

ABSTRACT

Title of dissertation: SOLVING MATHEMATICAL PROBLEMS
IN QUANTUM REGIME

Omar Shehab, Doctor of Philosophy, 2016

Dissertation directed by: Professor Samuel J Lomonaco Jr.
Department of Computer Science
and Electrical Engineering

In this dissertation, I investigate a number of algorithmic approaches in the

quantum computational regime to solve mathematical problems. My problems of

interest are the graph isomorphism and the graph automorphism problems, and the

complexity of memory recall of Hopfield network. I show that the hidden subgroup

algorithm, quantum Fourier sampling, always fails, to construct the automorphism

group for the class of the cycle graphs. I have discussed what we may infer for

a few non-trivial classes of graphs from this result. This raises the question, I

have discussed in this dissertation, whether the hidden subgroup algorithm is the

best approach for these kinds of problems. I have given a correctness proof of the

Hen-Young quantum adiabatic algorithm for graph isomorphism for cycle graphs.

To the best of my knowledge this result is the first of its kind. I also report a

proof-of-concept implementation of a quantum annealing algorithm for the graph

isomorphism problem on a commercial quantum annealing device. This is also, to

the best of my knowledge, the first of its kind. I have also discussed the worst-case

for the algorithm. Finally, I have shown that quantum annealing helps us achieve

exponential capacity for Hopfield networks.

SOLVING MATHEMATICAL PROBLEMS
IN QUANTUM REGIME

by

Abu Mohammad Omar Shehab Uddin Ayub

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:
Professor Samuel J Lomonaco Jr., Chair/Advisor
Professor Milton Halem
Professor Yanhua Shih
Professor William Gasarch
Professor John Dorband

c© Copyright by
Abu Mohammad Omar Shehab Uddin Ayub

2016

Dedication

Shaheda Begum,

the most curious and independent, and the strongest woman,

I have ever met, and my mother;

Dr. Mohammad Ayub,

the best listener I have ever met, and my father.

ii

Acknowledgments

I gratefully acknowledge financial support from the NASA-AIST 2014 grant

as a research assistant at the Center for Hybrid Multicore Productivity Research,

UMBC. I also thank the department of Computer Science and Electrical Engineer-

ing, UMBC for supporting me during my first five years at UMBC.

I have received so much support in so many ways from a large number of

people during my journey to finishing this dissertation. First, I thank my parents

for giving me love, support, and freedom. My undergrad faculty, Muhammed Zafar

Iqbal, encouraged me to study quantum information science for undergrad project

which was my first introduction to the field. Samuel J Lomonaco, Jr., my PhD

supervisor, taught me how to ask more questions and keep trying at answering

them. He also gave me lots of freedom throughout the process. During my time

at UMBC, I have had the good fortune to work with Ivan Erill, Alan Sherman,

and John Dorband. These experiences have always been source of learning. Milton

Halem has always been there with support and advices while I was being supported

by the NASA-AIST 2014 grant and beyond. As committee members, Yanhua Shih

and Bill Gasarch have always been there with their suggestions on how to improve

my work. I have had lots of interactions with the participants of the StackExchange

forum for mathematics, physics, and theoretical computer science. This helped

me to have a great peer learning experience. I was also fortunate to be mentored

by Kenneth M Zick during my internship at the Information Sciences Institute,

University of Southern California, and Radhakrishnan Balu during my internship

iii

at the US Army Research Lab. Both of these two visits have been very productive

and educational. I also thank Siddhartha Santra for being a friend from whom I

can learn physics.

My stay at Baltimore helped me make a number of great friends who have

enriched my experience. Thank you very much Amrita, Blaise and Prajit for every-

thing.

I have the best sister and brother in the world, Rumi and Rana. I wish my

nickname also had started with an ‘R’ to sync with you!

Last but not the least, thank you very much, Silvia, my partner, for being

there. You are the best!

iv

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Outline and Summary of Results . 2

2 Preliminaries 4
2.1 Graph Theory . 4

2.1.1 Isomorphism and automorphism 8
2.2 Pseudo-Boolean optimization . 10
2.3 Representation Theory . 15
2.4 Quantum Fourier Transformation . 23
2.5 Quantum Adiabatic Algorithms . 27

3 Graph Automorphism and Hidden Subgroup Algorithms 30
3.1 Hidden subgroup algorithm for non-abelian groups 32
3.2 Quantum Fourier sampling for graph isomorphism 35

3.2.1 Weak Fourier sampling for GIHSP 37
3.3 Weak quantum Fourier sampling for cycle graph automorphism . . . 41
3.4 Non-trivial graph automorphism problems 58
3.5 Summary . 61

4 Graph Isomorphism and Quantum Adiabatic Algorithms 62
4.1 Adiabatic algorithm for graph isomorphism 62
4.2 The Hen-Young algorithm . 62
4.3 Other algorithms . 88

4.3.1 The Gaitan-Clark algorithm 88
4.3.2 The Hen-Sarandy algorithm 93

4.4 Summary . 95

5 Graph Isomorphism and Quantum Annealing 96
5.1 Introduction . 96
5.2 Graph isomorphism as pseudo-Boolean function 100
5.3 Mathematical perspective . 102

5.3.1 Energy landscape . 102
5.4 Generating the function . 111
5.5 Larger graph isomorphism problems 114
5.6 Empirical scalability . 116
5.7 Asymptotic analysis of Algorithm 6 117
5.8 Experimental setup . 122
5.9 Results . 125

5.9.1 Ising Model Scaling . 125

v

5.9.2 Embeddability . 126
5.9.3 Experimental Quantum Annealing for Graph Isomorphism . . 127

5.10 Discussion . 130
5.11 Methods . 132
5.12 Summary . 136

6 Hopfield Network and Quantum Annealing 137
6.1 Introduction . 137
6.2 Theoretical Setup . 140

6.2.1 Hopfield network and Associative memory 141
6.2.2 Quantum annealing . 142
6.2.3 Recall tasks in AMM using Quantum Annealing 144
6.2.4 Radius of attraction using QAR-AMM. 146
6.2.5 Capacity, Attraction Basin size and tradeoffs 148

6.3 Quantum annealing recall with a programmable quantum annealer. . 152
6.3.1 Experimental Setup . 153
6.3.2 Embedding fully connected Hopfield networks in Chimera . . . 154
6.3.3 Representative example . 155

6.4 Discussion and conclusion . 160

A Supplementary Material for Chapter 6 163
A.1 Bound on field strength . 163
A.2 Annealing Schedule. 164

B Supplementary materials for Chapter 5 166
B.1 Few pieces of information . 166
B.2 Worst case scenario of Algorithm 6 166

Bibliography 168

vi

List of Tables

4.1 Adiabatic evolution of the Hamiltonians of 3-vertex graphs 63
4.2 Problem Hamiltonian of 4-vertex isomorphic and non-isomorphic graphs 66
4.3 Energy gaps for Cn . 83

5.1 Number of isomorphic-input problems embedded and cor-
rectly classified as isomorphic via quantum annealing. One
hundred problems were attempted at each problem size. All em-
bedded problems were solved when using H2, error correction, and
multiple jobs. 129

vii

List of Figures

5.1 All possible configurations vs. valid permutations 103
5.2 Values of f for the permutation terms 104
5.3 Fourier transformation of Figure 5.2 104
5.4 Basins of f = 0 for the permutation terms 105
5.5 Distribution of energies of the permutation terms. 106
5.6 Figure 5.5 is skewed normal . 106
5.7 Isomorphic pair . 107
5.8 Non-isomorphic pair . 108
5.9 Edge discrepancy penalty terms energy landscape 108
5.10 Fourier transformation of Edge discrepancy penalty terms energy land-

scape . 108
5.11 Fourier transformation of Edge discrepancy penalty terms energy land-

scape (superimposed) . 109
5.12 Permutation terms vs. complete f . 109
5.13 Basins of global minima of f for 4-vertex isomorphic pair 110
5.14 Distribution of energies of f (yellow) 111
5.15 Illustration of problem instances generated using baseline Hamilto-

nian H1 and compact Hamiltonian H2 on the same input. 114
5.16 Experimental quantum annealing: case study involving the graph

isomorphism problem. 124
5.17 Scaling of the number of Ising model variables. 126
5.18 Embeddability when targeting the USC-LM Vesuvius processors 504-

qubit, 1427-coupler working graph. 127
5.19 Total expected annealing time when using Hamiltonian H2, multiple

jobs, and classical majority voting. 130
5.20 Physical layout of the working qubits in the USC-LM D-Wave Two

Vesuvius-6 processor as of October 10, 2014. 133

6.1 ‘Chimera’ graph showing the connectivity of qubits on the DW2 pro-
cessor chip at Burnaby, BC that I use. Not all qubits are usable in the
graph - missing qubits - which are rejected at the calibration stage.
There are 64, K4,4-connected blocks of qubits laid out as a matrix of
8 × 8 blocks. Each block has 2 columns (vertical) and 4 rows (hor-
izontal). Fully connected problems such as Hopfield networks have
to be embedded onto the native graph structure keeping in mind the
missing qubits. 152

viii

6.2 (color online) The variation of the energies of the fundamental mem-
ories and the probe memory under the Hamiltonian ĤAM with the
probe vector χ̄ as in (6.17). The dotted vertical line (green) repre-
sents the highest (h = .75) allowed field strength for succesful recall of
χ̄. Applying fields above this maximum value overbiases the Hamil-
tonian such that χ̄ itself becomes the lowest energy state. A vertical
slice at any fixed value of h is the spectrum of the problem Hamil-
tonian ĤP = ĤAM for the p-fundamental memories plus the input
probe memory. 156

6.3 (color online) Probability of the correct recall using quantum anneal-
ing varying with respect to the applied field strength h > 0. This
probability is high (' 1) for the particular set of p = 3 memories
and the input vector (6.17) for almost the entire region with h < .75
(green dashed line). For small values of h (≤ .15), the thermal noise
degrades the annealing recall success significantly. 156

A.1 (color online) Temporal evolution of the classical control functions
A(t), B(t) in the time-dependent annealing Hamiltonian H(t) in
Eq. (6.4). 165

ix

Chapter 1

Introduction

In Quantum mechanical computers, Feynman suggested that one of the poten-

tial applications of quantum computers will be the simulation of quantum physics.

If we abstractify the idea, simulating physics is solving certain mathematical prob-

lems. Apart from that, there are mathematical problems which are interesting in

their merit. So, if we are able to build quantum computers which can solve general

mathematical problems, it would have wide applications in our real lives. It is nat-

ural to ask whether quantum information science help us in having better standing

of yet unsolved mathematical problems. Moreover, one may also ask whether a

solution in quantum regime can be better than the best known classical solutions.

One such example is the Shor’s algorithm. We have had very few progress since

Shor’s. Why are not we seeing such progress for most of the other unsolved mathe-

matical problems? To answer to that question, we have to understand the structure

of the problems in quantum regime better. Moreover, we also need to set near term

goals using quantum enhancements in classical problem solving as we are still at the

early stage of building universal quantum computers. In this dissertation I ask and

answer when graph isomorphism, an old open mathematical problem, is easy and

impossible to solve in quantum computation for selected classes.

1

1.1 Outline and Summary of Results

I have given a preliminary background in Graph Theory, Pseudo-Boolean opti-

mization, Representation Theory, Quantum Fourier Transformation, and Quantum

Adiabatic Algorithms in Chapter 2. Following the chapter, I present the following

new results in the next four chapters.

Chapter 3: Graph Automorphism and Hidden Subgroup Algorithms

shows that the hidden subgroup approach (both strong and weak quantum Fourier

sampling) always fails for cycle graph automorphism problem. Then, I have shown

how to determine non-trivial classes of graph automorphism problems for which the

same technique also always fails.

Chapter 4: Graph Isomorphism and Quantum Adiabatic Algorithms gives

the first correctness proof of the Hen-Young quantum adiabatic graph isomorphism

algorithm for cycle graphs. I have shown that the time for adiabatic evolution to

find the configuration of a graph grows in the cubic power of the size of the input

graphs.

Chapter 5: Graph Isomorphism and Quantum Annealing gives the first

ever experimental implementation of a quantum annealing algorithm for graph iso-

morphism using manufactured spins. I have also shown that, for n−1
2

-regular graphs,

the requirement on the number of physical spins becomes worse.

Chapter 6: Hopfield Network and Quantum Annealing shows that we can

achieve exponential memory capacity for a Hopfield network if we implement the

memory recall phase using quantum annealing. We have also implemented it using

2

a commercial quantum annealer.

3

Chapter 2

Preliminaries

2.1 Graph Theory

Most of the work presented in this dissertation involves the graph isomorphism

and automorphism problems. So, it would be appropriate to start the background

chapter with a few concepts of graph theory. Most of the materials in this section

are reproduced from the very well written book by Bollobás [30]. The materials I

have covered do not constitute a comprehensive coverage on graph theory, rather

they are only related to the problems I have approached in this dissertation.

Definition 1 (Graph). A graph G is an ordered pair of disjoint sets (V,E) such

that E is a subset of the set V (2) of unordered pairs of V .

We call V as the set of vertices, and E as the set of edges. Each element of E

connects two elements of V . A graph is directed of the edge (vi, vj) is an element of E

but (vj, vi) is not for all i and j. A simple graph does not have loops or multi-edges.

This dissertation only focuses on questions defined on simple undirected graphs.

A graph can be partitioned in more than one ways. They are defined as follows.

Definition 2 (Vertex partition). The vertex partition P = P1, . . . , Pi, . . . of a graph

Γ = (V,E) is a partition over V such that
⋃
i Pi = V .

4

Definition 3 (Edge partition). The edge partition Q = Q1, . . . , Qi, . . . of a graph

Γ = (V,E) is a partition over E such that
⋃
iQi = E.

Definition 4 (Regular coloring). A coloring C of a graph Γ is called regular if i)

any two vertices in Pi, are the end vertices of the same number of edges in Qj for

all i, j and ii) any two edges in Qj have the same number of end vertices in Pi for

all i and j.

The study of the automorphism group of a graph is a very active area of

research. I present a few basic related definitions as follows.

Theorem 1 (Orbit theorems [172]). Let Aut (Γ) be the automorphism group of the

graph Γ = (V,E). The orbits of Aut (Γ) on vertices and edges are the partitions,

P = {{gv|g ∈ Aut (Γ)} |v ∈ V }

Q = {{ge|g ∈ Aut (Γ)} |e ∈ E} (2.1)

(P,Q) maintains the regularity condition from Definition 4.

In 1971 Conway introduced the following theorem [43]. Complete proofs of

the Theorem 2 are given in [133, 23, 107].

Theorem 2. An arc-transitive group of automorphism Aut (Γ) of a d-valent graph

Γ (d ≥ 2) has exactly d− 1 orbits in its action on the set of all G-consistent cycles.

Conway’s theorem was generalized in [36] as follows.

5

Theorem 3. Let G be any subgroup of the symmetric group Sn. Let X be the set of

all cycles occurring in the elements of G. Then G has exactly n orbits in its action

on X by conjugation.

Definition 5 (k-clique). A k-clique is defined as the completely connected subgraph

of size k in a graph.

I also define k-tree in this section [89].

Definition 6 (k-tree). • The complete graph on k vertices is a k-tree.

• A k-tree G with n + 1 vertices (n ≥ k) can be constructed from a k-tree H

with n vertices by adding a vertex adjacent to exactly k vertices that form a

k-clique in H.

• No other graphs are k-trees.

The partial k-tree is a generalization of k-tree.

Definition 7 (Partial k-tree). A graph G is a partial k-tree if and only if G has a

treewidth at most k.

The tree decomposition of a graph is defined as follows [89].

Definition 8 (Tree decomposition). A tree decomposition of a graph G = (V,E) is

a pair

({
Xi|i ∈ Z+

}
, T =

(
Z+,M

))

6

where {Xi|i ∈ Z+} is a collection of subsets of V (also called bags), and T is a tree,

such that:

• ⋃i∈Z+ Xi = V

• (u, v) ∈ E =⇒ ∃i ∈ Z+ with u, v ∈ Xi

• For all vertices v ∈ V , {i ∈ Z+|v ∈ Xi} induces a connected subtree of T .

• M is the set of edges in the tree.

The treewidth of a graph is defined as follows.

Definition 9 (Treewidth). Let the width of a tree decomposition ({Xi|i ∈ Z+} , T = (Z+,M))

be maxi∈Z+ |Xi|−1. The treewidth of a graph G, tw (G), is the minimum width over

all tree decompositions of G.

Now I like to define the concept of frames [115, 38].

Definition 10 (Frame). A nonempty set S of independent vertices of the graph G

is called a frame of G if G− S ′ is connected for any S ′ ⊆ S.

If |S| = k it is called a k-frame.

Kyaw [115] has given the following sufficient condition for a graph being k-tree.

Theorem 4. Let G = {V,E} be a connected graph and k (≥ 2) an integer. If

dG (S) +
k+1∑
i=2

(k − 1) |Ni (S) | ≥ n− 1 (2.2)

for every k + 1-frame S in G, then G has a k-tree.

7

Here, dG is defined as follows. For any nonempty subset S of V , dG (S) =∑
s∈S dG (s). dG (s) is the degree of the vertex s ∈ V in G. Moreover, Ni (S)

is defined as Ni (S) = {v ∈ V : |NG (v) ∩ S| = i}. NG (u) is defined as NG (u) =

{v ∈ V : (u, v) ∈ E} for a given u ∈ V .

2.1.1 Isomorphism and automorphism

The graph isomorphism and automorphism problems are two of the oldest

problems in combinatorics. The formal statement of the graph isomorphism problem

goes as follows as mentioned in [68].

Definition 11 (Graph isomorphism (GI)). Given two graphs, Γ1 = (V1, E1) and

Γ2 = (V2, E2), does there exist a bijection f : V1 → V2 such that ∀a, b ∈ V1, (a, b) ∈

E1 ⇐⇒ (f (a) , f (b)) ∈ E2?

Here, V1 and V2 are the sets of vertices and E1 and E2 are the sets of edges of

Γ1 and Γ2 respectively.

Graph automorphism is a special version of Definition 11 when Γ1 = Γ2.

Definition 12 (Graph automorphism (GA)). Given a graph Γ = (V,E), the au-

tomorphism group are Γ → Γ isomorphisms; they form the subgroup Aut (Γ) of the

symmetric group S|V |.

Read et al. [155] have named the tendency of incessant but unsuccessful

attempts at the problem as the graph isomorphism diseases. This indicates the

amount of interest about the problem among the mathematicians. The current

best known algorithm for the general graph isomorphism problem is due to Babai

8

et al. [16]. The algorithm exploits graph canonization techniques through label

reordering in exponential time (exp
(
n

1
2

+o(1)
)

), where n = |V |. While the best

known algorithm for the general graph isomorphism problem is exponential, better

results have been proven for graph sub classes with special properties. In [16],

Babai et al. also proved the bound for tournament graphs is n(1
2

+o(1)) logn. In

[121], Luks reduced the bounded valence graph isomorphism problem to the color

automorphism problem, and gave a polynomial time algorithm. In another paper

[15], Babai et al. created two polynomial algorithms using two different approaches,

i.e., the tower of groups method, and the recursion through systems of imprimitivity

respectively, for the bounded eigenvalue multiplicity graph isomorphism problem.

The isomorphism problem for planar graphs is known to be in polynomial time due

to Hopcroft et al. [95]. In their paper, the authors used a reduction approach to

eventually tranform the graphs into five regular polyhedral graphs and check the

isomorphism by exhaustive matching in a fixed finite time. Miller [134] used a

different approach by finding minimal embeddings of the graphs of bounded genus

and checking their isomorphism by generating codes. Babai et al. in [14] and

Czajka et al. in [47] showed that the isomorphism of almost all the graphs in a class

of random graphs can be tested in linear time. Both of their approaches exploit the

properties of the degree sequence of a random graph. Babai et al. [13] proved that

while the graph isomorphism problem for strongly regularly graphs may be solved

faster than the general version it is still an exponential time algorithm.

Although we have an exponential time algorithm for the general graph iso-

morphism problem, it is not proven to be optimal. So, the complexity class of the

9

graph isomorphism problem is yet undecided. While we know that it is in NP [75],

we don’t know whether it is in P or NP-complete. This is why the graph isomor-

phism problem is called an NP-intermediate problem. Schöning [166] has shown

that graph isomorphism is in LP2 and not γ-complete under the assumption that

the polynomial hierarchy does not collapse to LP2 . Given this information, many

researchers believe that the graph isomorphism problem is not NP-complete.

While the efforts towards finding an efficient solution for the general graph

isomorphism problems have been unsuccessful, the researchers have attempted prac-

tically feasible methods to solve the problem in reasonable time frame.

2.2 Pseudo-Boolean optimization

Pseudo-Boolean optimization is an active area of study in operations research.

In Chapter 5, I have represented the graph isomorphism problem as a pseudo-

Boolean function. Hence, it would be appropriate to discuss the related theories. A

pseudo-Boolean function can be defined as follows.

A function f is called a set function when it maps a set to a number. Let, R is

the set of reals, B = {0, 1} and n is a positive integer. So, Bn is the set of all binary

n-tuples. If the function f , such that f : Bn → R, f is called a pseudo-Boolean

function.

Definition 13 (Pseudo-Boolean function). A pseudo-boolean function, f , is a map-

ping f : Bn → R where n ∈ Z+ and Z+ is the set of all positive integers.

A pseudo-Boolean function can be expressed as an algebraic expression of

10

degree n polynomials. When the highest degree of such polynomial is two it is

called a quadratic pseudo-Boolean function. The inputs to the function are also

called configurations.

In this report, I study only the quadratic pseudo-Boolean functions. An in-

troductory survey on pseudo-boolean functions is available in Boros et al. [32].

As a special case of pseudo-Boolean functions, a quadratic unconstrained bi-

nary optimization (QUBO) is defined in [182]. Boolean problems are encoded as

QUBO problems when one wants to solve them using the commercial quantum

annealers built by the D-Wave Systems Inc. [109].

Definition 14 (Quadratic unconstrained binary optimization). Quadratic uncon-

strained binary optimization is a quadratic pseudo-Boolean function which deter-

mines the minimum over {0, 1}n and takes the form

f (x1, . . . , xn) = c0 +
n∑
i=1

cixi +
∑

1≤i≤j≤n

cijxixj (2.3)

Here, i, j, n ∈ Z+ and ci ∈ R.

The derivative of a pseudo-Boolean function is defined as follows.

Definition 15 (Derivative). The i-th derivative of a pseudo-Boolean function f ,

∆i (x), is defined as follows.

∆i (x) = f (x1, . . . , xi−1, 1, xi+1, . . . , xn)− f (x1, . . . , xi−1, 0, xi+1, . . . , xn) (2.4)

I also define the residual of a pseudo-Boolean function.

11

Definition 16 (Residual). The i-th residual of a pseudo-Boolean function f , Θi (x),

is defined as follows.

Θi (x) = f (x)− xi∆i (x) (2.5)

The local minima of a pseudo-Boolean function is defined as follows.

Definition 17 (Local minima [44]). Two configurations X and Y are neighbors if

the Hamming distance between them is exactly one. X ∈ Bn is a local minimum of

the pseudo-Boolean function f : Bn → R if,

f (X) ≤ f (Y) (2.6)

for all neighbors Y of X.

I like to note that that every pseudo-Boolean function has a unique multilinear

polynomial representation [82, 83, 32].

Theorem 5. Every pseudo-Boolean function f : Bn 7→ R has a unique multi-linear

polynomial representation of the following form.

f (x1, . . . , xn) =
∑
S⊆V

cS
∏
j∈S

xj (2.7)

By convention, we always assume that
∏

j∈∅ xj = 1.

Here, V ∈ N and cS ∈ R.

The linear majorant and linear minorant are defined as follows [32].

12

Definition 18 (Linear majorant). A linear function l (x) = l0+l1x1+l2x2+. . .+lnxn

is called a linear majorant of a quadratic pseudo-Boolean function f , if l (x) ≥ f (x)

holds for all x ∈ Bn.

Definition 19 (Linear minorant). A linear function l (x) = l0+l1x1+l2x2+. . .+lnxn

is called a linear minorant of a quadratic pseudo-Boolean function f , if l (x) ≤ f (x)

holds for all x ∈ Bn.

I also define a few concepts related to roof-duality [81].

Definition 20 (Upper plane). A linear function p (x) is called an upper plane of a

pseudo-Boolean function f (x), if for all x ∈ Bn, p (x) ≥ f (x).

The upper planes are also known as roofs. The set of the upper planes S is

complete if f (x) = minp(x)∈S p (x) for all x in Bn. I also define the concept of local

upper plane for each term in f [81].

Definition 21 (Local upper plane). Let a quadratic pseudo-Boolean function be,

f (x) =
n∑
i=1

n∑
j=1

qijxixj

where qij = 0 whenever i > j. For each term qijxixj, the local upper plane is defined

as

pij (xi, xj) = aijxi + bijxj + cij

where cij ≥ 0, aij + cij ≥ 0, bij + cij ≥ 0, and aij + bij + cij ≥ 0.

13

Definition 22 (Duality gap). Let the function M (f, S) be the function M (f, S) =

maxx∈Bn minp∈S p (x). The duality gap for the pseudo-Boolean function is,

max
x∈Bn

min
p∈S

p (x)−max
x∈Bn

f (x)

.

An important concept associated with a pseudo-Boolean function is the co-

occurrence graph [32].

Definition 23 (Co-occurrence graph). If a pseudo-Boolean function f : Bn 7→ R

is given by its unique multi-linear polynomial, a graph Gf = (V,E) is called its co-

occurrence graph, in which (i, j) ∈ E (for i, j ∈ V, i 6= j) iff f has a term for which

S ⊇ {i, j} and cS 6= 0.

The tree-width of f is the tree-width of Gf .

A basic algorithm for pseudo-Boolean optimization, BASIC-ALGORITHM,

was first proposed in [82, 84] and later simplified in [83]. I present the algorithm as

Algorithm 1.

14

Algorithm 1 BASIC-ALGORITHM

1: procedure BASIC-ALGORITHM(f) . Input
2: Let n denote the number of variables.
3: if If n = 1 and f (1) > f (0) then RETURN x∗1 = 0
4: else RETURN x∗1 = 1
5: end if
6: if If n > 1 then continue
7: end if

. Local optimality
8: Label the variables, and choose xn to be eliminated.
9: Determine the pseudo-Boolean function gn defined by

10: gn (x1, . . . , xn−1) =

{
1 if ∆n (x1, . . . , xn−1) < 0, and

0 otherwise.

. Recursion
11: Determine fn−1 (x1, . . . , xn−1) = f (x1, . . . , xn−1, gn (x1, . . . , xn−1))
12: Obtain the optimal values for x∗1, x

∗
2, . . . , x

∗
n−1 by calling

BASIC-ALGORITHM (fn−1)
. Output

13: Set x∗n = gn
(
x∗1, . . . , x

∗
n−1

)
, and RETURN the binary vector x∗ =

(x∗, . . . , x∗n).
14: end procedure

The relation between the complexity of BASIC-ALGORITHM and the co-

occurrence graph of a pseudo-Boolean function was established in [45].

Theorem 6. If for a pseudo-Boolean function f its co-occurrence graph Gf is a par-

tial k-tree, then BASIC-ALGORITHM can be implemented to run in polynomial

time in the input size size (f) and in 2k.

2.3 Representation Theory

I introduce a few concepts of the representation theory in this section which

are relevant to the work in Chapter 3. A more detailed introduction may be found

in [72, 46].

15

Definition 24 (Young diagram). For any partition λ1, . . . , λk of an integer λ, there

is a diagram associated called the Young diagram where there are λi cells in the i-th

row. The cells are lined up on the left.

Definition 25 (Hook). For a cell (i, j) of a Young tableau λ, the (i, j)-hook hi,j is

the collection of all cells of λ which are beneath (i, j) (but in the same column) or t

the right of (i, j) (but in the same row), including the cell (i, j). The length of the

hook is the number of cells appearing in the hook.

Definition 26 (Skew hook). A skew hook s of a Young diagram λ is a connection

collection of boundary boxes such that their removal from λ results in a (smaller)

diagram.

Definition 27 (Restricted and induced representations). If H ⊂ G is a subgroup,

any representation ρ1 of G restricts to a representation of H, denoted ResGHρ1 or

simple Resρ1. Let ρ2 ⊂ ρ1 be a subspace which is H-invariant. For any g in G, the

subspace g.ρ2 = {g.w : w ∈ ρ2} depends only on the left coset of gH of g modulo H,

since gh.W = g. (h.ρ2) = g.ρ2; for a coset c in G/H, I write c.ρ2 for this subspaceof

ρ1 subspace of ρ1. I say that ρ1 is induced by ρ2 if every element in ρ1 can be written

uniquely as a sum of elements in such translates of ρ2, i.e.

ρ1 =
⊕
c∈G/H

c.ρ2 (2.8)

In this case I write the induced representation ρ1 = IndGHρ2 = Ind ρ2.

A common representation we will see in later sections of this report is the

16

regular representation [72].

Definition 28 (Regular representation). If X is any finite set and G actson the

left on X, i.e., G → Aut (X) is a homomorphism to the permutation group of X,

there is a associated permutation representation: let V be the vector space with basis

{ex : x ∈ X}, and let G act on V by

g ·
∑

axex =
∑

axegx. (2.9)

The regular representation, denoted RG or R, corresponds to the left action of G on

itself.

The character of a group element is defined as follows [72].

Definition 29 (Character). If ρ is a representation of a group G, its character χρ

is the complex-valued function on the group defined by

χρ (g) = Tr (g|ρ) (2.10)

the trace of g on ρ.

It is useful to define the inner product of characters [162].

Definition 30 (Inner product of characters). Let χ and ψ be the characters of a

group G. The inner product of χ and Ψ is

〈χ,Ψ〉 =
1

|G|
∑
g∈G

χ (g) Ψ† (g) (2.11)

17

The character table of a finite group is defined as follows [162].

Definition 31 (Character table). Let G be a group. The character table of G is an

array with rows indexed by the inequivalent irreducible characters of G and columns

indexed by the conjugacy classes. The table entry in row χ and column K is χK:

. . . K . . .

...
...

χ . . . χK

...

By convention, the first row corresponds to the trivial character, and the first

column corresponds to the class of the identity, K = {e}.

I define the wreath product as follows [54].

Definition 32 (Wreath product). Let K and L be groups, let n be a positive integer,

let φ : K → Sn be a homomorphism and let H be the direct product of n copies of

L. Let ψ be an injective homomorphism from Sn into Auto (H) constructed by

letting the elements of Sn permute the n factors of H. The composition ψ ◦ φ is a

homomorphism from G into Aut (H). The wreath product of L by K is the semidirect

product H oK with respect to this homomorphism and is denoted by L oK.

The dimension of an irreducible representation of the symmetric group is de-

fined as follows.

Definition 33 (Dimension of an irreducible representation). The dimension dimρλ

of an irreducible representation ρ for a partition λ = (λ1 + . . .+ λi + . . .+ λk) of a

symmetric group Sn is given as follows [72].

18

dimρλ =
n!

l1 · . . . · lk!
Πi<j (li − lj) , (2.12)

with li = λi + k − i.

It is suitable to mention the following theorem on the multiplicity of an irre-

ducible representation in the regular representation [72].

Theorem 7. Every irreducible representation ρ occurs dim (ρ) times in the regular

representation.

Proof of Theorem 7. Let χ be the character of the regular representation. Then

χ (g) =


n if g = 1, and

0 otherwise

Because, each group elements acts by a permutation matrix, and the trace of a

permutation matrix is simply the number of fixed points of the permutation. Thus,

〈χρ, χ〉 =
1

n
¯χρ (1)χ (1)

=
1

n
dim (ρ)n

= dim (ρ)

Another two important concepts in representation theory are restriction and

19

induction [162].

Definition 34 (Restriction). Let H be a subgroup of G and X be a matrix repre-

sentation of G. The restriction of X to H, X ↓GH , is given by

X ↓GH (h) = X (h)

for all h ∈ H.

Definition 35 (Induction). Let H ≤ G and t1, . . . , tl be a fixed transversal for the

left cosets of H, i.e., G = t1H t . . . t tlH. If Y is a representation of H, then the

corresponding induced representation Y ↑GH assigns to each g ∈ G the block matrix

Y ↑GH (g) = Y
(
t−1
i gtj

)

=



Y
(
t−1
1 gt1

)
Y
(
t−1
1 gt2

)
· · · Y

(
t−1
1 gtl

)
Y
(
t−1
2 gt1

)
Y
(
t−1
2 gt2

)
· · · Y

(
t−1
2 gtl

)
...

...
. . .

...

Y
(
t−1
l gt1

)
Y
(
t−1
l gt2

)
· · · Y

(
t−1
l gtl

)


where Y (g) is the zero matrix if g /∈ H.

It is natural to define the characters for the restricted and induced represen-

tations [170].

Definition 36 (Character of restricted representation). Let X be a matrix repre-

sentation of a group G, and let H ≤ G be a subgroup. Then, the character of the

20

restricted representation χ ↓GH (h) is the character of the original representation

χ (h) for all h ∈ H.

I reproduce the character of induced representation from [10].

Definition 37 (Character of induced representation). Let Y be a matrix represen-

tation of a group H such that H ≤ G. I pick a transversal of H in G. Using our

formula for the induced representation we find,

χ ↑GH (g) = Tr
(
Y
(
t−1
i gtj

))

= Tr



Y
(
t−1
1 gt1

)
Y
(
t−1
1 gt2

)
· · · Y

(
t−1
1 gtl

)
Y
(
t−1
2 gt1

)
Y
(
t−1
2 gt2

)
· · · Y

(
t−1
2 gtl

)
...

...
. . .

...

Y
(
t−1
l gt1

)
Y
(
t−1
l gt2

)
· · · Y

(
t−1
l gtl

)


=

n∑
i=1

Tr
(
Y
(
t−1
i gti

))
=

n∑
i=1

χ
(
t−1
i gti

)

where χ (g) is the zero matrix if g /∈ H.

Since, χ is a class function on H, conjugation by any element h ∈ H leaves it

the same. So, χ (h−1gh) = χ (g) for all g ∈ G and h ∈ H.

We do exactly this for each element of H, add all the results together and

divide by the number of elements of H. In other words, I write the above function

out in |H| different ways, add them all together, and divide by |H| to get exactly

what we started with:

21

χ ↑GH (g) =
1

|H|
∑
h∈H

n∑
i=1

χ
(
h−1t−1

i gtih
)

=
1

|H|
∑
h∈H

n∑
i=1

χ
(
(tih)−1 g (tih)

)
(2.13)

But now as ti varies over the transversal, and as h varies over H, their product tih

varies exactly once over G. That is, every x ∈ G can be written in exactly one way

in the form th for some transversal element ti and subgroup element h. Thus we

have the following relation.

χ ↑GH (g) =
1

|H|
∑
x∈G

χ
(
x−1gx

)
(2.14)

It would be appropriate if I mention the theorem on the Frobenius reciprocity

in this section [162].

Theorem 8 (Frobenius reciprocity). Let H ≤ G and suppose that ψ and χ are

characters of H and G, respectively. Then

〈ψ ↑GH , χ〉G = 〈ψ, χ ↓GH〉H (2.15)

where the left inner product is calculated in G and the right one in H.

A special case of Frobenius reciprocity is relevant to our discussion where the

representation of H is the trivial representation 1H [80]. I describe the case as

22

follows.

Lemma 1 (Special case of Frobenius reciprocity). Let H ≤ G and suppose that χρ

is the character of the irreducible representation ρ of G. Then

〈χ ↑GH1H
, χρ〉G = 〈χ1H , χρ ↓GH〉H (2.16)

where the left inner product is calculated in G and the right one in H.

I would like to reproduce the Example 3.13 from [72] here.

Remark 1. The permutation representation associated to the left action of G on

G/H is induced from the trivial one-dimensional representation W of H. Here, the

representation of G, V has basis {eσ : σ ∈ G/H}, and W = C ·eH , with Hthe trivial

coset.

Following Remark 1, we can say that 1H ↑GH is the permutation representation

of G. So, according to the Theorem 7, the multiplicity of ρ in 1H ↑GH is dρ.

2.4 Quantum Fourier Transformation

Quantum Fourier Transformation is an integral component of the theorem

presented in Chapter 3. The quantum Fourier transform of a map from a finite

group to its representation is defined as follows [80].

Definition 38 (Fourier transformation of a finite group). Let f : G → C. The

23

Fourier transform of f at the irreducible representation ρ is the dρ × dρ matrix

f̂ (ρ) =

√
dρ
|G|

∑
g∈G

f (g) ρ (g) (2.17)

In quantum Fourier transform, the superposition
∑

g∈G fg|g〉 is identified with

the function f : G→ C defined by f (f (g)) = fg. Using this notation,
∑

g∈G f (g) |g〉

is mapped under the Fourier transform to
∑

ρ∈Ĝ,1≤i,j≤dρ f̂ (ρ)i,j |ρ, i, j〉. Here, Ĝ is

the set of all irreducible representations of G and f̂ (ρ)i,j is a complex number. The

probability of measuring the register |ρ〉 is

∑
1≤i,j≤dρ

|f̂ (ρ)i,j |2 = ‖f̂ (ρ) ‖2 (2.18)

where ‖A‖ is the natural norm (also known as Frobenius norm) given by ‖A‖2 =

Tr
(
A†A

)
.

The Frobenius norm can be calculated from the characters of the group asso-

ciated which is demonstrated in the following theorem reproduced from [80].

Theorem 9. If, f is an indicator function of a left closet of H in G, i.e. for some

c ∈ G,

f (g) =


1√
|H|

if g ∈ cH, and

0 0 otherwise

(2.19)

, then,

24

‖f̂ (ρ) ‖2 =
|H|
|G| dρ〈χρ, χ1H 〉H (2.20)

Proof of Theorem 9. From Definition 38, we know that,

‖f̂ (ρ) ‖2 =
∑

1≤i,j≤dρ

|f̂ (ρ)i,j |2 (2.21)

I seek to only measure ρ.

I use the assumption in the theorem.

‖f̂ (ρ) ‖2 = ‖ρ (c)
∑
h∈H

ρ (h) ‖2 (2.22)

ρ (c) is a unitary matrix. So, as a multiplier it does not change the norm [132].

‖f̂ (ρ) ‖2 = ‖
∑
h∈H

ρ (h) ‖2 (2.23)

So, the probability of measuring ρ is determined by
∑

h∈H ρ (h). If correctly

normalized, 1
|H|
∑

h∈H ρ(h) is a projection.

(
1

|H|
∑
h∈H

ρ(h)

)2

=
1

|H|2
∑

h1,h2∈H

ρ(h1h2)

=
1

|H|
∑
h∈H

ρ(h) (2.24)

25

because h1h2 = h has |H| solutions (h1, h2) ∈ H ×H.

With the right choice of basis, f̂ (ρ) will be diagonal and consist of ones and

zeros. The probability of measuring ρ will then be the sum of ones in the diagonal.

As ρ is an irreducible representation of G, we need to take into account of the sum of

the matrices ρ (h) for all h ∈ H. Based of the assumption of the current theorem, we

may only consider to evaluate ρ on H. According to the assumption, the probability

of measuring ρ when g /∈ cH is zero. So, we may consider consider ρ ↓GH instead of

G.

Then, the Fourier transform of f at ρ is comprised of blocks, each correspond-

ing to a representation in the decomposition of ρ ↓GH . Such as,

∑
h∈H

ρ (h) = U



∑
h∈H σ1 (h) 0 · · · 0

0
∑

h∈H σ2 (h) · · · 0

...
...

. . .
...

0 0 · · · ∑
h∈H σt (h)


U † (2.25)

Here, U is an arbitrary unitary transformation, σi is an irreducible representation

of H with possible repetition. Now, as a special case of the orthogonality relation

among group characters,
∑

h∈H ρ (h) is nonzero only when the irreducible represen-

tation is trivial, in which case, it is |H|.

So, the probability of measuring ρ is:

∥∥∥f̂ (ρ)
∥∥∥2

=

∥∥∥∥∥
√

dρ
|G|

∑
h∈H

ρ (h)

∥∥∥∥∥
2

26

=
dρ
|G|

∥∥∥∥∥∑
h∈H

ρ (h)

∥∥∥∥∥
2

=
dρ
|G|tr

(∑
h1∈H

ρ(h1)

)(∑
h2∈H

ρ(h2)

)†

=
dρ
|G|tr

∑
h1,h2∈H

ρ(h1h
−1
2)

=
dρ
|G|

1

|H| |H|
2〈χρ, χ1H 〉H

=
|H|
|G| dρ〈χρ, χ1H 〉H (2.26)

I would like to note that, by definition, ρ appears 〈χρ, χ1H 〉H times in the decompo-

sition of 1H .

I like to refer the readers to [51] for a review on the classical complexity of

Fourier transformation of the symmetric groups.

2.5 Quantum Adiabatic Algorithms

The main result of Chapter 4 is the correctness proof on an quantum adia-

batic algorithm. Hence, I discuss a few related concepts in this section. Adiabatic

quantum computation, introduced by Farhi et al. in 2000 [66] is a continuous time

quantum computational model. Aharonov et al. [3] proved that this model is equiv-

alent to gate based quantum computation. The state of a quantum system can be

described as a vector which is a function of a time, |Ψ (t)〉. The information about

the system is expressed using a time dependent Hamiltonian, H (t). The evolution

of the Hamiltonian is governed by the Schrödinger equation as follows.

27

i
d

dt
|Ψ (t)〉 = H (t) Ψ (t) (2.27)

To solve a problem using an adiabatic algorithm, a quantum system is ini-

tialized with a beginning Hamiltonian, HB which is easy to construct. Then the

evolution is performed in such manner that the system stays always in it’s instan-

taneous ground state. This is guaranteed by the adiabatic theorem of quantum

mechanics given by Born et al [31]. When the evolution is complete, the ground

state of the final Hamiltonian encodes the solution of the problem. For this reason

it is also called the problem Hamiltonian, HP . To guide the evolution we need a

knob. If T is the total time of evolution and s = t/T is the normalized time let the

knob be τ (s). If H (s) is the instantaneous Hamiltonian defined as follows.

H (s) = (1− s)HB + sHP (2.28)

and it evolves according to the following equation.

d

ds
|Ψ (s)〉 = −iτ (s)H (s) |Ψ (s)〉 (2.29)

The knob turns sufficiently slow if, as show in [180],

28

τ (s)� ||
d
ds
H (s) ||2
g (s)2 (2.30)

Here, g (s) is the difference between the first two eigenvalues. When it is

difficult to find the ground state, it is convenient to use the minimum gap between

the first two eigenvalues, minsg (s) and the maximum maxs|| ddsH (s) ||2.

In their original paper, Farhi et al [66] described the relation between the

adiabatic evolution time and the energy gap as τ (s) ∝ g (s)−2. But, as mentioned

in [144], researchers have determined tighter bound in the relationship between these

two quantities [7, 49, 101]. Most of these studies put the bound at τ (s) ∝ g (s)−3.

29

Chapter 3

Graph Automorphism and Hidden Subgroup Algorithms

The main result of this chapter is the Theorem 12 and the Corollary 1 where

I have shown that both the weak and strong quantum Fourier sampling fails for

the classically trivial cycle graph automorphism problem. I have also shown how

to determine non-trivial classes of graphs for which a quantum Fourier transform

always fails to construct the automorphism group.

It has already been known that the graph automorphism problem is Turing-

reducible to the graph isomorphism problem [113]. Hence, most of the research

using the quantum hidden subgroup approach has been conducted to solve the

graph isomorphism problem. It is obvious that any efficient quantum algorithm for

the graph isomorphism problem would immediately solve the graph automorphism

problem.

The hidden subgroup version of the graph isomorphism problem was first de-

fined in [105]. We can reduce the n-vertex graph isomorphism problem for graphs

of n vertices to the case of the hidden subgroup problem over the symmetric group

S2n or more specifically the wreath product Sn o Z2 where the hidden subgroup is

promised to be either trivial or of order two [142]. I follow the scheme of the hidden

subgroup problem as mentioned in [106] in the following definition. Erdős et al [61]

have shown that the automorphism groups of most of the graphs are trivial. So,

30

although, the problem was defined for all simple undirected graphs in [105], I follow

the example of [78] and limit our discussion to graphs with trivial automorphisms.

Definition 39 (Graph isomorphism as a hidden subgroup problem (GIHSP)). Let

the 2n vertex graph Γ = Γ1 t Γ2 be the disjoint union of the two graphs Γ1 and Γ2

such that Aut (Γ1) = Aut (Γ2) = {e}. A map ϕ : S2n → Mat (C, N) 1 from the group

S2n is said to have hidden subgroup structure if there exists a subgroup Hϕ of S2n,

called a hidden subgroup, an injection `ϕ : S2n/H → Mat (C, N), called a hidden

injection, such that the diagram

S2n Mat (C, N)

S2n/H

ϕ

ν
`ϕ

is a commutative diagram, where S2n/Hϕ denotes the collection of right cosets of

Hϕ in S2n, and where ν : S2n/Hϕ is the natural map of S2n onto S2n/Hϕ. I refer to

the group S2n as the ambient group and to the set Mat (C, N) as the target set.

The hidden subgroup version of the graph isomorphism problem is to determine

a hidden subgroup H of S2n with the promise that H is either trivial or |H| = 2.

I also like to provide a formal definition for the hidden subgroup representation

of the graph automorphism problem.

Definition 40 (Graph automorphism as a hidden subgroup problem (GAHSP)).

For a graph Γ with n vertices, a map ϕ : Sn → Mat (C, N) 2 from the group Sn

is said to have hidden subgroup structure if there exists a subgroup Aut (Γ) of Sn,

1Mat (C, N) is the algebra of all N ×N matrices over the complex numbers C.
2Mat (C, N) is the algebra of all N ×N matrices over the complex numbers C.

31

called a hidden subgroup, an injection `ϕ : Sn/Aut (Γ)→ Mat (C, N), called a hidden

injection, such that for each g ∈ Aut (Γ), g (Γ) = Γ and, the diagram

Sn Mat (C, N)

Sn/Aut (Γ)

ϕ

ν
`ϕ

is commutative, where Sn/Aut (Γ) denotes the collection of right cosets of Aut (Γ)

in Sn, and where ν : Sn/Aut (Γ) is the natural map of Sn onto Sn/Aut (Γ). I refer

to the group Sn as the ambient group and to the set Mat (C, N) as the target set.

The hidden subgroup version of the graph automorphism problem is to deter-

mine a hidden subgroup Aut (Γ) of Sn with the promise that Aut (Γ) is either of

trivial or non-trivial order depending on the type of Γ.

3.1 Hidden subgroup algorithm for non-abelian groups

The hidden subgroup approach for both the graph isomorphism and automor-

phism problems require computing the quantum Fourier sampling of the symmetric

group. This has been an active area of research since Shor invented the famous

Shor’s algorithm, a quantum hidden subgroup algorithm for abelian groups, for

prime factorization [171]. While at this moment, there is no known efficient quan-

tum hidden subgroup algorithm for symmetric groups, researchers have shed some

light on why it has been so difficult to find them.

While surveys like [41], summarizes the advances made so far in hidden sub-

group algorithms, I would like to review the negative results in this section to illus-

32

trate why this is a difficult problem. It is noteworthy that all the positive results, so

far, have been demonstrated for the synthetically created product groups. While this

approach may not have immediate practical application, I have used this idea of cre-

ating synthetic groups to generalize results. One of the first results for non-abelian

hidden subgroup problems was presented by Roetteler et al [159]. They proved an

efficient hidden subgroup algorithm for the wreath product Zk2 o Z2 which is a non-

abelian group. Similarly, Ivanyos et al proved the existence of an efficient hidden

subgroup algorithm for a more general non-abelian nil-2 groups [99]. Later Friedl

et al generalized the result such that there are efficient hidden subgroup algorithms

for the groups whose derived series have constant length and whose Abelian factor

groups are each the direct product of an Abelian group of bounded exponent and

one of polynomial size [69]. Ettinger et al showed that it is possible to reconstruct a

subgroup hidden inside the dihedral group using finite number of queries [64]. This

result was later generalized by Ettinger et al that arbitrary groups may be recon-

structed using finite queries but they did not give any specific set of measurement

[65].

In [136], Moore et al proved that although weak quantum Fourier sampling fails

to determine the hidden subgroups of the non-abelian groups of the form Zq n Zp,

where q | (p− 1) and q = p/polylog (p), strong Fourier sampling is able to do that.

Later on, Moore et al proved the existence of polylog (|G|) sized quantum Fourier

circuits for the groups like Sn, H oSn, where |H| = poly (n), and the Clifford groups

[135, 138]. The authors also gave circuits of subexponential size for standard groups

like GLn (q), SLn (q), PGLn (q), and PSLn (q), where q is a fixed prime power. Moore

33

et al have also presented a stronger result where they have shown that it is not

possible to reconstruct a subgroup hidden inside the symmetric group with strong

Fourier sampling and both arbitrary POVM and entangled measurement [141]. At

the same time, the authors did not rule out the possibility of success using other

possible measurements which is still an open question. Bacon et al proved that the so

called pretty good measurement is optimal for the dihedral hidden subgroup problem

[17]. Moore et al extended this result for the case where the hidden subgroup is a

uniformly random conjugate of a given subgroup [139]. Moore et al eventually proved

a more general results that strong quantum Fourier sampling can reconstruct q-

hedral groups [137]. Alagic et al proved a general result that strong Fourier sampling

fails to distinguish the subgroup of the power of a given non-abelian simple group

[4]. Moore et al later proved that arbitrary entangled measurement on Ω (n log n)

coset states is necessary and sufficient to extract non-negligible information [140].

Similar result was also proved in [79] separately. Few years later, Moore et al

proved a negative result that the quantum sieve algorithm, i.e. highly entangled

measurements across Ω(n log n) coset states, cannot solve the graph isomorphism

problem [142].

It is important to point out that all the groups used in the previously men-

tioned results are conveniently chosen and synthetically created. Moreover, they are

sporadic so it is not clear how we can extrapolate the knowledge for the symmetric

groups. Most part of the history, the researchers have assumed that as the graph

automorphism problem is Turing-reducible to the graph isomorphism problem, it

would be sufficient to investigate the hidden subgroup representation of the graph

34

isomorphism problem. With all these unsuccessful attempts for the last couple of

decades presented above, one may argue whether the hidden subgroup approach is

the right way to attempt the graph isomorphism problem. If it is, there would have

been a Turing-reduction from the hidden subgroup representation of the graph auto-

morphism problem to the hidden subgroup representation of the graph isomorphism

problem. Unfortunately, we are not aware of any such reduction using the quantum

Turing machine. So, another way of looking at the problem is to understand the

hidden subgroup complexity of the graph automorphism problem and compare the

results with the results for graph isomorphism.

3.2 Quantum Fourier sampling for graph isomorphism

Most of the algorithms for the non-Abelian hidden subgroup problem use a

black box for ϕ in the same way as in the Abelian hidden subgroup problem [106].

This has come to be known as the standard method. The standard method begins

by preparing a uniform superposition over group elements [39]:

|Sn〉 :=
1√
|Sn|

∑
g∈Sn

|g〉 (3.1)

I then compute the value of ϕ (g) in an ancilla register which creates the

following state.

35

1√
|Sn|

∑
g∈Sn

|g, ϕ (g)〉 (3.2)

Then I discard the second register by just tracing it out. If the outcome of

the second register is s then the state is projected onto the uniform superposition

of those g ∈ Sn such that ϕ (g) = s. By definition of ϕ, it is some left coset of the

hidden subgroup H. Since every coset contains the same number of elements, each

left coset occurs with equal probability. Thus, the standard method produces the

following coset state.

|gH〉 :=
1√
|H|

∑
h∈H

|gh〉 (3.3)

or equivalently as the following mixed hidden subgroup state.

ρH :=
1

|Sn|
∑
g∈Sn

|gh〉〈gh| (3.4)

I have previously mentioned that ϕmaps the group elements of Sn to Mat (C, N).

Here, I present more information about the space Mat (C, N). Let the complete set

of irreducible representations of Sn (which are unique up to isomorphism) be Ŝn.

The Fourier transform is a unitary transformation from the group algebra, CSn, to

a complex vector space whose basis vectors correspond to matrix elements of the

36

irreducible representations of Sn, ⊕ρ∈Ŝn
(
Cdρ ⊗ Cdρ

)
. Here, dρ is the dimension of

the irreducible representation ρ.

|g〉 is the basis vector chosen for the group element g ∈ Sn. There will be

n! such basis vectors of dimension n! × 1. For a given group element g, we have

a particular number of matrices one for each irreducible representation ρ. |gh〉 is

expressed as |ρ, j, k〉 which is the basis vector labeled by the (j, k)-th element of the

irreducible representation ρ of g.

When only ρ is measured from |ρ, j, k〉 it is called weak Fourier sampling. In

strong Fourier sampling, j and k are also measured.

3.2.1 Weak Fourier sampling for GIHSP

This section summarizes what we already know about the weak Fourier sam-

pling when applied to the graph isomorphism problem. The weak Fourier sampling

for GIHSP attempts to measure the label of irreducible representations of the sym-

metric group S2n when the input graphs Γ1 and Γ2 are of n vertices. I assume

Aut (Γ1) = Aut (Γ2) = {e}. If Γ = Γ1 t Γ2, one of the following two claims is

true [80]. I would like to point it out that in [80], the authors derived the success

probability of measuring the label of the irreducible representations for Sn. I will

be deriving it for S2n to keep consistency with the definition of GIHSP.

• If Γ1 6≈ Γ2, then Aut (Γ) = {e}.

• If Γ1 ≈ Γ2, then Aut (Γ) = {e, σ} = Z2, where σ ∈ S2n is a permutation with

n disjoint 2-cycles.

37

Algorithm 2 WEAK-QUANTUM-FOURIER-SAMPLING-S2n

1: procedure WEAK-QUANTUM-FOURIER-SAMPLING-S2n(a graph Γ
such that either Aut (Γ) = {e} or Aut (Γ) = {e, σ})

2: Compute 1√
(2n)!

∑
g∈S2n

|g, ϕ (g)〉

3: Compute
∑

ρ∈ ˆS2n

√
dρ

(2n)!

√
1

|Aut(Γ)|

(∑
h∈Aut(Γ) ρ (ch)

)
i,j
|ρ, i, j〉

4: Measure ρ as in tracing it out
5: end procedure

Let pρ be the probability of sampling ρ in Algorithm 2 when Γ1 6≈ Γ2, and

qρ when Γ1 ≈ Γ2. So, the induced representation of Aut (Γ) to S2n, IndS2n

Aut(Γ)1, is

the regular representation. So, 〈χρ|χInd
S2n
Aut(Γ)

1
〉, the multiplicity of ρ in the regular

representation, is dρ. Hence, pρ =
d2
ρ

(2n)!
.

When Γ1 ≈ Γ2, Aut (Γ) = {e, σ}. In this case, the probability of measuring ρ,

qρ =
|Aut (Γ) |

(2n)!
dρ〈χ1|χρ〉Aut(Γ) (3.5)

Aut (Γ) has only two elements, e and σ, hence

〈χ1|χρ〉Aut(Γ) =
1

2
(χρ (e) + χρ (σ))

=
1

2
(dρ + χρ (σ)) (3.6)

So,

38

qρ =
|Aut (Γ) |

(2n)!
dρ

1

2
(dρ + χρ (σ))

=
2

(2n)!
dρ

1

2
(dρ + χρ (σ))

=
dρ

(2n)!
(dρ + χρ (σ)) (3.7)

So,

|pρ − qρ| = |
d2
ρ

(2n)!
− dρ

(2n)!
(dρ + χρ (σ)) |

=
dρ

(2n)!
|χρ (σ) | (3.8)

I use the Murnaghan-Nakayama rule [175] to approximate |χρ (σ) |. The rule

is given below.

Theorem 10 (The Murnaghan-Nakayama rule). Let c be a permutation with cycle

structure (c1, . . . , ct), c1 ≥ . . . ≥ ct. Then

χλ (c) =
∑
s1,...,st

(−1)v(s1) . . . (−1)v(st) , (3.9)

where each si is a skew hook of length ci of the diagram or partition λ after

s1, . . . , si−1 have been removed, and v (si) denotes the number of vertical steps in si.

39

The number of unordered decompositions for the diagram λ with 2n cells is

24n = 16n. For each unordered decomposition, the number of ordered decomposition

is at most
(
2
√

2n
) 2n

2 =
(
2
√

2n
)n

. So, by the Murnaghan-Nakayama rule, χρ (σ) ≤

16n
(
2
√

2n
)n

.

So,

|χρ (σ) | ≤ 16n
(

2
√

2n
)n

≤ 24n2n
√

2
n (√

n
)n

≤ 2O(n)n
n
2 (3.10)

Now I compute |pρ − qρ| for all irreducible representations. So,

|p− q|1 =
∑
ρ

|pρ − qρ|

≤
∑
ρ

dρ
(2n)!

2O(n)n
n
2

≤
∑
ρ

√
(2n)!

(2n)!
2O(n)n

n
2

≤ 2O(n)n
n
2√

(2n)!

=
2O(n)n

n
2

√
(2n)!√

(2n)!
√

(2n)!

=
2O(n)n

n
2

√
(2n)!

(2n)!

40

=
2O(n)n

n
2

√
(2n)2n

(2n)!

=
2O(n)n

n
2 (2n)n

(2n)!

=
2O(n)n

n
2 nn

(2n)!

=
2O(n)n

3n
2

(2n)!

=
2O(n)n

3n
2

(2n)(2n)

=
2O(n)n

3n
2

n2n

=
2O(n)

n
n
2

=
2O(n)

2−
n
2 n

n
2

=
2O(n)

n
2

n
2

≤ 2O(n)(
n
2

)
!

≪ 2−Ω(n) (3.11)

3.3 Weak quantum Fourier sampling for cycle graph automorphism

The automorphism group of an n-cycle graphs is the dihedral group Dn of

order 2n. I seek to study the weak Fourier sampling of cycle graphs. To provide

the background, I discuss the irreducible representations of the dihedral group Dn

in this section.

Definition 41 (Cycle Graph). An n-cycle graph is a single cycle with n vertices.

The automorphism group of an n-cycle graph is the dihedral group Dn which

41

is of order 2n. If Dn is even, the group can be generated as 〈(2 n)(3 n−1) . . . (n
2
−

1 n
2

+ 1), (1 . . . n)〉. If Dn is odd, the group can be generated as 〈(2 n)(3 n −

1) . . . (n−1
2

n+1
2

), (1 . . . n)〉. This is a manifestation of the presentation Dn = 〈x, y |

xn = y2 = (xy)2 = 1, yx = y−1x〉. The correspondence consists of x = (1 . . . n)

and y = (2 n)(3 n − 1) . . . (n
2
− 1 n

2
+ 1) if n is even, and y = (2 n)(3 n −

1) . . . (n−1
2

n+1
2

) if n is odd. The orders of x and y are n and 2 respectively.

The order of the symmetric group Sn is n!. The order of a dihedral group Dn

is 2n. So, the index of Dn in Sn is n!
2n
≈
√

2πn(ne)
n

2n
.

I would like to mention an important theorem proved in [42] in the following

paragraph.

Theorem 11. Every subgroup of Dn is cyclic or dihedral. A complete listing of the

subgroups is as follows:

• 〈xd〉, where d | n, with index 2d,

• 〈xd, xiy〉, where d | n and 0 ≤ i ≤ d− 1, with index d.

Every subgroup of Dn occurs exactly once in this listing.

In this theorem, subgroups of the first type are cyclic and subgroups of the

second type are dihedral: 〈xd〉 ∼= Z/ (n/d) and 〈xd, xiy〉 ∼= Dn/d.

Based on Theorem 11, I would like to add the following remark.

Remark 2. The order of the subgroups 〈xd〉 and 〈xd, xiy〉 are n
d

and 2n
d

respectively.

Every element of Dn is either xi or yxi for 0 ≤ i < n. The conjugacy classes

are small enough in number to be enumerated.

42

Conjugate xi by xj : (xj)xi(x−j) = xi

xi by yxj : (yxj)xi(x−jy) = yxiy = x−i

yri by rj : (rj)yri(r−j) = yr−jrir−j = yri−2j

yxi by yxj : (yxj)yxi(x−jy) = xi−2jy = yx2j−i

The set of rotations decomposes into inverse pairs,
{
xi, (xi)

−1
}

. So, the classes

are {1} , {x, xn−1}, {x2, xn−2} , When n is even, there are n
2

+ 1, and when n is

odd, there are n+1
2

conjugacy classes.

yx is conjugate to yx3, yx5, . . . while y is conjugate to yx2, yx4, If n is even,

these two sets are disjoint. However, yx is conjugate to yxn−1 (via x), so if n is odd,

all the non trivial reflections are in one conjugacy class.

So, the total number of conjugacy classes are as follows. If n is even, the total

number of conjugacy classes is
(
n
2

+ 1
)

+ 2 = n
2

+ 3. If n is odd, the total number

of conjugacy classes is n+1
2

+ 1 = n+3
2

.

The commutators of Dn,

[
xi, yxj

]
= x−i

(
yxj
)
xi
(
yxj
)

= yx2i+jyxj

=
(
xi
)2

(3.12)

So, the commutators generate the subgroup of squares of rotations. When n

is even, only half the rotations are squares, hence G/ [G,G] is of order 4. When

n is odd, all rotations are squares, hence G/ [G,G] is of order 2. The number of

43

one dimensional irreducible representations is the order of G/ [G,G]. So, when n is

even, there are 4 one dimensional representations and when n is odd, there are 2

one dimensional representations.

I enumerate the representations as follows.

• When n is even:

– The trivial representation, sending all group elements to the 1×1 matrix(
1

)
.

– The representation, sending all elements in 〈x〉 to

(
1

)
and all elements

outside 〈x〉 to

(
−1

)
.

– The representation, sending all elements in 〈x2, y〉 to

(
1

)
and x to(

−1

)
.

– The representation, sending all elements in 〈x2, xy〉 to

(
1

)
and x to(

−1

)
.

• When n is odd:

– The trivial representation, sending all group elements to the 1×1 matrix(
1

)
.

– The representation, sending all elements in 〈x〉 to

(
1

)
and all elements

outside 〈x〉 to

(
−1

)
.

Now, I determine the two dimensional irreducible representations. There is

an obvious subgroup {1, x, . . . , xn−1} which is a cyclic group of order n, let’s call

44

it Cn < Dn. Since Cn is abelian, it has n irreducible 1-dimensional representations

over C, namely

x 7→ e2πki/n, 0 ≤ k < n (3.13)

which captures the idea of rotating by an angle of 2πk/n. I induce these easily-

described representations to Dn in order to find some possibly new representations.

We have a representation W of a subgroup H ≤ G (i.e. an H-linear action on

W), the induced representation of W is

⊕
g∈G/H

g ·W (3.14)

where g ranges over a set of representatives of G/H.

The induced representation of Cn to Dn for fixed k is straight forward since

Dn/Cn has representatives {1, y}. So we just need to describe the Dn-vector space

C ⊕ y · C where C has basis consisting only of w1. Now, the Dn action turns into

an actual matrix representation.

Specifically, we can find out how x acts on each summand using our represen-

tation of Cn:

45

x · w1 = e2πki/nw1, and (3.15)

x · (y · w1) = xy · w1

= yx−1 · w1 = e−2πki/ny · w1 (3.16)

which tells us that x acts by the matrix

e2πki/n 0

0 e−2πki/n

.

We can also figure out how y acts. y obviously takes w1 to y ·w1, and y takes

y ·w1 to y2w1 = w1, so y simply interchanges the two summands. This tells us that

y acts by the matrix

0 1

1 0

.

Here, I list the k-th two dimensional irreducible representations for the general

group elements.

x 7→

e
2πik
n 0

0 e−
2πik
n



xl 7→

e
2πikl
n 0

0 e−
2πikl
n



46

y 7→

0 1

1 0



xly 7→

 0 e
2πikl
n

e−
2πikl
n 0

 (3.17)

We observe that, 0 ≤ l ≤ n− 1. Both l = 0 and l = n determine the identity

matrix to which the identity element, e, is mapped. When n is even, the k-th and

(n− k)-th representations are equivalent, hence we get distinct representations only

for k = 1, 2, . . . , n−2
2

. The representations for k = 0 and k = n
2

are not irreducible

and they decompose into one dimensional representations. On the other hand, when,

n is odd, there are n−1
2

irreducible representations.

Using the previous calculations, we can compute the total number of irre-

ducible representations for Dn. When n is even, the total number is n−2
2

+4 = n
2

+3.

When n is odd, it is n−1
2

+ 2 = n+3
2

. At this point, I would like to add the following

remark regarding the characters of the irreducible two dimensional representations.

Remark 3. The characters of the representations of the elements of type y and

xly are both zeros. The representations of the elements of type x have the same

character, 2 cos
(

2πk
n

)
. Finally, the representations of the elements of type xl have

the same character, 2 cos
(

2πkl
n

)
.

Our interest with the dihedral group Dn of order 2n is based on the fact that

it is the automorphism group of the n-cycle graph. A p-group is a group where the

order of every group element is a power of the prime p. So, Dn can be a p-group

47

only when n = 2m, when m ∈ Z ,because that is when x2m = y21
= 1 for p = 2.

The restrictions from the irreducible representations of Sn to Dn is straight

forward. For any irreducible representation ρ of Sn, its restriction to Dn is ρ (h) for

all h ∈ Dn. This new representation may not be necessarily irreducible.

The inductions from the irreducible representations of Dn to Sn can be com-

puted following the Definition 35. This new representation may also not be neces-

sarily irreducible.

Following [80], I seek to compute the induced representation of 1Dn which is

the trivial representation of the dihedral group Dn. As a prerequisite we need to

compute a transversal for the left cosets of Dn which can be done by any of the two

algorithms presented in Section 4.6.7 of [94]. The computation of a transversal of

a group requires the computation of the base of a group which can be computed in

polynomial time using the Schreier-Sims algorithm [169, 173, 112].

As I have mentioned previously in the current section, there are l = n!
2n
≈

√
2πn(ne)

n

2n
cosets for Dn in Sn. This will also be the number of elements in a

transversal for the left cosets of Dn in Sn. Let the transversal be t1, . . . , tl. So,

Sn = t1Dn t . . . t tlDn. We can compute 1Dn ↑SnDn following Definition 35.

It would be instructive to discuss the character table of Sn and Dn here.

Computing the character table of Sn starts from computing the partitions

λ1 ≥ λ2 ≥ . . . ≥ λr given
∑

i λ = n. These partitions can be partially ordered as

follows. If there are two partitions λ = (λ1 ≥ λ2 ≥ . . .) and µ = (µ1 ≥ µ2 ≥ . . .),

48

λ ≥ µ if,

λ1 ≥ µ1

λ1 + λ2 ≥ µ1 + µ2

λ1 + λ2 + λ3 ≥ µ1 + µ2 + µ3

... (3.18)

The columns of the character table are indexed by the conjugacy classes such

that the partitions are arranged in increasing order. On the other hand, the rows

are indexed by the characters in the decreasing order of the partitions. Each cell in

the table then contains the corresponding character.

I provide a number of equivalent general procedure for computing the character

table of any symmetric group Sn improvising from [77].

The most straight forward way [162] to compute the character table is given

in Algorithm 3.

Algorithm 3 CHARACTER-TABLE-1

1: procedure CHARACTER-TABLE-1(Sn)
2: Determine all the partitions of n which will also infer the conjugacy classes.
3: Enumerate all group elements and cluster them based on their cycle types.

These clusters will coincide with the conjugacy classes.
4: For each class, compute the irreducible representation for each group element.
5: For each class, determine the character of the irreducible representation. All

group elements of the same cycle type will have the same character.
6: Populate the table with the characters following the prescribed order of the

partitions for both column and rows.
7: end procedure

Enumeration of conjugacy classes becomes tedious when we are discussing

49

about groups larger than S5. By using the Murnaghan-Nakayama rule , we can

simplify the process even for larger groups [175] as shown by [77] in Algorithm 4.

Algorithm 4 CHARACTER-TABLE-2

1: procedure CHARACTER-TABLE-2(Sn)
2: The conjugacy classes of Sn are the permutations having a fixed number

of cycles of each length, corresponding to a partition of n called the shape of
the permutation. Since, the characters of a group are constant on its conju-
gacy classes, index the columns of the character table by these partitions. The
partitions are arranged in an increasing order.

3: There are precisely as many irreducible characters as conjugacy classes, so
we can also index the irreducible characters by the partitions of n. Represent
each partition as a Young diagram and write them, or the characters directly
down, the left of the table in a decreasing order of the partitions.

. The Murnaghan-Nakayama Rule
4: Calculate the entry in row λ and column µ. Define a filling of λ with content
µ to be a way of writing a number in each square of λ such that the numbers are
weakly increasing along each row and column and there are exactly µi squares
labeled i for each i.

5: Consider all fillings of λ with content µ such that for each label i, the squares
labeled i form a connected skew tableaux that does not contain a 2× 2 square.
Such a tableaux is called a border-strip tableaux.

6: For each label in the tableau, define the height of the corresponding border
strip to be one less than the number of rows of the border strip. Weight the
tableau by (−1)s where s is the sum of the heights of the border strips that
compose the tableau.

7: The entry in the character table is simply the sum of these weights.
8: end procedure

I apply Lemma 1 to obtain the Frobenius reciprocity for Dn < Sn.

〈χ ↑SnDn1Dn , χρ〉Sn = 〈χ1Dn
, χρ ↓SnDn〉Dn (3.19)

where the left inner product is calculated in Sn and the right one inDn. So, if we need

to determine 〈χ1Dn
, χρ ↓SnDn〉Dn , it would be sufficient to determine 〈χ ↑SnDn1Dn , χρ〉Sn .

50

Following the Definition 30,

〈χ ↑SnDn1Dn , χρ〉Sn =
∑
gi∈Sn

χ ↑SnDn1Dn (gi)χ
†
ρ(gi)

=
∑
gi∈Sn

(
n∑
i=1

δχ↑SnDn1Dn
(gi)

i,i

)
χ†ρ(gi) (3.20)

I apply Theorem 9 to determine the probabilities of measuring the irreducible

representations of Dn through proving a few lemmas.

Lemma 2. The probability of measuring the labels of one dimensional irreducible

representations of Dn is zero for non-trivial representations.

Proof of Lemma 2. First, I assume that n is even. So, there are 4 one dimensional

representations and n−2
2

two dimensional representations. I compute the probability

of measuring the one dimensional representations. Let us denote them as ρ1, ρ2, ρ3,

and ρ4. So, their dimensions are all the same i.e. dρ1 = dρ2 = dρ3 = dρ4 = 1. Let

the probability of measuring ρi be pρi . So, following Theorem 9,

pρi =
|Dn|
|Sn|

dρi〈χρi , χ1Dn
〉Dn

=
2n

n!
〈χρi , χ1Dn

〉Dn (3.21)

Dn has 2n elements. So,

51

〈χρi , χ1Dn
〉Dn =

1

|Dn|
∑
g∈Dn

χρi (g)χ†1Dn (g)

=
1

2n

∑
g∈Dn

χρi (g) (3.22)

When i = 1, ρ1 is the trivial representation which sends all group elements

to the 1× 1 matrix

(
1

)
. The probability of measuring this representation is given

below.

〈χρ1 , χ1Dn
〉Dn =

1

2n

∑
g∈Dn

χρ1 (g)

= 1 (3.23)

So,

pρ1 =
2n

n!
〈χρ1 , χ1Dn

〉Dn

=
2n

n!
(3.24)

When i = 2, ρ2 is the representation which sends all elements in 〈x〉 to

(
1

)
and

all elements outside 〈x〉 to

(
−1

)
. The probability of measuring this representation

is given below.

52

〈χρ2 , χ1Dn
〉Dn =

1

2n

∑
g∈Dn

χρ2 (g) (3.25)

As observed from the presentation of Dn, the number of elements in 〈x〉 is n.

So, n elements will be mapped to 1 and n elements will e mapped to −1. So,

〈χρ2 , χ1Dn
〉Dn =

1

2n
(n (1) + n (−1))

= 0 (3.26)

So,

pρ2 =
2n

n!
〈χρ2 , χ1Dn

〉Dn

= 0 (3.27)

So, the weak Fourier sampling will not be able to determine the labels of the

sign representation which sends all elements in 〈x〉 to

(
1

)
and all elements outside

〈x〉 to

(
−1

)
.

When i = 3, ρ3 is the representation which sends all elements in 〈x2, y〉 to

(
1

)
and x to

(
−1

)
. The probability of measuring this representation is given below.

53

〈χρ3 , χ1Dn
〉Dn =

1

2n

∑
g∈Dn

χρ3 (g) (3.28)

Following Remark 2, ρ3 sends n elements of Dn to

(
1

)
and 2n − n = n

elements of Dn to

(
−1

)
. So,

〈χρ3 , χ1Dn
〉Dn = 0 (3.29)

So, the weak Fourier sampling will not be able to determine the labels of

the sign representation which sends all elements in 〈x2, y〉 to

(
1

)
and all elements

outside 〈x〉 to

(
−1

)
.

When i = 4, ρ4 is the representation which sends all elements in 〈x2, xy〉 to(
1

)
and x to

(
−1

)
. The probability of measuring this representation is given

below.

〈χρ4 , χ1Dn
〉Dn =

1

2n

∑
g∈Dn

χρ4 (g) (3.30)

Following Remark 2, ρ4 sends n elements of Dn to

(
1

)
and 2n − n = n

elements of Dn to

(
−1

)
. So,

54

〈χρ4 , χ1Dn
〉Dn = 0 (3.31)

So, the weak Fourier sampling will not be able to determine the labels of the

sign representation which sends all elements in 〈x2, xy〉 to

(
1

)
and all elements

outside 〈x〉 to

(
−1

)
.

The case when n is odd may be considered as a special case of when n is

even and show that only the trivial representation can be sampled with non-zero

probability.

Now, I would like to compute the probability of measuring the labels of two

dimensional irreducible representations in weak Fourier sampling.

Lemma 3. The probability of measuring the labels of two dimensional irreducible

representations of Dn is always zero.

Proof of Lemma 3. When n is even, there are n−2
2

such irreducible representations.

Let the irreducible representations be denoted as σ1, σ2, . . . , σk, . . . , σn−2
2

.

The probability of measuring σk is given below.

〈χσk , χ1Dn
〉Dn =

1

2n

∑
g∈Dn

χσk (g) (3.32)

Following Remark 3, σk maps n number of elements to the matrices for which

the characters of the representations are zero. For the rest n number of the group

55

elements, the character is 2 cos
(

2πkl
n

)
where 0 ≤ l ≤ n− 1. So,

〈χσk , χ1Dn
〉Dn =

1

2n

n−1∑
l=0

2 cos

(
2πkl

n

)

=
1

n

n−1∑
l=0

cos

(
2πkl

n

)
(3.33)

I would like to mention the following formula for the sum of series of cosines

when they are in arithmetic progression as they have been proven in both [111] and

[93].

n∑
l=1

cos(lθ) =
sin(nθ/2)

sin(θ/2)
cos((n+ 1)θ/2), sin(θ/2) 6= 0. (3.34)

When θ =
2πk

n
,

n∑
l=1

cos

(
2πkl

n

)
=

sin(πk)

sin(πk/n)
cos((n+ 1)πk/n) = 0 (3.35)

If we change the interval of l from [1, n] to [0, n− 1] the sum still remains zero.

n−1∑
l=0

cos

(
2πkl

n

)
= cos(0) + 0− cos(2πk) = 0. (3.36)

56

So, the probability of measuring the labels of the two dimensional irreducible

representations is:

〈χσk , χ1Dn
〉Dn =

1

n

n−1∑
l=0

cos

(
2πkl

n

)

= 0 (3.37)

The case of n being odd can be considered as a special case of n being even

and the same result can be proved.

So, the weak Fourier sampling algorithm cannot determine the labels of any

of the two dimensional irreducible representations. To summarize, weak Fourier

sampling cannot determine any irreducible representation other than the trivial

one. So, it cannot determine the automorphism group of the cycle graph which is

a trivial problem in the classical paradigm. Lemmas 2 and 3 may be consolidated

into the following theorem.

Theorem 12. Weak quantum Fourier sampling fails to solve the cycle graph auto-

morphism problem.

Proof. Follows directly from the proofs of the Lemmas 2 and 3.

I observe that the success probability of strong Fourier sampling is a condi-

tional probability which depends on the success probability of measuring the labels

of representation. As the success probability of measuring the non-trivial represen-

57

tations of Dn is zero, the success probability of measuring their individual matrix

elements is also zero.

Corollary 1. Strong quantum Fourier sampling fails to solve the cycle graph auto-

morphism problem.

3.4 Non-trivial graph automorphism problems

In Section 3.3, I have shown that the weak Fourier sampling fails to determine

the automorphism group of the cycle graphs. It is natural to ask whether same is the

case for the graphs which have the dihedral group as a subgroup in it’s automorphism

group. I answer to the question in the affirmative. This is based of the following

theorem reproduced from [53] and also mentioned as Theorem 10 in Section 3.2 in

[170].

Theorem 13. The direct product of two irreducible representations of groups H

and K yields an irreducible representation of the direct product group so that all

irreducible representations of the direct product group can be generated from the

irreducible representations of the original groups before they are joined.

While the formal proof is omitted, I would like to present a sketch of the proof

here.

Let F be a field and G be a group which is expressed as the direct product

G = H×K. Let ρ and σ be representations of H and K over F , respectively. Then

a corresponding representation of G over F may be constructed from ρ and σ by

using tensor products.

58

Suppose that ρ and σ arise from an FH−module M and an FK−module

N , respectively. Form the tensor product T = M ⊗F N and make T into a right

FG−module by the rule (a ⊗ b)(x, y) = (ax) ⊗ (by), where a ∈ M , b ∈ N , x ∈ H

and y ∈ K. Then T affords an F−representation ρ]σ called the Kronecker (or outer

tensor) product of ρ and σ. The degree of ρ]σ equals the product of the degrees of

ρ and σ.

It is easy to show that if ρ has character χ and σ has character ψ, the character

φ of ρ]σ is given by (x, y)φ = (x)χ(y)ψ. If F is an algebraically closed field, G is

finite, the characteristic of F does not divide the order of G and {ρ1, . . . , ρh} and

{σ1, . . . , σk} are complete sets of inequivalent irreducible F−representations of H

and K, then the ρi]σr, for i = 1, . . . h and r = 1, . . . , k , form a complete set of

inequivalent irreducible F−representations of G.

With the discussion above, a complete set of inequivalent irreducible C−characters

of Dn × G, where G is a finite group, can be constructed by the rule (x, y)φj =

(x)χi(y)ψr, where i = 1, . . . h, r = 1, . . . , k, x ∈ Dn, y ∈ G, and {χ1, . . . , χh} and

{ψ1, . . . , ψk} are complete sets of inequivalent irreducible C−characters of Dn and

G.

Before going further, I would like to present the Frucht’s theorem below [70].

Theorem 14. Every abstract group is isomorphic to the automorphism group of

some graph.

So, any group which is a product of Dn and a finite group G is isomorphic

to the automorphism group of some finite graph. It has also been shown in [11]

59

that every finite group as the group of symmetries of a strongly regular graph. It

indicates that there is a class of strongly regular graph whose automorphism group

is isomorphic to Dn × G. According to Theorem 13 and the result presented in

the previous section, I argue that quantum Fourier sampling fails to construct the

automorphism group of a subclass of strongly regular graphs.

Another example may be the Cayley graph automorphism problem [186]. It

is well known that the automorphism group of the Cayley graph Aut (C (G,X))

of a group G over a generating set X contain an isomorphic copy of G acting via

left translations [100]. In that case, the automorphism group of the Cayley graph

of a dihedral group Dn contains Dn as a subgroup. So, following the result of

the previous section, quantum Fourier sampling fails to compute the automorphism

group of Aut (C (G,X)).

I would like to draw the final case from the theory of universal structures. A

class C of structures is called universal if every finite group is the automorphism

group of a structure in C [37]. A series of efforts by Frucht, Sabidussi, Mendelsohn,

Babai, Kantor, and others [37] has shown the following classes of graphs to be

universal - graphs of valency k for any fixed k > 2 [71]; bipartite graphs; strongly

regular graphs [130]; Hamiltonian graphs [161]; k-connected graphs [161], for k > 0;

k-chromatic graphs, for k > 1; switching classes of graphs; lattices [24]; projective

planes (possibly infinite); and Steiner triple systems [131]; and symmetric designs

(BIBDs). It indicates that each of these classes has at least one graph which has its

automorphism group isomorphic to Dn. So, quantum Fourier sampling will fail to

compute the automorphism group of each of these cases.

60

3.5 Summary

We have seen that, while GIHSP is equivalent to determining order 2 subgroup

of a symmetric group, GAHSP is equivalent to determining a hidden subgroup of

higher order. I have identified a class of graph automorphism problem for which

the quantum Fourier transform algorithm always fails. I have also shown how we

can determine non-trivial classes of graphs for which the same algorithm always

fails. With these negative results, one may be interested to ask whether the hidden

subgroup representation is a practical representation of the graph isomorphism and

automorphism problems in quantum regime.

61

Chapter 4

Graph Isomorphism and Quantum Adiabatic Algorithms

4.1 Adiabatic algorithm for graph isomorphism

The main result of this chapter is the correctness proof of the Hen-Young quan-

tum adiabatic algorithm for graph isomorphism. Adiabatic algorithms for graph

isomorphism is a relatively new area of research which started with the publication

[91] by Hen et al. Later on two more publications proposed two more adiabatic

algorithms ([73, 90]). These three algorithms are highly diverse in terms of the con-

struction of the driver Hamiltonian, encoding of the solution, locality, and the size

of the quantum system. In this section, I focus on the earliest Hen-Young algorithm

[91]. While the authors presented the implementation of the algorithm for a few

graph classes, the proof of the correctness of the algorithm was yet to be presented.

Our main result in this chapter is the proof of the correctness of the Hen-Young

algorithm.

4.2 The Hen-Young algorithm

I convert the original descriptive version of the algorithm from [91] into a

pseudo-code outlined in Algorithm 5.

62

Algorithm 5 HEN-YOUNG

1: procedure HEN-YOUNG(Γ1, Γ2) . Define driver Hamiltonians for Γ1 and
Γ2

2: Construct driver Hamiltonians Ĥd1 = Ĥd2 = 1
2

∑n
i σ

x
i . Define problem

Hamiltonians for Γ1 and Γ2

3: Construct the problem Hamiltonian Ĥp1 =
∑
〈ij〉∈Γ1

σzi σ
z
j

4: Construct the problem Hamiltonian Ĥp2 =
∑
〈ij〉∈Γ2

σzi σ
z
j . Construct the

adiabatic Hamiltonians
5: Construct the adiabatic Hamiltonian Ĥ1 (s) = (1− s) Ĥd1 + sĤp1

6: Construct the adiabatic Hamiltonian Ĥ2 (s) = (1− s) Ĥd2 + sĤp2

7: Adiabatically evolve Ĥ1 (s) and Ĥ2 (s)
8: Measure average energy, spin-glass order parameter, and x-magnetization
9: if None of the quantity matches then False

10: elseTrue
11: end if
12: end procedure

The success of the Hen-Young algorithm depends on the two adiabatic evolu-

tions conducted in the step 7 of Algorithm 5. It implied that the time τ (s) needed

to finish the evolution should be proportional to g (s)−3 for the algorithm to succeed.

To my knowledge, this relation is yet to be proven. To illustrate the idea, I study

the adiabatic evolutions of all 3-vertex graphs (except the disconnected graph) in

Table 4.1.

Table 4.1: Adiabatic evolution of the Hamiltonians of 3-vertex graphs

Graph Ground states of HP Spectrum of H (s)

|010〉, |011〉, |100〉, |101〉

63

|001〉, |010〉, |101〉, |110〉

|001〉, |011〉, |100〉, |110〉

|010〉, |101〉

|001〉, |110〉

|011〉, |100〉

64

|001〉, |010〉, |011〉, |100〉, |101〉, |110〉

For all these graphs, the driver Hamiltonian is always the same. In the orig-

inal algorithm, the authors mentioned that the problem Hamiltonians reflect the

structure of the graph. But, so far there is no rigorous proof that this structural

information is sufficient for the adiabatic algorithm to succeed. Let us consider the

fourth graph from the Table 4.1. In this graph, the valency of the vertex 2 is two.

The ground state is degenerate with multiplicity two. The vertices with the same

valency retains the same spin value. We may also consider the case of the two iso-

morphic triplets i.e. the first three graphs and the second three graphs from Table

4.1.

I would also like to compute the problem Hamiltonians for the Isomorphic pair

in the Figure 5.7 and the non-Isomorphic pair in the Figure 5.8.

65

Graph Ground states of HP Eigenvalues

|0101〉, |1010〉 −6

|0110〉, |1001〉 −6

|0101〉, |1010〉 −8

|0001〉, |0011〉, |0110〉, |1001〉, |1100〉, |1110〉 −4

Table 4.2: Problem Hamiltonian of 4-vertex isomorphic and non-isomorphic graphs

From Tables 4.1 and 4.2, I observe that the ground state of the problem

Hamiltonian can be grouped in complementary pairs hence they are symmetric. I

assume that it will be the same for any generic graph isomorphism problem.

According to our definitions in Algorithm 5, the adiabatic Hamiltonian of an

n-vertex simple undirected cycle graph Γ = (V,E) by the Hen-Young algorithm is

given below. I assume n to be an even number.

Ĥ (s) = (1− s) Ĥd + sĤp

= (1− s) 1

2

n∑
i

σxi + 2s
∑
〈ij〉∈Γ

σzi σ
z
j

= (1− s) 1

2

n∑
i

σxi + 2s
(
σz1σ

z
2 + σz2σ

z
3 + . . .+ σzkσ

z
k+1 + . . .+ σzn−1σ

z
n + σznσ

z
1

)
= (1− s) 1

2

n∑
i

σxi + 2s
n∑
i

σzi σ
z
i+1

66

=
n∑
i

(
(1− s) 1

2
σxi + 2sσzi σ

z
i+1

)
(4.1)

I adopt the periodic boundary condition for this 1-D spin ring where i+n = i.

To investigate the complexity of the adiabatic algorithm, I need to determine

the gap between the eigenvalues of the ground state and the first excited state of

H̃ (s).

Taking inspiration from section 4.1 of [67], I define an operator G which com-

mutes with Ĥ (s). So,

G =
n∏
j=1

σx(j)

= σx(1) ⊗ σx(2) . . .⊗ σx(n)

= ((σx ⊗ In−1) · (I⊗ σx ⊗ In−2) · (I2 ⊗ σx ⊗ In−3) · . . . · (In−1 ⊗ σx)) (4.2)

It is obvious that G negates the value of each qubit in the z basis. The

first summation term in Ĥ (s) obviously commutes with all σx variables because

it’s a function of σx only and they commute with each other. Moreover, as G2 =

(
∏n

j=1 σ
(j)
x)2 =

∏n
j=1(σ

(j)
x)2 = In, the eigenvalues are ±1.

As G|x = 0〉 = |x = 0〉, I may restrict the computation for the states that are

invariant under G. Based on our observation in the Tables 4.1 and 4.2, I assume

that the space of the ground states of the generic graph isomorphism problem is

invariant under G.

67

Now, I can write the definition of H̃ (s) in the invariant sector as a sum of n
2

commuting 2× 2 Hamiltonians that I can diagonalize.

The second summation term in Ĥ (s) also commutes with the product of all

σx because the term σzjσ
z
j+1 anticommutes both with σxj and σxj+1 because σx, σz

anticommute, and it therefore commutes with the product of two σx as two minus

signs give a plus. I use the Jordan-Wigner transformation [184, 104] to convert the

Pauli operators of the adiabatic Hamiltonian into fermionic operators. To do that,

I define the creation and annihilation operators from the Pauli operators.

σ± = σx ± iσy (4.3)

I define the fermionic operators as follows.

bj = σx1σ
x
2 . . . σ

x
j−1σ

−
j 1j+1 . . .1n

b†j = σx1σ
x
2 . . . σ

x
j−1σ

+
j 1j+1 . . .1n (4.4)

If can be verified that,

{bj, bk} = 0

{bj, b†k} = δjk. (4.5)

68

Moreover, I observe that,

b†jbj =
1

2

(
1− σxj

)
(4.6)

for j = 1, . . . , n,

(
b†j − bj

)(
b†j+1 + bj+1

)
= σzjσ

z
j+1. (4.7)

I can also explicitly calculate to show that

(
b†n − bn

) (
b†1 + b1

)
= −Gσznσz1. (4.8)

As G acts on the qubits which are in computational basis i.e. along the z-

axis, Equations 4.7 and 4.8 are consistent only when bn+1 = −b1 which is the

antiperiodic boundary condition. So, it may be used as the definition of bn+1.

So, I plug in the values in Eq. 4.1.

Ĥ (s) =
n∑
j

(1− s) 1

2

(
1− 2b†jbj

)
+

n∑
j

2s
(
b†jb
†
j+1 − bjbj+1 + b†jbj+1 − bjb†j+1

)
(4.9)

Now, I like to define the Fourier transform of the fermionic operators as follows.

βp =
1√
n

n∑
j=1

eiπpj/nbj (4.10)

69

, for p = ±1,±3, . . . ,± (n− 1). The the terms for the even values of p can also be

determined using the periodic boundary condition as I am investigating a spin chain

on a ring of even length.

The reverse Fourier transform is defined as follows.

bj =
1√
n

∑
p=±1,±3,...,±(n−1)

e−iπpj/nβp (4.11)

This definition is consistent with bn+1 = −b1. Moreover, I also observe that,

{βp, βq} = 0{
βp, β

†
q

}
= δpq (4.12)

Now, I replace the fermionic operators in the quadratic terms, b†jbj, b
†
jb
†
j+1,

bjb
†
j+1, b†jbj+1, bjbj+1, of Eq. 4.24 with their Fourier transformations as defined in

Eq. 4.11.

b†jb
†
j+1 =

1

n

∑
p,q

eπi(p+q)j/neπiq/nβ†qβ
†
p

=
∑
p

e−πip/nβ†−pβ
†
p (4.13)

Similarly,

bjbj+1 =

(
1√
n

∑
p

e−iπpj/nβp

)(
1√
n

∑
q

e−iπq(j+1)/nβq

)

70

=
1

n

∑
p,q

eπip/ne−iπ(p+q)j/nβpβq

=
∑
p

eπip/nβpβ−p (4.14)

,

b†jbj =
1

n

∑
p,q

e
ijπ(q−p)

n β†qβq

=
1

n

∑
p,q

nδpqβ
†
qβp

=
∑
p

β†pβp

= β†pβp + β†−pβ−p (4.15)

bjb
†
j+1 =

 1√
n

∑
p=±1,±3,...,±(n−1)

e−iπpj/nβp

 1√
n

∑
p=±1,±3,...,±(n−1)

eiπp(j+1)/nβ†p


=

1

n

 ∑
p,q=±1,±3,...,±(n−1)

e−iπpj/neiπq(j+1)/nβpβ
†
q


=

1

n

 ∑
p,q=±1,±3,...,±(n−1)

e−iπ(pj−qj−q)/nβpβ
†
q


=

1

n

 ∑
p,q=±1,±3,...,±(n−1)

eiπq/ne−iπ(pj−qj)/nβpβ
†
q


=

1

n

 ∑
p,q=±1,±3,...,±(n−1)

eiπq/nnδpqβpβ
†
q



71

=
∑
p

eiπp/nβ−pβ
†
−p (4.16)

b†jbj+1 =

 1√
n

∑
p=±1,±3,...,±(n−1)

eiπpj/nβ†p

 1√
n

∑
p=±1,±3,...,±(n−1)

e−iπp(j+1)/nβp


=

1

n

 ∑
p,q=±1,±3,...,±(n−1)

eiπpj/ne−iπq(j+1)/nβ†pβq


=

1

n

 ∑
p,q=±1,±3,...,±(n−1)

eiπ(pj−qj−q)/nβ†pβq


=

1

n

 ∑
p,q=±1,±3,...,±(n−1)

e−iπq/neiπ(pj−qj)/nβ†pβq


=

1

n

 ∑
p,q=±1,±3,...,±(n−1)

e−iπq/nnδpqβ
†
pβq


=
∑
p

e−iπp/nβ†pβp (4.17)

Now I plug in the values in
(
b†j − bj

)(
b†j+1 + bj+1

)
.

(
b†j − bj

)(
b†j+1 + bj+1

)
= b†jb

†
j+1 − bjb†j+1 + b†jbj+1 − bjbj+1 (4.18)

I compute the value of the terms pairwise.

b†jbj+1 − bjb†j+1 =
∑
p

(
e−iπp/nβ†pβp − eiπp/nβ−pβ†−p

)

72

=
∑
p

e−iπp/n
(
β†pβp − e2iπp/nβ−pβ

†
−p

)
=
∑
p

e−iπp/n
(
β†pβp − β−pβ†−p

)
=
∑
p

(
cos

πp

n
− i sin

πp

n

)(
β†pβp − β−pβ†−p

)
(4.19)

Let’s check the term
∑

p

(
cos πp

n
− i sin πp

n

) (
β†pβp − β−pβ†−p

)
for p = ±1 setting

1
n

= m.

∑
p=1

(cosmπp− i sinmπp)
(
β†pβp − β−pβ†−p

)
= (cosmπ − i sinmπ)

(
β†1β1 − β−1β

†
−1

)
+ (cos (−mπ)− i sin (−mπ))

(
β†−1β−1 − β1β

†
1

)
= (cosmπ − i sinmπ)

(
β†1β1 − β−1β

†
−1

)
+ (cosmπ + i sinmπ)

(
β†−1β−1 − β1β

†
1

)
= (cosmπ − i sinmπ)

(
β†1β1 − β−1β

†
−1

)
+ (cosmπ + i sinmπ)

((
1− β−1β

†
−1

)
−
(

1− β†1β1

))
= (cosmπ − i sinmπ)

(
β†1β1 − β−1β

†
−1

)
+ (cosmπ + i sinmπ)

(
1− β−1β

†
−1 − 1 + β†1β1

)
= (cosmπ − i sinmπ)

(
β†1β1 − β−1β

†
−1

)
+ (cosmπ + i sinmπ)

(
β†1β1 − β−1β

†
−1

)
= (cosmπ − i sinmπ + cosmπ + i sinmπ)

(
β†1β1 − β−1β

†
−1

)

73

= 2 cosmπ
(
β†1β1 − β−1β

†
−1

)
(4.20)

So,

b†jbj+1 − bjb†j+1 =
∑
p

e−iπp/n
(
β†pβp − β−pβ†−p

)
=
∑
p

(
cos

πp

n
− i sin

πp

n

)(
β†pβp − β−pβ†−p

)
= 2

∑
p

cos
πp

n

(
β†pβp − β−pβ†−p

)
(4.21)

Similarly,

b†jb
†
j+1 − bjbj+1 =

∑
p

[e−πip/nβ†−pβ
†
p − eπip/nβpβ−p]

=
∑
p

e−πip/n[β†−pβ
†
p − e2πip/nβpβ−p]

=
∑
p

e−πip/n[β†−pβ
†
p − βpβ−p] using e2θ = 1

=
∑
p

(cos
πp

n
− i sin

πp

n
)[β†−pβ

†
p − βpβ−p]

= −2i
∑
p

sin
(πp
n

)
[β†−pβ

†
p − βpβ−p] (4.22)

So,

(
b†j − bj

)(
b†j+1 + bj+1

)
= b†jb

†
j+1 − bjb†j+1 + b†jbj+1 − bjbj+1

74

=
(
b†jb
†
j+1 − bjbj+1

)
+
(
b†jbj+1 − bjb†j+1

)
=

(
−2i

∑
p

sin
(πp
n

)(
β†−pβ

†
p − βpβ−p

))

+

(
2
∑
p

cos
πp

n

(
β†pβp − β−pβ†−p

))

= −2i
∑
p

sin
(πp
n

)(
β†−pβ

†
p − βpβ−p

)
+ 2

∑
p

cos
πp

n

(
β†pβp − β−pβ†−p

)
(4.23)

So, the adiabatic Hamiltonian can be written as follows.

H̃ (s) =
n∑
j

(
(1− s) 1

2

(
1− 2b†jbj

)
+ 2s

((
b†j − bj

)(
b†j+1 + bj+1

)))

=
1− s

2

n∑
j

(
1− 2b†jbj

)
+ 2s

n∑
j

(
b†jb
†
j+1 − bjb†j+1 + b†jbj+1 − bjbj+1

)
=

1− s
2

n∑
j

(
1− 2b†jbj

)
+ 2s

n∑
j

(
b†jb
†
j+1 − bjb†j+1 + b†jbj+1 − bjbj+1

)
=

∑
p=1,3,...,(n−1)

Ap (s) (4.24)

where,

Ap (s) =
1− s

2

(
1− 2b†jbj

)
+ 2s

(
b†jb
†
j+1 − bjb†j+1 + b†jbj+1 − bjbj+1

)
=

1− s
2

(
1− 2

(
β†pβp + β†−pβ−p

))
+ 2s

(
−2i sin

(πp
n

)(
β†−pβ

†
p − βpβ−p

)
+ 2 cos

πp

n

(
β†pβp − β−pβ†−p

))

75

=
1− s

2

(
1− 2

(
β†pβp + β†−pβ−p

))
+ 4s cos

πp

n

(
β†pβp − β−pβ†−p

)
− 4si sin

(πp
n

)(
β†−pβ

†
p − βpβ−p

)
(4.25)

Let |Ωp〉 = |0〉 be the ground state of Ap. So, β±p|Ωp〉 = β±p|0〉 = 0. Among

β†pβp, β
†
−pβ−p, β

†
−pβ

†
p, βpβ−p, β−pβ

†
−p, and β†pβp, only β†−pβ

†
p takes |Ωp〉 to |Σp〉.

Now I compute Ap|Ωp〉 = Ap|0〉.

Ap|Ωp〉 = Ap|0〉

=
1− s

2

(
1− 2

(
β†pβp + β†−pβ−p

))
|0〉

+ 4s cos
πp

n

(
β†pβp − β−pβ†−p

)
|0〉 − 4si sin

(πp
n

)(
β†−pβ

†
p − βpβ−p

)
|0〉

=
1− s

2

(
|0〉 − 2

(
β†pβp + β†−pβ−p

)
|0〉
)

+ 4s cos
πp

n

(
β†pβp|0〉 − β−pβ†−p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
p|0〉 − βpβ−p|0〉

)
=

1− s
2

(
|0〉 − 2

(
β†pβp|0〉+ β†−pβ−p|0〉

))
+ 4s cos

πp

n

(
0− β−pβ†−p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
p|0〉 − 0

)
=

1− s
2

(|0〉 − 2 (0 + 0))

+ 4s cos
πp

n

(
0− β−pβ†−p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
p|0〉 − 0

)
=

1− s
2
|0〉 − 4s cos

πp

n

(
1− β†−pβ−p

)
|0〉

76

− 4si sin
(πp
n

)
β†−pβ

†
p|0〉

=
1− s

2
|0〉 − 4s cos

πp

n

(
|0〉 − β†−pβ−p|0〉

)
− 4si sin

(πp
n

)
|1〉

=
1− s

2
|0〉 − 4s cos

πp

n
(|0〉 − 0)− 4si sin

(πp
n

)
|1〉

=

(
1− s

2
− 4s cos

πp

n

)
|0〉 − 4si sin

πp

n
|1〉 (4.26)

Before I compute Ap|Σp〉 = Ap|1〉, I observe the following.

β−p|1〉 = β−pβ
†
−pβ

†
p|0〉

= β−p

(
−β†pβ†−p

)
|0〉

= −β−pβ†pβ†−p|0〉

= −
(
−β†pβ−p

)
β†−p|0〉

= β†pβ−pβ
†
−p|0〉

= β†p

(
1− β†−pβ−p

)
|0〉

= β†p

(
|0〉 − β†−pβ−p|0〉

)
= β†p|0〉 (4.27)

Now I compute Ap|Σp〉 = Ap|1〉.

Ap|Σp〉 = Ap|1〉

77

=
1− s

2

(
1− 2

(
β†pβp + β†−pβ−p

))
|1〉

+ 4s cos
πp

n

(
β†pβp − β−pβ†−p

)
|1〉 − 4si sin

(πp
n

)(
β†−pβ

†
p − βpβ−p

)
|1〉

=
1− s

2

(
|1〉 − 2

(
β†pβp + β†−pβ−p

)
|1〉
)

+ 4s cos
πp

n

(
β†pβp|1〉 − β−pβ†−p|1〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
p|1〉 − βpβ−p|1〉

)
=

1− s
2

(
|1〉 − 2

(
β†pβp|1〉+ β†−pβ−p|1〉

))
+ 4s cos

πp

n

(
β†pβp|1〉 − β−pβ†−p|1〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
p|1〉 − βpβ−p|1〉

)
=

1− s
2

(
|1〉 − 2

(
β†pβpβ

†
−pβ

†
p|0〉+ β†−pβ−pβ

†
−pβ

†
p|0〉
))

+ 4s cos
πp

n

(
β†pβpβ

†
−pβ

†
p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
=

1− s
2

(
|1〉 − 2

(
β†p

(
−β†−pβp

)
β†p|0〉+ β†−pβ−pβ

†
−pβ

†
p|0〉
))

+ 4s cos
πp

n

(
β†pβpβ

†
−pβ

†
p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
=

1− s
2

(
|1〉 − 2

(
−β†pβ†−pβpβ†p|0〉+ β†−pβ−pβ

†
−pβ

†
p|0〉
))

+ 4s cos
πp

n

(
β†pβpβ

†
−pβ

†
p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
=

1− s
2

(
|1〉 − 2

(
−β†pβ†−p

(
1− β†pβp

)
|0〉+ β†−pβ−pβ

†
−pβ

†
p|0〉
))

+ 4s cos
πp

n

(
β†pβpβ

†
−pβ

†
p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
=

1− s
2

(
|1〉 − 2

(
−β†pβ†−p

(
|0〉 − β†pβp|0〉

)
+ β†−pβ−pβ

†
−pβ

†
p|0〉
))

78

+ 4s cos
πp

n

(
β†pβpβ

†
−pβ

†
p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
=

1− s
2

(
|1〉 − 2

(
−β†pβ†−p (|0〉 − 0) + β†−pβ−pβ

†
−pβ

†
p|0〉
))

+ 4s cos
πp

n

(
β†pβpβ

†
−pβ

†
p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
=

1− s
2

(
|1〉 − 2

(
−β†pβ†−p|0〉+ β†−pβ−pβ

†
−pβ

†
p|0〉
))

+ 4s cos
πp

n

(
β†pβpβ

†
−pβ

†
p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
=

1− s
2

(
|1〉 − 2

(
−
(
−β†−pβ†p

)
|0〉+ β†−pβ−pβ

†
−pβ

†
p|0〉
))

+ 4s cos
πp

n

(
β†pβpβ

†
−pβ

†
p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
=

1− s
2

(
|1〉 − 2

(
β†−pβ

†
p|0〉+ β†−pβ−pβ

†
−pβ

†
p|0〉
))

+ 4s cos
πp

n

(
β†pβpβ

†
−pβ

†
p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
=

1− s
2

(
|1〉 − 2

(
|1〉+ β†−pβ−pβ

†
−pβ

†
p|0〉
))

+ 4s cos
πp

n

(
β†pβpβ

†
−pβ

†
p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
=

1− s
2

(
−|1〉 − 2β†−p

(
1− β†−pβ−p

)
β†p|0〉

)
+ 4s cos

πp

n

(
β†pβpβ

†
−pβ

†
p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)

79

=
1− s

2

(
−|1〉 − 2β†−p

(
β†p|0〉 − β†−pβ−pβ†p|0〉

))
+ 4s cos

πp

n

(
β†pβpβ

†
−pβ

†
p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
=

1− s
2

(
−|1〉 −

(
2β†−pβ

†
p|0〉 − 2β†−pβ

†
−pβ−pβ

†
p|0〉
))

+ 4s cos
πp

n

(
β†pβpβ

†
−pβ

†
p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
=

1− s
2

(
−|1〉 −

(
2β†−pβ

†
p|0〉 − 2β†−pβ

†
−pβ−pβ

†
p|0〉
))

+ 4s cos
πp

n

(
β†pβpβ

†
−pβ

†
p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
=

1− s
2

(−|1〉 − (2|1〉 − 0))

+ 4s cos
πp

n

(
β†pβpβ

†
−pβ

†
p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
= −3 (1− s)

2
|1〉

+ 4s cos
πp

n

(
β†pβpβ

†
−pβ

†
p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
= −3 (1− s)

2
|1〉

+ 4s cos
πp

n

(
β†p

(
−β†−pβp

)
β†p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
= −3 (1− s)

2
|1〉

+ 4s cos
πp

n

(
−β†pβ†−pβpβ†p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)

80

− 4si sin
(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
= −3 (1− s)

2
|1〉

+ 4s cos
πp

n

(
−β†pβ†−p

(
1− β†pβp

)
|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
= −3 (1− s)

2
|1〉

+ 4s cos
πp

n

(
−β†pβ†−p

(
|0〉 − β†pβp|0〉

)
− β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
= −3 (1− s)

2
|1〉

+ 4s cos
πp

n

(
−β†pβ†−p (|0〉 − 0)− β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
= −3 (1− s)

2
|1〉

+ 4s cos
πp

n

(
−β†pβ†−p|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
= −3 (1− s)

2
|1〉

+ 4s cos
πp

n

(
−
(
−β†−pβ†p

)
|0〉 − β−pβ†−pβ†−pβ†p|0〉

)
− 4si sin

(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
= −3 (1− s)

2
|1〉+ 4s cos

πp

n
(|1〉 − 0)

− 4si sin
(πp
n

)(
β†−pβ

†
pβ
†
−pβ

†
p|0〉 − βpβ−pβ†−pβ†p|0〉

)
= −3 (1− s)

2
|1〉+ 4s cos

πp

n
|1〉

− 4si sin
(πp
n

)(
β†−p

(
−β†−pβ†p

)
β†p|0〉 − βpβ−pβ†−pβ†p|0〉

)

81

= −3 (1− s)
2

|1〉+ 4s cos
πp

n
|1〉

− 4si sin
(πp
n

)(
−β†−pβ†−pβ†pβ†p|0〉 − βpβ−pβ†−pβ†p|0〉

)
= −3 (1− s)

2
|1〉+ 4s cos

πp

n
|1〉

− 4si sin
(πp
n

)(
0− βpβ−pβ†−pβ†p|0〉

)
= −3 (1− s)

2
|1〉+ 4s cos

πp

n
|1〉

+ 4si sin
(πp
n

)
βp

(
1− β†−pβ−p

)
β†p|0〉

= −3 (1− s)
2

|1〉+ 4s cos
πp

n
|1〉

+ 4si sin
(πp
n

)
βp

(
β†p|0〉 − β†−pβ−pβ†p|0〉

)
= −3 (1− s)

2
|1〉+ 4s cos

πp

n
|1〉

+ 4si sin
(πp
n

)(
βpβ

†
p|0〉 − βpβ†−pβ−pβ†p|0〉

)
= −3 (1− s)

2
|1〉+ 4s cos

πp

n
|1〉

+ 4si sin
(πp
n

)((
1− β†pβp

)
|0〉 − βpβ†−pβ−pβ†p|0〉

)
= −3 (1− s)

2
|1〉+ 4s cos

πp

n
|1〉

+ 4si sin
(πp
n

)((
|0〉 − β†pβp|0〉

)
− βpβ†−pβ−pβ†p|0〉

)
= −3 (1− s)

2
|1〉+ 4s cos

πp

n
|1〉

+ 4si sin
(πp
n

)(
(|0〉 − 0)− βpβ†−pβ−pβ†p|0〉

)
= −3 (1− s)

2
|1〉+ 4s cos

πp

n
|1〉

+ 4si sin
(πp
n

)(
|0〉 − βpβ†−p

(
−β†pβ−p

)
|0〉
)

= −3 (1− s)
2

|1〉+ 4s cos
πp

n
|1〉

+ 4si sin
(πp
n

)
(|0〉+ 0)

82

=

(
−3 (1− s)

2
+ 4s cos

πp

n

)
|1〉+ 4si sin

πp

n
|0〉 (4.28)

So, I reexpress Ap in the Ωp, Σp basis, it becomes as follows.

Ap (s) =


(

1−s
2
− 4s cos πp

n

)
−4si sin πp

n

4si sin πp
n

(
−3(1−s)

2
+ 4s cos πp

n

)
 (4.29)

For each p, the eigenvalues of Ap (s) are:

E±p =
1

2

(
±2

√
8s2 cos

(πp
n

)
− 8s cos

(πp
n

)
+ 17s2 − 2s+ 1 + s− 1

)
(4.30)

So, the ground state is E−1 (s). The first excited state is E+
1 (s)+

∑
p=3...E

−
p (s).

I plot the eigenvalue for E−1 (s) and E+
1 (s).

I plot the eigenvalue for E−1 (s) andE+
1 (s) for n = 4, 6, 8, 10, 16, 32, 64, 128, 256, 512, 1024

to have initial idea about the spectrum of the Hamiltonian.

Table 4.3: Energy gaps for Cn

Cn E−1 (s) , E+
1 (s) vs. s

C4

0.2 0.4 0.6 0.8 1.0
s

- 4

- 2

2

4

Energy levels

E ^ -_ 1

E ^ +_ 1

83

C6

0.2 0.4 0.6 0.8 1.0
s

- 4

- 2

2

4

Energy levels

E ^ -_ 1

E ^ +_ 1

C8

0.2 0.4 0.6 0.8 1.0
s

- 4

- 2

2

4

Energy levels

E ^ -_ 1

E ^ +_ 1

C10

0.2 0.4 0.6 0.8 1.0
s

- 4

- 2

2

4

Energy levels

E ^ -_ 1

E ^ +_ 1

C16

0.2 0.4 0.6 0.8 1.0
s

- 4

- 2

2

4

Energy levels

E ^ -_ 1

E ^ +_ 1

84

C32

0.2 0.4 0.6 0.8 1.0
s

- 4

- 2

2

4

Energy levels

E ^ -_ 1

E ^ +_ 1

C64

0.15 0.20 0.25 0.30
s

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.2

Energy levels

E ^ -_ 1

E ^ +_ 1

C128

0.15 0.20 0.25 0.30
s

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.2

Energy levels

E ^ -_ 1

E ^ +_ 1

85

C256

0.18 0.20 0.22 0.24
s

- 0.6

- 0.5

- 0.4

- 0.3

- 0.2

- 0.1

Energy levels

E ^ -_ 1

E ^ +_ 1

C512

0.19 0.20 0.21 0.22
s

- 0.50

- 0.45

- 0.40

- 0.35

- 0.30

Energy levels

E ^ -_ 1

E ^ +_ 1

C1024

0.195 0.200 0.205 0.210
s

- 0.44

- 0.42

- 0.40

- 0.38

- 0.36

- 0.34

Energy levels

E ^ -_ 1

E ^ +_ 1

For a few plots in the table above, I have plotted for a smaller window of s

86

as the curves diverges on both sides beyond the window. The minimum gap occurs

very close to s = 1
5

and is,

gmin ≈ E+
1

(
1

5

)
− E−1

(
1

5

)
=

8

5

√
2− 2 cos

(π
n

)
(4.31)

When n is large,

gmin ≈
8

5

√
π2

n2
+ 1

≈ 8π

5n
(4.32)

In Section 2.5, I have mentioned that the required evolution time T must be

much greater than E
g3
min

where for this problem E scales like n so T � cn3 where c

is a constant. I have shown that for any cycle graph, quantum adiabatic evolution

will find the graph configuration in a time which grows as a fixed power of n.

So, for cycle graph isomorphism problem, the adiabatic gap doesn’t decrease

exponentially for the Hen-Young algorithm. Hence, it succeeds for cycle graph

isomorphism.

87

4.3 Other algorithms

Since the Hen-Young algorithm, two more adiabatic algorithms have been

proposed for the graph isomorphism problem. Correctness proof for any of them is

yet to be presented. Here I would like to briefly mention about these two algorithms

to illustrate their differences with the original Hen-Young algorithm. It could be

mentioned that the Hen-Sarandy algorithm draws its inspiration from [120] and

one of my work with a few others [187] which is the center of discussion in Chapter

5 of this dissertation.

4.3.1 The Gaitan-Clark algorithm

I reproduce the scheme of the Gaitan-Clark algorithm from [73]. A permuta-

tion π of a finite set S = {0, . . . , N − 1}, expressed in the cycle notation, can be

mapped into an integer string P (π) = π0 · · · πN−1, with πi ∈ S and πi 6= πj for i 6= j.

For reasons that will become clear later in this section, I like to represent the

integer string P (π) = π0 · · · πN−1 into a binary string Pπ. This can be done by

replacing each πi in P (π) by the unique binary string formed from the coefficients

appearing in its binary decomposition

πi =
U−1∑
j=0

πi,j (2)j . (4.33)

Here U ≡ dlog2Ne. So, the integer string P (π) is converted into the binary string

Pπ = (π0,0 · · · π0,U−1) · · · (πN−1,0 · · · πN−1,U−1) , (4.34)

88

where πi,j ∈ {0, 1}. The binary string Pπ has length NU , where

N ≤ 2U ≡M + 1. (4.35)

Thus the permutation π corresponds with the binary string Pπ in Eq. (4.34).

I defined H be the Hamming space of binary strings of length NU . It contains

2NU strings. Among them, N ! strings Pπ encode valid permutations π. Finally, I

define a mapping from H to the space of N × N matrices σ with binary matrix

elements σi,j = 0, 1.

• Let sb = s0 · · · sNU−1 be a binary string inH. sb can be written as N substrings

of length U as follows:

sb = (s0 · · · sU−1) (sU · · · s2U−1) · · ·
(
s(N−1)U · · · sNU−1

)
. (4.36)

• For each substring siU · · · s(i+1)U−1, define si as:

si =
U−1∑
j=0

siU+j (2)j ≤ 2U − 1 = M. (4.37)

• Define the integer string s = s0 · · · sN−1, and define the N ×N matrix σ(s) to

have matrix elements

σi,j(s) =


0, if sj > N − 1

δi,sj , if 0 ≤ sj ≤ N − 1,

(4.38)

89

where i, j ∈ S, and δx,y is the Kronecker delta.

I observe that when the binary string sb corresponds to a permutation, the

matrix σ(s) is a permutation matrix since the si formed in step 2 will obey 0 ≤

si ≤ N − 1 and si 6= sj for i 6= j. Here, if A is the adjacency matrix for a graph G,

then A′ = σ(s)AσT (s) will be the adjacency matrix for a graph G′ isomorphic to G.

On the other hand, if sb does not correspond to a permutation, then the adjacency

matrix A′ = σ(s)AσT (s) must correspond to a graph G′ which is not isomorphic to

G.

So, I have constructed a map from binary strings of length NU to N × N

matrices (viz. linear maps) with binary matrix elements. When the string is (is not)

a valid permutation, the matrix produced is (is not) a permutation matrix. Finally,

follow from Stirling’s formula that log2N ! ∼ N log2N −N which is the number of

bits needed to represent N !. This encoding of permutations requires Ndlog2Ne bits

and so approaches asymptotically as required by Stirling’s formula.

Now I transform an instance of the graph isomorphism problem into an in-

stance of a combinatorial optimization problem (COP) whose cost function has a

minimum value of zero if and only if G and G′ are isomorphic.

The search space for the COP is the Hamming space H of binary strings sb of

length NU which are associated with the integer strings s and matrices σ(s). The

COP cost function C(s) contains three terms.

C(s) = C1(s) + C2(s) + C3(s). (4.39)

90

The first two terms on the RHS penalize integer strings s = s0 · · · sN−1 whose

associated matrix σ(s) is not a permutation matrix,

C1(s) =
N−1∑
i=0

M∑
α=N

δsi,α (4.40)

C2(s) =
N−2∑
i=0

N−1∑
j=i+1

δsi,sj , (4.41)

where δx,y is the Kronecker delta. Here, C1(s) > 0 when si > N − 1 for some i, and

C2(s) > 0 when si = sj for some i 6= j. Thus C1(s) +C2(s) = 0 if and only if σ(s) is

a permutation matrix. The third term C3(s) adds a penalty when σ(s)AσT (s) 6= A′:

C3(s) = ‖σ(s)AσT (s)− A′‖i. (4.42)

Here ‖M‖i is the Li-norm of M . So, when G and G′ are isomorphic, C3(s) = 0,

and σ(s) is the permutation of vertices of G that maps G→ G′. So, if C(s) = 0 for

some integer string s, then G and G′ are isomorphic and σ(s) is the permutation

that maps them. On the other hand, if C(s) > 0 for all strings s, then G and G′

are non-isomorphic.

I have thus converted an instance of GI into an instance of the following COP:

Definition 42 (Graph Isomorphism COP:). Given the N-vertex graphs G and G′

and the associated cost function C(s) defined above, find an integer string s∗ that

minimizes C(s).

By definition: (i) C(s∗) = 0 if and only if G and G′ are isomorphic and σ(s∗)

is the permutation matrix mapping G→ G′; and (ii) C(s∗) > 0 if and only if G and

91

G′ are non-isomorphic.

Like the authors, I also like to point it out that if G = G′, then C(s∗) = 0

since G is certainly isomorphic to itself. In this case σ(s∗) is an automorphism of

G.

To map the GI COP onto an adiabatic quantum computation, I construct

the computational basis states (CBS) |sb〉 with the labels sb. So, each bit in sb is

represented by a qubit so that the quantum register contains L = NU = Ndlog2Ne

qubits. The CBS are defined to be the 2L eigenstates of σ0
z⊗· · ·⊗σL−1

z . The problem

Hamiltonian HP is defined to be diagonal in the CBS with eigenvalue C(s), where

s is the integer string associated with sb:

HP |sb〉 = C(s)|sb〉. (4.43)

The ground-state energy of HP will be zero if and only if the graphs G and G′ are

isomorphic. The initial Hamiltonian Hi is chosen to be

Hi =
L−1∑
l=0

1

2

(
I l − σlx

)
, (4.44)

where I l and σlx are the identity and x-Pauli operator for qubit l, respectively. The

ground-state of Hi is the easily constructed uniform superposition of CBS.

The quantum algorithm for GI begins by preparing the L qubit register in

the ground-state of Hi and then driving the qubit register dynamics using the time-

dependent Hamiltonian H(t). At the end of the evolution the qubits are measured

92

in the computational basis. The outcome is the bit string s∗b so that the final state of

the register is |s∗b〉 and its energy is C(s∗), where s∗ is the integer string derived from

s∗b . In the adiabatic limit, C(s∗) will be the ground-state energy, and if C(s∗) = 0

(> 0) the algorithm decides G and G′ are isomorphic (non-isomorphic).

4.3.2 The Hen-Sarandy algorithm

I reproduce the scheme of the Hen-Sarandy algorithm from [90]. In this algo-

rithm, the construction of the driver and problem Hamiltonian are more straight-

forward. A problem Hamiltonian can then be written in terms of positive energy

contributions to invalid mappings, i.e., each time an edge appears in one graph but

not in the other. This yields

Hp =
∑
ij /∈E1

∑
i′j′∈E2

(1 + σzi,i′)

2

(1 + σzj,j′)

2

+
∑
ij∈E1

∑
i′j′ /∈E2

(1 + σzi,i′)

2

(1 + σzj.j′)

2
, (4.45)

where E1 and E2 are the edge sets of G1 and G2, respectively. Moreover, another

term is also added to the problem Hamiltonians which penalizes invalid permuta-

tions. This constraint is translated into penalty terms in the problem Hamiltonian,

explicitly,

Hpen =
∑
i

[(∑
j

(
1 + σzi,j

)
2

− 1
)2

+
(∑

j

(
1 + σzj,i

)
2

− 1
)2
]
. (4.46)

At this point, I invite the readers to compare these terms with the terms I

93

have defined in the objective function (Eq. 5.2) minimized by a quantum annealing

algorithm I have proposed in Chapter 5. This illustrates how researches are taking

inspirations from classical regime to design new quantum algorithms.

The minimal set of hopping terms required to hop from one allowed configu-

ration to another is given by the driver Hamiltonian:

Hd = −
∑
i,j

∑
j<j′

(
| ↑〉〈↓ |(i,j) ⊗ | ↓〉〈↑ |(i+1,j) (4.47)

⊗ | ↑〉〈↓ |(i,j′) ⊗ | ↓〉〈↑ |(i+1,j′) + c.c.
)
,

where c.c. denotes complex conjugate terms. The interpretation of the Hamiltonian

above in terms of hopping particles is illustrated as follows. The hopping terms

swap the location of particles (or up spins) in neighboring rows.

By rewriting Hd in Eq. (4.47) in terms of Pauli operators, we get

Hd = −
∑
i,j

∑
j<j′

(
σ+

(i,j)σ
−
(i+1,j)σ

+
(i+1,j′)σ

−
(i,j′) + c.c.

)
. (4.48)

The Hd as I have just defined involves four-body terms. In particular, four-body

interactions are enough to implement the solution of any n-vertex GI problem; i.e.,

the non-locality of the interaction does not scale with the size of the problem. The

advantage of this approach is that, at the cost of a four-body quantum driver Hamil-

tonian, no additional constraints are needed in the problem Hamiltonian, meaning

that NE = O(n2) edges are already enough to embed an n-vertex graph. Obviously,

94

this will require a quantum computer with fundamentally different architecture than

the previous ones mentioned in this chapter.

4.4 Summary

In this section, I have given a correctness proof of the Hen-Young algorithm for

the cycle graphs. It is already known that [3], for any efficient quantum adiabatic

algorithm, there is always an efficient quantum gate algorithm. So, it is natural

too ask, if quantum Fourier transform fails to solve graph isomorphism and auto-

morphism problems, as shown in Chapter 3, what is the equivalent gate model

algorithm when there is an efficient quantum adiabatic algorithm for a particular

class of graph isomorphism problem? In future, one may investigate efficient designs

of Hamiltonian clocks to perform this conversion between two paradigms.

95

Chapter 5

Graph Isomorphism and Quantum Annealing

5.1 Introduction

In this chapter, I implement a quantum annealing algorithm for graph isomor-

phism, first published in [187], and study its asymptotic behavior. I also describe the

setup, and methodology of the proof-of-concept experiment and discuss the results.

To the best of my knowledge, this is the first of its kind.

Quantum annealing algorithm for the graph isomorphism problem is an active

research area [187, 120, 74, 91, 98, 179, 181]. The idea is to define an objective

function f which encodes the connectivity of two input graphs Γ1 and Γ2. When

the function is minimized on a quantum annealing device the value and the cor-

responding configuration tells us whether Γ1 and Γ2 are isomorphic. I assume the

graphs in this report are simple and undirected.

So far, only [187] co-authored by me and [181] have demonstrated proof-of-

concept experiments of solving the graph isomorphism problem. It was a successful

collaboration with Kenneth M. Zick and Matthew French of the Information Sciences

Institute, University of Southern California.

96

Quantum annealing (QA) is a proposed combinatorial optimization technique

meant to exploit quantum mechanical effects such as tunneling and entanglement

[125]. Machines purportedly implementing a type of quantum annealing have re-

cently become available [25]. While the extent of quantumness in these implementa-

tions is not fully understood, some evidence for quantum mechanical effects playing

a useful role in the processing has been appearing [116, 6, 26]. Aside from the debate

over quantumness, there are interesting questions regarding how to effectively solve

a real-world problem using a quantum annealer. Quantum annealing-based solvers

require a combination of annealing and classical pre- and post-processing; at this

early stage, little is known about how to partition and optimize the processing. For

instance, current quantum annealers have severe practical limitations on the size of

97

problems that can be handled. Can the pre-processing algorithms be modified in

order to improve scalability? A second question involves post-processing. Quantum

annealers provide solutions to an embedded version of a problem involving physical

qubits. Post-processing is generally required for translating these to solutions to

the original problem involving logical qubits (aka variables). Occasionally, a chain

of physical qubits representing a single variable resolves to an inconsistent state, a

scenario known as a broken chain. Studies are needed regarding broken chains and

the possibility of classical error correction during post-processing.

This chapter presents an experimental case study of quantum annealing and

some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two

machine. An example of parsimonious pre-processing is considered, along with post-

processing majority voting. Through experiments on a 504-qubit D-Wave Two ma-

chine, I quantify the QA success probabilities and the impact of the methods under

study. I use the graph isomorphism (GI) problem as the problem of focus. The GI

problem is to determine whether two input graphs G1,2 are in essence the same, such

that the adjacency matrices can be made identical with a relabeling of vertices. This

problem is an interesting candidate for several reasons. First, an accurate quantum

annealing-based solver for GI has never been implemented. Second, quantum ap-

proaches can sometimes provide new insight into the structure of a problem, even

if no speedup over classical approaches is achieved or even expected. Third, the GI

problem is mathematically interesting; though many sub-classes of the problem can

be solved in polynomial time by specialized classical solvers, the run time of the best

general solution is exponential and has remained at eO(
√
N logN) since 1983 [128, 16].

98

The classical computational complexity of the problem is currently considered to be

NP-intermediate [156], and the quantum computational complexity of the problem

is unknown. Graph isomorphism is a non-abelian hidden subgroup problem and is

not known to be easy in the quantum regime [141, 79]. Lastly, the GI problem is of

practical interest. It appears in fields such as very large-scale integrated circuit de-

sign, where a circuits layout graph must be verified to be equivalent to its schematic

graph [114], and in drug discovery and bio-informatics, where a graph representing

a molecular compound must be compared to an entire database, often via a GI tool

that performs canonical labeling [128].

This chapter relates to previous works as follows. A pre-print by King and

McGeoch discusses tuning of quantum annealing algorithms, including the use of

low-cost classical post-processing majority voting similar to what is evaluated in this

article [108]. Our study goes further regarding pre-processing (designing a Hamil-

tonian to generate compact Ising models) and covers graph isomorphism rather

than problems such as random not-all-equal 3-SAT. A work by Rieffel et al. maps

real-world problems such as graph coloring to a D-Wave quantum annealer [157].

Regarding the graph isomorphism problem in particular, multiple attempts have

been made using adiabatic quantum annealing. One of the first attempts assigned

a Hamiltonian to each graph and conjectured that measurements taken during each

adiabatic evolution could be used to distinguish non-isomorphic pairs [91]. A sub-

sequent experimental study using a D-Wave quantum annealer found that using

quantum spectra in this manner was not sufficient to distinguish non-isomorphic

pairs [181]. A second approach converted a GI problem to a combinatorial opti-

99

mization problem whose non-negative cost function has a minimum of zero only for

an isomorphic pair. The approach required problem variables and additional ancil-

lary variables. It was numerically simulated up to N = 7 but not validated on a

quantum annealing processor [73]. An alternative GI Hamiltonian was proposed by

Lucas [119].

5.2 Graph isomorphism as pseudo-Boolean function

Quantum annealing minimized the quadratic uncontrained binary optimiza-

tion representation of the graph isomorphism problem which is a special case of

pseudo-Boolean optimization. To express the graph isomorphism as a pseudo-

Boolean function, I intuitively choose a subset of the class of pseudo-Boolean func-

tions which is f : Bn → Z. The basic idea is to create a function which will penalize

input binary strings at two levels. Firstly, it will penalize if the input strings do not

correspond to valid permutations. Secondly, it will penalize if the input strings do

not isomorphically maps one graph to another. This approach was first used in [74].

The family of such functions can be described as follows.

S2n × SO (n,F2)
f−→ Z (5.1)

One such pseudo-Boolean function representing the graph isomorphism prob-

lem was first defined in [120]. This is still an open question whether this is the

optimal way to capture the graph isomorphism problems given the family. Later it

100

has been refined in [187] by the author with others. The refinement allows one to

solve larger graph isomorphism problem with lesser logical and physical qubits. I

define the pseudo-Boolean function f in Definition 43.

Definition 43. Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be two simple, undirected1

n-vertex graphs expressed as adjacency matrices A1 and A2 respectively. Also, let,

the boolean variable xu,i be one for a permutation σ if σ (i ∈ V1) 7→ u ∈ V2. I define

pseudo-Boolean function f : Bn2 → R+ as follows,

∀ (deg(i) = deg(u) > 0; deg(j) = deg(v) > 0) :

f (x1,1, . . . , xn,n) =
n∑
u=1

(
1−

n∑
i=1

xu,i

)2

+
n∑
u=1

(
1−

n∑
i=1

xi,u

)2

+
∑

(i,j)/∈E1,i 6=j

∑
(u,v)∈E2

xu,ixv,j +
∑

(i,j)∈E1

∑
(u,v)/∈E2,u6=v

xu,ixv,j (5.2)

such that if Γ1 and Γ2 are isomorphic f is zero else positive.

In this report, I call the first two terms as the permutation terms and the

last two terms in f as the edge discrepancy penalty terms. The permutation terms

penalize f if the input is not a valid permutation. The edge discrepancy penalty

terms penalize when the equivalent Ising model is not symmetric. In the quantum

adiabatic version of the function, the edge discrepancy penalty terms are considered

as the problem Hamiltonian and the permutation terms are considered as the penalty

Hamiltonian [90].

1A simple undirected graph doesn’t have any multi-edge or loop.

101

5.3 Mathematical perspective

In this section, I discuss about f from Definition 43 with a mathematical

perspective.

5.3.1 Energy landscape

For an n-vertex graph isomorphism problems, f takes up to n2 binary variables

as arguments. A permutation σ maps the vertices, V1, of the graph Γ1 to the vertices

V2 of the graph Γ2. All the input configurations in Bn2
do not correspond to valid

permutations. For example, I consider the input

(x1,1 = 1, x1,2 = 1, . . .). In this input, both the vertices 1 and 2 of Γ1 are mapped to

the vertex 1 of Γ2. This is not a valid permutation.

The permutation terms of f sets the baseline of the energy landscape. For

an n-vertex graph isomorphism problem, there are 2n
2

possible input configurations

for f . Among these configurations, there are n! configurations which correspond to

valid permutations. Figure 5.1, shows how the number of valid permutations grows

against the number of all possible configurations as n increases.

102

Figure 5.1: All possible configurations vs. valid permutations

The first two terms in f ,
∑n

u=1 (1−∑n
i=1 xu,i)

2
and

∑n
u=1 (1−∑n

i=1 xi,u)
2
,

check whether a given input corresponds to a valid permutation. For valid permu-

tations, the value of these two terms are zero. f is penalized when they are not. It

would be helpful if we could figure out a way to input only the binary tuples which

correspond to valid permutations. If we can do that, the permutation terms might

be discarded and the function will be simpler to be implemented on a quantum an-

nealer. At this moment, I think that we do not have enough control on a quantum

annealing system which allows us to input only the configurations corresponding to

valid permutations. Another way to speed up the annealing process is to modify

the energy landscape so that it is easier to reach the global minima. But, modifying

the landscape may lead to solving the problem itself while designing the function

which will be inherently hard. Figure 5.2 shows the landscape of the values of the

103

permutation terms of f for a 4-vertex graph isomorphism problem.

10000 20000 30000 40000 50000 60000
Configurations

10

20

30

40

50

Energy

Figure 5.2: Values of f for the permutation terms

I would like to comment that plotting energies against the configurations is

mostly schematic and does not reflect the actual dynamics of the function. In future,

I would like to plot the energies against time for both simulated and quantum

annealing of the function. The Fourier transformation of the dataset of Figure 5.2

is shown in Figure 5.3.

1 × 10 6 2 × 10 6 3 × 10 6 4 × 10 6 5 × 10 6 6 × 10 6

1 × 10 6

2 × 10 6

3 × 10 6

4 × 10 6

5 × 10 6

6 × 10 6

Figure 5.3: Fourier transformation of Figure 5.2

It is instructive to study the basins around the valid permutations in the energy

104

landscape of f . The 24 basins around f = 0 from Figure 5.2 are shown in figure

5.4.

4675 4680 4685 4690
Configurations

5

10

15

Energy

4735 4740 4745 4750
Configurations

5

10

15

20

Energy

5155 5160 5165 5170
Configurations

2

4

6

8

10

12

14

Energy

5245 5250 5255 5260
Configurations

5

10

15

20

Energy

6175 6180 6185 6190
Configurations

2

4

6

8

10

12

14

Energy

6205 6210 6215 6220
Configurations

5

10

15

Energy

8515 8520 8525 8530
Configurations

5

10

15

Energy

8575 8580 8585 8590
Configurations

5

10

15

20

Energy

9235 9240 9245 9250
Configurations

2

4

6

8

10

12

Energy

9340 9345 9350 9355
Configurations

5

10

15

20

Energy

10255 10260 10265 10270
Configurations

2

4

6

8

10

12

Energy

10300 10305 10310 10315
Configurations

5

10

15

Energy

16675 16680 16685 16690
Configurations

2

4

6

8

10

12

14

Energy

16765 16770 16775 16780
Configurations

5

10

15

20

Energy

16915 16920 16925 16930
Configurations

2

4

6

8

10

12

Energy

17020 17025 17030 17035
Configurations

5

10

15

20

Energy

18445 18450 18455 18460
Configurations

2

4

6

8

10

12

Energy

18460 18465 18470 18475
Configurations

2

4

6

8

10

12

Energy

33055 33060 33065 33070
Configurations

2

4

6

8

10

12

14

Energy

33085 33090 33095 33100
Configurations

5

10

15

Energy

33295 33300 33305 33310
Configurations

2

4

6

8

10

12

Energy

33340 33345 33350 33355
Configurations

5

10

15

Energy

33805 33810 33815 33820
Configurations

2

4

6

8

10

12

Energy

33820 33825 33830 33835
Configurations

2

4

6

8

10

12

Energy

Figure 5.4: Basins of f = 0 for the permutation terms

The distribution of the energies of the permutation terms of f has a long tail

to the right which is shown in Figure 5.5 for 4-vertex graph isomorphism problem.

105

10 20 30 40 50 60 70
Energy

1000

2000

3000

4000

5000

6000

7000

Configurations

Figure 5.5: Distribution of energies of the permutation terms.

The distribution in Figure 5.5 is a skewed normal distribution with parameters

12, 7, and 0.1 as shown in Figure 5.6. I also need to verify whether this dataset is

better represented by gamma or inverse gamma distribution.

0 10 20 30 40 50 60 70
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Figure 5.6: Figure 5.5 is skewed normal

106

I like to mention that, both permutation terms,
∑n

u=1 (1−∑n
i=1 xu,i)

2
and∑n

u=1 (1−∑n
i=1 xi,u)

2
, are required to penalize all possible invalid permutations. I

also mention that f is a partial function hence it is not a bijection.

Among all the valid permutations, only a few or none could be isomorphic

permutations. The edge discrepancy penalty terms filter out the permutations which

are not isomorphic. If Γ1 and Γ2 are not isomorphic, the edge discrepancy penalty

terms will penalize all the valid permutations evaluating f at a value greater than

zero. When I are solving a graph isomorphism problem for Γ1 and Γ2, it is important

to try to match a node from Γ1 only with the nodes of same degree from Γ2. The

edge discrepancy penalty terms penalize f when a non-existing edge in Γ1 is mapped

to an existing edge in Γ2. This kind of permutations tries to map a vertex from Γ1

with a vertex with different degree from Γ2 hence should be penalized.

The edge discrepancy penalty terms are different for different input graph pairs.

Here, I consider two graph pairs - one isomorphic,

Figure 5.7: Isomorphic pair

and one non-isomorphic,

107

,

Figure 5.8: Non-isomorphic pair

both are instances of 4-vertex graph isomorphism problem.

The energy landscape of the edge discrepancy penalty terms for the isomorphic

and non-isomorphic pair is given in Figure 5.9.

10000 20000 30000 40000 50000 60000
Configurations

10

20

30

40

Energy

(a) Isomorphic

10000 20000 30000 40000 50000 60000
Configurations

10

20

30

40

50

60

Energy

(b) Non-isomorphic

Figure 5.9: Edge discrepancy penalty terms energy landscape

The Fourier transformation of the dataset in Figure 5.9 is show in Figure

5.10.

1 × 10 6 2 × 10 6 3 × 10 6 4 × 10 6 5 × 10 6 6 × 10 6

1 × 10 6

2 × 10 6

3 × 10 6

4 × 10 6

5 × 10 6

6 × 10 6

(a) Isomorphic

1 × 10 6 2 × 10 6 3 × 10 6 4 × 10 6 5 × 10 6 6 × 10 6

1 × 10 6

2 × 10 6

3 × 10 6

4 × 10 6

5 × 10 6

6 × 10 6

(b) Non-isomorphic

Figure 5.10: Fourier transformation of Edge discrepancy penalty terms energy land-
scape

As it is not obvious from Figure 5.10 how the Fourier transforms differ I plot

108

them jointly in Figure 5.11.

Figure 5.11: Fourier transformation of Edge discrepancy penalty terms energy land-
scape (superimposed)

Now I demonstrate how the edge discrepancy penalty terms modify the energy

landscape of the permutation terms when both combine to construct f in Figure

5.12.

(a) Isomorphic (b) Non-isomorphic

Figure 5.12: Permutation terms vs. complete f

I would like to mention that, the plot for f (yellow) in the Figure 5.12 b never

touches the X-axis as the edge discrepancy penalty terms lifts all the global minima

above zero. On the other hand, f touches the X-axis fewer times than before (24)

109

in Figure 5.12 (a) as the edge discrepancy penalty terms lift the energies of all the

non-isomorphic but valid permutations above zero.

I revisit the basins of the surviving global minimas of Figure 5.4 remaining

in the Figure 5.12 in Figure 5.13.

Figure 5.13: Basins of global minima of f for 4-vertex isomorphic pair

In Figure 5.13, the yellow curves correspond to the basins of the global min-

ima of f and the blue curves are the basins of the global minima of the permutation

terms. While the point of minima is fixed at 0, the basin is lifted upwards by the

edge discrepancy penalty terms. At this moment, I do not know how to interpret

the dataset for non-isomorphic pair other than the fact that all the energy values

are greater than zero hence the input graphs are non-isomorphic. I observe that

the global minima for non-isomorphic pair may contain both valid and invalid per-

mutations. I propose to investigate in future whether more information could be

extracted from the dataset.

The edge discrepancy penalty terms also redistribute the probabilities of dif-

ferent configurations from Figure 5.5 to Figure 5.14.

110

Figure 5.14: Distribution of energies of f (yellow)

5.4 Generating the function

I reproduce the pseudo-code of the algorithm, a previous result by my col-

laborators and I, to generate the corresponding pseudo-Boolean function, f , from

the adjacency matrix representation of a graph isomorphism problem from [187] in

Algorithm 6.

111

Algorithm 6 QUBO matrix generator algorithm

1: procedure QUBO-MATRIX-GENERATE(Γ1, Γ2) . Define QUBO
variables

2: for each node v in Γ2 do
3: for each node v in Γ1 do
4: if deg(v) == deg(i) and deg(i) > 0 then . Create QUBO variable
xv,i

5: end if
6: end for
7: end for

. Populate QUBO matrix with penalty terms
8: for each pair of different QUBO variables xu,i and xv,j do . Assign penalty

for node mapping conflict
9: if i == j then

10: penalizing mapping u→ i, v → j . Two nodes in Γ2 map to the
same node in Γ1

11: else if u == v then
12: penalizing mapping u→ i, v → j . A node in Γ2 maps to two nodes

in Γ1 . Assign penalty for edge discrepancy
13: else if Γ1 (i, j) 6= Γ2 (u, v) then
14: penalizing mapping u→ i, v → j . Edge in one graph, not edge in

other
15: end if
16: end for
17: for each QUBO variable do
18: assign value along diagonal of QUBO matrix
19: end for
20: end procedure

Since the model is restricted to pairwise interactions over binary variables,

it represents a quadratic unconstrained binary optimization (QUBO) formulation,

which can be readily converted to an Ising model.

The approach embodied in the Hamiltonian defined in [119] suffers from a

severe lack of scalability. For N -vertex input graphs, it requires N2 logical vari-

ables. Moreover, due to the limited direct connections between qubits in the D-

Wave Chimera architecture, problems are often given a minor embedding into the

112

processor working graph. This typically involves replicating variables across mul-

tiple qubits. Thus, the qubit requirements can reach O(N4). Problems mapped

in this way to a 500-qubit processor tend to be limited to N = 5 or 6. Our

Hamiltonian is more effective. The idea is that many variables and interactions

are unnecessary, and information indicating so can be leveraged up front during

the requisite pre-processing. Note that an isomorphic mapping requires the vertices

in each matched pair to have the same degree. Thus, degree information can be

used to decide whether two vertices are eligible to be matched. I propose the new

Hamiltonian which avoids creating variables for vertices of different degree. A sec-

ond, minor simplification deals with isolated vertices (degree=0). If G1,2 each have

k isolated vertices, an isomorphic mapping of such vertices is trivial and thus no

variables or penalties for those vertices need be modeled. If G1,2 have a different

number of isolated vertices, then they also have a different number of non-isolated

vertices and existing variables and penalties for those will suffice. Thus, I we only

create variables and penalties for vertices with degree greater than zero.

Figure 5.15 shows an example of problem instances generated using the base-

line and the compact Hamiltonians on the same input; it illustrates how the number

of variables and the number of non-zero interactions - as seen in the off-diagonal

entries in the associated QUBO matrix Q can be much smaller when using the

compact Hamiltonian. The variable scaling of each Hamiltonian is quantified and

compared later.

113

Figure 5.15: Illustration of problem instances generated using baseline Hamiltonian
H1 and compact Hamiltonian H2 on the same input.

5.5 Larger graph isomorphism problems

The quantum annealing of a pseudo-Boolean function is limited by the archi-

tectural primitives of the hardware. In [187], it has been shown that the pseudo-

Boolean function can solve only up to 13 node graph isomorphism problems. Prac-

tical graph isomorphism may involve graphs with even million nodes [127, 128].

So, to circumvent the limitation due to architectural primitives (e.g. number of

physical qubits, connectivity of the hardware graphs, precision of external magnetic

field or coupling strength), I need to apply divide-and-conquer. Applying divide-

and-conquer to scale up graph isomorphism algorithm has already been a known

technique [121, 127]. The ideas have been streamlined in Babai’s recent paper [12]

which proves that the graph isomorphism problem can be solved in quasipolyno-

mial time. An intuitive approach for divide-and-conquer is to compute the degree

114

sequences of the input graphs, partition them based on the degrees, find isomor-

phism between the equivalent partitions and if the partitions are still to big go on

recursively. Algorithm 7 illustrates the idea.

Algorithm 7 DIVIDE-AND-CONQUER-GRAPH-ISOMORPHISM

1: procedure DIVIDE-AND-CONQUER-GRAPH-ISOMORPHISM(Γ1,
Γ2) . Define QUBO variables

2: Compute the degree sequence of Γ1

3: Compute the degree sequence of Γ2

4: Partition Γ1 and Γ1 based on their ordered degrees.
5: for All degrees do
6: if The partition size is not limited by architectural primitives then
7: Run the pseudo-Boolean representation of the partition isomorphism

problem on quantum annealing computer
8: else
9: Invoke DIVIDE-AND-CONQUER-GRAPH-

ISOMORPHISM recursively on the partitions
10: end if
11: end for
12: end procedure

A major obstacle for Algorithm 7 appears when the graphs are regular. In that

case, all the partitions are of same size hence there is no advantage in divide-and-

conquer. In that situation one could partition the graphs into equitable partitions

which is a partition of vertices by degree relative to the vertices in other blocks of

the partition 2.

A phenomenal results of [12] is the Theorem 1.3.3. In the theorem, Babai

proves that any non-trivial regular graph, Γ = (V,E), can be partitioned into {Yi}’s

at a quasipolynomial multiplicative cost as follows:

2So, a vertex which has degree 3 but two degree 2 neighbors will be in a different block than a
vertex with degree 3 and only 1 neighbor of degree 2.

115

• A coloring of V with no color-class larger than 0.9n;

• A coloring of V with a color-class C of size ≥ 0.9n and a nontrivial equipar-

tition of C (the blocks of the partition are of equal size ≥ 2 and there are at

least two blocks);

• A coloring of V with a color-class C of size ≥ 0.9n and a Johnson graph

J (v, t) (t ≥ 2) with vertex-set C,

such that the index of the subgroup Aut (X)∩Aut (Y) inAut (X) is quasipolynomi-

ally bounded. This is the famous split-or-Johnson technique due to Babai.

In future, I would like to investigate whether a Babai-inspired divide and

conquer approach is feasible for solving graph isomorphism problems on a quantum

annealing computer. One may also be interested to investigate the Johnson graph

isomorphism problem via quantum annealing in future.

5.6 Empirical scalability

The scalability of the pseudo-Boolean representation of the graph isomorphism

problem, f , has been studied empirically in [187]. The number of variables in f has

been estimated to be the function of n, 0.748n1.45. If I let n grow comparable to

the size of the inputs in practical graph isomorphism problems [127], i.e. n = 1000,

the number of variables in f will be b0.74810001.45c = 16745. On a 512-qubit

D-Wave computer, it may take b0.072310003.29c = 5.35967 × 108 physical qubits

which is impractical to be build with current technologies. So, it would be useful to

116

understand the asymptotic behavior of f to see if a better scaling behavior may be

investigated from further theoretical understanding of the problem.

5.7 Asymptotic analysis of Algorithm 6

In the asymptotic analysis of the Algorithm 6, it is assumed that the inputs

are randomly generated simple undirected graphs. The number of possible simple

undirected graphs with n vertices is 2(n2) [150]. This constructs the super space of

the input space.

The best, average and worst cases for Algorithm 6 are identified based on

the total number of variables and the numbers of first and second order terms in

f . The total number of variables determine the number of logical qubits needed

to be embedded on a quantum annealing computer. For example, the recently

decommissioned 512-qubit D-Wave computer was able to embed only up to 50 logical

qubits through heuristics [1]. The number of second order terms involving a variable

determines the length of the chain of the physical qubits needed to encode the

corresponding logical qubit. The longer the chain, the more it tends to break down,

i.e. all the physical qubits in a chain not having the same value, requiring post-

quantum-annealing error correction procedure, for example, gauge averaging [25] or

majority voting [187].

The best possible input scenario to Algorithm 6 is when the input graphs are

either completely connected i.e. with degree n − 1 or totally disconnected i.e. with

degree 0 if the total number of vertices is n. In either case, the number of penalty

117

terms will be zero. So, I will have fewest terms possible in f .

Proposition 1. Completely connected or totally disconnected graphs are the best

input scenarios for Algorithm 6.

Proof of Proposition 1. For any graph of fixed size, the number of the permutation

terms are always the same. So, the best case means when I have best case for the

number of the edge discrepancy penalty terms. For a completely connected or totally

disconnected graph, the number of the edge discrepancy penalty terms is the lowest

possible i.e. zero.

I assume that the input graphs are generated in random. There is more than

one model of generating random graphs. The two common models of generating

random graphs are the uniform random graph model , G (n,M) where n is the

number of vertices and M is the number of edges [55, 56, 58, 60, 62, 63, 59], and the

binomial random graph model, G (n, p) where n is the number of vertices and p is

the probability of two vertices being connected with an edge [76]. It has been shown

that both models are asymptotically equivalent [102]. The name Erdős-Rényi model

is used interchangeably for both models. I list a few facts about random graphs as

follows.

In [58], using the G (n,M) model, Erdős et al., proved that the probability of

a random graph being without any isolated vertex is e−e
−2c

. Here c is a constant

when the number of vertices is n and the number of edges is
[

1
2
n log n+ cn

]
. This

is related to our discussion as it is assumed that Algorithm 6 takes as input only

graphs without any isolated vertex. The total number of possible random graphs

118

constitutes the input space for Algorithm 6.

Let d1 ≥ . . . ≥ dm ≥ . . . ≥ dn be the degree sequence of a random graph

with n vertices. The worst case for the total number of variables in the output of

Algorithm 6 occurs when d1 = . . . = dm = . . . = dn = r i.e. it is an r-regular graph

3. As I already have discussed the best cases it is assumed that 0 < r < n− 1.

Lemma 4. The total number of variables in the output of Algorithm 6 is maximum

if the input graphs are r-regular and same for any value of r when 0 < r < n− 1.

Proof of Lemma 4. The total number of the first order terms in f is determined

by the first outer for loop of Algorithm 6. When the input graphs are r-regular,

i.e. d1 = . . . = dm = . . . = dn = r, for all i ∈ V (Γ1)) and v ∈ V (Γ2)), deg (v) =

deg (i) = r. So the if condition is true all the time and the number of QUBO

variables is n2 for any value of r.

Remark 4. The total number of first order terms in the output of Algorithm 6 is

completely determined by the total number of variables in f . Hence the worst case

for the total number of first order terms occurs when the input graphs are r-regular.

The frequency of r-regular graphs from a random graph generator model is

a well studied area of research [153, 154, 150, 86, 21, 57, 147, 19, 20, 27, 29]. It

is noteworthy that different models other than G (n,M) and G (n, p) have been

used to generate random regular graphs. Those models turn out to have different

asymptotic properties from the two basic models G (n,M) and G (n, p) [102]. The

RANGRAPH algorithm in [185] can generate a random r-regular graph with

3An r-regular graph is a graph which has all vertices with degree r[85].

119

probability of success about e
1−r2

4 which is prohibitively small for large r. [174]

gives a scheme based on Markov processes to generate random graphs with given

degrees in polynomial time as long as the degrees are bounded above by a polynomial

function of the number of edges. [129] uses a switching scheme to generate r-regular

graphs on n vertices uniformly at random in O (nr3) time as long as r = O
(
n

1
3

)
.

[160] provides an algorithm which generates random regular graphs asymptotically

almost surely but not in a uniformly distributed manner.

The standard model for generating random r-regular graph is Bollobás ‘s ver-

sion of the configuration model [21, 27, 29]. According to the model, the total

number of random regular graphs for a fixed r is Ln ∼
√

2e−
(r2−1)

4

(
r
r
2 e
− r2

r!

)n
n
rn
2

when n→∞.

So, among the 2(n2) simple undirected graphs over n vertices, only

∼
√

2e−
(r2−1)

4

(
r
r
2 e
− r2

r!

)n
n
rn
2 are r-regular. These fraction of graphs constitute the

worst case input space for Algorithm 6.

The first two terms in f also generates several second order terms which are

always same for any input graph pair over n vertices. So, the difference over the

second order terms comes from the last two or edge discrepancy penalty terms.

Along with the highest number of the variables, I identify it as the worst case

when the numbers of first order and second order terms in f are maximum. The

number of first order terms is maximum when the input graphs are regular. Now I

will determine when the number of second order terms is maximum.

Before going further I prove a lemma here.

120

Lemma 5. The product of the bipartition of an integer is maximum when the par-

titions are the closest to half of the integer.

Proof of Lemma 5. Let n be the integer and (r, (n− r)) be a partition. So, the

product is r (n− r) = nr − r2. This is parabolic function of r where the maximum

is at r = n
2
.

Lemma 6. Given both graphs are r-regular, the total number of second order terms

created from the edge discrepancy penalty terms in f is highest when r is closest to

n−1
2

.

Proof of Lemma 6. The total number of second order terms in the edge discrepancy

penalty terms,
∑

(i,j)/∈E1,i 6=j
∑

(u,v)∈E2
xu,ixv,j and

∑
(i,j)∈E1

∑
(u,v)/∈E2,u6=v xu,ixv,j,

of f , is maximum when all the edge-non-existing-edge combinations are considered

for penalization in both terms.

If the total number of edges in a complete graph is n(n−1)
2

, let |Ē1| be |Ē1| =

n(n−1)
2
−|E1|. In that case, |E1| will also be the number of edges of the n−1−r-regular

graph complement to E1 [152].

So, the total number of second order terms is |Ē1||E2|+ |E1||Ē2|.

The number of edges in the r-regular n-vertex graph is |E1| = nr
2

[183]. Simi-

larly, the number of edges in an n − 1 − r-regular n-vertex graph, Γ2, which is the

complement of |Γ1|, is |E2| = n(n−1−r)
2

.

The number of edge discrepancy penalty terms is |Ē1||E2|+ |E1||Ē2|. So,

121

|Ē1||E2|+ |E1||Ē2| =
n (n− 1− r)

2

nr

2
+
nr

2

n (n− 1− r)
2

=
n2r (n− 1− r)

2
(5.3)

As n is constant, the value will be maximum when r (n− 1− r) is maximum.

It is important to mention that n − 1 is also constant and (r, (n− 1− r)) is a

bipartition of n−1. So, the maximization of the number of second order terms boils

down to the maximization of the product of bipartition of the integer n− 1.

Using Lemma 5, I can say that the maximization occurs when r = n−1
2

.

Theorem 15. The worst case of f occurs when the input graphs are n−1
2

-regular.

Proof of Theorem 15. From Lemma 5 and 6, I can say that the worst case for f

occurs when the input graphs are n−1
2

-regular graphs.

In future, it may also be relevant to know the asymptotic results for the strongly

regular graphs.

5.8 Experimental setup

My Hamiltonian was validated using a software solver (D-Wave Systems ising-

heuristic version 1.5.2) that provides exact results for problems with low tree width.

In exhaustive testing of all 212 N = 4 pairs and 220 N = 5 pairs, the ground state

energy of our Hamiltonian was confirmed to be zero for isomorphic cases and greater

than zero for non-isomorphic.

122

The high-level flow of the GI solver I am using is shown in Figure 5.16. The

problem input is a graph pair G1,2. In this article, the graph types considered are

random, simple, undirected graphs. Graphs are generated using the Erdős-Rényi

model [59] G(N, p) where I set the probability of an edge being present p = 0.5. An

advantage of G(N, 0.5) graphs for an initial study is that all graphs are equally likely.

This type has been used in classical graph isomorphism work as well [128]. In step

1, the input graphs and the Hamiltonian formulation of interest are used to generate

a QUBO problem which is then converted to an Ising problem [h, J]. An example

of an algorithm for generating the QUBO problem is shown in Algorithm 6. The

Ising problem is then compiled to a specific quantum annealing processor in step

2. A main task is to find sets of physical qubits to represent the problem variables

(aka logical qubits); this is achieved by providing the J matrix and the processor

working graph to the D-Wave findEmbedding() heuristic [35]. Subsequently, the

parameters of the embedded Ising problem [h′, J ′] are set following certain strategies

such as the use of a random spin gauge. The embedded Ising problem, sometimes

referred to as a machine instruction, is submitted to the quantum annealing machine

along with several job parameters. The quantum annealing job is executed in step

3 and solutions are returned in the form of strings of two-valued variables. These

solutions and energies are associated with the embedded problem, not the original

Ising problem. Therefore a post-processing step is necessary (step 4), in which the

state of each qubit chain is plugged into the cost function of the Ising problem. A

difficulty arises when the states of the qubits in a chain are inconsistent, a case

referred to as a broken chain. In the proposed solver, broken chains can be handled

123

Figure 5.16: Experimental quantum annealing: case study involving the graph iso-
morphism problem.

124

by either discarding the associated solution, or by performing majority voting over

each chain. The two strategies are compared empirically in Results. Given a solution

to the original Ising problem, the solution energy can be calculated. If the lowest

energy is zero, then the input pair can be declared isomorphic and no further jobs

are necessary. Otherwise, a decision must be made whether to repeat the process

from step 2 or to stop and declare that isomorphism could not be established.

5.9 Results

5.9.1 Ising Model Scaling

To compare the resource requirements of the two proposed Hamiltonians, 100

pairs of graphs are used as inputs to Step 1 of the solver flow (Figure 5.16), where

50 pairs are isomorphic and 50 are non-isomorphic for each size up to N = 100. In

a few places of the rest of the chapter, the Lucas Hamiltonian is denoted as H1 and

our proposed Hamiltonian is denoted as H2 also as the compact Hamiltonian. So,

H2 and f , defined in Eq. 5.2, will be used interchangeably and H1 will correspond

to f when all the conditions on the degree of vertices in Eq. 5.2 will be removed. So,

Since the original Lucas Hamiltonian models a variable for each possible vertex pair,

N2 variables are required by definition. Ising problems generated using our proposed

Hamiltonian are found to use fewer variables; scaling of the median problems fits

to 0.748N1.45. Incidentally, this indicates that most problems have fewer variables

than with the Gaitan et al. approach, which entails plus ancillary variables [74].

The variable scaling is illustrated in Figure 5.17. In addition to the number of

125

Figure 5.17: Scaling of the number of Ising model variables.

variables, a second resource metric is the number of non-zero interactions between

variables; dense interactions make the minor embedding problem more difficult. I

find that the scaling of variable interactions has been improved from O(N4) for the

original Lucas Hamiltonian to O(N2.9) for our Hamiltonian (where R2 = 0.9991).

5.9.2 Embeddability

Next, I compare the embeddability of the two approaches, in other words the

extent to which Ising problems can be minor-embedded in a given processor graph.

The processor of choice is the D-Wave Two Vesuvius-6 processor housed at USC ISI.

At the time of this experiment, the working graph contained 504 qubits and 1427

couplers. Embedding is attempted using the D-Wave findEmbedding() heuristic

[35] with default parameter values such as 10 tries per function call. As shown in

126

Figure 5.18: Embeddability when targeting the USC-LM Vesuvius processors 504-
qubit, 1427-coupler working graph.

Figure. 5.18 a, embeddings are found for the majority of problems only for sizes

N ≤ 6 when using the Lucas Hamiltonian, but sizes N ≤ 14 with the Hamiltonian

proposed by us (Figure. 5.18a). The median number of qubits across all problems

scales as O(N4.22) for the Lucas Hamiltonian and has been reduced to O(N3.29) for

our proposed Hamiltonian (Figure 5.18b).

5.9.3 Experimental Quantum Annealing for Graph Isomorphism

The accuracy of the solver described in the previous section was measured via

trials conducted on a D-Wave Two Vesuvius quantum annealing processor. Several

alternative strategies were compared - the use of Hamiltonians H1 vs. H2, running a

single job per problem vs. multiple jobs, and the use of chain majority voting during

post-processing. Note that by construction of the Ising models using a penalty

Hamiltonian, problems with non-isomorphic input graphs cannot achieve a zero

energy state, regardless of annealing results. The main challenge for the solver is to

find the zero energy state for isomorphic pairs. Thus, I first focus on the isomorphic

127

case. One hundred isomorphic pairs were input into the solver for each size N from

3 to 20.

For one strategy in particular the zero energy state was always eventually

achieved - the use of HamiltonianH2 combined with multiple jobs and chain majority

voting. Thus, with this strategy there were no false negatives and classification

accuracy reached 100% of the embeddable problems, as shown in Table 5.1. For

the most difficult problem, the zero energy state was achieved on the 9th job. All

other strategies incurred false negatives. For the successful strategy, the expected

total annealing time was calculated (as described later). Results are shown in Figure

5.

128

Table 5.1: Number of isomorphic-input problems embedded and correctly
classified as isomorphic via quantum annealing. One hundred problems were
attempted at each problem size. All embedded problems were solved when using
H2, error correction, and multiple jobs.

Size of input graphs (number of vertices)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number of problems
for which an embed-
ding was found using
H1

100 100 100 74 0 0 0 0 0 0 0 0 0 0 0 0

Number of problems
for which an embed-
ding was found using
H2

100 100 100 99 99 96 95 93 87 83 54 39 20 7 4 1

Number of problems
solved using H1, no er-
ror correction

100 99 98 13 0 0 0 0 0 0 0 0 0 0 0 0

Number of problems
solved using H1, error
correction

100 100 99 43 0 0 0 0 0 0 0 0 0 0 0 0

Number of problems
solved using H2, no er-
ror correction

100 100 100 98 96 93 86 75 67 53 34 23 9 1 2 0

Number of problems
solved using H2, error
correction

100 100 100 99 99 96 90 80 73 65 40 25 12 3 2 1

Number of problems
solved using H2, er-
ror correction, multiple
jobs

100 100 100 99 99 96 95 93 87 83 54 39 20 7 4 1

For completeness, non-isomorphic pairs were run as well, using Hamiltonian

H2 and chain majority voting. Since in the worst case nine jobs were required to

correctly classify the isomorphic pairs above, nine jobs were submitted for each non-

isomorphic problem. One hundred non-isomorphic G(N, 0.5) problems were tested

at each size between N = 3 to 14; of the 1200 problems, embeddings were found for

1186. In addition, pairs of isospectral non-isomorphic graphs (PINGs) were tested.

All N = 5 PINGs were tested (150 permutations), as well as 100 random N = 6

PINGs. As expected, none of the non-isomorphic problems achieved a zero energy

129

Figure 5.19: Total expected annealing time when using Hamiltonian H2, multiple
jobs, and classical majority voting.

state and thus none were classified as isomorphic. In other words, there were no

false positives.

5.10 Discussion

Several observations can be made from this case study. First, the formulation

of the cost function (Hamiltonian) can have a noticeable impact on quantum anneal-

ing results. For the graph isomorphism problem, the baseline approach (embodied

in Hamiltonian H1 and in [120]) blindly creates QUBO variables for every possible

vertex pair, whereas the proposed Hamiltonian H2 is more parsimonious. Variable

requirements decreased from N2 to fewer than N log2N (Figure 5.17) on the graph

type under study, allowing larger problems to be solved (Figure 5.18 and Table

5.1). Along with Rieffel et al [157], this is one of the first quantum annealing stud-

ies to experimentally quantify the effect of alternative Hamiltonian formulations.

130

One of the impacts of this observation is increased appreciation for the fact that all

quantum annealing-based solvers are actually classical-quantum hybrids and that

focus must be placed on effectively partitioning the processing and optimizing the

classical portion. A caveat is in order - if the classical side is made to do too much

work then the quantum annealing aspect becomes trivial and of little value. Further

work is needed in identifying the specific strengths of annealing processors, and in

leveraging the two sides appropriately.

A second observation is that using chain majority voting during post-processing

can in some cases provide a benefit. Previously, such majority voting was evaluated

for a different set of problems (scheduling) and was not found to provide a significant

benefit [157]. In our context, there were many problems for which the zero energy

ground state solution was only achieved when using this post-processing; without

this form of error correction (in other words, when all solutions containing a broken

chain were discarded), false negatives occurred. For instance, at N = 12, 53 of 83

embedded problems were solved on the first job without using chain majority vot-

ing, and an additional 12 problems were solved by applying chain majority voting

(Table 5.1). Classical error correction strategies other than majority voting should

be explored and assessed in future studies, and their costs quantified.

To our knowledge, the evaluated solver is the first validated, experimental

implementation of a QA-based graph isomorphism solver. While it ultimately clas-

sified every embeddable problem correctly and demonstrated clear advantages over

the baseline approach, it has serious limitations as a graph isomorphism solver. The

problem sizes are not competitive with those handled by classical solvers, which can

131

handle G(N, 0.5) graphs with thousands of vertices [128] and even for the hardest

graph types can handle hundreds of vertices before running into difficulty [126]. Sim-

ilarly, the scaling of the total annealing times (Figure 5.19) is not competitive with

classical scaling [128]. Ultimately, new approaches are likely needed if quantum

annealing is to contribute to graph isomorphism theory or practice. Fortunately,

the case study provides some new insight into experimental quantum annealing,

and contributes methods that have relevance beyond the GI problem. It is hoped

that the experimental evaluation of alternative Hamiltonian formulations adds to

the understanding of the factors affecting quantum annealing performance, and that

the demonstration of majority voting raises new questions about the role of post-

processing for a variety of problems.

5.11 Methods

Quantum annealing experiments were performed on the D-Wave Two machine

housed at USC ISI and operated by the USC-Lockheed Martin Quantum Computing

Center. Experiments were conducted in October and November, 2014. The working

graph of the machines Vesuvius-6 quantum annealing processor consisted of 504

qubits and 1427 couplers during this period. The pattern of working qubits is shown

in Figure 5.20. The qubit temperature was estimated by the manufacturer to be 16±

1 mK. Additional processor specifications include a maximum anti-ferromagnetic

mutual inductance of 1.33, and 1/f amplitude of 7.5± 1 µφ0√
Hz

.

Simple undirected N -vertex graphs were constructed according to the Erdős-

132

Figure 5.20: Physical layout of the working qubits in the USC-LM D-Wave Two
Vesuvius-6 processor as of October 10, 2014.

133

Rényi G(n, p) model [59] with n = N and with the probability p of including each

edge equal to 0.5. Non-isomorphic pairs were generated by creating two graphs as

above and checking for non-isomorphism using the MATLAB graphisomorphism()

function. Isomorphic pairs were generated by generating a single graph then ap-

plying a random permutation to arrive at the second graph. For each pair of input

graphs, an Ising model was created using either H1 or H2. Programming was per-

formed using MATLAB R2014a win64 and the D-Wave MATLAB pack 1.5.2-beta2.

The current version of the D-Wave sapiFindEmbedding() function cannot directly

embed Ising models with more than one connected component (i.e. a set of vari-

ables that interact only with each other and not any of the remaining variables);

therefore, models with this characteristic were not included in the input data. When

attempting to generate 100 input pairs for each size, such disconnected models oc-

curred no more than 4 times for each size N ≥ 14. Similarly, the heuristic cannot

accept models with fewer than two variables, so in the rare case of a trivial Ising

problem with fewer than two variables (e.g. a non-isomorphic pair with no matching

degrees), dummy variables were added to the problem.

The hi values of the Ising problem were split evenly across each qubit in the

associated chain in the embedded Ising problem. The Jij values of the Ising problem

were assigned to a single coupler connecting two variable chains in the embedded

problem. The magnitudes of the embedded h′ and J ′ were scaled together such that

the maximum magnitude reached 20% of the full range supported by the processor;

the range of the embedded h′i values was [0.4, 0.4] and the range of the embedded

J ′ij values coupling different variables was [0.2, 0.2]. This 20% value was determined

134

empirically to provide good performance on the median difficulty problem at the

largest sizes. Subsequently, the J ′ij values connecting physical qubits within a chain

were set to the maximum ferromagnetic value (1). A single random spin gauge

transformation [25] was then applied to each embedded problem, with a gauge factor

ai ∈ {1, 1} associated with each qubit and transformation h′i → aih
′
i; J

′
ij → aiajJ

′
ij.

One job was submitted to the quantum annealer per embedded problem; some Ising

problems were associated with multiple embedded problems and jobs. After each

programming cycle, the processor was allowed to thermalize for 10ms (the maximum

supported by the machine). The annealing time was set to the minimum value of

20µs. The number of annealing and readout cycles per programming cycle was

40000, which allowed the total job time to be within the limits of the machine (1s).

The readout thermalization time was set to the default value of 0. Regarding error

correction through majority voting of chains of physical qubits, ties were broken by

choosing the spin up state. The probability of achieving the zero energy state on

job k is denoted

P0,k =
number of annealing cycles achieving zero energy

number of annealing cycles
. (5.4)

When multiple jobs are required, I calculate the geometric mean in the style

of Boixo et al. [25]:

135

P̄0 = 1−
K∏
k=1

(1− P0,k)
1
K . (5.5)

The total annealing time required to reach 0.99 probability of success was

calculated by multiplying the annealing time by the expected number of annealing

cycles (repetitions R) using the formula [25]:

R =

⌈
ln (1− 0.99)

ln
(
1− P̄0

) ⌉ . (5.6)

5.12 Summary

In this section I have constructed a pseudo-Boolean representation of the graph

isomorphism problem. I have also shown that while being minimized on a quantum

annealing computer, the worst case is the n−1
2

-regular graph isomorphism problems.

I have also demonstrated the first ever proof-of-concept experiment of solving graph

isomorphism on a commercial quantum annealing computer.

136

Chapter 6

Hopfield Network and Quantum Annealing

6.1 Introduction

In this chapter, I have shown that exponential memory capacity for a Hopfield

network can be achievable if the memory recall phase is implemented using quan-

tum annealing. Associative memory models (AMM) are supervised learning models

for the brain and reconstruct memories - desired configurations of quiescent and

firing neurons - from input data that has only incomplete or incorrect information

[96]. To this end, the Hopfield network [96, 97] is a well established paradigm for

associative memory where neurons are treated as binary threshold units [123] with

their interconnections described by real weights. The network can be trained to

memorise patterns - called learning - via different algorithms [149] which evaluate

the connection strengths based on the set of these fundamental memories. Once a

network has learnt a certain number of patterns it should recall an initial (possibly

imperfect) bit string configuration to a stored pattern which had maximum overlap

with the initial state, and this is interpreted as successful recognition. Each distinct

combination of a learning rule and recall method corresponds to a different associa-

tive memory model. Even in the canonical setting for Hopfield networks, where the

neurons are considered to be classical Ising spins, succesful memory recall amounts

to global minimization of an cost (energy) function over the possible collective spin

137

configurations [9, 97, 178]. The classical dynamical update rules however do not

guarantee that this global minimum is indeed reached - often the asymptotic state

is a local energy minimum [34]. While AMMs trace their origins to theoretical neu-

roscience, they have been widely considered in the classical setting, and an area of

active current research in the quantum setting, in the context of content-addressable

memories [148], machine learning [167, 2], artificial neural networks [122, 50] and

neuromorphic computing [177]. This chapter is based on the following preprint [164]

which was resulted from a collaboration with Drs. Siddhartha Santra and Radhakr-

ishnan Balu of the U.S. Army Research Laboratory.

Exponential capacity of associative memories under
quantum annealing recall
Siddhartha Santra, Omar Shehab and Radhakrishnan Balu

Associative memory models, in theoretical neuro- and com-
puter sciences, can generally store a sublinear number of mem-
ories. I show that using quantum annealing for recall tasks en-
dows associative memory models with exponential storage ca-
pacities. Theoretically, I obtain the radius of attractor basins,
R(N), and the capacity, C(N), of such a scheme and their
tradeoffs. Our calculations establish that for randomly chosen
memories the capacity of a model using the Hebbian learn-
ing rule with recall via quantum annealing is exponential in
the size of the problem, C(N) = O(eC1N), C1 ≥ 0, and suc-
ceeds on randomly chosen memory sets with a probability of
(1− e−C2N), C2 ≥ 0 with C1 + C2 = (.5− f)2/(1− f), where,
f = R(N)/N, 0 ≤ f ≤ .5 is the radius of attraction in terms of
Hamming distance of an input probe from a stored memory as
a fraction of the problem size. I demonstrate the application
of this scheme on a programmable quantum annealing device -
the DWave processor.

I demonstrate the use of quantum annealing (QA) [33, 48] for recalling stored

138

memories in AMMs. QA is a non-universal form of adiabatic quantum computation

(AQC) [66] that solves hard optimization problems [163] by encoding the solution

into the lowest energy state of a problem-defined Hamiltonian. The search for the

global energy minimum is assisted via quantum tunneling across barriers in the

energy landscape which reduces the chances of getting trapped in local minima

[143]. Leveraging the robustness [40, 165] of open-system AQC, QA has become a

promising scalable quantum sub-routine for the solution of practical computational

problems [163, 187] using currently available technology [103].

By casting the problem of succesful memory recall in associative memory mod-

els as one of finding the spin configuration corresponding to the global energy mini-

mum under a Hamiltonian, determined in part by the stored memories and partially

by the imperfect input memory, one can hope to use QA for recall tasks in AMM.

Just as in the classical AMM case, the memories are encoded as the weights of a

fully connected network of spins - qubits in my case. However, in contrast to the

classical case, the probe memories are input to the system as local field biases on

the qubits and not as their initial values. I show that using QA for recall tasks

[145, 168] in associative memory models, with any learning rule that does not dis-

criminate against any of the fundamental stored memories, leads to an exponential

storage capacity for randomly chosen memories and succeeds, over random choices

of fundamental memory sets, with a probability approaching unity exponentially in

the problem size. I also demonstrate an implementation of quantum annealing recall

in an associative memory model with the Hebbian learning rule on a programmable

quantum annealing device - the Dwave processor [103, 25]. My results are valid for

139

completey general Hopfield networks and may be contrasted with purely classical

schemes for AMMs that require special pattern classes or connectivity structures

[92] in order to achieve super-polynomial capacity.

The paper has three following sections with the theoretical setup described

in Sec. (6.2), implementation results with the Dwave processor in Sec. (6.3) and

concludes with a discussion in Sec. (6.4).

6.2 Theoretical Setup

Here, the framework of Hopfield networks is first discussed in subsec. (6.2.1)

along with its use in AMMs. I then describe the process of quantum annealing from

the perspective of finding ground states of classical Hamiltonians in subsec. (6.2.2).

Followed by a discussion of how quantum annealing may be used for recall tasks

in AMM, subsec. (6.2.3). As with any update rule in the classical setting only

those input probe memories which lie within a certain maximum Hamming distance

from any of the stored fundamental memories - the radius of attraction - may be

successfully recalled using QAR-AMM which is discussed in subsec. (6.2.4). Finally,

I obtain the capacity of the total scheme where the learning is done via the Hebbian

rule with quantum annealing recall in subsec. (6.2.5) and show the tradeoff between

the capacity and the size of the radius of attraction. In the same section I discuss

the probability of my scheme succeeding over randomly chosen fundamental memory

sets.

140

6.2.1 Hopfield network and Associative memory

The Hopfield network (HN) is a fully connected graph KN of interacting binary

state ‘neurons’ {Si = ±1}i=1,2...,N whose weights, Wij, encode the bit strings (of size

N) that form its memory M := {ξµ}µ=1,...,p. Given the set of memories, M , the use

of different learning rules lead to different entries Wij for the weight matrix. In this

paper I consider the Hebbian learning rule whose weights Wij for i 6= j are given by,

Wij :=
1

N
(

p∑
µ=1

ξµi ξ
µ
j − pδij) ∀i, j ∈ [1, N] (6.1)

The Hebbian learning rule [88] has the characteristics of being local, incremen-

tal and immediate. Locality here means that a connection weight depends only on

the state of the spins across the connection. Incrementality implies that new mem-

ories can be learnt without referring to previously learnt memories and immediate

means that the connection weights for any number of memories can be obtained in a

finite number of steps. The absolute storage capacitiy C(N) defined as the number

of memories one can store in a network of size N when perfect recall accuracy is

desired is C(N) = N/2 log(N) for the Hebbian rule [124].

In conjunction with a learning rule a Hopfield network may be used as an

associative memory model i.e. as a content addressable memory where given an

initial configuration of neurons SI ∈ {0, 1}N (considered the input or probe memory

vector) the dynamics of the network ideally results in a final network configuration

SF which is some stored memory (also called fundamental memory) ξ ∈ M that

was closest in Hamming distance from the original configuration SI . This dynamic

141

is implemented as an update rule for the spins,

Si(t+ 1)→ Sign(
∑
j

WijSj(t)− θi) (6.2)

where Si(t + 1) is the value of spin i in the timestep after t. One can understand

the attractor dynamics as a search for a global energy minimum by attaching an

energy value to a configuration of spins S = (S1, S2, ..., SN) in the network through

the definition,

E(S̄) := −
∑
i<j

WijSiSj −
∑
i

θiSi, (6.3)

where θi is the threshold value for spin i in the network. The Markovian dynamics

generated by the rule (6.2) ensures that E(S̄) is non-increasing during the evolution.

The asymptotic fixed point is thus (at least) a local minimum and the corresponding

spin configuration is a stable attractor for the dynamics. The local threshold values

θi can serve to bias (or even freeze) certain spin values to the ones desired.

6.2.2 Quantum annealing

Quantum annealing (QA) is a finite temperature, non-universal form of Adia-

batic Quantum computation (AQC) useful for solving hard optimization problems.

Given the cost function, Cost(X) : {0, 1}n → R, of an optimization problem, QA

finds the configuration, X, a vector of Boolean variables obtained after a qubit-wise

read out of a quantum state - that minimizes Cost(X). Thus QA can also be under-

142

stood as the quantum couterpart of simulated annealing [110]. In general, the cost

function can be encoded as a Hamiltonian operator ĤP whose ground state encodes

the solution to the computational problem. Of interest in QA is the final ground

state of the time dependent Hamiltonian,

Ĥ(t) = A(t)ĤI +B(t)ĤP , (6.4)

which undergoes annealing as the classical control process takes the parameters from

(effectively), A(t = 0) = 1, B(t = 0) = 0 to A(t = Tanneal) = 0, B(t = Tanneal) = 1,

where, Tanneal is the duration of the annealing process. The expectation is that the

ground state of the initial Hamiltonian ĤI is easily-prepared and annealing takes it

to the ground state of the final Hamiltonian ĤP which can also be read out easily

to yield the solution. QA requires that the Hamiltonian ĤP be diagonal in the

computational basis which means that the process of reading out the final state

does not introduce any further complexity to the computational problem beyond

requirements of adiabaticity [66, 165] during the anneal process. In practice, for the

specific QA device I use, Sec. (6.3), QA at non-zero temperature T starts in the limit

of strong transverse field terms in ĤI and weak ĤP , i.e. A(0) � max{kBT,B(0)},

with the initial ground state close to an equal superposition of all computational

basis states of the qubits in the problem. Here, kB is the Boltzmann constant.

Monotonically decreasing A(t) and increasing B(t) takes the system (close) to the

ground state of ĤP as at the final time B(Tanneal)� A(Tanneal) [25].

The QA process relies on the quantum adiabatic theorem - thus the annealing

143

duration Tanneal has to be sufficiently large and the temperature T of the system

sufficiently high to prevent diabatic transitions away from the instantaneous ground

state of H(t). For any given problem, i.e. HP , the initial Hamiltonian HI and the

temporal dependence of A(t), B(t) - the minimum required values for Tanneal and the

maximum allowed value of T are determined by the inverse energy gap between the

instantaneous ground state and the first excited state of H(t) at any t ∈ [0, Tanneal].

6.2.3 Recall tasks in AMM using Quantum Annealing

The energy function (6.3) of a HN admits a physical interpretation as the

Hamiltonian operator of a spin-glass problem (with local field terms) [18] where the

binary-state neurons may be treated as Ising spins interacting with each other via

their couplings Jij = Wij and the threshold values may be interpreted as local fields

hi = θi. By making the correspondence Si 7→ σ̂zi the energy function (6.3) may be

identified with the Hamiltonian operator, ĤAM = −∑i>j Jijσ̂
z
i σ̂

z
j +
∑

i hiσ̂
z
i , for the

system whose set of ground states (the set containing all the degenerate lowest energy

states) encodes the configurations the network has committed to its memory. If an

eigenvector |χ〉 of Ĥ is an element of the set of ground states then the corresponding

bit string χ with entries χi = 〈χ|σ̂zi |χ〉, is a memory state only if χ corresponds to

one of the stored memories, i.e. χ ∈ M , otherwise it is a spurious state [34, 97]

and corresponds to incorrect memory recall. Since the memories are all encoded

only in the coupling terms between different spins I call Ĥmem := −∑i>j Jijσ̂
z
i σ̂

z
j

the memory Hamiltonian whereas, as I show below, the local field term can be used

144

to probe memory recall using an input state and hence is called the probe term i.e.

Ĥprobe :=
∑

i hiσ̂
z
i . I use the Hamiltonian ĤAM as the final problem Hamiltonian

in Eq. (6.4), i.e. ĤP = ĤAM, with the probe memory part dependent on an input

string χ, of length n := |χ|, 0 ≤ n ≤ N , given by Ĥprobe = −h∑i χiσ̂
z
i where h > 0

is some overall scale. Thus,

ĤP = ĤAM = −
∑
i>j

Jijσ̂
z
i σ̂

z
j − h

∑
i

χiσ̂
z
i (6.5)

While the memory hamiltonian Ĥmem is degenerate for all stored memories

|ξµ〉 ∈ M, the probe Hamiltonian Ĥprobe breaks this degeneracy as follows,

Ĥprobe|ξµ〉 = −h(
∑

i|χi=ξµi

1−
∑

i|χi=−ξµi

1)|ξµ〉

= −h(

i=|χ̄|∑
i=1

1− 2
∑

i|χi=−ξµi

1)|ξµ〉

= −h(n− 2dµχ)|ξµ〉 (6.6)

where n is the length of the input probe bit string and 0 ≤ dµχ ≤ n is the

Hamming distance between the input bit string χ and the bit string ξµ correspond-

ing to the memory eigenvector |ξµ〉. Eq. (6.6) implies that the probe Hamiltonian

energetically orders the stored memories according to their Hamming distances from

the input bit string.

I thus have a scheme for a quantum annealing implementation of an AMM

using Eqs. (6.4) and (6.5). Starting from the ground state of an arbitrary initial

145

Hamiltonian ĤI (generally fixed by experimental limitations) if one can tune the

temporal evolution of Ĥ(t) to arrive at the final Hamiltonian ĤP = ĤAM while main-

taining conditions of adiabaticity then the final ground state should be the memory I

hoped to recover. I call this scheme quantum annealing recall in associative memory

models (QAR-AMM).

The requirement that the energy, relative to the Hamiltonian (6.5), for any

input probe vector that is not one of the fundamental memories be greater than for

any of the fundamental memories leads to a bound on the maximum value of the

field strength h for successful recall, E(|ξµ〉) < E(|χ〉) =⇒ h < (〈ξµ|W/2|ξµ〉 −

〈χ|W/2|χ〉)/2dµχ. This maximum field strength can be shown to depend on the

number of random memories stored and the Hamming distances of the input probe

memory from the stored fundamental memories in general, however when the funda-

mental memories are mutually orthogonal to each other i.e. every pairwise Hamming

distances is N/2, this maximum value evaluates to, see Appendix. (A.1),

h <
1

4dµχ
[N(1− p) + 4

p∑
ν=1

dνχ −
4

N

p∑
ν=1

(dνχ)2] =: hµχ,max (6.7)

If I restrict ourselves to working with positive field biases then I get that for succes-

fully recalling a memory the allowed values of h are 0 < h < maxµ h
µ
χ,max.

6.2.4 Radius of attraction using QAR-AMM.

The memory Hamiltonian, Ĥmem, part of ĤAM has a global spin flip symmetry

which implies that for each memory eigenket |ξµ〉 ∈ M the spin-flipped state |ξ̃µ〉 =

146

⊗Ni=1σ̂
x
i |ξµ〉 - which would be a spurious state for purposes of memory recall - is

also degenerate with respect to Ĥmem. While the probe Hamiltonian breaks the

degeneracy of memory states |ξµ〉 ∈ M in the desired manner, I find that it also

shifts the energy of these spurious spin-flipped states in the reverse manner,

Ĥprobe|ξ̃µ〉 = h(n− 2dµχ)|ξ̃µ〉, (6.8)

i.e., spurious states that are further from the input memory in Hamming

distance have lower energies w.r.t. Ĥprobe. This means that for a set of p memories

if a given input state |χ〉 is nearest to |ξµ〉 and furthest from |ξν〉 at Hamming

distances dµχ, d
ν
χ respectively (I call the shortest distance dsχ := minµd

µ
χ and the

largest dbχ := maxµd
µ
χ) then by requiring that the energy w.r.t. Ĥprobe of the nearest

memory state be lower than that of the lowest energy spurious state I arrive at the

condition,

dsχ + dbχ ≤ (n− 1) = (|χ| − 1), (6.9)

which along with the definition dsχ ≤ dbχ results in dsχ < bn/2c. Thus all full length

(|χ| = N) input states χ within a radius,

R(N) ≤ (N − 2)/2 N: Even

≤ (N − 1)/2 N: Odd (6.10)

147

are attracted to the closest fundamental memory and thus defines its basin of at-

traction.

Further, using the triangle inequality for Hamming distances I can also lower

bound the sum dsχ +dbχ by the maximal Hamming distance between any two vectors

in the memory set for the given combination of n = |χ| bits. That is given d(n) :=

maxµ,ν dn(ξ̄µ, ξ̄ν) where dn is the Hamming distance between ξ̄µ, ξ̄ν for a particular

combination of n bits - I have in combination with Ineq. (6.9) 1,

d(n) ≤ dsχ + dbχ ≤ (n− 1). (6.11)

which describes the set of all input vectors χ̄ that can be successfully recalled using

QAR-AMM. Clearly for smaller d(n) values there are a larger number of states

within the attraction basin. Intuitively, this implies that for set M of memory

vectors with a smaller span in Hamming distances, but well separated within this

span, the QA-AMM scheme works well. On the other hand for n = N if, for example,

d(N) = N , meaning that both a bit string and its negation are in the memory set,

then the scheme fails.

6.2.5 Capacity, Attraction Basin size and tradeoffs

The capacity C(N) of a model for associative memory for bit strings of length

N is defined as the number of randomly chosen bit strings that may be stored in

the network with the requirement that these states be stable fixed points under the

1Since Hamming distances can only take natural number values, the strict Ineq. (6.9) means
dsχ + dbχ can atmost equal (n− 1).

148

dynamics dictated by the update rule for the spins. Thus in the classical setting

the capacity depends on the learning rule as well as the update rule for network

dynamics. This is true using the QAR-AMM for memory recall as well.

In my scheme, when the memories are randomly chosen in a balanced manner,

i.e. the probability of a bit being 1(−1) in any of the p memories is .5(.5), there is

a finite probability that an input probe memory χ which even though is within the

basin of attraction of a fundamental memory fails to be recalled correctly because its

distance from the furthest memory, dbχ, violates inequality (6.9) i.e. dbχ > N−1−dsχ.

The probability of this happening can be made to approach zero exponentially in

the size N provided the radius of attraction (6.10) is reduced by a constant fraction

of N from the one given in Eq. (6.10). Allowing for this non-zero failure probability

at any finite N - the capacity turns out to be exponential in the size of the problem.

To calculate the capacity I consider a set of p fundamental memory vectors, ξµ,

of length N (even here for ease of presentation) whose pN entries are discrete random

variables, (ξµ)i = ±1, that are i.i.d. with equal probability = .5. Suppose now I

consider an input probe memory χ at a hamming distance dsχ = (N − 2)/2−x, x =

0, 1, ..., (N − 2)/2 from some memory that I call ξ1. Then using Ineq. (6.9) QAR-

AMM succeeds if any other fundamental memory vector is at a Hamming distance

of at most dbχ ≤ N/2 + x. The probability that this happens for any one other

fundamental memory ξµ, µ 6= 1 is given by [118],

P [dµχ ≤ (N/2 + x)] =

(N/2+x)∑
l=0

P (dµχ = l) =

(N/2+x)∑
l=0

(
N
l

)
2N

149

≥ 1− 1

2
exp(

−x2

N/2 + x
)

= 1− .5exp(
−t2
.5 + t

N) =: P ∗. (6.12)

where x = tN, 0 ≤ t < .5. Intuitively this means that as the radius of the attraction

basin is allowed to decrease by Hamming size x = tN , the probability of the scheme

succeeding when there are only two stored memories approaches unity exponentially

in N .

Since the memories are independently chosen - the probability that all the

(p− 1) memories apart from the one which has Hamming distance dsχ from χ̄ have

distances dµχ ≤ (N/2 + x) ∀µ is lower bounded by (P ∗)p−1. If I now require that

having stored p fundamental memories my scheme succeeds with probability at least

γ, i.e. (P ∗)p−1 ≥ γ, then taking the logarithm of both sides I obtain a bound on the

number of memories the network can possibly store,

p ≤ (1 +
log γ

logP ∗
) (6.13)

I demand that asymptotically in N I get perfect recall and require that this

approach be exponential. Then I have that,

γ = (1− e−C2N), C2 > 0 (6.14)

Then, using a small z approximation for log(1− z) ' −z and Eqs. (6.12,6.14)

150

in Ineq. (6.13) I get,

p ≤ 1 + 2 exp(−C2N +
t2

.5 + t
N)

= 1 + 2 exp(C1N) = O(eC1N), (6.15)

where C1 = t2/(.5 + t) − C2. Eq. (6.15) thus implies an exponential capacity for

0 ≤ C2 ≤ t2/(.5 + t).

There is also a tradeoff between the size of the attraction basin and the capac-

ity, just as in the classical setting [176], which can be seen by obtaining the relation-

ship between the constants C1, C2 in terms of the radius of the basins of attraction,

f = R(N)/N = (N/2− 1− x)/N = (N/2− 1− tN)/N →N→∞ (.5− t), 0 ≤ f < .5,

resulting in,

C1 + C2 =
(.5− f)2

(1− f)
. (6.16)

Note that ideally one would want both C1, C2 to be as large as possible be-

cause, respectively, they represent the exponent for the exponential capacity and

the probability for QAR-AMM to succeed. However, the R.H.S. of Eq. (6.16) is

a positive valued monotonically decreasing function of f . Thus smaller values of

f would imply higher capacity and scheme success probability but smaller radii of

attraction basins and vice versa.

151

Figure 6.1: ‘Chimera’ graph showing the connectivity of qubits on the DW2 proces-
sor chip at Burnaby, BC that I use. Not all qubits are usable in the graph - missing
qubits - which are rejected at the calibration stage. There are 64, K4,4-connected
blocks of qubits laid out as a matrix of 8×8 blocks. Each block has 2 columns (ver-
tical) and 4 rows (horizontal). Fully connected problems such as Hopfield networks
have to be embedded onto the native graph structure keeping in mind the missing
qubits.

6.3 Quantum annealing recall with a programmable quantum an-

nealer.

In this section I present results from experimental implementations of the

QAR-AMM on the Dwave quantum annealing processor. In Subsec. (6.3.1) I de-

scribe the Dwave quantum annealing processor and the settings I use, a description

of the required embedding of our fully connected networks onto the native qubit

connectivity on the processor chip in subsec. (6.3.2) and finally examples of memory

recall using quantum annealing in subsec. (6.3.3).

152

6.3.1 Experimental Setup

To demonstrate associative memory recall using quantum annealing I use the

second generation of the commercially available Dwave processors [103], DW2, with

512 qubits of which 476 qubits are effectively available. These qubits form the nodes

of the so-called “Chimera” graph shown in Fig. (6.1). The engineering and physics

of the processor chip has been extensively discussed in the literature [87, 22] and

references therein. In this paragraph I briefly touch upon some features that are

relevant to this problem. The DW2 chip comprises of superconducting rf SQUID

flux qubits interacting with each other via Josephson junctions and is maintained

at a base temperature of T ' 15mK in a dilution refrigerator. A classical program

supplies the problem Hamiltonian to the chip via the N × N matrix of coupling

values, Jij, and a N × 1 vector of field strength, hi, values. These final Jij, hi values

are achieved on the processor at the end of the user set annealing time Tanneal which

can be set at integer values between 20 µs to 20, 000 µs with the default value being

20 µs. The time to wait after this programming, called thermalization time, in order

for it to cool back to base temperature can be between 0 to 10000 microseconds with

the default value being 10000 microseconds. The coupler strengths Jij can be set

between Jij ∈ [−1, 1] while the local fields between hi ∈ [−2, 2]. These values go

through a non-linear 9-bit analog to digital conversion (ADC) and thus the step size

for either is the extent of their range divided by 29 - so the |Jij| values can be set

in multiples of 2−8 while |hi| in steps of 2−7, however there are noise contributions

which are important at low values of h, J [52]. The time to wait after each state is

153

read from the processor in order for it to cool back to base temperature is 0µs as

the readout process is not supposed to supply any thermal noise.

For my experiments - to minimize diabatic transitions due to finite annealing

times I use the maximum allowed annealing time Tanneal = 20, 000 µs and the maxi-

mum allowed thermalization time of 10, 000 µs. Further, I choose a problem defined

on N = 24 qubits so that the values of |Jij| = O(2−4), given by the Hebbian weight

matrix Eq. (6.1), are much larger compared to its resolution.

6.3.2 Embedding fully connected Hopfield networks in Chimera

A major step in solving a problem on the Dwave Two computer is mapping

a generic Ising problem Hamiltonian, such as ĤAM, to the Dwave’s native chimera

graph which is a composition of K4,4 graphs (complete bipartite graph with 4 ver-

tices in each partition) - an instance of the minor embedding problem which is

NP-complete [75]. A problem can be embedded in more than one way. The Dwave

API provides the function ‘find embedding(J)’ that uses a heuristic algorithm to

perform the embedding which works reliably when the number of logical qubits, N ,

is under 50. The input argument to function is the N ×N coupling matrix, J , and

the algorithm looks at the adjacency matrix derived from, J , to obtain a possible

embedding. Asymptotically, roughly N completely-connected logical qubits may be

embedded on a hardware chimera graph of N2 physical qubits. On the particular

512-qubit DW2 processor I use, only 476 qubits are available to be programmed as

shown in Fig. (6.1), the remaining qubits being unusable due to hardware faults. I

154

note that not all problems require complete graphs hence larger non-trivial prob-

lem graphs can be embedded depending on which problem is being attempted. For

example, the problem graph for the graph isomorphism problem on a Dwave ma-

chine is not a complete graph [187] nor are certain restrictions [92] to the canonical

Hopfield networks.

When a problem is embedded on a hardware graph, a logical qubit is repre-

sented by a ferromagnetic chain of physical qubits. Ideally, after annealing, all the

physical qubits are in the same state carrying the value of the state of the logical

qubit. In reality, the chain tends to break down more often when it becomes longer,

i.e., some physical spins corresponding to the same logical variable do not agree. In

this scenario, one needs to use gauge averaging [25], majority voting [187] or the

more general quantum error-correcting schemes [151].

For the representative example discussed in the next subsection I have not im-

plemented any error-correction strategy. This lets us discuss the raw implementation

of QAR-AMM with respect to the theory in the previous section.

6.3.3 Representative example

I demonstrate the actual implementation of the QAR-AMM scheme using the

Dwave quantum annealing hardware by describing a representative example with

three stored fundamental memories of length N = 16. These are,

ξ̄1 :(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

155

0.2 0.4 0.6 0.8 1.0
h

-15

-10

-5

Energy

Figure 6.2: (color online) The variation of the energies of the fundamental memories
and the probe memory under the Hamiltonian ĤAM with the probe vector χ̄ as in
(6.17). The dotted vertical line (green) represents the highest (h = .75) allowed
field strength for succesful recall of χ̄. Applying fields above this maximum value
overbiases the Hamiltonian such that χ̄ itself becomes the lowest energy state. A
vertical slice at any fixed value of h is the spectrum of the problem Hamiltonian
ĤP = ĤAM for the p-fundamental memories plus the input probe memory.

Strength of local magnetic
fields

Figure 6.3: (color online) Probability of the correct recall using quantum annealing
varying with respect to the applied field strength h > 0. This probability is high
(' 1) for the particular set of p = 3 memories and the input vector (6.17) for almost
the entire region with h < .75 (green dashed line). For small values of h (≤ .15),
the thermal noise degrades the annealing recall success significantly.

156

ξ̄2 :(1, 1, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1,−1,−1),

ξ̄3 :(1, 1, 1, 1,−1,−1,−1,−1,−1,−1,−1,−1, 1, 1, 1, 1),

which are stored using the Hebbian rule (6.1) in a network of 16×16 fully connected

interacting qubits. The DW2 provided software tool is used to find an embedding

onto the native ”chimera” graph on the chip. This requires only 133 physical qubits

for embedding. Each of the 16 logical qubits are encoded as ferromagnetic chains of

physical qubits with the largest encoded qubit being a chain of 11 physical qubits

and the smallest of size 5. The maximum value of any coupling |Jij| = Wij is (3/24)

with the minimum being (1/24).

Note that these fundamental memories are mutually orthogonal, i.e.
∑

i ξ
µ
i ξ

ν
i =

δµ,ν , since their pairwise Hamming distances are all equal to N/2 = 8. The probe

input vector I use is,

χ̄ = {−1, 1, 1, 1,−1,−1,−1,−1,−1,−1,−1,−1, 1, 1, 1,−1} (6.17)

whose Hamming distances from the fundamental memories are d1
χ = 10, d2

χ =

8, d3
χ = 2. The energies of the fundamental memories ξ̄1, ξ̄2, ξ̄3 and input memory

χ̄ w.r.t. the final problem Hamiltonian, ĤP , using χ̄ from Expression (6.17) to

determine the probe Hamiltonian part, Ĥprobe in Eq. (6.6), are shown in Fig. (6.2).

I expect the bound on the maximum field strength (6.7) to be hµχ,max = .75 obtained

for µ = 3 (closest memory in Hamming distance), but test the success probability

of recall using quantum annealing at increasing values of h starting from h = 2−5

157

to, well beyond hµχ,max, upto h = 1.2 in linear steps of 2−5. At each value of h

I anneal a 100 times and the number of times the machine returns the closest

memory ξ̄3 - expressed as a percentage - gives us the success probability Psuccess,

Fig. (6.3). I find that the annealing success probability is very close to unity, and

can be essentially made 1 if one imposes a majority vote on the percentage, i.e. a

percentage value greater than 50 % is understood as success probability of 1 for that

particular memory, for most of the allowed region except for very small h values.

To understand why this may be so I consider the different sources of error on DW2

in the next paragraph.

How close to perfect recall this empirically determined quantity Psuccess is,

depends on several factors [163, 25]. First and foremost, DW2 operates at a non-

zero, albeit small, temperature of T ' 15mK. This means that the quantum

states representing two bit strings at a Hamming distance of d ≤ kBT/h, with kB

- the Boltzmann’s constant, from each other should be considered as degenerate

w.r.t. the probe Hamiltonian Ĥprobe. This counts as thermal error [5] which is the

hardest to mitigate. Secondly, the encoding of logical qubits into ferromagnetic

chains of physical qubits, the longer the worse, introduces errors at the emdedding

stage - encoding error - that may be reduced by adopting embedding algorithms

that minimize qubit chain lengths. Next, the physical implementation of the flux

qubits favors an individual spin to align in one direction compared to the opposite

direction which introduces the so-called gauge error - which may be suppressed

via gauge-averaging [8, 25]. For the specific class of recall tasks in AMMs, gauge-

error implies that the same pair, of fundamental memory set and probe vector,

158

may have a different success probability if they are encoded with the signs of all

their spins flipped. Finally, short annealing times can also cause diabatic errors

[5] that causes higher energy eigenstates to be populated - which I have tried to

reduce in my own experiments by using the maximum possible annealing time on

the machine, Tanneal = 20, 000 µS, in each run in order to ensure that such transitions

are minimized. However, I have not analyzed the energy gap ∆ of our problems to

determine whether Tanneal >> ∆−1.

For the small h ≤ .15 region in Fig. (6.3), which although is well within

the bound hµχ,max = .75 given by Ineq. (6.7), I observe that the annealing success

probability is severely degraded. This is caused by, I suspect, a combination of one

or more factors discussed in the previous paragraph. However, the strongest reason

might be the thermal noise that dominates at small h values. Note that the actual

physical energy that the field strength h represents is obtained by multiplying it with

B(t) appearing in the time dependent annealing Hamiltonian (6.4). The maximum

value of B(t) is ' 30 GHz at the end of the annealing process starting from close

to zero at t = 0. An order of magnitude calculation shows that hB(t) with h = .15

is of the same order of magnitude as kBT with T = 15 mK - for at least half

the annealing time. The reduced annealing success probability in this region of h

might thus be attributed to thermally caused leakage of population to other energy

eigenstates.

159

6.4 Discussion and conclusion

I have shown that using quantum annealing for recall tasks in Associative

memory models can lead to an exponential capacity for storage and this scheme

works with probability 1 for sets of randomly chosen memories in the large network

size limit. The positive exponents for capacity and that for the scheme success

probability have to sum to a decreasing function of the radius of the attraction

basins - hence the tradeoff between the radius and the capacity and scheme success

probability. Implementation of our scheme on a physical quantum annealing device

may suffer thermal, encoding, gauge and diabatic errors that can lead to imperfect

recall even when all theoretical conditions for successful recall are met. The effective

experimental success probability is determined empirically and depends on several

factors of the physical implementation.

QAR-AMM should work for every learning rule where the memory Hamil-

tonian is degenerate on all fundamental memory vectors. Even so, one needs to

consider certain inherent theoretical limitations that I now point out. The energy

degeneracy of the stored memories is lifted by an amount proportional to their Ham-

ming distance from the input memory times the uniform field strength h. The max-

imum field strength value such that the system does not get overbiased is inversely

proportional to the size of the problem, i.e., hµξ,max ∼ 1/N [145]. This automat-

ically sets the upper bound for the adiabatic energy gap of the problem because

for two fundamental memories differing by a Hamming distance of d - the energy

difference w.r.t. the problem Hamiltonian is proportional to d× hµξ,max. This means

160

that, at least, for storing a linear number of memories one can expect an efficient

adiabatic (annealing) run time, Tanneal = O(Nα), α = small positive integer, for the

recall task. However, as the number of stored memories approaches, the theoret-

ically achievable, exponential limit - the number of stored memories at the same

Hamming distance from the input can grow exponentially - the number of possible

stored memories at any distance d is given by the binomial coefficient
(
N
d

)
. To break

the degeneracy of these equidistant memories one can choose, instead of a uniform

field h, a position dependent non-uniform field hi, i = 1, 2, ..., N . However, for any

finite range of hi-values, i.e. δh = maxi(hi)−mini(hi) <∞, the degeneracy would

be broken by an amount proportional to δh/
(
N
d

)
. This means that the adiabatic

energy gap in the exponential storage limit would close, as an inverse exponential,

making recall tasks inefficient - time complexity wise. Nevertheless, even a poly-

nomial storage capacity, with a concomitant polynomial QAR-AMM run-time, is a

significant improvement (see [92] and references therein) for the case of completely

general Hopfield networks considered here.

Going forward, I would like to explore equivalent recall schemes for forgetful

learning rules that favor recently added fundamental memories in the learning set

to the ones before [176]. There one would like to understand the minimal require-

ments on the additional types of terms in the problem Hamiltonian those recall

schemes would need. Further, I note that the recall process may be considered as

an adiabatic quantum error correction operation - a fundamental memory may be

understood as a codeword and its basin of attraction as the codespace [146]. Each

input memory within the basin of attraction corresponds to a distinct error. The

161

conditional error-correction operation is the unitary obtained as a result of the evo-

lution under the time-dependent annealing Hamiltonian which depends on the input

state. Clearly, the scheme of QAR-AMM does not detect errors but only corrects

them - but in doing so it greatly enhances the capacity of the classical Hopfield

network models. This is yet another instance of a hybrid protocol where partition-

ing of a computational job into quantum and classical subtasks leads to distinct

advantages. However, the question of optimality of such partitioning is still open

[187]. Finally, I comment that the QAR-AMM scheme also requires classical pre-

processing to minor-embed the problem graph on the Dwave annealing architecture

- a step that may be obviated through the use of fully connected quantum annealers

as recently proposed in [117].

162

Appendix A

Supplementary Material for Chapter 6

A.1 Bound on field strength

We require the energies of any state that is not a fundamental memory to be

greater than that of the later w.r.t. the Hamiltonian (6.6):

− 〈ξµ|W/2|ξµ〉 − h
∑
i

χiξ
µ
i < −〈χ|W/2|χ〉 − h

∑
i

χiχi

− 〈ξµ|W/2|ξµ〉 − h(n− 2dµχ) < −〈χ|W/2|χ〉 − hn

(A.1)

For the case of orthogonal fundamental memory vectors their energy is given by,

〈ξµ|W/2|ξµ〉 =
1

2

∑
i,j

ξµi Wijξ
µ
j

=
1

2N

{∑
ν

∑
ij

ξµi (ξνi ξ
ν
j)ξµj − p

∑
ij

δijξ
µ
i ξ

µ
j

}

=
1

2N

{∑
ν

(
∑
i

ξµi ξ
ν
i)(
∑
j

ξµj ξ
ν
j)− p

∑
i

ξµi ξ
µ
i

}

=
1

2N

{∑
ν

(Nδµ,ν)(Nδµ,ν)− pN
}

= (N − p)/2, (A.2)

163

whereas for any arbitary input vector χ̄,

〈χ|W/2|χ〉 =
1

2N

{∑
ν

∑
ij

χi(ξ
ν
i ξ

ν
j)χj − p

∑
ij

δijχiχj

}

=
1

2N

{∑
ν

(
∑
i

χiξ
ν
i)(
∑
j

χjξ
ν
j)− p

∑
i

χiχi

}

=
1

2N

{∑
ν

(
∑
i

χiξ
ν
i)(
∑
j

χjξ
ν
j)− p

∑
i

χiχi

}

=
1

2N

{
p∑

ν=1

(N − 2dνχ)2 − pN
}

=
1

2

{
1

N

p∑
ν=1

(N − 2dνχ)2 − p
}
, (A.3)

where we have used
∑

i χiξ
ν
i = (N − 2dνχ).

A.2 Annealing Schedule.

Fig. (A.1) shows the hard-coded classical controls A(t), B(t) evolving as a

function of the scaled annealing time t/Tanneal where t is the physical time lapsed

during the annealing process and Tanneal is the user-set length of the annealing

process. Tanneal can be set at any integer value between a minimum of 20 µs to a

maximum of 20, 000 µs.

164

AHtL BHtL

0.2 0.4 0.6 0.8 1.0

t

t f

5

10

15

20

25

30

HGHzL

Figure A.1: (color online) Temporal evolution of the classical control functions
A(t), B(t) in the time-dependent annealing Hamiltonian H(t) in Eq. (6.4).

165

Appendix B

Supplementary materials for Chapter 5

B.1 Few pieces of information

If d1 is the maximum degree of a random graph |d1 − pn − (2pqn log n)
1
2 +(

pqn
8 logn

) 1
2

log log n| ≤
(

n
logn

) 1
2

log log log n [28].

• Let 0 < p < 1, q = 1− p and b be fixed. For G a random graph from G (n, p),

let pn = P
(
dmax (G) ≤ np+ b

√
npq
)
. The n p

1
n
n → c as n → ∞, where c is a

constant depending only on b given by c = max
θ

{
f (b+ θ) e−

θ2

2

}
[158].

B.2 Worst case scenario of Algorithm 6

We list the following facts which are asymptotically equally applicable for both

models, G (n,M) and G (n, p).

• The number of possible simple undirected graphs with n vertices is 2(n2) [150].

• Random graphs

– Number/probability

∗ In [58], Erdős et al., proved that the probability of a random graph

with all vertices belonging to the same connected component is e−e
−2c

166

where c is a constant when the number of verices is n and the number

of edges is Nc =
[

1
2
n log n+ cn

]
.

– Maximum degree

∗ If d1 is the maximum degree of a random graph |d1−pn−(2pqn log n)
1
2 +(

pqn
8 logn

) 1
2

log log n| ≤
(

n
logn

) 1
2

log log log n [28].

∗ Let 0 < p < 1, q = 1 − p and b be fixed. For G a random graph

from G (n, p), let pn = P
(
dmax (G) ≤ np+ b

√
npq
)
. The n p

1
n
n → c

as n → ∞, where c is a constant depending only on b given by

c = max
θ

{
f (b+ θ) e−

θ2

2

}
[158].

167

Bibliography

[1] D-wave developer guide for matlab v 1.5.2. Internal Qubist Website for D-
Wave Computer. Accessed: 11/26/2014.

[2] J. Adcock, E. Allen, M. Day, S. Frick, J. Hinchliff, M. Johnson, S. Morley-
Short, S. Pallister, A. Price, and S. Stanisic. Advances in quantum machine
learning. arXiv:1512.02900, 2015.

[3] Dorit Aharonov, Wim Van Dam, Julia Kempe, Zeph Landau, Seth Lloyd,
and Oded Regev. Adiabatic quantum computation is equivalent to standard
quantum computation. SIAM review, 50(4):755–787, 2008.

[4] Gorjan Alagic, Cristopher Moore, and Alexander Russell. Strong fourier sam-
pling fails over gn. arXiv preprint quant-ph/0511054, 2005.

[5] Tameem Albash, Sergio Boixo, Daniel A Lidar, and Paolo Zanardi. Quan-
tum adiabatic markovian master equations. New Journal of Physics,
14(12):123016, 2012.

[6] Tameem Albash, Troels F Rønnow, Matthias Troyer, and Daniel A Lidar.
Reexamining classical and quantum models for the d-wave one processor. The
European Physical Journal Special Topics, 224(1):111–129, 2015.

[7] Andris Ambainis and Oded Regev. An elementary proof of the quantum
adiabatic theorem. Technical report, 2004.

[8] MohammadH.S. Amin, NeilG. Dickson, and Peter Smith. Adiabatic quantum
optimization with qudits. Quantum Information Processing, 12(4):1819–1829,
2013.

[9] Daniel J. Amit, Hanoch Gutfreund, and H. Sompolinsky. Spin-glass models
of neural networks. Phys. Rev. A, 32:1007–1018, Aug 1985.

[10] John Armstrong. Characters of induced representations, 2010. Accessed:
2016-05-25.

[11] László Babai. Automorphism groups, isomorphism, reconstruction. In Hand-
book of combinatorics (vol. 2), pages 1447–1540. MIT Press, 1996.

[12] László Babai. Graph isomorphism in quasipolynomial time. arXiv preprint
arXiv:1512.03547, 2015.

[13] László Babai, Xi Chen, Xiaorui Sun, Shang-Hua Teng, and John Wilmes.
Faster canonical forms for strongly regular graphs. In Foundations of Com-
puter Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 157–166.
IEEE, 2013.

168

[14] László Babai, Paul Erdős, and Stanley M Selkow. Random graph isomorphism.
SIAM Journal on Computing, 9(3):628–635, 1980.

[15] László Babai, D Yu Grigoryev, and David M Mount. Isomorphism of graphs
with bounded eigenvalue multiplicity. In Proceedings of the fourteenth annual
ACM symposium on Theory of computing, pages 310–324. ACM, 1982.

[16] László Babai and Eugene M Luks. Canonical labeling of graphs. In Proceedings
of the fifteenth annual ACM symposium on Theory of computing, pages 171–
183. ACM, 1983.

[17] Dave Bacon, Andrew M Childs, and Wim van Dam. Optimal measurements
for the dihedral hidden subgroup problem. arXiv preprint quant-ph/0501044,
2005.

[18] Francisco Barahona. On the computational complexity of ising spin glass
models. Journal of Physics A: Mathematical and General, 15(10):3241, 1982.

[19] András Békéssy, P Bekessy, and János Komlós. Asymptotic enumeration of
regular matrices. Stud. Sci. Math. Hungar, 7:343–353, 1972.

[20] Edward A Bender. The asymptotic number of non-negative integer matrices
with given row and column sums. Discrete Mathematics, 10(2):217–223, 1974.

[21] Edward A Bender and E Rodney Canfield. The asymptotic number of labeled
graphs with given degree sequences. Journal of Combinatorial Theory, Series
A, 24(3):296–307, 1978.

[22] A J Berkley, M W Johnson, P Bunyk, R Harris, J Johansson, T Lanting,
E Ladizinsky, E Tolkacheva, M H S Amin, and G Rose. A scalable readout
system for a superconducting adiabatic quantum optimization system. Super-
conductor Science and Technology, 23(10):105014, 2010.

[23] N Biggs. Aspects of symmetry in graphs, algebraic methods in graph theory,
vol. i, ii (szeged, 1978). In Colloq. Math. Soc. János Bolyai, volume 25, pages
27–35.

[24] Garrett Birkhoff. Sobre los grupos de automorfismos. Rev. Unión Mat. Argent,
11(4):155–157, 1946.

[25] Sergio Boixo, Troels F Rønnow, Sergei V Isakov, Zhihui Wang, David Wecker,
Daniel A Lidar, John M Martinis, and Matthias Troyer. Evidence for quantum
annealing with more than one hundred qubits. Nature Physics, 10(3):218–224,
2014.

[26] Sergio Boixo, Vadim N Smelyanskiy, Alireza Shabani, Sergei V Isakov, Mark
Dykman, Vasil S Denchev, Mohammad Amin, Anatoly Smirnov, Masoud
Mohseni, and Hartmut Neven. Computational role of collective tunneling
in a quantum annealer. arXiv preprint arXiv:1411.4036, 2014.

169

[27] Béla Bollobás. A probabilistic proof of an asymptotic formula for the number
of labelled regular graphs. European Journal of Combinatorics, 1(4):311–316,
1980.

[28] Béla Bollobás. Degree sequences of random graphs. Discrete Mathematics,
33(1):1–19, 1981.

[29] Béla Bollobás. Random graphs. Springer, 1998.

[30] Béla Bollobás. Modern graph theory, volume 184. Springer Science & Business
Media, 2013.

[31] Max Born and Vladimir Fock. Beweis des adiabatensatzes. Zeitschrift für
Physik, 51(3-4):165–180, 1928.

[32] Endre Boros and Peter L Hammer. Pseudo-boolean optimization. Discrete
applied mathematics, 123(1):155–225, 2002.

[33] J Brooke, D Bitko, G Aeppli, et al. Quantum annealing of a disordered magnet.
Science, 284(5415):779–781, 1999.

[34] J. Bruck and V.P. Roychowdhury. On the number of spurious memories in
the hopfield model [neural network]. Information Theory, IEEE Transactions
on, 36(2):393–397, Mar 1990.

[35] Jun Cai, William G Macready, and Aidan Roy. A practical heuristic for finding
graph minors. arXiv preprint arXiv:1406.2741, 2014.

[36] Peter J Cameron. Permutation groups, volume 45. Cambridge University
Press, 1999.

[37] Peter J Cameron et al. Automorphisms of graphs. Topics in algebraic graph
theory, 102:137–155, 2004.

[38] Yair Caro, Ilia Krasikov, and Yehuda Roditty. On the largest tree of given
maximum degree in a connected graph. Journal of Graph Theory, 15(1):7–13,
1991.

[39] Andrew M Childs. Lecture notes on quantum algorithms. 2016.

[40] Andrew M. Childs, Edward Farhi, and John Preskill. Robustness of adiabatic
quantum computation. Phys. Rev. A, 65:012322, Dec 2001.

[41] Andrew M. Childs and Wim van Dam. Quantum algorithms for algebraic
problems. Rev. Mod. Phys., 82:1–52, Jan 2010.

[42] KEITH Conrad. Dihedral groups ii. Internet Online Book, pages 3–6, 2009.

[43] JH Conway. Talk given at the second british combinatorial conference at royal
holloway college, 1971.

170

[44] Yves Crama and Peter L Hammer. Boolean functions: Theory, algorithms,
and applications. Cambridge University Press, 2011.

[45] Yves Crama, Pierre Hansen, and Brigitte Jaumard. The basic algorithm
for pseudo-boolean programming revisited. Discrete Applied Mathematics,
29(2):171–185, 1990.

[46] Charles W Curtis and Irving Reiner. Representation theory of finite groups
and associative algebras, volume 356. American Mathematical Soc., 1966.

[47] Tomek Czajka and Gopal Pandurangan. Improved random graph isomor-
phism. Journal of Discrete Algorithms, 6(1):85–92, 2008.

[48] Arnab Das and Bikas K. Chakrabarti. Colloquium : Quantum annealing and
analog quantum computation. Rev. Mod. Phys., 80:1061–1081, Sep 2008.

[49] Percy Deift, Mary Beth Ruskai, and Wolfgang Spitzer. Improved gap estimates
for simulating quantum circuits by adiabatic evolution. Quantum Information
Processing, 6(2):121–125, 2007.

[50] Vasil S. Denchev, Nan Ding, S. V. N. Vishwanathan, and Hartmut Neven.
Robust classification with adiabatic quantum optimization. arXiv:1205.1148,
2012.

[51] Persi Diaconis and Daniel Rockmore. Efficient computation of the fourier
transform on finite groups. Journal of the American Mathematical Society,
3(2):297–332, 1990.

[52] A. Douglass and M. Thom. private communication.

[53] Mildred S Dresselhaus, Gene Dresselhaus, and Ado Jorio. Group theory: appli-
cation to the physics of condensed matter. Springer Science & Business Media,
2007.

[54] David Steven Dummit and Richard M Foote. Abstract algebra, volume 1984.
Wiley Hoboken, 2004.

[55] Paul Erdős. Some remarks on the theory of graphs. Bulletin of the American
Mathematical Society, 53(4):292–294, 1947.

[56] Paul Erdős. Graph theory and probability. canad. J. Math, 11:34G38, 1959.

[57] Paul Erdös and Irving Kaplansky. The asymptotic number of latin rectangles.
American Journal of Mathematics, 68(2):230–236, 1946.

[58] Paul Erdős and Alfréd Rényi. On random graphs i. Publ. Math. Debrecen,
6:290–297, 1959.

[59] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math.
Inst. Hungar. Acad. Sci, 5:17–61, 1960.

171

[60] Paul Erdős and Alfréd Rényi. On the strength of connectedness of a random
graph. Acta Mathematica Hungarica, 12(1-2):261–267, 1961.

[61] Paul Erdős and Alfréd Rényi. Asymmetric graphs. Acta Mathematica Hun-
garica, 14(3-4):295–315, 1963.

[62] Paul Erdős and Alfréd Rényi. On random matrices. Magyar Tud. Akad. Mat.
Kutató Int. Közl, 8(455-461):1964, 1964.

[63] Paul Erdős and Alfréd Rényi. On the existence of a factor of degree one of
a connected random graph. Acta Mathematica Hungarica, 17(3-4):359–368,
1966.

[64] Mark Ettinger and Peter Høyer. On quantum algorithms for noncommutative
hidden subgroups. Advances in Applied Mathematics, 25(3):239–251, 2000.

[65] Mark Ettinger, Peter Hoyer, and Emanuel Knill. Hidden subgroup states are
almost orthogonal. arXiv preprint quant-ph/9901034, 1999.

[66] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew
Lundgren, and Daniel Preda. A quantum adiabatic evolution algorithm ap-
plied to random instances of an np-complete problem. Science, 292(5516):472–
475, 2001.

[67] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quan-
tum computation by adiabatic evolution. arXiv preprint quant-ph/0001106,
2000.

[68] Scott Fortin. The graph isomorphism problem. Technical report, Technical
Report 96-20, University of Alberta, Edomonton, Alberta, Canada, 1996.

[69] Katalin Friedl, Gábor Ivanyos, Frédéric Magniez, Miklos Santha, and Pranab
Sen. Hidden translation and orbit coset in quantum computing. In Proceedings
of the thirty-fifth annual ACM symposium on Theory of computing, pages 1–9.
ACM, 2003.

[70] Robert Frucht. Herstellung von graphen mit vorgegebener abstrakter gruppe.
Compositio Mathematica, 6:239–250, 1939.

[71] Robert Frucht. Graphs of degree three with a given abstract group. Canadian
J. Math, 1:365–378, 1949.

[72] William Fulton and Joe Harris. Representation theory, volume 129. Springer
Science & Business Media, 1991.

[73] Frank Gaitan and Lane Clark. Graph isomorphism and adiabatic quantum
computing. Physical Review A, 89(2):022342, 2014.

[74] Frank Gaitan and Lane Clark. Graph isomorphism and adiabatic quantum
computing. Phys. Rev. A, 89:022342, Feb 2014.

172

[75] Michael R Garey and David S Johnson. Computers and intractability, vol-
ume 29. wh freeman, 2002.

[76] Edgar N Gilbert. Random graphs. The Annals of Mathematical Statistics,
30(4):1141–1144, 1959.

[77] Maria Gillespie. Characters of the symmetric group.
https://mathematicalgemstones.wordpress.com/2012/05/21/

characters-of-the-symmetric-group/, 2012.

[78] Michelangelo Grigni, Leonard Schulman, Monica Vazirani, and Umesh Vazi-
rani. Quantum mechanical algorithms for the nonabelian hidden subgroup
problem. In Proceedings of the thirty-third annual ACM symposium on The-
ory of computing, pages 68–74. ACM, 2001.

[79] Sean Hallgren, Cristopher Moore, Martin Rötteler, Alexander Russell, and
Pranab Sen. Limitations of quantum coset states for graph isomorphism.
Journal of the ACM (JACM), 57(6):34, 2010.

[80] Sean Hallgren, Alexander Russell, and Amnon Ta-Shma. Normal subgroup
reconstruction and quantum computation using group representations. In Pro-
ceedings of the thirty-second annual ACM symposium on Theory of computing,
pages 627–635. ACM, 2000.

[81] Peter L Hammer, Pierre Hansen, and Bruno Simeone. Roof duality, com-
plementation and persistency in quadratic 0–1 optimization. Mathematical
programming, 28(2):121–155, 1984.

[82] Peter L Hammer, I Rosenberg, and Sergiu Rudeanu. On the determination
of the minima of pseudo-boolean functions. Studii si Cercetari matematice,
14:359–364, 1963.

[83] Peter L Hammer and Sergiu Rudeanu. Boolean methods in operations research
and related areas, volume 7. Springer Science & Business Media, 2012.

[84] PL Hammer, I Rosenberg, and S Rudeanu. Application of discrete linear
programming to the minimization of boolean functions. Rev. Mat. Pures Appl,
8:459–475, 1963.

[85] Frank Harary. Graph theory. 1969.

[86] Frank Harary and Edgar M Palmer. Graphical enumeration. Elsevier, 2014.

[87] R. Harris, J. Johansson, A. J. Berkley, M. W. Johnson, T. Lanting, Siyuan
Han, P. Bunyk, E. Ladizinsky, T. Oh, I. Perminov, E. Tolkacheva, S. Uchaikin,
E. M. Chapple, C. Enderud, C. Rich, M. Thom, J. Wang, B. Wilson, and
G. Rose. Experimental demonstration of a robust and scalable flux qubit.
Phys. Rev. B, 81:134510, Apr 2010.

173

[88] Donald Olding Hebb. The organization of behavior: A neuropsychological
theory. 2005.

[89] Pinar Heggernes. Treewidth, partial k-trees, and chordal graphs. Internet
document: http://www. ii. uib. no/pinar/chordal. pdf, 2005.

[90] Itay Hen and Marcelo S Sarandy. Driver hamiltonians for constrained opti-
mization in quantum annealing. arXiv preprint arXiv:1602.07942, 2016.

[91] Itay Hen and AP Young. Solving the graph-isomorphism problem with a
quantum annealer. Physical Review A, 86(4):042310, 2012.

[92] C. Hillar and N. M. Tran. Robust exponential memory in hopfield networks.
arXiv:1411.4625, 2014.

[93] Judy A Holdener. Math bite: Sums of sines and cosines. Mathematics Maga-
zine, 82(2):126–126, 2009.

[94] Derek F Holt, Bettina Eick, and Eamonn A O’Brien. Handbook of computa-
tional group theory. CRC Press, 2005.

[95] John E Hopcroft and Jin-Kue Wong. Linear time algorithm for isomorphism
of planar graphs (preliminary report). In Proceedings of the sixth annual ACM
symposium on Theory of computing, pages 172–184. ACM, 1974.

[96] J J Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences,
79(8):2554–2558, 1982.

[97] JJ Hopfield and DW Tank. Computing with neural circuits: a model. Science,
233(4764):625–633, 1986.

[98] Victoria Horan, Steve Adachi, and Stanley Bak. A comparison of approaches
for finding minimum identifying codes on graphs. Quantum Information Pro-
cessing, pages 1–22, 2016.

[99] Gábor Ivanyos, Frédéric Magniez, and Miklos Santha. Efficient quantum algo-
rithms for some instances of the non-abelian hidden subgroup problem. Inter-
national Journal of Foundations of Computer Science, 14(05):723–739, 2003.

[100] Robert Jajcay. The structure of automorphism groups of cayley graphs and
maps. Journal of Algebraic Combinatorics, 12(1):73–84, 2000.

[101] Sabine Jansen, Mary-Beth Ruskai, and Ruedi Seiler. Bounds for the adiabatic
approximation with applications to quantum computation. arXiv preprint
quant-ph/0603175, 2006.

[102] Svante Janson, Tomasz Luczak, and Andrzej Rucinski. Random graphs, vol-
ume 45. John Wiley & Sons, 2011.

174

[103] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson,
R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud,
J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov,
C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang,
B. Wilson, and G. Rose. Quantum annealing with manufactured spins. Nature,
473(7346):194–198, 05 2011.

[104] P Jordan and Eugene P Wigner. About the pauli exclusion principle. Z. Phys,
47(631):14–75, 1928.

[105] Richard Jozsa. Quantum algorithms and the fourier transform. In Proceedings
of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, volume 454, pages 323–337. The Royal Society, 1998.

[106] Samuel J Lomonaco Jr. and Louis H Kauffman. Quantum hidden subgroup al-
gorithms: a mathematical perspective. quantum computation and information
(washington, dc, 2000). Contemp. Math., 305:139202, 2002.

[107] William M Kantor. Cycles in graphs and groups. The American Mathematical
Monthly, 115(6):559–562, 2008.

[108] Andrew D King and Catherine C McGeoch. Algorithm engineering for a
quantum annealing platform. arXiv preprint arXiv:1410.2628, 2014.

[109] James King, Sheir Yarkoni, Mayssam M Nevisi, Jeremy P Hilton, and Cather-
ine C McGeoch. Benchmarking a quantum annealing processor with the time-
to-target metric. arXiv preprint arXiv:1508.05087, 2015.

[110] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983.

[111] Michael P Knapp. Sines and cosines of angles in arithmetic progression. Math-
ematics Magazine, 82(5):371–372, 2009.

[112] Donald E Knuth. Efficient representation of perm groups. Combinatorica,
11(1):33–43, 1991.

[113] Johannes Kobler, Uwe Schöning, and Jacobo Torán. The graph isomorphism
problem: its structural complexity. Springer Science & Business Media, 2012.

[114] Yokesh Kumar and Prosenjit Gupta. External memory layout vs. schematic.
ACM Transactions on Design Automation of Electronic Systems (TODAES),
14(2):30, 2009.

[115] Aung Kyaw. A sufficient condition for a graph to have a k-tree. Graphs and
Combinatorics, 17(1):113–121, 2001.

[116] T Lanting, AJ Przybysz, A Yu Smirnov, FM Spedalieri, MH Amin,
AJ Berkley, R Harris, F Altomare, S Boixo, P Bunyk, et al. Entanglement in
a quantum annealing processor. Physical Review X, 4(2):021041, 2014.

175

[117] Wolfgang Lechner, Philipp Hauke, and Peter Zoller. A quantum annealing
architecture with all-to-all connectivity from local interactions. Science ad-
vances, 1(9):e1500838, 2015.

[118] L. Lovász, J. Pelikán, and K. Vesztergombi. Discrete Mathematics. Springer
undergraduate texts in mathematics, 2003.

[119] Andrew Lucas. Ising formulations of many np problems. arXiv preprint
arXiv:1302.5843, 2013.

[120] Andrew Lucas. Ising formulations of many np problems. Frontiers in Physics,
2(5), 2014.

[121] Eugene M Luks. Isomorphism of graphs of bounded valence can be tested
in polynomial time. Journal of Computer and System Sciences, 25(1):42–65,
1982.

[122] A. Manju and M.J. Nigam. Applications of quantum inspired computational
intelligence: a survey. Artificial Intelligence Review, 42(1):79–156, 2014.

[123] WarrenS. McCulloch and Walter Pitts. A logical calculus of the ideas imma-
nent in nervous activity. Bul. of Math. Biophys., 5(4):115–133, 1943.

[124] R.J. McEliece, Edward C. Posner, Eugene R. Rodemich, and S.S. Venkatesh.
The capacity of the hopfield associative memory. Information Theory, IEEE
Transactions on, 33(4):461–482, Jul 1987.

[125] Catherine C McGeoch. Adiabatic quantum computation and quantum an-
nealing: Theory and practice. Synthesis Lectures on Quantum Computing,
5(2):1–93, 2014.

[126] Brendan D. McKay. Graph isomorphism. In Ping Zhang, editor, Handbook of
Graph Theory. Chapman and Hall/CRC, 2013.

[127] Brendan D McKay et al. Practical graph isomorphism. Department of Com-
puter Science, Vanderbilt University, 1981.

[128] Brendan D McKay and Adolfo Piperno. Practical graph isomorphism, ii.
Journal of Symbolic Computation, 60:94–112, 2014.

[129] Brendan D McKay and Nicholas C Wormald. Uniform generation of random
regular graphs of moderate degree. Journal of Algorithms, 11(1):52–67, 1990.

[130] E Mendelsohn. Every (finite) group is the group of automorphisms of a (finite)
strongly regular graph. Ars Combinatoria, 6:75–86, 1978.

[131] Eric Mendelsohn. On the groups of automorphisms of steiner triple and
quadruple systems. Journal of Combinatorial Theory, Series A, 25(2):97–104,
1978.

176

[132] Carl D Meyer. Matrix analysis and applied linear algebra, volume 2. Siam,
2000.

[133] Štefko Miklavič, Primož Potočnik, and Steve Wilson. Consistent cycles in
graphs and digraphs. Graphs and Combinatorics, 23(2):205–216, 2007.

[134] Gary Miller. Isomorphism testing for graphs of bounded genus. In Proceedings
of the twelfth annual ACM symposium on Theory of computing, pages 225–235.
ACM, 1980.

[135] Cristopher Moore, Daniel Rockmore, and Alexander Russell. Generic quantum
fourier transforms. ACM Transactions on Algorithms (TALG), 2(4):707–723,
2006.

[136] Cristopher Moore, Daniel Rockmore, Alexander Russell, and Leonard Schul-
man. The hidden subgroup problem in affine groups: Basis selection in fourier
sampling. arXiv preprint quant-ph/0211124, 2002.

[137] Cristopher Moore, Daniel Rockmore, Alexander Russell, and Leonard J Schul-
man. The power of strong fourier sampling: quantum algorithms for affine
groups and hidden shifts. SIAM Journal on Computing, 37(3):938–958, 2007.

[138] Cristopher Moore and Alexander Russell. Explicit multiregister measurements
for hidden subgroup problems. arXiv preprint quant-ph/0504067, 2005.

[139] Cristopher Moore and Alexander Russell. For distinguishing conjugate hidden
subgroups, the pretty good measurement is as good as it gets. arXiv preprint
quant-ph/0501177, 2005.

[140] Cristopher Moore and Alexander Russell. Tight results on multiregister fourier
sampling: Quantum measurements for graph isomorphism require entangle-
ment. arXiv preprint quant-ph/0511149, 2005.

[141] Cristopher Moore, Alexander Russell, and Leonard J Schulman. The sym-
metric group defies strong fourier sampling. SIAM Journal on Computing,
37(6):1842–1864, 2008.

[142] Cristopher Moore, Alexander Russell, and Piotr Sniady. On the impossibil-
ity of a quantum sieve algorithm for graph isomorphism. SIAM Journal on
Computing, 39(6):2377–2396, 2010.

[143] Satoshi Morita and Hidetoshi Nishimori. Mathematical foundation of quantum
annealing. Journal of Mathematical Physics, 49(12), 2008.

[144] Daniel Nagaj. Local hamiltonians in quantum computation. arXiv preprint
arXiv:0808.2117, 2008.

[145] Rodion Neigovzen, Jorge L. Neves, Rudolf Sollacher, and Steffen J. Glaser.
Quantum pattern recognition with liquid-state nuclear magnetic resonance.
Phys. Rev. A, 79:042321, Apr 2009.

177

[146] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Informa-
tion. Cambridge Series on Information and the Natural Sciences. Cambridge
University Press, 2000.

[147] Patrick Eugene ONeil et al. Asymptotics and random matrices with row-sum
and column-sum restrictions. Bull. Amer. Math. Soc, 75(6):1276–1282, 1969.

[148] K. Pagiamtzis and A. Sheikholeslami. Content-addressable memory (cam)
circuits and architectures: a tutorial and survey. Solid-State Circuits, IEEE
Journal of, 41(3):712–727, March 2006.

[149] L. Personnaz, I. Guyon, and G. Dreyfus. Collective computational properties
of neural networks: New learning mechanisms. Phys. Rev. A, 34:4217–4228,
Nov 1986.

[150] George Pólya. Kombinatorische anzahlbestimmungen für gruppen, graphen
und chemische verbindungen. Acta mathematica, 68(1):145–254, 1937.

[151] Kristen L. Pudenz, Tameem Albash, and Daniel A. Lidar. Quantum annealing
correction for random ising problems. Phys. Rev. A, 91:042302, Apr 2015.

[152] Harishchandra S Ramane and Ashwini S Yalnaik. Reciprocal complemen-
tary distance spectra and reciprocal complementary distance energy of line
graphs of regular graphs. Electronic Journal of Graph Theory and Applica-
tions (EJGTA), 3(2):228–236, 2015.

[153] RC Read. The enumeration of locally restricted graphs (i). Journal of the
London Mathematical Society, 1(4):417–436, 1959.

[154] RC Read. The enumeration of locally restricted graphs (ii). Journal of the
London Mathematical Society, 1(3):344–351, 1960.

[155] Ronald C. Read and Derek G. Corneil. The graph isomorphism disease. Jour-
nal of Graph Theory, 1(4):339–363, 1977.

[156] Edna E Reiter and Clayton Matthew Johnson. Limits of computation: an
introduction to the undecidable and the intractable. CRC Press, 2012.

[157] Eleanor G Rieffel, Davide Venturelli, Bryan OGorman, Minh B Do, Elicia M
Prystay, and Vadim N Smelyanskiy. A case study in programming a quan-
tum annealer for hard operational planning problems. Quantum Information
Processing, 14(1):1–36, 2015.

[158] Oliver Riordan and Alex Selby. The maximum degree of a random graph.
Combinatorics, Probability and Computing, 9(06):549–572, 2000.

[159] Martin Roetteler and Thomas Beth. Polynomial-time solution to the hidden
subgroup problem for a class of non-abelian groups. Technical report, 1998.

178

[160] Andrzej Ruciński and Nicholas C Wormald. Random graph processes with
degree restrictions. Combinatorics, Probability and Computing, 1(02):169–180,
1992.

[161] Gert Sabidussi. Graphs with given group and given graph-theoretical proper-
ties. Canad. J. Math, 9(515):C525, 1957.

[162] Bruce Sagan. The symmetric group: representations, combinatorial algo-
rithms, and symmetric functions, volume 203. Springer Science & Business
Media, 2013.

[163] Siddhartha Santra, Gregory Quiroz, Greg Ver Steeg, and Daniel A Lidar. Max
2-sat with up to 108 qubits. New Journal of Physics, 16(4):045006, 2014.

[164] Siddhartha Santra, Omar Shehab, and Radhakrishnan Balu. Exponential ca-
pacity of associative memories under quantum annealing recall. arXiv preprint
arXiv:1602.08149, 2016.

[165] M. S. Sarandy and D. A. Lidar. Adiabatic quantum computation in open
systems. Phys. Rev. Lett., 95:250503, Dec 2005.

[166] Uwe Schöning. Graph isomorphism is in the low hierarchy. Journal of Com-
puter and System Sciences, 37(3):312–323, 1988.

[167] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. An introduction to
quantum machine learning. Contemporary Physics, 56(2):172–185, 2015.

[168] H. Seddiqi and T. Humble. Adiabatic quantum optimization for associative
memory recall. arXiv:1407.1904, 2014.

[169] Ákos Seress. Permutation group algorithms, volume 152. Cambridge Univer-
sity Press, 2003.

[170] Jean-Pierre Serre. Linear representations of finite groups, volume 42. Springer
Science & Business Media, 2012.

[171] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[172] Johannes Siemons. Automorphism groups of graphs. Archiv der Mathematik,
41(4):379–384, 1983.

[173] Charles C Sims. Computational methods in the study of permutation groups.
In Computational problems in abstract algebra, pages 169–183, 1970.

[174] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation
and rapidly mixing markov chains. Information and Computation, 82(1):93–
133, 1989.

[175] Richard P Stanley. What Is Enumerative Combinatorics? Springer, 1986.

179

[176] A.J. Storkey and R. Valabregue. The basins of attraction of a new hopfield
learning rule. Neural Networks, 12(6):869 – 876, 1999.

[177] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams. The missing
memristor found. Nature 453, 80-83, 2008.

[178] M. Talagrand. Mean field models for spin glasses. Springer Modern surveys
in mathematics, 2011.

[179] Dario Tamascelli and Luca Zanetti. A quantum-walk-inspired adiabatic algo-
rithm for solving graph isomorphism problems. Journal of Physics A: Math-
ematical and Theoretical, 47(32):325302, 2014.

[180] Wim Van Dam, Michele Mosca, and Umesh Vazirani. How powerful is adi-
abatic quantum computation? In Foundations of Computer Science, 2001.
Proceedings. 42nd IEEE Symposium on, pages 279–287. IEEE, 2001.

[181] Walter Vinci, Klas Markström, Sergio Boixo, Aidan Roy, Federico M
Spedalieri, Paul A Warburton, and Simone Severini. Hearing the shape of
the ising model with a programmable superconducting-flux annealer. Scien-
tific reports, 4, 2014.

[182] Di Wang and Robert Kleinberg. Analyzing quadratic unconstrained binary
optimization problems via multicommodity flows. Discrete Applied Mathe-
matics, 157(18):3746–3753, 2009.

[183] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice
hall Upper Saddle River, 2001.

[184] Eugene Wigner. Einige folgerungen aus der schrödingerschen theorie für die
termstrukturen. Zeitschrift für Physik, 43(9-10):624–652, 1927.

[185] Nicholas C Wormald. Generating random regular graphs. Journal of Algo-
rithms, 5(2):247–280, 1984.

[186] Ming-Yao Xu. Automorphism groups and isomorphisms of cayley digraphs.
Discrete Mathematics, 182(1):309–319, 1998.

[187] Kenneth M. Zick, Omar Shehab, and Matthew French. Experimental quantum
annealing: case study involving the graph isomorphism problem. Scientific
Reports, 5:11168, jun 2015.

180

