knowledge of content and teaching 

and curriculum knowledge are provided. Knowledge of content and students is hypothesized as a 

basis for the development of pedagogically powerful ideas.  
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Characterizing Key Developmental Understandings and Pedagogically Powerful Ideas 

within a Statistical Knowledge for Teaching Framework 

 Recently, much attention has been given to mapping mathematical knowledge for 

teaching (MKT). A robust conclusion from the research is that it is useful for teachers to have 

both subject matter knowledge and pedagogical content knowledge (Hill, Ball, & Schilling, 

2008). Subject matter knowledge pertains to knowing the content to be taught, and pedagogical 

content knowledge involves making it understandable to students (Shulman, 1987). Studies that 

conceptualize MKT as consisting of both subject matter knowledge and pedagogical content 

knowledge suggest that teachers’ MKT is linked to student achievement (Hill, Rowan, & Ball, 

2005), the ability to extend students’ mathematical thinking (Cengiz, Kline, & Grant, 2011), the 

ability to make sense of and respond to students’ mathematical difficulties (Johnson & Larsen, 

2012) and the overall mathematical quality of instruction teachers offer (Hill, Blunk et al., 2008). 

Such findings portray MKT as a worthwhile research domain. 

 Theoretical characterizations of MKT to guide research and teacher education have been 

slow to materialize. This is reflected, in part, by mathematics examinations required for teaching 

certification over the past century. Hill, Sleep, Lewis, and Ball (2007) observed that many such 

examinations tested subject matter knowledge while neglecting pedagogical content knowledge. 

Examinations attempting to assess pedagogical content knowledge have not always been guided 

by coherent theoretical frameworks. These problems are symptomatic of the larger issue of little 

theoretical development of MKT up until the recent past. Although development of MKT theory 

has gained momentum during the past decade, Hill, Ball, and Schilling (2008) noted that 

“mapping this knowledge is likely to be a long and time-intensive process” (p. 396).  
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A complicating factor for researchers mapping statistical knowledge for teaching (SKT) 

is that statistics and mathematics can be considered distinct disciplines. The Guidelines for 

Assessment and Instruction in Statistics Education (GAISE) report (Franklin et al., 2007) 

emphasized the distinctiveness of statistics by observing that statistical questions are stochastic 

in nature rather than deterministic, and that variability is a central object of study in statistics. 

Additionally, although mathematics and statistics are both associated with real world contexts at 

times, the role of context differs in each discipline. Cobb and Moore (1997) stated, 

Although mathematicians often rely on applied context both for motivation and as a 

source of problems for research, the ultimate focus in mathematical thinking is on 

abstract patterns: the context is part of the irrelevant detail that must be boiled off over 

the flame of abstraction in order to reveal the previously hidden crystal of pure structure. 

In mathematics, context obscures structure. Like mathematicians, data analysts also look 

for patterns, but ultimately, in data analysis, whether the patterns have meaning, and 

whether they have any value, depends on how the threads of those patterns interweave 

with the complementary threads of the story line. In data analysis, context provides 

meaning (p. 803, italics in original). 

Statistical reasoning is distinctive in often involving reasoning simultaneously about data and 

context and drawing qualified conclusions about questions of interest based upon knowledge of 

both (delMas, 2004). Wild and Pfannkuch (1999) referred to this as “shuttling back and forth” 

between data and context when engaging in statistical reasoning. Furthermore, some statistical 

tasks, such as designing survey questions and choosing appropriate study designs, have 

significant non-mathematical components (Groth, 2007). 
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 The purpose of this paper is to develop a theoretical framework to help guide research on 

SKT. I do so by building on and integrating existing theories of MKT, SKT, and how MKT 

develops. The framework includes hypothesized elements of SKT, hypotheses about how the 

elements relate to one another, and potential landmarks in SKT development. Empirical 

grounding for the framework is provided by artifacts produced during an undergraduate course I 

taught that focused on the development of prospective teachers’ SKT. I considered 

conceptualization of SKT theory a worthwhile endeavor because coherent theories can guide 

researchers in asking questions, formulating hypotheses, and determining variables and 

relationships to investigate (Johnson, 1980). 

An Overview of the Theoretical Framework’s Structure 

 The SKT framework developed herein draws on several existing theories. It starts by 

revisiting Groth’s (2007) working theory of SKT, which is based on the premise that because 

statistics is a discipline in its own right, SKT is not precisely equivalent to MKT. Nonetheless, 

since statistics uses mathematics, categories of MKT subject matter knowledge and pedagogical 

content knowledge described by Hill, Ball, and Schilling (2008) are used as starting points to 

identify elements of SKT. The framework does, however, go beyond applying MKT category 

descriptions to statistics, since much of this work has been done elsewhere (Burgess, 2011; 

Groth, 2007; Noll, 2011; Wassong & Biehler, 2010). A unique aspect of the framework is that 

Simon’s (2006) theoretical construct of “key developmental understandings” (KDUs) is used to 

identify landmarks in the development of SKT subject matter knowledge. Additionally, 

Silverman and Thompson’s (2008) notion of “pedagogically powerful ideas” is used to identify 

landmarks and mechanisms in the development of SKT pedagogical content knowledge. The 

discussion of the framework is not exhaustive in terms of all possible KDUs and pedagogically 
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powerful ideas relevant to teaching statistics. Instead, the focus is on arguing that KDUs and 

pedagogically powerful ideas can be considered in combination with categories of subject matter 

knowledge and pedagogical content knowledge to form a unified theoretical framework. A 

summary of the main theoretical constructs in the exposition is provided in Table 1. 

<INSERT TABLE 1 HERE> 

Categories of Statistical Knowledge for Teaching 

 Hill, Ball, and Schilling’s (2008) model of MKT subject matter knowledge and 

pedagogical content knowledge consists of six categories. They characterized subject matter 

knowledge as consisting of common content knowledge, specialized content knowledge, and 

horizon knowledge. Pedagogical content knowledge was thought to consist of knowledge of 

content and students, knowledge of content and teaching, and curriculum knowledge. Potential 

meanings of these categories within the context of statistics are considered next. 

Common Content Knowledge, Specialized Content Knowledge, and Knowledge of Content 

and Students for Statistics 

Groth’s (2007) hypothetical SKT framework did not include all six MKT knowledge 

categories identified by Hill, Ball, and Schilling (2008). Instead, the framework focused on 

common content knowledge and specialized content knowledge, following Hill, Schilling, and 

Ball (2004). Groth defined these knowledge categories in the following manner: 

 Common knowledge relates to competencies developed in conventional mathematics 

 courses, such as computing accurately, making correct mathematical statements, and 

 solving problems. Specialized knowledge is developed by carefully attending to 

 mathematical issues and dilemmas that arise in teaching contexts. It relates to such tasks 

 as providing understandable explanations, appraising students’ unconventional methods 
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 for solving problems, and constructing and evaluating multiple representations for 

 concepts (p. 428). 

Using these definitions, Groth provided examples of common and specialized statistical 

knowledge. Common knowledge examples included accurately reading graphs, constructing 

survey questions, computing descriptive statistics, and choosing an appropriate descriptive 

statistic for a given context. Specialized knowledge examples included understanding challenges 

students may encounter reading different types of graphical displays, identifying properties of 

the arithmetic mean students may have difficulty comprehending, and realizing that students may 

compute a statistic without consideration of context. 

 Hill, Ball, and Schilling’s (2008) description of common knowledge differs slightly from 

Groth’s (2007) description. Hill, Ball, and Schilling described common content knowledge as 

“knowledge that is used in the work of teaching in ways in common with how it is used in many 

other professions or occupations that also use mathematics” (p. 377). Although this description 

differs from Groth’s by emphasizing that common knowledge cuts across multiple professions, 

the examples of common knowledge he provided are still applicable. Accurately reading graphs, 

constructing survey questions, computing descriptive statistics, and choosing appropriate 

descriptive statistics for a given context are not tasks unique to the teaching profession. 

Therefore, the Hill, Ball, and Schilling characterization of common content knowledge seems to 

supplement Groth’s description of common content knowledge rather than supplant it. 

 Although no substantive differences appear to exist between the Groth (2007) and Hill, 

Ball, and Schilling (2008) notions of common content knowledge, differences do exist between 

their characterizations of specialized content knowledge. For example, Groth categorized 

“understanding differences between how students read box plots and dot plots” (p. 430) as 
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specialized content knowledge. Hill, Ball, and Schilling, on the other hand, introduced a new 

category, knowledge of content and students: “content knowledge intertwined with knowledge of 

how students think about, know, or learn this particular content” (p. 375). Knowledge of content 

and students allows teachers to anticipate students’ problem-solving strategies and to understand 

difficulties associated with learning concepts. Understanding differences between how students 

read box plots and dot plots, therefore, could be categorized as knowledge of content and 

students because children often have greater difficulty reading condensed displays such as box 

plots as opposed to displays that show each individual data value, such as dot plots (Zawojewski 

& Shaughnessy, 2000a) (“condensed” in this context means data are represented in a manner that 

reveals some distributional characteristics but not individual values). Other specialized 

knowledge examples given by Groth, such as “understanding students’ strategies for 

measurement,” (p. 430) can also be re-categorized as knowledge of content and students because 

they help teachers anticipate children’s content-specific thinking. 

 Because Groth’s (2007) examples of specialized knowledge can be re-categorized as 

knowledge of content and students, there is a need to re-consider what specialized content 

knowledge for teaching statistics might entail. Hill, Ball, and Schilling (2008) considered 

specialized knowledge to be “the mathematical knowledge that allows teachers to engage in 

particular teaching tasks, including how to accurately represent mathematical ideas, provide 

mathematical explanations for common rules and procedures, and examine and understand 

unusual solutions to problems” (p. 377-378). In contrast to common knowledge, specialized 

knowledge is content knowledge of unique interest to teachers.  

Examples to distinguish specialized knowledge from knowledge of content and students 

can be found in statistics education literature incorporating the two categories. Wassong and 
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Biehler (2010) discussed knowing how to represent the mean as a typical value, a fair share, a 

data-reducer, and a signal amid noise as potential examples of specialized knowledge. They then 

characterized knowing of students’ difficulties conceiving of the mean as a signal amid noise and 

knowing that students have difficulty understanding the mean conceptually as examples of 

knowledge of content and students. Burgess (2011) discussed a teacher’s appropriate analysis of 

a student’s statistically naïve interpretation of survey results as indicative of specialized 

knowledge, and discussed another teacher’s anticipation of students’ difficulties sorting data as 

indicative of knowledge of content and students 

Noll (2011) observed that it can be difficult to tease apart knowledge of content and 

students and specialized knowledge, and that distinguishing between specialized knowledge and 

common knowledge likewise is not always trivial. She wrote,  

When a teacher is grading a student solution to a homework problem, it may be difficult 

to decipher whether she is using specialized content knowledge, mathematically 

examining a non-standard student approach, or using her knowledge of content and 

students, recognizing a common student misconception or stage of development, or a 

combination. Likewise, there are some mathematical concepts that may fall on the 

boundary between common content knowledge and specialized content knowledge. For 

example, one might argue that some professions need knowledge of why the algorithm 

for multi-digit subtraction works, a financial consultant for instance, and, thus, this 

knowledge is not unique to teaching (p. 51). 

Hence, throughout this paper, attention is given to identifying additional potential distinctions 

among specialized knowledge, common knowledge, and knowledge of content and students in 

the context of SKT. 
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Knowledge of Content and Teaching, Curriculum Knowledge, and Horizon Knowledge for 

Statistics 

 Three Hill, Ball, and Schilling (2008) categories remaining to be considered are 

knowledge of content and teaching, curriculum knowledge, and horizon knowledge. Hill, Ball, 

and Schilling considered knowledge of content and teaching and curriculum knowledge, along 

with knowledge of content and students, to be in the broader category of “pedagogical content 

knowledge.” Knowledge of content and teaching provides teachers with content-specific 

teaching strategies. For instance, using the process of statistical investigation (Franklin et al., 

2007) as a teaching strategy could be indicative of knowledge of content and teaching. 

Curriculum knowledge allows teachers to perform tasks such as appropriately sequencing the 

introduction of statistical ideas (Godino, Ortiz, Roa, & Wilhelmi, 2011). Hill, Ball, and Schilling 

grouped horizon knowledge with common content knowledge and specialized content 

knowledge under the broader category of “subject matter knowledge.” Horizon knowledge 

entails knowing statistics beyond the prescribed curriculum. Such knowledge can help teachers 

guide students’ investigations in productive directions and provide a foundation for learning in 

later grades (Ball, Thames, & Phelps, 2008). 

Statistics education literature can be drawn on for specific examples of knowledge of 

content and teaching, curriculum knowledge, and horizon knowledge. Burgess (2011) considered 

a teacher’s lack of strategies for remediating students’ incorrect comparisons of two unequal-

sized groups to be indicative of a gap in knowledge of content and teaching. Groth (in press a) 

discussed forming an opinion on when to introduce conventional statistical representations 

within a sequence of lessons as part of the development of curriculum knowledge. Godino et al. 

(2011) considered knowing of epistemological obstacles in the historical development of 
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probability to indicate horizon knowledge because it involves understanding broad disciplinary 

foundations to which specific ideas to be taught may connect. In a similar vein, Bakker and 

Gravemeijer (2006) demonstrated that knowledge of the historical development of mean and 

median can inform instructional decisions. 

As with all of the knowledge categories discussed thus far, it should be noted that these 

three categories have a degree of overlap with others. For example, specialized knowledge and 

knowledge of content and teaching both involve making subject matter comprehensible to 

students. Additionally, knowledge of content and teaching and curriculum knowledge both 

involve using specific strategies to facilitate student learning. The preceding examples from 

statistics education literature provide some guidance in distinguishing among the knowledge 

categories, but undoubtedly still leave room for ambiguity. The theoretical framework discussed 

herein can further disentangle some ambiguities, though its primary purpose is to point toward 

relationships and variables to investigate (Johnson, 1980) rather than to resolve all questions. 

Summary 

 In summary, two broad teacher knowledge categories can be identified: subject matter 

knowledge and pedagogical content knowledge. In the following, subject matter knowledge is 

assumed to consist of common content knowledge, specialized content knowledge, and horizon 

knowledge. Pedagogical content knowledge is assumed to consist of knowledge of content and 

students, knowledge of content and teaching, and curriculum knowledge. These assumptions 

require expanding the Groth (2007) SKT framework beyond common and specialized knowledge 

to include more recent work by Hill, Ball, and Schilling (2008) and re-categorizing Groth’s 

specialized knowledge examples as knowledge of content and students. Nonetheless, the 

underlying premise of the earlier framework that MKT theory can advise the construction of 
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SKT theory remains. Since statistics and mathematics can be considered distinct disciplines, 

MKT and SKT are likely to overlap without being completely equivalent. 

Key Developmental Understandings and SKT Subject Matter Knowledge 

 SKT knowledge categories, though important, seem unlikely to be wholly adequate for 

informing research and teacher education. Identifying cognitive landmarks in SKT development 

is also worthwhile because doing so can guide teacher education efforts beyond the level of 

merely naming categories of knowledge to be developed. If teacher educators are aware of such 

landmarks, they can focus attention on designing learning experiences to address them. The 

present framework proposes cognitive landmarks and mechanisms in the development of SKT in 

order to extend previous work on describing knowledge categories. 

 Simon (2006) posited “key developmental understandings” (KDUs) as a means for 

identifying cognitive landmarks in learning subject matter. In elaborating the construct, he stated, 

“A first characteristic is that KDUs involve a conceptual advance on the part of students. By 

conceptual advance, I mean a change in students’ ability to think about and/or perceive particular 

mathematical relationships” (p. 362). To illustrate this characteristic, he described a task 

requiring students to form a square of a designated size on a geoboard and then put a red rubber 

band around one-half of the square. Most students formed two congruent rectangles, but some 

cut the original square along a diagonal. When Simon asked if the pieces formed by cutting 

along a diagonal were the same size as those formed by partitioning the square into congruent 

rectangles, students offered various opinions. Those who thought of one-half as an arrangement 

rather than a quantity believed that one of the types of pieces was larger or were not sure if the 

pieces were of equal size. Those who had developed the KDU of perceiving one-half as a 
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quantity thought it to be a trivial question, and believed the pieces formed by the different cutting 

strategies were the same size. 

 Simon (2006) ascribed another characteristic to KDUs, stating, 

A second characteristic of a KDU is that students without the knowledge do not tend to 

acquire it as the result of an explanation or demonstration. That is, the transition requires 

a building up of the understanding through students’ activity and reflection and usually 

comes about over multiple experiences. This is not an empirical claim about KDUs; 

rather, it is an argument that a focus is needed on those understandings whose 

development tends to require more than an explanation or demonstration (p. 362). 

Hence, KDUs are more than just discrete facts for students to learn. They involve significant 

shifts in students’ thinking that occur through reflection on a series of conceptually similar tasks. 

Simon (2006) observed that it is often difficult for those who have developed KDUs to 

anticipate learning obstacles for those who have not. His observation is corroborated by literature 

on the “expert blind spot” (Nathan & Petrosino, 2003) showing that those who have taken a 

number of advanced courses tend to lose sight of difficulties encountered by beginners. Hence, 

KDUs are usually not simple to identify a priori. Instead, researchers must make inferences from 

empirical data generated as students representing various levels of thinking engage with relevant 

content. To illustrate the use of KDUs in characterizing landmarks in SKT subject matter 

knowledge development, examples from empirical data relating to common content knowledge, 

specialized content knowledge, and horizon knowledge are considered next. 

SKT Course Structure 

The empirical examples discussed herein come from a semester-long SKT-focused 

undergraduate course for prospective Pre-K-8 teachers (hereafter referred to as the “SKT 



13 
STATISTICAL KNOWLEDGE FOR TEACHING 

course”). The SKT course was designed to address each of the Hill, Ball, and Schilling (2008) 

knowledge categories. As prospective teachers worked with the required text (Perkowski & 

Perkowski, 2007), they also completed statistical activities from Pre-K-8 curricula developed 

with funding from the National Science Foundation (NSF) (Senk & Thompson, 2003). This 

provided opportunities to learn of fundamental concepts of elementary curricula (common 

content knowledge), activities to foster children’s statistical thinking (knowledge of content and 

teaching), and the structure of reform-oriented curricula (curriculum knowledge). Prospective 

teachers also read and wrote about articles from teacher-oriented journals to help familiarize 

them with common difficulties in statistical thinking (knowledge of content and students), 

unusual student approaches to problems (specialized knowledge), and statistical representations 

to help make content more understandable to children (specialized knowledge). The conceptual 

foundations of formal inference were introduced through simulation (Garfield & Ben-Zvi, 2008) 

to provide perspective on statistics beyond Pre-K-8 curricula (horizon knowledge). These 

teaching strategies are described in greater detail in Groth (in press a, in press b). 

  I taught the SKT for three consecutive semesters, and each time observed a range of 

responses among prospective teachers as they completed writing prompts associated with the 

assigned teacher-oriented journal articles about statistics. Writing was selected as an instructional 

strategy because it helps learners place organizational structures on their thinking (Vygotsky, 

1987). The writing prompts required respondents to draw inferences from the articles, make 

statistical conjectures, solve statistical problems, analyze pedagogical positions advocated by 

authors, and provide opinions on different teaching strategies. Responses to the prompts are used 

as examples in the remainder of this article. (A more detailed description of the prompts, the 

associated articles, and the design and assessment process is provided in Groth, in press b). The 
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examples to be discussed are not meant to exhaust the possible KDUs in each subject matter 

knowledge category, or even all of the KDUs observed during the course. Instead, the examples 

are meant to illustrate the role of the KDU construct in mapping SKT development.  

Common Content Knowledge: Experimental and Theoretical Probabilities 

 The distinction between theoretical and experimental probability is a key element in 

curriculum documents around the world (Jones, Langrall, & Mooney, 2007). It links statistics 

and probability as students analyze data generated by probability simulations to answer statistical 

questions. In the SKT course, I frequently asked prospective teachers to perform simulations and 

compare experimental results against theoretical. For example, on one occasion, they played a 

game called “Markers on a Line” (Burns, 2000), which prompted comparisons between data 

gathered from rolling a pair of dice several times and the theoretical probabilities of obtaining 

each possible sum from 2 to 12. On another occasion, they compared data gathered while playing 

several rounds of “rock, paper, scissors” (Nelson & Williams, 2009) against the theoretical 

probabilities associated with each player winning the game. They also read and responded to a 

teacher-oriented journal article (McMillen, 2008) describing activities that helped sixth-graders 

understand theoretical and experimental probabilities. 

 After reading the assigned journal article (McMillen, 2008), prospective teachers wrote 

responses to the following items: “Explain the difference between experimental and theoretical 

probability in your own words,” and “Explain why experimental probabilities do not always 

match the theoretical probabilities.” The two items were intended to prompt reflection on the 

article and activities from class. From these reflections, I expected to better understand 

prospective teachers’ personal constructions of experimental and theoretical probability. 
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 Prospective teachers’ responses suggested that some misconstrued the intended 

relationship between experimental and theoretical probability. Some illustrative responses were: 

Sandy: Experimental probabilities do not always match the theoretical probabilities 

because sometimes when conducting an experiment, things do not always happen exactly 

how one would expect them to, therefore the preconceived ideas of what should happen 

can sometimes be misleading. 

Jessica: Theoretical probability is thinking about the probability of an outcome before 

actually performing the experiment to get the experimental probability. Experimental 

probability is when the probability is found by doing the actual experiment… They don’t 

match the theoretical probability because theoretical probability is just a guess of a 

probability. A guess is rarely ever the same as the exact experiment’s outcome. 

SKT course activities portrayed theoretical probabilities as anchors for predicting long-term 

behavior over repeated trials rather than “misleading” measures or those that are “just a guess.” 

In contrast, responses like the two above suggested a focus on predicting individual outcomes 

rather than long-term behavior. Theoretical probabilities usually do not predict an individual 

outcome precisely, but they form the basis for statistical inference by providing an anchor for 

predicting long-term behavior. The usefulness of theoretical probability lies within this capability 

rather than in predicting a single outcome. Given the qualitative shift in thinking needed to make 

the conceptual advance of focusing on long-term behavior, and the importance of the conceptual 

advance as a unifying curricular thread, I posit that conceiving of theoretical probability as an 

anchor for predicting long-term behavior is a statistical KDU.  

 Conceiving of theoretical probability as an anchor for predicting long-term behavior is a 

uniquely statistical, rather than purely mathematical, KDU. In discussing mathematical KDUs, 
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Simon (2006) asserted, “KDUs (and mathematical understandings more generally) are never the 

result of empirical learning processes” (p. 365-366). Simon defined “empirical learning 

processes” as follows: 

An empirical learning process is an inductive process through which students discover 

patterns. By inductive process, I mean multiple trials in which students make an input (or 

observe an input) and then observe an output. Students learn that the pattern exists. The 

phenomenon that generates the pattern may remain a black box to the students (p. 365).  

Thus, for Simon, multiplying various whole numbers by 6 and observing that the product is 

always even does not constitute development of a mathematical KDU. One would only be 

developed when students understand why an even number is always produced. A mathematical 

KDU is thus grounded in deductive rather inductive reasoning. To distinguish between 

theoretical and experimental probability, however, inductive reasoning is foundational. Causes of 

systematic variability can be deduced by examining the data production context, but the 

existence and prevalence of statistical variability cannot be deduced a priori. Rather, its 

prevalence has motivated the development of mathematical tools for approximating it. For 

example, DeMoivre formulated the “empirical rule” (i.e., the “68-95-99.7 rule”) through 

observation before the current mathematical model for normal distributions was devised (Bock, 

Velleman, & Deveaux, 2004). Pedagogically, it can also be advantageous to have students gather 

empirical data from trials in situations where there is no clear theoretical model (e.g., thumbtack 

tossing) (Konold et al., 2011). Given the foundational role of empirical observation in statistics, 

it seems likely that many other statistical KDUs also require empirical learning processes and 

inductive reasoning, distinguishing them from purely mathematical KDUs. 
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Horizon Knowledge: Standard Deviation and Mean Absolute Deviation 

Developing techniques to measure spread was another goal of the SKT course. I 

introduced the idea of spread by asking prospective teachers to use their own strategies to 

describe the amount of spread in data sets. After discussing the strategies they employed in class, 

we discussed formal measures including range, interquartile range, and mean absolute deviation 

(MAD). In most states in the U.S., the mean absolute deviation (MAD) (see example in Figure 1) 

is to be introduced in sixth grade, and the standard deviation in ninth grade or later (National 

Governor’s Association for Best Practices & Council of Chief State School Officers, 2010). 

Hence, for teachers in my SKT course, knowledge of standard deviation was horizon knowledge 

because the MAD is a precursor to the more complicated idea of standard deviation in later 

grades (Kader & Mamer, 2008). In the SKT course, I used activities described by Garfield and 

Ben-Zvi (2008) to introduce the MAD. In the activities, students used horizontal bars to 

represent the amount of deviation from the mean for each individual point in a data set (see 

Figure 1). The MAD was then thought of as the average bar length. In class, we compared this 

method for determining the MAD to a conventional formula for computing standard deviation. 

The intent of doing so was to draw attention to the idea that both the MAD and standard 

deviation employ deviation from the mean in describing the amount of spread in a data set.   

<INSERT FIGURE 1 HERE> 

 As a follow-up to class activities about the MAD and standard deviation, I assigned a 

teacher-oriented journal article on describing data sets using measures of center and spread 

(including the MAD) (Kader & Mamer, 2008). The article also discussed a measure of spread 

that is useful primarily when comparing data sets of the same size: the sum of absolute 

deviations (SAD). As its name implies, the SAD is the sum of the absolute values of the 
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deviations from the mean. It can be misleading when comparing two unequal-size data sets 

because the SAD of a large data set can be larger than the SAD of a smaller data set even if the 

MAD is greater in the smaller data set. After reading the article, prospective teachers were to 

write responses to the following items:  

(i) Construct two different sets of data that have the same mean. The data sets should 

have different numbers of values. Compute the SAD and MAD for each set of data. 

Show your work. Explain what the SAD and MAD tell you about the sets of data. 

(ii) How is the MAD similar to the standard deviation? How is it different? How might 

understanding the MAD help students prepare to study the standard deviation? 

A variety of qualitatively different responses were given to the items. 

 Prospective teachers’ responses to the article-related items suggested that conceiving of 

the “typical” deviation as a measure of spread can be considered a KDU. Such a conception is 

needed to make sense of measures of spread introduced at various points in the curriculum. 

Several responses illustrated the difficulty individuals had with coordinating the ideas of average 

and deviation. In some cases, they simply calculated the averages of data sets they produced, 

thinking they were calculating the MAD. For example, Kimberly wrote the data sets {6, 5, 4} 

and {7, 5, 3} in response to the first article writing prompt, and then she calculated the MAD of 

each to be 5 by adding up the values in each data set and dividing by 3. She then went on to state,  

MAD is different from the standard deviation because standard deviation is squaring the 

average where MAD is the total number of values added, divided by the number of values 

shown. Understanding MAD might help students understand standard deviation by leading 

them up to the computations of standard deviation. 
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In such cases, the idea of deviation was not used as a tool for measuring spread. If deviation from 

the mean is not appreciated for its usefulness in measuring spread, it is not possible to understand 

how the MAD serves as a precursor to standard deviation. 

 In other cases, the idea of deviation was incorporated in responses to the article-related 

items, but the average of deviations was not. Some prospective teachers found the means for the 

data sets they invented and then calculated the deviations (i.e., distances from each data point to 

the mean). After doing so, however, some did not average the deviations. This type of thinking 

was apparent in a response from Angela. She used the invented data sets {2, 2, 2} and {1, 2, 3}. 

In regard to the former data set, Angela believed the MAD to be {0, 0, 0} and explained, “The 

MAD shows that all of the data points are the same distance from the mean.” In regard to the 

latter, she calculated the MAD to be {1, 0, 1} and stated, “The MAD shows that two of the data 

points are one away from the mean and one point is the same as the mean.” Although un-

averaged deviations do provide a degree of information about spread, when deviations are not 

averaged, the potential of MAD as a precursor to standard deviation is not exploited to its fullest 

extent because both MAD and standard deviation summarize spread with a single number. 

The idea that spread should be measured with more than one number also carried over to 

some prospective teachers’ characterizations of standard deviation. For example, Amanda’s 

response to the second of the two article-related items was, “MAD is similar to the standard 

deviation because it is the mean of all the standard deviations. However, it is different for the 

same reason because it is not the actual standard deviation, just the averages of them.” Here, it 

seems the MAD was conceived of as one number, but the standard deviation was conceived of as 

a set of numbers obtained by calculating deviations from the mean. The idea that the standard 

deviation of a population is a set of numbers rather than a single number may partially be caused 
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by language conventionally used in statistics when standard deviation is used as a ruler. In such 

instances, it is common to discuss “how many standard deviations” an observation lies from the 

center of a distribution. This language-related influence was apparent in the thinking of Richard, 

a student who had previously taken an introductory college-level statistics course. He stated,  

The MAD and the standard deviation are similar because they both give an average away 

from the mean but the standard deviation can be more than one number. So you can be 

two standard deviations away from the mean but the MAD is only one number. 

These types of responses pointed to a specific aspect of horizon knowledge in need of 

development: A key similarity between the MAD and standard deviation is that both summarize 

the spread of data with a single number. Conceiving of typical deviation from the mean as a 

measure of spread is a primarily mathematical KDU related to SKT. Structural similarities in the 

mathematical formulas for the two measures largely justify introducing the MAD in the earlier 

grades as a precursor to standard deviation in later grades.  

Specialized Content Knowledge: Hat Plots 

 One of the advantages of an SKT-focused course is that it affords time to study 

representations that are of importance to teaching but not necessarily to other professions. One 

such representation I introduced in the SKT course was the hat plot (Watson, Fitzallen, Wilson, 

& Creed, 2008). Hat plots are generally not listed in curriculum documents as representations 

students are to learn. Box plots are often listed in curriculum documents, but children have 

difficulty interpreting them because they condense the data into quarters and do not display 

individual data points (Bakker, Biehler, & Konold, 2005). The value of the hat plot is that if 

shown with a dot plot (Figure 2) it provides an intermediate representation between data displays 

that show all individual values (e.g. dot plots) and those that condense the data (e.g., box plots). 
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Hat plots can be displayed above dot plots, as shown in Figure 2. In comparing the hat plot to the 

dot plot, children can begin to see how individual values can be condensed to a more compact 

display. In the hat plot shown in Figure 2, the median is not included, as it would be in a box 

plot. This allows students to focus initially on the intuitive idea of the “modal clump” of the data 

(which may or may not be the middle 50%) and partition the data set into the intuitive categories 

of “low,” “medium,” and “high” (Konold et al., 2002). Leaving the median out of the 

representation circumvents confusion that may occur as a result of the median being closer to 

one side of the box in a box plot than the other (Watson et al., 2008). When students understand 

the idea of condensing the data and partitioning into groups with a hat plot, adding the median to 

a hat plot in which the crown of the hat encompasses the middle 50% of the data can help 

complete the transition to box plots. 

<INSERT FIGURE 2 HERE> 

One of the assignments for the SKT course was to read an article (Watson et al., 2008) 

describing how children can generate hat plots to support their transition from data displays that 

show individual values to those that condense the data. After reading the article, prospective 

teachers were to write responses to the following questions: “How are hat plots similar to box-

and-whisker plots? How are they different?” In the article, hat plots were shown placed above 

dot plots, as in Figure 2, so to be precise, the specialized knowledge representation under study 

was the special case of the two graphs shown in tandem (as opposed to just the hat plot itself). 

Their responses to the questions suggested that conceiving of hat plots (placed above dot plots) 

as transitional representations between uncondensed and condensed data displays is a KDU for 

specialized content knowledge.  
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 Some of the prospective teachers who recognized the intermediary role hat plots play 

between uncondensed and condensed representations discussed hat plots in relation to box plots 

in the following ways: 

Rebecca: Hat plots are similar to box and whisker plots because they both have a box for 

the center 50% of the data and whiskers or lines that extend off of the brim/box to 

represent the highest and lowest data points. One difference is that box and whisker plots 

you show the median but the rest of the data is not shown whereas with a hat plot you see 

all of the data underneath the plot. I think showing the data underneath the plot is a great 

feature/idea because they children can understand what they are seeing. 

Stephanie: Hat plots are similar to box and whisker plots because they have a similar 

look. When you look at both graphs they have a brim or whiskers emanating from the 

box and it shows the ranges of the data from the lowest to highest. They both have a box 

shape that represents the data in a 50% range. The differences between the two are that 

with a box and whisker plot the median is shown by a line in the middle of the box. The 

hat plot does not show this. Also typically box and whisker plots do not show the data 

they are representing unlike a hat plot where it is shown below it in a dot sort of plot. 

From the standpoint of specialized knowledge, recognizing that one representation shows 

individual data values while the other does not is significant because it provides perspective 

on why the uncondensed representation may be of educational use.  

 Other prospective teachers seemingly overlooked the intermediary representational role 

of hat plots, instead focusing on surface-level characteristics of each representation. 

Illustrative responses included: 
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Veronica: Hat plots are similar to box and whisker plots because they both use a box 

and whiskers. They are different because the box plots whiskers come out of the box 

where the hat plots are underneath and the hat plot does not have a line determining 

the median of the whole data set. 

Sophia: Hat plots are similar to box-and-whisker plots, because they both show 

another representation of a certain graph. They both show the minimum and 

maximum values of a data set, and a middle 50% of the data. 

These types of responses were not incorrect (though they may be considered cursory). However, 

from the specialized knowledge standpoint, they left much to be said. Because of the nature of 

the question, it cannot be said with certainty that these respondents did not recognize the 

intermediary role played by hat plots. Nonetheless, the responses may indicate fixation on the 

surface-level features of the two statistical representations. Specialized knowledge would entail 

conceiving of the hat plot as a precursor to the box plot rather than just another statistical 

representation with a few cosmetic features in common with the box plot. 

Specialized Knowledge: Appraising Student-Invented Graphs 

Specialized knowledge is also used to appraise the value of student-invented 

representations and strategies (Hill, Ball, & Schilling, 2008). On one occasion, I asked 

prospective teachers to write about the strengths and weaknesses of three student-invented 

representations in a teacher-oriented journal article about encouraging students to generate their 

own representations for a set of data showing how much time a group of seventh-grade students 

spent watching television each week (McClain, 1999). The data set is shown in Figure 3 along 

with two of the student-generated representations from the article. The first student-generated 

representation is similar to a conventional histogram, except that the intervals are not even and 
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the bars do not touch. The other student-generated representation shown in Figure 3 looks like a 

conventional histogram at first glance, but it was actually produced by rank ordering the data 

values, splitting them into five groups, computing the sum for each group, and then graphing the 

sums for each of the five groups. After reading the article, prospective teachers were asked to 

write about the strengths and weaknesses of each student-generated representation.  

<INSERT FIGURE 3 HERE> 

Prospective teachers’ analyses of the student-generated representations shown in Figure 3 

provided grounds for inferring another specialized knowledge KDU: recognizing unconventional 

modifications to conventional statistical representations. Some respondents recognized that 

frequencies were not displayed in the “hours of TV vs. number of students” representation. They 

noted that the heights of the bars represented sums rather than frequencies. On the other hand, 

some who did not notice this feature responded, 

Christy: [It] is a well-made histogram. Again, all information is clear and organized in 

equal increments allowing for easy understanding of the information given. You can see 

an obvious growth between the numbers of students and the number of hours watched. 

Stacey: [It] is the strongest of all the histograms. The group divided up the number of 

hours evenly and knew how to accurately display the data. The weakness in this graph is 

that it is hard to decipher the exact number of hours watched. This could have been 

spread out more to make it easier to see. 

Susan: [It] doesn't look much like a histogram it's more of a bar graph. They should have 

chosen intervals that would allow the bars to be right next to each other with no spaces in 

between. They also shouldn't have gone so high on the amount of hours, they counted to 
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120 but the graph stops at 100. On the positive side the graph was pretty organized and 

the students got the general idea of a histogram. 

Although the prospective teachers had constructed and analyzed histograms during the SKT 

course, some did not identify differences between the student-invented histogram and a 

conventional one. It seems likely that the appraisal of children’s novel representations was 

particularly difficult in this case because the “hours of TV vs. number of students” display 

appeared, on the surface, to be a conventional histogram rather than a one with student-invented 

modifications to common graphing conventions. 

KDU Summary 

 In summary, four KDUs for SKT subject matter knowledge have been discussed. The 

first, related to common content knowledge, was conceiving of theoretical probability as an 

anchor for predicting long-term behavior. This KDU is related to common knowledge because 

the distinction between theoretical and experimental probability is part of many Pre-K-8 

mathematics curricula and it is also relevant to professions other than teaching. The second, 

related to horizon knowledge, was conceiving of typical deviation as a measure of spread. This 

KDU relates to horizon knowledge because the idea of typical deviation, which is part of Pre-K-

8 curricula, leads to standard deviation, which is often taught in later grades. Knowing the 

mathematics of this progression can influence the manner in which teachers introduce the idea of 

mean absolute deviation in the earlier grades. The third and fourth subject matter knowledge 

KDUs related to specialized knowledge, which entails the ability to select and interpret statistical 

representations relevant to student learning. Conceiving of hat plots as transitional 

representations between uncondensed and condensed data displays was proposed as a specialized 

knowledge KDU, as was recognizing unconventional modifications to conventional statistical 
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representations. Each of these understandings marks significant conceptual advances that appear 

to require more than just an explanation or demonstration to develop.  

Pedagogically Powerful Ideas and Pedagogical Content Knowledge 

 Although the KDU construct is useful for identifying landmarks in the development of 

subject matter knowledge, it is not adequate for describing all aspects of MKT and SKT. 

Silverman and Thompson (2008) argued, 

Teachers who develop KDUs of particular mathematical ideas can do impressive 

mathematics with regard to those ideas, but it is not necessarily true that their 

understandings are powerful pedagogically; It is possible for a teacher to have a KDU 

and be unaware of its utility as a theme around which productive classroom conversations 

can be organized. Developing MKT, then, involves transforming these personal KDUs of 

a particular mathematical concept to an understanding of: (1) how this KDU could 

empower their students’ learning of related ideas; (2) actions a teacher might take to 

support students’ development of it and reasons why those actions might work (p. 502). 

Silverman and Thompson used Piaget’s notion of “decentering” to emphasize that teachers must 

learn to see things from children’s perspectives in order to develop MKT. Decentering involves 

differentiating one’s own viewpoint from that of another or attempting to view the world from 

another person’s perspective. Through decentering, personally powerful ideas (i.e., KDUs) 

become pedagogically powerful ideas. Decentering allows teachers to understand potential 

student difficulties with content, providing a basis for developing and selecting strategies likely 

to support students’ learning. In terms of the Hill, Ball, and Schilling (2008) framework, 

decentering would be required for development of the PCK categories of knowledge of content 
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and students, knowledge of content and teaching, and curriculum knowledge, since each 

category requires teachers to look beyond the KDUs they themselves have constructed. 

Knowledge of Content and Students: Reading Data Displays 

 As noted in the earlier discussion of hat plots and box plots, the distinction between 

condensed and uncondensed data displays was studied in the SKT course. One of the articles 

assigned during the course (Kader & Mamer, 2008) described differences between reading 

condensed and uncondensed displays. It pointed out that children must transition from reading 

displays that show all data values to those that use groupings of data, and it provided examples of 

children’s thinking with both types of displays. I assigned the following writing prompt to be 

completed in conjunction with the reading: “In your own words, and drawing upon the ideas in 

the article, explain why histograms and box plots are more challenging to use and interpret than 

line plots, dot plots, and picture graphs.” Although this prompt deals with issues similar to those 

for the specialized knowledge prompt I assigned about hat plots and box plots, I discuss it in 

terms of knowledge of content and students to help differentiate specialized content knowledge 

from knowledge of content and students: The specialized knowledge prompt about hat plots and 

box plots asked for a comparison of two mathematical objects, but the knowledge of content and 

students prompt about histograms and box plots asked for identification of  difficulties students 

may encounter in working with such objects. While it is true that responses to the specialized 

knowledge prompt could also include discussion of student difficulties, such discussion is only 

required in response to the knowledge of content and students prompt. 

 Many responses to the knowledge of content and students writing prompt discussed the 

specific issue of reading condensed displays vs. those showing individual values, but some did 

not. Some tended to write of potential student difficulties in fairly vague and general terms, as in 
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Angela’s response: “With dot plots, picture graphs and line plots the information is much easier 

for students to read and understand, while histograms and box plots can be cluttered and quite 

confusing to interpret.” Similarly, Sarah wrote, 

Histograms and box plots are more challenging to use and interpret than line plots, dot 

plots, and picture graphs because there is a more wide range of numbers. It is harder to 

see the difference when being compared to another set of data. When there are dot plots, 

line plots, and picture graphs it is easier to recognize overlap and draw a conclusion to 

that set of data. There is more variation in data, in terms of ranges, with dot plots, line 

plots, and picture graphs. 

Others who did not address the issue of condensed versus uncondensed data displays attributed 

difficulties in reading condensed displays to students’ previous experiences. For example,  

Anna: Histograms and box plots are more challenging to use and interpret because they 

are harder to read and understand than dot plots, line plots and picture graphs. I think this 

is because from a young age we are more exposed and more comfortable with dot plots, 

line plots and picture graphs. 

Although such responses are not wholly inaccurate, and do actually seem to represent attempts to 

view ideas from children’s perspectives, the types of interventions teachers with these kinds of 

superficial understandings of student difficulties might devise would be likely to leave key 

student difficulties unaddressed. 

 In terms of Silverman and Thompson’s (2008) framework, understandings related to 

knowledge of content and students do not necessarily constitute pedagogically powerful ideas, 

because such understandings may not include specific actions teachers can take to help students 

build KDUs. However, according to Silverman and Thompson, a necessary part of constructing a 
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pedagogically powerful idea is that a teacher “has constructed models of the variety of ways 

students may understand the content (decentering)” (p. 508). Hence, teachers who recognize that 

the condensed nature of box plots and histograms pose a significant cognitive hurdle for students 

are further along the way to developing a pedagogically powerful idea than those who conceive 

of student difficulties in less specific terms. Once teachers comprehend students’ thinking, they 

must devise or select classroom activities that are likely to build on it in productive ways or 

challenge it in order to fully develop a pedagogically powerful idea. The abilities to develop and 

select classroom activities that enhance children’s thinking resonate with the Hill, Ball, and 

Schilling (2008) categories of knowledge of content and teaching and curriculum knowledge. 

Knowledge of Content and Teaching: Mean and Median 

 Knowledge of content and teaching is evidenced by the ability to employ content-specific 

strategies to address student learning needs. One of the SKT course assignments was to analyze 

student results from statistics items on the National Assessment of Educational Progress (NAEP) 

as presented in a teacher-oriented journal article (Zawojewski & Shaughnessy, 2000b). Some of 

the NAEP results presented in the article indicated that when children are asked to select a 

measure of center to describe the typical value in a data set, they often choose mean over median 

without regard to the distribution of data. Prospective teachers wrote responses to the following 

item after reading the article, “Explain why some students believe the mean is always a better 

indicator of typical value than the median. How might you convince these students that the 

median is more appropriate in some cases?” The item was intended to elicit knowledge of 

content and teaching because it prompted respondents to describe teaching strategies likely to 

help develop a specific aspect of children’s statistical thinking. 
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 Some of the responses to the item indicated that prospective teachers were in the process 

of constructing KDUs related to the NAEP items while reading the article. For example, 

Lisa: To be completely honest, until reading the article I as well thought that the mean 

should have been used all of the time. It is very easy for children to get confused about 

this. When you hear average, you think of the total frequency. Children may believe this 

is the best because it is drawing from all of the info, not just a middle number. However, 

when the numbers are ranging for example 70 85 95, you should use the mean. If most of 

the numbers are in the same range you should use the median since it is drawing from 

that same group. I would tell them if most of the numbers are within 15 points of range to 

use the median, otherwise use the mean. 

Although Lisa appeared to have set aside the idea that the mean is always superior to the median 

for describing data, some problematic elements needed resolution to allow her to develop a 

pedagogically powerful idea about teaching mean and median. One needed element was to shift 

attention from just the range of a data set to allow for examination of outliers as well, since the 

mean is sensitive to outliers but the median is not. Another needed element was to avoid 

embracing a deterministic rule for choosing between mean and median. This is largely a 

statistical concern, as the context for the data, and not just mathematical principles, are often 

taken into account when choosing between mean and median. Finally, the pedagogical choice to 

transmit the deterministic rule to students also blocked development of a pedagogically powerful 

idea, as transmission-oriented strategies are generally associated with lower levels of student 

learning (Campbell, Kyriakides, Muijs, & Robinson, 2004). Even some of those who attended to 

the issue of outliers, and not just the range, still favored transmission of deterministic rules (e.g., 

“I would advise the students to use the median whenever there is an outlier in the data”). 
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 For an example of a response showing evidence of further progress toward pedagogically 

powerful ideas for teaching mean and median, consider the following: 

Lori: I understand where those students who believe that mean is always a better 

indicator of typical value are coming from. The mean is the average of a data set and the 

term “average” sounds like it should be the correct indicator. When you think average 

you think common ground between all numbers in the data set. There is a number that 

will always affect the average and make it less representative of the numbers and they are 

known as outliers. Outliers will either bring your mean significantly up or significantly 

down. There are plenty of activities you could do in the classroom with students that 

would help them to see this more clearly. You could take something that relates to them 

such as their grades in school. Supply them with the example that they have five test 

grades for the term and they are 99, 97, 94, 92, 57. The 57 was a section they really had 

problems with and it was a very hard test. The median for this data set would be 94. The 

average for this data set is 87. You could then ask the students which would they rather 

tell their parents. An 87 is not bad at all but I think that most students would want to 

show their parents the 94 instead of the 87. The 94 looks better and even though the 

student never got any B’s on test their average still comes out to a B which does not look 

as good compared to an A. This is one of the many examples you could use when 

explaining the affect [sic] of outliers to your students. 

Although scholars in mathematics and statistics education could undoubtedly point to potential 

flaws in the pedagogical ideas described in Lori’s repsonse, it has some desirable features not 

present in the responses described earlier. First, it avoids prescription of a deterministic rule for 

choosing between mean and median. Instead, it suggests letting students choose between the two 
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based on the context. The context for the proposed teaching scenario is also one with which 

students are likely to be familiar and have an emotional investment, as opposed to some 

responses that either lacked context or proposed contexts not as likely to engage students. 

Choosing a context for a statistical problem is a non-trivial matter, as engaging contexts make it 

more likely that children will bring the full power of their reasoning to a given task (Gal, 1998).  

 The prospective teachers’ responses to the mean and median task suggest both 

similarities and differences between knowledge of content and teaching for MKT and SKT. One 

similarity between the two is that transmission-oriented strategies can block the development of 

pedagogically powerful ideas. Research generally does not support transmission-oriented 

teaching in statistics or mathematics classrooms (Campbell et al., 2004), but such teaching is 

prevalent in the U.S. (Jacobs et al., 2006), the site for the SKT course. One of the greatest 

barriers to the development of pedagogically powerful ideas in such a culture may be to have 

prospective teachers question transmission-oriented strategies. 

 A difference between MKT and SKT related to teaching mean and median is the role of 

determinism. The computations of mean and median require deterministic mathematical 

algorithms. There is no ambiguity about what the result should be when the algorithms are 

applied. Many mathematical activities have similar characteristics. Even in reform-oriented 

curricula that avoid transmission-oriented strategies for teaching mathematics, students are often 

led toward deterministic generalizations that apply across a range of problems. Arriving at such 

generalizations is part of the essence of doing mathematics. In statistics, on the other hand, 

arriving at reasoned judgments is a common activity. In the case of choosing between mean and 

median, there can be space for reasonable arguments that arrive at different conclusions. The 

space for different arguments is created by selection of distribution analysis techniques (e.g., 
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deciding from among several available procedures for determining “outliers”) and interpretations 

of the context in which the data are set (e.g., deciding if an observation is an outlier due to 

random variation, inaccurate measurement, data from a case with special characteristics, or some 

other cause). To develop SKT, prospective teachers must understand mathematics as a discipline 

where deterministic questions are often appropriate and desirable and statistics as a discipline 

where multiple viable conclusions based on reasoned arguments from context and other factors 

are the norm (Rossman, Chance, & Medina, 2006). Leading students to believe that a universal 

algorithm exists for deciding between mean and median contributes to a misleading portrayal of 

statistics as an essentially deterministic discipline. 

Curriculum Knowledge: Introducing Conventional Graphs 

 Curriculum knowledge suggests the ability to understand the broad sweep of sequences 

of lessons rather than just knowledge of content-specific teaching strategies for a single lesson. 

To better understand prospective teachers’ curriculum knowledge, I probed their thinking about a 

non-conventional curricular sequence for introducing statistical graphs. After reading McClain’s 

(1999) teacher-oriented article describing how she encouraged students to invent graphs before 

introducing conventional ones, prospective teachers responded to the following item: 

On p. 374, the author asked, “Do students first need to know how to construct various 

types of graphs before they can engage in an analysis of data, or can they learn how to 

construct various types of graphs by engaging in data analysis?” Write a response to the 

author’s question. Explain how your response compares to the position taken by the 

author of the article. 

The item was carefully worded to elicit a justified opinion and compare it to the author’s position 

rather than to require conformity with McClain’s approach. Many respondents did, in fact, argue 
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that students should learn conventional graphical displays before analyzing data rather than 

adopting McClain’s approach. The prospective teachers’ preference for the traditional approach 

was not unexpected, given that the predominant mathematics classroom culture in the U.S. is one 

of “learning rules and practicing procedures” (Stigler & Hiebert, 1999), meaning that teachers 

generally demonstrate how to perform an exercise and then have students do it on their own. 

 Although positions advocated in the responses to the item were not surprising, the 

responses themselves revealed obstacles to developing pedagogically powerful ideas about data 

analysis curricula. In some cases, prospective teachers did not even realize their preference for a 

traditional approach conflicted with the curricular alternative proposed by McClain (1999). One 

such response was, 

Maggie: I believe students first need to know how to construct various graphs before they 

can engage in analysis of data. In the article since they didn’t know how to correctly 

make a graph and distinguish why you need to make a certain type of graph they couldn’t 

even make a correct graph in which you could analyze the data. My views coincide with 

the authors. 

Maggie seemed to assume that McClain’s primary goal was to have students produce “correct” 

graphs when the primary goal actually was to have students devise ways to make sense of data. 

The unrecognized conflict between instructional goals blocked serious consideration of 

McClain’s proposed alternative to traditional sequencing of statistical ideas. The unrecognized 

conflict appears to be the primary barrier to development of curriculum knowledge rather than 

the decision not to adopt McClain’s approach, although understanding and exploring the conflict 

in depth may well result in the adoption of at least some aspects of the approach. 
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 Another factor preventing consideration of alternative curricular approaches was the 

underlying presence of conflicting theories of instruction. One prospective teacher wrote, 

Natasha: I think that it is more of how the students learn and how they represent the data 

in their own way. Some students may learn by first understanding what a graph is and do 

an analysis of the data, while others may do it in reverse. I am not really taking a position 

with or against the author, I just think what I think and from my knowledge of how 

children learn and their learning styles. 

From this idiosyncratic “learning styles” theory position, McClain’s question was dismissed as 

irrelevant, since students should not be forced into either a traditional curriculum or the 

alternative suggested in the article. A weakness of this dismissive stance is that it does not 

provide a specific, viable alternative curricular approach. Others harboring theories of learning 

that conflicted with those expressed in the article disagreed with McClain about the roles that 

struggle and confusion play in the learning process. For example, Angela wrote, 

I do believe students are capable to learn how to construct various types of graphs by 

engaging in data analysis, however I believe if it is required that way and teachers are not 

guiding them in how to construct graphs it will end up with a lot of frustration and 

probably more graphs that are unreadable in comparison to the data they have received. 

The author of this article would disagree with me, saying students need to explore the 

data and make their own graphs based on their knowledge of the data, but like I said, I 

believe that would end up with more confusion for the students than the few benefits. 

In such responses, the productive roles that appropriate levels of cognitive struggle may play in 

learning were left unexplored. A key part of McClain’s position was that such struggle is 

necessary and desirable as students attempt to derive meaning of data. 
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 Some prospective teachers who considered struggle to be part of learning voiced 

agreement with McClain’s position, as in the following response: 

Deanna: I think that students can learn how to construct various types of graphs by 

engaging in data analysis. I believe that people learn best through trial and error. If the 

teacher wants the students to graph a set of data, they should let the student decide how 

they think it should be graphed. If the student has incorrectly graphed the data, the 

teacher should ask them questions as to of why they graphed it the way they did and not 

another way, such as the correct way. The teacher should not come out and tell the 

student that they have incorrectly graphed the data, instead the child should be able to 

figure it out, based on the discussion with the teacher. I feel that the author of this article 

and I have the same views when it comes to children and figuring out what types of 

graphs represent different types of data. 

Although this response overstated the extent of agreement between the respondent and McClain, 

it did allude to substantive grounds for analyzing McClain’s approach. As in some of the other 

responses, there still was an unrecognized conflict between McClain’s instructional goals and 

those of the prospective teacher – the primary goal of the former was to encourage students to 

make sense of data and the primary goal of the latter was to have them produce “correct” graphs. 

Nonetheless, the prospective teacher’s willingness to allow “trial and error” suggests some 

recognition of the role cognitive struggle plays in learning. 

 The abilities to consider instructional goals and theories of learning that conflict with 

one’s own appear to be essential to developing pedagogically powerful ideas. The notion of 

“decentering” is again relevant in this regard, although it is not just the type of decentering that 

allows teachers to view things from students’ perspectives. Teachers must also develop the 
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ability to understand the perspectives of curriculum developers. Conflicts that exist between the 

instructional goals and learning theories of teachers and curriculum developers can contribute to 

low fidelity of implementation of innovative curriculum materials (Tarr et al., 2008). Teachers 

who wish to eliminate cognitive struggle and heavily emphasize the production of “correct” 

graphs as students begin to analyze data are not optimally positioned to implement curricula that 

encourage students to invent their own graphs before conventional ones are introduced. Hence, 

part of developing prospective teachers’ curriculum knowledge must consist of helping them 

understand the goals and learning theories underlying innovative curricula.  

Hypothesized SKT Framework 

 The SKT framework suggested by the preceding discussion integrates the work of Simon 

(2006), Silverman and Thompson (2008), and Hill, Ball, and Schilling (2008). Figure 4 

summarizes the theoretical claims that have been made and hypothesizes relationships among 

them. The three rectangles at the top of the figure illustrate Silverman and Thompson’s claim 

that KDUs must be transformed into pedagogically powerful ideas through the mechanism of 

decentering. The vertical branch on the far left side of the figure suggests that specific KDUs can 

be identified by using the Hill, Ball, and Schilling subject matter categories of common 

knowledge, specialized knowledge, and horizon knowledge. The arrow extending from the 

bottom center of the rectangle labeled “decentering” suggests that decentering is necessary for 

development of pedagogical content knowledge; as such knowledge entails making subject 

matter comprehensible to others. Hill, Ball, and Schilling’s pedagogical content knowledge 

categories are shown in the figure to identify examples of this type of knowledge. Knowledge of 

content and teaching and curriculum knowledge are portrayed as categories of pedagogically 

powerful ideas, since such knowledge entails having content-specific strategies for helping 
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children develop KDUs. Knowledge of content and students is positioned as a potential basis for 

the formation of pedagogically powerful ideas.  

<INSERT FIGURE 4 HERE> 

 The framework summarized in Figure 4 also refines and supplements the Groth (2007) 

SKT framework. Refinement is apparent in the re-categorization of Groth’s specialized 

knowledge examples as knowledge of content and students. Specialized knowledge is framed in 

terms of knowledge of representations that facilitate students’ learning and the ability to appraise 

students’ novel strategies and representations. Supplements to Groth’s SKT framework include 

the addition of the knowledge categories of horizon knowledge, knowledge of content and 

teaching, and curriculum knowledge. As with Groth’s original SKT framework, some knowledge 

elements within each category serve to distinguish SKT from MKT while other elements suggest 

similarities. A final notable supplement to the Groth SKT framework is the identification of 

theoretical mechanisms suitable for characterizing and identifying cognitive landmarks in the 

development of subject matter knowledge (KDUs) and pedagogical content knowledge 

(pedagogically powerful ideas). 

 Theoretical frameworks of this nature are to guide researchers in asking questions, 

formulating hypotheses, and determining variables and relationships to investigate (Johnson, 

1980). Research questions suggested by the framework summarized in Figure 4 include those 

related to identification of KDUs and pedagogically powerful ideas for SKT, further exploration 

of the relationship between SKT and MKT, and empirical tests of the hypothesized relationships 

among knowledge elements. For example, the framework motivates questions such as: What 

other KDUs and pedagogically powerful ideas are pertinent to SKT? In particular, what KDUs 

and pedagogically powerful ideas related to statistical ideas such as informal inference and 
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distribution remain to be described? What other traits are shared between MKT and SKT? What 

other traits differ? How strong are the proposed relationships among KDUs, pedagogically 

powerful ideas, and SKT knowledge categories? Answers to such questions can contribute to 

continued iterative refinement of the theoretical framework and its underlying hypotheses while 

also providing guidance for mathematics and statistics teacher education efforts.   
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Key Constructs Incorporated in SKT Theoretical Framework  

Construct Authors Brief definition Role within the framework 

Statistical Groth (2007) Knowledge required for Premise that statistics and 
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knowledge for 

teaching 

teaching statistics mathematics are not equivalent 

disciplines 

Common 

content 

knowledge 

Hill, Ball, & 

Schilling 

(2008) 

Knowledge that teachers 

are responsible for teaching 

their students 

Component of subject matter 

knowledge 

Specialized 

content 

knowledge 

Hill, Ball, & 

Schilling 

(2008) 

Knowledge of various 

representations and 

unusual student strategies 

Component of subject matter 

knowledge 

Horizon 

knowledge 

Hill, Ball, & 

Schilling 

(2008) 

Knowledge of the broader 

content landscape in which 

curriculum is situated 

Component of subject matter 

knowledge 

Knowledge of 

content and 

students  

Hill, Ball, & 

Schilling 

(2008) 

Knowledge of common 

student difficulties with 

content and their thinking 

patterns 

Component of pedagogical 

content knowledge 

Knowledge of 

content and 

teaching 

Hill, Ball, & 

Schilling 

(2008) 

Knowledge of content-

specific teaching strategies 

Component of pedagogical 

content knowledge 

Curriculum 

knowledge 

Hill, Ball, & 

Schilling 

(2008) 

Knowledge of how to 

arrange curricula to 

enhance student learning 

Component of pedagogical 

content knowledge 

Key 

developmental 

Simon (2006) Cognitive landmarks in the 

learning of fundamental 

Mechanism to identify 

cognitive landmarks in subject 
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understandings 

(KDUs) 

ideas needed to understand 

content 

matter knowledge development 

Pedagogically 

powerful ideas 

Silverman & 

Thompson 

(2008) 

Ideas that occur as the 

result of transforming 

KDUs (i.e., personally 

powerful ideas) into ideas 

that facilitate students’ 

learning of the KDUs 

Mechanism to identify 

cognitive landmarks and 

mechanisms in pedagogical 

content knowledge 

development 

 

 

 

 

 

Figure Captions 

Figure 1. Mean absolute deviation (MAD) example for a data set with weights of individuals 

Figure 2. A hat plot representation for a data set with heights of individuals  

Figure 3. Data set and student-invented representations from McClain (1999, pp. 375, 377, 379) 

Figure 4. Hypothetical SKT elements and developmental structure 
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Figure 2 
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Figure 3 
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Figure 4 

 


