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ABSTRACT 

 

 Hydrological responses within the Upper Merced Basin of California to future 

climate variations were assessed over a continuous 60-yr period. Using a calibrated SWAT 

(Soil and Water Assessment Tool) basin model, future monthly peak flow and streamflow 

discharge sensitivity was tested under climate schemes from 2040-2099. Two general 

circulation models (GCMs) utilized in this study, the Met Office Hadley Centre Model 2 -- 

Carbon Cycle (HadGEM2-CC) and The National Center for Atmospheric Research 

(CCSM4), were inputted into the Upper Merced SWAT model under IPCC forcing 

scenarios RCP 6.5 and 8.0. Probabilities of discharge peaks were determined using the 

respective climate model’s temperature, precipitation, and solar radiation.  

 Results indicate that times of projected peak flow may occur one to three months 

earlier than the studied historical time period (1984-2013). Under the historical observed 

time period of 1984-2007, average Upper Merced peak flow occurred most often in May 

(22%) and April (20%) (Figure 6.4). Under future climate scenarios tested from 2040-

2099, streamflow peak flow shifted to earlier in the winter/spring seasons. HadGem2-CC 

RCP6.0 scenario shows peak flow most likely occurring in January (33.8%) and February 

(35.6%). During the same time period under CCSM4, peak flow is shown to occur during 

December (33.8%) and February (23.7%). HadGem2-CC RCP 8.5 peak flow stretches 

across January (27.1%), December (22%), and February (22%), while CCSM4 RCP 8.5 

similarly shows peak flow shared between January (28.8%), February (25.4%), and 

December (27.1%). Modeled future streamflows exhibit high relative sensitivities to 
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temperature and precipitation change due to warming conditions. These findings in 

collaboration with Upper Merced basin characteristics of high elevation, low groundwater 

influence, and late season snowmelt, indicate high hydrological sensitivity to snowpack 

reduction. Results underscore the importance of a flexible management style for water 

resources dependent on snowpack. Increased and thorough climate monitoring is necessary 

to assess climate impacts within vulnerable high-elevation mountainous regions.  
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     CHAPTER 1  

 

INTRODUCTION 

 

1.1 CALIFORNIA CLIMATE EXTREMES 

 California’s five-year drought has abruptly ended in spectacular fashion. Flash 

storms are pouring into choked reservoirs, continued above-average precipitation has 

restored the iconic agricultural fields of the Central Valley, and Sierra Nevada snowpack is 

piled high enough for an unusually long mid-June ski season. As of January 2017, 

California has 189 percent of average snowpack accumulation, in excess of 200 percent 

average precipitation, and 112 percent of long-term average reservoir storage (Hanak et al. 

2017). This respite from prolonged arid conditions has brought comfort to the state. Two 

years prior, amidst drought, California reservoir storage sunk to 8 million acre-ft below the 

long-term average (Hanak et al. 2017).  

 Subject to a dry desert climate, Californian society is built upon a series of 

waterways contingent on historical weather patterns. Dams, concrete channels, and 

diversions, enable the region’s success by way of funneling precipitation to where it is 

needed. With such demand for consistent water supply in both volume and location, 

observed extremes in weather patterns threaten the ability of water infrastructure to provide 

for the state. Governor Jerry Brown had issued a state-wide drought emergency as a 

response to water deficits affecting municipal, agricultural, and industrial communities, but 

conditions have quickly changed with 2017 flooding ripping apart key spillways 

endangering nearby localities. Water issues have rapidly flip-flopped from too-little to too-
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much surface water discharge as intense precipitation continues to overload state 

infrastructure in select municipalities.  

 Despite the most recent drought coming to a close, Governor Jerry Brown 

highlighted the necessity of water management preparation as he lifted California’s 

drought emergency in April 2017. Warning that conservation must “be a way of life”, 

Governor Brown advocated for increased management and planning during times of both 

water scarcity and abundance (Dwyer 2017). Alarms raised by the larger water 

management community echo the Governor’s sentiments. Future temperature increases 

will break established precipitation trends, causing heightened variability in climate 

conditions. Current predictions of climate conditions foresee prolonged and emboldened 

periods of both acute drought and severe floods, throwing California into a persistent crisis 

of either deficit or drowning. To this point, Governor Brown further stated in his address 

that “the [2012–2017] drought emergency is over, but the next drought [might] be around 

the corner” (Dwyer 2017).   

 

1.2  STUDY OBJECTIVE 

 The major goal of this research is to improve information on current and future 

water demand for the Upper Merced subbasin. To evaluate the consequences of climate 

change, a water balance model for the Upper Merced basin under current conditions and 

future climate conditions are evaluated. The intention of this analysis is to collect and 

integrate data within the water accounting system for the Upper Merced basin so that these 

findings might assist in the greater scientific endeavor of mapping water balance for the 

basin and its greater watershed, the San Joaquin Basin. According to a report by the Public 
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Policy Institute of California (2016), the recent drought has “spotlighted serious gaps and 

fragmentation in California’s water accounting system,” as state water infrastructure is 

physically interconnected, but institutionally splintered. As a whole, California’s water 

balance sheet is nearly blank. Aside from a few elemental assessments focused on 

appraising water fees in towns such Santa Clara Valley and Orange County, the majority of 

Californian basins are in need of any water accounting research. Review of California’s 

Department of Water Resources (DWR) and the U.S. Bureau of Reclamation (USBR) 

(2016) annual estimates for water use and availability, shows significant breaks with 

missing or inadequate data (Escriva-Bou et al. 2016). In support of developing a common 

accounting framework for the state, changes in groundwater storage are estimated to 

determine the water balance for the Upper Merced Subbasin (HU# 18040008) using a 

well-known and often-published modeling program, Soil and Water Assessment Tool 

(SWAT). Measurements of local inflows, “consumptive” water use, water imports, 

outflows, and groundwater/surface storage will be calculated. Furthermore, forecasted 

flows are subsequently determined from this historical data under two climate change 

scenarios (RCP 6.5 and RCP 8).   

 

1.3 WATER MANAGEMENT AND ACCOUNTING 

 Despite engineering “one of the most complex water systems in the world”, 

investment in basin accounting research is instituted more completely in Australia, Spain, 

and 11 other western states (Arizona, Colorado, Idaho, Kansas, Nebraska, Nevada, New 

Mexico, Oregon, Texas, Utah and Washington) than it is in California (Escriva-Bou et al. 

2016). The aforementioned western states have developed economies dependent on the 
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environment, yet share in California’s resource management difficulties on account of 

similar arid but variable climates. Advanced water research knowledge enables states to 

enact practices suitable for alleviating water stress for their region through economizing 

the supply. With an understanding of water assets, conservation is the moral of western 

management frameworks. State water information allows for a strategic and suitable 

allotment of supply for sustainable groundwater management, surface water during 

shortages, and surrounding environment, for the respective region.   

 Internal pressures of population and industry on water supply are exacerbated by 

extreme climate swings, rendering the state’s infrastructure inoperable without constant 

monitoring and management application. In order to map the reality of present and 

projected water supply while quickening our ability to manage for these differences, 

regional water balances for both the historical past and future should be performed. By 

calculating estimates for water use and availability on a regional to local level, the 

purveyor is able to delineate inflows, outflows, and exports, within the total net water 

supply. Further, local and imported inflows, changes in groundwater storage (overdraft or 

recharge), and precipitation levels, can be teased out from the sum of net water stored 

within reservoirs and aquifers. Areas dependent on conveyances for supply especially 

benefit from the above assessments. During times of exceptional drought or flooding, 

compensation is made through routine interventions such as pumping for groundwater or 

supplying reservoir overdraft or recharge for industry.  

 Here, this study, performs current and estimated water balances for the Upper 

Merced subbasin, HU #18040008; a subbasin part of the greater San Joaquin Basin and 

positioned to the left of the California Delta, HU #18040003.  
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1.4 WATER BALANCE APPROACH 

A water balance equation is used to describe the flow of water in and out of a 

system at any period of time. The approach considers inflows and outflows from basins, 

sub-basins, service and use at all levels (Kopnina and Shoreman-Ouimet 2015). The water 

balance method can then evaluate the various ways in which water can be expended. It is 

defined by the general hydrological equation, which is essentially the law of conservation 

of mass applied to the hydrologic cycle meaning that water balance equations evaluate all 

inflow, outflow, and change in water storage. The main goal of a water balance approach 

to irrigation scheduling is to determine soil water deficit by accounting for all water 

additions and subtractions from the soil root zone. The most commonly used crop-water 

balance model is given as: 

(1)  

 

𝑃 − 𝑅 − 𝐸 − 𝑇𝑤 −  𝑇𝑐 − 𝑆 –  𝐷 + 𝐼 = 0  

 

Where P is precipitation, R is runoff, E is evaporation, 𝑇𝑐 & 𝑇𝑤 are weed and crop 

transpiration, S is change in soil water storage, D is deep drainage, and 𝐼 is irrigation. (Lal 

1991).  

The crop water requirement or crop evapotranspiration (ETc) must be met in order 

to produce significant yields.  To calculate water use efficiency, assimilation (carbon 

fixation) is divided by transpiration. With increased temperatures and solar radiation, leaf 

temperature increases with increases in transpiration, while higher CO2 results in partial 
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stomatal closure and decrease in transpiration. As global warming continues, harmful 

GHGs such as CO2 will increase (Lal 1991). The Penman-Monteith equation calculates 

evapotranspiration of a crop as a function of solar radiation, humidity, temperature, and 

wind in SWAT.  

Understanding how increased temperature and CO2 affect plants is crucial to the 

understanding of how to manipulate a water balance table program for future hypothetical 

climate change scenarios. As temperature and CO2 increase, solar radiation becomes more 

important for the plant, vapor deficit pressure and wind are less important, and the change 

in latent energy depends on the solar radiation change (Lal 1991).  

 

1.5 SCENARIOS OF CO2 CONCENTRATION, PRECIPITATION, AND 

 TEMPERATURE CHANGES  

 RCP scenarios are derived from spatially resolved data sets of land use change and 

sector-based emissions of atmospheric pollutants. The scenarios are characterized by their 

approximate radiative forcing in year 2100 relative to year 1750: RCP2.6 at 2.6 W m-2, 

RCP4.5 at 4.5 W m-2, RCP6.0 at 6.0 W m-2, and RCP8.5 at 8.5 W m-2. To represent a range 

of climate change policy implementation schemes, one stabilization scenarios (RCP6), and 

high GHG emissions scenario (RCP8.5) were simulated. According the Intergovernmental 

Panel on Climate Change’s Fifth Assessment Report, radioactive forcing does not peak by 

2100 for RCP6.0 and RCP8.5. Table 1.1. lists four RCP scenarios from the most recent 

IPCC report with their respective global mean surface change (°C) and global mean sea-

level rise (m).  
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 CMIP5 predictions are designed in relation to a common baseline period (1986-

2005) with climate change expressed as fluctuations with respect to recent history, not 

from a period before anthropogenic influence. Having said that, there is evidence of 

consequences of climate change occurring in or before 1985-2005 (IPCC 2014). The 

CMIP5 simulations were executed with CO2, CH4 and N2O concentrations, increasing 

overall combined CO2 levels to 800 ppm (RCP6.0), and 1313 ppm (RCP8.5) (Table 1.1; 

Table 1.2). Scenarios without mitigation policies targeting emissions are “baseline 

scenarios” and are represented in the range between RCP6.0 and RCP8.5. In general, 

RCP8.5 can be compared to the SRES A2/A1F1 scenario and RCP6.0 to the SRES B2 

scenario of previous IPCC reports.  CO2 or CH4 atmospheric emissions from thawing 

permafrost carbon stocks is assessed with low confidence to be in the range of 50 to 250 

GtC for RCP8.5.   

 

Table 1.1. Global mean surface temperature change (°C) for periods 2046-2065 and 2081-2100. 

Calculated projections are 5 % to 95% ranges and evaluated to be likely ranges after accounting for 

additional uncertainties or different levels of confidence in models. Table adapted from the 

Intergovernmental Panel on Climate Change’s Fifth Assessment Report. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Scenario 

Global Mean Surface Temperature Change (°C) 

2046-2065 2081-2100 

Mean Likely Range Mean Likely Range 

RCP2.6 1 0.4–1.6 1 0.3–1.7 

RCP4.5 1.4 0.9–2.0 1.8 1.1–2.6 

RCP6.0 1.3 0.8–1.8 2.2 1.4–3.1 

RCP8.5 2 1.4–2.6 3.7 2.6–4.8 
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Scenario 

Cumulative CO2 Emissions 2012 to 2100 

GtC GtCO2_ 

Mean Range Mean Range 

RCP2.6 270 140–410 990 510–1505 

RCP4.5 780 595–1005 2860 2180–3690 

RCP6.0 1060 840–1250 3885 3080–4585 

RCP8.5 1685 1415–1910 6180 5185–7005 

Table 1.2. Global cumulative CO2 emissions for 2012-2100, shown with RCP atmospheric 

concentrations. 1 Gigatonne of carbon = 1 GtC = 1015 grams of carbon. Table adapted from the 

Intergovernmental Panel on Climate Change’s Fifth Assessment Report. 
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CHAPTER 2 

 

STUDY AREA CHARACTERISTICS 

 

2.1 SAN JOAQUIN VALLEY 

Climate variability and extreme weather are consequences of global climate 

change, which can cause unstable water dependent ecosystems to become vulnerable. An 

estimated 19% of California’s total energy usage is allocated for the collection, 

transportation, and treatment of water (CRC Report R43200). Increased temperatures, 

extreme droughts, and sea level rise are likely to have an absolute effect on California’s 

hydrological cycle. Concerns of major fluctuations in the hydrological cycle causing 

increases in water demand while degrading water quality and stressing the agricultural 

industry, have spurred the need for a greater understanding of climate change 

repercussions on California’s water supply.  

The impacts of climate change are expected to exacerbate existing demands on 

California’s water resources. The Western United States’ climate is highly variable in both 

space and time, causing known hydrological patterns to become vulnerable under 

consequences of climate change. A shifting network of heat, moisture, and energy between 

the atmosphere and ocean determine conditions of precipitation over the region. Whether 

this moisture falls as snow or rain is contingent on the region’s topography. Historically, 

the lion share of Western precipitation has been experienced as snow, compounding on the 

Sierra Nevada awaiting trickle-down in the spring. Mountain snowpack provide water 

storage by reserving supply during winter months to avoid flood risk, and expelling water 
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into valleys and rivers for irrigation during spring and early summer months. Surrounding 

the snowcapped mountains, arid rain-shadow landscapes sit leeward across from irrigated 

windside areas fed mainly by rivers. Circumstances of river flow are dependent on 

snowpack accumulation and its subsequent meltwater. Nearly all major rivers flowing 

through the Western United States are fed from snowpack mountain watersheds, and so a 

reduction in snowcap mass greatly affects water resources for irrigation and human use.  

Anticipating such changes is vital for regions with limited water resources such as the 

Upper Merced Basin (HU #18040008), a subbasin within the greater San Joaquin Valley 

(SJV).  

 

2.2 SITE SELECTION: Upper Merced Basin  

The San Joaquin Valley (SJV) is a gently sloping alluvial plane about 400 km long 

and 40 to 90 km wide, sitting at Latitude 36°30’ N to 38°50’N and Longitude 119°45’W to 

121°30’W (Ritter 2005). Split into two regions, the SJV comprises of the southern two-

thirds in the Central Valley of California and the northern one-third in the Sacramento 

Valley (Phillips et al. 2007). Both valleys’ namesakes are derived from the major rivers 

that they drain into. The San Joaquin River flows from the Sierra Nevada down onto the 

valley floor, where it runs along a northern path toward the Sacramento- San Joaquin 

Delta. The valley floor acts as a deep bowl, capturing marine and continental sediment up 

to 10 km thick and receiving an average of 5 to 16 inches of rainfall annually (Gronberg et 

al. 1998). The San Joaquin River drains an area of 35,983 km2, from the northern part of 

the SJV through the San Francisco Bay.  The Upper Merced subbasin is located in Central 

California, with an area size of 5,253 km2. The Merced River flows through the small 
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basin and runs off into the San Joaquin River as a tributary (Stillwater Sciences 2008). 

Figure 2.1 provides a detailed map of the study basin, focusing on location and land use.  

 

 
Figure 2.1. Upper Merced basin located in the San Joaquin Valley watershed. (Stillwater Sciences 

2008). The Merced River is visible as a tributary of the San Joaquin River, flowing north into the 

Delta.  

 

2.2.1 Climate 

The climate of the San Joaquin Valley varies spatially and is most often 

characterized as Mediterranean with a dry summer season and a cool, wet winter season. 

Temperate, semi-arid conditions enable a year-round growing season (Phillips et al. 2007). 

During the summer (June, July, and August) average temperatures range from 22.9°C to 

27.4°C. In the winter (December, January, and February) average temperatures fall 
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between 7.3°C to 11.2°C. Average rainfall is approximately 200–300 mm with most 

rainfall occurring during the months between November–April and to a lesser extent, 

May–October (NOAA 2015). Weather stations located in the SWAT model domain were 

selected to help describe the study area’s climate. Weather station data include daily data 

precipitation, maximum and minimum temperature, relative humidity, and wind speed.  

Temperature increases as rainfall decreases while examining the area from north to 

south. About 85 percent of annual precipitation occurs during the winter and spring season 

month (November–April). Whereas the summer months, June, July, and August, are the 

most arid, with negligible rainfall from May to October (Ficklin et al. 2009). Precipitation 

most often evapotranspirates before it is able to recharge the subsurface, falling as either 

rain or trickling into the basin as snowmelt. Average precipitation estimates using SWAT 

are variable but snowmelt account for an average 85% of annual discharge in the Merced 

River (Wang and Melesse 2006).  

 

2.2.2 Topography, geology, and soils 

 The land surface in the study slopes westward from the Sierra Nevada Mountains 

and Coast Ranges to the San Joaquin River. Overall, the Central Valley is flat stands at a 

low altitude, with gradients ranging from less than 1 m/km by the San Joaquin River to 

more than 5 m/km by the foothills, neighboring rivers and streams, and the surrounding 

local area (Phillips et al. 2007). According to Bolger (2009), slope calculations using 

HydroGeoSphere (HGS) calculated elevation gradients within a similar model domain 

range from 0 to 144.4% (about 0 m/km to 144,356 m/km). Average elevation of the Upper 

Merced subbasin is 1,392 m, with an elevation range of 18 m to 3,979 m. The Upper 
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Merced subbasin is predominately evergreen forest (41%), range-bush (28%), and range-

grasses (16%) (NLCD 2006).   

 The San Joaquin Valley is a sediment-filled forearc basin, which is bound to the 

western California Coast Ranges, and to the eastern Sierra Nevada Mountains. The 

asymmetrical basin is relatively new to the Americas, having first come into being 65 

million years ago during the Mesozoic era. When the SJV was formed, it was an inland sea 

wedged between two mountain ranges. As the volcanic cover of the Sierras corroded and 

the Coast Ranges eroded, sediment fell into the Valley below transforming the inland sea 

into the continental basin of today. Over time, sediment amassing from high elevations, 

eroding granite, and streamflow, established an adjacent low and flat Central Valley below 

the southern Sierra Nevada Range. The resultant structure is called a down-warping 

geosyline, or a large scale syncline fold (Sneed 2001). Marine sediments and continental 

deposits forced the rivers to flow around pockets of growing sediment, effectively 

transforming the fluvial system in geological time. Deposited sediment and organisms 

accumulated on the basin floor, resulting in the region’s iconic nutrient-rich soil.  

Most of California is dominated by Mesozoic and Cenozoic Era rocks and so 

principal rocks observed in the region are Mesozoic plutonic and metamorphic rocks. 

Along the eastern part of the valley, pre-Tertiary crystalline and metamorphic rocks run 

underneath the sediment. To the west, pre-Tertiary mafic and ultramafic complex line the 

trough. The Sierra Nevada is comprised of granite, plutonic, metasedimentary, and 

metavolcanic rocks (Bertoldi et al. 1991). Negligible water quantities rest within these 

rocks, held by small scale fractures and joints.    
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2.2.3 Watershed surface-water hydrology  

The San Joaquin Valley River watershed encompasses the following four 

hydrologic units: the middle San Joaquin and lower Chowchilla watersheds, the middle 

San Joaquin, lower Merced, and lower Stanislaus River watersheds, the upper Chowchilla 

and upper Fresno River watersheds, and the Panoche and San Luis Reservoir watersheds 

(VanRheenen et al. 2004). Running parallel with the Pacific Coast, the watershed covers 

280 by 115 miles of seventeen California counties, reaching from north of Lodi County to 

south of Bakersfield County.  The highest headwaters are over 12,000 ft, but flows to 580 

ft at the foothills of the southern Tehachapi Mountains near the Mojave Desert. To the 

north, ridges separate the San Joaquin River Basin from the Sacramento River, and 

drainages of the Pajaro River, Salinas River, and Carrizo Plain border the basin to the west 

(Figure 2.2). 

Snowmelt trickling from the surrounding mountains drains eastward into the valley, 

eventually joining the San Joaquin River to the Sacramento-San Joaquin Delta, further 

flowing through the Suisun Bay and San Francisco Bay, and eventually meets the Pacific 

Ocean. The Sierra Nevada is the main source of runoff, with the Coast Ranges 

experiencing less rainfall and therefore less able to sustain streamflow (Hanak and 

Stryjewski 2002). There are seven major tributaries which drain directly into the San 

Joaquin River, all flowing west from the Sierra Nevada: Mokelumne, Calaveras, 

Stanislaus, Tuolumne, Merced, Chowchilla, and Fresno Rivers. The observed discharge of 

the San Joaquin River from a period 1930 to 1983 ranged from 241 cubic feet per second 

(cfs) to 99,900 cfs; the average discharge was 4,783 cfs (USGS). The Tuolumne River has 
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the longest and highest discharge, followed by the Merced River. Discharge of the Kings 

River also enters the Basin through a tributary (VanRheenen et al. 2004).  

 The San Joaquin River and accompanying tributaries have been severely regulated 

for agricultural, municipal, and industrial use. Erected dams along the SJV have helped 

create reservoirs mainly for irrigation uses and power supply, but have transformed the 

area’s native ecology drastically. Before human intervention, tule marshes, riparian 

corridors, and other wetlands ran along the banks of the SJV (CERES 2005). Leftover 

wetlands are less than 8% of the wetland acreage before the 19th century. Of these remnant 

wetlands, most are public lands managed at the state and federal levels, and privately 

owned duck clubs (CERES 2005). Unfortunately, a hundred years of flow capture and 

diversion practices have dried adjacent wetlands and lessened overall SJV biodiversity.  

 

 
Figure 2.2. Depiction of Northern San Joaquin watershed. Adapted from D.L. Ficklin et al. 2009.  
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2.3 STUDY AREA WATER REOURCES  

 

2.3.1 Water Availability 

  Much of the water provided to residents and farmers of the San Joaquin Valley has 

been through federal and state water supply infrastructure. Federal investment in 

infrastructure under the Reclamation Act of 1902 enabled the Central Valley Project (CVP) 

and the State Water Project authority to provide water to farmers within the San Joaquin 

Valley. Water deliveries range from six to seven million acre-feet annually, with 1.5 acre-

feet diverted from the San Joaquin River via the Friant-Kern and Madera Canals. Of the 

San Joaquin Valley’s total developed water supply in 2000, approximately 44% is derived 

from surface sources, 23% is imported surface supplies through the CVP and the State 

Water Project, and 33% is pumped from groundwater sources (Hanak and Stryjewski 

2002).  

Groundwater supply develops in unconfined or partially-confined, shallow aquifers 

across the valley. According to Sneed (2001), three unique groundwater bodies are found 

across the western, central, and southeastern parts of the valley: unconfined and semi-

confined fresh water bodies in alluvial deposits overlaying the Corcoran Clay unit, fresh 

water in alluvial and lacustrine deposits confined underneath the Corcoran Clay unit, and a 

zone of saline water trapped in marine sediments beneath fresh water bodies throughout 

the region. Before development in the early 20st century, groundwater in alluvial sediments 

were replenished via infiltration through stream channels near the valley. Eastern-valley 

streams carrying runoff from the Sierra Nevada snowpack supported the lion’s share of 

recharge for valley aquifers. Additional water recharge is provided through rainfall and 
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lake or stream seepage, but in small amounts due to California arid climate.  Barring 

human intervention, groundwater discharge provided a balance between natural 

replenishment and natural depletion by way of evapotranspiration and streamflow (Sneed, 

2001).  

 The San Joaquin River has been drastically altered for human use. Due to lack of 

groundwater record keeping, concrete measurements of groundwater divestment is not 

available. Estimations of the groundwater deficit may have totaled nearly 800,000 acre-feet 

per year during the 1960s, before the impacts of climate change augmented California’s 

water shortage (Hanak and Stryjewski 2002).  

  

2.3.2 Water Use  

The valley is predominately farmland with pockets of urban development. Eighty 

percent is utilized for agricultural use, six percent of the region is urban cover, and the 

remaining lands are covered in natural vegetation near the foothills and riparian area 

(CDWA 2007). Agriculture is the primary land use, with seven of the top ten farming 

counties in the state residing in the valley, with over 30.6 billion in crop receipts (CDWA 

2007). The watershed provides for the most agriculturally active counties such as 

Stanislaus, Merced, Madera, and a portion of San Joaquin and Fresno counties, seen in 

Figure 2.3. Farmland varies between counties, but constitutes 45% to 90% of land area in 

all San Joaquin Valley counties. In total, irrigated land constitutes 30% of the watershed, 

while forest and park land encompass 26.8% of total land area.  

Agriculture in the San Joaquin Valley is largely dependent on irrigation due to arid 

conditions. Farmers in the area use both groundwater and surface-water to irrigate 
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croplands. In order to meet their irrigation needs, water is developed and delivered by a 

number of government organizations, such as the Central Valley Project and the State 

Project, which both sell long-term water contracts to irrigation districts like Modesto and 

South San Joaquin. Irrigation districts then transfer water to farmers through irrigation 

canals and aqueducts. Historically, surface-water irrigation supplies derive from reservoirs 

at the Sierra Nevada foothills and snowmelt during late-winter and spring seasons. Private 

agricultural user and irrigation districts often pump groundwater for irrigation when 

surface-water levels are low or when the water table rises too significantly and threatens to 

drown crop fields (Phillips et al. 2007). Groundwater pumping remains unregulated 

(Ficklin et al. 2009), but has been estimated to have been approximately 32 percent of total 

agricultural water use in 2000 (Phillips et al. 2007).  

By the same token, urban water demand is filled by both surface-water and 

groundwater supply. Based off the work of Burow and others (2004), about 55 percent of 

urban water demand was met by groundwater in 2000. Modesto, the largest city in the 

valley, utilized groundwater exclusively for municipal water supply. A surface-water 

treatment plant was built post 1995, providing for half of the industrial and private water 

demands (Phillips et al. 2007). Based on local drillers’ records, about 60 percent of 

groundwater wells in the valley are for domestic use, 27 percent for irrigation, 4 percent 

for public supply, and 7 percent for other uses such as industrial use (Phillips et al. 2007).  
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Figure 2.3. San Joaquin Valley region map with the eight counties studied labeled. Image 

originating from the “San Joaquin Valley Greenprint State of the Valley Report” published by 

Fresno Council of Governments, and written by Thorne, J.H., Roth, N.E., Boynton, R.M., 

Woodard, N. (2014).  

 

 

2.3.3 Water Quantity Concerns  

The consequences of climate change have been observed in temperature, 

precipitation, and runoff data.  By comparing these observed parameters in change from 

“naturally” and “anthropogenically” forced global change models, Barnett et al (2008) 

demonstrated developing temperature, precipitation, and runoff trends in the Western 

United States beyond natural variability and attributed about 60% of 1949–1999 trends to 

anthropogenic catalysts such as increased GHG’s and sulfate aerosols. Therefore, over half 
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of California’s variation in hydrological patterns has been found to be products of 

anthropogenic activity.   

Temperature change is the main driver for disruptions in the hydrological cycle. 

When mean atmospheric temperature increases, the vapor pressure difference between 

ocean surfaces and the atmosphere widens, creating a positive feed-back loop perpetuating 

more water evaporation. As reported by the National Centers for Environmental 

Information, California has sustained a gradual increase of 1.1–2° F in temperature over 

the past century. Minimum and maximum annual temperatures have increased, but 

minimum temperatures (+1.6 to 2.5° F) have warmed more than maximum temperatures 

(+0.4 to 1.6°F) (NOAA 2015). Warmer temperatures push the snow line higher and lessen 

snowpack, abating California’s most significant water storage reservoirs.  According to the 

California Department of Water Resources, a trend towards more rain than snow in total 

precipitation volume has evidenced in recent decades.  

Variation in runoff timing has materialized from greater temperatures and rainfall, 

shifting runoff to earlier in the spring season. Numerous studies of changes to California 

streamflow patterns have confirmed such behavior, supporting evidence that seasonal 

fraction of runoff flowing through the spring season has decreased throughout the 

twentieth century (Roos 1991; Aguado et al. 1992; Dettinger and Cayan 1995; Freeman 

2002; Stewart et al. 2005). Precipitation patterns have increased winter runoff and 

decreased spring runoff, which is in contrast with the design of California’s water 

infrastructure. Flood protection and water supply infrastructure have been developed for 

historical conditions, built to catch slow spring runoff and deliver it to users during the 

more arid summer and winter months. Although shifting runoff timing is not a certain 
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manifestation of climate change, a larger volume of runoff is flowing downstream earlier 

in the season (Aguado et al. 1992; Dettinger and Cayan 1995; Stewart et al. 2005). Without 

adaptations to existing water infrastructure, earlier runoff reduces the state’s ability to refill 

reservoirs during and after the flood season has occurred.  

The Sierra Nevada snowpack has exhibited corroding trends in recent years due to 

annual precipitation falling as rain and greater temperatures reaching high altitudes causing 

snowmelt.  Historically, the montane landscape has been a reliable snow zone, capturing 

reservoirs of fresh water as snow from late March until early summer. In recent years, 

studies have warned of a decreasing trend in snowmelt-fed basins correlating with 

temperature increases throughout the Western United States (Regonda et al. 2005; Mote et 

al. 2005). Snowpack is measured in “snow water equivalent” (SWE), or how much water 

would result if the snow were to melt. On April 1, 2015, the Sierra Nevada measured a 

record-breaking 10 percent of normal “snow water equivalent” (SWE) for the season 

during the second warmest year in California, recording an average temperature of 1.5° F 

higher than 2014. Following the lowest SWE levels ever documented, 2016 SWE levels in 

Northern California measured 90 percent of normal SWE on April 1 (Swain et al. 2016). El 

Niño conditions bolstered this year’s mountain snowpack – drenching Northern California 

in a series of March storms. Despite a wet winter in Northern California, Southern 

California continued to endure extremely dry conditions. Normally El Niño winters flood 

both North and South California, but a high pressure “ridiculously resilient ridge” over the 

Pacific Ocean buffered storms from the South (Swain et al. 2016). Lien-Mager (2016), a 

spokeswoman for the Association of California Water Agencies, reflected on the 

deepening of snowmelt depletion after the April 2016 reading, “[this] flips our system on 
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its end. It is designed to capture gradual runoff from snowmelt. If we’re moving away from 

that kind of pattern, then we may be getting too much runoff at a certain time, and we 

won’t necessarily be able to capture it all,” (Upton 2016). Overall, the main observed 

effects warmer temperatures have on snowpack have included shifts in ratio of rain to 

snow, delays and reductions in snow season, and expedited spring snowmelt.  
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CHAPTER 3  

 

Literature Review 

 

3.1 CALIFORNIA: OBSERVED AND FUTURE CLIMATE  

The impacts of climate change are expected to exacerbate existing demands on 

California’s water resources. The West’s climate is highly variable in both space and time, 

causing known hydrological patterns to become vulnerable under consequences of climate 

change. A shifting network of heat, moisture, and energy between the atmosphere and 

ocean determine conditions of precipitation over the region. Whether this moisture falls as 

snow or rain is contingent on the region’s topography.  

Historically, the majority of Western precipitation has been experienced as snow, 

capping the Sierra Nevada Mountains while awaiting trickle-down in the spring. Sierra 

Nevada snowpack provide water storage by reserving supply during winter months to 

avoid flood risk, and expelling water into valleys and rivers for irrigation during spring and 

early summer months. Surrounding the snowcapped mountains, arid rain-shadow 

landscapes sit leeward across from irrigated windside areas fed mainly by rivers. 

Circumstances of river flow are dependent on snowpack accumulation and its subsequent 

meltwater. Nearly all major rivers flowing through the Western United States are fed from 

snowpack mountain watersheds, and so a reduction in snowcap mass greatly affects water 

resources for irrigation and human use.    

The consequences of climate change have been observed in temperature, 

precipitation, and runoff data. Concerns of major fluctuations in the hydrological cycle 
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causing increases in water demand have spurred the need for a greater understanding of 

climate change repercussions on California’s water supply. To estimate future burdens of 

climate change borne by California’s water resources, researchers determine projected 

changes in climatic variables and evaluate the resulting divergence in streamflow from 

observed historical patterns via global climate change models (GCMs). By comparing 

these observed parameters in change from “naturally” and “anthropogenically” forced 

global change models (GCMs), GCMs have demonstrated developing temperature, 

precipitation, and runoff trends in the Western United States beyond natural variability. 

Although GCMs have projected an increase in temperature for California of between 2.5 

°C to 9°C consistently by 2100, there is much greater variability in precipitation 

projections (Dettinger 2005). In order to reach more sound conclusions on precipitation 

and resulting runoff and streamflow patterns, research has been conducted using a 

multitude of GCMs and emissions scenarios. Therefore, the scientific community has not 

reached a general agreement on precipitation or streamflow projections for California.   

 

3.1.1 Temperature change  

Temperature change is the main driver for disruptions in the hydrological cycle. 

When mean atmospheric temperature increases, the vapor pressure difference between 

ocean surfaces and the atmosphere widens, creating a positive feed-back loop perpetuating 

more water evaporation. As reported by the National Centers for Environmental 

Information, California has sustained a gradual increase of 1.1–2° F in temperature over 

the past century. Minimum and maximum annual temperatures have increased, but 

minimum temperatures (+1.6 to 2.5° F) have warmed more than maximum temperatures 
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(+0.4 to 1.6°F) (NOAA 2015). Warmer temperatures push the snow line higher and lessen 

snowpack, abating California’s most significant water storage reservoirs.  According to the 

California Department of Water Resources, there is evidence of a trend towards more rain 

than snow in total precipitation volume has evidenced in recent decades. As seen in Figure 

3.1, percentage of precipitation falling as rain is more common in later years of record. 

 

 
Figure 3.1. Percentage of precipitation falling as rain over 33 main water supply watersheds in 

California during the period of October 1948 to September 2012. Data are analyzed using Western 

Region historic precipitation and freezing level re-analysis and published by the California 

Department of Water Resources. Observed watersheds experience a mean of 72 percent of 

precipitation as rain overall; red bars indicate a higher percentage of rain than the mean for a given 

year, blue bars demonstrate a lower percentage of rain than the mean for a given year. Figure from 

the “California Water Plan” 2013 update, published by the Division of Integrated Regional Water 

Management within the Department of Water Resource. Retrieved from 

http://www.water.ca.gov/waterplan/docs/cwpu2013/Final/Vol2_SanJoaquinRiverRR.pdf.  

  

3.1.2 Runoff timing  

Variation in runoff timing has materialized from greater temperatures and rainfall, 

shifting runoff to earlier in the spring season. Numerous studies of changes to California 

streamflow patterns have confirmed such behavior, supporting evidence that seasonal 

fraction of runoff flowing through the spring season has decreased throughout the 
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twentieth century (Roos 1991; Aguado et al. 1992; Dettinger and Cayan 1995; Freeman 

2002; Stewart et al. 2005). Precipitation patterns have increased winter runoff and 

decreased spring runoff, which is in contrast with the design of California’s water 

infrastructure. Flood protection and water supply infrastructure have been developed for 

historical conditions, built to catch slow spring runoff and deliver it to users during the 

more arid summer and winter months. Although shifting runoff timing is not a certain 

manifestation of climate change, a larger volume of runoff is flowing downstream earlier 

in the season (Aguado et al. 1992; Dettinger and Cayan 1995; Stewart et al. 2005). Without 

adaptations to existing water infrastructure, earlier runoff reduces the state’s ability to refill 

reservoirs during and after the flood season has occurred.  

 

3.1.3 Snowpack accumulation  

The Sierra Nevada snowpack has exhibited melting trends in recent years due to 

annual precipitation falling as rain and greater temperatures reaching high altitudes causing 

snowmelt.  Historically, the montane landscape has been a reliable snow zone, capturing 

reservoirs of fresh water as snow from late March until early summer. In recent years, 

studies have warned of a decreasing trend in snowmelt-fed basins correlating with 

temperature increases throughout the Western United States (Regonda et al. 2005). 

Snowpack is measured in “snow water equivalent” (SWE), or how much water would 

result if the snow were to melt. On April 1, 2015, the Sierra Nevada measured a record-

breaking 10 percent of normal “snow water equivalent” (SWE) for the season during the 

second warmest year in California, recording an average temperature of 1.5° F higher than 

2014 (Swain et al. 2016). Following the lowest SWE levels ever documented, 2016 SWE 
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levels in Northern California measured 90 percent of normal SWE on April 1 (Swain et al. 

2016). El Niño conditions bolstered 2016 early mountain snowpack – drenching Northern 

California in a series of March storms. Despite a wet winter in Northern California, 

Southern California continued to endure extremely dry conditions. Normally El Niño 

winters flood both North and South California, but a high pressure “ridiculously resilient 

ridge” over the Pacific Ocean buffered storms from the South (Swain et al. 2016). Overall, 

the main observed effects warmer temperatures have on snowpack have included shifts in 

ratio of rain to snow, delays and reductions in snow season, and expedited spring 

snowmelt.  

 

3.2 METHODOLOGY OF ASSESSING CLIMATE CHANGE IMPACTS ON 

 CALIFORNIA STREAMFLOW 

  To assess future consequences of climate change on hydrological systems, research 

is conducted using two methods: (1) an evaluation of hypothetical scenarios involving 

increases in temperature and/or CO2 and; (2) an assessment of projected climatic 

fluctuations via general circulation model (GCM) outputs. Either methodology estimates 

shifts in climatological variables (for example temperature, precipitation, and 

evapotranspiration), which can be used to assess the burden that greater climate change 

places on hydrological components such as streamflow. Figure 3.2 provided by Vicuna and 

Dracup (2005), illustrates the above methodologies used to determine hydrologic 

implications of climate change from initial CO2 emission scenario information. 
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Figure 3.2. Schematic representing two approaches to determine changes in the hydrological cycle 

in accordance with climate change impacts.  

 

 

3.2.1 Establishing changes in temperature and precipitation  

 Projected hypothetical scenarios are valued for representing a wide range of end-of-

century temperature possibilities (+2°C to +5°C), while testing for both increases and 

decreases in precipitation projections (Vicuna and Dracup 2005). The wide range of 

plausible future climate shifts allows for a thorough assessment of alternative projections 

and basin sensitivity, but does not help determine the probability of climate scenarios. 

Therefore, hypothetical projections cannot aid in understanding the most probable impacts 

of climate change, rendering the approach unhelpful in evaluating future water resource 

management mitigation strategies. With climate change threatening water resources, 

GCMs have largely eclipsed the use of hydrological climate scenarios in climate research 

(Ficklin et al. 2009; Wang et al. 2011; Georgakakos et al. 2012; Pierce t al. 2013; Stewart 

et al. 2015; Ishida et al. 2017).  
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 Unlike broad hypothetical temperature and precipitation scenarios, GCMs are 

computer-intensive coupled models allowing for simulations of atmosphere-land-ocean-ice 

interactions. Complex in nature, GCMs perform calculations over a given area across 

horizontal and vertical dimensions through a series of timesteps. Popular global models 

employed by recent climate change studies are the UK’s Hadley Center (HadCM2 and 

HadCM3), the NCAR (CCM3 and PCM), and the Canadian Center for Climate Modeling 

and Analysis Canadian (CGM1). In order to successfully use GCM outputs, data must be 

downscaled to parallel the respective hydrological model’s spatial and temporal resolutions 

so that outputs may be applied to surface variables at the basin scale.  

 Localized climate changes over complex orography impacts convective 

precipitation, requiring downscaling techniques to bridge the gap between coarse 

resolutions of GCMs and local sub-grid catchment scales. Thus downscaling efforts are 

especially pertinent in regions of varying topography such as snowmelt-fed basins and 

watersheds. Prevailing models of downscaling in climate modeling literature are the 

following: delta/ratio perturbation methods; stochastic/statistical downscaling; and 

dynamic downscaling (Wood et al. 1997). Although a simple perturbation method allows 

for higher resolution observations, current GCM studies more often apply either statistical 

or dynamic downscaling methods for increased confidence in climate change impact 

assessments. Statistical downscaling is a two-step process involving (1) the creation of 

statistical relationships between local climate variables (e.g. precipitation and surface air 

temperature) and large-scale predictors (e.g. sea level pressure), and (2) the application of 

such determined relationships to GCM outputs in order to establish future local climate 
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predictions (Vicuna and Dracup 2005). Curtailing inconsistencies in GCM output data aids 

in lessoning general ambiguity in observed climate modeling trends.  

 

3.2.2 Determining changes in natural runoff  

 To determine fluctuations in surface streamflow, historical temperature and 

precipitation data are used to project changes in natural runoff. This process can either be 

completed via statistically or physically based models. Statistically based methods employ 

either regression or observational analysis to determine the relationship between runoff and 

temperature/precipitation, but are unable to evaluate how climate forcings interact with the 

physical environment. Because of this shortcoming, most recent studies for the California 

mountainous region are physically based models. Physically based models incorporate the 

important physical processes and mechanisms necessary to deduce a hydrological basin’s 

response to climate change. Although it is possible for researchers to build a personal 

model for the given study area, all literature included use already established models. Most 

common physical models include: the SUGS Precipitation-Runoff Modeling System 

(PRMS); the Soil and Water Assessment Tool (SWAT) (Ficklin et al. 2009; Stewart et al. 

2009); the U.S. National Weather Service River Forecast System Sacramento Soil 

Moisture Accounting and Anderson Snow Models (SAC-SMA); the Water Evaluation and 

Planning System (WEAP) model; the Variable Infiltration Capacity (VIC) model; the 

Weather Research and Forecasting Model (WRF) (Pierce et al. 2013; Ishida et al. 2017);  

the Integrated Forecast and Reservoir Management (INFORM) (Georgakakos et al. 2012); 

and The Weather Research and Forecasting Model (WRF) (Ishida et al. 2017).  
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3.3 GCMS: PREDICTED TRENDS IN ENVIRONMENTAL INDICATORS  

 To estimate future burdens of climate change borne by California’s water 

resources, researchers determine projected changes in climatic variables and evaluate the 

resulting divergence in streamflow from observed historical patterns. Recent studies 

exhibited a wide range of solutions to decrease uncertainty – experimenting with different 

GCMs’ outputs and GHG emission scenarios (Miller et al. 2003; Hayhoe et al. 2004; 

Ficklin et al. 2009; Wang et al. 2011; Ishida et al. 2017), narrowing uncertainty variables 

to the local level (Dettinger 2005; Stewart et al. 2015), and running multiple different 

modeling programs to appraise statistically significant calculations across all run GCMs 

(Maurer and Duffy 2005; Wang et al. 2011; Pierce et al. 2013; Ishida et al. 2017). 

 

3.3.1 Temperature and precipitation 

The IPCC Fifth Assessment Report (IPCC 2013) describes warming projections as 

“vertically certain” and GCMs consistently forecast a temperature increase in California 

during both summer and winter seasons. Depending on the chosen emission scenario, 

summer temperatures are estimated to endure an increase between 3.87°F and 14.9°F by 

2100. Likewise, winter temperatures are assessed to increase between 3.87°F and 7.2°F 

(Cavagnaro et al. 2006). Future simulations conducted by Scripps Institution of 

Oceanography calculate that by 2060–2069, mean temperatures will be 3.4°F to 4.9°F 

higher than their 1985–1994 counterparts (Cavagnaro et al. 2006).  

Despite a general consensus in warming trends, there is broad variability in 

precipitation projections depending on the GCM formed. End of the century Northern 

California precipitation projections range from about –300 to +250 mm yr-1 (He et al. 
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2013). Contradictory findings can be attributed to researchers considering differing GCM 

outputs, utilizing various GHG emission scenarios, and different modes of downscaling via 

dynamical methods to better simulate the complex Sierra Nevada orography (Kiparsky and 

Gleick 2003). Research conducted by Caldwell (2010) indicated that regional models often 

overpredict, while large-scale models tend to under predict future California precipitation 

forecasts. For example, Mauer (2007) infers of an increase in winter-time precipitation 

over Northern California and a smaller increase of wintertime precipitation across 

Southern California from a statistical downscaling of 11 GCMs, yet Ishida et al. (2017) 

found no significant trend among 4 GCMs in annual accumulated average precipitation 

over a large area of 8 California basins.  

Additional studies have determined contradicting evidence within their respective 

studies, such as Cayan et al. (2008). As analyzed from one GCM simulation, Cayan et al. 

(2008) saw a 10–20% reduction in precipitation across California, yet described increased 

future extreme precipitation events over Northern California similar to Pierce et al. (2013). 

Pierce et al. (2013) determined mixed precipitation findings across 25 dynamically and 

statistically downscaled models; of the 25 model projections evaluated, 21 GCMs shown a 

decrease in precipitation by 2060s, with a mean reduction of 6-14 days yr1 and a general 

precipitation decrease of about 5.7%. In the same study, 16 of the 25 GCMs determined a 

daily precipitation intensity increase of 5.3% annually. 

 

3.2.2 Loss of snowpack  

Results of recent downscaled studies propose that as temperatures increase 

nationally, more precipitation will occur earlier in the spring and fall as snow (Knowles et 
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al. 2006; Null et al. 2010; Hanak and Lund 2011). As discussed earlier, increasing 

temperatures will reduce Northern California snowpack in thickness and duration. 

However, apart from this general agreement, there is substantial ambivalence between 

GCM projections in both the spatial and temporal magnitude of snowpack deterioration. 

According to Scripps Institution of Oceanography modeling research, the Sierra Nevada 

snowpack will endure a 48–65 percent loss from the 1961–1990 average depending on 

warming scenario (DWR 2015).  A bleaker picture is set by Meisen (2011), with 

projections of 70–90% snowpack reduction by the turn of the century if current rates of 

emissions persists. If the lowest emission scenario is actualized, Meisen (2011) calculates a 

still substantial decrease of at least 35–45% by 2100.  

Reductions in snowpack are apt to increase flood peak flows and flood volume, 

complicating flood control methods dependent on maintaining historical precipitation 

trends (Hanak and Lund 2011). Reservoirs downstream from the Sierra Nevada will 

experience probable major flood risks due to a culmination of climate change effects: 

enhanced temperatures, possible precipitation decline, and inflated flood volumes. 

Research completed by Cayan et al. (2008) referenced earlier, describes further flood 

amplification by a projected increase in major storm intensity and frequency due to climate 

change.      

 

3.4 GCMS: PREDICTED TRENDS IN RUNOFF AND NATURAL 

STREAMFLOW 

 Variation in California’s streamflow patterns were first explored by Roos (1987, 

1991), in a study focusing on the Sacramento basin. Roos’ research concluded that 
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seasonal fractional runoff during the spring season (April–July) was decreasing during the 

20th century. More recent studies no longer utilize seasonal fractional runoff as a parameter 

for change because this measure could indicate changes in the spring runoff, or winter 

runoff, or both. In order to prevent uncertainties, Dettinger (2005), Cayan et al. (2009), and 

He et al. (2013) introduce different methodologies to measure changes in streamflow 

patterns. Dettinger (2005) focuses on more common climate change projections than 

extreme projections using a resampling method, “projection distribution functions” 

(PDFs). Cayan et al. (2009) employed two downscaling methods from the 2009 California 

Assessment: constructed analogues downscaling daily large-scale data, and bias correction 

and spatial downscaling which downscales monthly data, with a random sampling 

technique to generate daily values.  Whereas, He et al. (2013), utilized flow-weighted 

timing, or “center of mass” (CT) of streamflow, as a metric to determine runoff timing.  

 Based on the findings of Dettinger (2005) and Cayan et al. (2009), the cumulative 

effects of climate change on total runoff volumes is inconclusive, other than describing a 

shift to an earlier, shorter spring snowmelt. Similarly, He et al. (2013) concluded broad 

annual streamflow variation between –41 and +16.2% (based on a precipitation ratio 

change between 0.8 and 1.2). Although, He et al. (2013) was able to determine the runoff 

center of mass (CT) will shift by 15–46 days on average due to temperature rises, and vary 

by 1-4 days on average due to temperature increases. High variability of streamflow will 

lead to a deviation in CT from the dry season (April–September) to the wet season 

(October–March).  

 On the other hand, a more recent study completed by Stewart et al. (2015) 

evaluating the A2 IPCC scenario with CMIP3 GCM, found an increase in overall 
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occurrence of streamflow exceeding 150% of historic monthly averages for winter and 

increased fluctuations in extreme low flows (<50% of historic monthly averages) during 

summer months by 2099. Further variability in flow volume was recognized under the 

IPCC A1B scenario with CCSM3.0 GCM by Georgakakos et al. (2012), as results 

concluded an earlier shift in monthly average streamflow.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 36 

CHAPTER 4 

  

BACKGROUND ON UTILIZED MODELING PROGRAM AND CLIMATE 

MODELING DATA  

 

4.1 INTRODUCTION 

This paper projects two GCMs, The First Institute of Oceanography-Earth System 

Model (FIO-ESM) and the Met Office Hadley Center (HasGEM2-ES), onto a simulated 

Upper Merced Basin hydrological SWAT map. GCM data are projected from 2040-2099, 

under two likely greenhouse gas emission scenarios (RCP6.0, and RCP8.5). The SWAT 

program is a prolific watershed model within the scientific community, and has been 

utilized to investigate climate change effects on water resources by hundreds of case 

studies (Rosenberg et al. 1999; Stonefelt et al. 2000; Fontaine et. al 2001; Schuol et al. 

2008; Ficklin et al. 2010; Ficklin et al. 2013).  

 To better define unique topographical areas within the Upper Merced Basin, 

SWAT allows the watershed to be partitioned into various subwatersheds called 

hydrological response units (HRUs). HRUs are grouped by comparable geomorphic and 

hydrological properties (Flugel 1995; Ficklin et al. 2009). A specific HRU is classified 

using soil, slope, and land use data, which were acquisitioned from government websites. 

Utilizing a strategy employed by Ficklin et al. (2009) climate change sensitivity in the San 

Joaquin watershed research, only land, soil, and elevation properties constituting over 5% 

of the subbasin were used in this study’s HRU definition. Water delineation within the 

units is split into five storage areas: canopy interception, snow, soil profile, shallow 



 37 

aquifer, and deep aquifer. Flow generation is found by an aggregation of flow across all 

included HRUs (Arnold et al. 2012).  

 

4.2 SOIL AND WATER ASSESSMENT TOOL (SWAT) 

SWAT is a publically available hydrologic and water quality model developed by 

the United States Department of Agriculture-Agricultural Research Service (USDA-ARS) 

and is an extension of the ArcGIS program. The SWAT model is utilized by the U.S. 

Environmental Protection Agency (U.S. EPA) in their Better Assessment Science 

Integrating Point and Nonpoint Sources (BASINS) software interface, employed by over 

250 peer-reviewed published articles across many scientific disciplines (Gassman 2007). 

Figure 4.1 shows a schematic of SWAT’s water management pathways.  

The purpose of the project is to predict the impact of climate change on streamflow 

and water balance within the basin. SWAT can be utilized to run simulations for 

hydrological cycle, agricultural pollutant transport, weather conditions, and plant growth. 

To split the watershed, SWAT divides the region into multiple HRUs (Neitsch 2005). HRU 

water balance is defined by five storage components: canopy interception, snow, soil 

profile, shallow aquifer, and deep aquifer. SWAT evaluated flow generation across all 

HRUs in a subwatershed and maps the route through channels and reservoirs to the outlet 

(Neitsch 2005).  

SWAT is physically based. Instead of using regression equations to describe the 

relationship between input/output variables, SWAT uses weather, soil, topography, 

vegetation, and land management data to express water and sediment movement, crop 

growth, and nutrient cycling. The program is especially adapted for agricultural 
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watersheds, performing analyses such as Total Maximum Daily Load (TMDL) and Best 

Management Practices (BMPs) evaluations.  

Surface runoff predictions are derived from a similar method as CREAMS runoff 

model (Ficklin et al. 2010). Total runoff volume is determined with a SCS curve number 

method, which encapsulates soil, land use, and management data (USDA-SCS 1984). 

Potential evaporation is estimated using the Penman-Monteith method. This method is 

especially well suited for climate change scenarios that account for variation in CO2 levels. 

Soil erosion and sediment routing equations such as the Modified Universal Soil Loss 

Equation (MUSCLE) involving nutrient outputs, are calculated using the SWAT platform. 

Although this paper does not focus on nutrient loads and daily nutrient runoff loses, SWAT 

is used to evaluate levels based on concentration in the top soil layer, the MUSCLE 

equation, and a soil-to-land use type ratio (Arnold et al. 1998).  

 

4.3 THEORETICAL BACKGROUND OF SWAT  

 The Soil and Water Assessment Tool (SWAT) is an established hydrological model 

designed to simulate water availability, sediment levels, and agricultural chemical transport 

of an entire watershed. The platform allows for the simulation of climate, hydrology, crop 

growth, and erosion parameters under current and future projected conditions of climate 

change. In order to build a physically based and “quasi-physically based” model, SWAT 

employs methods to establish a hydrologic water budget, hydraulic river routing, reservoir 

simulation, diversion simulation, and snow pack simulation (Ficklin 2010).   
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4.3.1 Water yield 

The hydrologic inputs of SWAT are based on the water balance equation applied to flow of 

water through soil:  

(1) 

𝑆𝑤𝑡 = 𝑆𝑤𝑜 +  ∑(𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)

𝑛

𝑖=1

 

 

The above water balance equation simulates the land phase of the hydrological cycle by 

evaluating the following naturally occurring processes: precipitation, surface runoff, 

evapotranspiration (ET), recharge, and soil water storage.  

 

4.3.2 Surface runoff  

The Soil Conservation Service (SCS) curve number procedure (USDA-SCS 1972) method 

is used for estimating surface runoff and infiltration volumes using daily rainfall data. For 

each hydrological response unit (HRU), SWAT simulates surface runoff volumes and peak 

runoff rates. The SCS curve number equation utilized to estimate surface runoff is:  

(2) 

𝑄𝑠𝑢𝑟𝑓 =  
(𝑅𝑑𝑎𝑦 − 0.2𝑆)2

( 𝑅𝑑𝑎𝑦 + 0.8𝑆)
 

 

where, Qsurf is the daily surface runoff or rainfall (mm), Rday is daily rainfall (mm), and S is 

the retention parameter (maximum potential difference between rainfall and runoff from 

the onset of the rainstorm) (mm).  
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SCS assigns three preliminary moisture conditions: I – dry (wilting point), II – average 

moisture, and II – wet (field capacity) (Shawul 2013). The lowest value the daily curve 

number can simulate for dry conditions is moisture condition I. Moisture conditions I and 

III are calculated using Eqs. (3) and (4), respectively (Shawul 2013).  

 

4.3.3 Retention parameter 

There are two methods for calculating the retention parameter within SWAT. The 

“traditional” method is to enable the retention parameter to fluctuate with soil profile water 

content (Saleh et al. 2009). A more responsive evaluation of the retention parameter is the 

second method, which allows the retention parameter to vary with plant evapotranspiration 

(ET). By calculating daily CN as a function of plant ET, the value reflects the surrounding 

climate instead of possible soil storage (Neitsch et al. 2005). The daily retention parameter 

as a function of plant ET can be computed with the following equation:  

(3) 

𝑆 = 𝑆𝑝𝑟𝑒𝑣 + 𝐸𝑂 ∗ exp (
−𝑐𝑛𝑐𝑜𝑒𝑓 − 𝑆𝑝𝑟𝑒𝑣

𝑆𝑚𝑎𝑥
) − 𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 

 

where S is the retention parameter for a given day (mm), Sprev is the retention parameter for 

the previous day (mm), EO is the potential evapotranspiration for the day (mm), cncoef is 

the weighting coefficient used to calculate the retention coefficient, Smax is the maximum 

value the retention parameter can accumulate per day (mm), Rday is daily rainfall (mm), 

and Qsurf is surface runoff (mm).  
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4.3.4 Evapotranspiration  

SWAT uses two methods to calculate potential evapotranspiration (ET) – Hargreaves 

(Hargreaves et al. 1985) and Penman-Monteith (Monteith 1965). The Hargreaves method 

needs only daily air temperature to evaluate ET. Penman-Monteith method applies solar 

radiation, air temperature, wind speed, and relative humidity as inputs. The equations for 

Hargreaves (Hargreaves et al. 1985) and Penman-Monteith (Monteith 1965) are below, 

respectively:  

 

(4) 

𝐸𝑇𝑂 = 0.0023 (𝑇𝑐 + 17.8)𝑅𝑎(𝑇𝑎)1/2 

where, T is daily mean temperature (°C), 𝑇c is monthly mean temperature (°C),  

𝑇𝑑 is the difference between mean minimum and mean maximum temperatures for the 

month (°C), and 𝑅𝑎is extra-terrestrial solar radiation.  

 

(5) 

𝐸𝑇𝑂 =
0.408∆(𝑅𝑛 − 𝐺) +  𝛾

900
𝜏 + 273 𝜇2(𝑒𝑠 − 𝑒𝑎)

Δ + 𝛾(1 + 0.34𝜇2)
 

 

where, T is daily mean temperature (°C), 𝑢2 is mean wind speed (𝑚−2 𝑑−1), 𝑅𝑛 is net 

radiation (MJ𝑚−2 𝑑−1), G is soil heat flux density (MJ𝑚−2 𝑑−1), 𝛾 is the psychometric 

constant (kPa 𝑂𝐶1), 𝑒𝑠 is saturation vapor pressure (kPa) derived from mean air 

temperature (°C) per day, and 𝑒𝑎 is actual vapor pressure (kPa) derived from mean dew 

point temperature (°C) per day.  
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4.3.5 Sediment yield  

 Soil erosion rate and sediment yield are estimated for each HRU using the 

Modified Universal Soil Loss Equation (MUSCLE). MUSCLE simulates rate of erosion 

and sediment transport using surface runoff volume and peak rate. The MUSCLE equation 

is as follows:  

(6) 

 𝑆𝑒𝑑 = 11.8 (𝑄𝑠𝑢𝑟𝑓 ∗ 𝑞𝑝𝑒𝑎𝑘 ∗ 𝑎𝑟𝑒𝑎ℎ𝑟𝑢)0.56 ∗  𝐾𝑈𝑆𝐿𝐸 ∗ 𝐶𝑈𝑆𝐿𝐸 ∗ 𝑃𝑈𝑆𝐿𝐸 ∗ 𝐿𝑆𝑈𝑆𝐿𝐸 

 

where, Qsurf is surface runoff volume (mm/ha), qpeak is peak runoff rate (m3/s), areahru is 

area of a given hydrologic response unit (HRU) (ha), KUSLE is the USLE soil erodibility 

factor, CUSLE is the USLE cropping and management factor, PUSLE is the USLE 

conservation support practices factors, and LSUSLE is the USLE slope length (m) and 

steepness factor.  

 

4.4 SENSITIVITY ANALYSIS: LH-OAT 

 “Sensitivity is a measure of the effect of change in one factor regarding to change 

in another factor” (McCuen 1973). An analysis of sensitivity determines which parameters 

the model is most sensitive to, so that eventual model calibration is optimized. Utilizing 

the Latin-Hypercube (LH) One-factor-At-a-Time (OAT) random sampling procedure built 

into the SWAT interface, sensitive parameters were able to be identified (van Griensven, 

2005). The concept of LH simulation is derived from the Monte Carlo simulation but 

utilizes a stratified sampling instead of a random sampling (Melesse et al. 2011, Mishra 
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2013). Parameter distribution is split into n ranges, each range with the possibility of 

happening equal to 1/n.  

Below is the formula for the Monte Carlo simulation: 

(7)  

𝑌 = f(𝑥1, 𝑥2, … … … . 𝑥𝑘) 

 

x are independent variables.  

 

The range of each variable is split into non-overlapping intervals and one value from each 

interval is chosen. From here, n values of x1 is randomly paired to n values of x2. These 

pairs are randomly combined to n value of x3 to form n triplets, which is then repeated to 

form n k-tuplets called the LH Sample (LHS). From here, the OAT scheme performs the 

sensitivity analysis via SWAT (Melesse et al. 2011). The most sensitive parameters were 

identified using this method.  
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Figure 4.1. Schematic of water movement pathways in SWAT. Image pulled from “Soil and Water 

Assessment Tool Theoretical Documentation—Version 2005”, the work of the Soil and Water 

Research Laboratory completed by Neitch et al. (2005).  

 

 

4.5 CALIBRATION AND VALIDATION METHODS: SWAT-CUP 

 The process of calibration is necessary and crucial to model application. Calibration 

is a procedure that seeks to evaluate and further refine model parameters as to compare 

observed and simulated values. Validation is an enlargement on calibration, the purpose of 

which is to make certain the newly calibrated simulation is aware of all outstanding 

variables, while assuring the model can predict further data accurately outside of the 

calibrated value set.   
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 Calibration and validation are performed using the SWAT Calibration and 

Uncertainty Programs (SWAT-CUP). SWAT-CUP (Abbaspour et al. 2007) is a public 

domain program, which enables a SWAT project to be analyzed though SUFI2, PSO, 

GLUE, ParaSol, and MCMC procedures. Sequential Uncertainty Fitting Program 2 (SUF-

2), a stochastic approach, was chosen to calibrate the model. SUFI-2 expresses uncertainty 

in parameters within a chosen range, allowing for the model result to account for most 

sources of uncertainty in climate driving variable. According to the SWAT-CUP program 

literature, model output variables are calculated at 2.5% and 97.5% levels of LAT-OAT 

output variable cumulative distribution (Abbaspour 2012). SWAT-CUP model results 

therefore provide 95% prediction uncertainly, referred to as 95PPU. To decipher between 

fit and calibration result, the “percentage of observed data enveloped” by the model (P-

factor) and “the thickness of the 95PPU envelope (R-factor) are estimated. It is suggested 

P-factor have a value >70% for discharge, and R-factor exist around 1 (Abbaspour 2012).  

 bR2 was chosen as the model’s objective function. An adjusted coefficient of 

determination R2, bR2 is R2 multiplied by the coefficient of the regression line b. This 

function can range between 0 and 1, where 1 is the goal value. Equation for bR2 is below 

(Krause et al. 2005): 

(8) 

 

𝑏𝑅2 = {
|𝑏|𝑅2𝑖𝑓 |𝑏| ≤ 1

|𝑏|−1𝑅2𝑖𝑓 |𝑏| > 1
  

where, R2 is the coefficient of determination and b is the slope of the regression line 

between the observed and simulated variables.  
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 When b is the coefficient of the regression line, the coefficient of determination is 

computed as (Abbaspour et al. 2004):  

(9) 

 

𝑅2 =
[Σ𝔦(𝑄𝑚,𝑖 − 𝑄𝑚)(𝑄𝑠,𝑖 − 𝑄𝑠

̅̅ ̅)]
2

Σ𝑖(𝑄𝑚,𝑖 − 𝑄𝑚)(𝑄𝑠,𝑖 − 𝑄𝑠
̅̅ ̅)

2  

where, Qm is the mean of observed discharges and Qs is simulated discharge.  

R2 model results are considered “good” if the coefficient was larger than 0.5, and better if 

the coefficient is closer to 1 (Santhi et al. 2001; Moriasi et al. 2007; Abbaspour 2012).   

 From here, the Nash-Sutcliffe coefficient of efficiency (Nash and 

Sutcliffe 1976) and Percent Bias are applied. NSE is evaluated for “goodness of fit” as 

suggested by the American Society of Civil Engineers (ASCE, 1993). The NSE coefficient 

quantitatively describes the accuracy of model outputs, indicating closeness of observed 

data versus simulated data to an equal value (1:1) line.  Model results were considered 

“good” if the coefficient was larger than 0.75, and “decent” if the coefficient was between 

0.36 and 0.75 (Van Liew and Garbrecht, 2003; Larose et al. 2007; Luo et al. 2008). The 

equation for NSE is as follows (Moriasi et al. 2007): 

(10) 

 

NSE = 1
∑ (𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖)

𝑁
𝑖=1

2

∑ (𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ )

2𝑁
𝑖=1
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where, Qobvs,I  is the observed flow for the time step i, Qmod,i is the modelled flow for the 

timestep i, and N is the number of time steps.  

 Percent Bias (PBIAS) is used as a way of statistical analysis to evaluate errors 

within the deviation of data (Moriasi et al. 2007). Essentially, PBIAS measures the 

tendency of modelled data to be larger or smaller than the observed data. Optimal PBIAS 

value is 0.0, indicating accurate modelling. A positive PBIAS value shows an 

underestimation of bias, whereas a negative PBIAS value shows an overestimation of bias 

(Piniewski and Okruszko 2011). PBIAS is determined by the following equation (Moriasi 

et al. 2007): 

(11) 

PBIAS =
∑ (𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖)

𝑁
𝑖=1 𝑥100

∑ 𝑄𝑜𝑏𝑠,𝑖
𝑁
𝑖=1

 

 

where, Qobvs,I  is the observed flow for the time step i, Qmod,i is the modelled flow for the 

timestep i, and N is the number of time steps. PBIAS is expressed as a percentage.  

  

 To evaluate the performance of the chosen statistics, NSE and PBIAS scores can be 

compared to a standard. Moriasi et al. (2007) recommended ranges for monthly statistics, 

which will be used to understand model performance (Table 6.2). Summary statistics of 

relevant functions can be seen in Table 6.3, similarly adapted from Moriasi et al. (2007). 

The data was collected through a literature review of relevant studies under a daily and 

monthly time step. Overall daily NSE proved higher than monthly values, contradicting 

select individual studies; a possible cause for this discrepancy might be larger sample size 

(n on average with daily data (Fernandez et al. 2005; Van Liew et al. 2007). 
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CHAPTER 5  

 

METHODOLOGY  

 

5.1 INTRODUCTION 

 SWAT requires a number of publically available data sets to build a model. These 

data inputs were used to delineate the watershed, create a hydrological response unit 

(HRU) overlay, and run a sensitivity analysis required for calibrating model parameters. 

Daily climate data (maximum/minimum temperature and precipitation), topography, land 

use, soil layers, stream gage information, and streamflow are integrated into the SWAT 

project. All map layers and data sets are projected using the Universal Transverse Mercator 

(UTM) zone 10. Figure 5.1 presents a framework of SWAT assessment for the study of 

climate change impacts on future streamflow (Dlamini et al. 2017).  

The program does not have saved data, so all data used must be manually entered. 

Time series of observed data (e.g. rainfall, minimum/maximum temperature, solar 

radiation, wind speed, humidity) are inputs for water balance table output (Gurung et al. 

2013). Under SWAT, the watershed is divided into subbasins, which are further split into 

Hydrologic Response Units (HRUs) (Neitsch 2015). HRUs are grouped by unique soil, 

land use, and slope characteristics so that areas with similar hydrology are coupled 

together. The initial project was run from 1/1/1979 to 12/13/2013 using a monthly time up 

and a three-year warm-up period (Figure 5.2).  

For this project, ArcGIS (ESRI 10.4) with the extension ArcSWAT version 

2012.10.19 (USDA-ARS 2012) was used. Latin-Hypercube one-factor-at-a-time (LH-
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OAT) evaluated sensitivity analysis and calibration/validation as described above was 

performed through SWAT-CUP 5.1.6.2.  

 

 
Figure 5.1. SWAT framework for climate change assessment on future streamflow. NS=Nash-

Sutcliffe; PBIAS=Percent Bias (Dlamini et al. 2017).  
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Figure 5.2. Upper Merced basin SWAT model run prompt box. Simulation was run from 

01/01/1979 to 12/31/2013 at a monthly-time step. Model inputs are daily (USDA—ARS 2012).  

 

5.2 SWAT MODELING    

5.2.1 Watershed delineation  

 To fashion a simulation in the SWAT program, first the watershed must be 

delineated. The Digital Elevation Model (DEM) is utilized to build the watershed so that 

SWAT could simulate stream networks, runoff, and sub-watersheds within the basin 

(5.1.1a). Further, a shapefile of the Upper Merced Basin acts a “mask” for the watershed. 

The “mask” allows SWAT to focus solely on the Upper Merced Basin, enabling a faster 

simulation overall. Projected layers of data are inputted into the water delineation. The 

project DEM was downloaded from the USGS website, and then projected from North 

American Datum of 1983 (NAD 1983) to UTM_10.    

 After the DEM setup was complete within the Watershed Delineation box (Figure 

5.5), flow direction and accumulation are derived from the DEM. The stream definition 

covered an area of 6430.4 Ha. From here, the stream network was defined using the DEM 

once again. Once a stream network had been established, the whole watershed outlet was 
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selected manually, and the watershed was then delineated. The last steps to watershed 

delineation are allowing SWAT to calculate watershed parameters and the number of 

subbasins within the model (Figure 5.3).  

 

 
Figure 5.3. Upper Merced basin ArcHydro-GIS layer simulated through SWAT. A red line outline 

the watershed, with subbasins split by the purple line, recording gages dotted throughout the 

watershed, and the stream network defined in blue (USDA—ARS 2012).  

 

 
Figure 5.4. Upper Merced basin DEM layer projected in ArcMap through SWAT. Higher 

elevations are in red on the right, flowing into lower elevations represented in yellow/green 

(USDA—ARS 2012).  
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Figure 5.5. Upper Merced basin SWAT model run water delineation box. Stream definition, stream 

network, outlet/inlet definition, watershed delineation, and subbasins are derived from the DEM 

layer (USDA—ARS 2012). 

 

5.2.2 HRU analysis  

 SWAT further defines the area into Hydrological Response Units (HRUs) based on 

slope, soil class, and land use (Figure 5.6). Multiple HRUs were assessed based on a 

percentage of 10%, 20% soil, and 10% slope class percentage as was recommended in the 

SWAT manual. A projected National Land Cover Data (NLCD) set and SWAT’s built-in 

soil classification (STATSGO), further characterized the HRUs. Once slope, soil, and land 

use were successfully overlaid, the HRUs were created and SWAT provided a written 

HRU report to review.  
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Figure 5.6. Upper Merced basin SWAT model run Hydrological Response Unit (HRU) definition 

box. HRUs are further defined by the model using slope, land use data sets, and elevation bands 

(USDA—ARS 2012).  

 

5.3 SWAT DATA INPUTS  

5.3.1 Land cover data    

 To map the watershed’s surrounding land use, the most recent National Land Cover 

dataset (NLCD 2011) from U.S. Geological Survey (USGS) website was employed. 

NLCD 2011 tracks land cover trends and changes over space and time from 2001 to 2011, 

while providing 5-year periodic updates of land cover and subsequent modifications. 

Datum format and projection are NAD83 and Albers Conical Equal Area. The following 

16 land cover classes considered are the following: open water, perennial ice/snow, 

developed-open space, developed-low intensity, developed-medium intensity, developed-
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high intensity, barren land, deciduous forest, evergreen forest, mixed forest, shrub/scrub, 

grassland/herbaceous, pasture/hay, cultivated crops, woody wetlands, and herbaceous 

wetlands. Figure 5.7, shows the general distribution of land use across the watershed.   

 

 
Figure 5.7. Upper Merced basin SWAT model Land Use layer projected through ArcMap. Key for 

land use classes on the left. NLCD set is projected in UTM_10 for the study area (USDA—ARS 

2012).  

 

5.3.2 Topography and soil data  

 Topographic information was accessed for the model from Digital Elevation Model 

(DEM) data. DEMs with an approximate 10m resolution (1/3 arc-second) were used to 

provide more reliable topographical information and streamflow paths for the watershed. 

The original horizontal datum for the obtained DEMs is North American Datum of 1983 

(NAD83) and the vertical datum for elevation is North American Vertical Datum 1988 

(NAVD88), with vertical units in meters.  

 Soils data were acquired through the Soil Survey Geographic database (SSURGO) 

soil layer in order to reduce the computational obligations of the model and ease of use 

(Ficklin et al. 2013; Obispo 2013). SSURGO spatial data includes a geo-referenced vector 

dataset, and the tabular data includes soil chemical/physical properties and soil 
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classifications. The model does not discern between surficial soils due to fluctuating 

denseness and complex arrangement (Figure 5.8). Soil attributes were associated with the 

soil layer using the map unit key (MUKEY).  

 

 
Figure 5.8. Upper Merced basin SWAT model soil layer projected through ArcMap. Key for soil 

classes on the left. STATSGO set is projected in UTM_10 for the study area (USDA—ARS 2012).  

 

5.3.3 Climate data 

 Climate data points were inputted for daily precipitation and daily max/min 

temperature. Weather data observed were gathered from observed were derived from four 

weather stations monitored by the California Data Exchange Center (CDEC) and accessed 

on the CDEC website. Modes of climatic data collection varied at the gauge, but included 

Fenwall Thermistor/HUMICAP H-sensor (temperature/relative humidity), anemometer 

(wind speed), and tipping-bucket rain gauge (precipitation). According to the CIMIS 

website, the program derives reference evapotranspiration using the CIMIS Penman and 

Penman-Monteith equations and general climate data measured over “well-watered grass 

surfaces”, otherwise known as “reference surfaces” (CIMIS 2016). CIMIS estimates 
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additional parameters such as roughness coefficient and aerodynamic resistances from 

previously conducted research. All referenced sites are currently irrigated.  

 Temperature and precipitation information were formatted into simple .txt files, 

with a corresponding station location table communicating the file name and location for 

each gage. To fill short gaps in data, the average maximum and minimum 

temperatures/precipitations were copied from the previous and following days. Similarly, 

average maximum and minimum temperatures/precipitations from previous and following 

years were utilized for longer stretches of missing data. The text files were plugged into the 

SWAT model with the Weather Data Generator box, seen in Figure 5.9.  

 

 
Figure 5.9. Upper Merced basin SWAT model Weather Data Definition prompt box. Observed .txt 

files for max/min temperature, precipitation, and reference table are uploaded using the data 

definition box (USDA—ARS 2012).  

 

5.3.4 Snow data  

SWAT uses a temperature-based approach to snow simulation. The program utilizes 

average daily temperature to classify precipitation as rain or snow (Neitsch et al. 2005). 

SWAT splits the study area by elevation bands, enabling greater assessment of differences 

between snow cover and snow melt based on orographic temperature variation. Three 
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elevation bands were utilized for the Upper Merced Basin, enabling snow accumulated to 

be evaluated. The snow cover component of SWAT allows for a more complex model 

involving non-uniform snow cover in the form of shading, drifting, and topography/land 

cover variations (Neitsch et al. 2005).   

 

5.4 SWAT-CUP CALIBRATION AND VALIDATION  

 SWAT-CUP’s Sequential Uncertainty Fitting program (SUFI2) was chosen for 

program calibration due to relative ease of calibration. Saved simulation output 

(“TxtInOut”) was loaded into the SWAT-CUP program. At the outset, the project was run 

in junction with SWAT 2012, 64-bit software, and the method of calibration chosen was 

SUFI-2. After the project setup through New Project Wizard, SWAT output files were 

linked so that variables from output.rch, output.hru, output.sub, output.res, and output.mgt 

could be calibrated. The starting simulation number (1) and ending simulation number 

(300) were added to the following SUFI2_swEdit.dbf file. SWAT was run with a five-year 

warm-up period, and so the automatically input File.cio was adapted. The number of years 

simulated (SBYR), beginning year of simulation (IYR), and number of years to skip due to 

the warm-up period (NYSKIP) were added to the file. Information on the 

Absolute_SWAT_Values.txt file was not altered in anyway. The file holds a helpful 

registry of generic program ranges for parameters, which served as initial parameters for 

the project.  

 Observed monthly streamflow data from USGS stream gauge at Pohono Bridge 

(USGS ID 112665001941) was used to calibrate and validate SWAT monthly simulated 

streamflow. Observed data from January 1984 – December 2005 (including a 5-year 
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warm-up period) was inputted to Observed.txt file during the calibration process, and 

streamflow data from January 2006 – December 2013 was inputted during the validation 

process. Although the Happy Isles Bridge (HAP) stream gauge also operates within the 

basin, Pohono Bridge (POH) is chosen for calibration and validation because of its 

downstream location and breadth of monitoring. Installed in 1916, POH is the furthest 

downstream gauge within the study area, and measures at an elevation of 1,177 m above 

sea level (United States Geological Survey 2015b). Streamflow is measured in cubic 

meters per second, consisting of water discharged from natural streams or surface water at 

the watershed outlet. POH streamflow data was formatted into a .txt file with a 

corresponding station location table communicating the file name and location for the 

gage.  

 After the calibrated parameters satisfied the objective function, the model was 

validated using the new best parameter ranges. SUFI-2 does not provide a way in which to 

perform validation. Instead, updated streamflow data between 01/01/2006 and 12/31/2013 

were inputted. Observed.txt, SUFI2_extract_rch.def, and file.cio were updated to reflect 

the validation period. The program ran for a final complete simulation of 300 iterations, to 

mimic a calibration run.  

 

5.4.1 Parameter fitting 

 Instead of a “trial and error” deterministic approach to parameter selection, 

stochastic calibration was chosen with the goal of bridging the gap between modeled flow 

and the process within a natural system. Curbing errors with targeted parameters, in order 
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to identify uncertainty within the calibrated model result is important to analyze simulation 

and observation results.  

 Prior to full calibration, the initial model structure and parameters are tested in 

SWAT-CUP. A dummy parameter was set:  

r__ESCO.hru  0   0 

Then Pre, Run, and Post processing was executed within SWAT-CUP. Looking at the 

95PPU result of the initial model run, although the simulated and observed data points 

were not within the same 95PPU band, it was clear that the data followed similar peaks and 

cycles. Acknowledging the similarities in data points, further parameter selection was 

completed. 

 The process of parameterization is to localize or regionalize parameters within the 

watershed. SWAT splits the basin into hydrological response units (HRUs) seeking the 

smallest unit of spatial separation. HRUs are grouped due to likeness in elevation, soil, and 

landuse, as well as spatial parameters such as soil bulk density and hydraulic activity. 

Based on the initial global sensitivity analysis and a review of relevant literature, 

parameters were fitted with an identifier code, indicating the type of change which will be 

applied to the parameter. The code represents how change is to be applied to the parameter, 

showing either that the parameter will be replaced by a given value (v__), will be added to 

an existing parameter value (a__), or will be multiplied by 1+a given value (r__). Most 

parameters were replaced by the best parameter range (v__), but parameters with a smaller 

range (less than one unit in range difference) were multiplied by 1+a given value (r__) for 

greater specificity and relative change.  
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 A t-test is performed through a global sensitivity analysis using the Latin 

hypercube equation. The results describe the sensitivity to the chosen objective function 

resulting from modification to a given parameter. As suggested from the official SWAT-

Cup manual, parameters with a larger t-Stat value and a smaller p-Value, functioned as the 

most sensitive parameters. It is important to note that a Global Sensitivity analysis 

characterizes sensitivity based on “linear approximations” and therefor defines partial 

sensitivity.  

 Since the Upper Merced Basin sits at the foothills of a snowy mountain range, 

elevation parameters are calibrated first, as temperature and precipitation driven snow 

accumulation is assumed in SWAT using elevation bands. Before adding the tested 

sensitive parameters from the LH-OAT sensitivity analysis, Precipitation Lapse Rate 

(PLAPS) and Temperature Lapse Rate (TLAPS) were calibrated first (Figure 5.10). Once 

set, PLAPS and TLAPS were removed from the calibration. Following elevation fixing, 

seven snow parameters were calibrated and set to their best parameter ranges: SFTMP, 

SMTMP, SMFMX, TIMP, SMFMN, SNO50COV, and SNOCOVMX (Figure 5.11).  

 Sensitive groundwater, management, and HRU parameters were calibrated. Initial 

input calibration ranges are suggested by the SWAT-CUP program, and the final best 

calibrated input and ranges were calculated after multiple iterations of 300 simulations 

each. One cycle averaged about three hours. Calibration parameters for the basin are 

shown in Table 6.5. Parameter identifier, initial calibration range used are provided, with 

the best found calibration range. Eight simulations were completed to ensure a final narrow 

parameter range (Figure 5.12). Parameter selection was aided using a published SWAT 

model for Europe, authored by lead SWAT programmers (Abbaspour et al. 2015). Based 
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on initial model performance, relevant parameters were chosen in accordance with report 

guidelines. From the starting calibration, the Upper Merced model exhibited low simulated 

peak flows compared to observed peak flows, but otherwise, an overall overestimation of 

baseflow. In order to localize parameters so that simulated and observed peak flows fit 

more completely, Abbaspour et al. (2015) suggests fitting the following parameters: 

CN2.mgt, ESCO.hru, GWQMN.gw, GW_REVAP.gw, and REVAPMN.gw. At first, 

SWAT provided ranges were utilized for the above listed parameters, except for CN2. 

Users within the SWAT-user Google Group provided clarification on a realistic starting 

range for CN2, causing the initial range to be between -0.2 and 0.2.  

  After inputting suggested groundwater, groundwater, management, and HRU 

parameters, model P-factor and R-factor continued to be small, 0.30 and 0.35 respectively. 

Due to underestimated baseflow, additional groundwater parameters were calibrated 

(GWQMN, ALPHA_BF, REVAPMN, GW_REVAP, and RCHRG_DP). Three additional 

iterations were run, stopping calibration when satisfactory P-factor, R-factor, R2, and NSE 

statistics were found. 
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Figure 5.10. SWAT-CUP calibration compared observed daily streamflow data from USGS gage at 

Pohono Bridge (USGS ID 112665001941) to simulated streamflow in subbasin 5 from years 1984-

2005. Initial calibration ran only TLAPS and PLAPS, elevation parameters. Calibration model 

statistics are representative of prediction uncertainty within the model, expressed as the 95PPU 

band. TLAPS and PLAPS were fixed after one calibration iteration only, so not to excessively 

condition elevation parameter ranges and narrow the 95PPU band. Simulated streamflow is shown 

in red, observed streamflow is shown in blue, and the bounds of the 95PPU band is shown in green.  

 

 
Figure 5.11. SWAT-CUP snow parameter calibration. Using observed daily streamflow data from 

USGS gage at Pohono Bridge (USGS ID 112665001941) to simulated streamflow from a manually 

added outlet in subbasin 5 from years 1984-2005. The following snow parameters were calibrated: 

SFTMP, SMTMP, SMFMX, TIMP, SMFMN, SNO50COV, and SNOCOVMX. In order to avoid a 

small 95PPU, snow parameters were calibrated and fixed after one iteration. Simulated streamflow 

is shown in red, observed streamflow is shown in blue, and the bounds of the 95PPU band is shown 

in green. 

 



 63 

 

 

 



 64 

 

 

 
Figure 5.12. Progression of parameter modifications for the purpose of calibration, with the final 

calibration last. Parameter adjustments increased the 95PPU band, to better represent an envelope 

of good model solutions or outputs. Groundwater (.gw), HRU (.hru), and management (.mgt) 

parameters were calibrated and fixed to the original SWAT project. Figure 5.11 and Figure 5.12 

present the full range of inputted daily climate data from 1984-2013. Simulated streamflow is 

shown in red, observed streamflow is shown in blue, and the bounds of the 95PPU band is shown 

in green. 

 

 



 65 

5.4.2 Observation files 

 Three files inhabit the observation folder: observed_rch.txt, observed_hru.txt, and 

observed_sub.txt. For this project, only the observed_rch.txt was evaluated. Within this 

file, FLOW_OUT_5 (observed streamflow at POH in subbasin #5) was chosen as the 

calibration’s one variable. USGS streamflow was easily copied and pasted from an Excel 

.csv file, once the inputs were arranged by variable name, month, year, and variable value. 

Historical data was split for calibration (1984-2005) and validation purposes (2006-2013) 

in a split-sample calibration/validation procedure. And so, observed_rch.txt runs from 

FLOW_OUT_1_1984 to FLOW_OUT_365_2005.   

 The No Observation file enabled uncertainties that do not have observed data 

available to be simulated such as soil moisture. The .def files are similar to the Extraction 

files and require inputs of simulation beginning and year-end data range, information about 

the time-step, and the total number of subbasins. The No Observation file does not include 

a warm-up period. Lastly, the 95ppu_No_Obs.def file is adjusted. Variable names are 

preloaded into the file. Number of data points was added; 264 (22 years x 12 months).  

 

5.5 CLIMATE SCENARIO MODELING  

 Inputs from two GCMs were plugged into the model – The National Center for 

Atmospheric Research (CCSM4) and the Met Office Hadley Center (HasGEM2-ES). 

Simulated data began at year 2040 and ended at 2099. SWAT climate data input files were 

generated using the WEPP/SWAT Future Climate Input File Generator, produced by 

Joseph Trotochaud, a researcher at Purdue University. The Future Climate Generator 

provided an Excel macrobook, able to execute data manipulation and modify MarkSim 
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outputs for SWAT usage (Trotochaud et al. 2014). MarkSimGCM has been updated to 

include data from the IPCC’s Fifth Assessment Report (CMIP5), which enables users to 

produce future climate data using varying GHG emissions in accordance with specific 

RCPs. Users can run a combination of low, moderate, and/or high emissions pathways, or 

simulate conditions under one climate change scenario.  

 For remaining climate data (solar radiation and relative humidity), SWAT’s own 

WXGEN weather generator (Sharpley and Williams, 1990) was used. Minimum/maximum 

temperature, solar radiation, and relative humidity are generated based on the incidence of 

rain for the day. Generated relative humidity values are accommodated for either wet or 

dry circumstances based on the prevalence of wet or dry days in a given month.  

 

Organization Forcing 

Scenario 

GCM Resolution  

Latitude Longitude  

Met Office Hadley Centre  

RCP6.0; 

RCP8.5 

HadGEM2-

CC 

1.88 1.25 

National Center for Atmospheric 

Research 

CCSM4 1.25 0.94 

Table 5.1. General circulation models (GCMs) used in this study. Met Office Hadley Centre Model 

2 -- Carbon Cycle (HadGEM2-CC); The National Center for Atmospheric Research (CCSM4) 
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CHAPTER 6 

 

RESULTS  

 

6.1 SENSITIVITY ANALYSIS 

 Sensitivity analysis was performed against the observational baseline period within 

the uncalibrated model to pinpoint the most sensitive parameters affecting discharge 

simulation. Table 6.1 reads the streamflow parameters calibrated in decreasing order from 

most sensitive to least within the Upper Merced Basin prior to full calibration. Using the 

global sensitivity analysis, larger t-stats and smaller p-values are indicative of sensitive 

parameters. From the parameters evaluated for sensitivity, nine were chosen to include 

within the model (excluding elevation and snow parameters).  

 

Parameter 
Sensitivity Index 

Number 
Mean Sensitivity Index Unit 

CN2 1 13.31281 --- 

HRU_SLP 2 3.616100307 m/m 

RCHRG_DP 3 1.2010246 --- 

GWQMN 4 1.0945072 mm of water 

GW_REVAP 5 0.998511037 --- 

ESCO 6 0.364438536 --- 

REVAPMN 7 0.248553893 mm of water 

GW_DELA

Y 8 0.005332875 days 

ALPHA_BF 9 -0.057076116 1/days 
Table 6.1. Upper Merced SWAT model sensitivity results obtained through Latin-Hypercube 

sampling. Elevation parameters TLAPS and PLAPS were unranked. Elevation parameters were 

calibrated first, optimizing for NSE and PBIAS, then fixed into the SWAT model. The process was 

repeated for snow parameters.  
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6.2 CALIBRATION AND VALIDATION  

 Model calibration is conditional. From the outset, a myriad of inputs can influence 

calibration. To name a few components affecting calibration are the SWAT hydrological 

model, observation files, chosen objective function, chosen parameters (Abbaspour, K.C. 

et al. 2015; Arnold et al. 2012; Stinsen et al. 2011; Yang et al. 2008). Therefore, each 

model is unique to the respective calibration, and the “goodness of fit” is at the discretion 

of the author. The purpose of calibration is to provide a model with “high-value 

information”, although the quantification of this goal is at the discretion of the analyst.    

 Throughout the calibration process, the P-factor and R-factor of each iteration was 

used to easily understand the goodness of fit. When modeling for an objective function, 

SWAT-CUP generate a P-factor and an R-factor to quantify uncertainties in the model 

calibration. Either expresses performance for whichever objective function is employed. 

The proportion of observations that fall within the 95% prediction uncertainty (95PPU) is 

indicated by the respective P-factor. If most observed data are within the 95PPU band, the 

model is calibrated correctly (Li et al. 2016). On the other hand, the R-factor is a measure 

of the width of 95% probability level. For discharge, ideally the R-factor would be <1.5, 

describing 100% of observations covered, and the P-factor would be >0.7 or 0.75, showing 

little uncertainty in model estimations (Abbaspour et al. 2004). The R-factor found during 

calibration for the basin was 0.92, while the P-factor was found to be 0.83. The model was 

calibrated so that the P-factor was optimized over the R-factor. Looking at the validation 

run statistics, the P-factor stayed high at 0.73, while the R-factor dropped to 0.47 as a 

larger P-factor is achieved at the expense of a high R-factor (Abbaspour et al. 2004). Yet, 

focusing on the P-factor allowed for more significant relationships between model 
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statistics.  

 Calibration/validation results were evaluated using two additional objective 

functions: NSE (Nash and Sutcliffe), PBIAS (percent bias), and RSR (RMSE observation 

standard deviation ratio). These functions can be utilized to optimize model and were 

evaluated based on a report published by Moriasi et al (2007) which presents general 

performance ratings for these statistics (Table 6.3). The program additionally calculates a 

P-factor and an R-factor, each quantifying model prediction uncertainty (Li et al. 2016).  

 

Performance Rating NSE RSR PBIAS (%) 

Very Good 0.75 < NSE ≤ 1.00 

0.00 ≤ RSR ≤ 

0.50 PBIAS < ±10 

Good 0.65 < NSE ≤ 0.75 

0.50 < RSR ≤ 

0.60 ± 10 ≤ PBIAS < ± 15 

Satisfactory 0.50 < NSE ≤ 0.65 

0.60 < RSR ≤ 

0.70 ± 15 ≤ PBIAS < ± 25 

Unsatisfactory  NSE ≤ 0.50 RSR > 0.70 PBIAS ≥ ± 25 
Table 6.2. General performance ratings for NSE and PBIAS statistics under a monthly time step. 

PBIAS = percent bias, NSE = Nash-Sutcliffe efficiency. Adapted from Moriasi et al. (2007). 

 

Statistic 

Calibration Validation 

NSE PBIAS NSE PBIAS 

Daily Monthly Daily Monthly Daily Monthly Daily Monthly 

n 92 33 72 0 128 70 82 0 

Minimum -0.23 0.14 -91.7 NA -1.81 -3.35 -155.6 NA 

Maximum 0.95 0.91 26.5 NA 0.89 0.93 47.18 NA 

Median 0.89 0.79 -1.3 NA 0.67 0.63 -1.9 NA 
Table 6.3. General NSE and PBIAS ratings under daily and monthly timesteps. PBIAS = percent 

bias, NSE = Nash-Sutcliffe efficiency, n = sample size, and NA = not available. Adapted from 

Moriasi et al. (2007). 

 

 In the same study carried out by Moriasi et al. (2007), daily and monthly NSE and 

PBIAS values were compared. Seen above in Table 6.3, overall daily NSE proved higher 

than monthly values, contradicting select individual studies; a possible cause for this 

discrepancy might be larger sample size (n on average with daily data (Fernandez et al. 
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2005; Van Liew et al. 2007). NSE and PBIAS statistics tend to perform better during the 

calibration period over the validation period, further exemplified in Table 6.3.   

 Comparing statistics to Moriasi (2007), the calibration and validation both 

improved significantly from the initial model run. Based on NSE, RSR, and PBIAS 

optimal values (Moriasi 2007), calibrated NSE levels were in the “very good range” and 

validated NSE levels were in the “satisfactory” range (Table 6.4). For the calibrated run, 

PBIAS was in the “very good” range; for the validated run, PBIAS was in the “good” 

range. The initial model had a large RSR value (satisfactory), and decreased significantly 

by the final calibrated run (very good). The validated model had an increased RSR, at 0.60 

(good).  From these statistics, it can be implied that the NSE, RSR, and PBIAS values have 

a positive relationship.  

 

Run 
Statistics 

RSR PBIAS NSE 

Initial  0.68 (satisfactory)  -20.2  (unsatisfactory)  0.49 (unsatisfactory) 

Calibration (1984-2005)  0.28 (very good)  2.4 (very good)  0.92 (very good) 

Validation (2006-2013)  0.60 (good)  13.0 (good)  0.64 (satisfactory) 
Table 6.4. Model statistics RSR, PBIAS, and NSE of streamflow during initial, calibration, and 

validation runs.  

 

 As seen in Figure 6.1 below, the observed and best estimation peaks begin to 

separate at January 2011, the 60th month in the validation simulation. Simulated 

streamflow is underestimated in the validation simulation, but is supremely underestimated 

(trailing by 51 cms) during Spring 2010. Snowmelt in subsequent years, 2012 and 2013, 

seemed to become more consolidated, peak higher than model simulations, and experience 

a brief one-month stabilization around 35 cms during 2012 and 2013 spring seasons. 

Although the simulation lacked   
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Figure 6.1. Validation for the Upper Merced Basin using final calibration set best parameter ranges 

and USGS observed daily streamflow measurements at Pohono Bridge (USGS ID 112665001941) 

from 2006-2013.  

  

6.2.1 Final model parameter ranges  

 Following multiple iterations of chosen parameters, final parameter ranges were 

selected based on their respective p-factor, r-factor, R2, and NSE scores. As advised by the 

SWAT-CUP 2012 manual, the Upper Merced model was calibrated using the entire range 

of parameters, not simply the “best parameter set”. Further analysis represents the 

watershed more completely by fixing parameters to their adjusted ranges, as there is no one 

solution able to describe a waterbody in its totality. The purpose of inputting the full 

calibrated parameter range via SWAT-CUP opposed to manually editing parameters 

directly into the SWAT model, is preservation of the uncertainty index of each parameter. 

With wide latitude in data collection, uncertainties in SWAT inputs such as soil, landuse, 

climate data, and outlet selection, is great. As seen in Table 6.3, parameters were 

repeatedly iterated until ranges produced a calibrated model understanding of model 

ambiguity.  

 Parameters with a small range often pushed the lower and upper ends of their 

uncertainty limit, even when the updated parameter spectrum was pragmatically 
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unjustified. For example, average slope steepness (HRU_SLP), functions using a range 

between 0 to 0.6 m/m. Program calculations of a negative calibrated slope steepness factor 

is SWAT-CUP babble. Snow parameters (SNOW50COV, SNOCOVMX, SMFMX, TIMP) 

and groundwater parameters (RCHRG_DP, REVAPMN, ALPHA_BF, GW_DELAY, 

GWQMN) requiring a positive range, were logically assessed and altered accordingly. In 

these cases, the lower limit was bumped up to 0 and the upper limit was expanded in 

varying orders of magnitude specific to the tightness within a particular parameter’s range.     
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Table 6.5. Parameters chosen for the SWAT-Cup project in order to calibrate and validate the corresponding SWAT model. Identifier code 

represents the following: v_ indicates the existing parameter value is to be replaced by a given value; a_ indicated a given value is to be added to 

the existing parameter value r_ indicates an existing parameter value is to be multiplied by (1 + given value). Parameter definitions are pulled from 

the most recent official SWAT Input/Output documentation (Arnold, et al. 2012).  

Parameter Identifier Component Input Calibration 

Range 

Best Calibrated Parameter 

[Range - Max;Min] 

Definition 

Min Max 

PLAPS  v Subbasin -1000 1,000 -231.87 ; -178.32 Precipitation lapse rate (mm H2O/km) 

TLAPS  v Subbasin -10 10 8.777313 ; 10.101123 Temperature lapse rate (°C/km) 

SFTMP  v Snow -5 5 -5.027175 ; 1.66059 Snowfall temperature (°C) 

SMTMP  v Snow -5 5 -2.410580 ; 2.777248 Snow melt base temperature (°C) 

SMFMN  v Snow -5 5 -3.577077 ; 5.477077  Melt factor for snow on June 21 (mm of water/°C-day) 

SNO50COV  v Snow  0 1 0 ; 0.577893  Fraction of snow volume shown by SNOCOVMX that 

corresponds to 50% snow cover 

SNOCOVMX  v Snow  0 500 136.974487 ; 411.358856  Minimum snow water content that corresponds to 100% 

snow cover, SNO100 (mm of water) 

SMFMX  v Snow 0 20 2.322213 ; 7.444455 Melt factor for snow on June 21 (mm H2O/°C-day) 

TIMP  v Snow 0 1 0.258112 ; 0.755188 Snowpack temperature lag factor  

CN2  r Management  35 98 -0.335625 ; 0.042717 Initial SCS (Soil Conservation Service) runoff curve for 

return flow to occur 

RCHRG_DP  v Ground water 0 1 0 ; 0.320815 Deep aquifer percolation fraction 

GW_REVAP  v Ground water 0.02 0.2 0.073349 ; 0.175149 Groundwater "revap" coefficient 

REVAPMN  v Ground water 0 500 5.003967 ; 265.982483 Threshold depth of water in the shallow aquifer required 

for "revap" to occur (mm H2O) 

ALPHA_BF  v Ground water 0 1 0.25456 ; 0.797868 Baseflow alpha factor (1/days) 

GW_DELAY  v Ground water 0 500 93.595192 ; 144.302362 Groundwater delay time (days) 

GWQMN  v Ground water 0 5000 859.078918 ; 2583.996338 Threshold depth of water in the shallow aquifer required 

for return flow to occur (mm H2O) 

ESCO  v Hydrological 

Response Unit 

0 1 0.837605 ; 1.742411 Soil evaporation compensation factor 

HRU_SLP  v Hydrological 

Response Unit 

0 0.6 0 ; 0.139539 Average slope steepness (m/m) 



 74 

 

6.2.2 Observed, uncalibrated, and calibrated streamflow comparison 

 Below, Figure 6.1, visualizes how uncalibrated SWAT outflow, calibrated SWAT 

outflow, and observed data plot against each other from January 1984 to December 1999. The 

entire historical data set is not included for readability. USGS observed data at Pohono Bridge 

from 1984 – 1999 was included in the calibration process only, not validation. From the initial 

model run, the uncalibrated streamflow output (seen in grey) is both underestimating and 

overestimating peak flows. In beginning simulation years (1984-1985), SWAT underestimates 

discharge by about 20 to 40 cms. On the other hand, initial model estimates drastically 

overestimate peak flow the following year, 1986, by nearly 70 cms. From January 1987 to near 

May 1992, SWAT underestimates peak flows but mirrors a similar maximum monthly pattern to 

the observed data set.  

 Model outflow was calculated from a manually inputted outlet in subbasin 5 within the 

greater Upper Merced Basin model in order to mirror the location of USGS streamflow gage at 

Pohono Bridge. Both Pohono Bridge and the added outlet in subbasin 5 experienced fluctuating 

streamflow from 1984 to 1999. During My 1987 to May 1992, monthly streamflow increased 

steadily from baseflow during spring months (March, April, May), peaking around 20 to 30 cms. 

On one occasion, May 1989, peak flow climbed to 60 cms, but dropped back down to 27 cms the 

following year. Starting in January of 1993, outflow becomes much greater, jumping from 60 

cms in May 1994 to 110 cms in May 1993. May of 1996 and 1999 were more modest (80 cms) 

compared to surrounding years on either side. SWAT uncalibrated outflow increased at a similar 

rate, but experienced a lag in flow throughout the simulated time period.  

  



 75 

 
Figure 6.2. USGS observed flow at Pohono Bridge shown in blue, uncalibrated SWAT outflow in grey, 

and final calibrated SWAT outflow in orange. Selection of data ranging from January 2000 to December 

2009. All streamflow is in cms.   

 
Figure 6.3. USGS observed flow at Pohono Bridge shown in blue, uncalibrated SWAT outflow with 

added elevation parameters in grey, and final calibrated SWAT outflow in orange. Selection of data 

ranging from January 2000 to December 2009. All streamflow is in cms. 

  

 To begin to fix a lagging simulated flow, elevation parameters were input to aid SWAT 

in understanding how precipitation falls within the elevated region. Figure 6.3 shows 

uncalibrated outflow but with added elevation parameters (PLAPS and TLAPS). Further 

sensitive parameters were added to increase overall model performance, the output of which is 

seen in orange, as final calibrated outflow. The addition of PLAPS and TLAPS allowed for 

SWAT to begin understanding how elevation bands change the effect of temperature and 

precipitation on water distribution within the Upper Merced basin hydrological cycle. Although 
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further groundwater parameters were applied in subsequent SWAT-CUP iterations, the initial 

inclusion of three elevation bands improved the accuracy of simulated streamflow in both time 

and streamflow projections from the outset of calibration.  

 

6.3 HISTORICAL DATA PEAK STREAMFLOW  

 The annual variability of annual peak streamflow over the historical period is shown in 

Figure 6.4. Orange bars indicate peak streamflow occurred in May, blue bars for an April annual 

peak flow, and green bars for a June annual peak flow. Less significant peak flows tend to be 

clustered, such as years between 1987 and 1992 (31 and 33 cms) and 1999 to 2003 (60 to 80 

cms). A steady increase in streamflow is seen beginning in 2007 (31 cms) and ending abruptly in 

2011 (122 cms). The following two years, 2012 and 2013, both stay low at a peak of 39 cms.  

 

 
Figure 6.4. Observed annual streamflow measured at Pohono Bridge (USGS #11266500) during the years 

1984 – 2013. Peak streamflow occurring in May is indicated by an orange bar (22 months, 73%), June 

annual peak streamflow is represented in green (2 months, ~7%), and April peak streamflow is in blue 

(20%). Total yearly flow ranged from 136.5 cms (June 1995) to 31.2 cms (May 2007).  
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 May was overwhelmingly the most meaningful month for peak streamflow within the 

observed data set. Of the 39 years measured, 73% had the largest peak flow event occur in May, 

20% in April, and 7% in June. Higher peak flow was exhibited during the following years: 1995 

(136 cms), 1998 (133 cms), 2005 (124 cms), 2006 (135 cms), and 2011 (125 cms). On the other 

hand, 1987 (31 cms), 1988 (31 cms), 1989 (45 cms), 1990 (31 cms), 1991 (47 cms), 1992 (33 

cms), 2007 (31 cms), 2012 (39 cms), and 2013 (39 cms), were particularly low peak flow years.  

 

6.4 CLIMATE PROJECTION PEAK STREAMFLOW 

 The following series of figures (Figure 6.5--6.12) show annual peak flow per year for 

HadGem2-CC and CCSM-4 climate scenarios under both forcing scenarios, RCP 6.0 and RCP 

8.5. For readability, projected climate data are split so individual graphs refer to either 2040-

2069 or 2070-2099. Under each data point (represented by a bar) the corresponding year and 

month of peak flow occurrence is written.  
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Figures 6.5 and 6.6. Projected annual peak flow under climate model HadGem2-CC and RCP scenario 

6.0. Top figure illustrates projected data from 2040 – 2069, bottom figure shows future data from 2070-

2099. Climate scenario data from MarkSim Weather Generator was inputted into a calibrated ArcSWAT 

model of the Upper Merced Basin. X-axis reads year of annual peak flow and the month in which peak 

flow occurred. 

 

 HadGem2-CC RCP6.0 data from 2040 – 2099 found peak flow occurring four times in 

April, 15 times in December, 14 times in November, 12 times in February, 16 times in January, 4 

times in March, and 3 times in November. Peak flow varied wildly. The lowest peak flow 

projected is in February 2048 at 8.3 cms, second to December 2071 at 9.4 cms, and March 2083 

at 9.7 cms. Highest streamflow predictions are for December 2089 at 55.11 cms, December 2082 
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at 51.96 cms, and December 2096 at 49.13 cms. The majority of peak flow fell between 20 cms 

and 29 cms.  

 

 
Figures 6.7 and 6.8. Projected annual peak flow under climate model CCSM4 and RCP scenario 6.0. Top 

figure illustrates projected data from 2040 – 2069, bottom figure shows future data from 2070-2099. 

Climate scenario data from MarkSim Weather Generator was inputted into a calibrated ArcSWAT model 

of the Upper Merced Basin. X-axis reads year of annual peak flow and the month in which peak flow 

occurred. 

 

 CCSM4 RCP6.0 data from 2040 – 2099 found peak flow occurring four times in April, 

19 times in December, 7 times in November, 7 times in January, 13 times in February, and 5 

times in March. The lowest peak flow projected is in December 2064 at 7.13 cms, second to 

April 2075 at 9.4 cms, and December 2099 at 11.84 cms. Highest streamflow predictions are for 

December 2062 at 57.6 cms, January 2071 at 49.77 cms, and December 2057 at 47.43 cms. 
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CCSM4 exhibited an overall higher streamflow than HadGem2-CC, with more annual peaks 

occurring between 20 cms and 30 cms across the data set.  

 

 
Figures 6.9 and 6.10. Projected annual peak flow under climate model HadGem2-CC and RCP scenario 

8.5. Top figure illustrates projected data from 2040 – 2069, bottom figure shows future data from 2070-

2099. Climate scenario data from MarkSim Weather Generator was inputted into a calibrated ArcSWAT 

model of the Upper Merced Basin. X-axis reads year of annual peak flow and the month in which peak 

flow occurred. 

 

 HadGem2-CC RCP8.5 data from 2040 – 2099 found peak flow occurring 7 times in 

April, 12 times in December, 5 times in November, 12 times in February, 16 times in January, 

once in March, 3 times in November, twice in October, and once in June. The lowest peak flow 
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projected is in March 2043 at 9.7 cms, second to October 2062 at 13.62 cms, and April 2076 at 

14.05 cms. Highest streamflow predictions are for January 2083 at 73 cms, December 2042 at 

51.9 cms, and January 2070 at 50.76 cms. Unlike RCP 6.0, RCP 8.5 has June (2084) and October 

(2062 and 2093) projected as months of highest annual outflow.  

 
Figures 6.11 and 6.12. Projected annual peak flow under climate model CCSM4 and RCP scenario 8.5. 

Top figure illustrates projected data from 2040 – 2069, bottom figure shows future data from 2070-2099. 

Climate scenario data from MarkSim Weather Generator was inputted into a calibrated ArcSWAT model 

of the Upper Merced Basin. X-axis reads year of annual peak flow and the month in which peak flow 

occurred. 

 

 CCSM4 RCP8.5 data from 2040 – 2099 found peak flow occurring twice in April, 15 

times in December, 3 times in November, 14 times in February, 16 times in January, once in 
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July, twice in March, 3 times in November, and four times in October. The lowest peak flow 

projected is in October 2053 at 7.5 cms, second to December 2055 at 10.25 cms, and October 

2049 at 10.6 cms. Highest streamflow predictions are for February 2063 at 71 cms, February 

2043 at 67 cms, and January 2089 at 63.1 cms. Unlike RCP 6.0, RCP 8.5 has July (2064) and 

October (2042, 2045, 2049, and 2053) projected as months of highest annual outflow.  

 

6.5 PROJECTED MONTHLY STREAMFLOW    

  Figures 6.13 through Figure 6.15 show the projected mean-monthly streamflow rates for 

the Upper Merced Basin over a selected data set of two years. Average monthly streamflow of 

HadGem2-CC 6.0 is shown in blue, HadGem2-CC 8.5 in orange, CCSM4 6.0 in grey, and 

CCSM4 8.5 in yellow.  

 

 

 
Figure 6.13. Projected mean-monthly streamflow rates for the Upper Merced Basin during a selected 2-yr 

period from May 2048 – May 2050. Forcing scenarios RCP6.0 and RCP8.5 are applied under two GCMs, 

HadGem2-CC and CCSM4. Climate modeling data in the form of projected precipitation, temperature, 

and solar radiation, were downloaded via MarkSim GCM Weather Generator and plugged into the Upper 

Merced Basin model built using the Soil and Water Assessment Tool (SWAT).  

 

0

10

20

30

40

50

60

S
tr

ea
m

fl
o

w
 (

cm
s)

Date: Month/Year

Average Projected Monthly Streamflow from May 2048 - May 2050

Had_6.0 (cms) Had_8.5 (cms) CCSM_6.0 (cms) CCSM_8.5 (cms)



 83 

 Figure 6.13 above shows average projected monthly streamflow from May 2048-May 

2050 under the four chosen global climate scenarios. Looking at RCP6.0 first (blue and grey 

line), the two models hit peak streamflow first in February/March 2049 and then peak again near 

December 2049, followed by smaller peaks near March/April 2050. HadGem2-CC 8.5 stands out 

with the two highest peaks within the data set. In April 2049 HadGem2-CC 8.5 peaks at 30 cms, 

and then again between December 2049 and January 2050 at 55 cms. CCSM4 8.5 experiences a 

small peak near January 2049 of 8 cms, but later peaks more significantly in January/February 

2050 at 29 cms. 

 From late May to September, all models project small summer streamflow. A flat 

streamflow is not unexpected, observed data from 1984-2013 exhibited dry conditions in 

summer months after available snowmelt has moved further downstream.   

 

 
Figure 6.14. Projected mean-monthly streamflow rates for the Upper Merced Basin during a selected 2-yr 

period from May 2068 – May 2070. Forcing scenarios RCP6.0 and RCP8.5 are applied under two GCMs, 

HadGem2-CC and CCSM4. Climate modeling data in the form of projected precipitation, temperature, 

and solar radiation, were downloaded via MarkSim GCM Weather Generator and plugged into the Upper 

Merced Basin model built using the Soil and Water Assessment Tool (SWAT).  

 

 Average monthly streamflow from May 2068 – May 2070 shows the most amount of 

variability between model projections (Figure 6.14). Each model experiences numerous peaks 
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from November 2068 to May 2069, and October 2069 to May 2070. HadGem2-CC expressed the 

highest peak flow of the set, with 51 cms outflow in January 2070. There is a shorter and more 

fluctuating summer season from June 2069 to August/September 2069. CCSM4 8.5 and 

HadGem2-CC 6.0 experience outflows during the summer months, around 4 cms and 8 cms 

respectively.  

 

 
Figure 6.15. Projected mean-monthly streamflow rates for the Upper Merced Basin during a selected 2-yr 

period from May 2078 – May 2080. Forcing scenarios RCP6.0 and RCP8.5 are applied under two GCMs, 

HadGem2-CC and CCSM4. Climate modeling data in the form of projected precipitation, temperature, 

and solar radiation, were downloaded via MarkSim GCM Weather Generator and plugged into the Upper 

Merced Basin model built using the Soil and Water Assessment Tool (SWAT).  

 

 From May 2078 to May 2080 (Figure 6.15), the average projected monthly streamflow 

shows some noteworthy differences from May 2048-May 2050 streamflow (Figure 6.13). The 

RCP 6.0 scenarios are no longer peaking similarly; HadGem2-CC 6.0 slightly peaks in 

December 2078 (18 cms) and then again a few months later in March 2079 (10 cms). HadGem2-

CC 6.0 peaks more significantly in January 2080 at 30 cms. CCSM4 6.0 peaks in February 2079 

(40 cms), again near May 2079 (10 cms), and then in January 2080 (14 cms).  
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 HadGem2-CC 8.5 peaks in February/March 2079 (36 cms) and then in January 2080 (17 

cms). CCSM4 8.5 shows the highest streamflow overall, with initial two large outflows, January 

2078 (32 cms) and March 2079 (38 cms), and then 51 cms in February 2080. All models 

experience low streamflow from June 2079 to October 2079.  
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CHAPTER 7  

 

DISCUSSION 

 

7.1 VALIDATION 

 An anomalously 2010/2011 winter season is visualized in the SWAT-CUP Upper Merced 

Basin validation (Figure 6.2). This uncharacteristically snowy winter lead to enhanced snowmelt 

in the spring, seen by an underestimated simulated streamflow and a high simulated streamflow 

peak (Guan et al. 2013). During the 2010/2011 winter and spring, mean April 1 SWE (snow 

water equivalent) was 55% (0.44 m) above normal across 100 Sierra Nevada snow sensors. 

Unlike an expected nine atmospheric rivers (ARs) per season, the Sierra Nevada experienced 20 

ARs during the 2010/2011 winter, 14 of which were in December 2010. This jump in AR 

occurrence has been linked to negative phases of the Arctic Oscillation (AO) and the Pacific-

North American (PNA) teleconnection pattern. Increases in negative phases can bring about 

“cyclonic anomalies” and colder temperatures, a coupling which can provide a high frequency of 

ARs (Guan et al. 2013).  

 

7.2 OBSERVED PEAK STREAMFLOW 

 USGS 1984-2013 Pohono Bridge data measured highest flow during April, May, June, 

and July. Figure 6.4 illustrates monthly patterns in annual peak streamflow by color, showing 

peak annual streamflow in May in orange, June in green, and April in blue. Generally, peak 

streamflow can be clearly seen within the data as occurring in one standalone month. Yet for 

smaller monthly peak flows, flow measurements may be split across two consecutive months, 
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causing two months of moderate streamflow. 1987 recordings for example, read April as peak 

streamflow with 29.4 cms. The following month, May, records 18.1 cms, the second highest 

peak flow. 1994, a similarly has a “low” annual peak flow recording in May (33.6 cms). 

Streamflow in April 1989 is reported as 22.3 cms, and 15.7 cms in June 1989. Figure 6.4 offers 

not only a visualization of Upper Merced annual peak flow occurrence, but coupled with an 

understanding of snow accumulation within the elevated subbasin, Figure 6.4 can help answer 

broader inquiries of snowmelt and precipitation fluctuations.  

 Low peak flows within a basin dependent on snowmelt can be indicative of either an 

overall decrease precipitation resulting from drought conditions or a reduction in snowpack due 

to increased temperatures and therefore a higher likelihood of rain over snow events. From the 

above figure, it is apparent that past climate patterns for the Upper Merced Region allowed for 

snow accumulation during winter months, enabling snowmelt into the Merced River. During the 

observed historical period, 73% of peak flow months occurred in May, 20% in April, and 7% in 

June. This classic snowmelt pattern operates as a reservoir for Southern California with a 

historically reliable supply of freshwater available in the spring.  

 

7.3 FUTURE CLIMATE SCENARIOS  

 Climate change warnings point to a future with fluctuating seasonality with a shift from 

snow to rain as a result of warming temperatures. Deviation in normal snow patterns to 

precipitation falling as rain is likely to present runoff earlier in the season, with an overall lower 

runoff ratio (Hunsaker et al. 2012).  

 Furthermore, research suggests that annual minimum flows within select California 

basins will drop to zero if SWE is cut to about half its historical average (Godsey et al. 2013). 
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Evidenced by Figure 6.13 through 6.15, the average projected monthly streamflow during select 

years in the 2040, 2060s, and 2080s, respectively, streamflow does fall to zero. During the 

RCP6.0 scenarios, streamflow most significantly fell to zero during September. Looking 

exclusively at HadGEM2-CC 6.0, streamflow reduced to zero during September of 2041, 2043, 

2044, 2049, 2053, 2054, 2060, 2061, 2065, 2073, 2074, 2078, 2079, 2084, and 2085. Streamflow 

did drop to zero in surrounding autumn months, but most often the GCM calculated a zero 

September flow. HadGEM2-CC 6.0 expressed zero outflow over a total of 31 months from 2040 

to 2099. Similarly, CCSM4 6.0 reported empty flows in and around September, but zero 

outflows are more widely distributed from July through December; a total of 34 zero monthly 

outflows are projected for the CCSM4 6.0 scenario. Looking at RCP8.5 scenarios, HadGEM2-CC 

8.5 projected the highest number of all scenarios, 41, zero outflow months. Most often the zero 

outflows were during August. CCSM4 8.5 expressed 31 months with zero outflows, starting in 

June and ending by November.  

 It has been calculated that for every 10% decrease in peak SWE, the annual minimum 

flow may decrease by 9-22%, while occurring 3-7 days earlier in the year (Godsey et al. 2013). 

Although USGS observed flow from 1979-2013 did not indicate any measured flowrates at 

Pohono Bridge as zero, September through December flows rates were low indicating snowpack 

accumulation along higher elevations. The lowest measured flow was in September 1994, with a 

total of 0.336 cms outflow from the measuring station. Of the 54 months in which historical 

discharge below 1 cms, all were recorded between September and January, besides four August 

readings (1987, 2007, 2013). These August dates correspond with the following significant 

California droughts: 1986-1992, 2007-2009, 2011-2017.   
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7.4 PROJECTED ANNUAL PEAK FLOWS  

 Future climate change scenarios show a blatant shift in seasonality. Compared to the 

USGS historical data set, earlier peak streamflow is expressed across both GCMs under either 

forcing scenario. The simulated hydrological modeling for the Upper Merced Basin suggests that 

there might be a significant temporal shift in streamflow peaks and water availability over the 

next century. Observed data from 1985 – 2013 show peak streamflow occurring in April, May, 

and June, only. GCM data computed demonstrate peak annual streamflow happening most often 

in December, January, and February, opposed to spring months similar to the observed historical 

streamflow data (Figures 6.5 – 6.12). This evidence suggests that future maximum streamflow 

may occur up to three months earlier than observed peak discharge.   

 A possible suggestion for earlier streamflow is increased rain. Future temperatures are 

expected to increase, and this can cause winter precipitation to be experienced as rain over snow. 

Without cold temperatures at high elevations, snow accumulation may not be possible during 

winter months. Rain falling will immediately be included in streamflow, as precipitation will not 

become snowpack and therefore, California’s winter water reservoir may be free to runoff and/or 

evaporate as soon as the precipitation event happens.  

 

7.5 LIMITATIONS  

 Watersheds fed entirely or predominantly by rainfall-runoff constitute the bulk of SWAT 

publications (Wang et al. 2016). Study basins attributing a percentage of flow to snowmelt are 

less widely researched within the SWAT community, as the program has experienced challenges 

while modeling low-flow during snowmelt events. Regular streamflow events in the Upper 

Merced Basin are contingent on the successful trickle-down of spring snowmelt from the Sierra 



 90 

Nevada Mountains into the basin. Successful flow modeling is contingent on a realistic interplay 

between elevation, snowfall, snow accumulation, temperature, and snow melt (Fountain et al. 

2002; Sanadhya, et al. 2014). To better aid SWAT in furcating snowfall, snow data from gages 

would be helpful. Unfortunately, the Upper Merced Basin is located below the mountainous 

snowpack region and cannot utilize data falling outside of the basin’s physical boundaries. 

Instead, snowmelt and snowfall were projected using temperature and precipitation only.  

 Reviewing projected snow data, SWAT was at times unable to accurately represent snow 

cover. The program struggled with accumulating enough snow pack during the winter months for 

runoff into the spring months. Rain events were often conflated with snowfall. SWAT 

mistakenly logged snow as an intense rain, causing the model to overcompensate and estimate 

runoff for the same event twice. As discussed previously, GW_DELAY was characterized as a 

highly sensitive parameter using LH-OAT and due to errors in water release timing/lag time, 

GW_DELAY was modified to help correct inadequate snow cover results. SURLAG was 

additionally calibrated to fix flow modeling.   

 Land use and land cover stayed static throughout the forecasted models. SWAT 

simulations assume no land use change as the model is set using the National Land use Cover 

Dataset (NLCD). The most recent National Land use Cover Dataset (NLCD 2012) was applied 

to the basin and so future climate scenarios operated under fixed land use conditions through 

2099. Insights from a 2009 SWAT study evaluating flow simulation and forecasting in the Upper 

Bernam Malaysian river basin suggest that land use within the study area has greatly changed 

from 1981 through 2007 (Alansi et al. 2009). Five land use change scenarios were tested and the 

subsequent research implies that during high flow months, land use change was responsible for 

increasing annual flow depth between 8% to 39%, while decreasing annual flow depth between 
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3% to 32% during low flow months. From shifts in land use alone, monthly irrigation was 

reduced by 50% below necessary demand during low flow months (Alansi et al. 2009). The 

Upper Bernam river basin experienced rapid exponential land use transformation over the 

studied time frame, as is similarly indicated by socioeconomic-climate scenario research for the 

San Joaquin River Basin (Reclamation 2014). According to a climate impact assessment report 

for the San Joaquin Basin published by the Department of the Interior Bureau of Reclamation, 

the Central Valley’s 2005 base population will likely increase by 19 million at the close of the 

century. As population swells, urban areas will expand in tandem to support the growing 

community. This sprawl will encroach neighboring agricultural fields at a rate of 500,000 

irrigated acres by 2050 and 1.7 million acres by 2100 (Reclamation 2014). Streamflow modeling 

without consideration of future land use adaptations may prevent accurate future representations 

of flow within the basin. 

 Downscaling was used to translate climate information from GCMs chosen to the SWAT 

program. Downscaling enables realistic climate projection outputs by localizing GCM data by 

matching GCM longitude and latitude to that of the study area. MarkSim GCM data were 

downloaded for the study, which is a third-order Markov rainfall model with autoregressive 

temperature and radiation estimation to downscale daily weather data. Although downscaling is 

necessary, this method predicts temporal and pattern of rainfall will continue to be identical into 

the future (Dlamini et al. 2017). As evidenced by this research, the Upper Merced Basin will 

experience fluctuating precipitation events, altering the pattern of rainfall.   
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7.5.1 SWAT and SWAT-CUP Video Tutorials 

 As previously discussed, online groups are necessary outlets for users of dynamic, multi-

operational programs such as SWAT. Not only can the proposed model objective be distinctive, 

but so can the model components and model operation of SWAT research. With numerous 

iterations in model setup and analysis, SWAT users would benefit from an archive of 

instructional videos. As of late 2017, the SWAT site includes short instructional “workshop” 

videos produced by Purdue University in collaboration with Texas A&M, with funding by the 

Environmental Protection Agency (EPA). The clips are a curt 3-5 minutes long, without much 

distinction in watershed examples. From experience, users would find advantage in a larger 

collection of tutorial videos detailing solutions to technical and analytical confusions. To name a 

few outstanding spaces needing clarification, future SWAT training videos might cover: 

expanding on downloading and setting up an ArcSWAT project, building weather data input 

tables from raw government data, editing input files to include additional water sources and 

water infrastructure such as reservoirs and conveyances respectively, and in-depth tutorials on 

how to read SWAT output files in order to pull out points for analysis.  

 However brief available ArcSWAT videos may be, the online collection lacks any 

SWAT-CUP videos for the purpose of calibrating and validating. To call this an oversight, is 

restrained. The importance of the SWAT-CUP procedure cannot be overstated as projected data 

must be calibrated to observed data in order to properly interpret any SWAT simulation. At the 

start of SWAT-CUP analysis, four modes of calibration are available, yet justification in 

selecting one method over another, is not completely rationalized in the SWAT-CUP manual. At 

minimum, video guidance should begin in determining the best strategy for calibration, progress 

into technical lessons on formatting and inputting observed values, choosing performance 
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indicators best suited for the model, creating a 95ppu plot from the 95ppu text file, and writing 

calibrated parameters back into the original ArcSWAT project. SWAT Google Groups are 

inundated daily with discouraged users stalled in their research; without detailed videos 

illustrating program procedure, students forfeit analytical time for the purpose of working 

through mechanical errors.  

 Altogether, the absence of visual explanations in trouble-shooting SWAT does the 

program a disservice. For such a beautifully applicable and adaptive hydrological program, 

misunderstandings should not impede student SWAT studies. The imaginary of SWAT research 

is boundless, in that individuals can work to forecast uncertainties without cumbersome 

equipment or excessive funding. Previously unbent water systems are being reformed in 

unknown ways by global climate chaos, and excessive investigation is the only approach to 

discern the uncertainties ahead. In reviewing emergent SWAT research, recent publications 

illustrate SWAT’s suitability in examining the intersection between hydrology, climate change, 

and policy: best management practices (BMPs) in agricultural scenarios under pesticide action 

plans in France (Vernier et al. 2017), the significance of climate change on reservoir 

management in Portugal (Carvalho-Santos et al. 2017), and predicting the impression of past, 

current, and future land use changes on water balance (Kundu et al. 2017), to name a few.  

 With intention of building an exhaustive set of instructional videos, material can be 

consolidated from a wide range of resources such as international SWAT development 

conferences and workshops, hydrological research consortiums, established independent water 

modelers, professors with SWAT capabilities, and other helpful experienced SWAT-users. By 

integrating a wide scope of multi-media educational resources on the SWAT website, program 

software will become more accessible and easily read by students in applicable fields of study, 
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assisting in future SWAT development as more modelers gravitate towards the program. Having 

said this, it is important to note additional SWAT executables and software not employed in the 

Upper Merced model such as QSWAT (QGIS interface for SWAT), SWAT-MODFLOW 

(integrated model blending SWAT land surface processes with spatially-explicit GW flow 

processes), VIZSWAT (visualization and analysis tool for SWAT model output), MWSWAT 

(open source interface to SWAT using GIS system MapWindow), SLEEP (Soil-Landscape 

Estimation and Evaluation Program), Baseflow Filter Program (estimates baseflow and GW 

recharge from streamflow records), Potential Heat Unit Program (estimates the number of heat 

units required to bring a plant to maturity), and AVSWAT (preprocessor, interface, and post 

processor for SWAT), are similarly not further explained with tutorial videos.   

  

7.6 SUGGESTIONS  

 Accuracy of future streamflow is limited by the regional nature of the climate models 

chosen. Projected rainfall and temperature are built upon gridded hydro-meteorological data, 

therefore subjecting the study area to hydrological modeling developed for the greater region of 

Northern California. Model specificity could be compromised as climate scenario temperature 

and precipitation data are relevant to the region in its entirety; gridded data does little to 

represent variations in divergent basins such as the California Delta lowlands, the glacial Sierra 

Nevada mountains, or the snowmelt fed Upper Merced Basin. To help remedy the regional 

nature of general circulation models so that future estimations are more localized, further climate 

variables may be added alongside rainfall and temperature. Helpful climate variable for input 

may be wind speed, solar radiation, and relative humidity. Although these variables are 
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propagated using the built-in SWAT stochastic weather generator, intentionally inputting such 

data may reduce overall uncertainty (Kilsby et al. 2007; Dlamini et al. 2017).   

  In general, SWAT does not include water added to flow through percolation into the 

aquifer layer. This added level of complexity is difficult to model, and so it is removed from the 

SWAT water balance algorithm. Instead, the program ignores water moving into the deep 

aquifer, reducing the amount of flow that might be rerouted back into the system as return flow.  

From model sensitivity analysis, groundwater parameters (RCHRG_DP, REVAPMN, 

GW_DELAY, GWQMN) were flagged as significant despite the program being unable to 

accurately describe all components of base flow. To provide a more complete representation of 

the hydrological cycle, the Baseflow Filter Program is available online to separate baseflow 

within a natural system (Arnold, J.G. Allen, P.M. 1999). Results have found model results are 

significantly improved is the ratio of surface runoff to baseflow is estimated more completely. 

Future studies should utilize programs similar to SWAT’s Baseflow Filter Program for the 

purpose of understanding model groundwater interactions and baseflow contributions.  

 

7.7 SWAT-USER AND SWAT-CUP GROUPS 

 The SWAT program is a public domain model developed by USDA Agricultural 

Research Service (USDA-ARS) and Texas A&M AgriLife Research. The program site 

(swat.tamu.edu) houses most recent SWAT2012 input/output file documentation and a literature 

database publically available for review. Though the site is comprehensive in including official 

SWAT material alongside user-submitted papers, due to the exhaustive applicability of the 

program, SWAT Google Groups can be elemental in navigating the nuances of model setup. 

SWAT students post queries onto the discussion boards, which are answered by an alliance of 
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SWAT programmers, hydrological modelers, and other learned SWAT students. The SWAT-

user Google Group operates for model construction questions, whereas the SWAT-CUP Google 

Group is a forum dedicated to the subsequent calibration and validation processes. 

Without access to the SWAT-user and SWAT-CUP Google Groups during the building and 

assessment stages, model effectuality would have suffered.  

 SWAT Google Groups are seemingly endorsed by the SWAT cooperative, as the 

program site directs users to respective Google forums for further questions. Posts are answered 

by the greater SWAT community, but if there is a lack of group support in trouble shooting an 

inquiry, Dr. Karim Abbaspour or Dr. Raghavan Srinivasan, lead researchers associated with 

SWAT, will respond. Together, Dr. Abbaspour and Dr. Srinivasan provided me with their 

thoughtful expertise via Google Group communications and email correspondence. Without 

pause, guidance by the above researchers was the impetus of my model’s success. Experiencing 

conflicts beginning in basin delineation and constructing temperature and precipitation files, to 

uncertainties in choosing final parameters for best practice, I benefited greatly from the patient, 

unwavering assistance of Dr. Abbaspour and Dr. Srinivasan.  

 

7.8 CONCLUDING THOUGHTS 

 After close examination of both current observation and conducted climate scenario 

studies on Upper Merced Basin hydrology, there are a number of major trends which can be 

gleaned from GCM research. First, streamflow deriving from the Sierra Nevada region will most 

likely occur earlier than historical recordings of peak streamflow. Although earlier snowmelt can 

possibly be attributed to increased temperatures resulting in a higher occurrence of rainfall over 
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snowfall, studies have not concluded whether earlier timing of streamflow is a result of climate 

change or climate variability within the region (Vicuna and Dracup 2005).  

 As evidenced by the multitude of climate studies conducted for the state of California, 

different approaches to determining temperature, precipitation, and streamflow via GCMs, 

scenarios, and downscaling techniques have concluded a wide range of projections for 

climatological variables. Results mostly agree on an increase in air surface temperature, 

however, there is not a consensus on total volume of runoff or average annual timing of 

increased streamflow. Hopefully with increased advancements in downscaling techniques which 

enable greater “matching” of spatial and temporal resolutions, future research will be able to 

better define variation in natural runoff. Further advancements in GCM research may allow for 

more precise precipitation forecasting, which is necessary for most California basins as they 

operate largely in snowmelt-fed regions.  
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