
A Declarative Approach for Secure and Robust Routing

Palanivel Kodeswaran
University of Maryland,

Baltimore County
Baltimore MD 21250

palanik1@cs.umbc.edu

Anupam Joshi
University of Maryland,

Baltimore County
Baltimore MD 21250

joshi@cs.umbc.edu

Tim Finin
University of Maryland,

Baltimore County
Baltimore MD 21250

finin@cs.umbc.edu

Filip Perich
Shared Spectrum Company

Vienna, VA 22182
fperich@sharedspectrum.com

ABSTRACT
Many Internet failures are caused by misconfigurations of
the BGP routers that manage routing of traffic between do-
mains. The problems are usually due to a combination of
human errors and the lack of a high-level language for spec-
ifying routing policies that can be used to generate router
configurations. We describe an implemented approach that
uses a declarative language for specifying network-wide rout-
ing policies to automatically configure routers and show how
it can also be used by software agents to diagnose and cor-
rect some networking problems. The language is grounded
in an ontology defined in OWL and polices expressed in it
are automatically compiled into low-level router configura-
tions. A distributed collection of software agents use the
high-level policies and a custom argumentation protocol to
share and reason over information about routing failures,
diagnose probable causes, and correct them by reconfigur-
ing routers and/or recommending actions to human opera-
tors. We have evaluated the framework in both a simulator
and on a small physical network. Our results show that the
framework performs well in identifying failure causes and au-
tomatically correcting them by reconfiguring routers when
permitted by the policies.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network
Operations

General Terms
Management

Keywords
Policy, BGP Configuration, Argumentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SafeConfig’10,October 4, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0093-3/10/10 ...$10.00.

1. INTRODUCTION

Recent studies [16] have shown that human error has been
a major cause for a number of BGP related routing failures.
The absence of a high level language for modelling network
wide routing policies forces network operators to manually
configure BGP routers at low level details. The configura-
tions thereby generated do not always reflect the organiza-
tion’s routing policy in its entirety and also lack tool support
for verification. Clearly, there is a growing need within both
the operator and research communities for a high level lan-
guage to model and configure BGP routing policies. The
goal of these high level languages is to allow operators focus
on the policy decisions rather than on the low level imple-
mentation details. For example, we would like to be able to
automatically configure routers to implement the valley free
property [8] of BGP routing by merely stating the agreement
type between a pair of autonomous systems without having
to manually construct the associated export and import fil-
ters.

In this paper we describe an ontology based declarative
language for modelling and configuring BGP routing poli-
cies. Our language supports configuring export and import
filters as well as expressing route preferences. The frame-
work is based on a principled approach grounded in Seman-
tic Web languages that possess strong logical underpinnings.
Consequently, policies expressed in our language can be for-
mally reasoned over and corrected in the case of conflicts.
We build on top of our declarative framework and employ an
argumentation protocol in which neighboring routers argue
with each other in diagnosing and recovering from router
misconfigurations.

We differ from previous black box approaches in that we
pursue a white box approach in which we have visibility
into ISP policies expressed in our language. Previous ap-
proaches [4], on the other hand are ISP policy transparent
and resort to tomographic approaches for locating the cause
of the failure. Furthermore, in addition to locating the cause
of failures, we also try to recover from the failure by router
reconfigurations if so allowed by ISP policy. We envision
scenarios where ISP policies may prevent router reconfigu-
rations due to privacy and security concerns. In these cases,
we alert the network operator providing them with the lo-
cation and cause of the failure, thereby saving precious time
in diagnosing network failures.

This works makes two contributions: (i) an ontology-

based declarative language for expressing high-level policies
BGP routing that can be compiled into router configuration
commands and (2) the use of an argumentation protocol
that allows a distributed system of agents to diagnose and
recover from routing misconfigurations. In the remainder of
the paper we review related work, describe our declarative
language and argumentation protocol, present our prototype
implementation’s system architecture, discuss issues related
to its practical deployment and describe our evaluation.

2. RELATED WORK

Mahajan et al. present an elaborate discussion of the causes
and frequency of BGP misconfigurations in [16]. The au-
thors found that Internet connectivity was generally highly
resilient to misconfigurations with only 4% of the misconfig-
ured announcements affecting connectivity. They attribute
the misconfigurations to a variety of causes, such as hu-
man error, router bugs, route redistribution, and a lack of
transactional semantics for configuration commands. The
authors conclude by providing a list of recommendations
that could go a long way in reducing the incidence of mis-
configurations, including developing better user interfaces,
the use of high level declarative languages and configuration
checking, adding protocol extensions, and maintaining con-
sistency among the multiple databases used for configuring
BGP routers. Our work addresses the need for high level
declarative languages by proposing an ontology based lan-
guage for expressing routing policies that are automatically
compiled into low level configuration details.

There has been a great deal of work related to diagnos-
ing Internet routing failures from end hosts such as those
in [22, 15]. Dhamdhere et al. propose a network tomog-
raphy based algorithm for diagnosing and locating routing
failures at the autonomous system (AS) level in [4]. The au-
thors modified a well known network tomography algorithm
for the multiple AS problem and use it to locate link as
well as misconfiguration failures. The authors showed that
additional control plane information such as routing data
improved the accuracy of locating failures. Huang et al.
[11] consider the practical issues related to using network
tomography for fault diagnosis and find that tomography
approaches perform well in detecting failures that last over
five seconds. Our work can complement these approaches
by diagnosing the cause of the failure as well as correcting
misconfigurations where permitted by policy.

Feamster et al. in [6] address the foundational problems
associated with scalable policy based inter-domain routing.
The authors argue that while some of today’s Internet rout-
ing failures may occur due to BGP specifics, there are intrin-
sic problems that need to be addressed such as inter-domain
policy disputes, lack of control and data plane security as
well as issues arising from scalability such as prefix aggrega-
tion and AS abstractions. Zhu et al. [23] propose a feedback
based routing scheme to handle routing failures and attacks.
The basic idea is to separate structural information such as
topology from dynamic information such as latency, loss rate
etc. which are learned by the routers themselves by probing.
In their scheme, only the structural information is propa-
gated among routers where as routing decisions are made
by individual routers based on the collected dynamic infor-
mation. Mahajan et al. propose Negotiation Based Routing
(NBR) in [17]. The basic idea is for a pair of ISPs to use

opaque preference lists to negotiate and choose an optimal
inter-AS link for each flow when there are multiple links be-
tween the autonomous systems. They show that NBR based
routing is beneficial to both ISPs compared to selfish rout-
ing. Furthermore, the scheme is flexible to enable each ISP
to independently optimize for its own metric. The nature
of the negotiations further ensures that ISPs do not bene-
fit from cheating. Our work is similar in spirit in that it
involves negotiating with neighboring ASes.

There has been a recent interest in the development of
declarative languages for network management. Hinrichs et
al. [9] propose a generic declarative network management
framework that can be used for configuring many pieces of
network management such as ACLs, NATs, QoS etc. at a
single place. Their policy engine applies policy decisions at
the granularity of individual unidirectional flows. Their lan-
guage also has in built support for conflict detection and pol-
icy prioritization for conflict resolution. Performance results
from actual deployments showed that the policy based flow
management framework typically performed well in these
environments and promised good scalability. Voellmy et
al. propose Nettle, a domain specific embedded language
in Haskell for BGP configuration in [21]. They use the type
safety checks of the language to ensure that common config-
uration errors are avoided. RPSL [1] is used by ISPs to ex-
press their routing policies that are stored in Internet Rout-
ing Registries. Our work differs from these languages in that
they do not implicitly support reasoning.

3. ONTOLOGY BASED LANGUAGE

In this section, we present our ontology based declarative
language for expressing network wide routing policies. There
are several advantages to developing an ontology based lan-
guage for routing policies. The language is generic and can
be used to express the policies of different organizations.
The ontological approach naturally supports evolution and
new policies can be modeled as they became relevant to
the organization by updating the appropriate ontology. It
also naturally supports a hierarchical policy architecture in
which operators can write policies at various granularities
depending on their position in the organizational hierarchy.

At the top of the hierarchy, subsumption capabilities could
be used to write generic policies at a high level, while more
specific policies could be written at the lower levels of the
hierarchy. These policies can then be merged to create a final
policy that represents the routing policy of the organization
at all levels of the hierarchy. Furthermore, the logical basis of
the language automatically supports reasoning and conflict
resolution among policies.

As part of this work, we have developed an ontology using
the Semantic Web languages OWL [2] and RDF [14] for rep-
resenting routing policies and associated concepts. Our on-
tology models concepts such as nodes, autonomous systems
and routes as well as properties and relations like neigh-
bors and network prefix. We also model the three differ-
ent deontic types of policy rules or constraints – permissive,
obligatory and prohibitive. These policies typically influ-
ence whether route updates are accepted, shared or denied.
We support policies that prefer routes from one AS over the
other.

Using the concepts defined in our ontology, we can write
policies that can be used to automatically create appropri-

ate BGP configurations in a lower-level language accepted
by current hardware systems. For example, we can express
policies that specify which routes are accepted from neigh-
bors based on the relationship with the neighbor. The re-
lationship itself could be based on multiple factors, includ-
ing business relations, economic considerations and political
constraints [13]. Our framework supports prioritization of
policies which becomes useful in the context of resolving
conflicts among multiple policies. The policies expressed in
our language can be reasoned about t a high level as well
automatically translated into appropriate BGP-level router
configurations that can be used for enforcement.

While our language can model typical BGP configura-
tion scenarios, the rest of the paper will focus on aspects
of the language used for configuring import and export fil-
ters. Also, we define a policy as a rule that specifies how to
handle a route update. Since we limit our discussion to im-
port/export policies, the set of allowable actions include four
possible actions: accepting or rejecting a route update from
a neighbor and sharing or denying a route advertisement
to a neighbor. As mentioned above, our framework sup-
ports expressing policies that factor the relationship type
between a pair of autonomous systems. For example, the
valley free policy [8] requires a provider to announce its cus-
tomer’s prefixes to its upstream provider and peers. It can
be expressed in our framework with the following rule, ex-
pressed as a Horn clause [10] using the familiar Prolog-like
syntax.

shared_update(U, A, D) :-

origin(U, C),

customer(C, A),

provider_or_peer(D, A).

provider_or_peer(AS1, AS2) :- provider(AS1, AS2).

provider_or_peer(AS1, AS2) :- peer(AS1, AS2).

The implemented system uses rules in more restricted subset
of Horn clauses and with a slightly different syntax. These
are based on the SWRL rule language [19] that works in
conjunction with a knowledge base of OWL axioms and as-
sertions.

The rule for the shared update relation given above is in-
terpreted as follows. A route update “U” is shared by au-
tonomous system “A”with its neighboring autonomous sys-
tem “D”, if three conditions are simultaneously true for a
single set of variable bindings. Tokens beginning with an
uppercase character are variables. The conditions are that
U contains a prefix that originates at autonomous system
“C”, that “C” is “A”’s customer and that “D” is either “A”’s
peer or provider. This policy results in the following BGP
configuration at A:

router bgp ASN(A)

neighbor IpAddressOfRouter(C) filter-list 1 in

ip as-path access-list 1 permit ^ASN(C)$

where ASN(X) represents the Autonomous System Number
of AS X. Similarly, we could have configured an export filter
at AS C to share only C’s prefixes. Furthermore, any route
that is not explicitly shared is not advertised to a neighbor.

3.1 Creating a Routing Knowledge Base
The knowledge base contains facts, rules and any piece of
information that is useful in deciding the routing policy of

the organization such as the operating policy, traffic matrix,
time of the day etc. Minimally, the knowledge base con-
tains a high level representation of the network wide rout-
ing policies of the organization. The knowledge base is ini-
tially loaded with the following minimal set of base rules
that specify the operating policy of the node, conditions for
sharing/denying route updates as well as the condition for
retracting policies.

(?i follow ?x) :-

(?i trust ?y),

(?y issues ?x).

Rule 1 states that a node follows a policy issued by a trusted
entity. Nodes assert that they trust their parent organiza-
tion. Additionally, nodes could be configured to trust exter-
nal organizations for business purposes as well.

(?i shareRouteAdvt ?d) :-

(?i follow ?x),

(?x sharesRouteAdvt ?d).

Rule 2 asserts that a node shares a route advertisement as
long as it follows a policy that permits sharing the adver-
tisement through the “sharesRouteAdvt” predicate.

(?i denyRouteAdvt ?d) :-

(?i follow ?x),

(?x deniesRouteAdvt ?d).

Rule 3 is similar to Rule 2 for denying route advertise-
ments to neighbors.

(?y retracts ?d) :-

(?y issues ?a),

(?y issues ?d),

(?a replaces ?d).

Rule 4 specifies the condition for an entity to retract a policy.
When an entity issues two policies, and one policy replaces
the other, the entity essentially retracts the replaced policy.
Retractions typically occur when a higher priority policy
replaces a lower priority one as well as when a later version
of a policy replaces the older one.

The knowledge base is further updated with the creation
of new policies. When a new policy is created, the rules
representing the policy are asserted into the knowledge base
along with the direct and inferred facts. For example, the
valley free policy that denies advertising non-originating pre-
fixes to a provider makes the following assertion into the
knowledge base of AS C.

(ValleyFreePolicy deniesRouteAdvt "12.1/16")

where 12.1/16 corresponds to a prefix not originating in AS
C. We can thus automatically create the knowledge base
from the policies expressed in our language. The knowledge
base thus created is used in the argumentation protocol de-
scribed in the next section.

4. DETECTING ROUTING MISCONFIG-
URATIONS VIA ARGUMENTATION

In this section, we present our argumentation framework for
detecting and recovering from routing failures. Typically, a

routing failure is followed by frantic phone calls [12] among
network operators trying to locate and diagnose the cause
of the failure. Most routing failures however, are caused by
BGP misconfigurations that are human generated. These
misconfigurations arise due to the fact that humans config-
ure routers at the lowest level details and do not necessarily
represent the high level goals of the policy. Furthermore,
since no usable semantics is associated with the low level
configuration data, diagnosis of the failure is further im-
peded. It is now well recognized [16] that most of the BGP
related misconfigurations can be avoided through the devel-
opment of high level languages for router configuration.

We argue that in addition to automatically configuring
routers, a logic based declarative language that supports
reasoning can be used to diagnose and recover from rout-
ing failures. The diagnosis problem can be modelled as a
multiagent problem as follows. Each border router in an
Autonomous System can be considered as an agent. Each
agent must now co-ordinate with peer agents in other ASes
to arrive at a conclusion about the cause and location of
a failure. On the other hand, the declarative nature of
the policies enables meaningful communication among the
agents during argumentation. While some failures such as
link failure are transient and are handled by the underlying
routing protocol, other failures such as misconfigurations are
long lasting and need operator intervention. It is this class
of non-transient failures that we aim to diagnose and recover
automatically through agent communication.

4.1 Design of the Argumentation Framework
We now describe our argumentation protocol for diagnosing
misconfigured routers and automatically correcting them.
Although our framework can handle generic situations, in
this particular work, we focus on diagnosing and correct-
ing export filters. Our argumentation protocol is principled
along the FATIO [18] Argumentation Protocol. The proto-
col itself consists of only the following six utterances/messages.

Ask: Used by a router to query a neighbor. The query
itself could be application dependant such as prefix reacha-
bility, accepting/dropping traffic for a particular destination
etc. In the use case presented in this paper, the query is
whether the neighbor has a route to a particular destination
prefix.

Confirm: On receiving a Ask message, the recipient con-
sults its internal data store which might be either a knowl-
edge base or routing table to evaluate the query in the Ask
message. If the query evaluates to be true, the recipient
replies with a Confirm message.

Deny: Similar to the confirm message, if the query in the
Ask message evaluates to be false, the recipient replies with
a Deny message.

Challenge: On receiving a Confirm/Deny message from
a neighbor, the recipient can challenge the response with a
Challenge Message.

Justify: On receiving a challenge from a neighbor, the re-
cipient responds with a justification of why it Confirmed/Denied
the query in the Ask message. Most generally, the justifi-
cation is a set of policy statements that the node currently
believes in and against which the Ask query was evaluated.

Assert: On receiving a Justify message, the recipient is-
sues an Assert message if it believes the neighbor’s justifi-
cation is not valid. This could arise for a number of reasons
such as the neighbor following an old policy, the neighbor

Figure 1: Router topology with misconfigured ex-
port filter at Router B

following a lower priority policy and so on. On receiving an
Assert, the neighbor evaluates the assertion. If the asser-
tion is valid, generally a reconfiguration takes place at the
neighbor. The reconfiguration could be in the form of either
updating export/import filters or updating a policy with a
newer version. When the reconfiguration phase completes,
the neighbor responds with a Confirm message which ends
the argumentation round.

We now present a simple example illustrating our argu-
mentation protocol. We consider the topology shown in
Figure 1 . We make the following assumptions in the ex-
ample.

• “Policy1” denies advertising routes to 12.1/16
• “Policy2” allows advertising routes to 12.1/16
• “Policy2” has higher Priority compared to “Policy1”

and replaces the latter.

At the beginning of the example, B follows “Policy1”, and
hence does not share reachability information for 12.1/16 to
Router A which follows “Policy2” . When router A finds
that it has no route to a destination in 12.1/16, A sets up
an argumentation with B as follows

• A→B: Ask(B hasRoute to 12.1/16)

On receiving Ask, B queries its route table to see if it has a
route to 12.1/16. Since we assume C has no misconfigured
export filters, B has a route for 12.1/16 and replies with a
Confirm

• B→A:Confirm(B hasRoute to 12.1/16)
• A→B:Ask(B deniesRouteAdvertisementFor 12./16)
• B→A:Confirm(B deniesRouteAdvertisementFor 12.1/16)

since B follows “Policy1”.
• A→B:Challenge(B deniesRouteAdvertisementFor 12.1/16)
• B→A: Justify(B deniesRouteAdvertisementFor 12.1/16

Since B follows“Policy1”, “Policy1”deniesRouteAdver-
tisementFor 12.1/16)

• A→B: Assert (“Policy2” hasHigherPriorityThan “Pol-
icy1”,“Policy2”replaces“Policy1”,“Policy2”allowsRouteAd-
vertismentFor “12.1/16”)

When the Assert message is received, B evaluates the Pol-
icy statements in the message which results in B following
“Policy2”. Since the current operating policy changes, B re-
configures its filters in line with the new policy, “Policy2”,
thereby sharing the reachability information for 12.1/16 with
A.

Figure 2: Our logical architecture assumes a set of
independent routers each with an agent process that
performs various services for it. The planner gen-
erates high-level policies and the BGP reasoner can
compile them into appropriate low-level configura-
tion commands.

• B→A: Confirm(ok)

Several points are noteworthy from this argumentation ex-
ample. First is the need for high level declarative policies
that can be reasoned over. Each step in the argumenta-
tion protocol requires a query to be evaluated against the
knowledge base of a router. Also, for the justification step,
the reasoner needs to generate the proof tree [5] for query
evaluation.

Secondly, the argumentation may not always converge or
may take more than a single round. The example we have
described is a simple use case in which argumentation does
converge in a single round. However there could be situa-
tions in which the argumentation may not converge in a sin-
gle round and may need multiple rounds and consequently
multiple reconfigurations at both routers. For example, con-
sider the scenario where in a node is arguing with its third
hop neighbor. Further, the third hop neighbor has an export
filter that denies a route advertisement where as the second
hop neighbor has an import filter rejecting route updates
for the target prefix. In the first round of argumentation,
the export filter of the third hop neighbor is reconfigured to
share the route advertisement. However, in order to obtain
a route to the target prefix, the import filter at the second
hop neighbor needs to be reconfigured as well, calling for a
second round of argumentation.

On the other hand, there exist scenarios where in the ar-
gumentation may not converge at all. These situations may
arise for example due to policy conflicts. A node may be-
lieve it has a higher priority policy than its neighbor while
the neighbor may not agree with that. These failures, which
can only be resolved with operator involvement, are flagged
off to the operator with a log of the argumentation protocol
executed so far.

5. SYSTEM ARCHITECTURE
The system architecture used in our prototype implementa-
tion is shown in Figure 2. It consists of a set of routers, each
with an associated agent, a reasoner and a planner.

Planner: The planner is the front end used by the net-
work administrator to create network wide routing policies.
Typically, this is a graphical user interface with support to

Figure 3: The planner in our prototype implementa-
tion allows us to easily experiment with new policies
and networking configuration for experimentation.

view network status such as topology, traffic load on links
etc. Furthermore, the planner is used to create policies
which are then distributed to router agents in the network.
Figure 3 shows a snapshot of the planner used in our proto-
type implementation.

Agent Framework: Each agent is responsible for con-
trolling the underlying physical router. Policies created by
the network operator are sent to the agents which are re-
sponsible for configuring the routers in line with the policies.
Typically, the agents have an onboard reasoner or invoke a
centralised reasoner to transform the policies into appropri-
ate configurations. The agents also support a query and con-
trol interface to the underlying router which is used during
the argumentation phase. Agents communicate with each
other during argumentation using an out of band communi-
cation channel such as an overlay network.

Reasoner: The function of the reasoner is to translate
high level policies into appropriate low level configurations.
Generally, each agent has its own reasoner, although a cen-
tralized reasoner for all agents is also possible. The configu-
ration generated by the reasoner is sent back to the calling
agent which then applies it to the underlying router.

Router: The physical router which performs packet pro-
cessing and is controlled by the router agent.

Our policies has a hierarchical structure that reflects the
network organization. The planner generates network wide
policies which are then distributed to the individual agents.
Each agent can have own its own local policies as well.
Additionally, an agent can make local assertions about its
neighbors including configuration data like IP addresses, AS
Number etc. The local assertions could also include the type
of relationship with the neighbor. The network wide policies
are then merged with local policies to form a unified policy
which is used in generating the configurations. The onto-
logical basis of our framework enables merging of policies
as well as detecting conflicts. In our framework, we assume

Figure 4: A simple user interface using the famil-
iar “wizard” approach allows an engineer to inspect,
maintain or author a policy without having to un-
derstand the underlying representation languages.

that network wide policies have higher priority compared to
local policies during conflict resolution.

6. PRACTICAL ISSUES IN DEPLOYMENT
In this section we discuss issues related to the practical de-
ployment of our approach, including issues of privacy, oper-
ator involvement and policy authoring.

ISP routing policies are generally considered to be private
information. On the other hand, during network failures,
operators across ISPs often collaborate revealing network
configuration data with the goal of locating and rectifying
the cause of failure. Our argumentation protocol does not
necessitate complete information disclosure for its operation.
Network operators can still retain control over the pieces of
information that are exchanged during argumentation.

For example, a network operator could require that a cer-
tain policy be private and never be revealed to neighbors.
Under such scenarios, if the private policy happens to be the
cause of failure, the agent responds with a “cannot reveal”
message in the justification step. In this case, the neighbor
could either attempt to recover with partial information or
alert the human operator. Similar constraints can be placed
on local reconfigurations as well. The operator could spec-
ify that, while it is acceptable to share policies for diagno-
sis, only certain reconfigurations may be performed locally.
In these cases, every reconfiguration act that is initiated
through argumentation is first locally checked through a list
of network operator approved configuration acts before exe-
cution.

When a reconfiguration is not permitted, the network op-
erator is flagged with a log of the argumentation execution
and the reconfiguration to be performed. Another issue to
consider is which agent will be responsible for initiating the
argumentation and under what conditions. We propose pe-

Figure 5: We tested the system on a physical net-
work consisting of two Cisco routers. Router 2 de-
nies sharing a route for prefix 12.1/16 to Router 1.

riodically checking for route availability to a set of prefixes
determined by the operator. When there is no local route
available to a listed prefix, the agent responsible for the
router/AS initiates the argumentation with its neighbors.
Alternatively, we could use a monitoring infrastructure sim-
ilar to [4] that periodically probes destinations to check for
route availability and initiates argumentation when no route
is available.

Our policies are represented as rules grounded in concepts
and predicates specified in an ontology. These representa-
tions will be unfamiliar and opaque to most network en-
gineers and operators who nonetheless may need to author,
modify or maintain a set of policies. We have implemented a
prototype “policy wizard” system that walks a user through
the process of examining, maintaining or authoring policy
rules. Figure 4 shows examples of from this user interface
for policy inspection and authoring.

7. EVALUATION
We evaluate our approach using both a testbed implemen-
tation and simulations. We have verified our approach on a
small testbed in our lab and perform simulation studies us-
ing CBGP [20] which can be used to model arbitrarily large
topologies.

7.1 Testbed Implementation
We have implemented our approach on a two router testbed

• Worker[id=120.120.10.1]: has no route to prefix:
12.1.0.0/16

• Worker[id=120.120.10.2]: question: 120.120.10.1 asks
if I believe (i,hasRoute,12.1.0.0/16)?

• Worker[id=120.120.10.1]: confirmation: 120.120.10.2
confirms belief (i,hasRoute,12.1.0.0/16).

• Worker[id=120.120.10.2]: question: 120.120.10.1 asks
if I believe (i,denyRouteAdvt,12.1.0.0/16)?

• Worker[id=120.120.10.1]: confirmation: 120.120.10.2
confirms belief (i,denyRouteAdvt,12.1.0.0/16).

• Worker[id=120.120.10.2]: challenge: 120.120.10.1
challenges null because it has a problem with
(i,denyRouteAdvt,12.1.0.0/16)

• Worker[id=120.120.10.1]: justification: 120.120.10.2
justifies (i,denyRouteAdvt,12.1.0.0/16) because it
believes [(POLICY1,deniesRouteAdvt,12.1.0.0/16),
(i,follow,POLICY1)]

• Worker[id=120.120.10.2]: assertion: 120.120.10.1
asserts [(POLICY2,replaces,POLICY1), (POL-
ICY2,sharesRouteAdvt,12.1.0.0/16)]

• Worker[id=120.120.10.1]: confirmation: 120.120.10.2
confirms belief [(POLICY2,replaces,POLICY1),
(POLICY2,sharesRouteAdvt,12.1.0.0/16)]

• Worker[id=120.120.10.2]: question: 120.120.10.1 asks
if I believe (i,denyRouteAdvt,12.1.0.0/16)?

• Worker[id=120.120.10.1]: denial: 120.120.10.2 denies
it believes (i,denyRouteAdvt,12.1.0.0/16) because it
believes null instead, which implies it is false

Figure 6: The agents for two routers engage in an ar-
gumentation dialogue in attempt to come to a com-
mon model of their shared environment.

of Cisco 1811 Series [3] routers as shown in Figure 5. Our
agent infrastructure is written in Java and uses a directory
based service for agent communication. During set up, each
agent is bound to a router and communication is established
with the router through telnet. We use the open source
Jess [7] rule engine for generating BGP configurations from
policies specified in our language.

As part of experiment set up, we configure the interfaces
and set up static routes on each of the routers for reacha-
bility. We also load the routers with the following policies.
Router 2 is loaded with “Policy1” which denies sharing a
route for the prefix 12.1/16 with Router 1. On the other
hand, Router 1 is loaded with “Policy 2” which allows shar-
ing advertisements for the prefix 12.1/16 and has higher pri-
ority than Policy 1. Essentially “Policy 2” replaces “Policy
1”. When Router 2 announces 12.1/16, we query the routing
table of Router 1 and find that it has no route to 12.1/16.
We then inject a“RouteUnavailableEvent”for prefix 12.1/16
into the Agent for Router 1 which initiates an argumentation
with Router 2’s agent, a log of which is shown in Figure 6.

In conclusion, the argumentation results in a reconfigura-
tion at Router 2 removing the export filter. This is verified
by querying the routing table of Router 1 which now has a
route for 12.1/16.

7.2 Simulation
We now illustrate a simple example evaluating our approach
in the presence of link failures using CBGP [20]. We use the
same agent framework as above with the only change being

Figure 7: Simulated topology in which a link failure
initiates argumentation.

that the Jess reasoner now generates CBGP configurations
from our policies. We use the topology as shown in Figure
7. The prefix in parenthesis represent the network prefix
originated by the respective routers. Further, router A is
configured with Policy 2 while router B is configured with
Policy 1 which have the same interpretation as in the pre-
vious case. D announces the network 12.1/16, which is now
reachable by all other nodes. We simulate a link failure be-
tween A and D, thereby causing A-B-D and A-B-C-D to be
the only available physical paths for A to reach the prefix
12.1/16. However, B’s export filter prevents announcing the
route for 12.1/16 to A resulting in A having not route to
12.1/16. A now initiates an argumentation with B, eventu-
ally resulting in B removing the export filter.

8. CONCLUSION AND FUTURE WORK
We have presented the case for using argumentation and
declarative policies for diagnosing and recovering from Inter-
net routing failures. We have developed an ontology based
declarative language for expressing network wide routing
policies that are then compiled into appropriate BGP config-
urations. We leverage the declarative nature of the policies
by developing an argumentation protocol in which routing
agents reason about their high level policies and negotiate
with neighboring routers to recover from routing misconfig-
urations.

We have verified our approach in a small physical network
and using simulations. In future work, we plan on extend-
ing our framework to argue with non-immediate neighbors
as well. We would also like to explore the case of simulta-
neously arguing with multiple neighbors and choosing the
optimal reconfiguration based on an acceptable definition
of optimality. While we do not fathom that our approach
would be deployed on the Internet immediately due to eco-
nomic and privacy considerations, we position our work as
an initial step towards white box based approaches for au-
tomated diagnosis and recovery of Internet routing failures.

9. ACKNOWLEDGMENTS
We thank Wenjia Li for developing the front end of the plan-
ner. This work was supported in part by DARPA under
contract W31P4Q-06-C-0395 and the Air Force Office of Sci-
entific Research under MURI award FA9550-08-1-0265.

10. REFERENCES
[1] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens,

D. Meyer, T. Bates, D. Karrenberg, and M. Terpstra.
Routing policy specification language (RPSL), 1999.

[2] S. Bechhofer, F. Harmelen, J. Hendler, I. Horrocks,
D. McGuinness, P. Patel-Schneider, and L.Stein. OWL
Web Ontology Language Reference W3C
Recommendation. Technical report, W3C, February
2004.

[3] Cisco. Cisco Router Guide. Cisco Systems, Inc
Website, 2007.

[4] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot.
NetDiagnoser: Troubleshooting network
unreachabilities using end-to-end probes and routing
data. In Proceedings of the 3rd ACM International
Conference on emerging Networking EXperiments and
Technologies, pages 1–12. ACM, 2007.

[5] A. Eriksson and A.-L. Johansson. Neat explanation of
proof trees. In Proceedings of the 9th international
joint conference on artificial intelligence, pages
379–381. Morgan Kaufmann Publishers Inc., 1985.

[6] N. Feamster, H. Balakrishnan, and J. Rexford. Some
foundational problems in Interdomain routing. In In
HotNets, 2004. (Cited on, pages 41–46, 2004.

[7] E. Friedman-Hill. JESS in Action. Manning, 2003.

[8] L. Gao. On inferring autonomous system relationships
in the internet. IEEE/ACM Transactions on
Networking (TON), 9(6), 2001.

[9] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell,
and S. Shenker. Practical declarative network
management. In Proceedings of the 1st ACM workshop
on Research on enterprise networking - WREN ’09,
page 1, New York, New York, USA, 2009. ACM Press.

[10] A. Horn. On sentences which are true of direct unions
of algebras. Journal of Symbolic Logic, 16(1):14–21,
1951.

[11] Y. Huang, N. Feamster, and R. Teixeira. Practical
Issues with Using Network Tomography for Fault
Diagnosis.

[12] P. Hunter. Pakistan YouTube block exposes
fundamental Internet security weakness:: Concern
that Pakistani action affected YouTube access
elsewhere in world. Computer Fraud & Security,
2008(4):10–11, 2008.

[13] P. Kodeswaran, S. B. Kodeswaran, A. Joshi, and
F. Perich. Utilizing semantic policies for managing
BGP route dissemination. In IEEE INFOCOM 2008 -
IEEE Conference on Computer Communications
Workshops, pages 1–4. IEEE, 2008.

[14] O. Lassila and R. Swick. Resource description
framework (RDF) model and syntax. Technical report,
W3C, February 1999.

[15] R. Mahajan, N. Spring, D. Wetherall, and
T. Anderson. User-level internet path diagnosis.
Operating systems review, 37(5):106–119, 2003.

[16] R. Mahajan, D. Wetherall, and T. Anderson.
Understanding BGP misconfiguration. In Proceedings
of the 2002 conference on Applications, technologies,
architectures, and protocols for computer
communications, pages 3–16. ACM, 2002.

[17] R. Mahajan, D. Wetherall, and T. Anderson.
Negotiation-based routing between neighboring ISPs.

In Proceedings of the 2nd Symposium on Networked
Systems Design & Implementation - Volume 2, 2005.

[18] P. McBurney and S. Parsons. Locutions for
Argumentation in Agent Interaction Protocols. In
International Conference on Autonomous Agents,
2004.

[19] M. OConnor, H. Knublauch, S. Tu, B. Grosof,
M. Dean, W. Grosso, and M. Musen. Supporting rule
system interoperability on the semantic web with
SWRL. In Proceedings of the 4th International
Semantic Web Conference, pages 974–986. Springer,
2005.

[20] B. Quoitin and S. Uhlig. Modeling the Routing of an
Autonomous System with C-BGP, 2005.

[21] A. Voellmy and P. Hudak. Nettle: A language for
configuring routing networks. In DSL ’09: Proceedings
of the IFIP TC 2 Working Conference on
Domain-Specific Languages, pages 211–235, Berlin,
Heidelberg, 2009. Springer-Verlag.

[22] Y. Zhang, Z. M. Mao, and M. Zhang. Effective
diagnosis of routing disruptions from end systems. In
Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation, 2008.

[23] D. Zhu, M. Gritter, and D. R. Cheriton. Feedback
based routing. SIGCOMM Computing Communication
Revue, 33(1):71–76, 2003.

