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Abstract

There have been numerous studies seeking to establish an association between air
pollution and children’s adverse health outcomes, and the ultimate findings are often
varied. A few studies found a statistically significant association between an increase
in a specific pollutant and an adverse health effect among children, while others find
a non-significant association between the same pair of variables. These conflicting
results undermine confidence in the final conclusions, and this leads naturally to a
novel application of the so-called statistical meta-analysis whose primary objective
is to integrate or synthesize the findings from independent and comparable studies.
In this paper we first review a recent statistical meta-analysis paper by Weinmayr
et al. (2010) dealing with studies on the effects of NO2 and PM10 on some as-
pects of children’s health. In the second part of this paper, we conduct our own
meta-analysis focusing on the association between children’s (binary) health out-
comes (such as cough and respiratory symptoms) and four pollutants: PM10, NO2,
SO2, and O3. While we find a statistically significant association with every pollu-
tant, it turns out that for PM10, NO2, and SO2, there is significant heterogeneity
among the estimated effect sizes (odds ratios). Finally, we explore the techniques
of meta-regression by incorporating distinct study features to meaningfully explain
the heterogeneity.
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1 Introduction

This paper is devoted to a study on statistical meta-analysis of the effects of air
pollution on children’s health. Associations between air pollution and mortality have
been assessed in numerous international studies at various time periods, and many of
these primary studies examined the simultaneous effects of a number of pollutants,
including particulates and gases, as well as the influence of many cofounders such as
age, season, and cause of death. It is hoped that our meta-analysis based on several
pertinent studies dealing with some aspects of children’s health (asthma, respiratory
disease, cough, wheeze, etc.) will be of value to the research community. The meta-
analysis includes the results from 21 primary data analyses, one being our own analysis
(Stanwyck et al. 2010) based on the National Health Interview Survey data of the
United States (http://www.cdc.gov/nchs/nhis.htm). We acknowledge that a recent
article by Weinmayr et al. (2010) is devoted to a similar exploration based on meta-
analysis (see Section 4). Our paper contributes further to this area of research by
investigating the effects of two extra pollutants, SO2 and O3, and examining sources
of heterogeneity based on meta-regression methods. A review of the standard methods
of statistical meta-analysis is provided in Section 2, Section 3 gives information about
the data used in the analyses, and Section 4 gives detailed results of our meta-analysis
for each pollutant of interest. We conclude the paper with a summary and discussion,
given in Section 5.

2 Methods of Statistical Meta-Analysis

In the context of meta-analysis, an effect size θ is a primary parameter of interest,
and all studies under consideration are supposed to provide independent estimates of
θ, say T1, . . . , Tk along with their estimated standard errors se(T1), . . . , se(Tk). Before
actual pooling of different effect size estimates, it is mandatory to carry out a test
of homogeneity of the underlying population effect sizes,H0 : θ1 = · · · = θk, and the
most widely used test procedure is based on Cochran’s (1937) chi square statistic. We
reject the homogeneity hypothesis H0 if QC > χ2

k−1,α, where

QC =
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T is defined below, and χ2
k−1,α is the upper α percentile of the χ2 distribution with

k− 1 degrees of freedom. If H0 is accepted, we follow what is known as a fixed effects
model and compute a combined estimate of the common population effect size θ and
its estimated variance, T and σ̂2(T ).
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σ̂2(T ) = V̂ar(T ) =
1

∑k
i=1 1/σ̂

2(Ti)

There are several confidence intervals that can be calculated for the common effect
size estimate, including the familiar large-sample confidence interval (based on the
standard normal distribution), which we denote with I1 , as well as two intervals based
on the t-distribution: one developed by Follman and Proschan (1999) and another by
Hartung and Knapp (2001) and Sidik and Jonkman (2002), denoted by I2 and I3
respectively. When, however, the null hypothesis H0 of homogeneity of the effect
sizes is rejected, we cannot simply pool the estimated effect sizes because there is no
common effect size θ . This falls into what is known as a random effects model, where
we try to ascertain the causes of rejection of H0 , i.e., variations among the population
effect sizes θ1, . . . , θk, under the assumption that the θ’s oscillate around a central
value . We assume the following model:

Ti ∼ N
(
θ , τ2 + σ2

w(Ti)
)
,

where τ2 ≥ 0 is the heterogeneity parameter and σ2
w(Ti) denotes within-study variance.

There are various reasons which can lead to the heterogeneity among the θi’s: different
studies use different designs, different sets of covariates, different features of the same
set of covariates, and so on. There are several ways to estimate this parameter τ2; we
use the well-known DerSimonian-Laird (1986) estimate given by

τ̂2DSL =
QC − (k − 1)

∑k
i=1 ŵi −

∑k
i=1 ŵ

2
i /

∑k
j=1 ŵj

where ŵi = 1/σ̂2(Ti) and QC is Cochran’s homogeneity test statistic defined above.
Once τ2 is estimated, an estimate of the central value and associated confidence in-
tervals can be calculated. Estimate of the central value θ is given by

Trand = θ̂ =

∑k
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[
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with the estimated variance of θ̂ given by

Var(Trand = θ̂) = σ̂2
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As with the fixed effect estimate, there are several appropriate confidence intervals.
The large sample (1−α) level confidence interval of θ is denoted by I1 . Two alternative
confidence intervals, analogous to those described above in the fixed-effect case, are
also given (I2 and I3). Of course, the simple random-effect model described above
may not capture all sources of variations among the θi’s, and we can use the available
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information on covariates and the methods of meta-regression to model the variations
among the θi’s (Hartung, Knapp, and Sinha 2008, Chapter 10). The fixed-effects
meta-regression with one covariate can be written as Ti ∼ N

(
θ + βxi, σ

2
i

)
, where xi

is a feature of the ith study (and can be quantitative or an indicator variable). θ
represents the treatment effect when xi = 0 (i.e. the central value of the treatment
when the study features are all set to zero) and β is the change in the treatment effect
for a unit change in the study feature xi. σ2 is the true variance of Ti. Because the
true variance of the ith study is unknown, we plug in estimated values of the study
variances. See Hartung, Knapp, and Sinha (2008) for details of the meta-regression.
A special feature of meta-analyses with the logistic regression models is that results
may be reported as regression coefficients or as odds ratios for different increases of a
pollutant. Transformations must be made so that study results are comparable before
any meta-analysis can be performed. Here we only consider studies that use logistic
regression modeling, and show the transformation process in the simplest case. If there
is only one regression coefficient, the logistic regression model is

π(x) =
eα+βx

1 + eα+βx
,

where π(x) is the probability of the adverse health outcome (a function of the covariate
x). When we wish to calculate an odds ratio for the probability of the adverse health
effect for an increase of size δ in the pollutant concentration, the calculation is as
follows:

Odds ratio =
π(δ)[1 − π(0)]

π(0)[1 − π(δ)]
=

eα+βδ

1+eα+βδ

(
1

1+eα

)

eα

1+eα

(
1

1+eα+βδ

) =
eα+βδ

eα
= eβδ.

This is the calculation that is used to transform the combined effect size estimate
(calculated with regression coefficients) into an odds ratio. In the cases where an odds
ratio (OR) and 95% confidence interval (LBOR, UBOR ) are given for some increase

(say δ) of a pollutant, a regression coefficient, β and its estimated standard error ŝe(β)

is calculated as follows: β = ln(OR)
δ ,

ŝe(β) =
ln(UBOR)− ln(LBOR)

2δzα/2
.

While the increment δ and the measurement x both refer to an amount of pollutant,
different notation is used because x stands for a pollution measurement for some
time period and δ indicates an increase in pollution measurements for which the
odds ratio is computed. There is an underlying assumption that each study provides
unbiased estimates of the effect size of interest; a biased or inaccurate study may
have an influence on the outcome of the meta-analysis. Another assumption is that
the published studies are representative of all studies on a particular topic: it can
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sometimes happen that studies with significant results are more likely to be published,
which can give a skewed picture to the meta-analyst. There are techniques available to
detect publication bias, but in this case we felt them unnecessary since most studies
included in this meta-analysis reported results for several pollutants and different
models, many of which were not statistically significant.

3 Data

Our meta-analysis focuses on specific children’s health outcomes (such as coughing,
wheezing, and asthma symptoms), and evaluates the effects of PM10, NO2, SO2, and
O3 including the results of our own primary study. To our knowledge, there have
been no meta-analyses that connect children’s health outcomes and the effects of SO2,
and O3. Furthermore, we know of no meta-analyses on children’s health that have
incorporated meta-regression to explore the sources of heterogeneity among the un-
derlying effect sizes. By now there have been more than 20 years of a multitude of
primary studies seeking associations between air pollution and children’s health. The
studies vary wildly in scope: single-pollutant models address different specific pollu-
tants, from PM10 and PM2.5 to SO2, NO2, Ozone, organic carbon, black smoke and
so on. Multi-pollutant models address different combinations of pollutants, sometimes
measured with different metrics or at different levels. Even among studies which focus
on the same pollutant, features such as study design, target population, and statis-
tical models can be very different. These differences can create difficulties for the
meta-analyst, since it may be challenging to find studies of sufficient similarity to
combine estimates. On the other hand, the various studies of air pollution and chil-
dren’s health give differing results: some studies show an adverse effect to children’s
health (significant or not), while others conclude no such effect exists. This is where a
meta-analysis can be the most beneficial: combining appropriate study results to find
out whether or not a significant effect of air pollution on children’s health exists. We
take recourse to fixed- or random-effects meta-analysis, depending on the situation.
There are some salient features of the many existing primary studies. Some common
outcomes include cough, wheeze, FEV (forced expiry volume, a continuous measure
of lung function), bronchitis, asthma, phlegm, sore throat, and mortality. Most of the
studies are short-term, but lags in the models may be different from study to study.
The children involved in the study come from different populations: age groups may
differ, e.g. primary school students or all children from 5-18 years, and so can pre-
existing conditions such as asthma or wheezing. Many studies use logistic regression
to model the pollution effects, but some use Poisson regression, a log-linear model used
for count data, or even linear regression in the case of continuous outcomes. Depend-
ing on the type of model being used, different effect sizes are reported: odds ratios,
relative risk, a coefficient showing increase or decrease in lung function, a coefficient
showing increase or decrease the in percentage of children experiencing some effect,
and so on. Another important factor to consider is covariate selection. Some studies
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include measurements of personal-level covariates, such as demographics and health-
behavior; some studies include community-level covariates, such as humidity, average
temperature, dew point, day of week, and season; while some studies include all of the
above. Since climate-related covariates have been shown to be an important factor in
air pollution studies, the inclusion (or not) of such information may be a source of het-
erogeneity between studies. As initial inclusion criteria, we chose studies that reported
effect size for single-pollutant models for PM10, NO2, SO2, and/or O3 (ozone). Some
studies reported results for all pollutants, while others focused on a single pollutant.
The studies were published within the last 20 years, and the data-collection for the
studies occurred between 1990 and 2003. We limited the studies under consideration
to those that dealt with binary outcomes and used logistic regression modeling, and
those that reported results for children (18 years and younger). These initial inclusion
criteria resulted in 21 studies out of hundreds. Of these studies, 10 coincide with
primary studies used by Weinmayr et a. (2010), while 11 primary studies are not
included in that meta-analysis. Other studies used by Weinmayr et al. (2010) were
excluded because they did not meet our inclusion criteria, they overlapped with other
data sets or geographical regions, or they were not easily available. Due to the focus on
single-pollutant models, results are reported by pollutant. Table 1 shows the studies
we used for our meta-analysis (Stanwyck, Sinha, and Wei 2010).

Table 1: Lists of studies used in meta-analysis (by year of data collection)

Study Number Data Collection Years Year Published Authors
1 1990-1991 1992 Pope, CA and D Dockery
2 1990-1991 1993 Roemer W. and G. Hoek et al.
3 1990-1993 1998 Vedal, Sverre and John Petkau, et al.
4 1991-1992 1996 Romieu, Isabelle and Fernando Meneses et al.
5 1991-1992 1997 Peters, A. and D.W. Dockery et al.
6 1992-1993 1998 Segala, C. and B. Fauroux et al.
7 1992-1994 1999 McConnell, Rob and Kiros Berhane et al.
8 1992-1995 1999 Boezen,H. and S.van der Zee et al.
9 1993 2002 Mortimer, K.M. and L.M. Neas et al.
10 1993-1995 2000 Yu, O. and L Sheppard et al.
11 1993-1995 2006 Schildcrout, Jonathan S. and Lianne Sheppard et al.
12 1994 2004 Jalaludin Bin B. and Brian I O’Toole et al.
13 1995-1996 2002 Brauer, Michael and Gerard Hoek et al.
14 1995-1996 1999 Hirsch, T and S.K. Weiland et al.
15 1996 2002 Just, J. and C. Segala et al.
16 1996-1999 2003 McConnell, Rob and Kiros Berhane et al.
17 1997-1999 2004 Mar, Therese F. and Timothy V. Larson et al.
18 1998-2001 2008 O’Connor, George T. and Lucas Neas et al.
19 2001 2004 Kim, Janice J and Svetlana Smorodinsky et al.
20 2001 2003 Gent, Janneane F. and Elizabeth W. Triche et al.
21 2001-2003 2010 Stanwyck, Elizabeth and Bimal Sinha et al.

It is worth noting that the selection of inclusion criteria is an important step in the
meta-analysis and can influence results. The inclusion criteria must be narrow enough
to select studies that are similar enough to be combined, yet loose enough to select
a reasonable number of studies. If inclusion criteria are too narrowly defined, only a
small number of studies will be selected for the meta-analysis. If, on the other hand,
inclusion criteria are too widely defined, then the meta-analyst may combine unrelated
studies or studies measuring different things. It is assumed that meta-analysts choose
studies appropriately: all studies conforming to inclusion criteria should be included,
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regardless of whether the outcome is what the analyst expects.

4 Results

4.1 PM10

The studies that reported results for particulate matter included the following geo-
graphical regions within the United States: Utah Valley, Utah; Los Angeles Area,
California; Spokane, Washington; Seattle, Washington; San Francisco, California; Al-
buquerque, New Mexico; Baltimore, Maryland; Boston, Massachusetts; Denver, Col-
orado; San Diego, California; and St. Louis, Missouri. Outside of the United States,
the following regions were included: Toronto, Ontario, and Vancouver Island, British
Columbia, Canada; Mexico City, Mexico; Australia; The Netherlands; Paris, France;
and Sokolov, Czech Republic. While there was some overlap of geographical regions
between studies, we made sure that studies occurring in the same geographical region
were separated temporally, so that there is no duplication of information, with the
possible exception of studies 19 and 21. Study 19 included data collected on children
ages 8 to 12 years in the San Francisco Bay Area, while study 21 (our own study)
included NHIS data collected on children up to 18 years old over the entire United
States for the same year. Because the NHIS study included such a wide geographi-
cal area and a larger age group for children, we felt that any overlap of data would
be minimal. All data collection for pollution data and health data occurred between
1991 and 2001. Outcomes were restricted to cough, asthma symptoms, and lower
respiratory symptoms. These outcomes are similar enough to combine information,
while other outcomes reported (such as bronchitis) may reflect a different pollution
effect. 13 studies were similar enough to combine in a meta-analysis; effect sizes were
reported as odds ratios in 11 studies, while in two studies (Study 1 and Study 21) the
regression coefficient was reported. Table 2 summarizes study information for those
studies included in the PM10 meta-analysis. Study numbers correspond to those listed
in Table 1.
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Table 2a: Studies used in PM10 meta-analysis (by year of data collection), part I

Study Study Years Children’s Age (years) Symptomatic? Sample Size Outcome
1 1990-1991 11 to 13 1 39 cough
3 1990-1992 6 to 13 0 206 cough
4 1991-1992 5 to 7 1 71 cough
5 1991-1992 6 to 14 1 89 cough
7 1992-1994 10 to 16 1 493 cough
8 1992-1995 7 to 11 1 130 lower resp
10 1993-1995 5 to 13 1 133 asthma symp
11 1993-1995 5 to 13 0 990 asthma symp
12 1994 5 to 13 1 125 cough
15 1996 7 to 15 1 82 cough
17 1997-1999 7 to 12 1 9 cough
19 2001 8 to 12 0 1109 asthma symp
21 2001 0 to 17 0 2645 resp symp

Table 2b: Studies used in PM10 meta-analysis (by year of data collection), part II

Study Original SE/CI per µg/m3 Transformed Estimate SE for Transformed
Estimate (effect size) Estimate

1 0.506* 0.143 100 0.00506 0.00143
3 1.07 (1.02, 1.11) 10 0.0067659 0.0021571
4 1.1 (1.06, 1.15) 20 0.0047655 0.0010395
5 1.01 (0.97, 1.06) 45 0.0002211 0.000503
7 1.1 (0.8, 1.7) 19 0.0050163 0.0101205
8 1.36 (1.13, 1.64) 100 0.0030748 0.0009502
10 1.08 (1.01, 1.17) 10 0.0076961 0.0037514
11 1.02 (0.98, 1.07) 25 0.0007921 0.0008965
12 1 (0.97, 1.02) 12.25 0 0.0010467
15 1.1 (0.88, 1.37) 10 0.009531 0.0112919
17 1.09 (1.02, 1.16) 10 0.0086178 0.0032811
19 1.02 (0.96, 1.09) 14 0.0014145 0.0023141
21 0.00436* 0.002826 1 0.00436 0.002826

The first column in table 2 gives the study number, and the second column gives the
span of years in which the data were collected. The third column gives children’s ages,
which vary from an 18-year range (study 21) to a 2-year range (studies 1 and 4). The
fourth column, ”Symptomatic?” is an indicator for whether the children under study
were asthmatic or symptomatic (where symptomatic is defined within each study,
e.g. history of wheeze or cough). The fifth column gives the sample size (number of
children involved in the study), and the sixth gives the specific outcome used in that
study. The next two columns give the effect size (odds ratios in all but the first and
twenty-first studies) and confidence interval (or standard error, in the case of the first
and twenty-first study); these values are directly reported in the original studies. Then
there is a list of the increment of PM10 for which each odds ratio or coefficient was
calculated in the original studies (ranging from 10 to 100 µg/m3 of PM10): different
studies report results based on different increases of the pollutant in question. For
example, study 4 reports an odds ratio for an increase of 20 µg/m3 of PM10, while
study 8 reports the odds ratio for an increase of 100 µg/m3 of PM10. Appropriate
transformations are required of the reported effect size estimates for compatibility
before meta-analysis can be performed; the transformations are described in section
2 above. The last two columns give the transformed effect size estimates β and their
standard errors se(β) . These two columns of the table are in the same terms for each
study and are thus comparable. As an example, study 10 reported an estimate almost
ten times larger than that of study 11, which may very well be a sign of heterogeneity
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among the effect sizes. It is important to emphasize that the weights of each study
within the meta-analysis need not be inversely related to the sample size of the study.
For example study 7 (493 subjects) has a much larger sample size than study 5 (89
subjects), but the subjects in study 5 recorded daily measurements over 7 months
while those in study 7 had measurements taken only once for the entire previous year.
The additional precision with respect to each subject’s measurement in study 5 is
reflected in the smaller estimated standard error. Here is a special note about study
21 (Stanwyck et al. 2010): the data analysis for this study was done on the pollutant
TSP , or total suspended particulates, rather than on PM10. Following Stieb et al.
(2002), we transformed the effect size estimates (odds ratio) under TSP to PM10 by
using the transformation PM10 = TSP ∗ 0.55. All other studies under consideration
reported results for PM10 directly, thus making all of them compatible. A forest plot
of the results is depicted in Figure 1. It is evident that the reported results except
study 12 show an increase in adverse health effects (i.e. coefficients greater than 0
or odds ratios greater than 1), but less than half (5 out of 13) of the studies also
reveal a statistically significant result. It is not clear from a visual inspection of the
studies whether or not there is a common underlying effect, or whether there is an
adverse health effect. As mentioned in the introduction, a first step for meta-analysis
is to apply Cochran’s test for homogeneity. If the hypothesis of homogeneity cannot
be rejected then a fixed-effects model will be appropriate. However, if the hypothesis
is rejected a random-effects model may be more appropriate. Based on the last two
columns of Table 2, the value of Cochran’s χ2 is 41.7 with a P-value smaller than
0.0001, leading to the rejection of the homogeneity hypothesis, however results for both
the fixed and random effects models are reported for all pollutants to demonstrate
the difference between these models. Table 3 shows combined effect size estimates
(regression coefficient and its standard error) for PM10, which we have converted to
odds ratios for a 10 µg/m3 of PM10 increase for ease of interpretation. For both
regression coefficients and odds ratios, we give three confidence intervals, discussed
earlier. We report results for both fixed and random effect models for comparison
purposes. At the bottom of the table, the between-study variability (τ̂2 ) is reported,
calculated using the familiar DerSimonian-Laird estimate. Below that is Cochran’s
Q, shown with its P-value, and finally Higgins I2 , an estimate of the proportion of
total variation in the combined effect size standard error that is due to heterogeneity
between studies (Higgins and Thompson, 2002).

Table 3: Combined effect size estimates for PM10 meta-analysis

combined estimate (se) 95% CI I1 Alternative CI I2 Alternative CI I3
Regression coefficient (fixed model) 0.0017 (0.000326) (0.0011,0.00234) (0.0009,0.0026) (0.0002,0.0034)
Odds ratio (fixed model) 1.017145 (1.011, 1.024) (1.009,1.026) (1.002,1.034)
Regression coefficient (random model) 0.0031 (0.000811) (0.0017,0.0048) (0.0012,0.0054) (0.0012,0.0053)
Odds ratio (random model) 1.03314 (1.017, 1.05) (1.012,1.0554) (1.012,1.055)

between-study variability [τ2] 0.0000043
Cochrans Q (P-value) 42.63 (<0.0001)

Higgens I2 71.80% (50.7%, 83.9%)
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It can be seen from Table 3 that the results are very similar whether a fixed or random
effects model is used. The random effects models show a slightly larger effect than the
fixed effects models, but in both cases it is clear that there is an adverse health effect
on children associated with an increase in PM10. Figure 1 shows a forest plot for the
above meta-analysis of PM10 studies.
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Figure 1: Forest plot for PM10 meta-analysis, showing the weight of each study in the meta-analysis
as well as fixed and random-effects model estimates.

Table 4: Meta-regression parameter estimates for PM10

variable estimate se P-val 95% CI lower 95% CI upper
intercept -0.0011 0.0038 0.7801 -0.0086 0.0065
upper age -0.0007 0.0002 0.0005 -0.001 -0.0003
US 0.0039 0.0012 0.0013 0.0015 0.0062
outcome 0.0068 0.002 0.0005 0.003 0.0107
number of years 0.0037 0.0011 0.0008 0.0015 0.0059
number of cities 0.00005 0.00005 0.0051 0 0

A test for residual heterogeneity yielded 7.74 for Cochran’s Q, corresponding to a P-
value of 0.3529, an indication that significant sources of heterogeneity between studies
were accounted for with the variables above. Had it not been the case, we could
have used a random-effects meta-regression model (see Hartung, Knapp, and Sinha
2008 for more details). The negative value for intercept means that the estimated
effect of PM10 when all other covariates are equal to zero is -0.0011. Upper age is
a variable that ranges from 7 to 18 years; the negative estimate indicates that the
adverse effect of PM10 is stronger on the younger age groups, as expected. The
indicator variable for whether the study was conducted in the U.S. has an estimate of
0.0039, which means that studies conducted in the United States find a stronger effect
of PM10 than those outside the United States. A positive parameter estimate for
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outcome indicates that cough (outcome=1) is associated more positively with PM10

than other outcomes (outcome=0). The estimate for number of years is also positive,
indicating that the studies conducted over more years found more of an adverse effect
than shorter-term studies; this may provide an argument for long-term studies in the
future. The parameter estimate for number of cities is statistically significant but so
small as to be negligible. The estimated effect of PM10 for a particular study can
be estimated as follows: -0.0011 -0.0007(upper age limit) + 0.0039 (U.S. indicator) +
0.0068 (cough indicator) + 0.0038(number of years study was conducted). A study
conducted for 3 years with an upper age limit of 13 years conducted in the United
States with cough as the outcome can be figured as follows: = 0.0119 = -0.0011 -
0.0007(13) + 0.0039 + 0.0068 + 0.0038(3) = 0.0119. This yields an odds ratio of
1.126 for an increase of 10 µg/m3 of PM10.

4.2 NO2

The geographical regions in the studies of NO2 were: Southern California; San Fran-
cisco, California; Boston, Massachusetts; the Bronx, New York; Chicago, Illinois; Dal-
las, Texas; New York, New York; Seattle, Washington; Tucson, Arizona; (and outside
of the U.S.) Dresden, Germany; Paris, France; the Netherlands; and Australia. The
two studies that have outcomes from New York were conducted in different years (1993
and 1998-2001 for the Bronx and New York City respectively), and hence do not con-
tain overlapping information. Outcomes considered were lower respiratory symptoms,
cough, and bronchitic symptoms. Odds ratios were reported in every study under
consideration, but like PM10 the odds ratios were computed for different increases
in the pollutant. Further, some odds ratios were computed for an increase calcu-
lated in µg/m3, while others were reported in ppb (parts per billion). We used the
following formula to convert all results to terms of ppb (http://www.caslab.com/Air-
Testing/FAQ.php#q1):

ppb =
µg/m3 × 24.45

Mr
where Mr = molecular weight in g/mol

The molecular weight of NO2 is 46.0055 g/mol, which can be seen in a Periodic Table
of the Elements. Table 5 shows the study features. Notice that while some studies
coincide with those used in the meta- analysis of particulate matter (studies 7, 11,
12, 15, and 19) because they provided estimates for both pollutants, others did not
provide estimates of PM10, and are used here for the first time.

All results are reported in terms of odds ratios, and all studies except one (study
12, as with the PM10 results) report odds ratios greater than 1. However, fewer than
half of the studies in question show a statistically significant result. Even among non-
significant results, estimates vary wildly: Study 8 shows a result nearly five times as
large as that of study 16, despite similarities in outcome and symptomatic status of
the children under the two studies. There are some differences in study features, the
most striking of which is children’s ages. The ages of children included in the study are
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Table 5a: Studies used in NO2 meta-analysis, part I

Study Study Years Children’s Age (years) Symptomatic? Sample Size Outcome
6 1992-1993 7 to 15 1 43 cough
7 1992-1994 10 to 16 1 493 cough
8 1992-1995 7 to 11 1 130 lower resp
11 1993-1995 5 to 13 0 990 asthma symp
12 1994 5 to 13 1 125 cough
13 1995-1996 0 to 2 0 3707 cough
14 1995-1996 5 to 11 0 2218 cough
15 1996 7 to 15 1 82 cough
16 1996-1999 9 to 13 1 479 bronch sympt
18 1998-2001 5 to 12 1 861 cough
19 2001 8 to 12 0 1109 bronch sympt
21 2003 0 to 17 0 5684 Resp allergies

Table 5b: Studies used in NO2 meta-analysis, part II

Study Original SE/CI per µg/m3 Transformed Estimate SE for Transformed
Estimate (effect size) Estimate

6 1.62 (0.99, 2.64) 26.57291 0.0181548 0.009416
7 1.6 (0.9, 2.7) 24 0.0195835 0.0116774
8 1.2 (1.03, 1.39) 21.258328 0.0085765 0.003597
11 1.06 (1, 1.13) 20 0.0029134 0.0015589
12 1 (0.98, 1.03) 8.2 0 0.0015481
13 1.02 (0.89, 1.18) 5.4740194 0.0036176 0.0131441
14 1.21 (0.96, 1.52) 5.314582 0.0358674 0.0220577
15 1.22 (1.05, 1.44) 5.314582 0.0374161 0.0151611
16 1.07 (1.02, 1.12) 33.8 0.0020017 0.0007059
18 1.17 (0.99, 1.39) 20.4 0.0076963 0.0042436
19 1.02 (0.99, 1.06) 3.6 0.0055007 0.0048412
21 3.533 (¡0.0001, 999.99) 10 0.0012622 0.0065318

roughly similar except for study 13 which focuses on children aged 0-2. The reasoning
for focusing on such a young age group is that these children may be more susceptible,
however other primary studies focus on children older than 5 because some health
outcomes are difficult to pinpoint below age 5 (e.g. asthma). Study 13 is included
despite the difference in age groups with the thought that age group can be included
in a meta-regression and tested to see if it is a source of heterogeneity. Cochran’s
Q yields a P-value of 0.0404, hence the hypothesis of homogeneity is rejected. Table
6 shows the combined effect size estimates and odds ratios, confidence intervals, an
estimate of between-study variability, Cochran’s Q, and Higgin’s I2.

Table 6: Combined effect size estimates for NO2 meta-analysis

combined estimate (se) 95% CI I1 Alternative CI I2 Alternative CI I3
Regression coefficient (fixed model) 0.00235 (0.00057) (0.0012,0.0035) (0.0009,0.0037) (0.0005,0.0042)
Odds ratio (fixed model) 1.024 (1.0124, 1.0353) (1.009,1.038) (1.005,1.043)
Regression coefficient (random model) 0.00389 (0.001071) (0.0013,0.0064) (0.0008,0.007) (0.00034,0.00744)
Odds ratio (random model) 1.0397 (1.013, 1.065) (1.008,1.0723) (1.0034,1.0772)

between-study variability [τ2] 0.0000056
Cochrans Q (P-value) 20.38 (0.0404)

Higgens I2 46% (0%, 72.4%)
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Figure 2: Forest plot for NO2 meta-analysis

The estimated effect for the random effects models is larger than that of the fixed effects
model, also seen with PM10. The meta-analysis shows that there is a statistically
significant adverse health effect in children associated with an increase of NO2. As
with PM10, we give several confidence intervals for the combined effect size estimate.
Notice that the alternative confidence intervals are both wider than the large-sample
interval. Figure 2 shows a forest plot for NO2 studies.

As with PM10, we explore heterogeneity using meta-regression. The same study
features were explored for NO2, including a categorical variable used to indicate area.
Rather than just indicating the United States, this variable has a value for European
countries and another for Australia (Australia=0, United States=1, and European
countries=2). These variables were tried exhaustively, in many combinations, and it
was found that study length alone explains heterogeneity the best. Table 7 shows the
parameter estimates and confidence intervals. The estimates can be interpreted as
follows: estimated effect for a study of length 2 years is 0.0025(2)-0.0012 = 0.0038,
which corresponds to an odds ratio of 1.0387 for a 10 ppb increase in NO2.

Table 7: Meta-regression parameter estimates for NO2 meta-regression

variable estimate se P-val 95% CI lower 95% CI upper
intercept -0.0012 0.0025 0.6263 -0.006 0.0036
Study length 0.0025 0.0012 0.0283 0.0003 0.0048

A test for residual heterogeneity yielded a Cochran’s Q value of 15.29, which corre-
sponds to a P-value of 0.1216. A small P-value (for instance, smaller than 0.05) would
be evidence against the null hypothesis that there is a single underlying effect size, so
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the P-value of 0.1216 indicates that we have nicely accounted for the heterogeneity
between studies.

4.3 SO2

The geographical regions under study for SO2 are as follows: Baltimore, MD; St.
Louis, MO.; Albuquerque, NM; Boston, MA; Denver, CO; San Diego, CA; Seattle,
WA; Toronto, Ontario, Canada; Dresden, Germany; The Netherlands; Paris, France;
and Sokolov, Czech Republic. Study years span 1991-2001, and outcomes include
coughing, phlegm, bronchitis, asthma, runny nose, wheeze, difficulty breathing, pul-
monary function, chest tightness, medication use, doctor visits, missed school, and
FEV. As with NO2, effect sizes are reported in terms of increases of SO2 measured
in both ppb and µg/m3, so a transformation is necessary for the estimates to be com-
patible. The transformations were described in the NO2 section and are very similar.
The molecular weight of SO2 is 64.07, as can be seen on the Periodic Table of the
Elements. Table 8 shows the basic study features.

Table 8a: Studies used in SO2 meta-analysis, part I

Study Study Years Children’s Age (years) Symptomatic? Sample Size Outcome
2 1990-1991 6 to 12 1 71 wheeze
5 1991-1992 6 to 14 1 89 cough
6 1992-1993 7 to 15 1 43 cough
8 1992-1995 7 to 11 1 130 lowresp
10 1993-1995 5 to 13 1 133 asthsymp
11 1993-1995 5 to 13 0 990 asthsymp
14 1995-1996 5 to 11 0 2218 wheeze
18 1998-2001 5 to 12 1 861 wheeze
21 2001 0 to 17 0 6655 Allergy sympt

Table 8b: Studies used in SO2 meta-analysis part II

Study Original SE/CI per µg/m3 Transformed Estimate SE for Transformed
Estimate (effect size) Estimate

2 1.16 (0.69, 1.94) 19.08 0.0077785 0.0138209
5 0.99 (0.96, 1.02) 25.57 -0.0003931 0.0006049
6 1.93 (1.18, 3.15) 19.08 0.03446 0.0131275
8 1.45 (1.13, 1.85) 15.26 0.0243416 0.0082385
10 1.07 (0.9, 1.27) 10 0.0067659 0.0087851
11 1.06 (0.99, 1.13) 10 0.0058269 0.0033742
14 1.09 (0.86, 1.38) 3.82 0.0225824 0.0316129
18 1.06 (0.87, 1.3) 12.4 0.0046991 0.0082626
21 1.05 (¡0.0001, ¿999.99) 10 0.0051254 0.018592

Children’s ages were very similar, and all odds ratios were greater than 1 except that
of study 5, however only two studies report significant results. Cochran’s test of ho-
mogeneity yields a P-value of 0.0072, and as with the other pollutants, the random
effect estimate is larger than the fixed effect estimate. Table 9 gives results for the
meta-analysis; showing the combined effect size estimates and odds ratios, confidence
intervals, an estimate of between-study variability, Cochran’s Q, and Higgin’s I2. Fig-
ure 3 is a forest plot for SO2 studies.
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Table 9: Combined effect size estimates for SO2 meta-analysis

combined estimate (se) 95% CI I1 Alternative CI I2 Alternative CI I3
Regression coefficient (fixed model) 0.0001 (0.000586) (-0.0011, 0.0012) (-0.0016,0.0016) (-0.0026,0.0026)
Odds ratio (fixed model) 1.01 (0.9891,1.01227) (0.984, 1.016) (0.9741,1.0267)
Regression coefficient (random model) 0.0082 (0.003597) (0.0011, 0.0152) (-0.00222,0.0177) (-0.0019,0.0174)
Odds ratio (random model) 1.0807 (1.0106,1.1715) (0.9779,1.1944) (0.9815,1.1898)

between-study variability [τ2] 0.000046
Cochrans Q (P-value) 20.83 (0.0076)

Higgens I2 61.6% (20.6%, 81.4%)
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Figure 3: Forest plot for SO2 meta-analysis

As with PM10 and NO2, we explore heterogeneity with meta-analysis. The study
characteristic that proves to provide the most significant sources of heterogeneity is
the study length in years, as with NO2. Table 10 gives the regression results.

As with NO2, the positive parameter estimate for study length indicates that larger
effects are found with studies that take place over a longer period of time. The esti-
mated effect for a study lasting two years can be figured as 0.0061(2) - 0.0091 = 0.0031,
corresponding to an odds ratio of 1.031 for an increase of 10 ppb of SO2. The test
of residual homogeneity yields a P-value of 0.1901 (Cochran’s Q = 9.9729), indicating
that these two variables account for all the heterogeneity between the studies.
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Table 10: Parameter estimates for SO2 meta-regression

variable estimate se P-val 95% CI lower 95% CI upper
intercept -0.0091 0.0114 0.4253 -0.0316 0.0133
study length 0.0061 0.0043 0.1502 -0.0022 0.0145

4.4 O3

The geographical regions under consideration are: Bronx and East Harlem, NY; Bal-
timore, MD; Washington, DC; Detroit, MI; Cleveland, OH; Chicago, IL; St. Louis,
MO.; Albuquerque, NM; Boston, MA; Denver, CO; San Diego, CA; Seattle, WA;
Toronto, Ontario, Canada, Mexico City, Mexico; Dresden, Germany; Paris, France,
and Australia. Study years span 1991-2003. Table 11 gives the study characteristics.

Table 11a: Studies used in O3 meta-analysis, part I

Study Study Years Children’s Age (years) Symptomatic? Sample Size Outcome
4 1991-1992 5 to 7 1 71 cough
9 1993 4 to 9 1 846 asthma symp
11 1993-1995 5 to 13 0 990 resp sympt
12 1994 5 to 13 1 125 cough
14 1995-1996 5 to 11 0 2218 cough
15 1996 7 to 15 1 82 cough
16 1996-1999 9 to 13 1 479 bronch sympt
18 1998-2001 5 to 12 1 861 cough
20 2001 0 to 12 1 141 cough
21 2003 0 to 17 0 7942 Respiratory allergies

Table 11b: Studies used in O3 meta-analysis part II

Study Original SE/CI per µg/m3 Transformed Estimate SE for Transformed
Estimate (effect size) Estimate

4 1.11 (1.05, 1.18) 50 0.0020872 0.0005955
9 1.03 (0.94, 1.12) 15 0.0019706 0.0029797
11 1.06 (0.92, 1.23) 30 0.0019423 0.0024694
12 0.97 (0.88, 1.07) 8.3 -0.0036698 0.0060085
14 0.71 (0.53, 0.96) 5.09 -0.0672346 0.0297499
15 1.04 (0.92, 1.18) 5.09 0.0076995 0.0124645
16 1.06 (1, 1.11) 37.5 0.0015538 0.0007099
18 1.03 (0.82, 1.28) 26.7 0.0011071 0.0042547
20 1.05 (0.95, 1.19) 6.7 0.0072821 0.0085762
21 1.037 (0.004, ¿999.9) 10 0.0036339 0.005902

Age ranges are roughly similar, and all but three (studies 11, 14, 21) were conducted
on symptomatic children. Of the ten studies under consideration, 8 report an odds
ratio greater than 1 - but only 2 of those are statistically significant. Studies 12 and 14
report odds ratios less than 1, and study 14 reports a 95% confidence interval smaller
than 1. Cochran’s test of homogeneity yields a P-value of 0.6043; hence the hypothesis
of homogeneity is not rejected and a fixed-effects model is appropriate (however results
are reported for both fixed and random effects). The common effect size is estimated
to be 0.0019, which corresponds to an odds ratio of 1.019 (95% confidence interval is
1.01, 1.027) for a 10 ppb increase in O3. Table 12 gives the results. Figure 4 shows
the forest plot for O3 studies.
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Table 12: Combined effect size estimates for O3 meta-analysis

combined estimate (se) 95% CI I1 Alternative CI I2 Alternative CI I3
Regression coefficient (fixed model) 0.0019 (0.000438) (0.001,0.0027) (0.0006,0.003) (0.0007,0.0029)
Odds ratio (fixed model) 1.01877 (1.01,1.0275) (1.006,1.0309) (1.007,1.0303)

between-study variability [τ2] 0
Cochrans Q (P-value) 7.32 (0.6043)

Higgens I2 0% (0%, 53.7%) (50.7%, 83.9%)
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Figure 4: Forest plot for O3 meta-analysis

Despite the negative report from study 14, it is easy to see in the forest plot that study
14 has a large variance, and contributes only a small amount to the meta-analysis.
Studies 4 and 16 (the statistically significant positive results) have the smallest variance
and thus contribute most to the common effect size. This explains why we find a
statistically significant common underlying effect despite the varied results in primary
studies.

5 Discussion and Conclusions

Table 13 summarizes the different common effect sizes estimated for each pollutant
from our meta-analysis. Despite varied results within the primary studies, each meta-
analysis clearly shows an adverse effect on children’s health.

The odds ratio for PM10 is given for an incremental increase of 10 µg/m3, but the
odds ratios for the three remaining pollutants are given for an incremental increase
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Table 13: Summary of common odds ratio estimates for all pollutants

Pollutant Odds ratio 95% CI lower 95% CI upper heterogenity
PM10 1.033 1.017 1.05 0.0000043
NO2 1.0397 1.013 1.065 0.0000056
SO2 1.0807 1.011 1.171 0.000046
O3 1.0188 1.01 1.027 0

of 10 ppb of the pollutant. To a limited extent, this means that the results for NO2,
SO2, and O3 can be compared. Among the three, it appears that SO2 has the largest
effect on children’s health; however this must be interpreted cautiously because there
are interactions between pollutants that are not captured with these single-pollutant
models. We acknowledge a recent similar meta-analysis studying the association be-
tween air pollution and children’s health. ”Short-Term Effects of PM10 and NO2 on
Respiratory Health among Children with Asthma or Asthma-like Symptoms: A Sys-
tematic Review and Meta-Analysis” by Weinmayr et al. (2010) has many of the same
goals as our own meta-analysis. Like ours, their main goal is to determine whether
or not there is an effect of air pollution on children’s health. While their focus was
only on the pollutants PM10 and NO2, ours also encompasses the pollutants SO2 and
O3. Weinmayr et al. (2010) examined heterogeneity of common effect size estimates
by stratifying according to study features, calculating common effect size estimates
within strata, and then testing whether the difference between the common effect size
estimates was zero. This can be contrasted with our approach, which relies on meta-
regression. Meta-regression is preferable to stratification in that it can account for all
study differences simultaneously, whereas stratification must be done separately for
each study feature of interest.

Despite the thoroughness of the meta-analysis provided by Weinmayr et al. (2010),
the authors note that there are still some factors leading to heterogeneity of the effect
sizes that cannot be accounted for: use of medication among the children (including
dose and frequency), the role of specific pollutants not under study in the ”pollution
mix” that exists in ambient outside air - not to mention the potentially very differ-
ent makeup of particulate matter in different locations. The meta-analysis is further
complicated by studies that may have different design aspects and protocol, occur in
different geographical regions, incorporate different lag times, and possibly are com-
prised of different underlying subject characteristics. Despite these limitations, this
meta-analysis shows strong evidence of the effect of PM10 on asthma symptoms and
lung function of children with asthma. There is also evidence, although less pro-
nounced, for the adverse effect of NO2 on asthma symptoms and lung function. In
conclusion, we make two important observations. 1) In spite of distinct features and
differing results from primary studies, meta-analysis shows a statistically significant
adverse health effect on children in the case of every pollutant. 2) Sources of hetero-
geneity vary from pollutant to pollutant, but significant sources of heterogeneity are
identified in each case. We sincerely hope that our research on this topic will encourage
other scientists to undertake further similar meta-analysis projects.
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