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We predict the existence of bright and dark gap solitons in a single slab of negative index material.
The formation of gap solitons is made possible by the exceptional interplay between the linear
dispersive properties of the negative index etalon and the effect of a cubic nonlinearity.
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The presence of a cubic (Kerr) nonlinearity in struc-
tures characterized by a periodic variation of the linear
refractive index leads to the formation of localized elec-
tromagnetic modes in spectral regions that otherwise
would just allow evanescent modes. These localized
modes are generally referred to as gap solitons (GS) [1].
GS have attracted the attention of many researchers for
almost two decades, beginning with the theoretical pre-
dictions of Chen and Mills for one-dimensional (1D)
photonic lattices with a Kerr nonlinearity [1].
Subsequently GS have been studied both theoretically
[2] and experimentally [3], and their existence has also
been predicted in 1D periodic media with shallow grat-
ings and a quadratic nonlinearity [4]. GS in 2D and 3D
photonic crystals have also been theoretically studied
using different mathematical approaches [5].

The aim of this Letter is to show that the presence of
bright and dark GS is supported in a single slab of
material. This surprising outcome is born out of the
peculiar dispersive properties of a new class of materials
called ‘‘negative index materials’’ (NIMs), or left handed
materials [6–8]. NIMs’ most impressive property is their
ability to refract light in the opposite way with respect to
what an ordinary material does. Very recently, nonlinear
effects in NIMs have been also investigated [9]. While it
is not surprising that a single slab of frequency dispersive
material together with a cubic nonlinearity can support
soliton waves in general, what it is surprising is that in
this case the single slab appears to support both bright
and dark GS.

Before going into detail, it is worth saying a few words
to define the terms ‘‘bright’’ and ‘‘dark’’ GS in the case of
NIMs. By the term ‘‘bright GS’’ in NIMs we refer to a
highly localized electromagnetic mode with approxi-
mately decaying tails excited inside the gap of a NIM
[see Figs. 3(b) and 3(c)]. These modes have localization
properties similar to the classical GS excited in the gap of
distributed feedback structures with a cubic nonlinearity
[1–3]. We emphasize that the formation of the gap in the
NIM is due to the peculiar dispersive properties of the
0031-9007=04=93(21)=213902(4)$22.50 
bulk of the material, while the formation of the gap in
distributed feedback structures is due to interference
effects. On the other hand, the physical mechanism that
leads to the formation of bright GS in both cases is the
same: a dynamical change in the refractive index of the
material occurs due to the presence of a cubic nonlinear-
ity that shifts the position of the band gap, and allows the
formation of localized modes in a spectral region that
would otherwise support only evanescent modes. While
bright GS in NIMs are localized over the structure in way
similar to GS in distributed feedback structures, in con-
trast ‘‘dark GS’’ are excited in the gap of a NIM in the
form of delocalized modes, with approximately nonde-
caying tails. These states display a low intensity at the
center of the structure, and a high intensity at the edges
[see Fig. 5(c)]. We note that, contrary to bright GS, the
intensity inside the structure never exceeds one with
respect to a unitary input intensity. Therefore, dark GS
have no counterpart in the case of the structures studied
in Refs. [1–4]. Dark solitons generated at frequencies
outside the gap or in other systems where there is no
photonic band gap structure are not uncommon. For ex-
ample, light waves in the form of dark solitons appear in
optical fibers operating in the normal dispersion regime
[10], in Raman scattering [11], and atomic, out-of-gap
dark soliton waves are supported in a Bose-Einstein
condensate interacting with a periodic optical field [12].
In contrast, here we present numerical evidence that dark
solitons can also occur when the incident light frequency
is tuned inside the photonic band gap of a NIM.

Let us begin by describing the effective susceptibility
and magnetic permeability of a NIM with a lossy Drude
model [13]:

"� ~!� � 1�
1

~!� ~!� i~�e�
; �� ~!� � 1�

�!pe=!pe�
2

~!� ~!� i~�m�
;

(1)

where ~! � !=!pe is the normalized frequency, !pe and
!pm are the respective electric and plasma frequencies,
~�e � �e=!pe and ~�m � �m=!pe are the respective elec-
2004 The American Physical Society 213902-1



- 2

- 1

0

1

0 . 5 0 . 7 0 . 9 1 . 1 1 . 3 1 . 5

tneiciffeo
C noitcnitx

E dna xedni evitcarfe
R

ω / ω p e

- 2

- 1

0

1

0 . 5 0 . 7 0 . 9 1 . 1 1 . 3 1 . 5

 tneiciffeo
C noitcnitx

E dna xedni evitcarfe
R

ω / ω p e

0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 . 5 0 . 7 0 . 9 1 . 1 1 . 3 1 . 5
ω / ω p e

ecnatti
msnar

T raeni
L

0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 . 5 0 . 7 0 . 9 1 . 1 1 . 3 1 . 5
ω / ω p e

ecnatti
msnar

T raeni
L

(a)

(b)

FIG. 1. (a) Refractive index (solid line) and extinction coefficient (dashed line) vs normalized frequency �!=!pe� for a NIM with
!pm=!pe � 0:8 and ~�e � ~�m � 4:5� 10�4. (b) Linear transmittance vs normalized frequency �!=!pe� for a Fabry-Pérot etalon
of length L � 5�pe where �pe � 2�c=!pe is the wavelength corresponding to the electric plasma frequency.
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FIG. 2. Transmittance vs control parameter � �
��3�jE�input�j2. The input field is tuned at !0 � !pe in the
band gap near the high frequency band edge.
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tric and magnetic loss terms normalized with respect to
the electric plasma frequency.

In Fig. 1(a) we show the refractive index and the
extinction coefficient for a NIM with !pm=!pe � 0:8
and ~�e � ~�m � 4:5� 10�4. The refractive index n and
the extinction coefficient 
 of the material are given by
n� i
 � �

�������

"�
p

. The sign in front of the square root
must be chosen in a way that ensures the Poynting vector
of the light refracted into a semi-infinite slab of NIM will
always be directed away from the interface into the
refracting material itself. Of course, only one of the two
possible solutions of the square root satisfies this require-
ment. In Fig. 1(b) we show the linear transmission prop-
erty of a Fabry-Pérot (FP) etalon made by the same NIM.
Figure 1(b) shows that the transmission spectrum of the
FP etalon is similar to the transmission spectrum that
occurs in structures that have a periodic variation of the
refractive index. The center-gap frequency !c;gap and the
spectral width of the gap �!gap depend on the electric
and magnetic plasma frequency as follows: !c;gap �

�!pe �!pm�=2 and �!gap � j!pe �!pmj. The only
gap that forms disappears when !pe � !pm. Moreover
the gap appears in the region where values of the refrac-
tive index n are near zero.

Let us now suppose the FP possesses a Kerr nonline-
arity. The Helmholtz equation that governs the nonlinear
213902-2
dynamic at normal incidence is given by

d2E

dz2
�

!2

c2
"�E � �

!2

c2
���3�jEj2E; (2)

where " and � are the effective electric susceptibility and
magnetic permeability given by Eq. (1), and ��3� is the
coefficient of the cubic nonlinearity. The boundary con-
213902-2
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FIG. 4. Transmittance vs control parameter � �
��3�jE�input�j2. The input field is tuned at !0 � 0:81!pe in the
band gap near the low frequency band edge.
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FIG. 3. Field localization in the cavity for different values of the control parameter: (a) � � 0; (b) � � 0:0039; (c) � � 0:027.
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ditions that apply to Eq. (2) are those valid in the case of
normal incidence in a magnetic material. Equation (2) has
been numerical integrated using an explicit method in
conjunction with a shooting procedure [14]. In Fig. 2 we
show that transmission of the FP etalon as function of the
control parameter � � ��3�jE�input�j2, where E�input� is the
input field. The input field is tuned at !0 � !pe, i.e.,
inside the band gap near the high frequency band edge.
At !0 � !pe the refractive index, the extinction coeffi-
cient, and the magnetic permeability are n � 9:4� 10�3,

 � 9� 10�3, and � � 3:6� 10�1 � i3� 10�4, re-
spectively. The figure shows bistable behavior that is
typical of distributed feedback structures with a cubic
nonlinearity [1,15]. In Figs. 3 we calculate the field lo-
calization over the FP cavity for different values of the
control parameter �. In the linear case [� � 0, Fig. 3(a)],
the field is evanescent, consistent with its tuning inside
the band gap. For � � 0:0039 the field becomes localized
in the form of a single bright-soliton envelope, similar to
that reported in Reference [1]. For � � 0:027 a two-
peaked, localized, bright-soliton state is excited.

The FP etalon also supports dark solitons. These states
manifest themselves when the carrier frequency is tuned
inside the gap, but now near the low frequency band edge.
In Fig. 4 we show the transmission as a function of the
control parameter �, for an input field tuned at !0 �

0:81!pe. In this case, the transmission shows multistable
behavior. By increasing the value of the control parameter
up to � � 5, three stable branches are found. The first
branch is located in the range 0 � � � 1:5, and it corre-
sponds to evanescent-type solutions as those shown in
Fig. 5(a). The second branch is in the range 1:5 � � �
213902-3
2:61, and the corresponding solutions are of the type
shown in Fig. 5(b). Finally, for � 
 2:61 dark soliton-
type solutions are excited as shown in Fig. 5(c). The
excitation of dark solitons is somewhat surprising be-
cause, as discussed in the introduction, their appearance
in the gap has to our knowledge never been predicted [16].
At !0 � 0:81!pe the refractive index, the extinction co-
efficient, and the magnetic permeability are n � �1:16�
10�3, 
 � 1:13� 10�1, and � � 2:45� 10�2 � i5:41�
10�4, respectively.

Our calculations suggest that when !pm=!pe < 1 and
��3� > 0, bright solitons are excited near the high fre-
213902-3



0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5

0

0.2

0.4

0.6

0 1 2 3 4 5

0

0.05

0.10

0.15

0.20

0 1 2 3 4 5
z/λpe z/λpe

z/λpe

|E
ω

|2
/|

E
,

ω
tu pn i
|2

|E
ω

|2
/ |

E
,ω

tupni
|2

|E
ω

|2
/|

E
,

ω
tupni
|2

(a) (b)

(c)

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5

0

0.2

0.4

0.6

0 1 2 3 4 5

0

0.05

0.10

0.15

0.20

0 1 2 3 4 5
z/λpe z/λpe

z/λpe

|E
ω

|2
/|

E
,

ω
tu pn i
|2

|E
ω

|2
/ |

E
,ω

tupni
|2

|E
ω

|2
/|

E
,

ω
tupni
|2

(a) (b)

(c)

FIG. 5. Field localization in the cavity for different values of the control parameter: (a) � � 0; (b) � � 1:6; (c) � � 2:7.
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quency band edge, where n > 0, and that dark solitons are
excited near the low frequency band edge where n < 0.
On the contrary, in the case !pm=!pe > 1 and ��3� < 0,
bright solitons are excited near the low frequency band
edge and dark solitons are excited near the high fre-
quency band edge.

In conclusion, using a numerical approach we have
predicted the existence of a new class of bright and
dark gap solitons that are supported by NIMs. Our results
suggest that NIMs could find further application in all-
optical switching devices and all-optical buffering, for
example.
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