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Modal analysis is a subject of structural dynamics, as it describes properties

of a linear structure in the modal space with modal properties, including natural

frequencies, modal damping ratios, and mode shapes. With the development of

transducer and computer technologies, accuracy and efficiency of modal property

evaluation have been drastically boosted in the past few decays. As modal properties

of a structure are directly related to its structural properties, such as mass, damping,

and stiffness, measured modal properties can be processed to identify structural

damage.

In this dissertation, new methods in modal analysis and structural damage

identification are developed and investigated. In the area of modal analysis, two

modal testing methods and two digital signal processing methods for modal analy-

sis are proposed for accurate and efficient modal property evaluation. Specifically,

an operational modal analysis method that uses non-contact excitation and mea-

surement to measure out-of-plane and in-plane vibration modes of a plate and a



vibro-acoustic modal test method that uses sound pressure transducers at fixed lo-

cations and an impact hammer roving over a test structure are studied; a digital

signal processing method for calculating correlation functions and power spectra and

one for calculating impulse response functions and frequency response functions are

studied. In the area of structural damage identification, two methods for beam

structures and two methods for plate structures are proposed without use of models

of associated undamaged structures. Specifically, a method using curvature mode

shapes of beams and a method using continuous wavelet transforms of mode shapes

are studied; a method using mode shapes of plates and one using various curvature

mode shapes are studied. In addition, a structural damage identification method

that uses free response shapes of beam structures by use of a continuously scanning

laser Doppler vibrometer system is proposed. The above mentioned methods are

numerically verified and experimentally validated.



NEW METHODS IN MODAL ANALYSIS AND

STRUCTURAL DAMAGE IDENTIFICATION

by

Yongfeng Xu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2017

Committee:

Dr. Weidong Zhu (Advisor) Professor, Mechanical Engineering
Dr. Panos Charalambides Professor, Mechanical Engineering
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Epigraph

“Every cloud has a silver lining.”
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Chapter 1

INTRODUCTION

1.1 Modal Analysis

Modal properties of a structure, including natural frequencies, mode shapes,

and modal damping ratios, can be identified via modal analysis [1]. There are two

types of modal analysis methods: experimental modal analysis (EMA) [1, 2] and

operational modal analysis (OMA) or output-only modal analysis [3]. The former

requires measurements of excitation on a structure, while the latter does not. In

addition, the former analyzes frequency response functions (FRFs) and impulse re-

sponse functions (IRFs) of a structure that show relationships between measured

responses and excitation in the frequency and time domains [1], respectively, while

the latter analyzes cross-power spectra and cross-correlation functions between ref-

erence and measured responses in the frequency and time domains, respectively

[3].

To conduct EMA, IRFs and FRFs of a structure that show relations between

measured responses and excitations in time and frequency domains, respectively,

are analyzed to estimate its modal properties [1, 2]. If there exist unmeasured ex-

citations that can introduce non-negligible responses of a structure in EMA, the

resulting IRFs, FRFs, and estimated modal properties can be erroneous [4]. More-

over, excitations given to a structure should have relatively large amplitudes to
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maintain high signal-to-noise ratios (SNRs) of the resulting IRFs and FRFs, but it

can be difficult to excite a large structure to measure its IRFs and FRFs with high

SNRs [5]. Hence EMA is suitable for a small- or intermediate-sized structure in a

laboratory environment, where excitation to the structure can be well controlled and

precisely measured. Unlike EMA, OMA can be conducted on a structure of any size

under excitation that is unknown or difficult to measure [3], and cross-correlation

functions and cross-power spectra between a reference response and measured re-

sponses of the structure can be analyzed to estimate its modal properties. For

large-sized structures in ordinary operations, such as bridges under traffic loads,

rotating blades of wind turbines, and high-rise buildings under wind excitations, it

can be relatively easy to conduct OMA, which can provide more practical modal

properties in that only modes that are excited in operations or under environmental

influences are measured [6]. However, its repeatability can be weak, since cross-

power spectra and cross-correlation functions in OMA vary with environmental or

operational excitation that can be uncontrollable in some cases. Compared with

OMA, EMA is more repeatable, informative, and objective due to use of FRFs and

IRFs that are independent of excitation, if excitation is appropriately generated.

With the development of sensor technology, two new modal analysis methods

are studied. One method is a OMA method performed on a small rectangular alu-

minum plate using white noise acoustic excitation in the frequency range of up to

15,000 Hz, which can be an operation frequency range of a turbine bladd. Both

the out-of-plane and in-plane modes of the plate within the frequency range are

measured. While measuring the out-of-plane modes is relatively easy, measuring
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the in-plane modes can be difficult. A free-field microphone is used to measure the

pressure near the reference point, which can be a measurement point on the plate

surface for the out-of-plane mode measurement and a point on a side of the plate for

the in-plane mode measurement; the position and the orientation of the microphone

remain unchanged in a whole test for an out-of-plane or in-plane mode measurement.

The derived cross-correlation functions between the velocities and accelerations of

the measurement points and the reference point, respectively, contain modal char-

acteristics of the test structure, which is also true for the cross-correlation functions

between other different types of measurement. It is also shown that the pressure

measured by a microphone near a vibrating surface is proportional to the normal

surface acceleration at the reference point in front of the microphone. Measured

natural frequencies and mode shapes from the OMA method and EMA are com-

pared with the calculated ones from commercial finite element (FE) software. The

method is a vibro-acoustic modal test (VMT) method, where an impact hammer

roves over the test structure and sound pressure transducers at fixed locations are

used to measure its dynamic responses. The formulation of a damped structurala-

coustic system in an open environment and the associated eigenvalue problem are

provided. The biorthonormality relations between the left and right eigenvectors

and the relations between the structural and acoustic components of the left and

right eigenvectors are proved. the FRFs used in the VMT method are derived, which

contain the modal characteristics of the coupled system, and the assumptions used

in the acoustic modal analysis in are validated. The VMT method and EMA were

carried out on an automotive disk brake and the experimental results were com-
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pared; the results were validated by comparing them with those from an associated

FE model.

Besides the two modal analysis methods, an efficient and accurate methodology

for calculating discrete FRFs and IRFs and that for calculating discrete correlation

functions and power spectra are proposed. In the methodology for calculating dis-

crete FRFs and IRFs, a sampling period is evenly divided into multiple subsampling

periods, and the length of a subsampling period is long enough for free responses

of a structure to decay to zero; all subsampling periods of response and excitation

series are superposed to corresponding single subsampling periods to form pseu-

doperiodic response and excitation series, respectively, in calculation of FRFs and

IRFs. Data lengths of response and excitation series for calculating discrete Fourier

transforms (DFTs) can be shortened by a factor equal to the number of subsampling

periods. A coherence function extended from a new type of coherence functions is

used to evaluate qualities of FRFs and IRFs from the proposed methodology in the

frequency domain. The proposed methodology was numerically and experimentally

applied to a two-degree-of-freedom (2-DOF) massspringdamper system and an alu-

minum plate, respectively, to estimate their FRFs and IRFs. In the methodology

for calculating discrete correlation functions and power spectra, before applying the

cross-correlation theorem and transforms at each sampling period, a zero series that

has the same length as the reference data series is padded to its end, and the mea-

sured series is extended by stitching the measured data series of the next sampling

period to its end, which makes the lengths of the two series be that of two sampling

periods. Time for calculating a cross-correlation function can be greatly reduced,
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compared with that by directly applying its definition; the resulting cross-correlation

function is in perfect accordance with the exact one, and so is the associated half

spectrum. The methodology is extended to calculate cross-correlation functions of

any time delays, including negative and non-negative ones, and associated full spec-

tra in an accurate and efficient manner. The new methodology was numerically and

experimentally applied to an ideal 2-DOF massspringdamper system and a dam-

aged aluminum beam, respectively, and OMA was conducted using half spectra to

estimate their natural frequencies, damping ratios, and mode shapes, which were

compared with those from complex modal analysis and EMA, respectively.

1.2 Structural Damage Identification

Vibration-based damage detection has become one of the major research topics

in the application of structural dynamics in the past few decades. Various method-

ologies have been developed to detect, locate, and characterize damage in structures

based on vibration measurements, since physical properties of a structure, such as

mass, stiffness, and damping, directly determine modal characteristics of the struc-

ture, i.e., natural frequencies, mode shapes (MSs), and modal damping ratios [7].

One criterion to categorize the methodologies is whether a model of the structure

being monitored is needed [8]. If it is needed, the methodology is model-based;

otherwise, it is non-model-based. Model-based methods are capable of detecting

locations and extent of damage in structures with a minimum amount of measure-

ment information. Model-based methods could have problems due to inaccuracy of
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models, environmental and other non-stationary effects on measurements, and lack

of measurement data in certain frequency ranges. In practice, it is difficult to con-

struct models of most existing structures with high accuracy [9]. Hence, methods

that only analyze measured MSs or operating deflection shapes (ODSs) of a struc-

ture without the aid of a model can be good alternatives to model-based methods

to locate damage, and they are non-model-based ones.

Two non-model-based methods are studied to identify embedded horizontal

cracks in beams without the use of any a priori information of associated undam-

aged beams, if the beams are geometrically smooth and made of materials that have

no stiffness discontinuities. Curvature mode shapes (CMSs) are presented with mul-

tiple resolutions to alleviate adverse effects of measurement noise. The relationship

between continuous wavelet transforms (CWTs) of MSs and CMSs is shown. MSs

from polynomials of MS-dependent orders, which fit those of a damaged beam, can

well approximate MSs of the associated undamaged one; the MSs of the damaged

beam are virtually extended beforehand, beyond boundaries of the beam, in order

to improve the approximation of the CMSs from the resulting polynomial fits to

those of the associated undamaged one near the boundaries. Differences between

MSs of the damaged beam and those from the resulting polynomial fits are used to

yield two damage indices: the curvature damage index (CDI) and the CWT damage

index (CWTDI) with a Gaussian wavelet function.

A new non-model-based method to identify damage in plates is studied, where

MSs of undamaged plates are not used. A MS of a pseudo-undamaged plate is

constructed using a polynomial that fits the corresponding MS of a damaged plate,
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and differences between the MSs of the pseudo-undamaged and damaged plates are

processed to yield MS damage indices (MSDIs) at each measurement point. Damage

can be identified near regions with consistently high values of MSDIs. Use of a MS

of an undamaged plate and that of a pseudo-undamaged plate from a polynomial fit

is compared with respect to effectiveness of damage identification. Effectiveness and

robustness of the proposed method on different MSs for damage of different posi-

tions and areas are numerically investigated; effects of crucial factors that determine

effectiveness of the proposed method are also numerically investigated. Besides, a

new non-model-based method based on principal, mean and Gaussian CMSs to iden-

tify damage in plates is studied. Theoretical bases of principal CMSs of a plate are

shown. A multi-scale discrete differential-geometry scheme is proposed to calcu-

late principal, mean and Gaussian CMSs associated with a mode shape of a plate,

which can alleviate adverse effects of measurement noise on calculating the CMSs.

Principal CMSs are directly related to principal stresses of a deformed plate, and

mean and Gaussian CMSs can quantify differential-geometry features of a mode

shape of the plate. Differences between principal, mean and Gaussian CMSs of a

damaged plate and those of the associated undamaged one are used to yield four

CDIs, including Maximum-CDI, Minimum-CDI, Mean-CDI and Gaussian-CDI. The

applicability and robustness of this method to a mode shape of a low elastic mode on

a coarse measurement grid are numerically investigated. An aluminum plate with

damage in the form of a machined thickness reduction area was constructed, and a

mode shape of the damaged plate was measured using non-contact excitation and

measurement to investigate effectiveness of the two studied methods.
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1.3 Continuous Scanning Laser Doppler Vibrometer System

A laser Doppler vibrometer is a noncontact measurement instrument that

can measure the surface velocity of a vibrating structure along the laser line-of-

sight direction, using the Doppler shift between the incident light and the scattered

light that returns to the instrument [10]. It has distinct advantages of measuring

lightweight structures without having to attach a transducer that can locally stiffen

or mass load the structures. A laser beam emitted from a laser Doppler vibrometer

can be directed to any visible position on a structure by installing a scanner that

consists of a pair of orthogonal scan mirrors in front of the laser Doppler vibrometer,

and the whole system is called a scanning laser Doppler vibrometer system. This

technique has greatly increased the spatial resolution of field measurement since the

laser spot on the structure, resulting from the laser beam, can stay at one point

long enough to acquire sufficient vibration data of that point and then move to the

next one by controlling rotation angles of the scan mirrors.

The point-by-point measurement method using a scanning laser Doppler vi-

brometer system usually takes a long acquisition time in order to get a full-field mea-

surement of a structure, especially when the measurement grid is large and dense.

In the early 1990s, Sriram et al. [11, 12] proposed a new scanning laser Doppler

vibrometer measurement method where the laser spot was continuously swept over

a surface of a structure under sinusoidal excitation; they also built a prototype of

a continuous scanning laser Doppler vibrometer (CSLDV) system. Since the laser

spot continuously moves, the CSLDV velocity output is modulated by an ODS and
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can be processed in the frequency domain to directly obtain the ODS in the form

of a Chebyshev series. Later, Stanbridge and Ewins [13, 14] developed two CSLDV

measurement methods to obtain ODSs of a structure under sinusoidal excitation,

and the methods can be applied to different scan patterns, such as line scans, circular

scans and area scans. One measurement method is the demodulation method, where

the CSLDV output is multiplied by sinusoidal signals at the excitation frequency

and a low-pass filter is applied to obtain an ODS. The other one is the polynomial

method, where an ODS is represented by a polynomial and its coefficients are ob-

tained by processing the discrete Fourier transform of the CSLDV output. These

two methods were also applied to structures under impact [15] and multi-sine [16]

excitation. Allen and Sracic [17] proposed a “lifting” method to treat the CSLDV

output of a structure as the free response of a linear time-periodic system and de-

compose it into a set of frequency response functions, from which mode shapes and

modal damping ratios of the structure can be obtained using conventional curve fit-

ting methods. This method was extended to output-only modal analysis to identify

modal characteristics of a structure under unmeasurable broadband random exci-

tation [18]. Yang and Allen [19] used a harmonic transfer function to process the

CSLDV output of a downhill ski and obtain translational and rotational velocities

with a circular scan. Khan et al. [20] applied the demodulation method to measure

ODSs of various structures with surface cracks. Short scan lines were assigned on

cracked surfaces to intersect with the cracks, and discontinuities could be observed

in the ODSs. However, discontinuities in ODSs may not be obvious when a scan

line is on an intact surface with cracks existing on the opposite one.
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A new type of vibration shapes called a free response shape (FRS) that can

be obtained by use of a CSLDV system is introduced. An analytical expression of

FRSs of a damped beam structure is derived. It is shown in the analytical expres-

sion that amplitudes of FRSs exponentially decay to zero with time. Numbers of

non-zero FRSs associated with a mode can be determined by use of the short-time

Fourier transform (STFT) of free response of the structure measured by a CSLDV

system. A finite element model of a damped beam structure is constructed, and a

CSLDV system is simulated to measure free response of the structure. FRSs associ-

ated with the structure are obtained from the response measured by the simulated

CSLDV system from the demodulation method, and they are compared with those

from the analytical expression. A new damage identification methodology that uses

FRSs is proposed for beam structures. A free-response damage index (FRDI) is

defined, which consists of differences between curvatures of FRSs obtained by use

of a CSLDV system and those from polynomials that fit the FRSs, and damage

regions can be identified near neighborhoods with consistently high values of FRDIs

associated with different modes; an auxiliary FRDI is proposed to assist identifica-

tion of the neighborhoods. A criterion based on a convergence index is proposed to

determine orders of the polynomial fits. Effectiveness of the methodology for iden-

tifying damage in beam structures is numerically and experimentally investigated,

and effects of the scan frequency of a CSLDV system on qualities of obtained FRSs

were experimentally investigated.
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Chapter 2

MODAL ANALYSIS METHODS

2.1 Operational Modal Analysis of a Rectangular Plate Using Non-

contact Excitation and Measurement

2.1.1 Introduction

There are numerous cyclic excitations in the operation of a turbine that can

excite the vibrations of its blades. Most turbine blades fail due to high cycle fatigue

that derive from cyclic stresses [21], and a turbine blade vibrating at or near one of

its natural frequencies is more likely to fail due to high cycle fatigue. Modal analysis

on a turbine blade is necessary since it can provide an accurate estimation of the

modal parameters, such as the natural frequencies and mode shapes. In addition,

the experimental results can be used to validate a finite element model of a turbine

blade and eventually improve the design of the turbine blade.

There are many types of modal analysis methods, and they can be classified as

either OMA or experimental modal analysis EMA. OMA, which is an output-only

modal analysis method, is a powerful technique for extracting modal parameters of

a test structure using only the response data of the structure. It has been widely

used on structures whose inputs are unknown, and/or difficult or even unable to

measure, such as wind turbines [22], bridges [23, 24], and other civil structures
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[24, 25]. The natural excitation test (NExT) [3], where the input is assumed to

be white noise, is a kind of OMA. It requires multiple response measurements, one

of which serves as the reference, and the cross-correlation functions between the

other measurements and the reference can be generated and used for modal pa-

rameter estimation. Besides NExT, there are other operational modal estimation

schemes that have been developed to extract modal parameters [6]. They are estab-

lished in either the time domain or the frequency domain. The former includes the

auto-regression moving average (ARMA) model-based method [26], the stochastic

realization-based method [27], and the stochastic subspace identification technique

[28]; the latter includes the frequency domain decomposition method [29] and the

least-square complex frequency-domain estimation [30]. An OMA method using

mode-isolated signals based on an approach for a single-degree-of-freedom system

in the time domain is proposed in Ref. [31]. Unlike OMA, EMA requires the input

measurement to obtain the FRF for modal parameter estimation [1]. In addition,

EMA often requires a laboratory environment, while OMA does not and can be

performed on site. Hence OMA is a more practical method than EMA, and the

dominating modes of a test structure in an operation environment can be observed,

which gives more valuable information about the test structure.

EMA usually uses an impact hammer or a shaker to excite a test structure.

There are some drawbacks associated with this kind of excitation. First, the output

quality can vary because an excitation point can be a nodal point of a test structure

and the output signal-to-noise ratio can be relatively low. Some tests need to be

repeated several times with different excitation locations in order to completely
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understand the dynamic characteristics of the structure; this can be tedious and time

consuming. Second, a contact excitation force can damage a fragile structure. Third,

the input frequency bandwidth can be too low to fully excite the high frequency

modes of a test structure. Fourth, the excitation force from an impact hammer is

not fully controllable, the impact location can vary, and the signal-to-noise ratio

can be low for a single impact. A shaker needs to be attached to a test structure

and can introduce mass loading. The use of non-contact acoustic excitation can

resolve the above problems: acoustic excitation can be distributed over an area

of a test structure, it can be easily repeated, and its bandwidth is controllable.

However, acoustic excitation cannot be easily measured and used in EMA. Since

OMA does not need the input measurement, acoustic excitation can be used in

OMA. At least two response measurements are needed for OMA, one of which serves

as the reference. While OMA does not need the input measurement, it requires the

input to a test structure to be white noise, which can be generated using acoustic

excitation. To avoid mass loading to a test structure, non-contact measurements

using a laser vibrometer or a microphone are preferred.

In this work, OMA is performed on a small rectangular aluminum plate using

white noise acoustic excitation in the frequency range of up to 15,000 Hz, which can

be an operation frequency range of a turbine blade. Both the out-of-plane and in-

plane modes of the plate within the frequency range are measured. While measuring

the out-of-plane modes is relatively easy, measuring the in-plane modes can be diffi-

cult. The in-plane vibration of an interior point of a plate was measured in Ref. [32]

by attaching a side of an accelerometer to the plate surface, which can introduce
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measurement error. OMA of a wind turbine wing using acoustic excitation and

accelerometers attached to the wing is performed in Ref. [33]. Such contact mea-

surements can introduce mass loading to a structure, especially for a small and light

one. Vibro-acoustic OMA is performed in Ref. [34] using probes from Microflown

near the test structure and a microphone near the speaker to measure the particle

velocities for measurements and the pressure for reference, respectively. Only one

single-point laser vibrometer is available in this work to measure the velocities of

various measurement points on the plate surface using a roving sensor approach.

A free-field microphone is used to measure the pressure near the reference point,

which can be a measurement point on the plate surface for the out-of-plane mode

measurement and a point on a side of the plate for the in-plane mode measurement;

the position and the orientation of the microphone remain unchanged in a whole test

for an out-of-plane or in-plane mode measurement. The derived cross-correlation

functions between the velocities and accelerations of the measurement points and

the reference point, respectively, contain modal characteristics of the test structure,

which is also true for the cross-correlation functions between other different types of

measurement. It is also shown that the pressure measured by a microphone near a

vibrating surface is proportional to the normal surface acceleration at the reference

point in front of the microphone. The measured data are acquired and processed

by an LMS spectrum analyzer, and the corresponding cross-power spectral densities

(CPSDs), which are the Fourier transforms of the cross-correlation functions, are

used to extract the modal characteristics of the test structure, including the natural

frequencies, damping ratios, and mode shapes. In addition, a method for accurately
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measuring the in-plane modes of the plate is developed. The laser beam from the

laser vibrometer is shined at the measurement points on the plate surface with an

incident angle, and the measured CPSDs are summed. The in-plane modes can be

identified by comparing the resulting summed CPSD with that for the out-of-plane

modes, which is obtained by shining the laser beam perpendicular to the plate sur-

face. EMA using an impact hammer to excite the plate and the laser vibrometer

to measure its responses is also performed to obtain the out-of-plane and in-plane

modal parameters. A method similar to that for the in-plane mode measurement in

OMA is used for the in-plane mode measurement in EMA except that the FRFs are

measured and summed to identify the in-plane modes. The measured natural fre-

quencies and mode shapes from OMA and EMA are compared with the calculated

ones from commercial finite element (FE) software ABAQUS.

2.1.2 OMA Using a Microphone to Measure the Response of the

Reference Point

In OMA, the cross-correlation functions between the responses of the mea-

surement points and that of the reference point due to a single-point white noise

input can be expressed as sums of decaying sinusoids that contain modal parame-

ters of the test structure [3], where the same type of measured responses, such as

displacements, velocities, or accelerations, are used. However, when the types of

measurement at the measurement and reference points are different, OMA can still

be performed, as shown below.
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The equations of motion of a test structure are

Mẍ (t) +Cẋ (t) +Kx (t) = f (t) (2.1)

where t is time, x is the displacement vector, M is the mass matrix, C is the

damping matrix, K is the stiffness matrix, and f is the force vector. By a coordinate

transformation

x = Φq (2.2)

where Φ is the modal matrix, whose r-th column is the r-th mass-normalized mode

shape of the test structure, and q is the modal coordinate vector, Eq. (2.1) can

be expressed in terms of modal coordinates. It is assumed that the test structure

is classically damped [35] for convenience. Substituting Eq. (2.2) into Eq. (2.1)

and pre-multiplying the resulting equation by ΦT, where the superscript T denotes

transpose of a matrix or a vector, yield a set of scalar equations for modal coordinates

q̈ (t) + 2ξrωrnq̇
r (t) + ωr2n q

r (t) = φrTf (t) (2.3)

where ωrn is the r-th undamped natural frequency of the test structure, ξr is the r-th

modal damping ratio, and φr is the r-th mass-normalized mode shape. Assuming

zero initial conditions, one has the solution to Eq. (2.3) :

qr (t) =

∫ t

−∞

φrTf (t) gr (r − τ) dτ (2.4)

where
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gr (t) =
1

ωrd
e−ξ

rωr
nt sin (ωrdt) (2.5)

is the unit impulse response function corresponding to the r-th modal coordinate.

By Eq. (2.2), the solution to Eq. (2.1) is

x (t) =

n∑

r=1

φr
∫ t

−∞

φrTf (t) gr (r − τ) dτ (2.6)

Note that the solution in Eq. (2.6) is the sum of the displacement. The correspond-

ing velocity is

v = ẋ = Φq̇ (2.7)

where q̇ is the modal velocity vector and its r-th component is

q̇r (t) =

∫ t

−∞

φrTf (t) ġr (r − τ) dτ (2.8)

in which

ġr (t) =
Ar

ωrd
e−ξ

rωr
nt sin (ωrdt + θr) (2.9)

with

Ar =

√
(ξrωrn)

2 + ωr2d (2.10)

θr = π − arcsin
ωrd√

(ξrωrn)
2 + ωr2d

(2.11)
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Similarly, the corresponding acceleration is

a = Φq̈ (2.12)

where q̈ is the modal acceleration vector and its r-th component is

q̈r (t) =

∫ t

−∞

φrTf (t) g̈r (r − τ) dτ + φrTf (t) ġr (0) (2.13)

in which

g̈r (t) =
Ar2

ωrd
e−ξ

rωr
nt sin (ωrdt + 2θr) (2.14)

The cross-correlation function between the velocity at a measurement point i, vi,

and the acceleration at a reference point j, aj , due to a white noise input at an

excitation point k, fk, is

Rij (T ) = E [vi (t + T ) aj (t)] =
∑n

r=1

∑n

s=1 φ
r
iφ

r
kφ

s
jφ

s
k

{∫ t
−∞

∫ t+T
−∞

ġr (t+ T − σ) g̈s (t− τ)

E [fk (σ) fk (τ)] dσdτ +
∫ t+T
−∞

ġr (t+ T − τ) ġs (0) E [fk (τ) fk (t)] dτ
}

(2.15)

where T is the time difference, E is the expectation operator, φri is the i-th component

of the r-th mode shape, and fk is the k-th component of the force vector. Since fk

is assumed to be white noise, one has





E [fk (σ) fk (τ)] = Rff (τ − σ) = cδ (τ − σ)

E [fk (τ) fk (t)] = cδ (τ − t)

(2.16)

where c is a constant and δ is the Dirac delta function. Substituting Eq. (2.16) into

Eq. (2.15) yields
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Rij (T ) =

n∑

r=1

n∑

s=1

cφriφ
r
kφ

s
jφ

s
k

{∫ t

−∞

ġr (t+ T − τ) g̈s (t− τ) dτ + ġr (T ) ġs (0)

(2.17)

Let λ = t− τ ; one has

Rij (T ) =
n∑

r=1

n∑

s=1

cφriφ
r
kφ

s
jφ

s
k

{∫ ∞

0

ġr (λ+ T ) g̈s (λ) dλ + ġr (T ) ġs (0) (2.18)

where

ωrn (λ+ T ) sin [ωrd (λ+ T ) + θr] = Ar

ωr
d

e−ξ
rωr

nT
[
sin (ωrdT ) e

−ξrωr
nλ cos (ωrdλ+ θr)

+ cos (ωrdT ) e
−ξrωr

nλ sin (ωrdλ+ θr)
]

(2.19)

and the cross-correlation function Rij (T ) can be written as

Rij (T ) =
n∑

r=1

φri e
−ξrωr

nT [Gr sin (ωrdT ) +Hr cos (ωrdT )] (2.20)

where





Gr

Hr





=
∑n

s=1

cAr2φr
k
φsjφ

s
k

ωs
d

{
Ar
∫∞

0
e(−ξ

rωr
n−ξ

sωs
n)λ sin (ωsdλ+ 2θs)





cos (ωrdλ+ 2θr)

sin (ωrdλ+ 2θr)





dλ+





cos (θr) sin (θs)

sin (θr) cos (θs)









(2.21)

Eq. (2.20) can be further written as

Rij (T ) =
n∑

r=1

φriB
r

ωrd
e−ξ

rωr
nT sin (ωrdT +Θr) (2.22)
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where

Br =
√
Gr2 +Hr2 (2.23)

and

Θr = arctan 2 (Hr, Gr) (2.24)

Eq. (2.22) indicates that the cross-correlation functions between the velocities and

accelerations are sums of decaying sinusoids that contain modal characteristics of

the test structure, and each decaying sinusoid is similar to that in Ref. [3]. One

can further show that the cross-correlation functions between the displacements and

velocities and those between the displacements and accelerations also contain the

modal characteristics of the test structure. Hence OMA can be performed even

though the types of measurement at the measurement and reference points are

different.

When a speaker is used to provide white noise acoustic excitation to the test

structure, the excitation can be considered as multiple inputs since it is distributed

over an area of the test structure. The cross-correlation functions between the

responses of two points of the test structure, i and j, due to multiple white noise

input can be expressed as [36]

Rij (T ) =
n∑

r=1

φriB
r

ωrd
e−ξ

rωr
nT sin (ωrdT + Φr) (2.25)

where the point i is a measurement point, the point j is the reference point, and

Cr
j and Φr are a constant and a phase angle associated with the response of the

reference point, respectively. In this study, the operational polyreference least-

squares complex frequency-domain method, referred to as Operational PolyMax
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[37], is used to perform modal parameter estimation using CPSDs, which are Fourier

transforms of the cross-correlation functions in Eq. (2.25).

A free-field microphone is placed near the reference point on the surface of a

test structure with a minimum distance d, as shown in Fig. 2.1, and there is no

contact between the microphone and the structure during the vibration of the struc-

ture. It is assumed that the small area of the structure in front of the microphone

can be considered as a point sound source, the velocity of an air particle next to

the source is equal to the normal surface velocity of the source, and the microphone

measures only the pressure generated by the source. The measured pressure is

p (d, t) = jωρ0
Q̃

4πd
ej(ωt−kd) (2.26)

where j =
√
−1, ρ0 is the air density, Q̃ is the complex amplitude of the volume

velocity of the source, and k is the wavenumber of sound generated by the source.

Let the normal surface velocity of the source be

vn (t) = ṽne
jωt (2.27)

where ṽn is the complex amplitude of the normal surface velocity of the source [38].

Let the area of the source be S; Q̃ can be expressed by

Q̃ = 2ṽnS (2.28)

Substituting Eq. (2.28) into Eq. (2.26) yieldes

p (d, t) = jωρ0
ṽnS

2πd
ej(ωt−kd) (2.29)
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Let

ãn = jωṽn (2.30)

where is the complex amplitude of the normal surface acceleration of the source.

Eq. (2.29) can be written as

p (d, t) = ãnρ0
S

2πd
e−jkdejωt (2.31)

Eq. (2.31), the complex amplitude of the pressure measured by the microphone is

p̃n (d, t) = ãnρ0
S

2πd
e−jkd = ãnde (2.32)

where de is the proportionality constant. An equation similar to Eq. (2.32) can

be found in Ref. [39] for measurement of the normal surface velocity of a vibrat-

ing beam using a microphone. According to Eq. (2.32), the pressure generated

by the reference point can be directly related to the acceleration of the reference

point, which is valid when the wavelengths of the vibrating structure are relatively

large compared with the radius of the diaphragm of the microphone. Hence when

a laser vibrometer and a free-field microphone are used to measure the velocities of

the measurement points in a roving sensor approach and the associated pressures

near the reference point, respectively, the resulting cross-correlation functions be-

tween the measured velocities and pressures contain modal characteristics of the

test structure, as shown in Eq. (2.25), and the associated CPSDs can be used for

modal parameter estimation.
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Figure 2.1: Schematic of pressure measurement near the reference point.

2.1.3 Method for Measuring the In-plane Modes of a Rectangular

Plate

The in-plane vibration of a side of the plate can be easily measured, but the

in-plane vibration of an interior point of the plate cannot be easily measured. A

non-contact method for measuring the in-plane modes of the plate using OMA is

developed here. A laser vibrometer is used to measure the velocities of the interior

measurement points of the plate and a microphone is used to measure the pressure

near the reference point, which is located on a side of the plate. A laser vibrometer

is capable of measuring the velocity component in the direction of the incident

laser beam [40]. When the laser beam from the laser vibrometer is shined on the

plate with an incident angle θ, as shown in Fig. 2.2, where the Z- and X -axes

are in the out-of-plane and in-plane vibration directions, respectively, the velocity
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Figure 2.2: Velocity measured by the laser beam vl with an incident angle θ .

measured by the vibrometer vl is along the laser beam direction, and it contains the

velocities of both the out-of-plane and in-plane vibrations. The velocity of the out-

of-plane vibration contained in the measured velocity along the laser beam vzl can be

expressed as vzl = vz cos θ, where vz is the velocity of the out-of-plane vibration (Fig.

2.2). The velocity of the in-plane vibration measured by the laser vibrometer vXl

can be expressed as vXl = vX sin θ, where vX is the velocity of the in-plane vibration

(Fig. 2.2). The velocity measured by the laser vibrometer can be expressed as

vl = vZl + vXl . It is obvious that the larger the incident angle, the more the in-plane

vibration and the less the out-of-plane vibration that will be measured by the laser

vibrometer, which is desirable for measuring the in-plane vibration. However, the

incident angle should not be too large in order to prevent the laser beam from being

scattered, which can reduce the light intensity of the reflected laser beam and cause

inaccurate measurement. A proper non-zero incident angle should be selected, which

can measure an adequate amount of the in-plane vibration and does not affect the

accuracy of the measurement.
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The in-plane modes of the plate can be measured using OMA in an indirect

way. First, the CPSDs for the out-of-plane modes are measured. The microphone

is used to measure the pressure near the reference point, which can be any point on

the plate surface, and the laser vibrometer shines the laser beam perpendicular to

the plate surface to measure the velocities of the measurement points in a roving

sensor approach. The measured CPSDs are summed; the resulting summed CPSD

is referred to as the out-of-plane CPSD. Second, the microphone is used to measure

the pressure in the X direction near the reference point on a side of the plate. The

laser vibrometer shines the laser beam on the measurement points with an incident

angle, which remains constant throughout the test. The measured CPSDs are then

summed; the resulting summed CPSD is referred to as the mixed CPSD, where the

word “mixed” is used since the measured CPSDs contain both the out-of-plane and

in-plane vibrations of the plate. It is impossible to determine whether a mode is an

out-of-plane or in-plane mode if only the mixed CPSD is used since the measured

velocity contains the velocities of both the out-of-plane and in-plane vibrations. The

in-plane modes can be identified, however, by comparing the mixed CPSD with the

out-of-plane CPSD, since both the out-of-plane and in-plane modes would manifest

themselves as peaks in the mixed CPSD, and only the peaks corresponding to the

out-of-plane modes can be found in the out-of-plane CPSD; one can then conclude

that the modes that can only be found in the mixed CPSD are the in-plane modes.

Note that the summed CPSDs are used to distinguish the in-plane modes from the

out-of-plane modes since they can show the overall characteristics of the measured

CPSDs.
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The method described above can be adapted for use in EMA to identify the

in-plane modes of the plate. An impact hammer is used to excite the plate by

hitting a point on the plate surface, and the laser vibrometer shines the laser beam

perpendicular to the plate surface to measure the velocities of the measurement

points in a roving sensor approach. A series of FRFs are obtained and summed; the

resulting summed FRF is referred to as the out-of-plane FRF. The impact hammer

is then used to hit a point on a side of the plate. The laser beam is shined with an

incident angle on the measurement points of the plate in a roving sensor approach.

The measured FRFs are summed, and the resulting summed FRF is referred to as

the mixed FRF. The in-plane modes can be identified by comparing the mixed FRF

with the out-of-plane FRF.

Since the out-of-plane and in-plane modes are orthogonal to each other, in the

vicinity of one of the in-plane mode natural frequencies, the velocity measured by

the laser beam with the incident angle θ mainly derives from the in-plane vibration;

the out-of-plane vibration measured by the laser beam is negligible. Further, the

velocity of the in-plane vibration measured by the laser beam is equal to that of

the in-plane vibration of the measurement point multiplied by sin θ, which can be

considered as a multiplier of the magnitudes of the estimated mode shapes and does

not change the estimated mode shapes. Hence the measured CPSDs or FRFs using

the laser beam with the incident angle θ can be used to perform modal parameter

estimation for the in-plane modes of the plate.
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2.1.4 Test Setup and Procedure

2.1.4.1 Test Specimen and Setup

The dimensions and material properties of the rectangular aluminum 6061

plate being studied are shown in Table 2.1. Fig. 2.3(a) shows a schematic of the

complete experimental setup. The plate is laid on two slim elastic rubber bands,

which simulate free boundaries of the plate (Fig. 2.3(b) and (c)). There are 42

measurement points on the plate surface, as shown in Fig. 2.4; a small reflective

tape is attached to the plate surface at each measurement point to enhance the

reflection of the laser beam. Two speakers (Fostex FT17H) are placed near the

plate in a direction of interest; the white noise signals are generated by the LMS

spectrum analyzer and powered by an amplifier (QSC PLX-1802). The frequency

range of the white noise signals is set to 0-15,000 Hz. A free-field microphone is

placed near the reference point in a direction of interest; the maximum frequency

that the microphone can measure is 15,000 Hz. Both the microphone and the

laser vibrometer are connected to the LMS spectrum analyzer. Modal analysis is

performed using LMS Test.Lab Rev. 9b modal analysis software. The directions in

which the laser beam is shined on the plate surface, the directions towards which

the speakers and the microphone are pointing, and the locations of the reference

points for the out-of-plane and in-plane mode measurements using OMA are shown

in Fig. 2.3(b) and (c), respectively.
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Figure 2.3: Experimental setup for OMA: (a) schematic of the complete exper-

imental setup; (b) excitation and measurement setups for the out-of-plane mode

measurement; and (c) excitation and measurement setups for the in-plane mode

measurement.
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Table 2.1: Test specimen parameters.

Parameter Value

Length 0.18 m

Width 0.075 m

Thickness 0.006 m

Young’s modulus 69 GN/m

Poison’s ratio 0.33

Density 2700 kg/m3

Figure 2.4: Distribution of the measurement points (shown as dots) on the plate

surface; X- and Y -axes are two in-plane axes.

2.1.4.2 Test Procedure

For the out-of-plane mode measurement using OMA, a measurement point

at a corner of the plate is used as the reference point since the distances between

the measurement points are small and the microphone setup can be an obstacle

for the laser beam if the reference point is an interior point on the plate surface.
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The laser vibrometer shines the laser beam perpendicular to the plate surface at

the other 41 measurement points. The white noise acoustic excitation from the two

speakers is triggered to excite the plate. The CPSD between the velocity measured

by the laser vibrometer at a measurement point and the pressure measured by the

microphone at the reference point is calculated by the LMS modal analysis software

and averaged over 40 samples. A total of 41 averaged CPSDs are obtained for the 41

measurement points in a roving sensor approach; the resulting summed out-of-plane

CPSD is shown in Fig. 2.5(a).

For the in-plane mode measurement using OMA, the reference point is on

a side of the plate and the laser beam is shined to the measurement point with

θ = 45o, for which an adequate amount of the in-plane vibration can be captured

by the laser beam and the light intensity of the reflected laser beam is not too low.

In order to completely measure the in-plane modes, the in-plane vibrations in both

the X and Y directions (Fig. 2.3) need to be measured at each measurement point.

Hence there are two measured CPSDs at each measurement point, and the position

of the microphone remains unchanged throughout the test. A CPSD is averaged

over 40 samples. Since there are 42 measurement points and two averaged CPSDs

at each measurement point, a total of 84 averaged CPSDs are obtained in a roving

sensor approach; the resulting summed mixed CPSD is shown in Fig. 2.5(a). The

in-plane modes can be identified by comparing the out-of-plane CPSD with the

mixed CPSD. The two peaks labeled as A and B, which appear only in the mixed
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Figure 2.5: Plots of (a) the out-of-plane and mixed CPSDs from OMA and (b) the

out-of-plane and mixed FRFs from EMA.
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Figure 2.6: The FE model of the plate, with the measurement points indicated.

CPSD, correspond to the in-plane modes. Since the highest rigid body mode natural

frequency in the out-of-plane and in-plane mode measurements is 29.16 Hz, which

is lower than 10 percent of the first elastic mode natural frequency (999 Hz), the

boundaries can be considered to be free [1]. Note that the peak corresponding to the

15th out-of-plane elastic mode, at the frequency 13,877 Hz, is not prominent in the

mixed CPSD because the speakers are placed in the vicinity of two nodal lines of that

mode (Fig. 2.7(a)) and the mode is not completely excited. The modal parameters

of the out-of-plane modes are estimated using the 41 averaged CPSDs obtained in

the out-of-plane mode measurement, and those of the in-plane modes are estimated

using the 84 averaged CPSDs obtained in the in-plane mode measurement.

In addition, EMA is performed to measure the out-of-plane and in-plane

modes. An impact hammer and the laser vibrometer are used to excite the plate

and measure its response, respectively. For the out-of-plane mode measurement,

the hammer hits a point on the plate surface in the out-of-plane direction and the
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Figure 2.7: (a) The nodal lines of the 15th out-of-plane elastic mode and the loca-

tions of the two speakers; and (b) the nodal lines of the 10th out-of-plane mode and

the impact location.

laser vibrometer shines the laser beam perpendicular to the plate surface; the FRF

is then measured and averaged over 40 samples. A total of 42 averaged FRFs are

obtained in a roving sensor approach for the 42 measurement points; the resulting

summed out-of-plane FRF is shown in Fig. 2.5(b). For the in-plane mode mea-

surement, the hammer hits a point on a side of the plate in the in-plane direction

and the laser vibrometer shines the laser beam with θ = 45o. Similar to OMA, the

FRFs in both the X and Y directions are measured at each measurement point and

averaged over 40 samples; the position and direction of the impact by the hammer

do not change throughout the test. A total of 84 averaged FRFs are obtained; the

resulting summed, mixed FRF is shown in Fig. 2.5(b). The two peaks labeled as A

and B, which appear only in the mixed FRF, correspond to the in-plane modes. The

boundaries can be considered to be free since the highest rigid body mode natural

frequency in the out-of-plane and in-plane mode measurements is 31.78 Hz, which

is lower than 10 percent of the first elastic mode natural frequency (998 Hz) [1].
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Note that there is not a peak corresponding to the 10th out-of-plane elastic mode

at the frequency 8204 Hz because the impact location is in the vicinity of a nodal

line of that mode (Fig. 2.7(b)) and the mode is not excited. The modal parameters

of the out-of-plane modes are estimated using the 42 averaged FRFs obtained in

the out-of-plane mode measurement, and those of the in-plane modes are estimated

using the 84 averaged FRFs obtained in the in-plane mode measurement.

2.1.5 Numerical and Experimental Results

Numerical simulation is conducted for the out-of-plane and in-plane modes of

the plate using commercial FE software ABAQUS. To accurately simulate the plate,

linear hexahedron solid elements (C3D8R) are used to construct the FE model (Fig.

2.6). The boundary conditions of the plate are set to be free. The natural frequencies

and mode shapes of the first 18 elastic modes, including 16 out-of-plane and two in-

plane modes, are calculated and compared with the experimental results. Table 2.2

shows the comparisons between the natural frequencies from the FE model, denoted

by fn, and those from OMA and EMA, denoted by fe. The modal damping ratios of

each mode ξ obtained from OMA and EMA are also shown in Table 2.2. The max-

imum errors of the measured natural frequencies from OMA and EMA, compared

with those from the FE model, are 1.53 percent and 1.52 percent, respectively, for

the first 18 elastic modes.

34



Table 2.2: Comparisons between the natural frequencies from the FE model and

those from OMA and EMA, where the superscript + denotes an in-plane mode;

measured damping ratios from OMA and EMA are also shown.

Mode fn(Hz)
Results from OMA Results from EMA

fn(Hz) ξ(%) Frequency error (%) fn(Hz) ξ(%) Frequency error (%)

1 1000 999 0.01 - 0.10 998 0.02 - 0.20

2 1421 1431 0.03 0.7 1430 0.02 0.63

3 2756 2757 0.06 0.04 2756 0.05 0

4 3051 3068 0.01 0.56 3069 0.03 0.59

5 5103 5129 0.14 0.51 5127 0.08 0.47

6 5255 5241 0.13 - 0.27 5238 0.11 - 0.32

7 6007 5923 0.08 - 1.41 5921 0.08 - 1.43

8 6426 6346 0.11 - 1.24 6347 0.08 - 1.23

9 7746 7792 0.04 0.59 7790 0.06 0.57

10 8195 8204 0.04 0.11 8203 0.07 0.1

1+ 8209 8335 0.01 1.53 8334 0.05 1.52

11 8885 8936 0.03 0.57 8936 0.01 0.57

12 10663 10748 0.04 0.8 10747 0.05 0.79

13 11053 11134 0.04 0.73 11133 0.05 0.72

14 12971 13080 0.02 0.84 13078 0.03 0.82

2+ 13679 13650 0.01 -0.21 13648 0.01 -0.23

15 13726 13877 0.03 1.1 13875 0.04 1.09

16 14816 14838 0.03 0.15 14840 0.04 0.16
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Modal assurance criteria (MAC) values are employed to compare the measured

mode shapes from OMA and EMA with those from the FE model; the numerical

mode shapes are extracted at the 42 measurement points. The MAC values between

the measured out-of-plane and in-plane mode shapes from OMA and those from the

FE model are shown in Table 2.3(a) and (b), respectively. Note that the measure-

ment point used as the reference point in the out-of-plane mode measurement in

OMA is not included in calculating the MAC values. The MAC values between the

measured out-of-plane and in-plane mode shapes from EMA and those from the FE

model are shown in Table 2.4(a) and (b), respectively. The diagonal MAC values

from OMA and EMA are all above 94 percent and 93 percent, respectively, indicat-

ing that the measured and calculated mode shapes are in excellent correlation; the

off-diagonal MAC values are all below 20 percent, indicating that the mode shapes

of different modes can be considered to be uncorrelated to each other, the number of

the measurement points is adequate, and the distribution of their positions is proper

[41]. The first 16 out-of-plane and first two in-plane elastic mode shapes measured

from OMA are shown in Fig. 2.8.
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Table 2.3: MAC values (in percentage) between the measured (Exp.) mode shapes

from OMA and those from the FE model (Num.): (a) out-of-plane modes, and (b)

in-plane modes.

(a)

Exp.

Num. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 96.1 0.6 0.1 1.3 0.5 14.9 4.3 0.5 1.3 2.9 0.1 0.7 0.7 17.1 1.7 0.1

2 0.4 95.8 1.1 2.6 6.9 0.0 0.2 0.6 2.9 0.2 1.6 1.2 9.3 0.1 0.6 0.0

3 0.5 0.8 98.6 0.2 0.8 0.1 0.3 0.7 0.1 0.7 14.9 7.9 0.6 0.1 0.6 0.0

4 1.2 0.3 0.3 97.8 0.1 0.6 0.6 1.8 7.1 0.5 1.5 1.9 1.0 0.2 1.1 5.7

5 0.1 8.0 3.3 1.9 95.9 0.2 0.2 1.2 3.2 0.3 1.7 2.0 17.5 0.1 0.4 0.1

6 15.2 0.0 0.6 0.1 0.2 97.8 0.1 0.0 0.0 1.3 0.5 0.1 0.0 11.6 3.5 0.0

7 4.0 0.0 1.0 1.1 0.0 1.9 94.7 2.5 2.4 1.9 1.5 2.4 0.1 2.0 12.5 0.2

8 0.9 2.1 0.8 1.1 2.1 0.1 1.2 97.5 0.7 1.9 0.0 9.0 1.5 0.1 2.5 0.2

9 1.6 2.3 0.0 13.1 2.9 0.5 1.4 0.7 97.4 1.5 0.0 0.7 2.3 0.7 1.5 10.4

10 2.4 0.2 0.4 1.4 0.5 1.9 2.1 1.3 5.2 95.9 0.4 2.1 0.7 0.1 11.0 0.1

11 1.1 0.7 19.0 0.3 1.1 0.5 1.6 0.1 0.0 1.0 97.5 0.5 0.5 0.5 1.4 0.0

12 1.3 1.0 2.3 1.8 1.6 0.3 1.0 5.8 1.4 1.6 0.0 96.8 0.1 0.4 1.8 0.0

13 0.4 7.7 1.0 1.6 15.9 0.1 0.6 1.6 1.5 0.4 0.9 4.4 95.2 0.2 0.7 0.2

14 14.9 0.3 0.3 0.2 0.3 10.4 2.6 0.2 0.3 0.0 0.1 0.4 0.0 99.0 1.9 0.1

15 1.7 0.3 0.5 1.6 0.2 2.0 8.1 1.6 0.8 9.8 0.5 2.0 0.3 0.1 95.6 0.3

16 0.8 0.2 0.1 5.4 0.1 0.8 0.3 0.1 8.0 0.1 0.1 0.1 0.2 0.6 2.1 97.0

(b)

Exp.

Num. 1 2

1 97.46 0.03

2 0.27 96.56
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Table 2.4: MAC values (in percentage) between the measured (Exp.) mode shapes

from EMA and those from the FE model (Num.): (a) out-of-plane modes, and (b)

in-plane modes.

(a)

Exp.

Num. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 99.8 0.7 0.4 0.8 0.6 14.1 3.4 0.7 0.8 6.0 0.4 0.9 0.3 17.9 3.7 0.1

2 0.4 99.3 0.5 1.4 7.1 0.0 1.0 1.6 1.1 0.7 0.6 1.8 7.7 0.1 0.8 0.1

3 0.5 0.5 99.7 0.6 0.8 0.0 0.5 0.5 0.3 0.6 18.4 7.7 0.7 0.2 0.8 0.0

4 0.4 2.1 0.5 99.4 2.2 0.0 1.4 1.0 12.2 1.7 0.5 1.0 1.3 0.1 2.2 7.0

5 0.7 7.3 0.2 2.5 98.9 0.1 0.7 1.7 1.8 1.5 0.7 2.0 17.2 0.0 0.7 0.4

6 13.3 0.1 0.0 0.0 0.5 98.6 0.1 0.0 0.3 0.9 0.0 0.0 0.0 10.9 4.5 0.2

7 4.2 0.8 1.0 1.2 0.6 1.6 97.1 2.1 1.1 2.1 1.1 2.3 0.3 2.2 12.8 0.0

8 2.3 0.4 1.3 0.4 0.8 0.1 3.0 95.7 0.2 2.4 0.1 6.6 0.6 0.5 2.3 0.1

9 0.5 1.2 0.4 11.5 1.9 0.0 1.0 0.7 98.8 3.1 0.1 1.0 1.3 0.1 2.6 12.1

10 1.8 0.7 1.9 0.3 0.7 1.9 1.1 2.6 0.2 95.7 1.5 3.4 0.2 0.2 8.5 0.0

11 0.4 0.5 19.3 0.4 0.8 0.2 0.9 0.2 0.6 0.8 99.2 0.6 0.7 0.0 1.3 0.0

12 2.1 1.9 2.5 0.8 1.4 0.5 1.9 7.2 0.2 3.1 0.0 95.4 3.8 0.7 3.0 0.0

13 0.6 7.5 0.1 1.4 17.2 0.1 1.2 0.3 2.5 1.2 0.1 0.1 98.5 0.0 1.4 0.1

14 16.6 0.1 0.2 0.4 0.1 11.6 3.6 0.2 0.2 0.0 0.1 0.3 0.4 98.7 2.9 0.3

15 1.4 0.5 2.1 1.7 0.8 1.8 7.8 1.8 1.2 10.0 2.1 3.6 0.3 0.1 96.4 0.4

16 0.0 0.0 0.3 5.2 0.0 0.0 0.1 0.0 12.8 0.0 0.3 0.1 0.0 0.0 0.0 96.7

(b)

Exp.

Num. 1 2

1 93.33 0.01

2 0.01 98.67
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Figure 2.8: Measured mode shapes from OMA: (a) out-of-plane modes, and (b)

in-plane modes.
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2.1.6 Conclusion

A non-contact OMA test method is presented to measure the out-of-plane

and in-plane modes of a rectangular plate using white noise acoustic excitation in

the frequency range of up to 15,000 Hz. A single-point laser vibrometer is used to

measure the velocities of the measurement points on the plate surface and a free-field

microphone is used to measure the pressure near the reference point. It is shown that

OMA can be performed even when the types of measurement at the measurement

points and the reference point are different and the pressure near a point of a

vibrating structure is proportional to the normal surface acceleration at that point.

The cross-correlation functions between the velocities of the measurement points

and the pressure near the reference point contain modal characteristics of the test

structure, which can be extracted using the associated CPSDs. The in-plane modes

of the plate are identified by comparing the out-of-plane and mixed CPSDs. EMA

is also performed to measure the out-of-plane and in-plane modes of the plate. A

FE model of the plate is created and the numerical results are compared with the

experimental ones from OMA and EMA. The maximum error between the measured

and calculated natural frequencies is 1.53 percent for the first 16 out-of-plane and

first two in-plane elastic modes, and the corresponding MAC values are all above

93 percent.
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2.2 Modal Test Method Using Sound Pressure Transducers Based on

Vibro-acoustic Reciprocity

2.2.1 Introduction

EMA is one of the standard experimental approaches to validate the FE model

of a structure, where the input to the test structure is in the form of a force and

the output from the structure a displacement, velocity, or acceleration response

[1, 42]. When the roving hammer technique is used in EMA, a measurement point

is fixed on the test structure and an impact hammer roves over the structure. The

location of the measurement point is crucial since some mode may not be captured

in the test if the measurement point lies on a nodal line of a mode [43] or in an

inactive area of a local mode. In order to mitigate the problem, EMA can be

conducted using multiple measurement points at different locations. However, it

can be difficult to find the proper locations for the measurement points at which all

the modes of interest can be captured unless an accurate FE model of the structure

is available, providing accurate mode shape information. On the other hand, mass

loading due to the use of multiple sensors on the test structure can affect the accuracy

of measurement [44], especially for a symmetric structure, whose repeated or close

natural frequencies can be destroyed. A laser vibrometer can be used to avoid mass

loading in EMA, but it may not be available in many laboratories. Another critical

aspect of EMA is the excitation method. A shaker can be connected to the test

structure to generate a prescribed excitation force, but the response measurements,
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especially in the neighborhoods of resonant frequencies, can have low signal-to-noise

ratios due to impedance mismatch between the shaker and the test structure [45].

An impact hammer can be used in EMA, but the sensors attached on the structure

far away from the excitation point may not capture much vibration. While acoustic

excitation can excite the surface of the test structure, it is difficult to measure the

acoustic excitation on the surface of the structure. An acoustic modal analysis

method was proposed in [46] to measure the modal characteristics of a structure by

using an impact hammer and microphones, and the time delay due to the use of

microphones was corrected [47]. However, the method does not consider the effects

of the structural-acoustic coupling. When acoustic excitation or measurement is

involved in a modal test, coupling exists in the corresponding structural-acoustic

system, and asymmetry is introduced in the model formulation [48, 49]. As a result,

left and right eigenvectors can be defined for the associated eigenvalue problem, and

the relations between the structural and acoustic components in the left and right

eigenvectors of an undamped coupled system were provided in [50]. The formulation

of a damped structural-acoustic system was given for a closed cavity in [51].

In this section, a VMT method is developed, where an impact hammer roves

over the test structure and sound pressure transducers at fixed locations are used to

measure its dynamic responses. The formulation of a structurally damped structural-

acoustic system in an open environment and the associated eigenvalue problem are

provided. The biorthonormality relations between the left and right eigenvectors

and the relations between the structural and acoustic components of the left and

right eigenvectors are proved. The FRFs used in the VMT method are derived,
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which contain the modal characteristics of the coupled system, and the assump-

tions used in the acoustic modal analysis in [46, 47] are validated. It is assumed in

the VMT method that the natural frequencies and the structural components of the

right eigenvectors of the coupled system can be used to approximate the natural fre-

quencies and mode shapes of the structure. Based on the vibro-acoustic reciprocity,

the VMT method is equivalent to the one, where acoustic excitation sources are

used to excite the test structure and the resulting acceleration is measured, and the

guidelines for using the VMT method, including the types of structures that are

suitable for the method, the positions of the sound pressure transducers, and the

orientation of the test structure relative to the transducers, are provided. The VMT

method and EMA were carried out on an automotive disk brake and the experimen-

tal results were compared. It is experimentally shown that the VMT method can

capture all the out-of-plane modes, including global and local ones, and EMA can

miss certain modes. The differences between the measured natural frequencies of

the first 18 elastic modes by the VMT method and EMA are less than 1% and the

MAC values [1] of the associated modes are all above 90%. The errors between the

measured natural frequencies by the VMT method and the calculated ones from the

FE model are less than 3% for the first 18 elastic modes, and the associated MAC

values are all above 90%. The VMT method was also carried out on a light circuit

board to measure its natural frequencies and mode shapes in the frequency range

of up to 2500 Hz, for which the use of accelerometers can introduce relatively large

mass loading.
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2.2.2 Structural-acoustic System Formulation

2.2.2.1 Eigenvalue Problem

The FE formulation of an undamped, coupled structural-acoustic system has

been given in [48] using a displacement-pressure model for a closed cavity. A similar

FE formulation has been given in [52] for a coupled fluid-structural system, based

on which the FE formulation of a coupled structural-acoustic system in an open

environment can be obtained. To apply this formulation, it is assumed that the

structure is totally submerged in air and the effects of the boundary of air can be

neglected, which yields the following governing equation:



Ms 0

Mc Ma








üs

p̈a





+



Ks Kc

0 Ka








us

pa





=





fs

fa





(2.33)

where us is the n-dimensional displacement vector of the structure and pa is the

m-dimensional sound pressure vector of the acoustic field; fs is the n-dimensional

structural force vector and fa is them-dimensional sound source in the acoustic field;

Ms and Ks are the n×n structural mass and stiffness matrices, respectively; Ma and

Ka are the m×m acoustic mass and stiffness matrices, respectively; andMc and Kc

are the coupling matrices of the system of dimensions m×n and n×m, respectively.

Note that Ms, Ma, Ks, and Ka are symmetric. In Eq. (2.33), the upper and lower

equations represent the structural and acoustic parts of the system, respectively.

The relationship between the two coupling matrices can be expressed by [52]
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Mc = −KT
C (2.34)

A similar relation between the two coupling matrices has been derived for a closed

cavity. Assume that viscous damping effects exist in the structural part in Eq.

(2.33) and those in the acoustic part can be neglected; no coupling exists between

the structural and acoustic damping [53]. Adding structural damping to Eq. (2.33)

yields



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Mc Ma
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0 Ka
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=
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fs

fa
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


(2.35)

where Cs is the symmetric structural damping matrix of dimensions n×n. In order

to determine the natural frequencies and mode shapes of the structural-acoustic

system, it is assumed that the system has no excitation, which yields the following

equation:



Ms 0

Mc Ma


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

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Ks Kc

0 Ka



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

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(2.36)

Due to the coupling between the structure and the acoustic field, it is difficult to

directly solve Eq. (2.36). Let
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M̃ =



Ms 0

Mc Ma


 , C̃ =



Cs 0

0 0
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

Ks Kc

0 Ka


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



us

pa





(2.37)

Equation (2.36) can be written in an equivalent state space form:




−K̃ 0

0 M̃
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
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(2.38)

The solution to Eq. (2.38) is assumed in the form:





y

ẏ
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veλt

λveλt


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

(2.39)

where λ is an undetermined constant and v is an (n+m)-dimensional vector. Let

η =





v

λv





(2.40)

and the following expressions can be obtained:





y

ẏ



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= ηeλt,
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


ẏ

ÿ





= ληeλt (2.41)

Substituting Eq. (2.41) into Eq. (2.38) and canceling eλt yield

λ




−K̃ 0

0 M̃


 η +




0 K̃

K̃ C


 η =





0

0





(2.42)

Let
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S =




−K̃ 0

0 M̃


 , R =




0 K̃

K̃ C


 (2.43)

and Eq. (2.42) can be written as a generalized eigenvalue problem associated with

the structural-acoustic system:

(λS +R) η = 0 (2.44)

Due to asymmetry of the matrices S and R, there exist right and left eigen-

vectors of the eigenvalue problem in Eq. (2.44). Let ηri be the right eigenvector

corresponding to the eigenvalue λi of the eigenvalue problem in Eq. (2.44), which

satisfies

(λiS +R) ηri = 0 (2.45)

The left eigenvector ηlj satisfies

ηlTj (λjS +R) = 0 (2.46)

where the superscript T denotes the transpose of a matrix, or

(
λjS

T +RT
)
ηlj = 0 (2.47)

It is assumed that all the eigenvalues of the eigenvalue problem in Eq. (2.44) are

distinct. Note that while the eigenvalues in Eqs. (2.45) and (2.46) are the same,

the corresponding left and right eigenvectors are not the same [54]. Pre-multiplying

Eq. (2.45) by ηlTj yields
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ηlTj (λiS +R) ηri = 0 (2.48)

Post-multiplying Eq. (2.46) by ηri yields

ηlTj (λjS +R) ηri = 0 (2.49)

Subtracting Eq. (2.49) from Eq. (2.48) yields

(λi − λj) η
lT
j Sη

r
i = 0 (2.50)

If i 6= j, since all the eigenvalues are distinct, by Eq. (2.50), one has

ηlTj Sη
r
i = 0 (2.51)

Substituting Eq. (2.51) into Eq. (2.48) yields

ηlTj Rη
r
i = 0 (2.52)

When i = j, the right and left eigenvectors can be normalized as follows:

ηlTi Sη
r
i = 1 (2.53)

Using Eq. (2.53) in Eq. (2.48) yields

ηlTi Rη
r
i = −λi (2.54)

Equations (2.51) - (2.54) are the biorthonormality relations between the left and

right eigenvectors of the system.
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Assuming that the structural and acoustic components in the left eigenvector

ηli, which are φlsi and φ
l
ai, respectively, can be related to those in the right eigenvector

ηri , which are φrsi and φ
r
ai, respectively:

φlsi = aφrsi, φ
l
ai = bφrai (2.55)

then the left eigenvector ηli can be expressed by

ηli =



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l
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l
ai
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r
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
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(2.56)

Substituting Eq. (2.56) into Eq. (2.46) yields





−aφrTsi λiKs + aφrTsi λiKs = 0

−aφrTsi λiKc − bφrTai λiKs + aφrTsi λiKc + bφrTai λiKs = 0

aφrTsi Ks + aφrTsi λi (λiMs + Cs) + bφrTai λ
2
iMc = 0

aφrTsi Kc + bφrTai Ka + bφrTai λ
2
iMa = 0

(2.57)

Since the first two equations in Eq. (2.57) are identically satisfied, Eq. (2.57)

becomes





aφrTsi Ks + aφrTsi λi (λiMs + Cs) + bφrTai λ
2
iMc = 0

aφrTsi Kc + bφrTai Ka + bφrTai λ
2
iMa = 0

(2.58)

Due to symmetry of Ks, Ka, Ms, and Ma, taking the transpose of Eq. (2.58) and

using Eq. (2.34) in the resulting expressions yield
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



aKsφ
r
si + aλi (λiMs + Cs)φ

r
si − bλ2iKcφ

r
ai = 0

−aMcφ
r
si + bKaφ

r
ai + bλ2iMaφ

r
ai = 0

(2.59)

Expanding Eq. (2.45) using Eqs. (2.40) and (2.43) yields



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r
si − λiKcφ

r
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r
si + λiKcφ

r
ai = 0

−λiKaφ
r
si + λiKaφ

r
si = 0

Ksφ
r
si +Kcφ

r
ai + λi (λiMs + Cs)φ

r
si = 0

Kaφ
r
ai + λ2iMcφ

r
si + λ2iMaφ

r
ai = 0

(2.60)

Since the first two equations in Eq. (2.60) are identically satisfied, Eq. (2.60)

becomes





Ksφ
r
si +Kcφ

r
ai + λi (λiMs + Cs)φ

r
si = 0

Kaφ
r
ai + λ2iMcφ

r
si + λ2iMaφ

r
ai = 0

(2.61)

Comparing Eqs. (2.59) and (2.61), one has a = κ and b = − κ
λ2i
, where κ can be any

non-zero constant. Hence, by Eq. (2.56), the left eigenvector ηli can be expressed by

ηli =


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l
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
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= κ


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− 1
λ2i
φrai

λiφ
r
si

− 1
λi
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
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

(2.62)

For the convenience of discussion, let κ = 1, and one can obtain from Eq. (2.62)

the relation between the structural components of the left and right eigenvectors:

φlsi = φrsi (2.63)
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and that between the acoustic components:

φlai = − 1

λ2i
φrai (2.64)

2.2.2.2 FRFs

A sinusoidal force Feiωt with frequency ω is applied on the structural part

of the system described by Eq. (2.44), where F =

{
F T
s 0T

}T
is an (n + m)-

dimensional vector, in which Fs =

{
fs1 fs2 . . . fsn

}T
is an n-dimensional

structural force vector. Assuming a harmonic response of the system with frequency

ω and canceling eiωt yield

(R + iωS) η =





0

F





(2.65)

A coordinate transformation is applied on η by letting

η = Φrq (2.66)

where Φr =

[
ηr1 . . . ηr(m+n) ηr∗1 . . . ηr∗(m+n)

]
, in which the superscript ∗ de-

notes complex conjugation, is a matrix containing the right eigenvectors, and q is

a 2×(n+m)-dimensional modal coordinate vector. Substituting Eq. (2.66) into Eq.

(2.65), pre-multiplying the resulting expression by ΦlT , where Φl =

[
ηl1 . . . ηl(m+n) ηl∗1 . . . η

is a matrix containing the left eigenvectors, and applying the biorthonormality re-

lations of the left and right eigenvectors in Eqs. (2.51) - (2.54) yield
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Λq = ΦlT





0

F





(2.67)

where Λ = diag

[
−λ1 + iω, . . . , −λm+n + iω, −λ∗1 + iω, . . . , −λ∗m+n + iω

]
.

The modal coordinate vector q can be obtained from Eq. (2.67):

q = Λ−1ΦlT





0

F





(2.68)

Substituting Eq. (2.68) into Eq. (2.66) yields

η = Φrq = ΦrΛ−1ΦlT





0

F





(2.69)

The ratio of the pressure pai measured at point i in the acoustic field to the applied

force fsj at point j on the structure is

pai
fsj

=

m+n∑

h=1

(
λhφ

r
ahiφ

l
shj

−λh + iω
+

(
λhφ

r
ahiφ

l
shj

)∗

−λ∗h + iω

)
(2.70)

Using Eq. (2.63) in Eq. (2.70) yields

pai
fsj

=
m+n∑

h=1

(
λhφ

r
ahiφ

r
shj

−λh + iω
+

(
λhφ

r
ahiφ

r
shj

)∗

−λ∗h + iω

)
(2.71)

While the matrices M̃ and K̃ are non-symmetric, the modal characteristics of

the system described by Eq. (2.35) are contained in Eqs. (2.70) and (2.71), and

can be extracted from the FRFs in Eqs. (2.70) and (2.71) with the roving hammer

technique using a well-developed modal analysis algorithm, such as PolyMax [30].
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In the acoustic modal analysis in [46, 47],it is assumed that the sound pressure

linearly varies with the amplitude of vibration of the test structure at a certain

frequency , which is proportional to the amplitude of excitation at an input point.

Hence the sound pressure is proportional to the amplitude of excitation at the

input point at a certain frequency, which can be validated by Eq. (2.70). It is

further assumed in [46, 47] that the amplitude of vibration of the test structure

at a certain natural frequency varies with the modal coefficient of the input point,

and the sound pressure per unit excitation force at the input point at the natural

frequency is proportional to the modal coefficient of the input point. In Eq. (2.70),

let ω = ωk, where ωk is the natural frequency of the k-th mode of the structural-

acoustic system; the sound pressure per unit excitation force at the natural frequency

ωk can be approximated by

pai
fsj

=
λkφ

l
akiφ

l
skj

−λk + iωk
(2.72)

where φlskj is the modal coefficient of the input point j for the k-th mode, and the

second assumption in the acoustic modal analysis in [46, 47] can be validated. Note

that in the acoustic modal analysis in [46, 47], the measured natural frequencies of

the test structure are the ones of the structural-acoustic system, and the measured

mode shapes are the structural components of the left eigenvectors of the coupled

system; this would also be the case for the VMT method, as illustrated below.
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2.2.3 Modal Test Based on Vibro-acoustic Reciprocity

Based on Eq. (2.70), the VMT method can measure the natural frequencies

and the structural components of the left eigenvectors of the coupled system using

an impact hammer and one or multiple sound pressure transducers. By Eqs. (2.63)

and (2.71), the VMT method can measure the natural frequencies and the structural

components of the right eigenvectors of the coupled system. Assuming that the nat-

ural frequencies and mode shapes of the structure in the structural-acoustic system

described by Eq. (2.35) can be approximated by the natural frequencies and the

structural components of the right eigenvectors of the coupled system, respectively,

one can use the VMT method to measure the natural frequencies and mode shapes

of the structure.

A vibro-acoustic reciprocity can be applied to a structural-acoustic system

consisting of a linear elastic structure that is contiguous with air, based on which

the transfer function between a structural force applied to the structure and the

resulting sound pressure in rest contiguous air can be determined by exciting the

structure with an omnidirectional point sound source and measuring the resulting

acceleration of the structure [55]. The vibro-acoustic reciprocity is also referred to

as Lyamshev reciprocity, and can be expressed by

pai
fsj

= −asj
q̇ai

(2.73)

where fsj is the applied force to point j on the structure, pai is the measured sound

pressure at point i in air induced by fsj , q̇ai is the volume acceleration of the point
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sound source at point i in air, and asj is the acceleration of point j on the structure

induced by the point sound source. Note that fsj and asj are in the same direction

and q̇ai represents the strength of the point sound source.

Based on the vibro-acoustic reciprocity, the VMT method is equivalent to the

one where one or multiple omnidirectional point sound sources of known strengths

are used to excite the structure and the resulting acceleration is measured. When the

roving hammer technique is used, the measured mode shapes by the VMT method

and EMA are in the directions of impacts. Since the impact directions are usually

perpendicular to the surfaces being impacted, the merely in-plane modes cannot

be excited by the VMT method and EMA, and only the out-of-plane components

of mode shapes can be measured. A difference between the VMT method and

EMA lies in the measurements of the dynamic responses of the structure since the

former measures the pressure in air and the latter measures the acceleration of the

structure. If one sound pressure transducer and one accelerometer are used in the

VMT method and EMA, respectively, the FRFs from the former can be considered

to be obtained by multiple inputs and a single output as if a point sound source and

an accelerometer were used, according to Eq. (2.73), while those from the latter are

obtained by a single input and a single output. Assuming that the excitation points

are properly selected on the test structure and all the modes within a frequency

range of interest can be excited, this difference enables the VMT method to capture

all the out-of-plane modes of the structure of interest, including global and local

ones, while EMA can miss some of the modes if the positions of the measurement

points are improperly selected. The problem can occur when a measurement point
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in EMA is on a nodal line of a mode or in an inactive area of a local mode, which

cannot be captured by the resulting FRFs. This problem will not occur in the VMT

method, since the sound pressure transducer is located away from the test structure.

Though the value of φrahi for a certain mode h in Eq. (2.71) can be relatively low,

it does not vanish in that the pressure measured at the natural frequency ωh by the

sound pressure transducer does not vanish unless the excitation point is on a nodal

line or in an inactive area of the mode. Use of multiple sound pressure sensors in

the VMT method can help improve the measurement quality.

The VMT method is applicable to structures of any shapes when no noise is

involved in the measurement of sound pressure. When noise is involved, the method

may not be suitable for slender structures and structures with small surface areas.

As illustrated in Fig. 2.9, the area of the surface of a structure facing an ideal

point sound source is Sf ; projecting the surface to a sphere with the center at the

sound source, a constant radius r, and a surface area St = 4πr2 gives a surface

with an area Sp. The portion of the sound power that can reach the structure from

the point source with a power W is βW , where β = Sp

St
is independent of r. A

structure with a small value of β cannot be well excited by the point source, and the

measured transfer functions between the strength of the point sound source and the

resulting accelerations on the structure have low SNRs. Consequently, based on the

vibro-acoustic reciprocity, the measured FRFs in the VMT method using an ideal

omnidirectional point sound pressure transducer at the location of the point sound

source have low SNRs. Since the value of β is almost inversely proportional to the

square of the distance between the sound pressure transducer and the structure,
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placing the sound pressure transducer close to the structure can increase the value

of β. The sound pressure transducers should also be placed on the same side of

the impacted surfaces of the structure to increase the SNRs of the measured FRFs.

One should adjust the orientation of the structure so that a larger projected surface

area can be obtained, which results in a larger β. However, for slender structures

such as cables, and structures with small surface areas such as truss structures, the

values of β can remain relatively small even if a sound pressure transducer is placed

close to them. Hence the VMT method is more suitable for plate-like structures and

structures with relatively large surface areas.

Figure 2.9: Portion of the acoustic power from a point sound source with a power

W transmitted to the area Sp projected from the surface of a structure facing the

point source.
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2.2.4 Experimental Validation

A case study was performed on an automotive disk brake using both the VMT

method and EMA in Sec. 4.1. The experimental results from the two methods were

compared and validated using the FE model in Sec. 4.2. The VMT method was also

used on a light circuit board to measure its natural frequencies and mode shapes in

Sec. 4.3.

2.2.4.1 VMT Method and EMA on a Disk Brake

The disk brake was placed on foams, as shown in Fig. 2.10a, to simulate the

free boundary conditions. For both the VMT method and EMA, the brake was

excited at 146 points on the flange and in the bolted area, as shown in Fig. 2.10b,

using a PCB 086D80 impact hammer. The excitation direction was perpendicular

to the brake surfaces. In order to distinguish some of the modes with close natural

frequencies due to almost axial-symmetry of the brake, multiple random impacts

[56] were given at every excitation point for four seconds in each test, which results

in a frequency resolution of 0.25 Hz, and three tests were averaged to ensure repeat-

able results with a good coherence. The responses of the brake were measured using

one PCB U130D20 and two PCB 130E20 microphones and four PCB 352C66 ac-

celerometers for the VMT method and EMA, respectively; the data were collected

using an LMS spectrum analyzer. For the VMT method, the three microphones

were placed at fixed locations near the brake and pointing towards it, as shown in

Fig. 2.10a. For EMA, two sets of tests were conducted; the four accelerometers were
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attached in one set of tests on the bottom surface of the flange, and in the other

set of tests on the bottom surface of the bolted area. Note that the microphones

used in the VMT method here are of the free-field type, whose measurements are

most accurate when the sound pressure from a single source and a single direction

is measured. Since the flange and the bolted area of the brake are flat surfaces, and

the microphones were placed not too close to the brake and pointing towards the

brake, the measurements of the sound pressure by the microphones can be used in

the VMT method by assuming that the sound pressure in the directions perpendic-

ular to those in which the microphones can accurately measure the sound pressure

can be neglected.
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(a)

(b)

Figure 2.10: (a) Test setup for the VMTmethod on the disk brake, and (b) excitation

points for the VMT method and EMA.
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2.2.4.2 Results and Discussion

Modal analysis was conducted using PolyMax [30] in the modal analysis soft-

ware LMS Test.Lab Rev. 9b; the measured natural frequencies and mode shapes of

the brake by the VMT method were extracted from three sets of measured FRFs

from the three microphones, and those by EMA from eight sets of measured FRFs

from the four accelerometers. The highest natural frequency of the rigid body modes

of the brake in the tests is 36.75 Hz, which is lower than 10% of the natural fre-

quency of the first elastic mode, and the boundary conditions can be considered to

be free [1]. In order to experimentally validate the assumption in Sec. 3 that the

natural frequencies and mode shapes of the structure can be approximated by the

natural frequencies and the structural components of the right eigenvectors of the

coupled system, respectively, the natural frequencies of the first 18 elastic modes

of the brake from the VMT method and EMA were compared in Tables 2.5 and

2.6, respectively, and the maximum natural frequency difference is 0.74%. The dif-

ferences between the two sets of measured natural frequencies mainly derive from

mass loading introduced by the accelerometers in EMA, since all of the measured

natural frequencies from EMA, except that of the fifth elastic mode, are lower than

the corresponding ones from the VMT method; the measured natural frequency of

the fifth elastic mode from EMA is higher than that from the VMT method due

to measurement error. The MAC values of the associated mode shapes, which are

the diagonal entries of the MAC matrix [1] in Table 2.6, are all over 90%. Some

off-diagonal entries in Table 2.6 are relatively high due to two reasons. One reason
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is that the number of excitation points is not large enough and some mode shapes

cannot be well distinguished from others. The second reason is that the mode shapes

were not measured in three dimensions in the tests using the two methods. The im-

pact hammer excited the brake in the direction perpendicular to the surfaces of the

flange and the bolted area, and only the out-of-plane mode shapes were measured;

one cannot excite the brake in the directions parallel to the surfaces of the flange and

the bolted area and the interior points of the brake. If the in-plane components of

two distinct modes are not measured, their out-of-plane components can be similar

and the corresponding MAC value of the two mode shapes can be relatively high

[2].
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Table 2.5: Measured natural frequencies of the disk brake by the VMT method and

EMA.

Mode
VMT

Frequency (Hz)

EMA

Frequency (Hz)

Frequency

Difference (%)

1 1072.4 1064.5 0.74%

2 1073.8 1070.2 0.34%

3 1237.2 1231.0 0.50%

4 1576.5 1574.5 0.13%

5 1576.7 1578.1 -0.09%

6 1617.4 1608.9 0.53%

7 1620.4 1612.8 0.47%

8 2004.4 2003.2 0.06%

9 2115.5 2113.3 0.10%

10 2115.9 2114.1 0.09%

11 2428.3 2412.1 0.67%

12 2429.3 2421.0 0.34%

13 2591.6 2591.0 0.02%

14 2600.8 2600.2 0.02%

15 3504.0 3503.3 0.02%

16 3504.1 3503.4 0.02%

17 3918.8 3918.1 0.02%

18 3940.5 3938.7 0.05%
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Table 2.6: Entries of the MAC matrix in percent corresponding to the first 18 mea-

sured mode shapes of the disk brake by the VMT method and EMA; the horizontal

and vertical mode numbers correspond to the measured modes by the VMT method

and EMA, respectively.

Mode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 96 49 6 4 4 6 2 1 17 29 11 2 0 0 4 2 1 2

2 41 95 5 2 7 7 4 1 32 28 5 3 0 1 2 3 4 3

3 10 3 98 17 7 5 0 57 5 5 4 3 5 8 1 5 3 8

4 1 2 8 92 34 2 8 9 3 6 1 3 45 22 2 5 3 3

5 0 8 4 29 91 13 13 3 4 2 3 0 18 21 1 3 0 2

6 3 4 2 10 3 91 28 1 2 3 5 10 3 2 2 2 1 1

7 2 7 2 3 9 46 97 1 2 3 3 6 2 3 5 3 1 1

8 1 1 64 9 5 2 1 100 7 3 3 2 7 7 1 1 5 11

9 20 25 6 3 11 4 5 8 90 16 5 4 1 1 4 2 25 2

10 26 37 6 2 2 7 2 4 40 94 4 2 2 3 1 1 15 25

11 9 6 4 2 4 7 2 1 5 6 92 29 3 3 8 7 1 1

12 3 6 3 3 2 6 4 0 2 7 43 96 0 0 6 12 0 1

13 0 0 3 36 20 0 1 2 0 2 5 3 91 11 1 1 5 3

14 0 0 7 17 36 3 5 6 1 3 2 0 28 99 1 1 7 5

15 1 3 3 3 1 3 5 0 1 3 2 5 0 0 95 14 0 1

16 3 2 0 1 2 6 3 0 2 4 6 6 0 0 26 94 1 0

17 1 2 5 4 2 0 0 8 31 9 1 1 11 8 2 2 94 11

18 3 1 7 2 4 0 1 7 9 34 1 0 13 4 0 0 34 97

The sums of the measured FRFs in the neighborhoods of the first two elastic

modes by the VMT method and EMA are shown in Fig. 2.12a, where the mea-

surements are from a microphone away from the brake and an accelerometer on the
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flange, respectively. Since the brake is almost axial-symmetric, there are pairs of

close frequencies, and the associated peaks in the measured FRFs can be close to

each other or overlapped depending on the frequency resolution used. As shown

in Fig. 2.12a, there is only one peak that can be observed in the summed FRF

from the VMT method, from which two distinct modes can be identified by the

modal analysis software and their natural frequency difference is 1.6 Hz. The ac-

tual natural frequency difference between the two modes may be smaller than 1.6

Hz and two separate peaks representing the two close natural frequencies may be

observed if a higher frequency resolution is used in the test. On the other hand,

there are two separate peaks corresponding to the two modes in the summed FRF

from EMA due to mass loading from the accelerometers, which increases the nat-

ural frequency difference to 5.7 Hz. Hence the VMT method is more suitable for

an axial-symmetric structure since it can preserve close natural frequencies of the

structure due to axial-symmetry.

The sums of the measured FRFs by EMA, where the measurement points are

on the flange and in the bolted area of the brake, and that of the measured FRFs

by the VMT method are shown in Fig. 2.12b. As shown in Fig. 2.12b, the peaks

correspondingto modes 11 and 12 cannot be identified in the summed FRF for which

the measurement point is in the bolted area; the same observation can be made for

modes 15 and 16. The reason is that the bolted area is inactive for the four modes,

whose vibrations cannot be measured by the accelerometer. On the other hand,

the peaks corresponding to the four modes can be clearly identified in the summed

FRF by the VMT method. The peaks corresponding to modes 17 and 18 cannot be
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observed in the two summed FRFs for which the measurement points were on the

flange and in the bolted area, respectively. However, the peaks corresponding to the

two modes can be clearly identified in the summed FRF from the VMT method, as

shown in Fig. 2.12b, since the VMT method can capture all the out-of-plane modes,

including global and local ones. In the VMT method, the pressure measured by a

microphone is from the vibration of the impacted surface of the brake; the quality of

the pressure measurement would not be affected much by the nodal lines and local

modes of the brake. If the locations of the microphones and the orientation of the

brake relative to the microphones comply with the guidelines in Sec. 3, the VMT

method would be more efficient than EMA.
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Figure 2.11: (a) Summed FRFs by the VMT method and EMA in the neighborhood

of the first two elastic modes, and (b) summed FRFs by the VMT method and EMA

from 2250 Hz to 4050 Hz.
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In order to validate the experimental results, an intensive FE model of the

brake was created using solid tetrahedral elements in the commercial FE software

Abaqus 6.9 EF. The brake is made of cast iron Class 25 with an elastic modulus of

113.7 GPa, a Poisson’s ratio of 0.28, and a mass density of 7200 kg/m3. The profile

and the FE model of the brake are shown in Fig. 2.12. Note that the unit in the

profile is mm.

(a)

(b)

Figure 2.12: (a) The profile and (b) the FE model of the disk brake.
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The calculated natural frequencies of the first 18 elastic modes of the brake

from the FE model and the measured ones by the VMT method and EMA are

shown in Table 2.7. The errors between the measured natural frequencies by the

VMT method and EMA and the calculated ones from the FE model are less than

3%, except that the error for the 11th elastic mode by EMA is 3.26%. The calculated

three-dimensional mode shapes from the FE model and the measured out-of-plane

ones by the VMT method are shown in Table 2.8. Note that the in-plane components

of the calculated eighth and ninth elastic mode shapes in Table 2.8 are relatively

large compared to their out-of-plane ones. Note also that the eighth through tenth

modes from the VMT method and EMA in Table 2.5 correspond to the tenth, eighth,

and ninth modes from the FE model, respectively, and the order for the three modes

from the VMT method and EMA has been shifted in Tables 2.7 and 2.8 according

to that of the FE model. The MAC matrices for the out-of-plane components of

the measured mode shapes by the VMT method and EMA and the calculated ones

from the FE model are shown in Tables 2.9 and 2.10, respectively; the MAC values

are all over 90%.
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Table 2.7: Comparison of measured natural frequencies by the VMT method and

EMA with the calculated ones from the FE model.

Mode
Numerical

Frequency (Hz)

VMT

Frequency (Hz)

Error

(%))

EMA

Frequency (Hz)

Error

(%))

1 1062.5 1072.4 0.93% 1064.5 0.19%

2 1062.7 1073.8 1.04% 1070.2 0.71%

3 1236.7 1237.2 0.03% 1231.0 -0.46%

4 1593.3 1576.5 -1.05% 1574.5 -1.18%

5 1594.0 1576.7 -1.09% 1578.1 -1.00%

6 1651.1 1617.4 -2.04% 1608.9 -2.56%

7 1651.3 1620.4 -1.87% 1612.8 -2.33%

8 2055.3 2115.5 2.93% 2113.3 2.82%

9 2055.5 2115.9 2.94% 2114.1 2.85%

10 2061.8 2004.4 -2.78% 2003.2 -2.84%

11 2493.3 2428.3 -2.61% 2412.1 -3.26%

12 2493.6 2429.3 -2.58% 2421.0 -2.91%

13 2656.5 2591.6 -2.44% 2591.0 -2.47%

14 2666.7 2600.8 -2.47% 2600.2 -2.49%

15 3601.3 3504.0 -2.70% 3503.3 -2.72%

16 3601.5 3504.1 -2.70% 3503.4 -2.72%

17 3995.1 3918.8 -1.91% 3918.1 -1.93%

18 4015.1 3940.5 -1.86% 3938.7 -1.90%
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Table 2.8: Mode shapes of the first 18 elastic modes of the brake from the FE model

and the VMT method.

Mode
FE Mode

Shape

VMT Mode

Shape

Mode
FE Mode

Shape

VMT Mode

Shape

1 10

2 11

3 12

4 13

5 14

6 15

7 16

8 17

9 18
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Table 2.9: Entries of the MAC matrix in percent corresponding to the first 18

calculated mode shapes of the disk brake from the FE model and the measured ones

by the VMT method; the horizontal and vertical mode numbers correspond to the

calculated and measured modes, respectively.

Mode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 96 15 5 1 3 11 2 2 23 49 6 7 0 0 6 6 1 2

2 29 91 3 4 5 17 8 1 36 45 4 9 0 0 2 4 1 1

3 2 3 99 1 3 1 1 54 4 1 0 5 5 4 1 6 5 6

4 10 2 16 90 32 3 7 7 6 6 7 8 39 4 5 9 2 3

5 8 5 7 9 93 9 11 5 4 7 3 1 5 37 0 3 4 4

6 8 1 3 2 8 92 22 2 1 6 16 3 1 3 6 7 0 0

7 5 6 2 11 13 16 94 1 4 1 3 15 1 4 3 8 0 1

8 0 1 70 3 2 0 0 99 1 0 0 1 5 2 0 1 7 7

9 19 33 7 4 2 6 4 7 91 24 4 1 1 0 2 4 35 11

10 28 20 4 6 2 9 3 3 26 90 5 8 2 3 1 1 20 34

11 1 6 4 2 3 6 1 2 4 2 94 16 6 3 12 18 1 1

12 5 2 2 1 2 8 7 2 2 2 28 92 3 1 11 12 1 0

13 1 0 6 43 19 1 1 7 2 3 1 1 98 13 0 0 5 12

14 0 0 7 28 33 1 0 8 1 3 0 1 33 91 0 0 9 8

15 5 2 1 2 1 4 5 1 2 2 3 10 1 1 94 15 2 1

16 3 3 5 5 3 4 4 2 3 2 10 15 2 1 8 90 1 1

17 1 3 2 3 2 1 0 4 27 6 1 0 6 5 0 1 97 9

18 3 2 9 4 1 0 0 11 6 26 1 1 7 4 1 0 34 93
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Table 2.10: Entries of the MAC matrix in percent corresponding to the first 18

calculated mode shapes of the disk brake from the FE model and the measured ones

by EMA; the horizontal and vertical mode numbers correspond to the calculated

and measured modes, respectively.

Mode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 95 18 5 2 3 12 4 2 19 51 10 6 0 0 3 3 0 1

2 25 95 3 1 2 12 3 1 41 41 9 6 0 0 1 6 2 1

3 4 3 98 0 4 2 1 48 1 4 3 4 3 5 1 7 5 6

4 2 2 7 90 36 2 2 8 1 4 5 4 41 6 3 5 2 4

5 7 1 3 19 96 11 3 5 3 4 3 1 18 27 2 4 0 1

6 5 10 3 5 7 95 14 1 7 2 8 6 3 4 4 3 1 0

7 4 8 0 8 8 28 93 1 6 1 3 12 1 3 2 4 1 0

8 1 0 71 2 2 0 0 99 1 0 0 1 3 3 0 1 7 7

9 23 38 6 2 9 4 2 7 94 14 6 1 0 0 2 4 31 10

10 24 27 7 3 2 7 4 3 31 90 5 5 1 3 1 3 17 29

11 11 2 3 1 4 7 2 1 3 8 93 8 2 3 12 14 0 1

12 3 1 2 1 1 2 7 1 2 1 29 92 0 0 16 11 0 0

13 0 0 3 34 33 0 0 4 1 1 1 1 91 46 0 0 2 4

14 0 0 6 26 35 0 0 7 1 3 1 0 26 94 0 0 10 7

15 5 1 2 2 2 7 3 1 1 2 8 10 0 0 94 2 0 0

16 1 1 0 1 3 2 3 0 0 2 8 7 0 0 24 90 0 0

17 1 2 6 4 1 0 0 8 29 2 0 0 9 2 0 0 95 18

18 1 2 7 5 1 0 0 8 5 30 0 0 10 1 0 0 33 95

73



2.2.4.3 VMT Method on a Circuit Board

The circuit board, with a length of 174 mm and a width of 120 mm, was

hung using four light cotton ropes to simulate the free boundary conditions, and

there were 143 excitation points on the surface of the board, as shown in Fig. 2.13.

The board was excited using an MSC-1 miniature impact hammer connected to an

INV1841A amplifier, and the dynamic responses of the board were measured using

two INV9206 microphones; the data were collected using an INV3020C-CPCI data

acquisition system. Since the two microphones used in the test are of the free-field

type, they were pointing towards the board and placed on the same side of the

impacted surface of the board and close to it. Modal analysis was performed using

the eigensystem realization algorithm in the modal analysis software DASP-V10 Pro.

to extract the natural frequencies and mode shapes of the first 18 elastic modes of

the board, as shown in Table 2.11. Since the highest natural frequency of the rigid

body modes is less than 10 Hz, which is lower than 10% of the natrual frequency of

the first elastic mode, the boundary conditions can be considered to be free.
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Figure 2.13: Test setup for the VMT method on the circuit board and the excitation

points on it.
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Table 2.11: Natural frequencies and mode shapes of the first 18 elastic modes of the

circuit board from the VMT method.

Mode

Natural

Frequency

(Hz)

Mode

Shape

Mode

Natural

Frequency

(Hz)

Mode

Shape

1 225.3 10 1201.9

2 311.7 11 1556.6

3 397.6 12 1577.2

4 539.4 13 1603.6

5 574.9 14 1762.4

6 863.8 15 1984.6

7 983.5 16 2088.1

8 1031.0 17 2172.9

9 1053.3 18 2264.9
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2.2.5 Conclusion

The VMT method developed here is based on the assumption that the natu-

ral frequencies and mode shapes of the test structure can be approximated by the

natural frequencies and the structural components of the right eigenvectors of the

structurally damped structural-acoustic system, respectively. The coupling between

the structure and the acoustic field in a structural-acoustic system introduces asym-

metry in the model formulation. The associated eigenvalue problem is derived using

an equivalent state space formulation for the coupled system. The biorthonormality

relations between the left and right eigenvectors and the relations between the struc-

tural and acoustic components in the left and right eigenvectors are proved. The

frequency response function used in the VMT method is derived, which contains the

modal characteristics of the coupled system. Based on the vibro-acoustic reciprocity,

the VMT method can measure all the out-of-plane modes and its measurement qual-

ity will not be affected by a nodal line of a mode and an inactive area of a local

mode of the structure; the guidelines for using the VMT method are provided, in-

cluding the types of structures that are suitable for the method, the positions of the

sound pressure transducers, and the orientation of the test structure relative to the

transducers. Modal tests were carried out on an automotive disk brake using the

VMT method and EMA, where multiple microphones and accelerometers were used

to measure its dynamic responses induced by impacts, respectively. The differences

between the measured natural frequencies of the first 18 elastic modes by the VMT

method and EMA are less than 1% and the MAC values of the associated mode
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shapes are all above 90%. The errors between the measured natural frequencies by

the VMT method and those from the FE model are less than 3% for the first 18

elastic modes, and the MAC values of the associated mode shapes are all above 90%.

It is shown that the VMT method can not only preserve close natural frequencies

of the brake due to axial-symmetry, but also measure all the out-of-plane modes

within the frequency range of interest, including global and local ones. The VMT

method was also successfully carried out on a light circuit board to measure the

natural frequencies and mode shapes of its first 18 elastic modes.
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Chapter 3

DIGITAL SIGNAL PROCESSING FOR MODAL ANALYSIS

3.1 Accurate and Efficient Calculation of Correlation Functions and

Power Spectra

3.1.1 Introduction

Modal analysis is the study of modal properties of a structure, including nat-

ural frequencies, mode shapes, and damping ratios [1]. One criterion to categorize a

modal analysis technique is whether excitation given to a structure needs to be mea-

sured. If it is needed, the technique is referred to as EMA; otherwise, it is referred

to as OMA, or output-only modal analysis. To conduct EMA, IRFs and FRFs of a

structure that show relations between measured responses and excitations in time

and frequency domains are analyzed to estimate its modal properties, respectively.

If there exist unmeasured excitations that can introduce non-negligible responses

of a structure in EMA, the resulting IRFs, FRFs, and estimated modal properties

can be erroneous. Moreover, excitations given to a structure should have relatively

large amplitudes to maintain high SNRs of the resulting IRFs and FRFs, but it

can be difficult to excite a large structure to measure its IRFs and FRFs with high

SNRs. Hence EMA is suitable for a small or intermediate structure in a laboratory

environment, where excitation to the structure can be well controlled and precisely
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measured. Unlike EMA, OMA can be conducted on a structure of any size un-

der excitation that is unknown or difficult to measure [57, 9], and cross-correlation

functions and cross-power spectra between a reference response and other measured

responses of the structure can be analyzed to estimate its modal properties. For

large structures in ordinary operations, such as bridges under traffic loads [58, 59],

rotating blades of wind turbines [60], and high-rise buildings under wind excitations

[61, 62], it can be relatively easy to conduct OMA, which can provide more prac-

tical modal properties in that only modes that are excited in operations or under

environmental influences are measured.

OMA was first proposed as a modal analysis technique for a structure under

natural excitation (known as NExT), i.e., white noise excitation [3], where a cross-

correlation function of a non-negative time delay between a reference response and

a measured response of the structure is shown to be a sum of sinusoidals with modal

properties of the structure, which is similar to an IRF [63]. It is proposed in Ref. [63]

that cross-power spectra associated with such cross-correlation functions, referred

to as half spectra, be used in OMA to avoid false results. Besides NExT, there are

other OMA techniques, such as the random decrement computation technique [64],

stochastic subspace identification technique [65], frequency domain decomposition

technique [66], sparse component analysis technique [67], and short-time Fourier-

transformed independent component analysis technique [68]. Due to the similarity

between a cross-correlation function of a non-negative time delay and an IRF, any

modal property estimation techniques that are applicable for IRFs and FRFs in

EMA can be applied to cross-correlation functions of non-negative time delays and
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half spectra in NExT, respectively. NExT has become one of the most widely used

OMA techniques in modal analysis software. Cross-correlation functions and asso-

ciated cross-power spectra can be efficiently calculated using the cross-correlation

theorem and transforms, including the discrete Fourier transform (DFT) and in-

verse DFT (IDFT). However, the resulting functions and spectra can be physically

erroneous due to periodic extension of the DFT, which is false most of the time

[69]. While the error, if it exists, has been identified and a methodology has been

proposed to reduce it [70], the resulting functions and spectra are still physically

erroneous. By now, the problem has not been fundamentally solved in an efficient

manner; cross-correlation functions and cross-power spectra can be accurately but

inefficiently calculated using their definitions.

In this work, errors in calculating discrete cross-correlation functions and as-

sociated cross-power spectra between a reference data series and a measured data

series due to direct application of the cross-correlation theorem and transforms are

shown. While the errors can be reduced by padding zero series that have the same

length as the reference and measured data series to their ends [70], the results are

still physically erroneous. A new methodology for calculating cross-correlation func-

tions of non-negative time delays and associated half spectra between the reference

and measured data series is proposed. A coherence function, a convergence function

in the frequency domain, and a convergence index are introduced to evaluate qual-

ities of measured cross-correlation functions and cross-power spectra. In the new

methodology, before applying the cross-correlation theorem and transforms at each

sampling period, a zero series that has the same length as the reference data series
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is padded to its end, and the measured series is extended by stitching the measured

data series of the next sampling period to its end, which makes the lengths of the

two series be that of two sampling periods. Time for calculating a cross-correlation

function can be greatly reduced, compared with that by directly applying its def-

inition; the resulting cross-correlation function is in perfect accordance with the

exact one, and so is the associated half spectrum. The methodology is extended

to calculate cross-correlation functions of any time delays, including negative and

non-negative ones, and associated full spectra in an accurate and efficient manner.

The new methodology was numerically and experimentally applied to an ideal two-

degree-of-freedom (2-DOF) mass-spring-damper system and a damaged aluminum

beam, respectively, and OMA was conducted using half spectra to estimate their

natural frequencies, damping ratios, and mode shapes, which were compared with

those from complex model analysis [71] and EMA, respectively.

3.1.2 Methodology

An accurate and efficient methodology for calculating discrete cross-correlation

functions of non-negative time delays between two measured data series and asso-

ciated half spectra is proposed in Secs. 2.1 and 2.2, respectively; the methodology

is then extended to calculate cross-correlation functions of any time delays and as-

sociated full spectra in an accurate and efficient manner. A coherence function, a

convergence function in the frequency domain, and a convergence index are intro-

duced in Sec. 2.3.
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3.1.2.1 Accurate and Efficient Calculation of Discrete Cross-correlation

Functions

The cross-correlation function between two real continuous functions u(t) and

v(t) can be defined by [2]

Ru,v(t) =

∫ ∞

−∞

u(τ)v(τ + t)dτ (3.1)

where t is the time delay, and u(t) and v(t) can be considered as a reference and

a measurement function in OMA, respectively. If u(t) = v(t), Ru,v(t) is referred to

as the auto-correlation function of u(t). When both u(t) and v(t) are discrete, the

cross-correlation function becomes

Ru,v
m = lim

N→∞

N∑

r=−N

1

Fs
urvr+m (3.2)

where 1
Fs

is the time increment of ur and vr, in which Fs is the sampling frequency,

and m is directly related to the time delay, since m
Fs

is equivalent to t in Eq. (3.1).

When both u(t) and v(t) are discrete and have finite lengths, which is a usual case

for OMA, the cross-correlation function becomes

Ru,v
m =

Ns−1∑

r=0

1

Fs
urvr+m (3.3)

where Ns = TsFs is the number of sampling period in one sampling period of u(t)

and v(t), in which Ts is the length of the period.

If full sequential values of Ru,v
m are calculated using Eq. (3.3), one needs to

conduct Ns multiplications for each Ru,v
m , and it can be computationally inefficient.

In order to accelerate the calculation, the cross-correlation theorem can be applied:
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Ru,v(t) is equal to the inverse Fourier transform of the product of the complex

conjugate of Fourier transform of u(t) and Fourier transform of v(t) [72], i.e.,

Ru,v(t) = F
−1(U∗V ) (3.4)

where F (·) denotes Fourier transform operation; U(f) = F [u(t)] and V (f) =

F [v(t)], in which f denotes frequency in Hz; the superscript ∗ denotes complex

conjugation. The cross-correlation theorem states that the product of the complex

conjugate of Fourier transform of the reference function and Fourier transform of the

measurement function is equal to Fourier transform of the cross-correlation function

between the two functions. It can be applied to continuous and discrete functions

of an infinite length. However, application of the theorem to a case where u(t) and

v(t) have the same finite length, in combination with transforms, including the DFT

and IDFT, is erroneous. The error arises from periodic extension of the DFT of v(t):

v(t + kTs) = v(t) or vr+kNs
= vr, where k is an integer; consequently, v(t) has an

infinite length and is periodic with a period equal to Ts or Ns. When r +m ≥ Ns

in Eq. (3.3), since the DFT is applied to Ns sampling points of v(t), vr+m does not

exist in v(t). However, vr+m is equal to vr+m−Ns
, which does exist in v(t), due to

the periodic extension. Similarly, when r + m < 0 in Eq. (3.3), vr+m is equal to

vr+m+Ns
. The periodic extension is valid if v(t) is truly periodic with a period equal

to Ts, but it is not the case most of the time.

The cross-correlation function between two discrete functions that have the

same finite length, obtained by directly applying the cross-correlation theorem and
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transforms, can be expressed by

Ru,v
m =





Ns−1∑
r=0

1
Fs
urvr , m = 0

Ns−m−1∑
r=0

1
Fs
urvr+m +

Ns−1∑
r=Ns−m

1
Fs
urvr+m−Ns

, m > 0

−m−1∑
r=0

1
Fs
urvr+m+Ns

+
Ns−1∑
r=−m

1
Fs
urvr+m , m < 0

(3.5)

When m = 0, the function value is in accordance with its definition in Eq. (3.3);

when m > 0 and m < 0, the function values are erroneous due to existence of

Ns−1

Σ
r=Ns−m

1
Fs
urvr+m−Ns

and
−m−1∑
r=0

1
Fs
urvr+m+Ns

in the second and third equations in Eq.

(3.5), respectively, which originate from the periodic extension, and the error be-

comes larger for a larger |m| value, which gives a smaller Ns −m and a larger −m,

respectively. Note that the length of a cross-correlation function in the methodol-

ogy is Ns. Moreover, when m = Ns − p with 1 ≤ p ≤ Ns − 1, the cross-correlation

function becomes

Ru,v
m = Ru,v

Ns−p

=
Ns−(Ns−p)−1

Σ
r=0

1
Fs
urvr+(Ns−p) +

Ns−1

Σ
r=Ns−(Ns−p)

1
Fs
urvr+(Ns−p)−Ns

=
p−1

Σ
r=0

1
Fs
urvr+Ns−p +

Ns−1

Σ
r=p

1
Fs
urvr−p

=
p−1

Σ
r=0

1
Fs
urvr−p +

Ns−1

Σ
r=p

1
Fs
urvr−p

=
N−1

Σ
r=0

1
Fs
urvr−p

(3.6)

which is equal to the cross-correlation function Ru,v
−p of a negative time delay − p

Fs
;

this shows that a cross-correlation function obtained by directly applying the cross-

correlation theorem and transforms becomes periodic and has the same period as

v(t), which is extended to be periodic in the DFT. Since there are only Ns cross-

correlation function values here, one cannot strictly distinguish cross-correlation
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function values associated with non-negative time delays from those with negative

time delays.

To reduce the error caused by the periodic extension, it is proposed in Ref.

[70] that an Ns zero series be padded to each end of u(t) and v(t) as a buffer zone

before applying the cross-correlation theorem and transforms; the lengths of u(t)

and v(t) then become 2Ns. Values of the cross-correlation function between the

two padded functions of time delays ranging from − N
FS

to Ns−1
FS

can be obtained

in a wrap-around order: the first and last Ns values of the resulting IDFT series

correspond to values of the cross-correlation function of time delays ranging from 0

to Ns−1
FS

and from −Ns

FS
to − 1

FS
, respectively. The resulting cross-correlation function

can be expressed by

Ru,v
m =





Ns−1∑
r=0

1
Fs
urvr , m = 0

Ns−m−1∑
r=0

1
Fs
urvr+m , m > 0

Ns−1∑
r=−m

1
Fs
urvr+m , m < 0

(3.7)

Different from the methodology of directly applying the cross-correlation theorem

and transforms, the methodology here gives a cross-correlation function of length

2Ns, and one can extract values associated with m ≥ 0 to form the cross-correlation

function of a non-negative time delay. More importantly, the erroneous terms

Ns−1

Σ
r=Ns−m

1
Fs
urvr+m−Ns

and
−m−1∑
r=0

1
Fs
urvr+m+Ns

in the second and third equations in Eq.

(3.5), respectively, are eliminated here. However, this methodology is merely a

compromise, since the resulting cross-correlation function values are still erroneous,

compared with the definition in Eq. (3.3).
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Assuming that both u(t) and v(t) are continuously measured for n (n ≥ 2)

sampling periods, the problems described above related to calculation of full se-

quential values of a cross-correlation function of a non-negative time delay can be

fundamentally solved by a new methodology in an accurate and efficient manner.

The new methodology for calculating a cross-correlation function of a non-negative

time delay using measured data of the i-th (i ≤ n− 1) sampling period is described

below:

Step 1. Ns and 2Ns sampling points of u(t) and v(t) are extracted, respectively,

at the start of the i-th period.

Step 2. An Ns zero series is padded to the end of u(t), making the length of

u(t) be 2Ns, which is the same as that of v(t) extracted in Step 1.

Step 3. A cross-correlation function is obtained by applying the cross-correlation

theorem and transforms.

Step 4. The first Ns values of R
u,v
m obtained in Step 3 are extracted, which are

values of the cross-correlation function of non-negative time delays ranging from 0

to Ts − 1
Fs
.

Note that up to n−1 cross-correlation functions can be calculated in this case, since

at the n-th sampling period, v(t) cannot be extracted as proposed in Step 1. The

first and last Ns values of the resulting R
u,v
m correspond to positive and negative time

delays up to Ts and −Ts, respectively, in a wrap-around order. However, values of

Ru,v
m with negative time delays should be dropped, because when m + r < 0 in Eq.

(3.3), vm+r is not available in the extracted data series, and vm+r = vm+r+2Ns
due

to periodic extension of the DFT, which is erroneous due to the reason described
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above. Hence only values of Ru,v
m with non-negative time delays are correct and

should be extracted in this case.

Based on Eq. (3.5), when m = 0, the cross-correlation function from the new

methodology becomes

Ru,v
m =

Ns−1∑

r=0

1

Fs
urvr +

2Ns−1∑

r=Ns

1

Fs
urvr =

Ns−1∑

r=0

1

Fs
urvr (3.8)

which is in accordance with its definition, since ur = 0 when Ns ≤ r ≤ 2Ns − 1.

When m > 0, the cross-correlation function becomes

Ru,v
m =

Ns−1∑

r=0

1

Fs
urvr+m +

2Ns−m−1∑

r=Ns

1

Fs
urvr+m +

2Ns−1∑

r=2Ns−m

1

Fs
urvr+m−2Ns

=
Ns−1∑

r=0

1

Fs
urvr+m

(3.9)

Note that when r + m ≥ 2Ns, vr+m = vr+m−2Ns
due to periodic extension of the

DFT. Combining Eqs. (3.8) and (3.9) gives

Ru,v
m =

Ns−1∑

r=0

1

Fs
urvr+m (3.10)

which is exactly the same as Eq. (3.3). With the new methodology, calculation time

is shorter than that using the definition in Eq. (3.3), which will be shown in Sec. 3.

Since cross-correlation functions of non-negative time delays can be obtained

from the new methodology proposed above, cross-correlation functions of any time

delays can be obtained, if those of negative time delays are available. Assuming that

both u(t) and v(t) are continuously measured for n (n ≥ 2) sampling periods, full

sequential values of Ru,v
m of negative time delays can be obtained. The methodology

for calculating a cross-correlation function of a negative time delay for the i-th

(2 ≤ i ≤ n) sampling period is described below:
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Step 1. Ns and 2Ns sampling points of u(t) and v(t) are extracted at starts of

the i-th and (i− 1)-th periods, respectively.

Step 2. An Ns zero series is padded to the start of u(t), making the length of

u(t) be 2Ns, which is the same as that of v(t) extracted in Step 1.

Step 3. A cross-correlation function is obtained by applying the cross-correlation

theorem and transforms.

Step 4. The last Ns values of R
u,v
m obtained in Step 3 are extracted, which are

values of the cross-correlation function of negative time delays ranging from −Ts to

− 1
Fs
.

Note that up to n − 1 cross-correlation functions of negative time delays can be

calculated in this case, since in the first sampling period, v(t) cannot be extracted

as proposed in Step 1.

Combining values of the cross-correlation function of negative time delays with

those of non-negative time delays gives values of the function of any time delays.

Up to n− 2 cross-correlation functions of any time delays can be obtained, which is

also the case using the definition in Eq. (3.3).

3.1.2.2 Accurate and Efficient Calculation of Discrete Cross-power

Spectra

By the cross-correlation theorem described in Sec. 2.1, the cross-power spec-

trum between two real functions u(t) and v(t), denoted by P u,v(f), is equal to
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Fourier transform of the cross-correlation function between the two functions:

P u,v(f) = U∗V = F (Ru,v(t)) (3.11)

If Ns sampling points of u(t) and those of v(t), which is not periodic with a period Ts,

are used to yield a cross-power spectrum by directly applying the cross-correlation

theorem and transforms, the resulting spectrum is erroneous. The reason is that

the cross-correlation function to be transformed is erroneous itself due to periodic

extension of the DFT, as discussed in Sec. 2.1. To fundamentally solve this problem,

it is proposed that a half spectrum and a full spectrum between u(t) and v(t) be

DFTs of a cross-correlation function of a non-negative time delay and that of any

time delay from the new methodology in Sec. 2.1, respectively. Note that while the

DFT of a cross-correlation function of a non-negative time delay between u(t) and

v(t) with padded zero series in Eq. (3.7) can be considered as a half spectrum, the

cross-correlation function is not in perfect accordance with its definition.

3.1.2.3 Coherence Function, Convergence Function, and Convergence

Index

A conventional type of coherence function has been widely used to evaluate

qualities of measured FRFs in the frequency domain, if the FRFs are obtained

by averaging; at least two sampling periods are needed to yield meaningful function

values, since the coherence function is equal to one at all frequencies when measured

data of only one sampling period are available [1, 2]. A new type of coherence

function was developed in Ref. [73] to evaluate accuracies of calculated IRFs and
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FRFs in the frequency domain. One advantage of the new type of coherence function

is that a meaningful coherence function can be obtained even when measured data

of only one sampling period are available. A similar type of coherence function was

proposed in Ref. [74] to evaluate random variation of a signal at each frequency. This

type of coherence function is introduced here to evaluate qualities of measured cross-

correlation functions and associated cross-power spectra in the frequency domain;

it is defined by

γ2x(f) =
P̂ u,v(f)

P̂ u,v(f) + Ẽu,v(f)
(3.12)

where P̂ u,v(f) and Ẽu,v(f) are the auto-power spectrum of the averaged cross-

correlation function between u(t) and v(t) and averaged auto-power spectrum of

error series eu,vi (t), respectively; the error series eu,vi (t) associated with the i-th cross-

correlation function Ru,v
i (t) is defined by

eu,vi (t) = Ru,v
i (t)− R̂u,v(t) (3.13)

where R̂u,v(t) is the current averaged cross-correlation function. For a case where

only one cross-correlation function is available, the coherence function cannot be

used, since R̂u,v(t) = Ru,v
1 (t) and eu,v1 (t) = 0 for all t. At least two cross-correlation

functions are needed to yield meaningful coherence function values. When a co-

herence function value is close to one, the measured cross-correlation functions and

associated cross-power spectra have almost no variations relative to their averaged

cross-correlation function and associated cross-power spectrum, respectively; the

lower the coherence function value, the larger the variation at the corresponding

frequency.
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The coherence function in Ref. [74] can be modified to be a convergence func-

tion to evaluate convergence of averaged cross-correlation functions and associated

cross-power spectra in the frequency domain. The convergence function is defined

by

ξ2x(f) =
P̂ u,v(f)

P̂ u,v(f) + Eu,v(f)
(3.14)

where Eu,v(f) is the auto-power spectrum of an error series eu,v(t), which is defined

by

eu,v(t) = R̂u,v
n (t)− R̂u,v

n−1(t) (3.15)

where R̂u,v
n (t) and R̂u,v

n−1(t) are the average of n cross-correlation functions and that

of previous n−1 functions, respectively. According to its definition in Eq. (3.15), the

error series quantifies the difference between the averaged cross-correlation functions

of the n-th and (n− 1)-th sampling periods; it can be expressed by

eu,v(t) = R̂u,v
n (t)− R̂u,v

n−1(t)

=

n∑
j=1

R
u,v
j (t)

n
−

n−1∑
j=1

R
u,v
j (t)

n−1

=

n∑
j=1

(n−1)Ru,v
j (t)−

n−1∑
j=1

nR
u,v
j (t)

n(n−1)

=

n−1∑
j=1

(n−1)Ru,v
j (t)+(n−1)Ru,v

n (t)−
n−1∑
j=1

(n−1)Ru,v
j (t)−

n−1∑
j=1

R
u,v
j (t)

n(n−1)

= 1
n
(Ru,v

n (t)− R̂u,v
n−1(t))

(3.16)

Equation (3.16) shows that the error series depends on n and the difference between

the n-th cross-correlation function and averaged cross-correlation function of the

first n− 1 sampling periods. If the n-th cross-correlation function does not drasti-

cally deviate from the averaged one of the first n − 1 sampling periods, the error

series approaches a zero series when n increases. When a convergence function value
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is close to one, the averaged cross-correlation function and cross-power spectrum al-

most completely converge; the lower the convergence function value, the worse the

convergence at the corresponding frequency. Similar to the coherence function intro-

duced above, at least two cross-correlation functions are needed to yield meaningful

convergence function values. The reason is that R̂u,v
n−1(t) does not exist if only one

cross-correlation function is available.

A convergence index is introduced to further evaluate convergence of the av-

eraged cross-correlation function and cross-power spectrum:

con =

√√√√√
Ξ
(
P̂ u,v(f)

)

Ξ
(
P̂ u,v(f) + Eu,v(f)

) (3.17)

where Ξ(·) denotes summation over all frequencies. If elements of the error series are

equal to zero for all t, Eu,v(f) = 0 at all frequencies and con = 1; the closer to one

the convergence index, the better the convergence of the averaged cross-correlation

function and cross-power spectrum. The convergence index can help determine

whether the averaged function and spectrum have converged and whether more

sampling periods are needed.

3.1.3 Numerical Simulation and Experimental Example

3.1.3.1 Numerical Simulation

Numerical simulation is conducted on an ideal 2-DOF mass-spring-damper

system shown in Fig. 3.25 with masses m1 = 1 kg and m2 = 2 kg; spring constants

k1 = 6240π N/m, k2 = 4160π N/m, and k3 = 3120π N/m; and viscous damping
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coefficients c1 = 2 N/(m/s), c2 = 1 N/(m/s), and c3 = 2 N/(m/s). An external

force f(t) of zero-mean white noise with a standard deviation of 9 N acts on the

mass m1. Responses of the two masses in the form of displacements, denoted by

y1(t) and y2(t), are obtained by solving an associated ordinary differential equation

set with zero initial conditions:

m1ÿ1(t) + (c1 + c2)ẏ1(t)− c2ẏ2(t) + (k1 + k2)y1(t)− k2y2(t) = f(t)

m2ÿ2(t)− ˙c2y1(t) + (c2 + c3)ẏ2(t)− k2y1(t) + (k2 + k3)y2(t) = 0

y1(0) = 0, ẏ1(0) = 0, y2(0) = 0, ẏ2(0) = 0

(3.18)

using the ODE45 solver in MATLAB [75]. The responses are calculated up to the

first 132 seconds with a sampling frequency Fs = 1024 Hz, and the total number of

sampling points is Fs × 132 for each mass. White noise is added to the calculated

y1(t) and y2(t) with a SNR of 65 to simulate measurement noise.

Figure 3.1: A 2-DOF mass-spring-damper system.

The length of a sampling period is set to be Ts = 4 s, and there are 32 cross-

correlation functions of non-negative time delays and half spectra to be calculated

using the new methodology. The number of sampling points in one sampling period
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is Ns = Fs × Ts = 1024× 4. Time histories of f(t), y1(t), and y2(t) of the first four

seconds are shown in Figs. 3.2(a) through (c), respectively. In this simulation, y1(t)

is chosen to be the reference function. The cross-correlation function between y1(t)

and y2(t) of the first four seconds obtained by directly applying the cross-correlation

theorem and transforms, as described in Eq. (3.5), is shown in Fig. 3.3(a), and the

amplitude of the associated cross-power spectrum is shown in Fig. 3.3(b). It can be

seen that the amplitude of the cross-correlation function increases near the end of

the sampling period, which results from periodic extension of the DFT as discussed

in Sec. 2.1. While the amplitude of the spectrum is noisy due to DFT leakage,

two prominent peaks that correspond to natural frequencies of the system can be

observed.
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Figure 3.2: (a) External force of zero-mean white noise f(t), (b) the response of m1

in Fig. 3.25, and (c) the response of m2 in Fig. 3.25 of the first four seconds.
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Figure 3.3: (a) Cross-correlation function between y1(t) and y2(t) of the first four

seconds by directly applying the cross-correlation theorem and transforms, and (b)

the amplitude of the associated cross-power spectrum.

To reduce the error described above, Ns zero series are padded to ends of y1(t)

and y2(t) of the first four seconds, as shown in Figs. 3.4(a) and (b), respectively. The

cross-correlation function of a non-negative time delay between padded y1(t) and

y2(t) calculated using the cross-correlation theorem and transforms and associated

half spectrum are shown in Figs. 3.5(a) and (b), respectively. It can be seen that

the cross-correlation function decays with time as an IRF. The decay occurs mainly

due to the fact that less non-zero terms exist in the summation in Eq. (3.7) than Eq.

(3.5) as time evolves, and the function approaches zero near the end of a sampling

period. Consequently, effects of DFT leakage can be reduced, and the amplitude of

the spectrum is less noisy, compared with that in Fig. 3.3(b). Natural frequencies

of the system can be identified at peaks of the amplitude of the half spectrum.
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Note that the resulting cross-correlation function of a non-negative time delay and

half spectrum are physically erroneous due to padded zero series. However, this

methodology can be superior to the one that directly applies the cross-correlation

theorem and transforms, based on the observation and reasoning above.
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Figure 3.4: (a) Response of m1 in Fig. 3.25 of the first four seconds with padded

zero series of four seconds, and (b) the response of m2 in Fig. 3.25 of the first four

seconds with padded zero series of four seconds.
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Figure 3.5: (a) Cross-correlation function of a non-negative time delay between y1(t)

and y2(t) of the first four seconds with padded zero series of four seconds, and (b)

the amplitude of the associated half spectrum.

To obtain an exact cross-correlation function of a non-negative time delay, y1(t)

of one sampling period and y2(t) of two sampling periods are needed, according to

the definition in Eq. (3.3). The response y2(t) of the first eight seconds, which has a

length of two sampling periods, is shown in Fig. 3.6. The cross-correlation function

from Eq. (3.3) and amplitude of the associated half spectrum are shown in Figs.

3.7(a) and (b), respectively. Time for calculating the cross-correlation function is

1.096 seconds.

98



0 2 4 6 8
−4

−2

0

2

4
x 10

−3

t
y 2
(t
)

Figure 3.6: Response of m2 in Fig. 3.25 of the first eight seconds.
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Figure 3.7: (a) Comparison of cross-correlation functions of non-negative time delays

between y1(t) and y2(t) of the first four seconds from Eq. (3.3) (exact) and the new

methodology (new), and (b) comparison of amplitudes of associated half spectra.

To apply the new methodology for calculating a cross-correlation function of a
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non-negative time delay, y1(t) of one sampling period with an Ns zero series padded

to its end and y2(t) of the same sampling period as y1(t) and the next sampling

period are needed. The response y1(t) of the first four seconds padded with an Ns

zero series at its end and y2(t) of the first eight seconds are shown in Figs. 3.8(a) and

(b), respectively. The cross-correlation function of a non-negative time delay and

amplitude of the half spectrum using the new methodology in Secs. 2.1 and 2.2 are

shown in Figs. 3.7(a) and (b), respectively. It can be seen that the cross-correlation

function and amplitude of the half spectrum are almost identical to those from their

definitions, while time for calculating the cross-correlation function is 0.007 seconds,

which is less than 0.7 % of that using its definition. It can be seen that the function

decays with time in the first two seconds. The cross-correlation functions between

y1(t) and y2(t) of the first four seconds from the three methodologies are compared

with the exact one of a non-negative time delay in Fig. 3.9(a). The cross-correlation

function between y1(t) and y2(t) by directly applying the cross-correlation theorem

and transforms and that between padded y1(t) and y2(t) compare well with the exact

one at the beginning of the sampling period, but there are large errors afterwards,

as shown in Figs. 3.9(b), (c), (d), and (e). The cross-correlation function from the

new methodology is in perfect accordance with the exact one, as shown in Figs.

3.9(b), (c), and (f); the differences in Fig. 3.9(f) derive from numerical errors of

the DFT and IDFT, which are negligible compared with the amplitude of the exact

cross-correlation function.
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Figure 3.8: (a) Response of m1 in Fig. 3.25 of the first four seconds with padded

zero series of four seconds, and (b) the response of m2 in Fig. 3.25 of the first eight

seconds.
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Figure 3.9: (a) Comparison of the cross-correlation function between y1(t) and y2(t)

of the first four seconds by directly applying the cross-correlation theorem and trans-

forms (direct), the cross-correlation function of a non-negative time delay between

y1(t) and y2(t) of the first four seconds with padded zero series of four seconds

(padded), the cross-correlation function of a non-negative time delay between y1(t)

and y2(t) of the first four seconds from the new methodology (new), and the cross-

correlation function of a non-negative time delay between y1(t) and y2(t) of the first

four seconds from the definition (exact); (b) an enlarged view of the comparison of

the first 0.4 second; (c) an enlarged view of the comparison of the last 0.4 second;

(d) differences between the direct and exact cross-correlation functions; (e) differ-

ences between the padded and exact cross-correlation functions; and (f) differences

between the new and exact cross-correlation functions.

To better visualize similarity of a cross-correlation function to an IRF, an av-

eraged exact cross-correlation function of a non-negative time delay between y1(t)
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and y2(t) of four seconds with 32 sampling periods is calculated and shown in Fig.

3.10(a), which exponentially decays with time in the first two seconds. An averaged

cross-correlation function between y1(t) and y2(t) of four seconds by directly apply-

ing the cross-correlation theorem and transforms with 32 sampling periods is shown

in Fig. 3.10(b). It is similar to that in Fig. 3.3(a), whose amplitude increases near

the end of the sampling period. An averaged cross-correlation function of a non-

negative time delay between padded y1(t) and y2(t) with 32 sampling periods and

that from the new methodology are shown in Figs. 3.10(c) and (d), respectively.

The four averaged cross-correlation functions in Fig. 3.10 are compared in Fig.

3.11(a). Similar to the comparison in Fig. 3.9, the averaged cross-correlation func-

tion between y1(t) and y2(t) of four seconds by directly applying the cross-correlation

theorem and transforms and that of a non-negative time delay between padded y1(t)

and y2(t) compare well with the exact one at the beginning of a sampling period,

but there are large errors afterwards, as shown in Figs. 3.11(b), (c), (d), and (e).

The averaged cross-correlation from the new methodology is in perfect accordance

with the exact one, as shown in Figs. 3.11(b), (c), and (f).
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Figure 3.10: (a) An averaged cross-correlation function between y1(t) and y2(t) of

four seconds by directly applying the cross-correlation theorem and transforms, (b)

an averaged cross-correlation function of a non-negative time delay between y1(t)

and y2(t) of four seconds with padded zero series of four seconds, (c) an averaged

cross-correlation function of a non-negative time delay between y1(t) and y2(t) of four

seconds from the new methodology, and (d) an averaged cross-correlation function of

a non-negative time delay between y1(t) and y2(t) of four seconds from the definition.

All the averaged cross-correlation functions are obtained with 32 sampling periods.
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Figure 3.11: (a) Comparison of the averaged cross-correlation function between

y1(t) and y2(t) of four seconds by directly applying the cross-correlation theorem

and transforms (direct), the averaged cross-correlation function of a non-negative

time delay between padded y1(t) and y2(t) of four seconds (padded), the averaged

cross-correlation function of a non-negative time delay between y1(t) and y2(t) of

four seconds from the new methodology (new), and the averaged cross-correlation

function of a non-negative time delay between y1(t) and y2(t) of four seconds from

the definition (exact); (b) an enlarged view of the comparison of the first 0.4 second;

(c) an enlarged view of the comparison of the last 0.4 second; (d) differences between

the direct and exact averaged cross-correlation functions; (e) differences between the

padded and exact averaged cross-correlation functions; and (f) differences between

the new and exact averaged cross-correlation functions. All the averaged cross-

correlation functions are obtained with 32 sampling periods.

Since a cross-correlation function should be similar to an IRF [3, 63], an expo-
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nential window can be applied to cross-correlation functions of each sampling period

to reduce the effect of DFT leakage before calculating averaged functions and asso-

ciated half spectra. The decay rate of the exponential window should be sufficiently

large so that values of the cross-correlation function are almost zero after the main

decaying section, which is about the first two seconds in the simulation. The reason

is that noise of a non-negligible amplitude can be observed in Fig. 3.3(b) after the

main decaying section; such noise can have an adverse effect on the quality of the

cross-correlation function. Like measuring a IRF and FRF by impact testing in

EMA [2], an exponential window added to a cross-correlation function can increase

estimated damping ratios, which can be corrected by a technique in Ref. [76]. An

exponential window w(t) = e−αt with a decay rate α = 8 and t ∈ [0, 4] is added

to Ry1,y2(t), as shown in Fig. 3.12(a). The amplitude of the half spectrum associ-

ated with the windowed cross-correlation function is shown in Fig. 3.12(b), which

is smoother than that in Fig. 3.7(b). Note that amplitudes of the half spectrum

at two peaks in Fig. 3.12(a) are lower than those in Fig. 3.7(b) due to use of the

exponential window. An averaged windowed cross-correlation function of a non-

negative time delay with 32 sampling periods and the amplitude of the associated

half spectrum are shown in Figs. 3.12(c) and (d), respectively.
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Figure 3.12: (a) Windowed cross-correlation function of a non-negative time delay

between y1(t) and y2(t) of the first four seconds from the new methodology, (b)

the amplitude of the associated half spectrum, (c) the averaged windowed cross-

correlation function of a non-negative time delay between y1(t) and y2(t) of four

seconds from the new methodology with 32 sampling periods, and (d) the amplitude

of the associated half spectrum.

Cross-power spectra obtained by directly applying the cross-correlation theo-

rem and transforms, half spectra by applying the theorem and transforms on y1(t)

and y2(t) with Ns zero series padded to their ends, and half spectra from the new
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methodology averaged with 16 and 32 sampling periods are shown in Figs. 3.13

and 3.14, respectively. It can be seen that amplitudes and phases of the averaged

cross-power spectra obtained by directly applying the theorem and transforms are

noisy, and corresponding coherence function values are low in the frequency domain.

Amplitudes and phases in the half spectra obtained by applying the theorem and

transforms on y1(t) and y2(t) with Ns zero series padded to their ends are less noisy,

and 180-degree phase shifts can be clearly observed at natural frequencies of the sys-

tem, which is a characteristic of a FRF [1]; corresponding coherence functions have

higher values than those obtained by directly applying the theorem and transforms.

The coherence function values drop in neighborhoods of frequencies corresponding

to peaks in the half spectra mainly due to DFT leakage. Amplitudes and phases

in the half spectra from the new methodology have the best qualities, compared

with those from the other two methodologies, and corresponding coherence func-

tions have relatively high values in regions where amplitudes of the half spectra

are high except in neighborhoods of frequencies corresponding to peaks in the half

spectra (Figs. 3.13(i) and 3.14(i)). Some drops in neighborhoods of frequencies

corresponding to peaks in the half spectra indicate that the spectra have relatively

large variations near natural frequencies. The reason for such drops is that both

y1(t) and y2(t) are caused by random excitation and can have varying amplitudes,

amplitudes of cross-correlation functions between y1(t) and y2(t) can vary, while

their overall shapes, which are similar to that of an IRF, do not change much es-

pecially in their main decaying sections, and amplitudes of Ẽu,v(f) in Eq. (3.12)

are relatively high near natural frequencies. Convergence functions corresponding
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to cross-correlation functions and associated cross-power spectra using the three

methodologies are shown in Fig. 3.15. It can be seen that the averaged cross-

correlation function and associated half spectrum from the new methodology have

the best convergence. Convergence indices associated with the cross-power spectra

using the three methodologies, with respect to the number of averages, are shown

in Fig. 3.16. Averaged cross-correlation functions and associated half spectra from

the new methodology have the highest convergence indices, which indicates that the

corresponding functions and spectra have the best convergence.
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Figure 3.13: (a) Amplitude, (b) phase, and (c) coherence function of the cross-power

spectrum between y1(t) and y2(t) by directly applying the cross-correlation theorem

and transforms; (d) the amplitude, (e) phase, and (f) coherence function of the half

spectrum by applying the theorem and transforms on padded y1(t) and y2(t); and

(g) the amplitude, (h) phase, and (i) coherence function of the half spectrum from

the new methodology. All the cross-power spectra are averaged with 16 sampling

periods.
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Figure 3.14: (a) Amplitude, (b) phase, and (c) coherence function of the cross-power

spectrum between y1(t) and y2(t) by directly applying the cross-correlation theorem

and transforms; (d) the amplitude, (e) phase, and (f) coherence function of the half

spectrum by applying the theorem and transforms on padded y1(t) and y2(t); and

(g) the amplitude, (h) phase, and (i) coherence function of the half spectrum from

the new methodology. All the cross-power spectra are averaged with 32 sampling

periods.
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Figure 3.15: (a) Convergence function of the cross-power spectrum between y1(t)

and y2(t) by directly applying the cross-correlation theorem and transforms, (b) the

convergence function of the half spectrum by applying the theorem and transforms

on padded y1(t) and y2(t), and (c) the convergence function of the half spectrum from

the new methodology. All the cross-power spectra are averaged with 32 sampling

periods.
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Figure 3.16: Convergence indices of averaged cross-power spectra between y1(t) and

y2(t) by directly applying the cross-correlation theorem and transforms (direct),

averaged half spectra by applying the theorem and transforms on y1(t) and y2(t)

with Ns zero series padded to their ends (padded), and averaged half spectra from

the new methodology (new).

Theoretical natural frequencies, damping ratios, and mode shapes of the 2-

DOF system are calculated using complex modal analysis [71], and natural fre-

quencies, damping ratios, and mode shapes are obtained from averaged P y1,y1 and

P y1,y2 with 32 sampling periods with the three methodologies using Operational

PolyMax of LMS Test.Lab Rev. 9b [77]. Resulting natural frequencies of the 2-

DOF system are compared in Table 3.1; the natural frequencies from OMA on the

averaged cross-power spectra with the three methodologies are close to the theoret-

ical ones. Resulting damping ratios of the 2-DOF are compared in Table 3.2. It

can be seen that the damping ratios from OMA on the averaged half spectra with

the new methodology are closest to the theoretical ones, and those from OMA on

113



the averaged half spectra with padded y1(t) and y2(t) are higher than those cor-

responding to the averaged half spectra from the new methodology. Mode shapes

corresponding to the averaged cross-power spectra from the three methodologies

are compared with the theoretical ones; MAC matrices [1] between the theoretical

mode shapes and those corresponding to the averaged cross-power spectra from the

three methodologies are listed in Table 3.3. The mode shapes corresponding to the

averaged cross-power spectra from the three methodologies compare well with the

theoretical ones; diagonal entries of the MAC matrices are all over 99%, which in-

dicates that mode shapes from OMA on the averaged cross-power spectra with the

three methodologies compare well with those from complex modal analysis.

Table 3.1: Comparison of natural frequencies of the 2-DOF system from complex

modal analysis (theoretical) and those from OMA on the averaged cross-power spec-

tra by directly applying the cross-correlation theorem and transforms (direct), the

half spectra by applying the theorem and transforms on padded y1(t) and y2(t)

(padded), and the half spectra from the new methodology (new). All the averaged

cross-power spectra in OMA are obtained with 32 sampling periods.

Mode

Theoretical

Frequency

(Hz)

Direct

Frequency

(Hz)

Difference

(%)

Padded

Frequency

(Hz)

Difference

(%)

New

Frequency

(Hz)

Difference

(%)

1 14.214 14.210 -0.03 14.222 0.06 14.217 0.02

2 30.251 30.233 -0.06 30.232 -0.06 20.227 -0.08
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Table 3.2: Comparison of damping ratios of the 2-DOF system from complex modal

analysis (theoretical) and those from OMA on the averaged cross-power spectra

by directly applying the cross-correlation theorem and transforms (direct), the half

spectra by applying the theorem and transforms on padded y1(t) and y2(t) (padded),

and the half spectra from the new methodology (new). All the cross-power spectra

in OMA are averaged with 32 sampling periods.

Mode

Theoretical

Damping

Ratio

(%)

Direct

Damping

Ratio

(%)

Difference

(%)

Padded

Damping

Ratio

(%)

Difference

(%)

New

Damping

Ratio

(%)

Difference

(%)

1 0.68 0.91 33.82 1.07 57.35 0.65 -4.41

2 0.86 0.99 15.12 1.92 123.26 0.91 5.81
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Table 3.3: (a) Entries of the MAC matrix in percent between the mode shapes of the

2-DOF system from OMA on the averaged cross-power spectra by directly applying

the cross-correlation theorem and transforms and the theoretical ones, (b) entries

of the MAC matrix in percent between the mode shapes of the 2-DOF system from

OMA on the averaged half spectra by applying the cross-correlation theorem and

transforms on padded y1(t) and y2(t) and the theoretical ones, and (c) entries of

the MAC matrix in percent between the mode shapes of the 2-DOF system from

OMA on the averaged half spectra from the new methodology and the theoretical

ones. The horizontal and vertical mode numbers correspond to the mode shapes

from OMA and the theoretical ones, respectively.

(a)

1 2

1 99.90 5.02

2 5.59 99.97

(b)

1 2

1 99.87 4.98

2 5.49 99.96

(c)

1 2

1 100.00 4.87

2 5.36 99.98
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After calculating a cross-correlation function of a non-negative time delay,

that of a negative time delay is needed to calculate a cross-correlation function of

any time delay. To calculate the cross-correlation function of a negative time delay

using the new methodology, y1(t) of one sampling period with an Ns zero series

padded to its start and y2(t) of the same sampling period as y1(t) and the previous

sampling period are needed. The response y1(t) between the first four and eight

seconds padded with an Ns zero series to its start and y2(t) of the first eight seconds

are shown in Figs. 3.17(a) and (b), respectively. The cross-correlation function

of a negative time delay is combined with that of a non-negative time delay and

shown in Fig. 3.18(a). Differences between the cross-correlation function of any

time delay from the new methodology and the exact one using its definition (Fig.

3.18(a)) are shown in Fig. 3.18(b). It can be seen that the two functions are almost

identical, and their differences derive from numerical errors of the DFT and IDFT.

Amplitudes of full spectra of the two cross-correlation functions of any time delays

are almost identical, as shown in Fig. 3.18(c). Note that time for calculating the

cross-correlation function using its definition is 1.220 seconds, and that using the

new methodology is 0.009 seconds.
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Figure 3.17: (a) Response ofm1 in Fig. 3.25 of the first four to eight seconds padded

with Ns zero series to its start, and (b) that of m2 in Fig. 3.25 of the first eight

seconds.
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Figure 3.18: (a) Comparison of the cross-correlation function of any time delay

between y1(t) and y2(t) of the first eight seconds from its definition (exact) and that

from the new methodology (new), (b) differences between the two cross-correlation

functions of any time delays in (a), and (c) comparison of amplitudes of full spectra

of the two cross-correlation functions in (a).
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3.1.3.2 Experimental Example

OMA was conducted on a damaged aluminum beam to measure natural fre-

quencies, damping ratios, and mode shapes of its first four transverse vibration

modes (Fig. 3.19(a)). The beam was of length 475.00 mm, width 25.60 mm, and

thickness 6.50 mm, and it had a region of machined thickness reduction on top and

bottom surfaces along its length. The width of the region was the same as that of

the beam, and its length and thickness were 55.70 mm and 4.75 mm, respectively;

thickness reduction on both the top and bottom surfaces of the region was 0.875

mm. The left end of the beam was clamped by a bench vice to simulate a fixed

boundary. The distance between the clamped end of the beam and the left end of

the region was 352.90 mm. Forty three equally spaced measurement points were

assigned along the length of the beam, as shown in Fig. 3.19(b). The test setup

for OMA is shown in Figs. 3.19(c) and (d): an MB Dynamics MODAL-50 shaker

was fixed to the right end of the beam, and a laser head of a Polytec PSV-500-3D

three-dimensional scanning laser vibrometer system (Laser 1) and a Polytec OFV-

353 single-point laser vibrometer (Laser 2) were used to measure responses of the 43

measurement points and a reference point on the front surface of the beam, respec-

tively. A strip of retroreflective tape was attached on the front surface of the beam

to enhance laser reflection that directly determined SNRs of laser measurements.
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(a)

(b)

(c)

(d)

Figure 3.19: (a) Dimensions of a damaged aluminum beam with a region of machined

thickness reduction, (b) numbered measurement points on the beam, (c) the test

setup for OMA, and (d) the beam with its left end clamped by a bench vice and its

right end connected to a shaker.
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With a LMS spectrum analyzer and Test.Lab Rev. 9b [77], random excita-

tion was generated to the shaker, and responses in the form of velocities of the 43

measurement points and the reference point were measured by Laser 1 and Laser

2, respectively, and denoted by vi (i = 1, 2, . . . , 43) and vr, respectively. The

excitation frequency ranged from 20 to 2048 Hz, the length of one sampling period

was 0.4096 seconds with a sampling frequency of 5000 Hz, the number of sampling

points in one sampling period was Ns = 5000 × 0.4096, there were 33 continuous

sampling periods, and the total measurement time was 0.4096× 33 seconds. Thirty

two cross-correlation functions and associated cross-power spectra were calculated

using the three methodologies for each measurement point. Averaged spectra of the

first 16 and 32 spectra between vr(t) and v23(t) are shown in Figs. 3.20 and 3.21,

respectively. Note that the cross-correlation functions from the new methodology

were windowed using an exponential window w(t) = e−αt with α = 8. Calculation

times for one cross-correlation function using its definition and the new methodol-

ogy were 0.1839 and 0.0045 seconds, respectively. Similar to the numerical example

in Sec. 3.1, amplitudes and phases of half spectra from the new methodology had

the best qualities, and coherence function values were close to one except those near

natural frequencies of the beam and in frequency regions with low SNRs; associated

convergence functions and indices were closest to one, as shown in Figs. 3.15 and

3.16, respectively. Similar to the numerical example in Sec. 3.1, 180-degree phase

shifts were observed at natural frequencies of the beam, and some drops in coherence

functions were observed at the natural frequencies; the new methodology had the

best convergence based on convergence functions and convergence indices.

121



0 625125018752500
10

−910
−710
−510
−310
−1

‖
P

v r
,v

2
3
(f
)‖

f

(a)

0 625125018752500
−180
−90

0
90

180
θ

f

(b)

0 625125018752500

10
−4

10
−3

10
−2

10
−1

‖
P

v r
,v

2
3
(f
)‖

f

(d)

0 625125018752500
−180
−90

0
90

180

θ

f

(e)

0 625125018752500
10

−5
10

−4
10

−3
10

−2
10

−1

‖
P

v r
,v

2
3
(f
)‖

f

(g)

0 625125018752500
−180
−90

0
90

180

θ

f

(h)

0 625125018752500
0

0.5

1
(c)

f

γ
2 x
(f
)

0 625125018752500
0

0.5

1

f

γ
2 x
(f
)

(f)

0 625125018752500
0

0.5

1

f

γ
2 x
(f
)

(i)

 

 

Figure 3.20: (a) Amplitude, (b) phase, and (c) coherence function of the cross-power

spectrum between vr(t) and v23(t) by directly applying the cross-correlation theorem

and transforms; (d) the amplitude, (e) phase, and (f) coherence function of the half

spectrum by applying the theorem and transforms on padded vr(t) and v23(t); and

(g) the amplitude, (h) phase, and (i) coherence function of the half spectrum from

the new methodology. All the cross-power spectra were averaged with 16 sampling

periods.
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Figure 3.21: (a) Amplitude, (b) phase, and (c) coherence function of the cross-power

spectrum between vr(t) and v23(t) by directly applying the cross-correlation theorem

and transforms; (d) the amplitude, (e) phase, and (f) coherence function of the half

spectrum by applying the theorem and transforms on padded vr(t) and v23(t); and

(g) the amplitude, (h) phase, and (i) coherence function of the half spectrum from

the new methodology. All the cross-power spectra were averaged with 32 sampling

periods.
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Figure 3.22: (a) Convergence function of the cross-power spectrum between vr(t)

and v23(t) by directly applying the cross-correlation theorem and transforms, (b) the

convergence function of the half spectrum by applying the theorem and transforms

on padded vr(t) and v23(t), and (c) the convergence function of the half spectrum

between vr(t) and v23(t) from the new methodology. All the cross-power spectra

were averaged with 32 sampling periods.
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Figure 3.23: Convergence indices of averaged cross-power spectra between vr(t) and

v23(t) by directly applying the cross-correlation theorem and transforms (direct),

averaged half spectra by applying the theorem and transforms on padded vr(t) and

v23(t) with Ns (padded), and averaged half spectra between vr(t) and v23(t) from

the new methodology (new).

The aforementioned excitation frequency range of the shaker for OMA was

sufficient for measuring natural frequencies of the beam in the range, since four

peaks associated with the first four modes of the beam could be clearly identified in

the resulting averaged cross-power spectra. However, resulting mode shapes had low

SNRs due to the fact that the wider the excitation frequency range, the lower the

distributed energy input from the shaker in the range. Hence excitations in narrower

frequency ranges were needed to excite the first four modes of the beam with higher

distributed energy inputs to measure mode shapes with higher SNRs. Excitation

frequency ranges for the first through fourth modes were chosen to be between 20

and 200 Hz, between 200 and 500 Hz, between 550 and 950 Hz, and between 1100
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and 1400 Hz, respectively. There were totally four groups of laser measurements

for OMA; in each group of measurements, averaged cross-power spectra from the

three methodologies corresponding to the 43 measurement points were obtained

and analyzed using Operational PolyMax of LMS Test.Lab Rev. 9b to yield natural

frequencies, damping ratios, and mode shapes of the beam [77].

To validate results from OMA, an impact test, which is one type of EMA,

was conducted on the beam using a roving sensor technique to measure its natural

frequencies, damping ratios, and mode shapes. A PCB 086C03 impact hammer

connected to the spectrum analyzer was used to excite a point on the back surface

of the beam, and resulting impact responses of the 43 measurement points were

measured by the laser head of the Polytec PSV-500-3D 3D scanning laser vibrometer

system. For each measurement point, five FRFs between the measurement point and

hammer were obtained and averaged. Averaged FRFs of the 43 measurement points

were analyzed using PolyMax of LMS Test.Lab Rev. 9b to yield natural frequencies,

damping ratios, and mode shapes of the beam in the frequency range from 0 to

2048 Hz [77]. Measured natural frequencies from OMA on the averaged cross-power

spectra with the three methodologies and EMA are compared in Table 3.4. The

natural frequencies from OMA on the averaged cross-power spectra with the three

methodologies compared well with those from EMA; the maximum difference was

−0.69%. Measured damping ratios from OMA on the averaged cross-power spectra

with the three methodologies and EMA are compared in Table 3.5. The damping

ratios from OMA on the half spectra from the new methodology compared well

with those from EMA. The damping ratios from OMA on the half spectra with
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padded responses of the measurement and reference points were higher than those

using the half spectra with the new methodology, which was similar to the numerical

example in Sec. 3.1. The damping ratios from OMA on the averaged cross-power

spectra by directly applying the cross-correlation theorem and transforms deviated

more from those from EMA. Measured mode shapes from OMA and EMA are

compared in Fig. 3.24. MAC matrices between the mode shapes from OMA on

the cross-power spectra with the three methodologies and EMA are listed in Table

3.6. Diagonal entries of the MAC matrices in Table 3.6 were all over 96%, which

indicates that mode shapes from OMA on the averaged cross-power spectra with

the three methodologies compared well with those from EMA.

Table 3.4: Comparison of measured natural frequencies of the damaged beam from

EMA (EMA) and those from OMA using the cross-power spectra by directly ap-

plying the cross-correlation theorem and transforms (direct), the half spectra by

applying the theorem and transforms on padded responses of the measurement and

reference points (padded), and the half spectra from the new methodology (new).

All the cross-power spectra in OMA were averaged with 32 sampling periods.

Mode

EMA

Frequency

(Hz)

Direct

Frequency

(Hz)

Difference

(%)

Padded

Frequency

(Hz)

Difference

(%)

New

Frequency

(Hz)

Difference

(%)

1 101.59 101.76 0.18 101.69 0.10 101.42 -0.16

2 332.50 330.22 -0.68 330.23 -0.68 330.20 -0.69

3 718.21 719.09 0.12 719.39 0.16 719.09 0.12

4 1206.79 1209.48 0.22 1208.32 0.13 1209.62 0.23
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Table 3.5: Comparison of measured damping ratios of the damaged beam from EMA

(EMA) and those from OMA using the cross-power spectrum by directly applying

the cross-correlation theorem and transforms (direct), the half spectrum by applying

the theorem and transforms on padded responses of the measurement and reference

points (padded), and the half spectrum from the new methodology (new). All the

cross-power spectra in OMA were averaged with 32 sampling periods.

Mode

EMA

Damping

Ratio

(%)

Direct

Damping

Ratio

(%)

Difference

(%)

Padded

Damping

Ratio

(%)

Difference

(%)

New

Damping

Ratio

(%)

Difference

(%)

1 2.86 3.63 26.92 3.76 31.47 2.94 2.80

2 1.06 1.55 46.23 1.63 53.77 1.48 39.62

3 0.57 0.50 -12.28 0.59 3.51 0.53 -7.02

4 0.95 0.86 -9.47 1.02 7.37 1.00 5.26
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Figure 3.24: (a) The first measured mode shapes of the beam from OMA using

the cross-power spectra with the three methodologies and EMA, (b) the second

measured mode shapes of the beam from OMA using the cross-power spectra with

the three methodologies and EMA, (c) the third measured mode shapes of the beam

from OMA using the cross-power spectra with the three methodologies and EMA,

and (d) the fourth measured mode shapes of the beam from OMA using the cross-

power spectra with the three methodologies and EMA.
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Table 3.6: (a) Entries of the MAC matrix in percent between the first four mode

shapes of the beam from OMA using the cross-power spectra by directly applying

the cross-correlation theorem and transforms and those from EMA, (b) entries of

the MAC matrix in percent between the first four mode shapes of the beam from

OMA using the half spectra by applying the theorem and transforms on padded

responses of the measurement and reference points and those from EMA, and (c)

entries of the MAC matrix in percent between the first four mode shapes of the

beam from OMA using the half spectra with the new methodology and those from

EMA. The horizontal and vertical mode numbers correspond to the modes from

OMA and EMA, respectively.

(a)

1 2 3 4

1 99.08 0.38 0.63 0.82

2 3.06 96.58 0.07 0.80

3 0.51 0.24 99.07 0.35

4 1.08 0.39 1.61 98.19

(b)

1 2 3 4

1 98.98 0.40 0.65 0.84

2 3.06 96.77 0.08 0.78

3 0.51 0.28 99.10 0.33

4 1.09 0.37 1.54 98.26

(c)

1 2 3 4

1 99.19 0.37 0.68 1.41

2 2.76 96.75 0.08 0.76

3 0.60 0.28 99.15 0.56

4 0.92 0.38 1.57 98.09
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3.1.4 Conclusion

Direct use of the cross-correlation theorem and transforms, including the DFT

and IDFT, can enable efficient calculation of discrete cross-correlation functions

and cross-power spectra between a reference data series and a measured data series.

However, resulting functions and spectra are physically erroneous due to use of the

DFT, where a data series to be transformed is extended to be periodic with a pe-

riod equal to the length of one sampling period, which is usually false in practice.

While the error can be reduced by padding zero series that have the same length

as the reference and measured data series to their ends, the results are still phys-

ically erroneous. A new methodology for calculating cross-correlation functions of

non-negative time delays and associated half spectra is proposed in this work. Qual-

ities of measured cross-correlation functions and associated cross-power spectra can

be evaluated using a coherence function, a convergence function in the frequency

domain, and a convergence index. Calculation time for one cross-correlation func-

tion from the new methodology can be greatly reduced, compared with that by

directly applying its definition. A cross-correlation function from the new method-

ology is in perfect accordance with that by directly applying its definition, and so

is the associated cross-power spectrum. Exponential windows are added to cross-

correlation functions to reduce effects of DFT leakage and noise of non-negligible

amplitudes that exist after main decaying sections. Half spectra of windowed cross-
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correlations functions are better than those from the other two methodologies with

respect to smoothness of amplitudes and phases and high values of coherence func-

tions. Based on the introduced convergence function and convergence index, av-

eraged cross-correlation functions of non-negative time delays and associated half

spectra from the new methodology have the best convergence. The new method-

ology is extended to calculate cross-correlation functions of negative time delays

and the resulting cross-correlation function is in perfect accordance with that by

directly applying its definition. Combining cross-correlations of non-negative and

negative time delays gives those of any time delays, and associated full spectra

can be obtained. OMA was numerically and experimentally conducted on an ideal

2-DOF mass-spring-damper system and a damaged aluminum beam, respectively,

using half spectra from the new methodology to estimate their natural frequencies,

damping ratios, and mode shapes, which compared well with theoretical ones from

complex modal analysis and measured ones from EMA, respectively. While natural

frequencies and mode shapes from OMA on cross-power spectra by directly applying

the cross-correlation theorem and transforms and those with padded responses of

measurement and reference points compared well with those from complex modal

analysis and EMA in the numerical and experimental examples, respectively, damp-

ing ratios from OMA on cross-power spectra by the two methodologies deviated

from those from complex modal analysis and EMA in the numerical and experimen-

tal examples, respectively.
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3.2 Efficient and Accurate Calculation of FRFs and IRFs

3.2.1 Introduction

Modal properties of a structure, including natural frequencies, mode shapes,

and modal damping ratios, can be identified via modal analysis [1]. There are two

types of modal analysis methods: EMA and OMA. The former requires measure-

ments of excitation on a structure, while the latter does not. In addition, the former

analyzes FRFs and IRFs of a structure that show relationships between measured

responses and excitation in the frequency and time domains, respectively, while

the latter analyzes cross-power spectra and cross-correlation functions between ref-

erence and measured responses in the frequency and time domains, respectively

[63, 3]. OMA can be easily conducted and considered to be practical, since it only

measures modes that are excited under present environmental influence or operation

[58, 59, 60, 61, 62]. However, its repeatability can be weak, since cross-power spec-

tra and cross-correlation functions in OMA vary with environmental or operational

excitation that can be uncontrollable in some cases. Compared with OMA, EMA is

more repeatable, informative, and objective due to use of FRFs and IRFs that are

independent of excitation, if excitation is appropriately generated.

Excitation of high amplitudes can be used to increase SNRs of FRF and IRF

measurements, but it may induce nonlinear responses of a structure, which should

be avoided in modal analysis. One can conduct measurements of multiple sampling

periods to reduce effects of measurement noise [2], and the length of measurement

time depends on an excitation technique used. There are various criteria to catego-
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rize an excitation technique in EMA, and one is whether an exciter needs to be fixed

to a structure or not. If it does, it is a fixed exciter; otherwise, it is a non-fixed one

[2]. A shaker is the most frequently used fixed exciter, by which different types of

excitation can be generated in a well-controlled manner, such as pure random, pe-

riodic random, and burst random excitation, and responses can be measured with

high SNRs, since a structure can be well excited with high input energy. When

one calculates a discrete FRF, the DFT is applied to both response and excitation

series, and the associated IRF can be obtained by applying the inverse IDFT to

the FRF or using a least-squares (LS) method [73]. In the DFT, a transformed

series is virtually extended to have an infinite length and be periodic with a period

equal to the length of the series [69]. Errors caused by such extension in calcula-

tion of cross-correlation functions and cross-power spectra have been studied, and

an accurate and efficient methodology was proposed in Ref. [78] to eliminate the

errors. When periodic extension is physically incorrect, i.e., extended responses do

not match those associated with extended excitation, errors can occur in estimated

FRFs and associated IRFs. Among different types of excitation, FRFs with pure

random excitation and associated responses often suffer from leakage due to physical

incorrectness of periodic extension in the DFT. A more specific reason is that pure

random excitation signals are not periodic and associated responses of a sampling

period are not completely measured due to truncation of measurements at the end

of the period. Hanning windows are often used to reduce effects of leakage, which

can, however, distort resulting FRFs and associated IRFs. EMA using periodic

random excitation do not suffer from leakage, but a structure needs to be repeat-
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edly excited with the same random excitation so that steady-state responses can be

reached, which can take a long measurement period. EMA using burst random ex-

citation does not suffer from leakage either, and a shorter measurement period than

that using periodic random is needed, due to the fact that burst random excitation

has a zero-value interval of a proper length at its end, in which free responses of a

structure can decay to zero and be completely measured, and extended excitation

and response series are physically correct. An impact hammer is the most frequently

used non-fixed exciter, which is relatively easy to set up for use and capable of gener-

ating broadband excitation. However, a hammer impact in one sampling period can

yield FRFs and IRFs of low SNRs due to the fact that input energy from an impact

to a structure can be relatively low. An excitation technique that uses a random

impact series in EMA was proposed in Ref. [56] to increase input energy of hammer

impacts. Similar to EMA using pure random excitation by shakers, that using a

random impact series can suffer from leakage. A zero-value excitation interval of a

proper length at the end of a sampling period can be used so that free responses

can decay to zero and be completely measured, and leakage can be avoided, which

is analogous to the case of burst random excitation. However, a problem of burst

random excitation can be that a long sampling period is needed so that free re-

sponses of a structure can decay to zero and be completely measured, and a large

number of spectral lines are needed especially for a high sampling frequency. Since

one can have a limited number of spectral lines in some modal analysis software,

measuring a FRF with a relatively high sampling frequency and a relatively long

sampling period is sometimes impossible.
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In this work, an efficient and accurate methodology for calculating discrete

FRFs and IRFs is proposed: a sampling period is evenly divided into multiple sub-

sampling periods, and the length of a sub-sampling period is long enough for free

responses of a structure to decay to zero; all sub-sampling periods of response and ex-

citation series are superposed to corresponding single sub-sampling periods to form

pseudo-periodic response and excitation series, respectively, in calculation of FRFs

and IRFs. Data lengths of response and excitation series for calculating DFTs can

be shortened by a factor equal to the number of sub-sampling periods. The relation-

ship between an IRF from the proposed methodology and that from the LS method

is shown. A coherence function extended from a new type of coherence functions

is used to evaluate qualities of FRFs and IRFs from the proposed methodology in

the frequency domain. It can yield meaningful coherence function values even with

excitation and response series of one sampling period. The proposed methodology

was numerically and experimentally applied to a two-degree-of-freedom (2-DOF)

mass-spring-damper system and an aluminum plate, respectively, to estimate their

FRFs and IRFs. In the numerical example, FRFs from the proposed methodology

agree well with theoretical ones. In the experimental example, a FRF and its as-

sociated IRF from the proposed methodology with a random impact series agreed

well with benchmark ones from a single impact test.
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3.2.2 Methodology

3.2.2.1 FRFs and IRFs

Let the IRF of a linear time-invariant, underdamped single-input-single-output

system be denoted by h(t), which has a nontrivial time duration T ; h(t) = 0 when

t < 0 or t > T . Assuming a general excitation f (t) to the system with zero

initial conditions, one can calculate the response of the system y(t) using Duhamel’s

integral [79]:

y(t) =

∫ T

0

f(t− τ)h(τ)dτ (3.19)

Suppose that f (t) and y (t) are discretely sampled with a time interval △t, and

an excitation series fĩ = f
(̃
i△t
)
and a response series yĩ = y

(̃
i△t
)
are available,

where ĩ = 1, 2, . . . , m; n values of the IRF hk̃ = h(k̃△t), where n = T
△t

and

k̃ = 0, 1, . . . , n − 1 with n < m, are to be calculated. Equation (3.19) can be

expressed in a discrete form:

[ft]m×n [ht]n×1 =

(
1

△t

)
[yt]m×1 (3.20)
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where

[ft] =




f1 0 · · · 0

f2 f1 · · · 0

...
...

. . .
...

fn fn−1 . . . f1

fn+1 fn . . . f2

...
...

. . .
...

fm fm−1 · · · fm−n+1




, [ht] =




h0

h1

...

hn−1




, [yt] =




y1

y2

...

ym




(3.21)

A LS solution of [ht] can be obtained by solving Eq. (3.20) using the Moore-Penrose

pseudoinverse of [ft], denoted by [ft]+:

[ht]n×1 = [ft]+n×m

(
1

△t

)
[yt]m×1 (3.22)

where [ft]+ =
(
[ft]T [ft]

)−1

[ft]T, in which the superscript T denotes transpose of

a matrix. However, the LS method for an IRF is sometimes impractical, since calcu-

lation of the Moore-Penrose pseudoinverse of [ft] with a large n is computationally

inefficient due to inversion of an n× n matrix [ft]T [ft]. When the time duration T

is not exactly known a priori, one can have it equal to the duration of a sampling

period, denoted by Tq, which is often longer than T . Equation (3.20) becomes

[ftq]m×m [ht]m×1 =

(
1

△t

)
[yt]m×1 (3.23)
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where

[ftq] =




f1 0 · · · 0

f2 f1 · · · 0

...
...

. . .
...

fm fm−1 . . . f1




, [ht] =




h0

h1

...

hm−1




(3.24)

and [ht] = ([ftq])−1 [yt]. Similarly, inversion of [ftq] in Eq. (3.23) can be computa-

tionally inefficient, and a more efficient way of calculating IRFs becomes necessary.

Based on the convolution theorem [80], applying Fourier transform on both

sides of Eq. (3.19) yields

Y (s) = F (s)H (s) (3.25)

where Y (s) = F [y (t)], F (s) = F [f (t)], and H (s) = F [h (t)], in which s and

F (·) denote a frequency in Hz and Fourier transform operation, respectively. Hence,

H(s) can be expressed by

H (s) =
Y (s)

F (s)
(3.26)

which defines the FRF associated with h(t). Since both fĩ and yĩ are of finite lengths,

discrete F (s) and Y (s) can be obtained by directly applying the DFT to fĩ and yĩ,

respectively. The discrete IRF hĩ can be obtained as the IDFT of the discrete H(s).

While matrix inversion can be avoided here, the resulting IRF can be physically

erroneous. The error is caused by periodic extension of the DFT applied to fĩ: f(t)

becomes virtually infinitely long and periodic with a period equal to its duration,

i.e., f(t+ p̄Tq) = f(t) or fĩ+p̄m = fĩ, where p̄ is an integer. Based on Eq. (3.23), the
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resulting IRF is equal to the one that is obtained by solving

[ftp]m×m [ht]m×1 =

(
1

△t

)
[yt]m×1 (3.27)

where

[ftp] =




f1 fm fm−1 · · · f2

f2 f1 fm · · · f3

...
...

...
. . .

...

fm−1 fm−2 fm−3 · · · fm

fm fm−1 fm−2 · · · f1




(3.28)

is the excitation matrix that corresponds to periodic excitation with a period equal

to the sampling period; the response vector [yt] corresponds to the transient rather

than steady-state response of the system. As a result, the IRF [ht] in Eq. (3.27) can

be erroneous, since [ftp] can violate the physics of the system, which is caused by

the periodic extension. In practice, fĩ and yĩ are measured in Ns sampling periods

to obtain a FRF and the error caused by the periodic extension and measurement

noise can be reduced [2]. The FRF can be expressed by

H1 (s) =
ĜFY (s)

ĜFF (s)
(3.29)

or

H2 (s) =
ĜY Y (s)

ĜY F (s)
(3.30)

where

ĜY F (s) = Ĝ∗
FY (s) =

∑Ns
j=1 Y

∗

j (s)Fj(s)

Ns

ĜFF (s) =
∑Ns

j=1 F
∗

j (s)Fj(s)

Ns

ĜY Y (s) =
∑Ns

j=1 Y
∗

j (s)Yj(s)

Ns

(3.31)
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in which Yj(s) and Fj(s) are DFTs of yĩ and fĩ of the j-th sampling period, respec-

tively, and the hat ∧ and superscript ∗ denote an averaged quantity and complex

conjugation, respectively.

Assume that there are Ns sampling periods; each sampling period can be

equally divided into ns sub-sampling periods, and there is no excitation in the ns-th

sub-sampling period in one sampling period. A sub-sampling period has a duration

longer than T and its data length is ms = m
ns
, where m is the data length of fĩ

and yĩ of one sampling period. An efficient and accurate methodology is proposed

to calculate a discrete FRF and its associated IRF without matrix inversion. The

proposed methodology is described below:

Step 1. In the j-th sampling period, calculate a pseudo-periodic excitation series

f̃ pi =
∑ns−1

k=1 fi+(k−1)ms+(j−1)m and a pseudo-periodic response series ỹpi =
∑ns

k=1 yi+(k−1)ms+(j−1)m.

Note that i ranges from 1 to ms.

Step 2. Calculate DFTs of f̃ pi and ỹpi in the j-th sampling period, denoted by F̃j(s)

and Ỹj(s), respectively, using the fast Fourier transform (FFT).

Step 3. Calculate G
Ỹ F̃

(s) and G
Ỹ Ỹ

(s) (or G
F̃ F̃

(s)) associated with the pseudo-

periodic excitation and response series in the j-th sampling period, where GỸ F̃ (s) =

Ỹ ∗
j (s)F̃j(s), GỸ Ỹ (s) = Ỹ ∗

j (s)Ỹj(s), and GF̃ F̃ (s) = F̃ ∗
j (s)F̃j(s).

Step 4. Repeat Steps 1 through 3 for all Ns sampling periods.

Step 5. Calculate H1(s) (or H2(s)) in Eq. (3.29) (or Eq. (3.30)) using results in

Step 4.

Step 6. Calculate the IDFT of H(s) in Step 5 for hl using the inverse FFT (IFFT).

Note that l ranges from 1 to ms.
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To calculate hl using yĩ and fĩ of one sampling period based on Eq. (3.20),

one needs to solve

[ftc]m×ms
[ht]ms×1 =

(
1

△t

)
[ytc]m×1 (3.32)

where

[ftc] =




f1 0 0 · · · 0 0

f2 f1 0 · · · 0 0

...
...

...
. . .

...
...

fms
fms−1 fms−2 · · · f2 f1

fms+1 fms
fms−1 · · · f3 f2

...
...

...
. . .

...
...

f(ns−1)×ms
f(ns−1)×ms−1 f(ns−1)×ms−2 · · · f(ns−2)×ms+2 f(ns−2)×ms+1

0 f(ns−1)×ms
f(ns−1)×ms−1 · · · f(ns−2)×ms+3 f(ns−2)×ms+2

...
...

...
. . .

...
...

0 0 0 · · · f(ns−1)×ms
f(ns−1)×ms−1

0 0 0 · · · 0 f(ns−1)×ms

0 0 0 · · · 0 0




[ytc] =




y1

...

ym




(3.33)

in which ym = 0. Note that a solution for hl can be obtained by the LS method.

In the proposed methodology, periodic extension is applied to f̃ pi , which is simi-

lar to the case in Eq. (3.27). The proposed methodology is equivalent to solv-
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ing an equation that is obtained by pre-multiplying both sides of Eq. (3.32) by
[
Ims×ms

, Ims×ms
, . . . , Ims×ms

]

ms×m

, in which Ims×ms
is an identity matrix of

dimensions ms ×ms. The equation can be expressed by

[
f̃ t

p
]
ms×ms

[ht]ms×1 =

(
1

△t

)[
ỹt
p
]
ms×1

(3.34)

where

[
f̃ t

p
]
=




f̃ p1 f̃pms
f̃ pms−1 · · · f̃ p2

f̃ p2 f̃p1 f̃ pms
· · · f̃ p3

...
...

...
. . .

...

f̃ pms−1 f̃ pms−2 f̃ pms−3 · · · f̃ pms

f̃ pms
f̃ pms−1 f̃ pms−2 · · · f̃ p1




,
[
ỹt
p
]
=




ỹp1

...

ỹpms




(3.35)

The IRF hl from Eq. (3.34) is physically correct, since Eq. (3.34) corresponds to a

steady-state response series of the system ỹpi under a periodic excitation series f̃ pi ,

and the associated FRF is also physically correct, which indicates that the proposed

methodology can be as accurate as the LS method. Measurements of multiple

sampling periods in the proposed methodology can reduce measurement errors.

The proposed methodology is efficient due to use of the FFT and IFFT and

suitable for EMA with excitation in the form of a random impact series and random

excitation. It has been shown in Ref. [73] that the calculation time for FRFs and

IRFs can be greatly shortened due to use of the FFT and IFFT, compared with that

using the LS method. When excitation is in the form of a random impact series,

a sampling period can have more than two sub-sampling periods. Step 1 in the

proposed methodology in effect superposes excitation and response series of each
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sub-sampling period in one sampling period. The resulting superposed excitation

and response series have higher SNRs due to more impacts in the resulting sub-

sampling period, and fewer spectral lines are needed for associated DFTs. When

excitation is in the form of zero-mean random excitation, a sampling period can have

two sub-sampling periods, where one sub-sampling period has non-zero excitation,

which is similar to the case of burst random excitation. Superposing more than

two sub-sampling periods with non-zero excitation can cancel out some entries of

excitation and response series in one sub-sampling period and result in FRFs and

IRFs of lower SNRs and accuracies.

3.2.2.2 Coherence Function

A conventional coherence function that has been widely used to evaluate qual-

ities of measured FRFs in the frequency domain is defined by

γ2c (s) =
ĜY F (s) Ĝ∗

Y F (s)

ĜY Y (s) ĜFF (s)
(3.36)

Measured excitation and response series of at least two sampling periods are needed

to yield meaningful coherence function values, since the coherence function has a

value of one at all frequencies when those of only one sampling period are used. A

new coherence function was proposed in Ref. [73] to evaluate accuracies of calcu-

lated IRFs and FRFs in the frequency domain. A similar coherence function was

developed in Ref. [74] to evaluate random variation of a signal at each frequency.

This new type of coherence functions can be extended to evaluate qualities of FRFs

and IRFs from the proposed methodology in the frequency domain. The extended
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coherence function is defined by

γ2(s) =
Ŷ (s)

Ŷ (s) + Ê(s)
(3.37)

where Ŷ (s) and Ê(s) are averaged auto-power spectra of measured response series

yj,ki and error series ej,ki in ns ×Ns sub-sampling periods, respectively; yj,ki and ej,ki

are the response and error series in the k-th sub-sampling period of the j-th sampling

period, respectively. The error series is defined by

ej,ki = yj,ki − ȳj,ki (3.38)

where ȳj,ki is the predicted response series obtained by convolution between fĩ and

hl from the proposed methodology in the k-th sub-sampling period of the j-th

sampling period. The extended coherence function in can yield meaningful values

when measured excitation and response series of only one or multiple sampling

periods are available. When it has a value close to one at a frequency, a FRF

and its associated IRF are accurately estimated at the frequency. The lower the

extended coherence function value the less accurately estimated the FRF and IRF

at the frequency.

A fitting index is used to evaluate overall qualities of FRFs and IRFs based

on the coherence function in Eq. (3.37):

fit =

√√√√√
Ξ
(
Ŷ (s)

)

Ξ
(
Ŷ (s) + Ê(s)

) (3.39)

where Ξ(·) denotes summation over all frequencies. When Ê(f) = 0 at all frequen-

cies, fit = 1. The lower the index the worse the overall qualities of FRFs and IRFs

from the proposed methodology.
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3.2.3 Numerical Simulation and Experimental Examples

3.2.3.1 Numerical Example

Numerical simulations are conducted on a 2-DOF mass-spring-damper system,

as shown in Fig. 3.25, with masses m1 = 1 kg and m2 = 2 kg; spring constants

k1 = 6240π N/m, k2 = 4160π N/m, and k3 = 3120π N/m; and viscous damping

coefficients c1 = 2 N/(m/s), c2 = 1 N/(m/s), and c3 = 2 N/(m/s). An external

excitation f(t) acts on the mass m1; the excitation can be in the form of a random

impact series and random excitation. Responses of the two masses in the form of

displacements, denoted by y1(t) and y2(t), are obtained with a sampling frequency

of 1024 Hz by solving the associated set of ordinary differential equations with zero

initial conditions:

m1ÿ1(t) + (c1 + c2)ẏ1(t)− c2ẏ2(t) + (k1 + k2)y1(t)− k2y2(t) = f(t)

m2ÿ2(t)− ˙c2y1(t) + (c2 + c3)ẏ2(t)− k2y1(t) + (k2 + k3)y2(t) = 0

y1(0) = 0, ẏ1(0) = 0, y2(0) = 0, ẏ2(0) = 0

(3.40)

where an overdot denotes time differentiation, using the ODE45 solver in MATLAB

[75].

Figure 3.25: A 2-DOF mass-spring-damper system.
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Equation (3.40) can be written as

Mÿ +Cẏ +Ky = F (3.41)

where

M =



m1 0

0 m2


 ,C =



c1 + c2 −c2

−c2 c2 + c3


 ,K =



k1 + k2 −k2

−k2 k2 + k3




y =



y1(t)

y2(t)


 ,F =



f(t)

0




(3.42)

Analytical FRFs of the system can be derived as

H =



H1,1(s)

H2,1(s)


 =

[
−4π2s2M+ 2πjsC+K

]−1




1

0


 (3.43)

where j =
√
−1 and Hǐ,ǰ(s) denotes a FRF between the output point ǐ and input

point ǰ.

Responses of the two masses under a random impact series f(t) with a mean

peak amplitude of 30 N and a standard deviation of 10 N are calculated in one

sampling period with four sub-sampling periods. The duration of one sub-sampling

period is eight seconds; the total duration of the random impact series is 8 × 3

seconds, and that of the responses is 8×4 seconds. The excitation f(t) and response

y1(t) are shown in Fig. 3.26 (a) and (b), respectively; y1(t) can be considered to

be completely measured, since it has almost decayed to zero at the end of the last

sub-sampling period. A FRF H1,1(s) in Eq. (3.26) is calculated using y1(t) and
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f(t) of the whole sampling period. Its amplitude and phase angle are shown in

Figs. 3.27 (a) and (b), respectively, which compare well with those of the analytical

one in Eq. (3.43). A FRF H1,1(s) in Eq. (3.29) is calculated using y1(t) and f(t)

of the first three sub-sampling periods, and rectangular windows are applied to

y1(t) and f(t) of each sub-sampling period before calculation of their DFTs. The

amplitude and phase angle of the resulting FRF are shown in Figs. 3.27 (a) and

(b), respectively, which do not compare well with those of the analytical one. The

reason is that y1(t) of one sub-sampling period is not completely measured due to

truncation of response and excitation series at the end of the sub-sampling period;

the error derives from periodic extension of the DFT on f(t), as discussed in Sec.

2.1. To apply the proposed methodology, pseudo-periodic excitation and response

series associated with y1(t) and f(t) of the sampling period are formed and shown

in Figs. 3.27 (c) and (d), respectively. The amplitude and phase angle of H1,1(s)

from the proposed methodology are calculated and shown in Figs. 3.27 (a) and

(b), respectively, which compare well with those of the analytical one. Note that

frequency resolutions of H1,1(s) in Eq. (3.29) and from the proposed methodology

are 0.125 Hz, and that in Eq. (3.26) using y1(t) and f(t) of the whole sampling

period is 0.03125 Hz; numbers of spectral lines in the former two FRFs is a fourth

of that in the latter. The frequency resolutions here differ because that of a FRF

depends on durations of response and excitation series. With a certain sampling

frequency, the longer the durations of response and excitation series, the higher the

frequency resolution of the FRF and the more the spectral lines needed for DFTs.

The conventional coherence function associated with H1,1(f) in Eq. (3.29) using
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y1(t) and f(t) of the first three sub-sampling periods and the extended coherence

function associated with H1,1(f) from the proposed methodology in Eq. (3.37) are

shown in Figs. 3.28 (a) and (b), respectively, and the fitting index fit associated

with the extended coherence function is 99.999%.
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Figure 3.26: (a) Random impact series, (b) the response of m1 in Fig. 3.25 of

one sampling period, (c) the pseudo-periodic excitation series, and (d) the pseudo-

periodic response series of m1 in Fig. 3.25.
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Figure 3.27: (a) Comparison of amplitudes of the analytical H1,1(s) (analytical),

H1,1(s) in Eq. (3.26) using y1(t) and f(t) of the whole sampling period (complete),

H1,1(s) in Eq. (3.29) using y1(t) and f(t) of the first three sub-sampling periods

(averaged), and H1,1(s) from the proposed methodology (proposed); (b) comparison

of their phase angles; (c) an enlarged view of amplitudes of the above four H1,1(s) in

the neighborhood of the first natural frequency of the system; and (d) an enlarged

view of amplitudes of the four H1,1(s) in the neighborhood of the second natural

frequency of the system.
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Figure 3.28: (a) Conventional coherence function associated with H1,1(s) in Eq.

(3.29) using y1(t) and f(t) of the first three sub-sampling periods, and (b) the

extended coherence function associated withH1,1(s) from the proposed methodology.
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Figure 3.29: (a) Conventional coherence function associated with H1,1(s) in Eq.

(3.29) using y1(t) and f(t) of the first sampling period, and (b) the extended coher-

ence function of H1,1(s) from the proposed methodology using y1(t) and f(t) of the

first sampling period.
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IRFs associated with aforementioned FRFs are shown in Fig. 3.30. It can be

seen from Fig. 3.30 that the IRFs associated with H1,1(s) in Eq. (3.26) using y1(t)

and f(t) of the whole sampling period and that from the proposed methodology agree

well with the IRF associated with the analytical FRF throughout the sub-sampling

period. The IRF associated with H1,1 in Eq. (3.29) using y1(t) and f(t) of the

first three sub-sampling periods agrees well with that associated with the analytical

FRF at the beginning of the sub-sampling period. However, there is larger error

after the first second of the sub-sampling period, and the IRF does not decay to

zero at the end of the sub-sampling period while the other three almost do. The

response y1(t) and those calculated by convolution between f(t) and the IRFs from

different methods are shown in Fig. 3.31. Responses after impacts at t = 10.4 s and

t = 15.8 s are shown in Figs. 3.31 (a) and (b), respectively. Responses calculated by

convolution between f(t) and the IRF associated with H1,1(s) in Eq. (3.26) using

y1(t) and f(t) of the whole sampling period and that from the proposed methodology

agree well with the actual one, but the response calculated by convolution between

f(t) and the IRF associated with H1,1(s) in Eq. (3.29) using y1(t) and f(t) of the

first three sub-sampling periods deviates a little from the actual one. The responses

between t = 28 s and t = 32 s from different methods are shown in Fig. 3.31 (c);

that calculated by convolution between f(t) and the IRF associated with H1,1(s) in

Eq. (3.29) using y1(t) and f(t) of the first three sub-sampling periods significantly

deviates from the actual one.
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Figure 3.30: (a) Comparison of IRFs from the analyticalH1,1(s) (analytical), H1,1(s)

in Eq. (3.29) using y1(t) and f(t) of the whole sampling period (complete), H1,1(s)

in Eq. (3.29) using y1(t) and f(t) of the first three sub-sampling periods (averaged),

and H1,1(s) from the proposed methodology (proposed); (b) an enlarged view of the

IRFs in the first 0.05 second; and (c) an enlarged view of the IRFs between t = 7.2

s and t = 8 s.
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Figure 3.31: Enlarged views of the actual y1(t) (actual) and calculated ones by

convolution between f(t) and IRFs associated with H1,1(s) in Eq. (3.26) using y1(t)

and f(t) of the whole sampling period (complete), H1,1(s) in Eq. (3.29) using y1(t)

and f(t) of the first three sub-sampling periods (averaged), and H1,1(s) from the

proposed methodology (proposed) in different time intervals: (a) between t = 10.3

s and t = 10.9 s, (b) between t = 15.7 s and t = 16.3 s, and (c) between t = 28 s

and t = 32 s.

Responses of the two masses under zero-mean white-noise excitation with a

standard deviation of 100 N are calculated in five sampling periods, and white noise

is added to the responses with a SNR of 70 db to simulate measurement noise.

Each sampling period has two sub-sampling periods, and the duration of one sub-

sampling period is eight seconds. The excitation f(t) and response y1(t) are shown

in Figs. 3.32 (a) and (b), respectively. The response y1(t) of each sampling period

cannot be considered to be completely measured, since it has not decayed to zero

at the end of the sampling period due to the artificially added measurement noise.

The pseudo-periodic excitation and response series corresponding to y1(t) and f(t)
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of the first sampling period are shown in Figs. 3.32 (c) and (d), respectively.
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Figure 3.32: (a) Zero-mean white-noise excitation, (b) the response of m1 in Fig.

3.25 of five sampling periods, (c) the pseudo-periodic excitation of the first sampling

period, and (d) the pseudo-periodic response of m1 in Fig. 3.25 of the first sampling

period.

The amplitude and phase angle of H1,1(s) in Eq. (3.29) and from the proposed

methodology using y1(t) and f(t) of the first sampling period are shown in Figs.

3.33 (a) and (b), respectively, which compare well with those of the analytical one

in neighborhoods of natural frequencies, as shown in Figs. 3.33 (c) and (d), except

at some frequencies where H1,1(s) has low amplitudes due to the measurement noise.

Note that the number of spectral lines in the latter is half of that in the former.

With y1(t) and f(t) of the first sampling period, the conventional coherence function
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associated withH1,1(s) in Eq. (3.29) and the extended coherence function associated

with H1,1(s) from the proposed methodology in Eq. (3.37) are shown in Figs. 3.29

(a) and (b), respectively. While there are inaccuracies of H1,1(s) in Eq. (3.29) due to

the measurement noise, the conventional coherence function has a value of one at all

frequencies. The extended coherence function has low values at frequencies where

H1,1(s) from the proposed methodology deviates from the analytical one, and it has

values close to one at frequencies where H1,1(s) from the proposed methodology

compares well with the analytical one. The fitting index fit associated with H1,1(s)

from the proposed methodology is 99.37%.
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Figure 3.33: (a) Comparison of amplitudes of the analytical H1,1(s) (analytical),

H1,1(s) in Eq. (3.26) using y1(t) and f(t) of the first sampling period (complete),

and H1,1(s) from the proposed methodology using y1(t) and f(t) of the first sam-

pling period (proposed); (b) comparison of their phase angles; (c) an enlarged view

of amplitudes of the above three H1,1(s) in the neighborhood of the first natural

frequency of the system; and (d) an enlarged view of amplitudes of the three H1,1(s)

in the neighborhood of the second natural frequency of the system.

Amplitudes and phase angles of H1,1(s) in Eq. (3.29) and from the proposed

methodology using y1(t) and f(t) of the first two and five sampling periods are shown

in Figs. 3.34 and 3.35, respectively. The amplitude and phase of the former compare

well with those of the analytical H1,1(s), except at some frequencies where H1,1(s)

has low amplitudes due to the measurement noise, which is similar to H1,1(s) using
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y1(t) and f(t) of the first sampling period. The amplitude and phase of the latter

compare well with those of the analytical H1,1(s) in a wider frequency range than

those of the former. The conventional coherence function associated with H1,1(s)

in Eq. (3.29) and the extended coherence function associated with H1,1(s) from

the proposed methodology using y1(t) and f(t) of the first two and five sampling

periods are shown in Figs. 3.36 and 3.37, respectively. When the number of sampling

periods is larger than one, meaningful conventional coherence function values can

be obtained, and their values become more steady with a larger number of sampling

periods, which is also the case for the extended coherence function. The fitting

indices fit associated with H1,1(s) from the proposed methodology using the first

two and five sampling periods are 99.76% and 99.77%, respectively.
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Figure 3.34: (a) Comparison of amplitudes of the analytical H1,1(s) (analytical),

H1,1(s) in Eq. (3.29) using y1(t) and f(t) of the first two sampling periods (com-

plete), and H1,1(s) from the proposed methodology using y1(t) and f(t) of the first

two sampling periods (proposed); and (b) comparison of their phase angles.
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Figure 3.35: (a) Comparison of amplitudes of the analytical H1,1(s) (analytical),

H1,1(s) in Eq. (3.29) using y1(t) and f(t) of the first five sampling periods (com-

plete), and H1,1(s) from the proposed methodology using y1(t) and f(t) of the first

five sampling periods (proposed); and (b) comparison of their phase angles.
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Figure 3.36: (a) Conventional coherence function associatd with H1,1(s) in Eq.

(3.29) using y1(t) and f(t) of the first two sampling periods, and (b) the extended

coherence function of H1,1(s) from the proposed methodology using y1(t) and f(t)

of the first two sampling periods.
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Figure 3.37: (a) Conventional coherence function associated with H1,1(s) in Eq.

(3.29) using y1(t) and f(t) of the first five sampling periods, and (b) the extended

coherence function of H1,1(s) from the proposed methodology using y1(t) and f(t)

of the first five sampling periods.

IRFs associated with H1,1(s) in Eq. (3.29) and from the proposed methodology

using y1(t) and f(t) of the first and first five sampling periods are shown in Fig.

3.38 and 3.39, respectively. It can be seen from Fig. 3.38 that IRFs associated with

H1,1(s) in Eq. (3.29) and from the proposed methodology compare well with that

associated with the analytical H1,1(s) at the beginning of a sub-sampling period,

and the former two IRFs deviate from the latter near the end of the sub-sampling

period, where the latter has almost decayed to zero. Use of more sampling periods

for H1,1(s) can reduce the deviation, as shown in Fig. 3.39, where the deviation

of IRFs associated with H1,1(s) in Eq. (3.29) and from the proposed methodology

using y1(t) and f(t) of the first five sampling periods from that associated with the

analytical H1,1(s) is much smaller.
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Figure 3.38: (a) Comparison of IRFs from the analyticalH1,1(s) (analytical), H1,1(s)

in Eq. (3.29) using y1(t) and f(t) of the first sampling period (complete), and

H1,1(s) from the proposed methodology using y1(t) and f(t) of the first sampling

period (proposed); (b) an enlarged view of the IRFs in the first 0.05 second; and (c)

an enlarged view of the IRFs between t = 7.2 s and t = 8 s.
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Figure 3.39: (a) Comparison of IRFs from the analyticalH1,1(s) (analytical), H1,1(s)

in Eq. (3.29) using y1(t) and f(t) of the first five sampling periods (complete), and

H1,1(s) from the proposed methodology using y1(t) and f(t) of the first five sampling

periods (proposed); (b) an enlarged view of the IRFs in the first 0.05 second; and

(c) an enlarged view of the IRFs between t = 7.2 s and t = 8 s.
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3.2.3.2 Experimental Example

EMA was conducted on an aluminum plate to measure a FRF associated with

its out-of-plane vibration modes and its associated IRF. The plate had a length of

608 mm, width of 612 mm, and thickness of 4.3 mm. The test setup is shown in Fig.

3.40: the plate was hung using a nylon cord to simulate its free boundary conditions,

and a PCB impact hammer and a PCB accelerometer were used to manually gen-

erate a random impact series, denoted by f(t), at an excitation point and measure

the response of a measurement point in the form of acceleration, denoted by z̈(t),

respectively. The hammer and accelerometer were connected to a LMS spectrum

analyzer with the software LMS Test.Lab Rev. 9b [77]. Measured f(t) and z̈(t) of

five sampling periods were obtained in the measurement period, and the measured

frequency range was from 0 to 512 Hz with a sampling frequency of 1024 Hz. There

were three sub-sampling periods in one sampling period, and the duration of one

sub-sampling period was 32 seconds. The duration of a sampling period and that

of the measurement period were 32 × 3 and 32 × 3× 5 seconds, respectively. Time

histories of f(t) and z̈(t) of the five sampling periods are shown in Figs. 3.41 (a)

and (b), respectively.
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Figure 3.40: Test setup of EMA on an aluminum plate.
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Figure 3.41: (a) Random impact series manually generated at the excitation point

on the plate in Fig. 3.40, (b) the response of the measurement point on the plate

in Fig. 3.40, (c) the pseudo-periodic excitation of the first sampling period, and (d)

the pseudo-periodic response of the measurement point of the first sampling period.

FRFs in Eq. (3.29) and from the proposed methodology using z̈(t) and f(t) of

the first, first two, and first five sampling periods were shown in Figs. 3.42 through

3.44, respectively. Note that the number of spectral lines in the latter is a third

of that in the former. A FRF from a single impact test with the same excitation

and measurement points as those in Fig. 3.40 was measured, which served as a

benchmark FRF for comparison purposes. It can be seen that FRFs in Eq. (3.29)

and from the proposed methodology using z̈(t) and f(t) of more sampling periods
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compared better with the benchmark one. For same numbers of sampling periods,

FRFs from the proposed methodology are almost identical to those in Eq. (3.29),

but the latter requires more spectral lines for DFT calculation. The conventional

and extended coherence functions associated with the FRFs in Eq. (3.29) and from

the proposed methodology, respectively, using z̈(t) and f(t) of the first sampling

period were shown in Figs. 3.45 (a) and (b), respectively. The extended coherence

function had meaningful values, but the conventional one had a value of one at

all frequencies. The fitting index fit associated with the FRF from the proposed

methodology using z̈(t) and f(t) of the first sampling period was 88.18%. Note that

values of the extended coherence function at some frequencies and fit associated

with the FRF from the proposed methodology were relatively low mainly because

the random impact series was manually generated and points that were impacted

on the plate could slightly deviate from the assigned excitation point in Fig. 3.40.

Use of a random impact device can provide a random impact series with consistent

impacted points and improve values of the extended coherence function and fit.

The conventional and extended coherence functions using z̈(t) and f(t) of the first

two and five sampling periods are shown in Figs. 3.46 and 3.47, respectively, and

fit associated with the first two and five sampling periods were 96.97% and 97.24%,

respectively, which indicated that the measured FRFs using z̈(t) and f(t) of more

sampling periods were more accurate. The simulated boundary conditions could

be considered to be free, since the highest natural frequency associated with rigid-

body modes was 4.53 Hz, which was about 10% of the natural frequency of the first

out-of-plane mode of the plate (44.5 Hz).
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Figure 3.42: (a) Comparison of amplitudes of a FRF from a single impact test

(benchmark), that in Eq. (3.29) using z̈(t) and f(t) of the first sampling period

(complete), and that from the proposed methodology using z̈(t) and f(t) of the first

sampling period (proposed); (b) comparison of their phase angles; (c) an enlarged

view of amplitudes of the FRFs between 75 and 76 Hz; and (d) an enlarged view of

amplitudes of the FRFs between 245 and 246 Hz.
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Figure 3.43: (a) Comparison of amplitudes of a FRF from a single impact test

(benchmark), that in Eq. (3.29) using z̈(t) and f(t) of the first two sampling periods

(complete), and that from the proposed methodology using z̈(t) and f(t) of the

first two sampling periods (proposed); (b) comparison of their phase angles; (c) an

enlarged view of amplitudes of the FRFs between 75 and 76 Hz, and (d) an enlarged

view of amplitudes of the FRFs between 245 and 246 Hz.
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Figure 3.44: (a) Comparison of amplitudes of a FRF from a single impact test

(benchmark), that in Eq. (3.29) using z̈(t) and f(t) of the first five sampling periods

(complete), and that from the proposed methodology using z̈(t) and f(t) of the

first five sampling periods (proposed); (b) comparison of their phase angles; (c) an

enlarged view of amplitudes of the FRFs between 75 and 76 Hz, and (d) an enlarged

view of amplitudes of the FRFs between 245 and 246 Hz.
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Figure 3.45: (a) Conventional coherence function associated with the FRF in Eq.

(3.29) using z̈(t) and f(t) of the first sampling period, and (b) the extended coher-

ence function associated with the FRF from the proposed methodology using z̈(t)

and f(t) of the first sampling period.
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Figure 3.46: (a) Conventional coherence function associated with the FRF in Eq.

(3.29) using z̈(t) and f(t) of the first two sampling periods, and (b) the extended

coherence function associated with the FRF from the proposed methodology using

z̈(t) and f(t) of the first two sampling periods.
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Figure 3.47: (a) Conventional coherence function associated with the FRF in Eq.

(3.29) using z̈(t) and f(t) of the first five sampling periods, and (b) the extended

coherence function associated with the FRF from the proposed methodology using

z̈(t) and f(t) of the first five sampling periods.

IRFs associated with the FRFs in Eq. (3.29) and from the proposed method-

ology using z̈(t) and f(t) of the first and first five sampling periods were calculated

and compared with that associated with the benchmark FRFs in different time in-

tervals in Figs. 3.48 and 3.49, respectively. It can be seen from Fig. 3.48 that the

IRFs associated with the FRFs in Eq. (3.29) and from the proposed methodology

agreed well with that associated with the benchmark FRF at the beginning of the

sub-sampling period, and the former two IRFs deviated from the latter near the end

of the sub-sampling period, where the latter had almost decayed to zero. The IRFs

associated with the FRFs in Eq. (3.29) and from the proposed methodology that

use z̈(t) and f(t) of the first five sampling periods compared better with that asso-

ciated with the benchmark FRF. Measured z̈(t) and those obtained by convolution

between f(t) and the IRFs from the two methodologies using z̈(t) and f(t) of the

170



first five sampling periods are shown in Fig. 3.50. The measured and calculated z̈(t)

after impacts at t = 43.98 s and t = 220.22 s are shown in Figs. 3.50 (a) and (b),

respectively; those between t = 257.68 s and t = 257.74 s are shown in Fig. 3.50

(c). It can be seen that the calculated z̈(t) associated with the FRFs in Eq. (3.29)

and from the proposed methodology compared well with the measured one.
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Figure 3.48: (a) Comparison of IRFs associated with a FRF from a single impact

test (benchmark), that in Eq. (3.29) using z̈(t) and f(t) of the first sampling period

(complete), and that from the proposed methodology using z̈(t) and f(t) of the first

sampling period (proposed); (b) an enlarged view of the IRFs between t = 3.9 s and

t = 3.94 s; and (c) an enlarged view of the IRFs between t = 25.96 s and t = 26 s.
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Figure 3.49: (a) Comparison of IRFs associated with a FRF from a single impact

test (benchmark), that in Eq. (3.29) using z̈(t) and f(t) of the first five sampling

periods (complete), and that from the proposed methodology using z̈(t) and f(t) of

the first five sampling periods (proposed); (b) an enlarged view of the IRFs between

t = 3.9 s and t = 3.94 s; and (c) an enlarged view of the IRFs between t = 25.96 s

and t = 26 s.

172



43.96 43.99 44.02 44.05
−60

−30

0

30

60

90

120

t

z̈
(t
)

(a)

 

 

measured
complete
proposed

257.68 257.7 257.72 257.74
−20

−10

0

10

20

30

40

t

z̈
(t
)

(c)

 

 

measured
complete
proposed

220.21 220.24 220.27 220.3
−60

−30

0

30

60

90

120

t

z̈
(t
)

(b)

 

 

measured
complete
proposed

Figure 3.50: Enlarged views of the measured z̈(t) (measured) and calculated ones

by convolution between f(t) and IRFs associated with the FRFs in Eq. (3.29) using

z̈(t) and f(t) of the first five sampling periods (complete) and from the proposed

methodology using z̈(t) and f(t) of the first five sampling periods (proposed) in

different time intervals: (a) between t = 43.96 s and t = 44.05 s, (b) between

t = 220.21 s and t = 220.30 s, and (c) between t = 257.68 s and t = 257.71 s.

3.2.4 Conclusion

An efficient and accurate methodology for calculating discrete FRFs and IRFs

is proposed. Excitation and response measurements in the proposed methodology

are similar to those in EMA using burst random excitation. The methodology is

computationally efficient, since matrix inversion can be avoided and calculation time

can be greatly shortened due to use of the FFT and IFFT. Data lengths of excita-

tion and response series in calculation of FRFs and associated IRFs in the proposed

methodology are shortened by a factor of the number of sub-sampling periods in

one sampling period due to use of pseudo-periodic excitation and response series;
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fewer spectral lines are needed in calculation of associated DFTs, and accuracies of

resulting FRFs and IRFs from the proposed methodology can be maintained, com-

pared with those by directly applying the DFT to excitation and response series,

which need more spectral lines. The relationship between an IRF from the proposed

methodology and that from the LS method is shown. The linear equation associated

with the proposed method has a smaller number of rows than that associated with

the LS method, and IRFs from the two linear equations are very close to each other

in one sub-sampling period. Meaningful coherence function values associated with

FRFs from the proposed methodology can be obtained using the extended coherence

function even when response and excitation series of only one sampling period are

available. FRFs and IRFs from the proposed methodology in the numerical simu-

lation are as accurate as those directly using completely measured excitation and

response series. The FRF and its associated IRF from the proposed methodology

in the experimental example agreed well with the benchmark ones from a single

impact test. Excitation and response series of more sampling periods can lead to

more accurate FRF and IRF estimations from the proposed methodology, based on

the extended coherence function and fitting index.
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Chapter 4

STRUCTURAL DAMAGE IDENTIFICATION FOR BEAM AND

PLATE STRUCTURES

4.1 Identification of Embedded Horizontal Cracks in Beams Using

Measured Mode Shapes

4.1.1 Introduction

Vibration-based damage detection has become one of major research topics in

the application of structural dynamics in the past few decades. Various methodolo-

gies have been developed to detect, locate, and characterize damage in structures

based on vibration measurements, since physical properties of a structure, such as

mass, stiffness, and damping, directly determine modal characteristics of the struc-

ture, i.e., natural frequencies, MSs, and modal damping ratios [7]. One criterion

to categorize the methodologies is whether a model of the structure being moni-

tored is needed. If it is needed, the methodology is model-based; otherwise, it is

non-model-based. Model-based methods are capable of detecting locations and ex-

tent of damage in structures with a minimum amount of measurements information

[81, 82, 83].

Model-based methods could have problems due to inaccuracy of models, envi-

ronmental and other non-stationary effects on measurements, and lack of measure-
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ment data in certain frequency ranges [81]. In practice, it is difficult to construct

models of most existing structures with high accuracy. Hence, methods that only an-

alyze measured MSs or ODSs of a structure without the aid of a model can be good

alternatives to model-based methods to locate damage, and they are non-model-

based ones [84]. Since MSs are not sensitive to damage of small extent, curvatures

of MSs, referred to as CMSs, are used to locate damage [85]. A global trend of a

CMS of a beam can be observed, and one needs to isolate the features caused by

damage from the trend in order to localize the damage. Differences between CMSs

of a damaged beam and those of an undamaged one are localized in a damage re-

gion and increase as the damage size increases [86]. A gapped-smoothing method

was used to locate delamination in a composite beam by inspecting smoothnesses of

CMSs [87], and the method was extended to use broad-band ODS data [88]; for each

measurement point to be inspected, a gapped cubic polynomial fitting the CMSs or

curvatures of ODSs at its four neighboring points was used to eliminate trends at

the point, which is a local method and can be computationally inefficient for a dense

measurement grid. The gapped-smoothing method was extended to locate damage

in a beam using a global fitting method, where generic MSs were used to fit mea-

sured MSs of a damaged beam [89], and the global fitting method was extended to

ODS data for damage detection on beams and plates [90]. However, the generic MSs

require a priori knowledge of test structures that may not be available in practice.

A crucial aspect of damage detection methods using CMSs is calculation of deriva-

tives of MSs. Optimal spatial sampling intervals were proposed for CMSs to avoid

undersampling and oversampling of MS measurements, both of which have adverse

176



effects on damage detection quality [91]. A novel Laplacian scheme was developed

and experimentally validated in Ref. [92] to locate a delamination zone in a compos-

ite beam using associated modal curvatures with multiple resolutions, where a local

method was applied to eliminate trends of the resulting modal curvatures. Besides

CMSs, wavelet transforms of MSs can also be used in damage detection, since they

are sensitive to localized abnormalities in MSs and can be presented with multiple

scales. Cracks were identified in beams using a “symmetrical 4” wavelet function;

the position of a crack was accurately detected with the aid of a beam model [93].

Damage in the forms of cracks in beams and thickness reductions in plates was

identified using CWT, which was manifested as peaks in associated CWT coeffi-

cients [94]. However, the selections of the wavelet functions there failed to reflect

the physical meanings of the resulting CWTs of MSs. While CWTs of differences

between MSs of a damaged beam and those of the associated undamaged one can

be used to locate cracks with high sensitivities [95], MSs of an undamaged beam are

not always available in practice.

Beams with horizontal embedded cracks are studied in this work; they are

similar to composite beams with delaminations. Natural frequencies of beams and

plates will decrease if delaminations occur; the larger a delamination, the larger the

reductions of the natural frequencies [96]. Free vibration analysis of a laminated

beam was studied using a layerwise theory in Ref. [97]. Effects of the lamination

angle, location, and size, and the number of delaminations on natural frequencies of

beams were addressed there. A generalized variational principle was used to formu-

late equations of motion and associated boundary conditions for the free vibration
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of a delaminated composite beam; the coupling effect of longitudinal and bending

vibrations was shown to be significant for the calculated natural frequencies and

MSs [98]. Modal tests were conducted in Ref. [99] using polyvinylidene fluoride

film sensors and piezoceramic patches with sine sweep actuation; backpropagation

neural network models were developed using results from the beam theory and used

to predict a delamination size. A spatial wavelet analysis was used in Ref. [100] to

process static deformation profiles of cantilever beams to numerically and experi-

mentally locate delaminations; deformation profiles from dense measurements were

smoothed before applying the spatial wavelet analysis.

In this work, two non-model-based methods are proposed to identify embed-

ded horizontal cracks in beams without use of any a priori information of associated

undamaged beams, if the beams are geometrically smooth and made of materials

that have no stiffness discontinuities. CMSs are presented with multiple resolutions

to alleviate adverse effects of measurement noise. The relationship between CWTs

of MSs and CMSs is shown. MSs from polynomials of MS-dependent orders, which

fit those of a damaged beam, can well approximate MSs of the associated undam-

aged one; the MSs of the damaged beam are virtually extended beforehand, beyond

boundaries of the beam, in order to improve the approximation of the CMSs from

the resulting polynomial fits to those of the associated undamaged one near the

boundaries. Differences between MSs of the damaged beam and those from the re-

sulting polynomial fits are used to yield two damage indices: the curvature damage

index (CDI) and the CWT damage index (CWTDI) with a Gaussian wavelet func-

tion. Superior over the existing methods that locally eliminate trends in resulting
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CMSs and CWTs of MSs, the proposed methods apply a global trend elimination

technique that can greatly reduce computational costs, especially for cases where

multiple resolutions and scales are used to calculate CMSs and CWTs of MSs with

dense measurement grids, respectively; physical interpretations of CWTDIs are pro-

vided.

A uniform cantilever beam made of acrylonitrile butadiene styrene (ABS) with

an embedded horizontal crack is constructed, and its natural frequencies and MSs are

measured using non-contact OMA. The crack tips can be successfully located using

the two proposed damage indices; they are located near peaks of CDIs and CWTDIs

with the second-order Gaussian wavelet function, and valleys of CWTDIs with the

third-order Gaussian wavelet function. While the proposed methods are used to

identify embedded horizontal cracks in this work, they can be used to identify edge

cracks, slant cracks, and delaminations, and extended to other types of structures,

such as plate structures.

4.1.2 Crack Identification Using CDIs and CWTDIs

A FE model of a cantilever beam made of steel with a mass density ρ =

7800 kg/m3, an elastic modulus E = 210 GPa, and Poisson’s ratio µ = 0.3, with

an embedded horizontal crack, is constructed using commercial FE software. The

dimensions of the beam and crack and the FE model of the damaged beam are

shown in Figs. 4.1 (a) and (b), respectively. An analytical model of the undamaged

beam with the same material properties and dimensions as the damaged one is also
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constructed for comparison purposes. MSs of the damaged and undamaged beams,

denoted by f d and fu, respectively, are used to illustrate the proposed methods.

The j-th MSs of the damaged and undamaged beams are denoted by f d,j and fu,j,

respectively, and the MSs are normalized so that their maximum absolute values

are one. White noise is added to the MSs with a signal-to-noise ratio (SNR) of 60

to simulate measurement noise.

(a)

(b)

Figure 4.1: (a) Dimensions of a cantilever beam with an embedded horizontal crack,

and (b) the FE model of the damaged beam.

4.1.2.1 CMS

A CMS is the second-order derivative of a MS. It can be used to identify dam-

age because abnormalities in CMSs are localized in damage regions [86] and can

be manifested by the gapped-smoothing method [87, 88]. Assuming the measure-

ment points are equally spaced, the CMS at a measurement point i can be calculated

from the MS, denoted by f , using the central finite difference scheme of second-order

accuracy:
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f ′′
i = Ci =

fi−1 − 2fi + fi+1

h2
(4.1)

where a prime denotes first-order spatial differentiation, fi is the MS at the mea-

surement point i, and h is the distance between two neighbouring measurement

points. The gapped-smoothing method assumes that the CMSs are smooth in un-

damaged regions and unsmooth elsewhere, which implies that the structure being

inspected is geometrically smooth and made of materials that have no stiffness dis-

continuities; such an assumption applies throughout this work. A crucial aspect of

the gapped-smoothing method is that the minimum size of identifiable damage is

determined by the density of the measurement grid since the effects of damage on

CMSs are localized. Hence, a dense measurement grid becomes necessary to identify

damage of a small size. However, measurement noise of MSs will become dominant

in the resulting CMSs with a dense measurement grid, since the difference between

noise-free MSs at two neighbouring measurement points is small compared with that

between noisy MSs at the two points. Figure 4.2(a) shows that measurement noise

is amplified when the CMSs are calculated using Eq. (4.1), and they cannot be used

to identify damage.

181



0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
x 10

4

x
L

f
′
′

(a)

0 0.2 0.4 0.6 0.8 1
−1000

−500

0

500

1000

x
L

f
′
′

(b)

0 0.2 0.4 0.6 0.8 1
−600

−200

200

600

x
L

f
′
′

(c)

0 0.2 0.4 0.6 0.8 1
−600

−300

0

300

600

x
L

f
′
′

(d)

Figure 4.2: (a) CMS of the fourth mode of the damaged beam from Eq. (4.1), and

those of the mode with different m values: (b) m = 5, (c) m = 10, and (d) m = 15.

In order to reduce the adverse effects of measurement noise, the central finite

difference scheme in Eq. (4.1) is modified to be

f ′′
i = Cm

i =
fi−m − 2fi + fi+m

(mh)2
(4.2)

where m is the number of measurement points from point i to either end of the

derivative interval, which determines the width of the derivative interval and the
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resolution of the resulting derivative. This formulation is similar to the á trous

Laplacian operator in Ref. [92], and enables observation of CMSs with different

resolutions: the lower the value of m, the higher the resolution of the resulting

derivative. Note that Eq. (4.1) is the case with m = 1. Figures 4.2 (b) through (d)

show that
(
f d,4
)′′

can be obtained with a lower noise level with a larger m values.

It can be seen from Figs. 4.2 (b) through (d) that while the CMSs at a same point

slightly vary for different m, the singularities of the CMSs near the crack tips are

retained. In practice, a suitable value of m can be obtained by increasing it from

one until CMSs with a low noise level are observed.

4.1.2.2 CWT

A linear transformation is defined by

Wwf(u, s) =

∫ +∞

−∞

f(x)w∗
u,s(x)dx (4.3)

where Ww denotes the linear transformation operator with the weight function

wu,s(x) =
1√
s
w(
x− u

s
) (4.4)

in which u and s are spatial and scale parameters of the weight function, respectively,

and the superscript * denotes complex conjugation. In this work, the weight function

is defined in the real domain, and the superscript * can be dropped. When the weight

function is a wavelet function ψ, the transformation in Eq. (4.3) becomes a CWT

[101]. The wavelet function ψ has a zero average, i.e.,
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∫ +∞

−∞

ψ(x)dx = 0 (4.5)

and Wψf(u, s) measures the variation of f(x) in the neighbourhood centered at u

with an interval size proportional to s. The L2-norm of ψ(x) is one, i.e.,

‖ψ‖2 =
(∫ +∞

−∞

|ψ(x)|2 dx
) 1

2

= 1 (4.6)

The CWT can be considered as a convolution:

Wψf =
1√
s

∫ +∞

−∞

f(x)ψ̄(
u− x

s
)dx = f ⋆ ψ̄ (4.7)

where an overbar denotes function reflection over the y-axis, i.e., ψ̄(x) = ψ(−x),

and the symbol ⋆ denotes convolution.

In this work, a p-th-order (p > 1) Gaussian wavelet function, denoted by

gp (x), is used as the wavelet function, since it is smooth and differentiable, and can

capture local changes in a transformed function [102]. Gaussian wavelet functions

are derived from the Gaussian function g0(x) with a unit L2-norm:

g0(x) =
4

√
2

π
e−x

2

(4.8)

The p-th-order Gaussian wavelet function can be written as

gp(x) = Cp
[
g0(x)

](p)
(4.9)

where Cp is a constant such that gp(x) has a unit L2-norm. The relationship between

ḡq(x) and ḡp+q(x) can be expressed by
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Figure 4.3: (a) The Gaussian function g0(x) and the first- through third-order Gaus-

sian wavelet functions, and (b) the finite difference coefficients of the central finite

difference scheme of second-order accuracy for the first- through third-order deriva-

tives.

dpḡq

dxp
=

Cq
Cp+q (−1)p

ḡp+q (4.10)

The Gaussian function g0(x) and the Gaussian wavelet functions of orders one

through three are shown in Fig. 4.3(a).

Due to the commutative property of the convolution, i.e., f ⋆ ψ̄ = ψ̄ ⋆ f , a

differentiation operation on Wψf with respect to u can be expressed by

∂q

∂uq
Wψf = f ⋆ ψ̄(q) = ψ̄ ⋆ f (q) = f (q) ⋆ ψ̄ (4.11)

Equation (4.11) shows that the differentiation operation on ψ̄ in the CWT can be

transferred onto f if ψ̄ is differentiable. Hence, the variation of f ′′ can be measured

without calculating f ′′:

185



Wψf
′′ = f ′′ ⋆ ψ̄ = f ⋆ ψ̄′′ (4.12)

and the CWT can be used to inspect the variation of f ′′ and identify damage, which

can reduce the adverse effects of measurement noise on f(x). Similarly, when the

(p+ q)-th-order Gaussian wavelet function is used in the CWT, one has [102]

Wgp+qf = f ⋆ ḡp+qu,s =
Cq

Cp+q (−s)p
f (p) ⋆ ḡqu,s =

Cq
Cp+qsp

W(−1)pgqf
(p) (4.13)

When q = 0, Eq. (4.13) becomes

Wgpf = =
C0

Cpsp
W(−1)pg0f

(p) =
C0

Cpsp
Wg0

[
(−1)p f (p)

]
(4.14)

Equation (4.14) shows that the CWT of f with the p-th order Gaussian wavelet

function has the same shape as the linear transformation of (−1)p f (p) with the

weight function g0, and they differ by a factor C0

Cpsp
. The linear transformation of f

with the weight function g0 is equivalent to applying a Gaussian filter g0 to f , which

smoothes the shape of f . Hence, Wgpf yields the smoothed shape of (−1)p f (p).

Figure 4.3(b) shows the finite difference coefficients of the central finite difference

scheme of second-order accuracy for the first- through third-order derivatives. Note

that the coefficients should be divided by (mh)k, where k is the order of a derivative.

It can be observed that the plot of the coefficients of the p-th-order derivative in

Fig. 4.3(b) resembles that of (−1)p gp(x) in Fig. 4.3(a); the latter is smoother than

the former, and they have the same numbers of vanishing moments.
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The CWTs of f d,4 with wavelet functions g2(x) and g3(x) with different scales

are shown in Figs. 4.5 and 4.4, respectively. In Figs. 4.5 (b) through (d), the shapes

of the CWTs resemble those of the CMSs shown in Figs. 4.2 (b) through (d), where

the two peaks are caused by the two crack tips. However, the peaks caused by the

crack tips cannot be found in the case with the wavelet function g3(x), as shown

in Fig. 4.4, where the CWT coefficients are zero near the crack tips, which can be

explained by using Eq. (4.13):

Wg2f = f ⋆ ḡ2u,s =
C0

C2s2
f ′′ ⋆ ḡ0u,s (4.15)

Wg3f = f ⋆ ḡ3u,s =
C1

C3s2
f ′′ ⋆ ḡ1u,s = − C0

C3s3
f ′′′ ⋆ ḡ0u,s (4.16)
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Figure 4.4: CWTs of the fourth measured MS of the damaged beam with the wavelet

function g3(x) with different scales: (a) s = 1, (b) s = 5, (c) s = 10, and (d) s = 15.

The CWTs of f with wavelet functions g2u,s(x) and g
3
u,s(x) have the same shapes as

the linear transformations of f ′′ and f ′′′ with wavelet functions g0u,s(x) and −g0u,s(x),

respectively. Since f ′′′ is the derivative of f ′′, f ′′′ = 0 at local extrema of f ′′. Hence,

the crack tips are located in the neighbourhoods of zero values of the CWTs of f

with the wavelet function g3(x), rather than their peak values.
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Figure 4.5: CWTs of the fourth measured MS of the damaged beam with the wavelet

function g3(x) with different scales: (a) s = 1, (b) s = 5, (c) s = 10, and (d) s = 15.

4.1.2.3 Identification of an Embedded Horizontal Crack

When measured MSs of the associated undamaged beam are known a priori, an

embedded horizontal crack can be identified using CMSs and CWTs of the measured

MSs of the damaged and undamaged beams. The reason is that local features caused

by the crack occur along with global trends of the CMSs and CWTs of the measured

MSs of the damaged beam, and the measured MSs of the undamaged beam can

provide references of the global trends to identify the crack. The gapped-smoothing
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method in Refs. [87, 103] can locally diminish the global trends in a point-wise

way by calculating a damage index, which is the squared value of the difference

between the CMS at a measurement point and the corresponding value calculated

from a polynomial that fits the CMS at four neighbouring points of the measurement

point. For each measurement point, a relatively large damage index indicates a high

possibility of existence of damage. However, for a dense measurement grid, CMSs

of a damaged beam can be locally smooth, and there may not be large differences

between the CMSs and those from local polynomial fits, and measurement noise can

affect the application of the method.

When MSs of both the damaged and undamaged beams are known, similar to

the gapped-smoothing method, a CDI for a measured MS at a measurement point

i with the resolution parameter m in Eq. (4.2) can be defined by

δmi =
∣∣∣
(
f di
)′′ − (fui )

′′
∣∣∣
2

=

[△d,ufi+m +△d,ufi−m − 2△d,ufi

(mh)2

]2
(4.17)

where △d,ufi = f di −fui is the difference between f d and fu at point i. Figure 4.6(a)

shows the plots of fu,4 and f d,4. Figure 4.6(b) shows the plots of (fu,4)
′′
and

(
f d,4
)′′

with m = 15; two extra peaks can be observed in
(
f d,4
)′′

near the crack tips at

x
L
= 0.25 and x

L
= 0.40, as opposed to (fu,4)

′′
. The CDIs associated with f d,4 are

shown in Fig. 4.7; two peaks can be clearly observed in the neighbourhoods of the

crack tips.
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Figure 4.6: (a) The fourth MSs of the undamaged and damaged beams, and (b) the

associated CMSs with m = 15.

0 0.2 0.4 0.6 0.8 1
0

0.4

0.8

1.2

1.6

22
x 10

5

x
L

C
D

I

Figure 4.7: CDIs using the differences between the fourth MSs of the damaged and

undamaged beams with m = 15

A CWTDI for a measured MS with wavelet function ψ(x) with scale s at a

measurement point i can be defined by
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Figure 4.8: (a) CWTDIs with the wavelet function g2(x) with s = 15 using differ-

ences between the fourth MSs of the damaged and undamaged beams, and (b) those

with the wavelet function g3(x) with s = 15 using differences between the fourth

MSs of the damaged and undamaged beams.

̟s
i = |Wψ△d,uf(ui, s)| (4.18)

The plots of the CWTDIs for f d,4 with the wavelet functions g2(x) and g3(x) with

s = 15 are shown in Figs. 4.8(a) and (b), respectively, whose peaks and valleys are

located near the crack tips, respectively. However, the two types of damage indices

defined above require use of MSs of the associated undamaged beam fu as baseline

information, which are not always available in practice.

When MSs of the associated undamaged beam are not available, they can

be constructed using polynomials that fit the MSs of the damaged beam, under

the assumption that the presence of a crack in a beam does not cause prominent

changes in its MSs in the neighbourhood of the crack, which is valid for a crack of
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a small size. The MSs of an undamaged beam corresponding to a damaged one are

not measured in this work, and it is proposed that the j-th MS of the undamaged

beam be obtained from a polynomial of order n + k that fits the j-th MS of the

damaged one:

f p,j(x) =

n+k∑

i=0

aix
i (4.19)

where n is the number of nodal points of the MS, k is a parameter that controls the

level of approximation of the polynomial fit to the MS of the damaged beam, and ai

are coefficients of the polynomial. As shown in Table 4.1, modal assurance criterion

(MAC) values in percent between the first four measured MSs of the undamaged and

damaged beams are all above 97%, which indicates that they are almost identical

to each other [1]; this validates the assumption on the effects of a small crack on

MSs. Hence, a MS f p from a polynomial that fits the MS of a damaged beam

f d can well approximate that of an undamaged one fu. On one hand, a CMS

(f p)′′ with a properly chosen value of k in Eq. (4.19) cannot capture local features

of
(
f d
)′′

in the neighbourhood of the crack, which are caused by the crack, even

though f p is constructed based on f d. On the other hand, the resulting (f p)′′ can

well approximate (fu)′′ since the former is as smooth as the latter without any local

abnormalities. With different k values in Eq. (4.19), MAC values in percent between

fu,4 and f p,4 and those between (fu,4)
′′
and (f p,4)

′′
are shown in Table 4.2(a); MAC

values in percent between f d,4 and f p,4 and those between
(
f d,4
)′′

and (f p,4)
′′
are

shown in Table 4.2(b). When k > 2, the MAC values between fu,4 and f p,4 and
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those between f d,4 and f p,4 are all above 98%. However, the MAC values between

(fu,4)
′′
and (f p,4)

′′
and those between

(
f d,4
)′′

and (f p,4)
′′
are relatively low. Figures

4.9(a) and (b) show fu,4, f d,4, and f p,4 from the polynomial fit with k = 4 and

the associated CMSs, respectively. It can be seen that there are large discrepancies

between (fu,4)
′′
and

(
f d,4
)′′

in the boundary intervals [0, 0.1] and [0.9, 1]. The reason

is that the coefficients ai of f
p(x) are determined by solving the unconstrained least-

squares problem:

min

N∑

i=1

[
f p (xi)− f d (xi)

]2
(4.20)

where N is the number of measurement points, and there are no constraints applied

on the boundaries. For MSs of a cantilever beam defined on [0, 1], for instance, the

boundary conditions that the fitting polynomials should satisfy are





f p (0) = 0

[f p]′ (0) = 0

[f p]′′ (1) = 0

[f p]′′′ (1) = 0

(4.21)

With the boundary conditions in Eq. (4.21), the least-squares problem in Eq. (4.20)

becomes a constrained one, which can be solved by a numerical method [104]. How-

ever, the boundary conditions of a beam can be unknown or it can be difficult to

accurately define them in practice; polynomials that can fit f d well near the bound-

aries may not be constructed.
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Table 4.2: (a) MAC values in percent between the fourth MS of the undamaged

beam and those from polynomial fits with different k values, and MAC values in

percent between the associated CMSs with m = 15; and (b) MAC values in percent

between the fourth MS of the damaged beam and those from polynomial fits with

different k values, and MAC values in percent between the associated CMSs with

m = 15.

(a)

k 0 1 2 3 4 5 6

MS 87 86 99 98 98 98 98

CMS 15 13 68 69 82 79 70

(b)

k 0 1 2 3 4 5 6

MS 83 84 98 99 99 100 100

CMS 9 7 51 55 67 72 66

Table 4.1: MAC values in percent between the first four measured MSs of the

damaged and undamaged beams, and those between the associated CMSs with

m = 15.

mode 1 2 3 4

MS 100 100 100 97

CMS 94 94 83 85

To eliminate discrepancies between CMSs of a damaged beam and those from

corresponding polynomial fits near boundaries without any a priori knowledge of the

boundary conditions, it is proposed that MSs of the beam be extended to virtual
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Figure 4.9: (a) The fourth MSs of the undamaged and damaged beams and that

from the polynomial fit; and (b) the associated CMSs with m=15.

intervals [−0.2, 0] and [1, 1.2], which are of twice the length of the boundary intervals

indicated above, and the extended portions of the MSs on [−0.2, 0] and [1, 1.2] be

obtained using polynomials of order three that fit the MSs in the boundary intervals

[0, 0.1] and [0.9, 1], respectively. The extended MSs are obtained by correspondingly

stitching the two extended portions onto the boundaries of the original MSs. With

construction of the extended MSs, discrepancies between CMSs of the damaged

beam and those from the corresponding polynomial fits are transferred to the virtu-

ally extended portions. The polynomial that fits the j-th extended MS in [−0.2, 1.2]

can be obtained, and the MS from the polynomial fit in [0, 1] can be extracted and

is denoted by f̃ p,j, which can be used as the j-th MS of the associated undamaged

beam. With different k values, MAC values in percent between fu,4 and f̃ p,4 and

those between (fu,4)
′′
and

(
f̃ p,4
)′′

are shown in Table 4.3(a), and MAC values in

percent between f d,4 and f̃ p,4 and those between
(
f d,4
)′′

and
(
f̃ p,4
)′′

are shown in
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Table 4.3(b). When k > 4, the MAC values between fu,4 and f̃ p,4 and those between

(fu,4)
′′
and

(
f̃ p,4
)′′

are all above 98% and 92%, respectively, indicating that the re-

sulting f̃ p,4 and
(
f̃ p,4
)′′

can well approximate fu,4 and (fu,4)
′′
in [0, 1], respectively.

A proper k value for a certain MS is proposed to be two plus the least k value with

which the MAC value between the MS to be fitted and that from the corresponding

polynomial fit is above 90%. Two is added here in order to preserve the smoothness

of the CMSs from the corresponding polynomial fits, since calculation of a curvature

incurs second-order differentiation, which reduces the orders of the polynomial fits

by two. Since the MAC value between f d,4 and f̃ p,4 with k = 4 is above 90%, the

optimal k value for the polynomial fit is chosen to be six. The extended fu,4, f d,4,

and f p,4, and the associated CMSs are shown in Figs. 4.10(a) and (b), respectively.

The MAC value between
(
f d,4
)′′

and
(
f̃ p,4
)′′

with k = 4 is 76%; such a low value is

mainly attributed to the presence of the crack, and the MAC value between (fu,4)
′′

and
(
f̃ p,4
)′′

is 99%.

Combined with the above approximation technique for MSs of an undamaged

beam, the proposed methods can identify a crack, including one near a boundary.

The CDIs of the damaged beam using the differences between f d,4 and f̃ p,4, denoted

by △d,pf , are shown in Fig. 4.11, where the crack tips can be located near the peaks

of the CDIs. The CWTDIs using △d,pf with wavelet functions g2(x) and g3(x) with

s = 15 are shown in Figs. 4.12(a) and (b), respectively, where the crack tips can be

located near the peaks and valleys of the CWTDIs, respectively.
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Table 4.3: (a) MAC values in percent between the fourth MS of the undamaged

beam and those from polynomials that fit the fourth extended MS of the damaged

beam shown in Fig. 4.1 with different k values, and MAC values in percent between

the associated CMSs with m = 15; and (b) MAC values in percent between the

fourth MS of the damaged beam and those from polynomials that fit the fourth

extended MS of the damaged beam with different k values, and MAC values in

percent between the associated CMSs with m = 15.

(a)

k 0 1 2 3 4 5 6

MS 8 12 89 89 99 98 99

CMS 7 9 62 64 95 93 96

(b)

k 0 1 2 3 4 5 6

MS 9 12 86 86 97 98 99

CMS 4 6 40 43 70 71 76
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Figure 4.10: (a) The fourth extended MSs of the undamaged and damaged beams

and that from the polynomial fit; and (b) the associated CMSs with m=15.
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Figure 4.11: CDIs using the differences between the fourth MS of the damaged beam

and that from the polynomial fit with m = 15.

In order to validate the robustness of the proposed methods on identifying a

crack near a boundary, the crack in the damaged beam in Fig. 4.1 is translated

to the position where its left tip is 30 mm away from the fixed end of the beam,
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Figure 4.12: (a) CWTDIs with the wavelet function g2(x) with s = 15 using the dif-

ferences between the fourth MS of the damaged beam and that from the polynomial

fit, and (b) those with the wavelet function g3(x) with s = 15 using the differences

in (a).

and its vertical position and length remain unchanged. A FE model of the beam is

constructed, from which its fourth MS is calculated and used to identify the crack.

The fourth MS of the associated undamaged beam can be obtained from polynomial

fits with different k values. MAC values in percent between the fourth MS of the

damaged beam and those from the polynomial fits and MAC values in percent

between the associated CMSs are shown in Table 4.4; the optimal k value is chosen

to be six for this MS, according to the proposed criterion. The extended fu,4, f d,4,

and f̃ p,4, and the associated CMSs are shown in Figs. 4.13(a) and (b), respectively.

The associated CDIs with m = 15 and CWTDIs with wavelet functions g2(x) and

g3(x) with s = 15 are shown in Figs. 4.14 and 4.15(a) and (b), respectively, from

which the crack tips can be located near the peaks of the CDIs, and the peaks and
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Table 4.4: (a) MAC values in percent between the fourth MS of the undamaged

beam and those from polynomials that fit the fourth extended MS of a damaged

beam with a crack near the fixed boundary with different k values, and MAC values

in percent between the associated CMSs with m = 15; and (b) MAC values in

percent between the fourth MS of the damaged beam and those from polynomials

that fit the fourth extended MS of the damaged beam with different k values, and

MAC values in percent between the associated CMSs with m = 15.

(a)

k 0 1 2 3 4 5 6

MS 17 23 89 87 98 97 98

CMS 10 12 58 57 94 92 97

(b)

k 0 1 2 3 4 5 6

MS 21 25 89 89 94 99 100

CMS 8 9 47 47 81 83 87

valleys of the CWTDIs, respectively. Since the effects of a small crack on MSs are

local and negligible, multiple small cracks that simultaneously occur without any

overlap along the length of a beam would not cause prominent local changes in MSs

either. Hence CDIs and CWTDIs combined with the approximation technique for

MSs of an undamaged beam can also be used to identify multiple small cracks in a

beam.
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Figure 4.13: (a) The fourth extended MSs of the undamaged and damaged beams

and that from the polynomial fit; and (b) the associated CMSs with m = 15.
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Figure 4.14: CDIs using differences between the fourth MS of the damaged beam

with a crack near the fixed boundary and that from the polynomial fit with m = 15.
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Figure 4.15: (a) CWTDIs with the wavelet function g2(x) with s = 15 using dif-

ferences between the fourth MS of the damaged beam with a crack near the fixed

boundary and that from the polynomial fit the fourth, and (b) those with the wavelet

function g3(x) with s = 15 using the differences in (a).

4.1.2.4 Denoising of MSs

The above crack identification methods rely onMS measurement quality, which

is usually subject to measurement noise that can deteriorate the resulting CMSs and

CWTs of MSs, as shown in Figs. 4.2(a) and 4.5(a), respectively. Suitable values of

the resolution parameter m for a CMS and of the scale s for a CWT can alleviate

the adverse effects of measurement noise. Since the noise level of a measured MS is

usually unknown, one needs to progressively test different values of m and s from

smaller ones to larger ones in order to get the suitable ones, with which global trends

of the resulting CMS and CWT of a MS are clear and they would not drastically

change even with higher values of m and s, respectively. A numerical smoothing

technique, which is local regression using weighted linear least squares and a second-
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Figure 4.16: (a) Curvature of the denoised fourth MS of the damaged beam with

m = 1, and (b) the CWT with the wavelet function g2(x) with s = 1 of the denoised

fourth MS the damaged beam.

order polynomial model, is applied to directly reduce measurement noise in MSs,

and it is performed using the Matlab function “smooth”. The method calculates a

weighted quadratic least square on every measurement point within an interval that

consists of a certain number of its neighbouring points, which is 15% of the total

number of measurement points herein. The CMS with m = 1 and CWT with the

wavelet function g2(x) with s = 1 of the denoised fourth MS of the damaged beam

shown in Fig. 4.1 are shown in Figs. 4.16(a) and (b), respectively, where the CMS

and CWT of the MS have a lower noise level and are smooth, and their shapes are

similar to the CMSs and CWTs of MSs before denoising with higher values of m and

s as shown in Figs. 4.2(b) through (d) and Figs. 4.5(b) through (d), respectively.
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Figure 4.17: (a) Dimensions of the uniform ABS cantilever beam with an embedded

horizontal crack, and (b) an enlarged view of the crack region.

4.1.3 Experimental Investigation

4.1.3.1 Modal Analysis and Model Validation

A uniform ABS cantilever beam of length 114.4 mm, height 5.2 mm, and width

10.5 mm with an embedded horizontal crack was made by a 3D printer, as shown

in Fig. 4.17(a); the shape of the crack was a rectangle, and its length, width, and

height were 16.6 mm, 10.5 mm, and 0.3 mm, respectively, as shown in Fig. 4.17(b).

The distance between the left tip of the crack and the fixed end of the beam was

53.1 mm, and that between the top surface crack and that of the beam was 2.6 mm.

In order to get precise natural frequency and MS measurements of the beam

without incurring unwanted mass loading, OMA with non-contact excitations and

measurements was performed [105]; the experimental setup is shown in Fig. 4.18(a).

205



To create a fixed boundary for the beam, a bench vice was used to firmly clamp

two flat metal plates, and the fixed end of the beam was clamped between the

two plates. An electric speaker with a wood fixture faced the beam and generated

acoustic excitations onto the beam surface. Two laser vibrometers were used to

measure the responses of the beam: Laser 1 shown in Fig. 4.18(a) was a Polytec

PSV-500 scanning laser vibrometer that measured velocities of measurement points

on the beam, and Laser 2 was a Polytec OFV-353 single-point laser vibrometer that

measured the velocity of a fixed reference point on the beam. There were totally 129

evenly distributed measurement points along the length of the beam, and a retro-

reflective tape was attached on the beam surface to enhance laser reflection that

directly determined SNRs of laser measurements. Acoustic excitations in the form

of a burst chirp were used to excite the beam, and cross power spectral densities

between the velocities of the measurement points and that of the reference point were

calculated, from which the first four natural frequencies and MSs of the beam were

obtained using Operational PolyMax of LMS Test.Lab Rev. 9b. In this test, two

speakers of different sizes were used to excite the beam in two different frequency

ranges. A Polk MM2084 speaker and a Fostex FE126En speaker were used to

produce broad-band acoustic excitations with frequencies ranging from 10 to 150

Hz for mode one and from 500 to 3800 Hz for modes two through four. In order to

enhance the excitation for the mode one, a wood box that concentrates the acoustic

excitation of the low-frequency speaker onto the beam was built, as shown in Fig.

4.18(b). The box had a narrow open slot whose dimensions were slightly larger than

those of the beam, and there was no contact between the wood box and the beam
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(a) (b)

Figure 4.18: (a) Experimental setup of OMA, and (b) a wood box used for the

low-frequency excitation.

nor the bench vice throughout the tests.

In order to validate the measured natural frequencies and MSs and the rigidity

of the fixed boundary, a FE model of the damaged beam was needed for comparison

purposes, but the elastic modulus of the ABS was unknown. EMA was conducted

to acquire the elastic modulus of the ABS; the experimental setup is shown in

Fig. 4.19. An undamaged ABS beam of length 160.1 mm, height 5.2 mm, and

width 10.5 mm was made, and it was placed on foams to simulate free boundary

conditions. The roving hammer technique was applied, and the beam was excited

at 17 evenly distributed points along the length of the beam using a PCB 086-D80

miniature impact hammer. The excitation was in the form of a single impact, and

the direction of the impact was perpendicular to the surface of the beam. The

responses of the beam were measured using the single-point laser vibrometer, and
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the impact and response data were collected using a LMS 36-channel spectrum

analyser. The frequency resolution of the data was 1.56 Hz, and five tests were

averaged to ensure repeatable results with a good coherence at each measurement

point. The first four elastic modes of the beam were measured, and the measured

natural frequencies are shown in Table 4.5. The simulated free boundary conditions

were valid, since the highest natural frequency of the rigid body modes was 31.7 Hz,

which was about 10.4% of the natural frequency of the first elastic mode [1]. The

mass density of the beam was measured to be 1000 kg/m3. The natural frequency

of the i-th elastic mode of the undamaged beam can be calculated by [54]

ωi = (βiL)
2

√
EI

ρL4
(4.22)

where E is the elastic modulus of the ABS, I is the area moment of inertia of the

cross-section of the beam, ρ is the mass per unit length of the beam, and βi is the

i-th positive root of the characteristic equation:

cos (βL) cosh (βL) = 1 (4.23)

The elastic modulus was updated to be 2.10 GPa so that the maximum error between

the calculated and measured natural frequencies is 0.85%, as shown in Table 4.5.
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Table 4.5: Comparison between the calculated natural frequencies of the undamaged

ABS beam with simulated free boundary conditions from the FE model using the

updated elastic modulus of the ABS and the measured ones by EMA

Mode
Calculated

Frequency (Hz)

Measured

Frequency (Hz)

Error (%)

1 302.47 305.05 -0.85

2 833.77 836.49 -0.32

3 1634.52 1631.36 0.19

4 2701.95 2679.06 0.85

Figure 4.19: Experimental setup of EMA for an undamaged ABS beam

With the updated elastic modulus of the ABS, the FE model of the damaged

beam was constructed. The first four calculated and measured natural frequencies of
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the damaged beam are shown in Table 4.6. The largest error between the calculated

and measured natural frequencies is 1.72%. The fixed boundary of the damaged

beam is also validated by the small natural frequency errors. White noise was

added to the calculated MSs from the FE model with a SNR of 60 to simulate

measurement noise. The first four calculated and measured MSs were normalized so

that their maximum absolute values were one, as shown in Fig. 4.20, and the MAC

matrix in percent between the calculated and measured MSs is shown in Table 4.7;

the diagonal entries are all over 93%.

Table 4.6: Comparison between the measured natural frequencies of the damaged

ABS cantilever beam by OMA and the calculated ones from the FE model

Mode
Measured

Frequency (Hz)

Calculated

Frequency (Hz)

Error (%)

1 97.79 97.14 0.67

2 611.10 615.00 -0.63

3 1604.00 1608.00 -0.25

4 3124.20 3179.00 -1.72
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Table 4.7: Entries of the MAC matrix in percent between the first four measured

MSs of the damaged beam and the calculated ones from the FE model; the horizon-

tal and vertical mode numbers correspond to the calculated and measured modes,

respectively.

Mode 1 2 3 4

1 100 0 0 0

2 0 100 0 0

3 4 1 93 0

4 0 0 0 99
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Figure 4.20: The first four measured MSs of the damaged beam and the calculated

ones from the FE model, with the dashed lines indicating the locations of the crack

tips.

4.1.3.2 Crack Identification Results

The first four MSs from the FE model are denoised using the technique in

Sec. 2.4. Tables 4.8(a) through (d) show MAC values in percent between the first

four MSs from the FE model and those from the polynomial fits with different

k values, which are obtained using the approximation technique for MSs of the

associated undamaged beam described in Sec. 2.3; MAC values in percent between
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the associated CMSs are also shown. The optimal k values for modes one through

four are chosen to be two, three, four, and six, respectively. Figures 4.21(a) through

(d) show the resulting CDIs with resolution up to 20 for the first four modes of the

damaged beam from the FE model; two ridges can be observed in the CDIs for each

mode, from which the crack tips can be correspondingly located. In Fig. 4.21(a),

the right crack tip at x
L

= 0.61 can be more clearly located than the left one at

x
L
= 0.46; in Fig. 4.21(b), the ridges corresponding to the two crack tips are both

weak. The reason is that the CMS of mode two, shown in Fig. 4.22(b), is insensitive

to the crack, since its abnormalities caused by the crack are weaker than those of

the CMSs of the three other modes, as shown in Figs. 4.22(a), (c), and (d). It can

also be observed from Fig. 4.22 that modes three and four are more sensitive to

the crack. Hence, the CDIs for modes three and four can be used to more clearly

identify the crack than those for modes one and two, as shown in Figs. 4.21(c) and

(d).
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Table 4.8: MAC values in percent between the first four calculated MSs of the

damaged beam shown in Fig. 4.17 from the FE model and those from polynomial

fits with different k values, and MAC values in percent between the associated CMSs;

(a) through (d) correspond to modes one through four, respectively.

(a)

k 0 1 2

MS 98 100 100

CMS 0 60 98

(b)

k 0 1 2 3

MS 85 93 100 100

CMS 19 36 98 98

(c)

k 0 1 2 3 4

MS 52 66 97 97 100

CMS 14 18 73 73 85

(d)

k 0 1 2 3 4 5 6

MS 11 14 87 87 97 98 99

CMS 8 5 52 52 82 83 89
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Figure 4.21: Numerical crack identification by tracking the ridges of the CDIs with

resolution up to 20. The locations of the crack tips are indicated by dashed lines;

the CDIs associated with modes one through four are shown in (a) through (d),

respectively.

Figures 4.23 and 4.24 show the CWTDIs with wavelet functions g2(x) and

g3(x) with scale up to 50 for the first four MSs of the damaged beam from the FE

model, respectively. Similar to the results for the CDIs, relatively high CWTDIs

with the wavelet function g2(x) can be more clearly observed from modes three and

four near the crack tips than from modes one and two, as shown in Fig. 4.23, since
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Figure 4.22: CMSs of the first four modes of the damaged ABS beam shown in Fig.

4.17 with m = 15
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modes three and four are more sensitive to the crack. With the CWTDIs with the

wavelet function g3(x), the crack tips can be located near the valleys of modes one

through four, as shown in Figs. 4.24(a) through (d), respectively. The crack tips

can be more clearly and accurately located near the valleys of modes one, three, and

four than of mode two.

Figure 4.23: Numerical crack identification by tracking the peaks of the CWTDIs

with the wavelet function g2(x) with scale up to 50. The locations of the crack tips

are indicated by dashed lines; the CWTDIs associated with modes one through four

are shown in (a) through (d), respectively.
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Figure 4.24: Numerical crack identification by tracking the valleys of the CWTDIs

with the wavelet function g3(x) with scale up to 50. The locations of the crack tips

are indicated by dashed lines; the CWTDIs associated with modes one through four

are shown in (a) through (d), respectively.

The experimentally measured MSs were then used to identify the crack in the

damaged ABS beam. Since an experimentally measured MS is complex, one needs

two polynomials to fit its real and imaginary parts in order to approximate the MS of

the associated undamaged beam. Hence, a CDI for a complex MS at measurement

point i is defined by
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δmi =

∣∣∣∣
(
f di,real

)′′ −
(
f̃ pi,real

)′′∣∣∣∣
2

+

∣∣∣∣
(
f di,imag

)′′ −
(
f̃ pi,imag

)′′∣∣∣∣
2

(4.24)

where f di,real and f
d
i,imag are the real and imaginary parts of the MS of the damaged

beam at point i, respectively, and f̃ pi,real and f̃
p
i,imag are the real and imaginary parts

of the MS from the polynomials that fit f di,real and f
d
i,imag at measurement point i,

respectively. A CWTDI for a complex MS at point i is defined by

̟s
i = |Wψ△d,p,realfi(x, s)|+ |Wψ△d,p,imagfi(x, s)| (4.25)

where △d,p,realfi = f di,real − f̃ pi,real and △d,p,imagfi = f di,imag − f̃ pi,imag. In order to

smooth the transition of the experimentally measured MSs from one measurement

point to another, two cubic spline interpolations were used to obtain the real and

imaginary parts of each MS using 1025 evenly distributed points along the length

of the beam; the resulting data were then denoised using the technique in Sec.

2.4. Tables 4.9(a) through (d) show MAC values in percent between the first four

measured MSs of the damaged beam and those from the polynomial fits and MAC

values in percent between the associated CMSs, respectively; the optimal k values

for modes one through four are chosen to be two, two, five, and six, respectively.

Figures 4.25(a) through (d) show the CDIs for the experimentally measured

MSs of the damaged beam with resolution up to 20. Similar to the results from the

FE model, two prominent ridges can be clearly observed in the CDIs for modes three

and four, as shown in Figs. 4.25(c) and (d), respectively. The right crack tip can

be more clearly located than the left one from mode one, as shown in Fig. 4.25(a);
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Table 4.9: MAC values in percent between the first four experimentally measured

MSs of the damaged beam shown in Fig. 4.17 and those from polynomial fits with

different k values, and MAC values in percent between the associated CMSs; (a)

through (d) correspond to modes one through four, respectively.

(a)

k 0 1 2

MS 98 100 100

CMS 0 61 97

(b)

k 0 1 2

MS 92 95 100

CMS 29 39 95

(c)

k 0 1 2 3 4 5

MS 62 75 89 94 97 99

CMS 29 31 69 69 84 84

(d)

k 0 1 2 3 4 5 6

MS 47 48 86 87 97 98 99

CMS 25 25 75 75 92 93 96
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in Fig. 4.25(b), the crack tips cannot be identified due to measurement noise and,

more importantly, the fact that mode two is insensitive to the crack. Figures 4.26

and 4.27 show the CWTDIs with wavelet functions g2(x) and g3(x) with scale up

to 50 for the first four measured MSs of the damaged beam, respectively. Similar to

the simulation results, the crack tips can be located near the peaks and valleys of

the CWTDIs with wavelet functions g2(x) and g3(x), respectively, from modes one,

three, and four; the crack cannot be identified from mode two.

221



Figure 4.25: Experimental crack identification by tracking the ridges of the CDIs

with resolution up to 20. The locations of the crack tips are indicated by dashed

lines; the CDIs associated with modes one through four are shown in (a) through

(d), respectively.
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Figure 4.26: Experimental crack identification by tracking the peaks of the CWTDIs

with the wavelet function g2(x) with scale up to 50. The locations of the crack tips

are indicated by dashed lines; the CWTDIs associated with modes one through four

are shown in (a) through (d), respectively.
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Figure 4.27: Experimental crack identification by tracking the valleys of the CWT-

DIs with the wavelet function g3(x) with scale up to 50. The locations of the crack

tips are indicated by dashed lines; the CWTDIs associated with modes one through

four are shown in (a) through (d), respectively.

4.1.4 Conclusion

Two new non-model-based methods are developed to identify embedded hori-

zontal cracks in beams without use of any a priori information of associated undam-

aged beams, if the beams are geometrically smooth and made of materials that have
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no stiffness discontinuities. Differences between measured MSs of a damaged beam

with an embedder horizontal crack and those from polynomials that fit the MSs of

the damaged beam are converted to CDIs and CWTDIs, which are used to locate

the crack tips. MSs from polynomials that fit the MSs of a damaged beam can well

approximate those of the associated undamaged beam, provided that the measured

MSs of the damaged beam are extended beyond boundaries of the beam and the

orders of the polynomials are properly chosen; the MSs from the polynomials can

be used to eliminate trends of associated CMSs and CWTs of MSs. CDIs for a MS

are presented with multiple resolutions to alleviate adverse effects of measurement

noise, and crack tips can be located near peaks of the CDIs. It is shown that the

CWT of a MS with the n-th-order Gaussian wavelet function resembles that of the

n-th-order derivative of the MS. Crack tips can be located near peaks and valleys

of CWTDIs with multiple scales using second- and third-order Gaussian wavelet

functions, respectively, which are based on the physical interpretations of CWTs of

MSs. The proposed methods are numerically and experimentally applied to a uni-

form ABS cantilever beam with an embedded horizontal crack; non-contact OMA

with acoustic excitations and measurements by two laser vibrometers was conducted

to measure the MSs of the beam. The proposed methods can also be used to iden-

tify other types of damage, such as edge cracks, slant cracks, and delaminations, in

beams, and extended to identify damage in other types of structures.
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4.2 Damage Identification of Plates Using Measured Mode Shapes

4.2.1 Introduction

Vibration-based damage detection has been a major research topic of struc-

tural dynamics in the past few decades. Measured modal characteristics of a struc-

ture, such as natural frequencies and MSs, are processed in various methods for

detecting, locating and characterizing damage in the structure, since modal charac-

teristics are related to physical properties of the structure, such as mass, stiffness

and damping, which can change due to occurrence of damage [7]. Various meth-

ods that use measured MSs to identify damage in a structure have been proposed

and investigated. Effects of damage on MSs are mainly local abrupt changes in the

neighborhood of damage and the effects can be manifested and observed in curva-

ture CMSs associated with the MSs. Based on a gapped smoothing method [88]

for one-dimensional structures, such as beams, a two-dimensional gapped smooth-

ing method was proposed to identify damage in two-dimensional structures using

measured CMSs or curvatures of operating deflection shapes (CODSs).[106] An ad-

vantage of the gapped smoothing methods is that MSs of associated undamaged

structures are not needed. However, one needs to conduct point-by-point calcula-

tion of curvatures to obtain a CMS or CODS; for each measurement point, a gapped

polynomial that fit curvatures near the point is constructed to yield a fitted cur-

vature to eliminate the global trend of the CMS or CODS at the point. Hence

a gapped smoothing method is a local method and could be computationally in-

efficient, especially when the measurement grid is large and dense. Global fitting
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methods were proposed to identify damage by comparing CMSs [89] or CODSs [90]

associated with damaged and undamaged beams and plates. They have the same

advantage as that of the gapped smoothing methods. However, generic MSs of

undamaged structures are needed, which can be unavailable in practice. Use of cur-

vatures of frequency-shift surfaces to identify damage in plates was proposed.[107]

The method was shown to have better results than the gapped smoothing method

for plates. Use of mean CMSs was proposed to identify damage in plates,[108] where

a two-dimensional wavelet transform was used to alleviate adverse effects of mea-

surement noise on calculating mean CMSs and a Teager energy operator was used to

manifest effects of damage in transformed mean CMSs. Curvatures of uniform-load

surfaces were shown to be sensitive to existence of damage and were used to identify

damage in plates;[109] the method used natural frequencies and MSs of first few

modes of damaged and undamaged plates. A simplified gapped smoothing method,

a generalized fractal dimension method and a strain energy method were used to

process CMSs and curvatures of uniform-load surfaces to detect delamination in

a composite plate.[110] A two-dimensional polynomial annihilation edge detection

method was proposed for detection and localization of damage in plates;[111] it was

extended from a method for beams to detect discontinuities in piecewise smooth

functions and their derivatives.[84]

In this work, a new non-model-based method is proposed to identify damage in

plates, where MSs of undamaged plates are not used. A MS of a pseudo-undamaged

plate is constructed using a polynomial that fits the corresponding MS of a dam-

aged plate, and differences between the MSs of the pseudo-undamaged and dam-
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aged plates are processed to yield MS damage indices (MSDIs) at each measurement

point. Damage can be identified near regions with consistently high values of MSDIs.

Use of a MS of an undamaged plate and that of a pseudo-undamaged plate from

a polynomial fit is compared with respect to effectiveness of damage identification.

Effectiveness and robustness of the proposed method on different MSs for damage of

different positions and areas are numerically investigated; effects of crucial factors

that determine effectiveness of the proposed method are also numerically investi-

gated. MSs of an aluminum plate with damage in the form of a machined thickness

reduction area were measured to experimentally validate the proposed methodology.

4.2.2 Methodology

A finite element (FE) model of a damaged rectangular steel plate that has a

length of 300 mm, a width of 400 mm and a thickness of 2 mm is constructed with

free boundary conditions; the model has a total of 150 × 200 plate elements. The

damage is in the form of a rectangular thickness reduction area, and its position

and area are shown in Fig. 4.56(a); the depth of the damage is 0.2 mm. The mass

density, elastic modulus and Poisson’s ratio of the plate are 7850 kg/m3, 200 GPa

and 0.3, respectively. A FE model of an undamaged plate with the same dimensions,

boundary conditions and material properties as those of the damaged plate is con-

structed. Natural frequencies of the damaged and undamaged plates are different

due to the damage; the maximum natural frequency change in percentage for the

first 40 elastic modes is 0.28%, which occurs at the 6th elastic mode. Undamped
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(a) (b) (c)

Figure 4.28: (a) FE model of a rectangular steel plate with damage in the form of

a rectangular thickness reduction area, (b) the MS of the 31st elastic mode of the

damaged plate and (c) that of the 31st elastic mode of an undamaged plate with

the same dimensions, boundary conditions and material properties as the damaged

one.

MSs of the 31st elastic modes of the damaged and undamaged plates, denoted by

Zd,31 and Zu,31, respectively, which are randomly selected, are used to illustrate the

proposed method in this section. The two MSs have the same phase, and they are

normalized so that their maximum absolute values are equal to one. Normalized

Zd,31 and Zu,31 are shown in Figs. 4.56(b) and (c), respectively.
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4.2.2.1 Effects of Damage on MSs

For a constant-thickness plate made of homogeneous material, one has




Mxx

Myy

Mxy



=

Eh3

12 (ν2 − 1)




1 ν 0

ν 1 0

0 0 ν − 1







κxx

κyy

κxy




(4.26)

where Mxx and Myy are bending moments per unit length acting on edges of a

differential element parallel to y- and x- axes of a Cartesian coordinate system

O − xyz, respectively; Mxy is the twisting moment with respect to x- and y- axes;

h, E and ν are the thickness, Young’s modulus and Poisson’s ratio of the plate,

respectively; κxx and κyy are curvatures with respect to x- and y- axes, respectively;

and κxy is the twist with respect to x- and y- axes. Effects of damage on κxx, κyy and

κxy are local in that damage causes changes to material properties and geometry

of the plate in the neighborhood of the damage, which are directly related to MSs.

Effects of damage could be localized by comparing MSs of damaged and undamaged

plates.

The MAC value in percentage between Zd,31 and Zu,31 is 99.96%, which indi-

cates that they are almost identical to each other.[1] The difference between Zd,31

and Zu,31 is shown in Fig. 4.29(a), where a steep peak can be observed in the

damage region. But besides the peak in the damage region, there are several peaks

outside the region, which are less steep than that in the region and there are abrupt

changes in some regions near boundaries, as shown in Figs. 4.29(a) and (b). The

reason is that the stiffness of the plate changes due to the damage and changes
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of MSs occur inside and outside the damage region. When MSs of the damaged

and undamaged plates are normalized so that their maximum absolute values are

equal to one, differences of the MSs outside the damage region can be larger than

those inside the region, and the effects of the damage cannot be isolated by directly

comparing the two MSs. When Zu,31 is scaled so that its maximum absolute value

is 0.975, the difference between scaled Zu,31 and Zd,31 can be used to identify the

damage, as shown in Fig. 4.29(c). Effects of the damage on Zd,31 can be isolated

since the peaks that are not in the damage region in Fig. 4.29(a) are much lower

than that in the region, as show in Figs. 4.29(c) and (d). However, since whether

damage exists or not is unknown a priori in practice, there is no guarantee that a

MS of a damaged plate can be properly scaled so that the damage can be clearly

identified by comparing the MS with that of an undamaged plate, and MSs of an

undamaged plate are usually unavailable.

4.2.2.2 Construction of MSs of Pseudo-undamaged Plates

While one cannot easily identify damage by directly comparing MSs of dam-

aged and undamaged plates, one can construct MSs of pseudo-undamaged plates

using polynomial fits, which can approximate MSs of the damaged plate as if the

plate had no damage, and one can easily identify damage by comparing MSs of the

damaged and pseudo-undamaged plates. Assuming that existence of relatively small

damage in a plate does not cause prominent changes in its MSs in the neighborhood

of the damage, one can construct MSs of the associated pseudo-undamaged plate
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(a) (b)

(c) (d)

Figure 4.29: (a) Difference between Zd,31 and Zu,31, (b) the top view of (a) where

damage is outlined by solid lines, (c) the difference between Zd,31 and Zu,31 × 0.975

and (d) the top view of (c) where damage is outlined by solid lines.
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using polynomials that fit the corresponding MSs of the damaged plate, provided

that the undamaged plate is geometrically smooth and made of materials that have

no stiffness and mass discontinuities. Since the MAC value in percentage between

Zd,31 and Zu,31 is 99.96%, the assumption on the existence of relatively small dam-

age is validated. A similar technique has been proposed to approximate MSs of an

undamaged beam using polynomials that fit the corresponding MSs of the damaged

one.[9] MSs of an undamaged plate corresponding to those of a damaged one are

not measured in this work, and it is proposed that a MS of the pseudo-undamaged

plate be obtained from a polynomial with a properly determined order that fits the

corresponding MS of the damaged plate:

zp (x, y) =
n∑

k=0

k∑

i=0

ai,k−ix
iyk−i (4.27)

where n is the order of the polynomial, which controls the level of approximation of

the polynomial fit to the MS of the damaged plate, (x, y) are x and y coordinates

of a point on an undeformed plate, and ai,k−i are coefficients of the polynomial that

can be obtained by solving a linear equation

Va = z (4.28)
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in which V is the N ×
(
n+1∑
p=1

p

)
-dimensional bivariate Vandermonde matrix with N

being the dimension of z, which can be expressed by

V =




1 x1 y1 . . . xn1 . . . xi1y
n−i
1 . . . yn1

1 x2 y2 . . . xn2 . . . xi2y
n−i
2 . . . yn2

...
...

...
. . .

...
. . .

...
. . .

...

1 xN yN . . . xnN . . . xiNy
n−i
N . . . ynN




(4.29)

a is the

(
n+1∑
p=1

p

)
-dimensional coefficient vector, which can be expressed by

a =

[
a0,0 a1,0 a0,1 . . . an,0 . . . ai,n−i . . . a0,n

]T
(4.30)

and z is the MS vector of the damaged plate to be fit. Solving Eq. (4.57) for

the coefficient vector is equivalent to solving an unconstrained least-squares prob-

lem min 1
2
‖Va∗ − z‖2 for an optimal minimizer a∗,[112] which is usually an over-

determined problem, i.e., N >
n+1∑
p=1

p. A solution can be obtained using the singular-

value decomposition (SVD) of V,[112] which gives

V = U



S

0


WT (4.31)

where U and W are N×N and

(
n+1∑
p=1

p

)
×
(
n+1∑
p=1

p

)
orthogonal matrices, respectively,

and S is a

(
n+1∑
p=1

p

)
×
(
n+1∑
p=1

p

)
diagonal matrix. An optimal minimizer a∗ based on

the SVD of V can be obtained by

a∗ = WS−1UT
1z (4.32)
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where U1 is the first
n+1∑
p=1

p columns of U. When n in Eq. (4.56) becomes a large

value, S can be ill-conditioned, which can result in a low level of approximation

of the associated polynomial fit. To avoid ill-conditioning of S, it is proposed that

x and y in Eq. (4.56) be normalized using the “center and scale” technique [113]

before formulation of the linear equation in Eq. (4.57). Normalized coordinates x̃

and ỹ can be expressed by





x̃ = 2x−2x̄
l1

ỹ = 2y−2ȳ
l2

(4.33)

where x̄ and ȳ are x and y coordinates of the center point of the plate, respectively,

and l1 and l2 are lengths of the plate along x- and y-axes, respectively.

An increase of n in the polynomial fit in Eq. (4.56) can improve the level

of approximation of the resulting MS to that to be fit. To quantify the level of

approximation, a fitting index fit in percentage, defined by

fit (n) =
RMS (z)

RMS (z) + RMS (e)
× 100% (4.34)

is proposed, where RMS (·) denotes the root-mean-square value of a vector and e

is the error vector between the MS to be fit and the corresponding one from the

current polynomial fit, i.e., e = z −Va∗. When the fitting index is close to 100%,

the MS from the current polynomial fit is almost completely identical to z; the lower

the fitting index, the lower the level of approximation of the MS from the current

polynomial fit. Fitting indices fit associated with Zd,31 for different n are shown in

Fig. 4.63(a). It can be seen in Fig. 4.63(b) that fit converges to a certain value
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as n increases. To determine the proper order of a polynomial fit, a convergence

index con for the polynomial fit with n > 3 is defined based on fit, which can be

expressed by

con (n) = fit (n)− fit (n− 2) (4.35)

Convergence indices con associated with Zd,31 for different n are shown in Fig.

4.63(c). It can be seen that when n is larger than a certain value, con starts to

decrease. When con is sufficiently small after its start of decrease, there is no

significant improvement in the level of approximation of the polynomial fit. To

determine a proper value of n, it is proposed that the value be the smallest one with

which con is smaller than a prescribed threshold value. In this work, the prescribed

threshold value for con is 0.50%. Hence the proper value of n associated with Zd,31

is determined to be 18, with which con = 0.09%, as shown in Fig. 4.63(d). The

difference between Zd,31 and the MS of the associated pseudo-undamaged plate from

the polynomial fit with n = 18, denoted by Zp,31, is shown in Fig. 4.31, where abrupt

changes can only be observed in and near the damage region.

4.2.2.3 MSDIs

The difference between a MS of a damaged plate and that of the associated

pseudo-undamaged plate from a polynomial fit with a properly determined order

can be processed for identifying the damage using a MSDI defined by

δ (p) =
[
Zd,j (p)− Zp,j (p)

]2
(4.36)
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Figure 4.30: (a) Fitting index fit associated with Zd,31, (b) an enlarged view of fit,

(c) con associated with Zd,31 and (d) an enlarged view of con.

(a) (b)

Figure 4.31: (a) Difference between Zd,31 and Zp,31 and (b) the top view of (a) where

the damage is outlined by solid lines.
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(a) (b) (c)

Figure 4.32: (a) MSDIs using the difference between noise-free Zd,31 and associated

Zp,31, (b) MSDIs using the difference between Zd,31 with measurement noise and

associated Zp,31 and (c) weighted MSDIs with Mw = 7 using the difference between

Zd,31 with measurement noise and associated Zp,31; the damage is outlined by solid

lines. SNRs of the MSs used in (b) and (c) are 40 db.

where Zp,j is the MS of the pseudo-undamaged plate from a polynomial that fits

Zd,j with a properly determined order. MSDIs associated with noise-free Zd,31 and

Zp,31 are shown in Fig. 4.32(a). It can be seen that the damage can be identified

near regions with high values of MSDIs. Note that the density of a measurement

grid of a MS determines the smallest size of identifiable damage. The denser the

measurement grid, the smaller size of identifiable damage by MSDIs.

MSs are usually subject to measurement noise, and it can fuzz existence of

damage in MSDIs, as shown in Fig. 4.32(b), where white noise is added to Zd,31

with a signal-to-noise ratio (SNR) of 40 db to simulate measurement noise; the

damage can be hardly identified in the MSDIs. To manifest existence of damage in

the proposed MSDIs, a two-dimensional discrete weight function is applied to the
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difference between the two MSs before calculating the MSDIs. The weight function

for a mesh with square elements is expressed by

WMw
(k1, k2) = e

−4
[
( k1
Mw

)
2
+( k2

Mw
)
2]

(4.37)

whereMw is the scale of the weight function, which is an integer; k1 and k2 are integer

coordinates associated with x- and y-axes of the weight function, respectively, with

k1, k2 ∈ [−Mw,Mw]. For a mesh with non-square elements, one can interpolate

a MS on a mesh with square elements so that the weight function can have equal

weights along x- and y-axes. An interpolation can also be conducted to obtain a MS

on a finer mesh with better spatial resolution in resulting MSDIs. Weighted MSDIs

δ̃ (p) at a point p on a plate, based on the MSDI in Eq. (4.36), can be expressed by

δ̃ (p) =
{∑Mw

k1=−Mw

∑Mw

k2=−Mw

[(
Zd,j (pk1,k2)−

Zp,j (pk1,k2))×WMw
(k1, k2)]}2

(4.38)

where pk1,k2 is a point with x and y coordinates (xp + k1∆d, yp + k2∆d), in which

xp and yp are x and y coordinates of p, respectively, and ∆d is the side length of

an element of the mesh. Weighted MSDI with Mw = 7 associated with Zd,31 are

shown in Fig. 4.32(c). It can be seen that the weighted MSDIs are qualitatively

similar to those associated with noise-free Zd,31, and the damage can be identified

near regions with high values of the weighted MSDIs. Note that estimation of a

damage depth cannot be achieved by MSDIs and weighted MSDIs since it requires

use of an accurate model of a plate that is usually unavailable in practice.
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4.2.3 Numerical Investigation

In this section, effects of SNRs in MSs on the proposed damage identifica-

tion method and effectiveness of the methodology with use of different MSs are

numerically investigated. The methodology is also numerically applied to identify

small-sized damage with different Mw in Eq. (4.38) and using polynomial fits with

different orders.

The method is applied to the plate shown in Fig. 4.56(a) to identify its dam-

age using its normalized MSs of the 2nd, 12th, 25th, 27th and 28th elastic modes,

denoted by Zd,2, Zd,12, Zd,25, Zd,27 and Zd,28, respectively, as shown in Fig. 4.33.

White noise is added to the five MSs with a SNR of 40 db to simulate measurement

noise. Fitting indices fit and convergence indices con associated with Zd,2, Zd,12,

Zd,25, Zd,27 and Zd,28 for different n are shown in Figs. 4.34 through 4.38, respec-

tively. Proper orders for polynomial fits associated with Zd,2, Zd,12, Zd,25, Zd,27 and

Zd,28 are determined to be 8, 15, 17, 17 and 18, respectively. MSDIs from Eq. (4.36)

associated with Zd,2, Zd,12, Zd,25, Zd,27 and Zd,28 are shown in Figs. 4.39(a), 4.40(a),

4.41(a), 4.42(a) and 4.43(a), respectively, and it can be seen that the damage can

be hardly identified in the MSDIs due to measurement noise.

Weighted MSDIs from Eq. (4.38) with Mw = 7 associated with Zd,2, Zd,12,

Zd,25, Zd,27 and Zd,28 are shown in Figs. 4.39(b), 4.40(b), 4.41(b), 4.42(b) and

4.43(b), respectively. Effects of the damage in Zd,25, Zd,27 and Zd,28 are manifested

due to use of the weight function in Eq. (4.65), and the damage can be identified

in the associated weighted MSDIs. However, the damage cannot be identified in
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the weighted MSDIs associated with Zd,2 and Zd,12 due to measurement noise. For

comparison purposes, MSDIs associated with noise-free MSs Zd,2, Zd,12, Zd,25, Zd,27

and Zd,28 are calculated and shown in Figs. 4.39(c), 4.40(c), 4.41(c), 4.42(c) and

4.43(c), respectively. It can be seen that values of the MSDIs associated with noise-

free Zd,2 and Zd,12 are relatively low compared with those associated with Zd,25,

Zd,27, Zd,28 and Zd,31 in the damage region. Hence MSDIs associated with Zd,2 and

Zd,12 are less sensitive to the damage and more vulnerable to measurement noise

compared with the other four. The SNRs of Zd,2 and Zd,12 are then increased to

50 db. MSDIs from Eq. (4.36) and weighted MSDIs from Eq. (4.38) with Mw = 7

associated with Zd,2 and Zd,12 are calculated. While the damage cannot be identified

in the MSDIs associated with the two MSs, as shown in Figs. 4.44(a) and 4.45(a),

it can be in the weighted MSDIs associated with the two MSs, as shown in Figs.

4.44(b) and 4.45(b). Damage can become unidentifiable especially when there is

relatively large measurement noise, and whether the damage can be identified in

weighted MSDIs associated with MSs with measurement noise or not also depends

on selection of MSs, since some MSs are more vulnerable to measurement noise as

shown above. Hence one needs to use weighted MSDIs associated with different MSs

to identify damage.

Based on the MSDIs associated with Zd,2, Zd,12, Zd,25, Zd,27, Zd,28 and Zd,31,

it can be observed that use of MSDIs associated with one single elastic mode can

identify the damage but it cannot yield accurate and complete estimation of the

damage position and area; use of MSDIs associated with some of the MSs can.

The reason is that each MS has portions that can be sensitive or insensitive to
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certain portions of the damage due to its relatively large area. In this case, left

and right edges of the damage can be identified in the MSDIs associated with Zd,27,

while top and bottom edges can be identified in the MSDIs associated with Zd,28.

Hence the damage position and area can be accurately and completely estimated if

the MSDIs associated with Zd,27 and Zd,28 are used. A similar observation can be

made that the MSDIs associated with Zd,2, Zd,12, Zd,25 and Zd,31 indicate the lower,

upper right, lower left and upper left portions of the damage, respectively, and the

damage position and area can also be accurately and completely estimated if the

MSDIs associated with Zd,2, Zd,12 and Zd,31 are used. Hence a damage position and

area can be completely and accurately estimated using MSDIs associated with MSs

of multiple elastic modes, but one cannot ensure that in practice since the damage

position and area are unknown a priori.

A small-sized damage is then introduced to an undamaged steel plate with

the same dimensions, boundary conditions and material properties as those of the

damaged plate in Fig. 4.56(a). The damage is in the form of thickness reduction

and its depth is 0.2 mm; the damage position and area are shown in Fig. 4.46(a).

MSs of the 27th and 28th elastic modes of the damaged plate shown in Figs. 4.46(b)

and (c), respectively, are used to identify the damage, and white noise is added to

the MSs with a SNR of 40 db to simulate measurement noise. Proper orders for

polynomial fits associated with the MSs of the 27th and 28th elastic modes are 17

and 18, respectively. MSDIs from Eq. (4.36) associated with the MSs of the 27th

and 28th elastic modes are shown in Figs. 4.47(a) and 4.48(a), respectively, and the

damage can be hardly identified in the MSDIs due to measurement noise. MSDIs
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(a) (b) (c)

(d) (e)

Figure 4.33: MSs of the (a) 2nd, (b) 12th, (c) 25th, (d) 27th and (e) 28th elastic

modes of the damaged plate in Fig. 4.56(a).
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Figure 4.34: (a) Fitting index fit associated with Zd,2, (b) an enlarged view of fit,

(c) con associated with Zd,2 and (d) an enlarged view of con.
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Figure 4.35: (a) Fitting index fit associated with Zd,12, (b) an enlarged view of fit,

(c) con associated with Zd,12 and (d) an enlarged view of con.
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Figure 4.36: (a) Fitting index fit associated with Zd,25, (b) an enlarged view of fit,

(c) con associated with Zd,25 and (d) an enlarged view of con.
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Figure 4.37: (a) Fitting index fit associated with Zd,27, (b) an enlarged view of fit,

(c) con associated with Zd,27 and (d) an enlarged view of con.
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Figure 4.38: (a) Fitting index fit associated with Zd,28, (b) an enlarged view of fit,

(c) con associated with Zd,28 and (d) an enlarged view of con.
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(a) (b) (c)

Figure 4.39: (a) MSDIs using the difference between Zd,2 with measurement noise

and associated Zp,2, (b) weighted MSDIs with Mw = 7 using the difference between

Zd,2 with measurement noise and associated Zp,2 and (c) MSDIs using the difference

between noise-free Zd,2 and associated Zp,2; the damage is outlined by solid lines.

SNRs of the MSs used in (a) and (b) are 40 db.

(a) (b) (c)

Figure 4.40: (a) MSDIs using the difference between Zd,12 with measurement noise

and associated Zp,12, (b) weighted MSDIs withMw = 7 using the difference between

Zd,12 with measurement noise and associated Zp,12 and (c) MSDIs using the difference

between noise-free Zd,12 and associated Zp,12; the damage is outlined by solid lines.

SNRs of the MSs used in (a) and (b) are 40 db.
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(a) (b) (c)

Figure 4.41: (a) MSDIs using the difference between Zd,25 with measurement noise

and associated Zp,25, (b) weighted MSDIs withMw = 7 using the difference between

Zd,25 with measurement noise and associated Zp,25 and (c) MSDIs using the difference

between noise-free Zd,25 and associated Zp,25; the damage is outlined by solid lines.

SNRs of the MSs used in (a) and (b) are 40 db.

(a) (b) (c)

Figure 4.42: (a) MSDIs using the difference between Zd,27 with measurement noise

and associated Zp,27, (b) weighted MSDIs withMw = 7 using the difference between

Zd,27 with measurement noise and associated Zp,27 and (c) MSDIs using the difference

between noise-free Zd,27 and associated Zp,27; the damage is outlined by solid lines.

SNRs of the MSs used in (a) and (b) are 40 db.
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(a) (b) (c)

Figure 4.43: (a) MSDIs using the difference between Zd,28 with measurement noise

and associated Zp,28, (b) weighted MSDIs withMw = 7 using the difference between

Zd,28 with measurement noise and associated Zp,28 and (c) MSDIs using the difference

between noise-free Zd,28 and associated Zp,28; the damage is outlined by solid lines.

SNRs of the MSs used in (a) and (b) are 40 db.

(a) (b)

Figure 4.44: (a) MSDIs using the difference between Zd,2 with measurement noise

and associated Zp,2 and (b) weighted MSDIs with Mw = 7 using the difference

between Zd,2 with measurement noise and associated Zp,2; the damage is outlined

by solid lines. SNRs of the MSs used in (a) and (b) are 50 db.
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(a) (b)

Figure 4.45: (a) MSDIs using the difference between Zd,12 with measurement noise

and associated Zp,12 and (b) weighted MSDIs with Mw = 7 using the difference

between Zd,12 with measurement noise and associated Zp,12; the damage is outlined

by solid lines. SNRs of the MSs used in (a) and (b) are 50 db.

associated with noise-free MSs of the 27th and 28th elastic modes are shown in Figs.

4.47(b) and 4.48(b), respectively, where the damage can be clearly identified.

Weighted MSDIs from Eq. (4.38) withMw = 3 associated with the MSs of the

27th and 28th elastic modes are shown in Figs. 4.47(c) and 4.48(c), respectively.

The damage position and area can be identified in the former, since relatively high

values of MSDIs exist in the damage region; those cannot be in the latter. The

scale of the weigh function in Eq. (4.65) is then increased to 7, weighted MSDIs

associated with the MSs of the 27th and 28th elastic modes are shown in Figs.

4.47(d) and 4.48(d), respectively. Similarly, the damage position and area can be

identified in the former, and those cannot be in the latter. It can be observed that

effects of measurement noise on damage identification can be lowered with a higher

Mn in the weighted MSDI in Eq. (4.38) since the weighted MSDIs with Mw = 7
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(a) (b) (c)

Figure 4.46: (a) FE model of a plate with damage in the form of a thickness reduction

area and MSs of the (b) 27th and (c) 28th elastic modes of the damaged plate in

(a).

in Fig. 4.47(d) are less fuzzy. However, a guideline to determine an optimal Mn

would not exist. The reason is that whether damage exist in a plate or not and the

position and area of the damage are unknown a priori in practice. Hence one needs

to calculate weighted MSDIs with progressively increasing scales to identify damage.

The scale of a weighted MSDI in Eq. (4.38) is analogous to the scale parameter in a

continuous wavelet transform (CWT). The higher the scale parameter in the CWT,

the smoother the CWT. In other words, adverse effects of noise in the CWT can be

lowered by increasing its scale parameter. More details on the scale parameter in a

CWT for damage identification are provided in Ref. 11.

Another observation can be made that the MS of the 27th elastic mode is

sensitive to the damage but that of the 28th elastic mode is not. It can be validated

by comparing MSDIs associated with the noise-free MSs. The MSDIs associated
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(a) (b)

(c) (d)

Figure 4.47: (a) MSDIs using the difference between the MS of the 27th elastic

mode of the damaged plate in Fig. 4.46(a) with measurement noise and that of

the associated pseudo-undamaged plate, (b) MSDIs using the difference between

the noise-free MS of the 27th elastic mode of the damaged plate and that of the

associated pseudo-undamaged plate, (c) weighted MSDIs with Mw = 3 using the

difference between the MS of the 27th elastic mode of the damaged plate with

measurement noise and that of the associated pseudo-undamaged plate and (d)

weighted MSDIs with Mw = 7 using the difference between the MS of the 27th

elastic mode of the damaged plate with measurement noise and that of the associated

pseudo-undamaged plate; the damage is outlined by solid lines. SNRs of the MSs

used in (a), (c) and (d) are 40 db.
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(a) (b)

(c) (d)

Figure 4.48: (a) MSDIs using the difference between the MS of the 28th elastic

mode of the damaged plate in Fig. 4.46(a) with measurement noise and that of

the associated pseudo-undamaged plate, (b) MSDIs using the difference between

the noise-free MS of the 28th elastic mode of the damaged plate and that of the

associated pseudo-undamaged plate, (c) weighted MSDIs with Mw = 3 using the

difference between the MS of the 28th elastic mode of the damaged plate with

measurement noise and that of the associated pseudo-undamaged plate and (d)

weighted MSDIs with Mw = 7 using the difference between the MS of the 28th

elastic mode of the damaged plate with measurement noise and that of the associated

pseudo-undamaged plate; the damage is outlined by solid lines. SNRs of the MSs

used in (a), (c) and (d) are 40 db.
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with the noise-free MS of the 27th elastic mode can yield accurate estimation of the

damage position and area, which indicates that this mode is sensitive to the whole

damage. Four corners of the damage can be identified in the MSDIs associated with

the noise-free MS of the 28th elastic mode, which indicates that this mode is sensitive

to the corners of the damage. However, values of the MSDIs associated with the MS

of the 28th elastic mode are relatively low compared with those associated with the

MS of the 27th elastic mode in the damage region; hence MSDIs associated with the

MS of the 28th elastic mode are less senstive to the damage and more vulnerable to

measurement noise compared with those associated with the MS of the 27th elastic

mode.

When orders for polynomials that fit the noise-free MS of the 27th elastic

mode of the damaged plate are 11 and 14, MSs of associated pseudo-undamaged

plates are calculated and shown in Figs. 4.49(a) and (b), respectively. MAC values

in percentage between the MS from the polynomial fit with n = 11 and that to

be fit and between the MS from the polynomial fit with n = 14 and that to be

fit are 99.979% and 99.998%, respectively, which indicates that the two MSs of

the pseudo-undamaged plates both well approximate that to be fit. However, the

damage cannot be identified in MSDIs using differences between the noise-free MS

of the 27th elastic mode of the damaged plate and the MSs from the polynomial fits

with n = 11 and n = 14, as shown in Fig. 4.49(c) and (d), respectively. When the

order for a polynomial that fits the noise-free MS of the 27th elastic mode of the

damaged plate is 27, the MS of the associated pseudo-undamaged plate is calculated

and shown in Figs. 4.49(e). The MAC value in percentage between the MS from the
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polynomial fit with n = 27 and that to be fit is close to 100.00%. The damage can

be clearly identified in MSDIs using the difference between the two MSs, as shown

in Fig. 4.49(f). It can be seen that the damage can be unidentifiable when the order

for a polynomial fit is smaller than its proper value, since it underfits the MS to be fit

and effects of the damage cannot be manifested in associated MSDIs. However, when

the order is larger than its proper value, damage can still be identified in associated

MSDIs due to two facts. One is that the associated fitting index converges when

the order is sufficiently large, i.e., increasing the order cannot change the level of

approximation of a polynomial fit much. The other is that effects of damage on a MS

is assumed to be small and cannot be included in a polynomial fit unless its order

is unreasonably large, which can lead to numerical issues in solving the equation in

Eq. (4.57).

4.2.4 Experimental Investigation

4.2.4.1 Experimental Setup

A rectangular damaged aluminum plate that had a length of 500.00 mm, a

width of 400.00 mm and a thickness of 4.75 mm was constructed; its dimensions are

shown in Fig. 4.76(a). The plate was hung using two nylon cords to simulate free

boundary conditions, as shown in Fig. 4.76(b). The damage was a square, machined

thickness reduction area, which had a side length of 40.00 mm and a depth of 0.5

mm; the depth was about 10% of the thickness of the undamaged portion of the

plate, as shown in Fig. 4.76(c). In order to validate the simulated free boundary
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(a) (b)

(c) (d)

(e) (f)

Figure 4.49: (a) MS of a pseudo-undamaged plate from a polynomial that fits the

MS of the 27th elastic mode of the damaged plate in Fig. 4.46(a) with n = 11,

(b) the MS of a pseudo-undamaged plate from a polynomial that fits the MS of the

27th elastic mode of the damaged plate with n = 14, (c) MSDIs using the difference

between the MS of the 27th elastic mode of the damaged plate and that in (a), (d)

MSDIs using the difference between the MS of the 27th elastic mode of the damaged

plate and that in (b), (e) the MS of a pseudo-undamaged plate from a polynomial

that fits the MS of the 27th elastic mode of the damaged plate with n = 27 and (f)

MSDIs using the difference between the MS of the 27th elastic mode of the damaged

plate and that in (e).
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conditions of the plate, an EMA was performed, where a PCB 086-D80 miniature

impact hammer and a Polytec PSV-500 scanning laser Doppler vibrometer (SLDV)

were used to excite the plate and measure its response, respectively (Fig. 4.76(b)).

In EMA, a fixed excitation point was impacted using the hammer, and the response

of a measurement point was measured to yield five FRFs from five different impacts,

which were averaged and analyzed using PolyMax of LMS Test.Lab Rev.9b to obtain

natural frequencies of the plate. The lowest measured elastic natural frequency of

the plate was 76.5 Hz. Since the highest measured natural frequency of rigid-body

modes of the plate in the setup was 2.1 Hz, which was much less than 10% of its

lowest measured elastic natural frequency, the simulated free boundary conditions

were validated.[1] A rectangular measurement area was assigned on a surface of the

plate for MS measurements; the surface was opposite to the damaged one, and the

area had a length of 488.1 mm and a width of 395.9 mm, as shown in Fig. 4.76(d).

The rectangular area is slightly smaller than that of the plate in that there were

two holes drilled on two top corners of the plate for hanging and clearances between

edges of the plate and the rectangular measurement area were reserved to prevent

the laser of the SLDV from reaching edges of the plate and the two holes. The

measurement area was sprayed with spot checker to enhance laser reflection that

directly determined SNRs of laser measurements.

In order to accurately measure MSs of the damaged plate without incurring un-

wanted mass loading, non-contact excitation and measurements were performed,[114]

as shown in Figs. 4.76(b) and (e): an electric speaker with a wood box faced the

damaged surface of the plate and generated acoustic excitation onto it, and the
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(a) (b)

(c) (d) (e)

Figure 4.50: (a) Dimensions of the damaged plate, (b) the test setup for response

measurements of the measurement surface, (c) the damaged surface of the plate,

(d) the measurement grid on the measurement surface and (e) the electric speaker

facing the damaged surface.
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SLDV measured velocities of measurement points in the measurement area. There

were a total of 115× 177 measurement points in the measurement grid, whose ele-

ments were rectangular and had a length of 3.44 mm and a width of 2.76 mm, as

shown in Fig. 4.76(d). Acoustic excitation in the form of a sine wave was used to

excite the plate, and velocities of the measurement points were measured using the

“FastScan” mode of the SLDV system, where the bandwidth was equal to an exci-

tation frequency and 80 averages were used for each measurement point. The 24th

and 25th MSs of the damaged plate at natural frequencies of 1349 Hz and 1405 Hz,

denoted by Zexp,1 and Zexp,2, respectively, were measured with excitation frequen-

cies of 1349 Hz and 1405 Hz, respectively, to experimentally validate the proposed

methodology; the measurement time of each MS was about 23 minutes. In order to

transform the current measurement grid to one with square elements and increase

the spatial resolution of MSDIs, Zexp,1 and Zexp,2 were interpolated using the MAT-

LAB function “griddata” with the option “natural” on a measurement grid with

199×245 measurement points, which had square elements with a side length of 1.99

mm, as shown in Fig. 4.77(a) and (b), respectively. For simplicity, the interpolated

Zexp,1 and Zexp,2 are hereafter denoted by Zexp,1 and Zexp,2, respectively.

4.2.4.2 Experimental Damage Identification Results

To determine proper orders for polynomials to fit Zexp,1 and Zexp,2, fit associ-

ated with Zexp,1 and Zexp,2 for different n were calculated and shown in Figs. 4.81(a)

and 4.53(a), respectively. Similar to the numerical examples in Secs. 2 and 3, fit
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Figure 4.51: (a) Measured Zexp,1 of the damaged plate at the natural frequency

of 1349 Hz, (b) Zexp,2 of the damaged plate at the natural frequency of 1405 Hz,

(c) the MS of the associated pseudo-undamaged plate from a polynomial that fits

Zexp,1 with n = 15 and (d) that of the associated pseudo-undamaged plate from a

polynomial that fits Zexp,2 with n = 16.
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Figure 4.52: (a) Fitting indices fit associated with Zexp,1, (b) an enlarged view of

fit, (c) the convergence indices con associated with Zexp,1 and (d) an enlarged view

of con.

associated with the two MSs converged to certain values as n increased, as shown in

Figs. 4.81(b) and 4.53(b). Associated con for different n were calculated and shown

in Figs. 4.81(c) and 4.53(c). The proper orders of the polynomials to fit Zexp,1

and Zexp,2 were determined to be 15 and 16, respectively, since con = 0.35% for

Zexp,1 and con = 0.13% for Zexp,2, which were lower than the prescribed threshold

value, as shown in Figs. 4.81(d) and 4.53(d), respectively. MSs of the associated

pseudo-undamaged plate from the polynomials that fit Zexp,1 and Zexp,2 are shown in

Figs. 4.77(c) and (d), respectively; MAC values between Zexp,1 and the MS from the

associated polynomial and between Zexp,2 and that from the associated polynomial

were both 99.99%.

MSDIs associated with Zexp,1 and Zexp,2 are shown in Figs. 4.54(a) and (b),

respectively; high values of MSDIs could be observed in the damage region while
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Figure 4.53: (a) Fitting indices fit associated with Zexp,2, (b) an enlarged view of

fit, (c) the convergence indices con associated with Zexp,2 and (d) an enlarged view

of con.

some regions with lower values of MSDIs could also be observed outside the region,

which were caused by measurement noise. Weighted MSDIs withMw = 7 associated

with Zexp,1 and Zexp,2 are shown in Figs. 4.54(c) and (d), respectively; high values

of MSDIs could be observed in the damage region and smaller regions with lower

values of weighted MSDIs could be observed due to use of the weight function. One

could identify the damage near regions with consistently high values of MSDIs.

MSDIs associated with uninterpolated Zexp,1 and Zexp,2 are shown in Figs.

4.55(a) and (b), respectively. Similar to Figs. 4.54(a) and (b), high values of

MSDIs could be observed in the damage region while some regions with lower values

of MSDIs that were caused by measurement noise could be observed outside the

region. However, one cannot properly calculate weighted MSDIs to alleviate effects

of measurement noise in that the elements of the measurement grid of uninterpolated
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(a) (b)

(c) (d)

Figure 4.54: (a) MSDIs associated with Zexp,1, (b) those associated with Zexp,2, (c)

weighted MSDIs with Mw = 7 associated with Zexp,1 and (d) those associated with

Zexp,2.
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(a) (b)

Figure 4.55: (a) MSDIs associated with uninterpolated Zexp,1 and (b) those associ-

ated with uninterpolated Zexp,2.

Zexp,1 and Zexp,2 were rectangular and spatial weights in x- and y-axes of the weight

function in Eq. (4.65) would be different, which violates its definition. The weights

would be the same only when elements of a measurement grid are square. Hence

it is recommended that an interpolation operation be conducted to transform a

measurement grid with non-square elements to one with square elements.

4.2.5 Conclusion

A new non-model-based plate damage identification method using measured

MSs is proposed. The method can be applied to a damaged plate without use of

MSs of the associated undamaged plate, if the undamaged plate is geometrically

smooth and made of materials that have no stiffness and mass discontinuities. Use

of differences between MSs of a damaged plate and those of an associated pseudo-

undamaged plate from polynomials that fit the MSs of the damaged plate is shown
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to be better than that between MSs of a damaged plate and those of an associated

undamaged plate with respect to effectiveness of damage identification. A proper

order of a polynomial fit can be determined as proposed; a polynomial fit with an

order lower than the proper order for MSDIs cannot be used to identify damage

and that with an order reasonably higher than the proper order can be. MSDIs

associated with a MS can be used to identify damage or portions of the damage, and

whether damage can be identified in MSDIs associated with a MS or not depends

on the MS itself, since the MS can be insensitive to the damage and vulnerable

to measurement noise. Adverse effects of measurement noise on MSDIs can be

alleviated using the weight function, and one needs to progressively increase the

scale of the function to lower the adverse effects and identify damage. The proposed

methodology was experimentally applied to a plate with damage in the form of a

machined thickness reduction area. The damage was successfully identified near

regions with consistently high values of MSDIs associated with MSs of different

modes.

4.3 Damage Identification of Plates Using Principal, Mean and Gaus-

sian Curvature Mode Shapes

4.3.1 Introduction

Vibration-based damage detection has been a major research topic of struc-

tural dynamics in the past few decades. Measured modal characteristics, such as

natural frequencies and mode shapes, are processed in various methods for detect-
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ing, locating and characterizing damage in structures, since modal characteristics

are related to physical properties of structures, such as mass, stiffness and damping,

which can change due to damage. A method can be categorized as a model-based or

non-model-based method; the difference between them is that the former requires

use of an accurate model of a structure and the latter does not. A method that

only requires a minimum amount of measured natural frequencies was developed

to accurately detect locations and extent of damage in such structures as lighten-

ing masts [82, 83], space frames [115] and pipelines [116]. It is model-based and

requires an accurate physics-based model of a structure, and effectiveness of the

method highly depend on accuracy of the model of the structure. However, it can

be difficult to construct models of most structures that can accurately predict their

natural frequencies before and after occurrence of damage.

Methods that use measured mode shapes to identify damage in a structure

can be good alternatives. While effects of damage on natural frequencies are global,

those on mode shapes are local; abrupt changes in mode shapes in the neighbor-

hood of damage can be observed. A two-dimensional gapped smoothing method was

developed based on a one-dimensional gapped smoothing method [88]. Curvature

mode shapes (CMSs) and curvatures of operating deflection shapes were used in the

two-dimensional method to identify damage in plates [106], where mode shapes of

an undamaged plate were not needed. A gapped polynomial fitting the curvatures

was used to eliminate global trends of CMSs and curvatures of operating deflection

shapes at each measurement point. A method that used curvatures of frequency-

shift surfaces of plates to identify damage was proposed in Ref. [107]; curvatures of
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frequency-shift surfaces of associated undamaged plates could be obtained using a

technique of locally weighted regression. It was shown to be better than the two-

dimensional gapped smoothing method, since a frequency-shift surface contained

information of a squared mode shape. A CMS-based method was proposed in Ref.

[108], where a CMS of a plate based on an average curvature was calculated using a

wavelet transform to alleviate adverse effects of measurement noise on the CMS and

a Teager energy operator was applied to the CMS at each measurement point to

eliminate the global trend of the transformed CMS. The mode shape-based methods

mentioned above are local ones, and their common disadvantage is that they can be

computationally inefficient, especially for a large and dense measurement grid, since

the global trend of a curvature is locally eliminated in a point-by-point manner. A

simplified gapped smoothing method, a generalized fractal dimension method and a

strain energy method were used to detect delamination in a composite plate [110],

and the methods there are also local ones and can be computationally inefficient.

Changes in curvatures of uniform-load surfaces were used to identify damage in

plates; the curvatures were shown to be sensitive to presence of local damage, even

with truncated, incomplete and noisy measurements [109]. The method in Ref. [109]

used natural frequencies and mode shapes of the first few modes of damaged and un-

damaged plates, but those of undamaged plates can be unavailable in practice. Mean

and Gaussian curvature shapes of three-dimensional digital models of structures ob-

tained by a terrestrial laser scanner were used to identify mass loss of concrete via

piecewise comparisons of distributions of the curvature shapes [117]. A limitation of

the method is that only surface damage can be identified. Besides curvature-based
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methods, wavelet transform-based methods have been widely studied to identify

damage in plates [118, 119, 120]. Gabor wavelets were used to identify damage in

a rectangular plate [118]; effects of various wavelets on identifying damage, such

as Haar, Daubechies, Gaussian and Coiflet wavelets, were studied and compared in

Ref. [119]. Depths of cracks in plates could be detected using a wavelet transform-

based method with the aid of models of undamaged plates [120]. However, whether

damage can be identified using a wavelet transform-based method depends on the

type and parameters of an applied wavelet. Changes in the strain energy of a struc-

ture have been used to identify damage; the method was extended from the one for

beams [121], which require mode shapes of damaged and undamaged structures. A

two-dimensional polynomial annihilation edge detection method was proposed for

detection and localization of damage in plates [111]; it was extended from the one

for beams, which can detect discontinuities in piecewise smooth functions and their

derivatives [84]. The limitation of the method is that only edges of damage could

be identified.

A non-model-based method based on principal, mean and Gaussian CMSs is

proposed in this work to identify damage in plates. Theoretical bases of principal

CMSs of a plate are shown. A multi-scale discrete differential-geometry scheme is

proposed to calculate principal, mean and Gaussian CMSs associated with a mode

shape of a plate, which can alleviate adverse effects of measurement noise on cal-

culating the CMSs. Principal CMSs are directly related to principal stresses of a

deformed plate, and mean and Gaussian CMSs can quantify differential-geometry

features of a mode shape of the plate. Differences between principal, mean and
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Gaussian CMSs of a damaged plate and those of the associated undamaged one

are used to yield four curvature damage indices (CDIs), including Maximum-CDI,

Minimum-CDI, Mean-CDI and Gaussian-CDI. Global trends of the CMSs are elim-

inated in a global manner and can be computationally more efficient than the local

methods. A mode shape from a polynomial of a properly determined order that fits a

mode shape of a damaged plate can be used to approximate the corresponding mode

shape of the associated undamaged one, provided that the undamaged plate has a

smooth geometry and is made of material that has no stiffness and mass disconti-

nuities. Fitting and convergence indices are introduced to assist determination of

the proper order of the polynomial fit. A weight function is applied to the proposed

CDIs to alleviate adverse effects of measurement noise on the CDIs and manifest

existence of damage in the CDIs. The applicability and robustness of the proposed

method to a mode shape of a low elastic mode on a coarse measurement grid are nu-

merically investigated. An aluminum plate with damage in the form of a machined

thickness reduction area was constructed, and a mode shape of the damaged plate

was measured using non-contact excitation and measurement to investigate effec-

tiveness of the proposed method. The mode shape associated with the same mode

as that of the measured mode shape from a finite element model of the damaged

plate was used to numerically verify the experimental damage identification results.
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4.3.2 Methodology

A finite element model of a damaged rectangular steel plate that has a length

of 0.3 m, a width of 0.4 m and a thickness of 0.002 m is constructed using commercial

finite element software ABAQUS; the model has a total of 150 × 200 square plate

elements. The damage is in the form of a thickness reduction area, and its position

and dimensions are shown in Fig. 4.56(a); the depth of the thickness reduction area

is 0.0002 m. The mass density, elastic modulus and Poisson’s ratio of the plate are

7850 kg/m3, 200 GPa and 0.3, respectively. A finite element model of an undamaged

plate of the same dimensions and material properties as those of the damaged plate

is also constructed, which has the same number of square plate elements as that of

the damaged one. To demonstrate the proposed method, undamped mode shapes

of the damaged and undamaged plates associated with their 23-rd elastic modes

are calculated and denoted by Zd,23 and Zu,23, respectively; Zd,23 and Zu,23 are in

the same phase, and they are normalized so that their maximum absolute values

are equal to one. Mode shapes Zd,23 and Zu,23 are shown in Figs. 4.56(b) and (c),

respectively.
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(a)

(b) (c)

Figure 4.56: (a) Finite element model of a plate with damage in the form of a

thickness reduction area, (b) the 23-rd mode shape of the damaged plate and (c)

the 23-rd mode shape of an undamaged plate of the same dimensions and material

properties as the damaged one.

4.3.2.1 Principal CMSs of Plates

While the curvature at a point on a mode shape of a one-dimensional structure,

such as a beam, is defined along the length of the structure, that on a mode shape

270



of a plate is defined on a unit vector tangent to the mode shape at the point, and

its value depends on not only the mode shape but the unit vector. The curvature

at a point p on a mode shape Z shown in Fig. 4.57 with respect to a unit vector v

tangent to Z at p is defined by [122]

κZ,p (v) = − (∇vn) · v (4.39)

where n is a unit normal vector field in the neighborhood of p on Z, and ∇vn is

the covariant derivative of n with respect to v, which can be defined by

∇vn =
d

dt
n (p+ tv)

∣∣
t=0

(4.40)

The geometric meaning of the curvature is that it quantifies the bending rate of a

curve σ on Z with respect to n; σ is obtained by intersecting Z with a plane that is

determined by n and v, as shown in Fig. 4.57. When p is an umbilic point, κZ,p is

equal to one value with any v. Examples of surfaces that consist of umbilic points are

planes and spheres. More commonly for a mode shape, when p is a nonumbilic point,

there are two orthogonal principal directions, along which κZ,p attains its maximum

and minimum values, denoted by κmax
Z,p and κmin

Z,p, respectively; the two curvatures,

i.e., the maximum and minimum curvatures, are termed as principal curvatures.

Shapes that are formed by maximum and minimum curvatures associated with a

mode shape are termed as maximum and minimum CMSs, respectively, and they

are principal CMSs.
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Figure 4.57: Point p on a mode shape Z, a unit normal vector n associated with p,

a unit tangent vector v associated with p, and a curve σ obtained by intersecting

Z with the plane determined by n and v.

For a constant-thickness plate made of homogeneous material, one has [123]




Mxx

Myy

Mxy



=

Eh3

12 (ν2 − 1)




1 ν 0

ν 1 0

0 0 ν − 1







κxx

κyy

κxy




(4.41)

where Mxx and Myy are bending moments per unit length acting on edges of a

differential element parallel to y- and x-axes of a global three-dimensional Cartesian

coordinate O − xyz, respectively; Mxy is the twisting moment with respect to x-

and y-axes; E, h and ν are the Young’s modulus, thickness and Poisson’s ratio of

the plate, respectively; κxx and κyy are curvatures with respect to x- and y-axes,

respectively; and κxy is the twist with respect to x- and y-axes. For a point p on
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the plate, a local Cartesian coordinate p − x′y′z′ can be defined, where x′- and

y′-axes are along principal directions associated with the maximum and minimum

curvatures of p on Z, respectively. In this case, associated Mx′y′ and κx′y′ vanish,

and one has





κMax
Z,p = − 12

Eh3
(Mx′x′ − νMy′y′)

κMin
Z,p = − 12

Eh3
(My′y′ − νMx′x′)

(4.42)

Principal curvatures can be used to construct a quadratic approximation of Z near

p. When v in Eq. (4.39) is not on a principal direction, κZ,p can be expressed by

[122]

κZ,p (v) = κMax
Z,p cos2 ϑ1 + κMin

Z,p cos2 ϑ2 (4.43)

where ϑ1 and ϑ2 are angles between v and principal directions associated with the

maximum and minimum curvatures, respectively. Hence, principal curvatures can

be considered to be properties of Z at p that are independent of v.

4.3.2.2 Multi-scale Discrete Differential-geometry Scheme

When Z can be analytically expressed, principal CMSs can be calculated using

a well-established analytical method [122]. When Z cannot be analytically expressed

and is presented in a discrete form, a numerical scheme is needed to calculate discrete

principal CMSs associated with Z. For a one-dimensional structure, a discrete CMS

can be accurately calculated using a finite difference scheme. Discrete principal

CMSs associated with Z cannot be easily calculated in that κZ,p depends on v, as
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shown in Eq. (4.39), and there are an infinite number of v that can be defined at

p. One can perform a one-dimensional finite difference scheme at p with respect

to different v to calculate curvatures and find principal curvatures as the maximum

and minimum values among resulting curvatures, but it can be computationally

inefficient.

To efficiently and accurately calculate principal CMSs associated with Z, two

operators in Ref. [124] for shapes with a triangulated mesh are introduced; they

can be used to calculate its mean and Gaussian curvatures at a point p, denoted

by HZ,p and GZ,p, respectively. Mean and Gaussian curvatures of Z at p are the

average and product of two principal curvatures of Z at p, respectively, which can

be expressed by

HZ,p =
κMax
Z,p + κMin

Z,p

2
(4.44)

and

GZ,p = κMax
Z,p × κMin

Z,p (4.45)

Shapes that are formed by mean and Gaussian curvatures associated with a mode

shape are termed as mean and Gaussian CMSs, respectively. In the operators for

mean and Gaussian curvatures of p on Z with a triangulated mesh, a new surface

area AP is calculated for a one-ring neighborhood associated with p, which is formed

by all triangulated elements of the mesh consisting of p, as shown in Fig. 4.58(a).

The pseudo-code for calculating AP is shown in Fig. 4.59, where the Voronoi area
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of an acute triangle △pqr shown in Fig. 4.58(b) can be expressed by

AVoronoi =
1

8

(
|pr|2 cot∠q+ |pq|2 cot∠r

)
(4.46)

and A is the area of a triangle in the one-ring neighborhood. Mean and Gaussian

curvatures of p on Z can be calculated by

HZ,p =
1

4AP


 ∑

i∈N1(p)

(cotαi + cotβi) (p− qi)


 · n (p) (4.47)

and

GZ,p =
2π −

∑
i∈N1(p)

θi

AP

(4.48)

where N1(p) is the number of points that are connected with p in the one-ring

neighborhood, and θi is the angle associated with qi, as shown in Fig. 4.58(a).

With calculated HZ,p and GZ,p, principal curvatures at p can be calculated by

κMax
Z,p = HZ,p +

√
H2

Z,p −GZ,p (4.49)

and

κMin
Z,p = HZ,p −

√
H2

Z,p −GZ,p (4.50)
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(a) (b) (c)

Figure 4.58: (a) One-ring neighborhood of a triangulated mesh associated with p,

(b) an acute triangle △pqr and (c) a hexagonal one-ring neighborhood with a side

length of s.

AP = 0

For each triangle in the one-ring neighborhood of p

If the triangle is acute,

AP = AP + AVoronoi

Else

If ∠p is obtuse

AP = AP + A
2

Else

AP = AP + A
4

Figure 4.59: Pseudo-code for calculating the new surface area Ap associated with

p.
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Similar to calculating curvatures of a one-dimensional structure [125], those

associated with a mode shape of a plate can be contaminated by measurement

noise. To alleviate adverse effects of measurement noise on calculating curvatures of

a plate, a multi-scale discrete differential-geometry scheme is proposed based on the

operators introduced above, where a hexagonal one-ring neighborhood is constructed

at each measurement point. The hexagonal one-ring neighborhood associated with

p projected onto the undeformed plate is equilateral with a side length of s, as

shown in Fig. 4.58(c). Since xy-coordinates of qi, where i = 1, 2, . . . , 6, can be

analytically obtained from the geometry of the hexagonal one-ring neighborhood,

its z-coordinate can be obtained from interpolation based on Z. CMSs of p can be

obtained based on the hexagonal one-ring neighborhood, and s is considered as the

scale of the scheme. For a measured mode shape with an unknown noise level, one

needs to progressively test different values of s from smaller to larger ones. A proper

value of s is the one with which the resulting CMS becomes smooth and has a clear

global trend.

To illustrate adverse effects of measurement noise and the effectiveness of the

scheme, white noise is added to Zd,23 with a signal-to-noise ratio of 60 db to sim-

ulate measurement noise. Maximum CMSs associated with Zd,23 from the scheme

with s = 0.002 m, 0.005 m and 0.015 m are shown in Fig. 4.60(a) through (c),

respectively; the maximum CMS associated with noise-free Zd,23 is shown in Fig.

4.60(d). It can be seen that measurement noise is amplified and becomes dominant

in the resulting maximum CMS from the scheme with s = 0.002 m, since differences

between the value of a noise-free Zd,23 at a point and those in the hexagonal one-ring

277



neighborhood with a side length of s are small compared with those associated with

Zd,23 with the measurement noise. Figures 4.60(b) and (c) show that maximum

CMSs can be obtained with a lower noise level with a larger value of s. While max-

imum curvatures of Zd,23 at a point from the scheme with different values of s are

different from those associated with noise-free Zd,23 at the point from the scheme

with s = 0.002 m, global trends of the maximum CMSs are retained; the larger the

value of s, the lower the noise level in the resulting maximum CMS, which is also

the case for minimum, mean and Gaussian CMSs.
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(a) (b)

(c) (d)

Figure 4.60: Maximum CMSs associated with Zd,23 with measurement noise from

the scheme with (a) s = 0.002 m, (b) s = 0.005 m and (c) s = 0.015 m; (d) the

maximum CMS associated with noise-free Zd,23 from the scheme with s = 0.002 m.

4.3.2.3 CMS-based Damage Indices

CMSs have been widely used to identify damage in beams, since the curvature

at a point on a beam can be expressed by [86]
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v′′ =
M

EI
(4.51)

where v′′ is the curvature at the point, M is the bending moment applied at the

point, and EI is the bending stiffness of the cross-section at the point. Since damage

can introduce reduction in EI in its neighborhood, the magnitude of v′′ increases

in the neighborhood of the damage compared with that of the undamaged beam.

Differences between v′′ associated with the damaged and undamaged beams can be

used for identifying the damage. When E in Eq. (4.42) changes in the neighborhood

of damage in a plate, magnitudes of principal curvatures in the neighborhood of

the damage would change, and so would those of mean and Gaussian curvatures.

Hence, differences between principal, mean and Gaussian CMSs associated with the

damaged and undamaged plates can be used for identifying damage in a plate. Four

CDIs associated with a mode shape of a plate are proposed to identify damage; for

each point on the plate, the CDIs are listed below:

1. Maximum-CDI. A Maximum-CDI denoted by δMax (p) is defined by

δMax (p) =
(
κMax
Zd,j ,p − κMax

Zu,j ,p

)2
(4.52)

2. Minimum-CDI. A Minimum-CDI denoted by δMin (p) is defined by

δMin (p) =
(
κMin
Zd,j ,p − κMin

Zu,j ,p

)2
(4.53)

3. Mean-CDI. A Mean-CDI denoted by δMean (p) is defined by
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δMean (p) =
(
HZd,j ,p −HZu,j,p

)2
(4.54)

4. Gaussian-CDI. A Gaussian-CDI denoted by δGaussian (p) is defined by

δGaussian (p) =
(
GZd,j ,p −GZu,j ,p

)2
(4.55)

Maximum-CDIs, Minimum-CDIs, Mean-CDIs and Gaussian-CDIs associated with

noise-free Zd,23 and Zu,23 with s = 0.002 m in the scheme are shown in Fig. 4.61(a)

through (d), respectively. It can be seen that the damage can be identified near

regions with consistently higher values of the CDIs.
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(a) (b)

(c) (d)

Figure 4.61: (a) Maximum-CDIs, (b) Minimum-CDIs, (c) Mean-CDIs and (d)

Gaussian-CDIs associated with noise-free Zd,23 and Zu,23; s = 0.002 m in the scheme.
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(a) (b)

(c) (d)

Figure 4.62: (a) Maximum-CDIs, (b) Minimum-CDIs, (c) Mean-CDIs and (d)

Gaussian-CDIs associated with noise-free Zd,23 and the corresponding mode shape

from the polynomial fit with n = 15; s = 0.002 m in the scheme.

4.3.2.4 Approximation of Mode Shapes of an Undamaged Plate

While the CDIs proposed above can be used to identify damage in a plate, they

require use of mode shapes of an undamaged plate, which are usually unavailable

in practice. Assuming that existence of relatively small damage in a plate does not

cause prominent changes in its mode shapes in the neighborhood of the damage,
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one can approximate mode shapes of the associated undamaged plate using polyno-

mials that fit the corresponding mode shapes of the damaged plate, provided that

the undamaged plate is geometrically smooth and made of materials that have no

stiffness and mass discontinuities. The modal assurance criterion (MAC) value [1]

in percent between Zd,23 and Zu,23 is 99.95%, which indicates that they are almost

identical to each other and validates the assumption on the existence of relatively

small damage. A similar technique has been proposed in Ref. [125] to approximate

mode shapes of an undamaged beam using polynomials that fit corresponding mode

shapes of the damaged one. Mode shapes of an undamaged plate corresponding to

those of a damaged one are not measured in this work, and it is proposed that a

mode shape of an undamaged plate be obtained from a polynomial of a properly

determined order that fits the corresponding mode shape of the damaged plate:

zp (x, y) =

n∑

k=0

k∑

i=0

ai,k−ix
iyk−i (4.56)

where n is the order of the polynomial, which controls the level of approximation of

the polynomial fit to the mode shape of the damaged plate, (x, y) are xy-coordinates

of a point on an undeformed plate, and ai,k−i are coefficients of the polynomial that

can be obtained by solving a linear equation

Va = z (4.57)

in which z is the N -dimensional mode shape vector of the damaged plate to be

fit, V is the N ×
(
n+1∑
p=1

p

)
-dimensional bivariate Vandermonde matrix which can be
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expressed by

V =




1 x1 y1 . . . xn1 . . . xi1y
n−i
1 . . . yn1

1 x2 y2 . . . xn2 . . . xi2y
n−i
2 . . . yn2

...
...

...
. . .

...
. . .

...
. . .

...

1 xN yN . . . xnN . . . xiNy
n−i
N . . . ynN




(4.58)

and a is the

(
n+1∑
p=1

p

)
-dimensional coefficient vector which can be expressed by

a =

[
a0,0 a1,0 a0,1 . . . an,0 . . . ai,n−i . . . a0,n

]T
(4.59)

Solving Eq. (4.57) for the coefficient vector is equivalent to solving an unconstrained

least-squares problem min 1
2
‖Va∗ − z‖2 for an optimum minimizer a∗ [112], which

is usually an over-determined problem, i.e., N >
n+1∑
p=1

p. A solution can be obtained

using the singular-value decomposition of V [112], which gives

V = U




S

0


WT (4.60)

where U and W are N×N and

(
n+1∑
p=1

p

)
×
(
n+1∑
p=1

p

)
orthogonal matrices, respectively,

and S is a

(
n+1∑
p=1

p

)
×
(
n+1∑
p=1

p

)
diagonal matrix. An optimum minimizer a∗ based on

the singular-value decomposition of V can be obtained by

a∗ = WS−1UT
1z (4.61)

where U1 is a matrix formed by the first
n+1∑
p=1

p columns of U. When n in Eq. (4.56)

becomes a large value, S can be ill-conditioned, which can result in a low level of
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approximation of the associated polynomial fit. To avoid ill-conditioning of S, it

is proposed that x and y in Eq. (4.56) be normalized using the “center and scale”

technique [113] before formulation of the linear equation in Eq. (4.57). Normalized

coordinates x̃ and ỹ can be expressed by





x̃ = 2x−2x̄
l1

ỹ = 2y−2ȳ
l2

(4.62)

where x̄ and ȳ are x- and y-coordinates of the center point of the plate, respectively,

and l1 and l2 are lengths of the plate along x- and y-axes, respectively.

An increase of n in the polynomial fit in Eq. (4.56) can improve its level of

approximation of the resulting mode shape to that to be fit. To quantify the level

of approximation, a fitting index fit in percent, defined by

fit (n) =
RMS (z)

RMS (z) + RMS (e)
× 100% (4.63)

is used, where RMS (·) denotes the root-mean-square value of a vector and e is

the error vector between the mode shape to be fit and the corresponding one from

the current polynomial fit, i.e., e = Va∗ − z. When the fitting index is close to

100%, the mode shape from the current polynomial fit is almost identical to z; the

lower the fitting index, the lower the level of approximation of the mode shape from

the current polynomial fit. Fitting indices fit associated with Zd,23 for different n

are shown in Fig. 4.63(a). It can be seen in Fig. 4.63(b) that fit converges to a

certain value as n increases. To determine the proper order of a polynomial fit, a

convergence index con for the polynomial fit with n > 3 is defined based on fit,
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which can be expressed by

con (n) = fit (n)− fit (n− 2) (4.64)

Convergence indices con associated with Zd,23 for different n are shown in Fig.

4.63(c). It can be seen that when n is larger than a certain value, con starts to

decrease. When con is sufficiently small after its start of decrease, there is no

significant improvement in the level of approximation of the polynomial fit. To

determine a proper value of n, it is proposed that the value be the smallest one with

which con is smaller than a prescribed threshold value. In this work, the prescribed

threshold value for con is 0.50%. Hence, the proper value of n associated with

Zd,23 is determined to be 15, with which con = 0.42%, as shown in Fig. 4.63(d).

Maximum-CDIs, Minimum-CDIs, Mean-CDIs and Gaussian-CDIs associated with

noise-free Zd,23 and the corresponding mode shape from the polynomial fit with

n = 15 are shown in Fig. 4.62(a) through (d), respectively. Similar to the CDIs

associated with noise-free Zd,23 and Zu,23 in Fig. 4.61, the damage can be identified

near regions with higher values of CDIs.
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Figure 4.63: (a) Fitting indices fit associated with Zd,23 for different n, (b) an

enlarged view of fit, (c) the convergence indices con associated with Zd,23 for different

n and (d) an enlarged view of con.

4.3.2.5 Denoising of CDIs

Use of CDIs to identify damage depends on calculation of CMSs, which are

usually subject to measurement noise that can fuzz existence of damage in the CDIs.

A suitable value of s in the scheme can alleviate adverse effects of measurement noise.

Since the noise level of a measured mode shape is usually unknown, one needs to

progressively test different values of s from smaller to larger ones until a proper one

is obtained, with which the existence of the damage becomes prominent in associated

CDIs. However, the process of seeking a proper value of s can be time-consuming
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and inefficient. Figures 4.64(a) and (b) show Maximum-CDIs associated with Zd,23

with measurement noise and the corresponding mode shape from the polynomial fit

with s = 0.002 m and 0.005 m in the scheme, respectively, but the damage cannot

be identified due to the measurement noise. When s = 0.015 m, the damage can be

identified near regions of higher values of Maximum-CDIs, as shown in Fig. 4.64(c).

To manifest the effects of damage on the proposed CDIs with a smaller s in the

scheme, a two-dimensional discrete weight function is applied to differences between

CMSs before calculating the CDIs. The weight function for a mesh with square

elements is expressed by

WMw
(k1, k2) = e

−4
[
( k1
Mw

)
2
+( k2

Mw
)
2]

(4.65)

where Mw is the scale of the weight function; k1 and k2 are integer coordinates

associated with x- and y-axes of the weight function, respectively, and k1, k2 ∈

[−Mw,Mw]. For a mesh with non-square elements, one can interpolate a mode

shape on a mesh with square elements so that the weight function can have equal

weights along x- and y-axes. An interpolation can also be conducted to obtain

a mode shape on a finer mesh with better spatial resolution in resulting CDIs.

Weighted CDIs δ̃Max, δ̃Min, δ̃Mean and δ̃Gaussian at a point p on a plate, based on the

CDIs in Eqs. (4.52) through (4.55), respectively, can be expressed by

δ̃Max (p) =

{
Mw∑

k1=−Mw

Mw∑

k2=−Mw

[(
κMax
Zd,j ,pk1,k2

− κMax
Zu,j ,pk1,k2

)
×WMw

(k1, k2)
]}2

(4.66)
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δ̃Min (p) =

{
Mw∑

k1=−Mw

Mw∑

k2=−Mw

[(
κMin
Zd,j ,pk1,k2

− κMin
Zu,j ,pk1,k2

)
×WMw

(k1, k2)
]}2

(4.67)

δ̃Mean (p) =

{
Mw∑

k1=−Mw

Mw∑

k2=−Mw

[(
HZd,j ,pk1,k2

−HZu,j ,pk1,k2

)
×WMw

(k1, k2)
]}2

(4.68)

δ̃Gaussian (p) =

{
Mw∑

k1=−Mw

Mw∑

k2=−Mw

[(
GZd,j ,pk1,k2

−GZu,j ,pk1,k2

)
×WMw

(k1, k2)
]}2

(4.69)

where pk1,k2 is a point with xy-coordinates (xp + k1∆d, yp + k2∆d), in which xp and

yp are x- and y-coordinates of p, respectively, and ∆d is the side length of an element

of the mesh. Applying the weight function with Mw = 7, weighted Maximum-CDIs

associated with Zd,23 and the corresponding mode shape from the polynomial fit

with s = 0.002 m, 0.005 m and 0.015 m in the scheme are shown in Fig. 4.64(d)

through (f), respectively. When s = 0.002 m, the damage cannot be identified in the

weighted Maximum-CDIs; however, when s = 0.005 m, the damage can be identified

near the region with higher values of Maximum-CDIs, and some disturbing regions

with relatively high values of Maximum-CDIs can also be observed. When s = 0.015

m, the damage can be identified with smaller disturbing regions with lower values

of CDIs.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.64: Maximum-CDIs associated with Zd,23 and the corresponding mode

shape from the polynomial fit with (a) s = 0.002 m, (b) s = 0.005 m and (c)

s = 0.015 m in the scheme; weighted Maximum-CDIs associated with Zd,23 and

the corresponding mode shape from the polynomial fit with (d) s = 0.002 m, (e)

s = 0.005 m and (f) s = 0.015 m in the scheme. The order of the polynomial fit is

n = 15, and the scale of the weight function is Mw = 7.
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4.3.2.6 Applicability and Robustness of the Method

The applicability and robustness of the proposed method for identifying dam-

age using a mode shape associated with a low elastic mode are numerically inves-

tigated here; use of the mode shape on a coarse measurement grid and that of the

weight function for the mode shape with high and low signal-to-noise ratios are also

discussed. Undamped mode shapes of the damaged and undamaged plates associ-

ated with their second elastic modes are calculated and denoted by Zd,2 and Zu,2,

respectively; Zd,2 and Zu,2 are in the same phase, and they are normalized so that

their maximum absolute values are equal to one, as shown in Fig. 4.65(a) and (b),

respectively. The MAC value in percent between Zd,2 and Zu,2 is 99.9998%, which

indicates that they are almost identical to each other and validates the assumption

on the existence of relatively small damage again. Fitting indices and convergence

indices associated with Zd,2 are shown in Figs. 4.66, and the proper value of n

associated with Zd,2 is determined to be 8. The mode shape from the polynomial

fit with n = 8, denoted by Zp,2, is shown in Fig. 4.65(c); the MAC value in percent

between Zd,2 and Zp,2 is almost 100%.
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(a) (b)

(c) (d)

(e)

Figure 4.65: (a) Mode shape Zd,2 of the damaged plate, (b) Zu,2 of the undamaged

plate, (c) Zp,2 from a polynomial that fits Zd,2 in (a) with n = 8, (d) Zu,2 of the

damaged plate on a coarse measurement grid and (e) Zp,2 from a polynomial that

fits Zd,2 in (d) with n = 8.
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Figure 4.66: (a) Fitting indices fit associated with Zd,2 for different n, (b) an enlarged

view of fit, (c) the convergence indices con associated with Zd,2 for different n and

(d) an enlarged view of con.

Maximum-CDIs, Minimum-CDIs, Mean-CDIs and Gaussian-CDIs associated

with noise-free Zd,2 and Zu,2 with s = 0.002 m in the scheme are shown in Figs.

4.67(a) through (d), respectively. The damage can be identified near regions with

consistently higher values of the Maximum-CDIs, Minimum-CDIs and Mean-CDIs.

Relatively high values of the Gaussian-CDIs can be observed beyond the damage,

near its edges. Maximum-CDIs, Minimum-CDIs, Mean-CDIs and Gaussian-CDIs

associated with noise-free Zd,2 and the corresponding mode shape from the poly-

nomial fit are shown in Figs. 4.68(a) through (d), respectively, based on which

observations similar to those associated with noise-free Zd,2 and Zu,2 in Fig. 4.67
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can be made, and the damage can also be clearly identified. White noise is then

added to Zd,2 with a signal-to-noise ratio of 60 db to simulate measurement noise.

Maximum-CDIs, Minimum-CDIs, Mean-CDIs and Gaussian-CDIs associated with

Zd,2 and the corresponding mode shape from the polynomial fit with s = 0.015

m in the scheme are shown in Figs. 4.69(a) through (d), respectively; the exis-

tence of the damage is fuzzed in the CDIs due to the measurement noise. Weighted

Maximum-CDIs, Minimum-CDIs, Mean-CDIs and Gaussian-CDIs associated with

Zd,2 and the corresponding mode shape from the polynomial fit are shown in Figs.

4.70(a) through (d), respectively, with s = 0.015 m in the scheme and Mw = 7 in

the weight function. Note that s = 0.015 m is used here to alleviate adverse effects

of the measurement noise on calculating the CDIs, while s = 0.002 m can be used

to calculate the CDIs associated with noise-free Zd,2. While the weight function has

been applied, the weighted Gaussian-CDIs cannot be used to identify the damage

due to the measurement noise. Similar to the results associated with noise-free Zd,2

in Fig. 4.68, the damage can be identified in regions with consistently higher val-

ues of the weighted Maximum-CDIs, Minimum-CDIs and Mean-CDIs. While some

regions formed by higher values of the CDIs due to the measurement noise can be

observed beyond the damage, they do not consistently occur in the weighted CDIs

and would not be identified as damage. However, the damage cannot be identi-

fied in the weighted Gaussian-CDIs possibly because they are less sensitive to the

damage and less robust against measurement noise, compared with the other three

weighted CDIs. A possible worse case is that more than one CDI associated with a

mode shape are less sensitive to the damage and/or less robust against measurement
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noise, and one may not identify the damage based on the CDIs. In this case, use

of CDIs associated with other mode shapes may be necessary for one to confirm

existence of damage, since there does not exist a mode shape that can be used to

identify all possible damage and so do not its associated CDIs.

(a) (b)

(c) (d)

Figure 4.67: (a) Maximum-CDIs, (b) Minimum-CDIs, (c) Mean-CDIs and (d)

Gaussian-CDIs associated with noise-free Zd,2 and Zu,2; s = 0.002 m in the scheme.
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(a) (b)

(c) (d)

Figure 4.68: (a) Maximum-CDIs, (b) Minimum-CDIs, (c) Mean-CDIs and (d)

Gaussian-CDIs associated with noise-free Zd,2 and the corresponding mode shape

from the polynomial fit with n = 8; s = 0.002 m in the scheme.
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(a) (b)

(c) (d)

Figure 4.69: (a) Maximum-CDIs, (b) Minimum-CDIs, (c) Mean-CDIs and (d)

Gaussian-CDIs associated with Zd,2 and the corresponding mode shape from the

polynomial fit with n = 8; s = 0.015 m in the scheme.
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(a) (b)

(c) (d)

Figure 4.70: (a) Weighted Maximum-CDIs, (b) weighted Minimum-CDIs, (c)

weighted Mean-CDIs and (d) weighted Gaussian-CDIs associated with Zd,2 and the

corresponding mode shape from the polynomial fit with n = 8; s = 0.015 m in the

scheme and Mw = 7 in the weight function.

Another finite element model of the damaged plate in Fig. 4.56(a) is con-

structed with a dense measurement grid; the model has a total of 240× 320 square

plate elements. A mode shape Zd,2 from the finite element model is presented on a

coarse measurement grid with a total of 31 × 41 points, as shown in Fig. 4.65(d).

The proper value of n associated with Zd,2 on the coarse grid is determined to be 8,
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and the mode shape from the polynomial fit with n = 8, denoted by Zp,2, is shown

in Fig. 4.65(e). Maximum-CDIs, Minimum-CDIs, Mean-CDIs and Gaussian-CDIs

associated with noise-free Zd,2 on the coarse grid and the corresponding mode shape

from the polynomial fit with s = 0.002 m in the scheme are shown in Figs. 4.71(a)

through (d), respectively. Similar to the results associated with Zd,2 on the dense

grid in Fig. 4.68, the damage can also be clearly identified from the CDIs in Fig.

4.71.
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(a) (b)

(c) (d)

Figure 4.71: (a) Maximum-CDIs, (b) Minimum-CDIs, (c) Mean-CDIs and (d)

Gaussian-CDIs associated with noise-free Zd,2 on the coarse measurement grid and

the corresponding mode shape from the polynomial fit with n = 8; s = 0.002 m in

the scheme.

White noise is then added to Zd,2 on the coarse grid with a signal-to-noise ratio

of 60 db to simulate measurement noise. Maximum-CDIs, Minimum-CDIs, Mean-

CDIs and Gaussian-CDIs associated with the mode shape and the corresponding

mode shape from the polynomial fit with s = 0.015 m in the scheme are shown in

Figs. 4.72(a) through (d), respectively. Similar to Fig. 4.69, the existence of the
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damage is fuzzed in the CDIs due to the measurement noise. Associated weighted

Maximum-CDIs, Minimum-CDIs, Mean-CDIs and Gaussian-CDIs with s = 0.015

m in the scheme and Mw = 7 in the weight function are shown in Figs. 4.73(a)

through (d), respectively, where the damage cannot be identified. When white noise

is added to Zd,2 on the coarse grid with an increased signal-to-noise ratio of 75 db,

the damage still cannot be identified in its Maximum-CDIs, Minimum-CDIs, Mean-

CDIs and Gaussian-CDIs with s = 0.015 m in the scheme, as shown in Figs. 4.74(a)

through (d), respectively. However, the damage can be identified in associated

weighted Maximum-CDIs, Minimum-CDIs and Mean-CDIs with s = 0.015 m in the

scheme and Mw = 7 in the weight function, as shown in Figs. 4.75(a) through (c),

respectively, which is similar to the case of Zd,2 on the dense grid with a signal-to-

noise ratio of 60 db.
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(a) (b)

(c) (d)

Figure 4.72: (a) Maximum-CDIs, (b) Minimum-CDIs, (c) Mean-CDIs and (d)

Gaussian-CDIs associated with Zd,2 with a signal-to-noise ratio of 60 db on the

coarse measurement grid and the corresponding mode shape from the polynomial

fit with n = 8; s = 0.015 m in the scheme.
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(a) (b)

(c) (d)

Figure 4.73: (a) Weighted Maximum-CDIs, (b) weighted Minimum-CDIs, (c)

weighted Mean-CDIs and (d) weighted Gaussian-CDIs associated with Zd,2 with

a signal-to-noise ratio of 60 db on the coarse measurement grid and the correspond-

ing mode shape from the polynomial fit with n = 8; s = 0.015 m in the scheme and

Mw = 7 in the weight function.
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(a) (b)

(c) (d)

Figure 4.74: (a) Maximum-CDIs, (b) Minimum-CDIs, (c) Mean-CDIs and (d)

Gaussian-CDIs associated with Zd,2 with a signal-to-noise ratio of 75 db on the

coarse measurement grid and the corresponding mode shape from the polynomial

fit with n = 8; s = 0.015 m in the scheme.
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(a) (b)

(c) (d)

Figure 4.75: (a) Weighted Maximum-CDIs, (b) weighted Minimum-CDIs, (c)

weighted Mean-CDIs and (d) weighted Gaussian-CDIs associated with Zd,2 with

a signal-to-noise ratio of 75 db on the coarse measurement grid and the correspond-

ing mode shape from the polynomial fit with n = 8; s = 0.015 m in the scheme and

Mw = 7 in the weight function.

CDIs in Eqs. (4.52) through (4.55) consist of differences between CMSs of

damaged and undamaged plates. Use of the weight function in Eqs. (4.66) through

(4.69) at a point is equivalent to calculation of weighted sums of the differences

within a region centered around the point. The size of the region is determined
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by the density of a measurement grid and Mw in the weight function. The smaller

the density, the larger the region; the larger the weight Mw, the larger the region.

Due to the use of the weight function, differences between the CMSs at a point and

its neighboring points are attenuated in resulting weighted CDIs. Note that the

differences to be attenuated consist of measurement noise and differences between

CMSs associated with the corresponding noise-free mode shape of the damaged and

undamaged plates. For a mode shape with a certain signal-to-noise ratio and certain

Mw, the smaller the density of the measurement grid, the larger the differences to

be attenuated, and damage may become unidentifiable in resulting weighted CDIs

when the differences are too large; it can be verified by comparing Figs. 4.69 and

4.73, where the signal-to-noise ratios of Zd,2 are 60 db and Mw = 7. Since the

density of the measurement grid in the former is large enough, the damage can be

identified, but it cannot be in the latter due to the relatively small density of the

measurement grid. For a mode shape on a measurement grid with a certain density

and certain Mw, the higher the signal-to-noise ratio of the mode shape, the smaller

the differences to be attenuated, and damage might become identifiable in resulting

weighted CDIs when the differences are small; it can be verified by comparing Figs.

4.73 and 4.75, where densities of the measurement grids are the same and Mw = 7.

Since the signal-to-noise ratio of Zd,2 in the latter is high enough, the damage can

be identified, but it cannot be in the former due to the low signal-to-noise ratio of

Zd,2.

The proposed damage identification method is applicable and robust to mode

shapes associated with low and high elastic modes on dense and coarse measurement
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grids. One can infer that use of a coarse measurement grid can lead to a lower

spatial resolution in resulting CDIs and the smallest size of identifiable damage

would be larger. For a mode shape with relatively large measurement noise, i.e., a

mode shape with a relatively low signal-to-noise ratio, use of a dense measurement

grid is recommended so that effects of the measurement noise can be alleviated

and the existence of damage can be manifested in weighted CDIs. In practice,

one can increase the signal-to-noise ratio of a mode shape by increasing accuracy

of measurement and/or increasing the level of excitation, and damage can still be

identifiable even when a relatively coarse measurement grid is used in this case. The

method can be applied to some real structures with curved surfaces, such as wind

turbine blades.

4.3.3 Experimental Investigation

4.3.3.1 Experimental Setup

A damaged aluminum plate that had a length of 500.00 mm, a width of 400.00

mm and a thickness of 4.75 mm was constructed; its dimensions are shown in Fig.

4.76(a). The plate was hung using two nylon cords to simulate free boundary con-

ditions, as shown in Fig. 4.76(b). The damage was a machined thickness reduction

area, which had a length of 40.00 mm, a width of 40.00 mm and a depth of 0.5

mm; the depth was about 10% of the thickness of the undamaged portion of the

plate, as shown in Fig. 4.76(c). In order to validate the simulated free boundary

conditions of the plate, an experimental modal analysis was performed on it, where
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a PCB 086-D80 miniature impact hammer and a Polytec PSV-500 scanning laser

Doppler vibrometer system were used to excite the plate and measure its response

(Fig. 4.76(b)), respectively. In the experimental modal analysis, a fixed excitation

point was impacted using the hammer, and the response of a measurement point

was measured to yield five FRFs, which were averaged and analyzed using PolyMax

of LMS Test.Lab Rev.9b to obtain natural frequencies of the plate. The lowest mea-

sured elastic natural frequency of the plate was 76.5 Hz. Since the highest measured

natural frequency of rigid body modes of the plate in the setup was 2.1 Hz, which

was much smaller than 10% of the lowest measured elastic natural frequency, the

free boundary conditions were validated [1]. A rectangular measurement area of the

opposite surface of the plate to the damaged one was used for mode shape mea-

surement; it had a length of 395.9 mm and a width of 488.1 mm, as shown in Fig.

4.76(d). The rectangular area is slightly smaller than that of the plate in that there

were two holes drilled on two top corners of the plate for hanging and clearances

between edges of the plate and the rectangular area were reserved to prevent the

laser of the scanning laser Doppler vibrometer system from reaching the two holes.

The measurement area was sprayed with spot checker to enhance laser reflection

that directly determined signal-to-noise ratios of laser measurements.
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(a) (b)

(c) (d)

(e)

Figure 4.76: (a) Dimensions of the damaged plate, (b) the test setup for response

measurements of the measurement surface, (c) the damaged surface of the plate,

(d) the measurement grid on the measurement surface and (e) the electric speaker

facing the damaged surface. Note that SLDV stands for scanning laser Doppler

vibrometer in (b).
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In order to accurately measure mode shapes of the damaged plate without

incurring unwanted mass loading, non-contact excitation and measurements were

performed [114], as shown in Figs. 4.76(b) and (e): an electric speaker with a wood

box faced the damaged surface of the plate and generated acoustic excitation onto it,

and the scanning laser Doppler vibrometer system measured velocities of measure-

ment points in the measurement area. There were totally 115 × 177 measurement

points in a measurement grid on the area, whose elements were rectangular and had

a length of 3.44 mm and a width of 2.76 mm, as shown in Fig. 4.76(d). Acoustic

excitation in the form of a sine wave with a constant magnitude and frequency was

used to excite the plate, and the velocities of the measurement points were mea-

sured using the “FastScan” mode of the scanning laser Doppler vibrometer system.

In the “FastScan” mode, a laser spot from the scanning laser Doppler vibrometer

system stays at a measurement point on a structure to measure its response for a

user-defined number of periods of the sine wave and then moves to the next mea-

surement point. The duration for the laser spot to stay at one measurement point

depends on the number of periods of the sine wave and sampling frequency of the

system, and it can be as short as a ten-thousandth of a second. Due to this feature,

a steady-state vibration shape of the structure under sinusoidal excitation can be

measured in a point-by-point, but automatic and rapid, manner. In this measure-

ment, the excitation signal given to the speaker was used for a reference signal, with

which a vibration shape with a correct phase at each measurement point can be

obtained [103]. The mode shape of the plate at the natural frequency of 1349 Hz,

denoted by Zexp, was measured with an excitation frequency of 1349 Hz to experi-
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mentally investigate the effectiveness of the proposed method; the duration for the

laser spot to stay at each measurement point was about 0.06 s. In order to trans-

form the current measurement grid to one with square elements and increase spatial

resolution of CDIs, Zexp was interpolated using the Matlab function “griddata” with

the option “natural” on a measurement grid with 199 × 245 measurement points,

as shown in Fig. 4.77(a), which has square elements with a side length of 1.99 mm.

For simplicity, the interpolated Zexp is denoted by Zexp herein.
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(a) (b)

(c)

Figure 4.77: (a) Interpolated measured mode shape Zexp of the damaged plate at

the natural frequency of 1349 Hz, (b) the mode shape from the polynomial that fits

Zexp with n = 15 and (c) the mode shape associated with the same mode as that of

Zexp from a finite element model of the damaged plate.

4.3.3.2 CMS and Damage Identification Results

Maximum, minimum, mean and Gaussian CMSs associated with Zexp from

the scheme with s = 0.002 m, s = 0.005 m and s = 0.015 m are shown in Figs. 4.78

through 4.80, respectively. In Fig. 4.78, global trends of the four CMSs associated
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with Zexp from the scheme with s = 0.002 m could be observed with severe noise

caused by measurement noise. When s = 0.005 m, the scheme yielded CMSs with

much lower noise levels and their global trends became clearer than those from the

scheme with s = 0.002 m, as shown in Fig. 4.79. When s = 0.015 m, associated

CMSs were of the best qualities compared with those from the scheme with s = 0.002

m and 0.005 m. Adverse effects of measurement noise were mostly eliminated with

a larger value of s.

(a) (b)

(c) (d)

Figure 4.78: (a) Maximum, (b) minimum, (c) mean and (d) Gaussian CMSs asso-

ciated with Zexp from the scheme with s = 0.002 m.
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(a) (b)

(c) (d)

Figure 4.79: (a) Maximum, (b) minimum, (c) mean and (d) Gaussian CMSs asso-

ciated with Zexp from the scheme with s = 0.005 m.
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(a) (b)

(c) (d)

Figure 4.80: (a) Maximum, (b) minimum, (c) mean and (d) Gaussian CMSs asso-

ciated with Zexp from the scheme with s = 0.015 m.

To determine the proper order of a polynomial to fit Zexp, fit associated with

Zexp for different n were calculated, as shown in Fig. 4.81(a). Similar to the numer-

ical example in Sec. 2.4, fit converged to a certain value as n increased, as shown

in Fig. 4.81(b). Associated con for different n were calculated, as shown in Fig.

4.81(c). The proper order of the polynomial to fit Zexp was determined to be 15,

since con = 0.35%, which was lower than the prescribed threshold value for con,

as shown in Fig. 4.81(d). The mode shape from the polynomial fit with n = 15 is
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shown in Fig. 4.77(b), and the MAC value associated with the mode shape from

the polynomial fit and Zexp was 99.99%.
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Figure 4.81: (a) Fitting indices fit associated with Zexp for different n , (b) an

enlarged view of fit, (c) the convergence indices con associated with Zexp for different

n and (d) an enlarged view of con.

Maximum-CDIs, Minimum-CDIs, Mean-CDIs and Gaussian-CDIs associated

with Zexp and the corresponding mode shape from the polynomial fit with s = 0.002

m, 0.005 m and 0.015 m in the scheme are shown in Figs. 4.82 through 4.84,

respectively. In Fig. 4.82, the damage could not be identified from the four CDIs.

The reason was that the associated CMSs were noisy since effects of measurement

noise were amplified, and those of the damage on the CMSs were fussed. When s

increased to 0.005 m in the scheme, ridges and regions that were formed by higher
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values of the CDIs in the neighborhood of and beyond the damage could be observed,

as shown in Fig. 4.83. However, one could not identify the damage based on the

CDIs due to the ridges and regions beyond the damage. When s = 0.015 m, ridges

and regions similar to those in Fig. 4.83(a), (b) and (c) could still be observed in the

Maximum-CDIs, Minimum-CDIs and Mean-CDIs, as shown in Fig. 4.84(a), (b) and

(c), respectively. The difference is that higher values of the CDIs could be observed

in the neighborhood of the damage when s = 0.015 m. In 4.84(d), higher values of

the CDIs could be observed in the neighborhood of the damage; some higher values

of the CDIs could also be observed in some regions beyond the damage. By use of

the four CDIs in Fig. 4.84, one can identify the damage in regions with consistently

higher values of the CDIs.
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(a) (b)

(c) (d)

Figure 4.82: (a) Maximum-CDIs, (b) Minimum-CDIs, (c) Mean-CDIs and (d)

Gaussian-CDIs associated with Zexp and the corresponding mode shape from the

polynomial fit with n = 15; s = 0.002 m in the scheme.
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(a) (b)

(c) (d)

Figure 4.83: (a) Maximum-CDIs, (b) Minimum-CDIs, (c) Mean-CDIs and (d)

Gaussian-CDIs associated with Zexp and the corresponding mode shape from the

polynomial fit with n = 15; s = 0.005 m in the scheme.
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(a) (b)

(c) (d)

Figure 4.84: (a) Maximum-CDIs, (b) Mininum-CDIs, (c) Mean-CDIs and (d)

Gaussian-CDIs associated with Zexp and the corresponding mode shape from the

polynomial fit with n = 15; s = 0.015 m in the scheme.

To alleviate adverse effects of measurement noise on the CDIs, the weight

function in Eq. (4.65) with Mw = 7 was applied to the CDIs in Figs. 4.82 through

4.84, based on Eqs. (4.66) through (4.69), and resulting weighted CDIs are shown

in Figs. 4.85 through 4.87, respectively. When s = 0.002 m, relatively high values

could be observed in the weighted Maximum-CDIs, Minimum-CDIs and Gaussian-

CDIs in the neighborhood of and beyond the damage, and one could not identify the
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damage based on the three CDIs; higher values of the weighted Mean-CDIs could

be identified in the neighborhood of the damage. When s = 0.005 m and 0.015

m, one could clearly identify the damage in neighborhoods of consistently higher

values of weighted CDIs, as shown in Figs. 4.86 and 4.87, respectively. CDIs in Fig.

4.87 were less noisy than those in Fig. 4.86; consistently higher values of CDIs were

mainly in the neighborhood of the damage in Fig. 4.87. Comparing CDIs with the

same value of s in the scheme, one could see that use of the weight function could

denoise the CDIs and manifest the damage with a smaller value of s.
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(a) (b)

(c) (d)

Figure 4.85: (a) Weighted Maximum-CDIs, (b) weighted Minimum-CDIs, (c)

weighted Mean-CDIs and (d) weighted Gaussian-CDIs associated with Zexp and

the corresponding mode shape from the polynomial fit with n = 15; s = 0.002 m in

the scheme and Mw = 7 in the weight function.
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(a) (b)

(c) (d)

Figure 4.86: (a) Weighted Maximum-CDIs, (b) weighted Minimum-CDIs, (c)

weighted Mean-CDIs and (d) weighted Gaussian-CDIs associated with Zexp and

the corresponding mode shape from the polynomial fit with n = 15; s = 0.005 m in

the scheme and Mw = 7 in the weight function.
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(a) (b)

(c) (d)

Figure 4.87: (a) Weighted Maximum-CDIs, (b) weighted Minimum-CDIs, (c)

weighted Mean-CDIs and (d) weighted Gaussian-CDIs associated with Zexp and

the corresponding mode shape from the polynomial fit with n = 15; s = 0.015 m in

the scheme and Mw = 7 in the weight function.

A finite element model of the damaged plate was constructed, and a noise-free

undamped mode shape associated with the same mode as that of Zexp was calculated

and denoted by Znum, as shown in Fig. 4.77(c). Maximum-CDIs, Minimum-CDIs,

Mean-CDIs and Gaussian-CDIs associated with Znum and the corresponding mode

shape from the polynomial fit with s = 0.015 m in the scheme are shown in Figs.
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4.88(a) through (d), respectively; weighted Maximum-CDIs, Minimum-CDIs, Mean-

CDIs and Gaussian-CDIs associated with Znum and the corresponding mode shape

from the polynomial fit with s = 0.015 m in the scheme and Mw = 7 in the weight

function are shown in Figs. 4.89(a) through (d), respectively. Similar to the ex-

perimental damage identification results in Figs. 4.84 and 4.87, consistently higher

values of the CDIs and weighted CDIs associated with Znum occur in the neighbor-

hood of the damage, and they resemble those associated with Zexp, which verifies the

experimental damage identification results. The CDIs associated with Znum and the

corresponding mode shape from the polynomial fit resemble the associated weighted

CDIs, as shown in Figs. 4.88 and 4.89, respectively, which indicates that use of the

weight function does not affect damage identification results when a mode shape is

noise-free. Effectiveness of using the weight function in alleviating adverse effects of

measurement noise on the CDIs and manifesting existence of damage in the CDIs

can be verified by comparing the CDIs associated with Znum in Fig. 4.88 with the

weighted CDIs associated with Zexp in Fig. 4.87, since the latter, which have lower

noise levels than the CDIs associated with Zexp in Fig. 4.84, resemble the former.
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(a) (b)

(c) (d)

Figure 4.88: (a) Maximum-CDIs, (b) Mininum-CDIs, (c) Mean-CDIs and (d)

Gaussian-CDIs associated with Znum and the corresponding mode shape from the

polynomial fit with n = 15; s = 0.015 m in the scheme.
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(a) (b)

(c) (d)

Figure 4.89: (a) Weighted Maximum-CDIs, (b) weighted Minimum-CDIs, (c)

weighted Mean-CDIs and (d) weighted Gaussian-CDIs associated with Znum and

the corresponding mode shape from the polynomial fit with n = 15; s = 0.015 m in

the scheme and Mw = 7 in the weight function.

4.3.4 Conclusion

A new non-model-based plate damage identification method based on princi-

pal, mean and Gaussian CMSs is proposed. It can be applied to a damaged plate

without use of any a priori information of the associated undamaged one, if the un-
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damaged plate is geometrically smooth and made of materials that have no stiffness

and mass discontinuities. A multi-scale differential-geometry scheme is proposed to

calculate the CMSs associated with a mode shape. The advantage of the scheme is

that adverse effects of measurement noise could be alleviated with use of a larger

value of the scale parameter. Differences between the aforementioned CMSs of a

damaged plate and those associated with a mode shape from a polynomial that

fits the corresponding mode shape of the damaged plate are processed to yield four

CDIs. Based on the fitting index, a mode shape from a polynomial that fits the

corresponding mode shape of a damaged plate would have a higher level of approx-

imation as the order of the polynomial increases. A threshold value is used for the

convergence index, based on which the order of the polynomial can be properly

determined. CMSs associated with a mode shape from a polynomial of a properly

determined order can be used to eliminate global trends of CMSs associated with

the corresponding mode shape of a damaged plate. Use of a weight function can

alleviate effects of measurement noise on the CDIs and shorten the process of pro-

gressively testing different values of the scale parameter. The proposed method is

applicable and robust to mode shapes associated with low and high elastic modes; it

is recommended that one increase the signal-to-noise ratio of a mode shape and use

a dense measurement grid to alleviate effects of measurement noise. The proposed

method was experimentally applied to a plate with damage in the form of a ma-

chined thickness reduction area. The damage was successfully identified by locating

consistently higher values of the CDIs. A larger value of the scale parameter in the

scheme can manifest existence of damage in the CDIs; use of the weight function can
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manifest existence of damage even with a small value of the scale parameter in the

scheme. The experimental damage identification results were numerically verified

by applying the proposed method to the mode shape associated with the same mode

as that of the measured mode shape from a finite element model of the damaged

plate.
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Chapter 5

STRUCTURAL IDENTIFICATION USING FREE RESPONSE

SHAPES

5.1 Introduction

Vibration-based damage detection has become a major research topic of struc-

tural dynamics in the past few decades [85]. Changes of physical properties of

a structure, such as mass, stiffness and damping, are directly related to those of

modal properties of the structure, i.e., natural frequencies, mode shapes MSs and

modal damping ratios [1]. Damage that exist in a structure can be detected, lo-

cated and characterized by use of modal characteristics. Methods that use changes

of natural frequencies due to damage have been investigated by many researchers.

They require a minimum amount of vibration measurement and can accurately de-

tect damage, since natural frequencies are global characteristics of a structure and

relatively easy to measure [126, 127, 82, 83, 115, 116]. However, spatial informa-

tion of structural property changes due to occurrence of damage cannot be directly

obtained by use of natural frequencies, and one needs to construct accurate, physics-

based models in order to apply the methods [126, 127, 82, 83, 115, 116], which can

be difficult to achieve in practice, especially for complex large-scale structures. Since

occurrence of damage can introduce local abnormalities in MSs near damage regions
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[84], unlike use of natural frequencies, the damage can be identified by inspecting

smoothness of MSs without necessity of constructing models of structures. Being

more sensitive to damage of small extent than MSs, CMSs are more often used to

locate damage [86]. Effects of damage in a beam structure can be observed as sev-

erer local abnormalities in its CMSs than in MSs, and one can isolate the effects by

comparing a CMS of the damaged beam structure with that of an undamaged one.

It was shown that relatively large differences between a CMS of a damaged beam

structure and that of an undamaged one mainly occur near a region of damage and

the differences increase as severity of damage increases [86]. A gapped-smoothing

method was proposed in Refs. [87, 88] to locate damage in beam structures by use

of CMSs and curvatures of ODSs, where those of undamaged beam structures are

not needed. The gapped-smoothing method and a global fitting method were then

synthesized to locate damage in beam structures [89, 90], where measured MSs and

ODSs of damaged beam structures were fitted by generic MSs to approximate MSs

of undamaged ones, and the method was further extended for plate structures [106].

CMS-based and wavelet-transform-based methods were proposed in Ref. [9] to iden-

tify embedded horizontal cracks in beam structures, where global trends of CMSs

and wavelet transforms were eliminated by use MSs from polynomials that fit MSs

of cracked beam structures with properly determined orders in a global manner.

A laser Doppler vibrometer (LDV) system is capable of accurate, non-contact

surface vibration measurement; its mechanism is based on Doppler shifts between

the incident light from and scattered light to the system [10]. An advantage of the

system is that unwanted local stiffening and mass loading effects can be avoided,
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while use of attached transducers inevitably incurs such effects that can deteriorate

accuracy of measurement, especially for lightweight structures. When equipped with

a scanner that consists of a pair of orthogonal scan mirrors, a LDV becomes a scan-

ning LDV. The laser beam from a scanning LDV can be directed to any visible

position on a structure, and LDV measurement in an automatic manner can be

achieved with a properly designed control scheme. However, it can take a relatively

long acquisition time for a scanning LDV system to measure a large-scale struc-

ture with a dense measurement grid. The concept of a continuously scanning LDV

(CSLDV) system was first proposed in Refs. [128, 129]. A CSLDV system contin-

uously sweeps its laser over a surface of a structure under sinusoidal excitation to

obtain its ODSs, which can be approximated by Chebysev series with coefficients

determined by processing velocities measured by the system. Two CSLDV measure-

ment methods were later proposed to obtain ODSs of a structure under sinusoidal

excitation: demodulation and polynomial methods [130, 131]. In the demodulation

method, velocities measured by a CSLDV system is modulated by multiplying a si-

nusoid at an excitation frequency, and a low-pass filter is applied to the modulated

signal to obtain an ODS associated with the excitation frequency. In the polynomial

method, it is assumed that an ODS can be represented by a polynomial, and coef-

ficients of the polynomial can be determined by use of discrete Fourier transforms

of measured velocities by a CSLDV system. The two methods were extended for

structures under impact and multi-sine excitation in Refs. [132] and [133], respec-

tively. A “lifting” method was proposed to obtain MSs from measured free response

of a structure, where measured velocities by a CSLDV system are treated as out-
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put of linear time-periodic systems [134]. The “lifting” method was extended to

output-only modal analysis to identify modal characteristics of a structure with use

of harmonic transfer functions [135]. Use of a CSLDV system for damage identifica-

tion was first proposed in Ref. [136], where the demodulation method was used to

obtain ODSs of various structures by scanning their cracked surfaces, and effects of

cracks could be observed as local abnormalities in obtained ODSs. The demodula-

tion and polynomial methods were synthesized to identify damage in beams, where

damage can be identified by use of a CSLDV system that scans intact surfaces of

damaged beam structures [137].

In this section, a new type of vibration shapes called a free response shape

(FRS) that can be obtained by use of a CSLDV system is introduced. An ana-

lytical expression of FRSs of a damped beam structure is derived. It is shown in

the analytical expression that amplitudes of FRSs exponentially decay to zero with

time. Numbers of non-zero FRSs associated with a mode can be determined by use

of the short-time Fourier transform (STFT) of free response of the structure mea-

sured by a CSLDV system. A finite element model of a damped beam structure is

constructed, and a CSLDV system is simulated to measure its free response. FRSs

associated with the structure are obtained from the response maesured by the sim-

ulated CSLDV system from the demodulation method, and they are compared with

those from the analytical expression. A new damage identification methodology that

uses FRSs is proposed for beam structures. A free-response damage index (FRDI)

is defined, which consists of differences between curvatures of FRSs obtained by use

of a CSLDV system and those from polynomials that fit the FRSs, and damage
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regions can be identified near neighborhoods with consistently high values of FRDIs

associated with different modes; an auxiliary FRDI is proposed to assist identifica-

tion of the neighborhoods. A criterion based on a convergence index is proposed to

determine orders of the polynomial fits. Effectiveness of the methodology for iden-

tifying damage in beam structures is numerically and experimentally investigated,

and effects of the scan frequency of a CSLDV system on qualities of obtained FRSs

were experimentally investigated.

5.2 Methodology

5.2.1 Free Response of a Damped Beam Structure

A linear time-invariant Euler-Bernoulli beam structure with a uniform cross-

section is considered. The structure has a length L, a bending stiffness EI and a

linear mass density m. It is viscously damped, and damping effects are modeled

using the Kelvin-Voigt viscoelastic model with a damping coefficient c [54, 35].

Excitation in the form of a single impulse with an intensity G0 is applied to the

structure at position x = L0 at time t = 0. Response of the structure can be

obtained by solving its governing partial differential equation

EI

[
∂4y (x, t)

∂x4
+ c

∂

∂t

(
∂4y (x, t)

∂x4

)]
+m

∂2y (x, t)

∂t2
= G0δ (x− L0) δ (t) (5.1)

with given boundary and initial conditions, where y (x, t) is the displacement of the

structure at position x at time t. Based on the expansion theorem [54], a solution
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to Eq. (5.1) can be expressed by

y (x, t) =
∞∑

h=1

Yh (x)Fh (t) (5.2)

where Yh (x) is the eigenfunction of the h-th mode of the corresponding undamped

structure and ηh (t) is the corresponding time function. The eigenfunction Yh (x)

can be expressed by

Yh (x) = C1 sin βhx+ C2 cos βhx+ C3 sinh βhx+ C4 cosh βhx (5.3)

where C1, C2, C3, C4 and βh are determined by the boundary conditions and the

orthonormality condition of eigenfunctions

∫ L

0

mYh (x) Yj (x) dx = δh,j (5.4)

in which δh,j is the Kronecker delta. The time function Fh (t) can be obtained by

solving an ordinary differential equation

F̈h (t) + c (2πfh)
2 Ḟh (t) + (2πfh)

2 Fh (t) = G0Yh (L0) δ (t) (5.5)

with initial conditions Fh (0) and Ḟh (0) determined by those of Eq. (5.1), where fh

is the natural frequency of the undamped structure in Hz associated with its h-th

mode. A relation between βh and fh can be expressed by

β4
h =

(2πfh)
2m

EI
(5.6)

The solution to Eq. (5.5) can be expressed by [138]
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Fh (t) = e−2πζhfht
[
Fh (0) cos (2πfh,dt) +

(
Ḟh(0)+2πζhfhF (0)

2πfh,d
+ G0Yh(L0)

2πfh,d

)
sin (2πfh,dt)

]

= Ahe
−2πζhfht cos (2πfh,dt− γh)

(5.7)

where

Ah =

√√√√(Fh (0))
2 +

[
Ḟh (0) + 2πζhfhF (0)

2πfh,d
+
G0Yh (L0)

2πfh,d

]2
(5.8)

is an amplitude constant and

γh = arctan2

(
Ḟh (0) + 2πζhfhF (0)

2πfh,d
+
G0Yh (L0)

2πfh,d
, Fh (0)

)
(5.9)

is a phase angle;

ζh = cπfh (5.10)

and

fh,d = fh

√
1− ζ2h (5.11)

are the damping ratio and damped natural frequency of the structure associated

with its h-th mode, respectively. Based on Eqs. (5.2) and (5.7), y (x, t) can be

expressed by

y (x, t) =
∞∑

h=1

AhYh (x) e
−2πζhfht cos (2πfh,dt− γh) (5.12)
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5.2.2 FRS

A FRS associated with the h-th mode of the beam structure can be defined

by

φh (x, t) = AhYh (x) e
−2πζhfht (5.13)

and Eq. (5.12) becomes

y (x, t) =
∞∑

h=1

φh (x, t) cos (2πfh,dt− γh) (5.14)

It can be seen that Yh, which can be considered as a MS associated with the h-th

mode, exists in the definition of a FRS in Eq. (5.13). A similarity between Yh

and φh is that they both correspond to the same mode of the structure. Since a

MS describes amplitude ratios of displacement, velocity or acceleration at different

positions on the structure while it vibrates, the multiplication factor of the MS can

be an arbitrarily chosen non-zero constant, and the MS can be considered time-

invariant. However, φh differs from Yh due to two extra terms in Eq. (5.13), i.e.,

Ah and e−2πfhξht. The coefficient Ah is determined by the initial conditions of and

impulse to the structure, and e−2πfhξht indicates that amplitudes of φh at different

positions exponentially decay to zero with time. Hence, Ah cannot be arbitrarily

chosen, and φh is time-varying.

A CSLDV system continuously sweeps its laser spot over a vibrating structure

surface with a specific scan pattern. It can measure response of a measurement

point, where its laser spot is located during a scan, and a finite number of modes of
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a structure are included in free response measured by a CSLDV system. Let x̃ (t)

be the position of a laser spot on a beam structure at time t; free response of the

strucure measured by the CSLDV system with a straight scan line along its length

can be expressed by

ỹ (t) =

n∑

h=1

φ̃h (x̃ (t)) η̃h (t) (5.15)

where n is the number of measured modes, and φ̃h and η̃h are the FRS and time

function associated with the h-th mode measured by the system, respectively. The

FRS φ̃h in Eq. (5.15) can be defined in a way similar to φh in Eq. (5.13):

φ̃h (t) = AhYh (x̃ (t)) e
−2πfhζht (5.16)

A major difference between φh in Eq. (5.13) and φ̃h is that x in the former becomes

x̃ in the latter, which is a function of t and is unique in a scan of the system. Similar

to φh, φ̃h contains both Ah and e−2πfhζht, and it is time-varying. The time function

η̃h can be expressed by

η̃h (t) = cos (2πfht− αh − θh) (5.17)

where αh is the difference between a phase determined by the initial conditions and

impulse associated with the h-th mode and that by a mirror feedback signal, and θh

is a phase variable that controls amplitudes of in-phase and quadrature components

of φ̃h, which can be expressed by
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φ̃I,h = φ̃h cos (αh + θh) (5.18)

and

φ̃Q,h = φ̃h sin (αh + θh) (5.19)

respectively [137].

5.2.3 Demodulation Method for FRSs

The demodulation method has been proposed to obtain ODSs of a structure

under sinusoidal excitation [131], where its steady-state response measured by a

CSLDV system are analyzed. FRSs of a linear damped beam structure measured

by a CSLDV system, as described by φ̃h in Eq. (5.16), can also be obtained from the

demodulation method by analyzing its free response of half-scan periods measured

by the system, and each obtained φ̃h corresponds to a mode in a half-scan period.

A half-scan period starts when the laser spot of the system arrives at one end of a

scan line, and it ends when the laser spot arrives at the other end. Hence, multiple

φ̃h can be obtained from free response of the structure measured by the system in

one scan. To identify the start and end of a half-scan period, one can refer to mirror

feedback signals of a CSLDV system and determine instants when its laser spot

arrives at ends of a scan line.

Application of the demodulation method for obtaining φ̃h associated with the

h-th mode in a half-scan period measured by a CSLDV system is described below.
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Based on Eqs. (5.15) through (5.19), a half-scan period of free response of the

structure that is measured by a CSLDV system can be expressed by

ỹ (t) =
n∑
h=1

φ̃h (x̃ (t)) cos (2πfht− αh − θh)

=
n∑
h=1

[
φ̃I,h (x̃ (t)) cos (2πfht) + φ̃Q,h (x̃ (t)) (x, t) sin (2πfht)

] (5.20)

The response ỹ (t) is then multiplied by cos (2πfkt) and sin (2πfkt), which gives

ỹ (t) cos (2πfkt) = φ̃I,k (x̃ (t)) cos (2πfkt) cos (2πfkt) + φ̃Q,k (x̃ (t)) sin (2πfkt) cos (2πfkt)+

n∑
h=1,h 6=k

φ̃h (x̃ (t)) η̃h (t) cos (2πfkt)

= 1
2
φ̃I,k (x̃ (t)) +

1
2
φ̃I,k (x̃ (t)) cos (4πfkt) +

1
2
φ̃Q,k (x̃ (t)) sin (4πfkt) +

n∑
h=1,h 6=k

φ̃h (x̃ (t)) η̃h (t) cos (2πfkt)

(5.21)

and

ỹ (t) sin (2πfkt) = φ̃Q,k (x̃ (t)) cos (2πfkt) sin (2πfkt) + φ̃Q,k (x̃ (t)) sin (2πfkt) sin (2πfkt) +

n∑
h=1,h 6=k

φ̃h (x̃ (t)) η̃h (t) sin (2πfkt)

= 1
2
φ̃Q,k (x̃ (t))− 1

2
φ̃Q,k (x̃ (t)) cos (4πfkt) +

1
2
φ̃I,k (x̃ (t)) sin (4πfkt)+

n∑
h=1,h 6=k

φ̃h (x̃ (t)) η̃h (t) sin (2πfkt)

(5.22)

respectively. A low-pass filter is then applied to ỹ (t) cos (2πfkt) and ỹ (t) sin (2πfkt)

in Eqs. (5.21) and (5.22) to obtain 1
2
φ̃I,k and 1

2
φ̃Q,k, respectively, and the second

and third terms on the third lines and terms on the fourth lines of Eqs. (5.21)
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and (5.22) are removed. Further, φ̃I,k and φ̃Q,k can be obtained by multiplying

the corresponding filtered signals by two. The value of θh in Eq. (5.20) can be

optimized so that φ̃I,h and φ̃Q,h attain their maximum and minimum amplitudes,

respectively. In what follows, all FRSs are represented by their in-phase components

with maximum amplitudes.

5.2.4 FRDI

It is shown in Sec. 2.2 that a FRS corresponds to a mode of a beam structure,

and its amplitude is time-varying and exponentially decays to zero with time. In

order to obtain non-zero FRSs from the demodulation method, one needs to deter-

mine natural frequencies of the structure and instants when amplitudes of the FRSs

decay to zero. While the natural frequencies can be determined by use of the fast

Fourier transform of ỹ (t), the instants can be determined by use of the STFT of

ỹ (t) [139], denoted by Ṽw (t, f), which can be expressed by

Ṽw (t, f) =

∫ ∞

−∞

ỹ (τ) g∗s (τ − t) e−2πjfτdτ (5.23)

where gs is a window function with a scale s, the superscript ∗ denotes complex

conjugation, and j =
√
−1. The scale s determines the width of gs in the time

domain, which should be smaller than that of a half-scan period. When Ṽw at the

natural frequency associated with the h-th mode becomes almost zero at an instant

th,0, the amplitude of φ̃h is considered to be zero. Multiple non-zero φ̃h can be

obtained using Ṽw of the first Nh half-scan periods, where Nh is an integer that can
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be defined as

argmax
Nh

NhTh
2

6 th,0 − t1 (5.24)

in which T is the length of a scan period and t1 is the instant when the first half-scan

period starts. In this section, Ṽw (t, f) is visualized by use of a spectrogram whose

intensity denotes the power spectral density associated with Ṽw (t, f) in Eq. (5.23),

where gs is a Hamming function that can be expressed by

gs (t) =





0.54− 0.46 cos
(
2πt
s

)
, 0 6 t 6 s

0 , otherwise

(5.25)

A CMS Y ′′
h is the second-order spatial derivative of Yh, where a prime denotes

first-order spatial differentiation with respect to x. A curvature FRS φ̃′′
h can be

defined as

φ̃′′
h (x̃ (t)) =

∂2φ̃h
∂x̃2

= AhY
′′
h (x̃ (t)) e−2πfhζht (5.26)

Since Y ′′
h is related to bending stiffness of a beam structure that can decrease due to

occurrence of damage and regions of the decrease correspond to damage regions, it

can be used for damage identification [86], and so can φ̃′′
h, since it explicitly contains

Y ′′
h as shown in Eq. (5.26).

Since a MS of an undamaged beam structure can be well approximated by that

from a polynomial that fits a MS of a damaged beam structure [9], it can be inferred

that a FRS of an undamaged structure can also be well approximated by that from

a polynomial that fits a FRS of a damaged structure. A damage index similar to

343



that in Ref. [9] can be defined by comparing φ̃′′
h of a damaged beam structure and

that from a polynomial that fits φ̃h with a properly determined order, which can be

expressed by

δh (x̃) =

Nd∑

i=1

[
φ̃′′
h,i (x̃)− φ̃p′′h,i (x̃)

]2
(5.27)

where Nd is the number of FRSs to be included in the index with Nd ≤ Nh, φ̃h,i

is a FRS associated with the h-th mode in the i-th half-scan period, and φ̃ph,i is a

FRS from a polynomial that fits φ̃h,i with a properly determined order. The index

δh (x̃) in Eq. (5.27) is termed as a free-response damage index (FRDI) at x̃. Since

there can be FRSs associated with multiple modes corresponding to ỹ measured by a

CSLDV system in one scan, FRDIs associated with multiple modes can be obtained

using measurement by a CSLDV system in one scan, and damage regions can be

identified near neighborhoods with consistently high values of FRDIs associated

with different modes. Note that use of δh associated with rigid-body modes should

be excluded in damage identification as curvatures of their FRSs are zero, and one

should use δh associated with elastic modes in damage identification. An auxiliary

FRDI associated with the FRDI in Eq. (5.27) can be defined to assist identification

of the neighborhoods, which can be expressed by

δa (x̃) =
H∑

h=1

δ̂h (x̃) (5.28)

where H is the number of FRDIs to be included in the auxiliary index and δ̂h (x̃)

is a normalized FRDI associated with the h-th mode with the maximum amplitude

344



of one. Since border distortions occur in curvature ODSs associated with ODSs

obtained from the demodulation method [137], similar distortions would also occur

in curvature FRSs associated with FRSs obtained from the demodulation method.

Hence, regions containing such distortions are excluded in presenting δh (x̃) and

δa (x̃) and in normalization of δh (x̃) in δa (x̃). Neighborhoods with consistently high

values of the FRDIs associated with the H modes can be identified in those with

high values of the auxiliary FRDI.

A polynomial that fits φ̃h,i with an order r can be expressed by

φ̃ph,i (x̃) =

r∑

q=0

aqx̃
q (5.29)

where aq are coefficients of the polynomial that can be obtained by solving a linear

equation

Ua = Φ̃ (5.30)

in which U is an M × (r + 1) Vandermonde matrix with M being the number of

measurement points of φ̃h,i:

U =




1 x̃1 x̃21 · · · x̃r1

1 x̃2 x̃22 · · · x̃r2

...
...

...
. . .

...

1 x̃M x̃2M · · · x̃rM




(5.31)

a =

[
a0 a1 . . . ar

]T
is an (r + 1)-dimensional coefficient vector, and Φ̃ is the
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FRS vector of the structure to be fit. To avoid ill-conditioning of U, it is proposed

that x̃ in Eq. (5.29) be normalized using the “center and scale” technique [113]

before formulation of the linear equation in Eq. (5.29). Normalized coordinates x̂

can be expressed by

x̂ =
2x̃− 2x̄

l
(5.32)

where x̄ is the x-coordinate of the center point of a scan line and l is its length.

As pointed out in Ref. [9], an increase of r in the polynomial in Eq. (5.29) can

improve the level of approximation of φ̃ph,i to φ̃h,i. To determine the proper order of

the polynomial fit, a convergence index can be defined:

con (r) =
RMS

(
Φ̃
)

RMS
(
Φ̃
)
+ RMS (e)

× 100% (5.33)

where RMS (·) denotes the root-mean-square value of a vector and e = Ua − Φ̃ is

an error vector. When the convergence index is close to 100%, φph,i converges to

φh,i; the lower the index, the lower the level of convergence of φph,i to φh,i. It is

proposed in this section that the proper value of r be two plus the least value of r

with which con (r) is above 95%. Two is added here in order to preserve smoothness

of a curvature FRS from the polynomial fit, since calculation of a curvature incurs

second-order differentiation that reduces the order of a polynomial by two.
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5.3 Numerical Investigation

5.3.1 FRSs from Analytical and FE Models

Based on Eq. (5.1), the analytical model of an undamaged aluminum cantilever

beam structure with L = 0.8 m, E = 68.9 GPa, m = 0.2700 kg/m and c = 8×10−7 s

is formulated; the structure has a uniform square cross-section with a side length

of 0.01 m. The structure has fixed and free ends at x = 0 and x = L, respectively,

and it has zero initial conditions. A single impulse with an intensity of 0.01 N · s is

applied to the free end of the structure. A corresponding FE model of the structure

under the same initial conditions and excitation is constructed using ABAQUS with

16384 two-node linear beam (B21) elements for comparison purposes, where the

damping in the analytical model can be equivalently modeled using the Rayleigh

damping [54]. The formulation of the FE model can be expressed by

Mz̈ (t) +Cż (t) +Kz (t) = f (t) (5.34)

with initial conditions z (0) = 0 and ż (0) = 0, where M, C and K are mass,

damping and stiffness matrices, respectively, in which C = αM+βK with Rayleigh

damping coefficients α = 0 and β = c, i.e., C = cK, and z and f are displacement

and force vectors, respectively. Table 5.1 compares damped natural frequencies of

the first five modes of the structure from its analytical and FE models, and the

largest difference between the damped natural frequencies from the two models is

0.61 %. Note that differences between the natural frequencies of the two models
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arise due to use of the B21 elements and they can be greatly reduced if two-node

cubic beam (B22) elements were used. Mass-normalized MSs of the first five modes

from the analytical and FE models compare well, as shown in Fig. 5.1.

Table 5.1: Comparison between damped natural frequencies of the cantilever beam

structure from its analytical and FE models.

Mode Analytical Frequency (Hz) FE Frequency (Hz) Difference (%)

1 12.75 12.75 0.01

2 79.91 79.84 0.09

3 223.74 223.28 0.21

4 438.44 436.77 0.38

5 724.77 720.38 0.61
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Figure 5.1: Mass-normalized MSs of the cantilever beam structure associated with

its first five modes from its analytical and FE models.

Response of the beam structure is then measured by a simulated CSLDV sys-

tem with a scan period of T = 2 s and a sampling frequency of 16384 Hz; the

348



simulated CSLDV system is capable of measuring response in the form of displace-

ment. The position of its laser spot is shown in Fig. 5.2(a); the first half-scan period

starts at t = 0.0625 s, and measured response of the structure from the analytical

and FE models in the first half-scan period, second half-scan period and first eight

seconds are shown in Figs. 5.2(b) through (d), respectively. Spectrograms of the

response from the analytical and FE models in the first eight seconds are shown in

Figs. 5.3(a) and (b), respectively, and they compare well with each other. It can be

seen from Figs. 5.3(a) and (b) that STFTs at the first and second natural frequen-

cies of the structure do not decay much in the first eight seconds, while those at the

third through fifth natural frequencies decay more. More importantly, the STFTs

associated with the fifth natural frequency of the structure drastically decay within

the first second of the CSLDV measurement. As a result, FRSs associated with the

fifth elastic mode cannot be obtained in this scan. Hence, only FRSs associated

with the first four elastic modes can be obtained from the response.
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Figure 5.2: (a) Position of the laser spot of a simulated CSLDV system on the beam

structure, (b) response from its analytical and FE models measured by the simulated

CSLDV system in the first half-scan period, (c) response from its analytical and FE

models measured by the simulated CSLDV system in the second half-scan period

and (d) response from its analytical and FE models measured by the simulated

CSLDV system in the first eight second.
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(a) (b)

Figure 5.3: Spectrograms of the response of the beam structure from its (a) analyt-

ical and (b) FE models measured by the simulated CSLDV system shown in Fig.

5.2(d).

Based on Eq. (5.16), FRSs from the analytical model associated with the first

four modes of the beam structure in the first three half-scan periods of the simulated

CSLDV system are shown in Figs. 5.4(a) through (d), respectively. FRSs from the

FE model obtained by use of the simulated CSLDV system, which are obtained from

the demodulation method, are shown in Fig. 5.5. It can be seen from Figs. 5.4

and 5.5 that the FRSs from the analytical and FE models are in good agreement.

Amplitudes of the FRSs associated with the fourth mode of the structure in the

second and third half-scan periods drastically decrease to almost zero due to the

damping; the FRS in the first half-scan period is included in δh (x̃) associated with

the fourth mode for damage identification that follows.
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Figure 5.4: FRSs of the beam structure from its analytical model associated with

its (a) first, (b) second, (c) third and (d) fourth modes in the first three half-scan

periods of the simulated CSLDV system.
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Figure 5.5: FRSs of the beam structure from its FE model associated with its (a)

first, (b) second, (c) third and (d) fourth modes obtained by use of the simulated

CSLDV system in the first three half-scan periods.

5.3.2 Damage Identification Using FRDIs

Since fidelity of the FE model of the undamaged cantilever beam structure

has been validated in Sec. 3.1, the FE model can be adapted to model such a beam

structure with damage in the form of thickness reduction to numerically investigate

the proposed damage identification methodology. The thickness of the section of

the structure between x = 6
16
L and x = 7

16
L is reduced by 10 %, while its E and
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volume mass density remain unchanged. Table 5.2 compares natural frequencies of

the first five modes of the damaged and undamaged structures from the FE models,

and the largest difference is 1.27%. Response of the damaged structure from its FE

model is measured by the simulated CSLDV system with the same settings as those

in Sec. 3.1, and it is used to obtain FRSs of the damaged structure associated with

the first four modes in the first three half-scan periods, as shown in Fig. 5.6.

Table 5.2: Comparison between damped natural frequencies of the damaged and

undamaged cantilever beam structures from their FE models.

Mode Damaged Frequency (Hz) Undamaged Frequency (Hz) Difference (%)

1 12.64 12.75 -0.88

2 79.04 79.84 -1.00

3 222.03 223.28 -0.56

4 434.80 436.77 -0.45

5 711.23 720.38 -1.27
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Figure 5.6: FRSs from the FE model of the damaged beam structure obtained by

use of the simulated CSLDV system associated with the (a) first, (b) second, (c)

third and (d) fourth modes in the first three half-scan periods.

Convergence indices con corresponding to the FRSs associated with the first

through fourth modes of the damaged beam structure are shown in Figs. 5.7 through

5.10, respectively. Proper orders of polynomials that fit the FRSs associated with

the first mode in the first through third half-scan periods are determined to be 4, 4

and 4, respectively; those associated with the second mode are determined to be 6,

6 and 6, respectively; those associated with the third mode are determined to be 7,
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7 and 7, respectively; and that associated with the fourth mode is determined to be

9.
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Figure 5.7: Convergence indices con corresponding to the FRSs associated with the

first mode in the (a) first, (b) second and (c) third half-scan periods.
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Figure 5.8: Convergence indices con corresponding to the FRSs associated with the

second mode in the (a) first, (b) second and (c) third half-scan periods.
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Figure 5.9: Convergence indices con corresponding to the FRSs associated with the

third mode in the (a) first, (b) second and (c) third half-scan periods.
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Figure 5.10: Convergence index con corresponding to the FRS associated with the

fourth mode in the first half-scan period.
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FRDIs in Eq. (5.27) associated with the first through fourth modes are shown

in Figs. 5.11(a) through (d), respectively, and the auxiliary FRDI in Eq. (5.28) is

shown in Fig. 5.11(e). Note that numbers of FRSs included in the FRDIs associated

with the first through fourth modes are 3, 3, 3 and 1, respectively. The damage can

be clearly identified near neighborhoods with consistently high values of the FRDIs

and that with high values of the auxiliary FRDI.
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Figure 5.11: FRDIs associated with the (a) first, (b) second, (c) third and (d) fourth

modes of the damaged beam structure, and (e) the auxiliary FRDI associated with

the four modes. Locations of damage ends are indicated by two vertical dashed

lines.

360



5.4 Experimental Investigation

5.4.1 CSLDV System

A CSLDV system shown in Fig. 5.12 is developed in this section. It consists of

a Cambridge 6240H scanner, a Polytec OFV-353 single-point laser vibrometer and

a dSPACE MicroLabBox controller board that controls a pair of orthogonal scan

mirrors of the scanner termed as X and Y mirrors; the control software ControlDesk

Next Generation is used to design and implement a control scheme for the system.

The mirrors are connected to two independent stepper motors in the scanner. Input

signals to each stepper motor directly control rotation angles of the mirrors, and

different scan patterns of the laser spot can be created. In the control scheme, trian-

gular and constant input signals are given to the X and Y mirrors here, respectively,

and the laser spot is continuously swept along the length of a beam structure. It can

be assumed that the resultant velocity of the laser spot on the structure is constant

along a scan line, when the system is sufficiently far away from the structure and the

rotation angle amplitude is sufficiently small. A triggering sub-scheme is embedded

in the control scheme using a toolbox of the control software called Signal Editor.

Starts of continuous scanning and measurement of the CSLDV system are triggered,

when it registers a voltage with an absolute value higher than a prescribed threshold

via the laser vibrometer.
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Figure 5.12: A CSLDV system developed in this work.

An experiment was set up to obtain FRSs of a damaged aluminum cantilever

beam structure using the CSLDV system for damage identification. A schematic

diagram that shows the experimental setup and dimensions of the structure is shown

in Fig. 5.13(a). The undamaged portion of the structure had a thickness of 6.35

mm, and there was a region of machined thickness reduction of 1.27 mm on one side

of the structure along its length, as shown in Figs. 5.13(a) and (b). The damage was

selected in this form in order to show that its region can be accurately identified by

the proposed methodology. The thickness reduction is about 20% of the thickness of

the undamaged portion; its location and length are shown in Fig. 5.13(a). A bench

vice was used to clamp the left end of the structure to simulate a fixed boundary.

A straight scan line was assigned on the intact side of the structure along its length

as shown in Fig. 5.13(a) and (c). A strip of retroreflective tape was attached on the

intact side to enhance laser reflection that directly determined signal-to-noise ratios

of measurement by the CSLDV system. The scan line was non-dimensionalized to
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range from 0% to 100%, where 0% and 100% represented left and right ends of the

scan line, respectively. The damage was located between 45.71% and 51.43% on the

scan line. The experimental setup is shown in Figs. 5.13(a), (c) and (d), where the

CSLDV system was used to measure free response of the structure along the scan

line. In this section, the sampling frequency of the system was 250, 000 Hz, and the

threshold for triggering was 0.1 V. The laser spot of the system stayed at 80% on the

scan line before its starts of continuous scanning and measurement were triggered,

and continuous scanning started by sweeping the laser spot towards 100% on the

scan line.
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(a) (b)

(c) (d)

Figure 5.13: (a) Schematic diagram of the test setup and dimensions of a damaged

aluminum cantilever beam structure with a region of machined thickness reduction,

(b) the region of machined thickness reduction, (c) the structure with its left end

clamped by a bench vice and (d) the experimental setup for FRS measurement of

the structure.

An impact test was first conducted on the beam structure in Fig. 5.13 to

measure its first five natural frequencies; a PCB 086E80 pen-sized impact hammer

and the single-point laser Doppler vibrometer in Fig. 5.12 were used to excite the

structure at an impact point and measure its response at a measurement point,
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respectively. Both the impact and measurement points on the structure were arbi-

trarily selected as long as they did not coincide with nodal points of its first five

modes. The first five natural frequencies of the structure were measured to be 22.07

Hz, 135.74 Hz, 393.36 Hz, 746.48 Hz and 1261.07 Hz.

Velocity response of the beam structure in Fig. 5.13 under two forms of exci-

tation were measured by the CSLDV system with different scan frequencies. One

is initial non-zero bending deformation of the structure along its length under a

transverse concentrated force at its free end, with zero initial velocity, for damage

identification using FRDIs associated with low modes of the structure; the other

is an impact on the structure with zero initial conditions for damage identification

using FRDIs associated with its high modes. The impact point was on the damaged

side of the structure, and the distance between the impact point and fixed end of

the structure was 80 mm. FRSs of the structure associated with its first five modes

were obtained from the demodulation method using velocity response measured by

the CSLDV system with different scan frequencies of 0.1 Hz, 1.0 Hz and 10.0 Hz.

Effects of the scan frequency of the CSLDV system on obtained FRSs and damage

identification results were investigated. As measurement noise exists in obtained

FRSs and its adverse effects can be amplified in calculating associated curvature

FRSs, a numerical smoothing technique was applied to alleviate the adverse effects

before calculating the curvature FRSs, which is local regression using weighted linear

least squares and a second-order polynomial model [140]. In the smoothing tech-

nique, weighted quadratic least squares are calculated at each measurement point

within an interval that consists of a certain number of its neighboring points, which
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was 15% of the total number of measurement points in this investigation. It is the

width of the interval that determines how good the technique is in smoothing an

obtained FRS. One should be cautious about choosing the width, as the technique

can smooth out effects of damage in a curvature FRS and compromise effectiveness

of the proposed damage identification methodology if a chosen width is too large,

though the method can still alleviate adverse effects of measurement noise on the

curvature FRS. Unfortunately, a general guideline for choosing an optimal width

of the interval for damage identification does not exist, as existence of damage and

quality of an obtained FRS are usually unknown in practice. Hence, one should

test different widths of the interval from small to large ones and compare resulting

FRDIs associated with different modes. If signal-to-noise ratios of FRS measure-

ments are adequately high, it would be adverse effects of measurement noise on

curvature FRSs that are first smoothed out by the technique, and effects of damage

would be preserved in the curvature FRSs and observed in resulting FRDIs. In

this case, damage can be clearly identified in neighborhoods with consistently high

values of the FRDIs in Eq. (5.27) and in those with high values of the auxiliary

FRDI in Eq. (5.28).

5.4.2 FRS Measurement and Damage Identification Results

Velocity response of the beam structure under the initial non-zero bending

deformation was measured by the CSLDV system with a scan frequency of 0.1 Hz.

The measured response and X-mirror feedback signal are shown in Figs. 5.14(a)
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and (b), respectively, and a spectrogram of the response is shown in Fig. 5.14(c). It

can be seen from Fig. 5.14(c) that STFTs at the second through fifth modes of the

structure drastically decayed in less than one second after the scan started. Since

the length of a half-scan period in this scan is five seconds, FRSs associated with

the second through fifth modes could not be obtained by the system with the scan

frequency, while those associated with the first mode could be. FRSs associated with

the first mode in the first three half-scan periods are shown in Fig. 5.15. Similar

to those in the numerical investigation, amplitudes of the FRSs decreased from one

half-scan period to the next.
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Figure 5.14: (a) Velocity response of the beam structure under the initial non-zero

bending deformation measured by the CSLDV system with a scan frequency of

0.1 Hz, (b) the X-mirror feedback signal with a triangular input signal and (c) a

spectrogram of the response in (a).
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Figure 5.15: Obtained FRSs associated with the first mode in the first three half-

scan periods of the CSLDV system with a scan frequency of 0.1 Hz.

Velocity response of the beam structure under the impact was measured by

the CSLDV system with a scan frequency of 1.0 Hz. The measured response and

X-mirror feedback signal are shown in Figs. 5.16(a) and (b), respectively, and a

spectrogram of the response is shown in Fig. 5.16(c). It can be seen from Fig. 5.16(c)

that STFTs at the second through fifth natural frequencies of the beam drastically

decayed in the first three, two, one and half seconds of the scan, respectively. FRSs

associated with the fifth natural frequency of the structure could not be obtained,

since the length of a half-scan period in this case is 0.5 s and the first half scan

ended at t = 0.6 s. FRSs associated with the first through fourth modes in the first

three half-scan periods are shown in Fig. 5.15(a) through (d), respectively.
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Figure 5.16: (a) Velocity response of the beam structure under the impact measured

by the CSLDV system with a scan frequency of 1.0 Hz, (b) the X-mirror feedback

signal with a triangular input signal and (c) a spectrogram of the response in (a).
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Figure 5.17: Obtained FRSs associated with the (a) first, (b) second, (c) third and

(d) fourth modes in the first three half-scan periods of the CSLDV system with a

scan frequency of 1.0 Hz.

Velocity response of the beam structure under the impact was then measured

by the CSLDV system with a scan frequency of 10.0 Hz. The measured response

and X-mirror feedback signal are shown in Figs. 5.18(a) and (b), respectively, and

a spectrogram of the response are shown in Fig. 5.18(c). It can be seen from

Fig. 5.18(c) that STFTs at the second through fifth natural frequencies of the

structure drastically decayed in the first three, two, one and half seconds of the
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scan, respectively. FRSs associated with the first through fourth modes in the first

three half-scan periods are shown in Figs. 5.19(a) through (e), respectively. A

critical observation can be made by comparing Figs. 5.16(a) and 5.18(a) that the

measured response by the CSLDV system with a scan frequency of 1.0 Hz had a

higher signal-to-noise ratio than that by the system with a scan frequency of 10.0

Hz, as the former seemed to be dominated by measurement noise after t = 9 s and

the latter after t = 1.5 s. Since the structure was under the same impact in the

measurement, the theory that speckle noise in measurement by a CSLDV system,

which directly results in a lower signal-to-noise ratio in its measurement and lower-

quality MSs, increases with its scan frequency [141, 142] was validated.
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Figure 5.18: (a) Velocity response of the beam structure under the impact measured

by the CSLDV system with a scan frequency of 10.0 Hz, (b) the X-mirror feedback

signal with a triangular input signal and (c) a sprectrogram of the response in (a).
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Figure 5.19: Obtained FRSs associated with the (a) first, (b) second, (c) third, (d)

fourth and (e) fifth modes in the first three half-scan periods of the CSLDV system

with a scan frequency of 10.0 Hz.
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Effects of the scan frequency on qualities of FRSs of the beam structure can

be seen by comparing FRSs of the structure associated with its first through fourth

modes obtained by use of the CSLDV system with different scan frequencies, as

shown in Figs. 5.15, 5.17 and 5.19. For the FRSs associated with the first mode,

their qualities were the best when a low scan frequency of 0.1 Hz was used, and

their qualities became worse when the CSLDV system had a higher scan frequency.

Similar observations can be made for the FRSs associated with the second and

third modes, since their qualities when the scan frequency was 1.0 Hz were better

than those when the scan frequency was 10.0 Hz. One can conclude that effects of

the scan frequency on qualities of FRSs are similar to those on qualities of MSs:

increasing the scan frequency of a CSLDV system can lower qualities of obtained

FRSs. Hence, it is recommended that a low scan frequency be used to measure

response of a structure for obtaining its FRSs at a low natural frequency, as long

as the scan period corresponding to the scan frequency of a CSLDV system is large

enough for it to measure the response of at least one half-scan period at the natural

frequency. FRDIs in Eq. (5.27) associated with the first five modes of the structure

were calculated and shown in Fig. 5.20(a) through (e) using the FRSs obtained by

use of the CSLDV system with different scan frequencies in different numbers of

half-scan periods, and the associated auxiliary FRDI in Eq. (5.28) was calculated

and shown in Fig. 5.20(f). The damage can be clearly identified near neighborhoods

with consistently high values of the FRDIs and that with high values of the auxiliary

FRDI. Scan frequencies and numbers of half-scan periods associated with different

modes of the structure for calculating the FRDIs are listed in Table 5.3.
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Figure 5.20: FRDIs associated with the FRSs associated with the (a) first, (b) sec-

ond, (c) third, (d) fourth and (e) fifth modes, and (f) the auxiliary FRDI associated

with the five modes. Locations of damage ends are indicated by two vertical dashed

lines.
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Table 5.3: Scan frequencies and numbers of half-scan periods for calculating FRDIs

associated with the first five modes of the beam structure.

Mode 1 2 3 4 5

Scan frequency (Hz) 0.1 1.0 1.0 10.0 10.0

Number of half-scan periods 5 4 3 4 3

5.5 Conclusions

A new type of vibration shapes called a FRS is introduced in this section. A

FRS can be obtained by use of a CSLDV system, and it can be obtained from the

demodulation method using free response of a structure. An analytical expression

of a FRS is derived for a beam structure with damping that can be modeled by

the Kelvin-Voigt viscoelastic model. FRSs from the analytical expression compare

well with those from a FE model. A FRDI that uses differences between curvatures

of FRSs associated with a mode and those from polynomial fits is proposed, and

damage regions can be accurately identified near neighboorhoods with consistently

high values of FRDIs associated with different modes; an auxiliary FRDI can as-

sist identification of the neighborhoods. A polynomial fits a FRS of a damaged

beam structure whose order can be properly determined using a convergence index,

and a FRS from the polynomial fit can be considered to be that of an undamaged

beam structure, if the undamaged structure is geometrically smooth and made of

materials that have no stiffness and mass discontinuities. It was numerically and
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experimentally shown that amplitudes of FRSs decrease from one half-scan period

to the next, and spectrograms of response measured by a CSLDV system can be

used to determine instants before which non-zero FRSs can be obtained. Effects

of the scan frequency of a CSLDV system were experimentally investigated, and

it was observed that a lower scan frequency could yield higher-quality FRSs and

a higher scan frequency could yield lower-quality FRSs; it is recommended that a

low scan frequency be used for FRSs at a low natural frequency. The proposed

methodology was numerically and experimentally applied to damaged beam struc-

tures with machined thickness reductions along their lengths. Damage regions were

successfully identified near neighborhoods with consistently high values of FRDIs

associated with different modes and that with high values of the auxiliary FRDI.
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Chapter 6

SUMMARY

This dissertation presents new methods in modal analysis and structural dam-

age identification. Detailed theories behind the new methods have been presented.

The methods developed in this dissertation have been validated in numerical and/or

experimental investigations.

Chapter 2 presents two new modal analysis methods. A non-contact OMA test

method is presented to measure the out-of-plane and in-plane modes of a rectangular

plate using white noise acoustic excitation. It is shown that OMA can be performed

when types of measurement at the measurement points and the reference point

are different. In-plane modes of a plate can be identified by comparing out-of-

plane and mixed CPSDs. A VMT method is developed, where an impact hammer

roves over the test structure and sound pressure transducers at fixed locations are

used to measure its dynamic responses. The formulation of a structurally damped

structural-acoustic system in an open environment and the associated eigenvalue

problem are provided. The biorthonormality relations between the left and right

eigenvectors and the relations between the structural and acoustic components of

the left and right eigenvectors are proved. The FRFs used in the VMT method are

derived.

Chapter 3 presents new methods to accurately and efficiently calculate corre-
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lation functions, power spectra, FRFs, and IRFs. A methodology for calculating

cross-correlation functions of non-negative time delays and associated half spectra

is developed. Qualities of measured cross-correlation functions and associated cross-

power spectra can be evaluated using a coherence function, a convergence function

in the frequency domain, and a convergence index. Calculation time for one cross-

correlation function from the new methodology can be greatly reduced, compared

with that by directly applying its definition. A cross-correlation function from the

new methodology is in perfect accordance with that by directly applying its defini-

tion, and so is the associated cross-power spectrum. A methodology for calculating

discrete FRFs and IRFs is proposed. Excitation and response measurements in the

proposed methodology are similar to those in EMA using burst random excitation.

The methodology is computationally efficient, since matrix inversion can be avoided

and calculation time can be greatly shortened due to use of the FFT and IFFT. In

the methodology, fewer spectral lines are needed in calculation of associated DFTs,

and accuracies of resulting FRFs and IRFs from the proposed methodology can be

maintained, compared with those by directly applying the DFT to excitation and

response series, which need more spectral lines. The relationship between an IRF

from the proposed methodology and that from the LS method is shown.

Chapter 4 presents new methods to identify damage in beam and plate struc-

tures. Two new non-model-based methods are developed to identify embedded

horizontal cracks in beams without use of any a priori information of associated un-

damaged beams, if the beams are geometrically smooth and made of materials that

have no stiffness discontinuities. Differences between measured MSs of a damaged
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beam with an embedder horizontal crack and those from polynomials that fit the

MSs of the damaged beam are converted to CDIs and CWTDIs, which are used to

locate the crack tips. MSs from polynomials that fit the MSs of a damaged beam can

well approximate those of the associated undamaged beam. The methods are then

extended to plate structures. A new non-model-based plate damage identification

method using measured MSs is proposed. The method can be applied to a damaged

plate without use of MSs of the associated undamaged plate. Use of differences

between MSs of a damaged plate and those of an associated pseudo-undamaged

plate from polynomials that fit the MSs of the damaged plate is shown to be better

than that between MSs of a damaged plate and those of an associated undamaged

plate with respect to effectiveness of damage identification. A proper order of a

polynomial fit can be determined as proposed; a polynomial fit with an order lower

than the proper order for MSDIs cannot be used to identify damage and that with

an order reasonably higher than the proper order can be. A new non-model-based

plate damage identification method based on principal, mean and Gaussian CMSs

is proposed. A multi-scale differential-geometry scheme is proposed to calculate the

CMSs associated with a mode shape. The advantage of the scheme is that adverse

effects of measurement noise could be alleviated with use of a larger value of the

scale parameter. A larger value of the scale parameter in the scheme can manifest

existence of damage in the CDIs; use of the weight function can manifest existence

of damage even with a small value of the scale parameter in the scheme.

Chapter 5 presents a new type of vibration shapes called a FRS that can be

obtained by use of a CSLDV system is introduced. An analytical expression of
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FRSs of a damped beam structure is derived. It is shown in the analytical expres-

sion that amplitudes of FRSs exponentially decay to zero with time. Numbers of

non-zero FRSs associated with a mode can be determined by use of the STFT of

free response of the structure measured by a CSLDV system. A new damage iden-

tification methodology that uses FRSs is proposed for beam structures. A FRDI is

defined, which consists of differences between curvatures of FRSs obtained by use of

a CSLDV system and those from polynomials that fit the FRSs, and damage regions

can be identified near neighborhoods with consistently high values of FRDIs associ-

ated with different modes; an auxiliary FRDI is proposed to assist identification of

the neighborhoods.
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[95] M. Soĺıs, M. Algaba, P. Galv́ın, Continuous wavelet analysis of mode shapes
differences for damage detection, Mechanical Systems and Signal Processing
40 (2) (2013) 645–666.
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