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Inexact Methods for Symmetric Stochastic Eigenvalue Problems∗

Kookjin Lee† and Beďrich Soused́ık‡

Abstract. We study two inexact methods for solutions of random eigenvalue problems in the context of spectral
stochastic finite elements. In particular, given a parameter-dependent, symmetric matrix operator,
the methods solve for eigenvalues and eigenvectors represented using polynomial chaos expansions.
Both methods are based on the stochastic Galerkin formulation of the eigenvalue problem and they
exploit its Kronecker-product structure. The first method is an inexact variant of the stochastic
inverse subspace iteration [B. Soused́ık and H. C. Elman, SIAM/ASA J. Uncertain. Quantif., 4
(2016), pp. 163–189]. The second method is based on an inexact variant of the Newton iteration.
In both cases, the problems are formulated so that the associated stochastic Galerkin matrices are
symmetric, and the corresponding linear problems are solved using preconditioned Krylov subspace
methods with several novel hierarchical preconditioners. The accuracy of the methods is compared
with that of Monte Carlo and stochastic collocation, and the effectiveness of the methods is illustrated
by numerical experiments.
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ment method
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1. Introduction. Eigenvalue analysis is important in a number of applications, for exam-
ple, in modeling of vibrations of mechanical structures, neutron transport criticality compu-
tations, or stability of dynamical systems, to name a few. The behavior of the underlying
mathematical models depends on proper choice of parameters entering the model through
coefficients, boundary conditions, or forces. However, in practice the exact values of these
parameters are not known and they are treated as random processes. The uncertainty is
translated by discretization into the matrix operators and subsequently into eigenvalues and
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eigenvectors. The standard techniques to solve this problems include Monte Carlo meth-
ods [2, 25, 31], which are robust but relatively slow, and perturbation methods [15, 17, 32, 38],
which are limited to models with low variability of uncertainty.

In this study, we use spectral stochastic finite element methods (SSFEM) [7, 18, 20, 43]
for the solution of symmetric eigenvalue problems. The assumption in these methods is that
the parametric uncertainty is described in terms of polynomials of random variables, and they
compute solutions that are also polynomials in the same random variables in the so-called gen-
eralized polynomial chaos (gPC) framework [7, 44]. There are two main approaches: stochastic
collocation and stochastic Galerkin methods. The first approach is based on sampling, so the
problem is translated into a set of independent deterministic systems; the second one is based
on stochastic Galerkin projection and the problem is translated into one large coupled deter-
ministic system. While the SSFEM methods have become quite popular for solving stochastic
partial differential equations, the literature addressing eigenvalue problems is relatively lim-
ited. The stochastic inverse iteration in the context of the stochastic Galerkin framework was
proposed by Verhoosel, Gutiérrez, and Hulshoff [37]. Meidani and Ghanem [22, 23] formulated
a stochastic subspace iteration using a stochastic version of the modified Gram–Schmidt al-
gorithm. Soused́ık and Elman [33] introduced the stochastic inverse subspace iteration (SISI)
by combining the two techniques, they showed that deflation of the mean matrix can be used
to compute expansions of the interior eigenvalues, and they also showed that the stochas-
tic Rayleigh quotient alone provides a good approximation of an eigenvalue expansion; see
also [3, 4, 27] for closely related methods. The authors of [23, 33] used a quadrature-based
normalization of eigenvectors. Normalization based on a solution of a small nonlinear prob-
lem was proposed by Hakula, Kaarnioja, and Laaksonen [12], and Hakula and Laaksonen [13]
also provided an asymptotic convergence theory for the stochastic iteration. In an alternative
approach, Ghanem and Ghosh [6, 9] proposed two numerical schemes—one based on Newton
iteration and another based on an optimization problem (see also [8, 10]). Most recently,
Benner, Onwunta, and Stoll [1] formulated an inexact low-rank Newton–Krylov method, in
which the stochastic Galerkin linear systems are solved using the BiCGStab method with a
variant of mean-based preconditioner. In alternative approaches, Pascual and Adhikari [28]
introduced several hybrid perturbation-polynomial chaos methods, and Williams [40, 41, 42]
presented a method that avoids the nonlinear terms in the conventional method of stochastic
eigenvalue calculation but introduces an additional independent variable.

We formulate two inexact methods for symmetric eigenvalue problems formulated in the
SSFEM framework and based on the stochastic Galerkin formulation. The first method is an
inexact variant of SISI from [33], in which the linear stochastic Galerkin systems are solved
using the conjugate gradient method with the truncated hierarchical preconditioner [35] (see
also [36]). The second method is an inexact variant of the Newton iteration from [6], in which
the linear stochastic Galerkin systems are solved using preconditioned MINRES and GMRES.
The methods are derived using the Kronecker-product formulation and we also comment on
the so-called matricized format. The formulation of the Newton’s method is closely related
to that of [1]; however, we consider general parametrization of stochastic coefficients, the
Jacobian matrices are symmetrized, and we propose a class of hierarchical preconditioners,
which can be viewed as extensions of the hierarchical preconditioners used for the first method.
We also note that we have recently successfully combined an inexact Newton–Krylov method
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1746 KOOKJIN LEE AND BEDŘICH SOUSEDÍK

with the stochastic Galerkin framework in a different context [19, 34]. The performance of
both methods is illustrated by numerical experiments, and the results are compared to those
of Monte Carlo and stochastic collocation methods.

The paper is organized as follows. In section 2 we introduce the stochastic eigenvalue
problem, in section 2.1 we recall the solution techniques using sampling methods (Monte Carlo
and stochastic collocation), in section 2.2 we introduce the stochastic Galerkin formulation,
in section 3 we formulate the inverse subspace iteration and in section 4 the Newton iteration,
in section 5.1 we report the results of numerical experiments, and in section 6 we summarize
our work. In Appendices A and B we describe algorithmic details, and in Appendix C we
discuss the computational cost.

2. Stochastic eigenvalue problem. LetD be a bounded physical domain, and let (Ω,F ,P)
be a complete probability space, that is, Ω is a sample space with a σ-algebra F and a prob-
ability measure P. We assume that the randomness in the mathematical model is induced
by a vector ξ : Ω 7→ Γ ⊂ Rmξ of independent, identically distributed random variables
ξ1(ω), . . . , ξmξ(ω), where ω ∈ Ω. Let B(Γ) denote the Borel σ-algebra on Γ induced by ξ and
let µ denote the induced measure. The expected value of the product of measurable functions
on Γ determines a Hilbert space TΓ ≡ L2 (Γ,B(Γ), µ) with inner product

(2.1) 〈u, v〉 = E [uv] =

∫
Γ
u(ξ)v(ξ)µ(ξ)dξ,

where the symbol E denotes the mathematical expectation.
In computations we will use a finite-dimensional subspace Tp ⊂ TΓ spanned by a set of

multivariate polynomials {ψ`(ξ)} that are orthonormal with respect to the density function
µ, that is, E [ψkψ`] = δk`, where δk` is the Kronecker delta, and ψ0 is constant. This will be
referred to as the gPC basis [44]. The dimension of the space Tp depends on the polynomial
degree. For polynomials of total degree p, the dimension is nξ =

(
mξ+p
p

)
. We suppose we are

given a symmetric matrix-valued random variable A(x, ξ) represented as

(2.2) A(x, ξ) =

na∑
`=1

A`(x)ψ`(ξ),

where each A` is a deterministic matrix of size nx×nx with size determined by the discretiza-
tion of the physical domain, and A1 is the mean value matrix, that is, A1 = E [A(x, ·)]. The
representation (2.2) is obtained from either the Karhunen–Loève expansion or, more generally,
a stochastic expansion of an underlying random process.

We are interested in a solution of the following stochastic eigenvalue problem: find a set
of stochastic eigenvalues λs and corresponding eigenvectors us, s = 1, . . . , ns, which almost
surely satisfy the equation

(2.3) A(x, ξ)us(x, ξ) = λs(ξ)us(x, ξ) ∀x ∈ D,

where λs(ξ) ∈ R and us(x, ξ) ∈ Rnx , along with a normalization condition

(2.4) 〈us(x, ξ), us(x, ξ)〉R = 1,

where 〈·, ·〉R denotes the inner product of two vectors.
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We will search for expansions of eigenpairs (λs, us), s = 1, . . . , ns, in the form

(2.5) λs(ξ) =

nξ∑
k=1

λskψk(ξ), us(x, ξ) =

nξ∑
k=1

uskψk(ξ),

where λsk ∈ R and usk ∈ Rnx are the coefficients corresponding to the basis {ψk}. Equivalently
to (2.5), using the symbol ⊗ for the Kronecker product, we write

(2.6) λs(ξ) = Ψ(ξ)T λ̄
s
, us(x, ξ) = (Ψ(ξ)T ⊗ Inx)ūs,

where Ψ(ξ) = [ψ1(ξ), . . . , ψnξ(ξ)]
T , λ̄

s
= [λs1, . . . , λ

s
nξ

]T , and ūs = [(us1)T , . . . , (usnξ)
T ]T .

Remark 2.1. One can in general consider a different number of terms in the two expan-
sions (2.5). However, since the numerical experiments in [33] and also in the present work
indicate virtually no effect when the number of terms in eigenvalue expansion is larger than
in the eigenvector expansion, we consider here the same number of terms in both expansions;
see also Remark 3.1.

2.1. Sampling methods. Both Monte Carlo and stochastic collocation methods are based
on sampling. The coefficients are defined by a discrete projection

(2.7) λsk = 〈λs, ψk〉 , k = 1, . . . , nξ, usk = 〈us, ψk〉 , k = 1, . . . , nξ.

The evaluations of coefficients in (2.7) entail solving a set of independent deterministic eigen-
value problems at a set of sample points ξ(q), q = 1, . . . , nMC or nq,

A(ξ(q))us(ξ(q)) = λs
(
ξ(q)
)
us
(
ξ(q)
)
, s = 1, . . . , ns.

In the Monte Carlo method, the sample points ξ(q), q = 1, . . . , nMC , are generated randomly
following the distribution of the random variables ξi, i = 1, . . . ,mξ, and moments of solution
are computed by ensemble averaging. In addition, the coefficients in (2.5) can be computed
as1

λsk =
1

nMC

nMC∑
q=1

λs(ξ(q))ψk

(
ξ(q)
)
, usmk =

1

nMC

nMC∑
q=1

us(xm, ξ
(q))ψk(ξ

(q)),

where usmk is the mth element of usk. For stochastic collocation, which is used here in the
form of the so-called nonintrusive stochastic Galerkin method, the sample points ξ(q), q =
1, . . . , nq, consist of a predetermined set of collocation points, and the coefficients λsk and usk
in expansions (2.5) are determined by evaluating (2.7) in the sense of (2.1) using numerical
quadrature

(2.8) λsk =

nq∑
q=1

λs(ξ(q))ψk(ξ
(q))w(q), usmk =

nq∑
q=1

us(xm, ξ
(q))ψk(ξ

(q))w(q),

1In numerical experiments we avoid projections on the gPC and work with the sampled quantities.
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1748 KOOKJIN LEE AND BEDŘICH SOUSEDÍK

where ξ(q) are the quadrature (collocation) points and w(q) are quadrature weights. We refer,
e.g., to [18] for a discussion of quadrature rules. Details of the rules we used in numerical
experiments are discussed in section 5.1.

2.2. Stochastic Galerkin formulation. The main contribution of this paper is the devel-
opment of two inexact methods based on the stochastic Galerkin formulation of eigenvalue
problem (2.3)–(2.4). The formulation entails a projection

〈Aus, ψk〉 = 〈λsus, ψk〉 , k = 1, . . . , nξ, s = 1, . . . , ns,(2.9) 〈
usTus, ψk

〉
= δk1, k = 1, . . . , nξ, s = 1, . . . , ns.(2.10)

Let us introduce the notation

(2.11) [H`]kj = h`,kj , h`,kj ≡ E [ψ`ψkψj ] , ` = 1, . . . , na, j, k = 1, . . . , nξ.

Substituting (2.2) and (2.5) into (2.9)–(2.10) yields a nonlinear system,(
na∑
`=1

H` ⊗A`

)
us =

( nξ∑
i=1

Hi ⊗ λsi Inx

)
us, s = 1, . . . , ns,(2.12)

nξ∑
j=1

nξ∑
i=1

[
Hk ◦

〈
usi , u

s
j

〉
R

]
ij

= δk1, k = 1, . . . , nξ, s = 1, . . . , ns,(2.13)

where the symbol ◦ is the Hadamard product; see, e.g., [14, Chapter 5]. An equivalent
formulation of (2.12)–(2.13) is obtained as follows. Substituting (2.6) into (2.3)–(2.4) and
rearranging, we get

(ΨT ⊗A)ūs = ((λ̄
s
)TΨΨT ⊗ Inx)ūs,

ūsT (Ψ(ξ)Ψ(ξ)T ⊗ Inx)ūs = 1,

and employing Galerkin projection (2.9)–(2.10) yields the equivalent formulation

E[ΨΨT ⊗A]ūs = E[((λ̄
s
)TΨ)ΨΨT ⊗ Inx)]ūs,(2.14)

E[Ψ⊗ (ūsT (ΨΨT ⊗ Inx)ūs)] = E[Ψ⊗ 1].(2.15)

Finally, we note that the methods can be equivalently formulated in the so-called matri-
cized format, which can also simplify the implementation. To this end, we make use of isomor-
phism between Rnxnξ and Rnx×nξ determined by the operators vec and mat: ūs = vec(Ū s),
Ū s = mat(ūs), where ūs ∈ Rnxnξ , Ū s ∈ Rnx×nξ and the upper-/lowercase notation is assumed
throughout the paper, so R̄s = mat(r̄s), etc. Specifically, we define the matricized coefficients
of the eigenvector expansion

(2.16) Ū s = mat(ūs) =
[
us1, u

s
2, . . . , u

s
nξ

]
∈ Rnx×nξ ,

where the column k contains the coefficients associated with the basis function ψk.
In the rest of the paper we explore two methods for solving the eigenvalue problem (2.12)–

(2.13), resp., (2.14)–(2.15): the first is based on inverse subspace iteration (section 3), and the
second is based on Newton iteration (section 4).
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3. Inexact stochastic inverse subspace iteration. We formulate an inexact variant of
the inverse subspace iteration from [33] for the solution of (2.12)–(2.13). Stochastic inverse
iteration was formulated in [37] for the case when a stochastic expansion of a single eigen-
value is sought. It was suggested in [33] that the matrix A1 can be deflated, rather than
applying a shift, to find an expansion of an interior eigenvalue, and a stochastic version of
a modified Gram–Schmidt process [23] can be applied if more eigenvalues are of interest. In
this section, we formulate an inexact variant of the SISI [33, Algorithm 3.2], whereby the lin-
ear systems (3.3) are solved only approximately using the preconditioned conjugate gradient
method (PCG). The method is formulated as Algorithm 1. We now describe its components
in detail, and for simplicity we drop the superscript (n) in the description.

Algorithm 1 Inexact stochastic inverse subspace iteration.

1: Find the ns smallest eigenpairs of

A1w
s = µsws, s = 1, . . . , ns.(3.1)

2: if µ1 = min(µs) > 0, set ρ = 0, else shift A1 = A1 + ρInx , where ρ > |µ1|. end if
3: Initialize

u
s,(0)
1 = ws, u

s,(0)
i = 0, s = 1, . . . , ns, i = 2, . . . , nξ.(3.2)

4: for n = 0, 1, 2, . . . do
5: Use conjugate gradients with preconditioner from Algorithm 2 or 3 to solve

(3.3)

(
na∑
`=1

H` ⊗A`

)
vs,(n) = us,(n), s = 1, . . . , ns.

6: if ns = 1 then normalize using the quadrature rule (3.8): u1,(n+1) ← v1,(n).
7: else orthogonalize using the stochastic modified Gram–Schmidt process:

us,(n+1) ← vs,(n), s = 1, . . . , ns.
8: end if
9: Check convergence.

10: end for
11: Use the stochastic Rayleigh quotient (3.5) to compute the eigenvalue expansions.
12: if ρ > 0, shift λs1 = λs1 − ρ for s = 1, . . . , ns. end if

Matrix-vector product. The conjugate gradient method and computation of the stochastic
Rayleigh quotient require a stochastic version of a matrix-vector product, which corresponds
to evaluation of the projection

vsk = 〈vs, ψk〉 = 〈Aus, ψk〉 , k = 1, . . . , nξ.

Since (V ⊗W ) vec(X) = vec(WXV T ), the coefficients of the expansion are

(3.4) v̄s = E[ΨΨT ⊗A]ūs =

na∑
`=1

(H` ⊗A`)ūs ⇔ V̄ s =

na∑
`=1

A`Ū
sHT

` .

The use of this computation for the Rayleigh quotient is described below. We also note that
Algorithm 1 can be modified to perform subspace iteration [23, Algorithm 4] for identifying
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the largest eigenpairs. In this case, the solve (3.3) is simply replaced by a matrix-vector
product (3.4).

Stochastic Rayleigh quotient. In the deterministic case, the Rayleigh quotient is used to
compute the eigenvalue corresponding to a normalized eigenvector u as λ = uT v, where
v = Au. For the stochastic Galerkin method, the Rayleigh quotient defines the coefficients of
a stochastic expansion of the eigenvalue defined via a projection

λsk = 〈λs, ψk〉 =
〈
usT vs, ψk

〉
, k = 1, . . . , nξ.

The coefficients of vs are computed using (3.4) and the coefficients λsk are

λsk = E
[((

ΨT ⊗ 1
)
λ̄
s)
ψk
]

= E
[(
ūsT

(
ΨΨT ⊗ Inx

)
v̄s
)
ψk
]
, k = 1, . . . , nξ,

which is

(3.5) λsk =

nξ∑
j=1

nξ∑
i=1

[
Hk ◦

〈
usi , v

s
j

〉
R

]
ij

=

nξ∑
j=1

nξ∑
i=1

[
Hk ◦

(
Ū sT V̄ s

)]
ij
, k = 1, . . . , nξ.

Remark 3.1. The Rayleigh quotient (3.5) finds nξ coefficients of the eigenvalue expansion,
which is consistent with the Newton iteration formulated in section 4 and also with the
literature [23, 37]. We note that it would be possible to compute the coefficients λk for k > nξ
as well, because the inner product uT v of two eigenvectors which are expanded using chaos
polynomials up to degree p has nonzero chaos coefficients up to degree 2p. An alternative is to
use a full representation of the Rayleigh quotient based on the projection of uTAu. However,
from our experience in the present and previous work [33], the representation (3.5) is sufficient.

Normalization and the Gram–Schmidt process. Let ‖·‖2 denote the vector norm, induced
by the inner product 〈·, ·〉R. That is, for a vector u evaluated at a point ξ,

(3.6) ‖u (ξ)‖2 =

√√√√ nx∑
n=1

([u (ξ)]n)2.

At each step of stochastic iteration the coefficients of a given set of vectors {vs}nss=1 are
transformed into an orthonormal set {us}nss=1 such that the condition

(3.7)
〈
us (ξ) , ut (ξ)

〉
R = δst a.s.,

and in particular (2.13), is satisfied. We adopt the same strategy as in [23, 33], whereby the
coefficients of the orthonormal eigenvectors are calculated using a discrete projection and a
quadrature rule. An alternative approach to normalization, based on solution of a relatively
small nonlinear system, was proposed by Hakula, Kaarnioja, and Laaksonen [12].

Let us first consider normalization of a vector, so ns = 1. The coefficients in column k
of Ū1 corresponding to coefficients of a normalized vector are computed as

(3.8) u1
k =

nq∑
q=1

v1
(
ξ(q)
)∥∥v1

(
ξ(q)
)∥∥

2

ψk

(
ξ(q)
)
w(q).

When ns > 1, the orthonormalization (3.7) is performed by a combination of stochastic
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Galerkin projection and the modified Gram–Schmidt algorithm as proposed in [23],

(3.9) E [Ψ⊗ us] = E [Ψ⊗ vs]−
s−1∑
t=1

E

[
Ψ⊗

(〈
vs, ut

〉
R

〈ut, ut〉R
ut

)]
, s = 2, . . . , ns.

Using the expansion (2.6) and rearranging, the coefficients in column k of Ū s are

usk = vsk −
s−1∑
t=1

χtsk , k = 1, . . . , nξ, s = 2, . . . , ns,

where

χts(ξ) =

〈
vs(ξ), ut(ξ)

〉
R

〈ut(ξ), ut(ξ)〉R
ut(ξ),

and the coefficients χtsk are computed using a discrete projection as in (2.8),

χtsk =

nq∑
q=1

χts
(
ξ(q)
)
ψk

(
ξ(q)
)
w(q).

Stopping criteria. The inexact iteration entails in each step of Algorithm 1 a solution of
the stochastic Galerkin problem (3.3) using the PCG method. We use the criteria proposed
by Golub and Ye [11, equation (1)]; the criteria are satisfied when the relative residual of PCG
gets smaller than a factor of the nonlinear residual from the previous step, that is,
(3.10)

‖us,(n)−(
∑na

`=1H` ⊗A`)vs,(n)‖2
‖us,(n)‖2

<τ

∥∥∥∥∥
(

na∑
`=1

H` ⊗A`−
nξ∑
i=1

Hi ⊗ λs,(n−1)
i Inx

)
us,(n−1)

∥∥∥∥∥
2

,

where the factor τ = 10−2. It is important to note that Algorithm 1 provides only the
coefficients of expansion of the projection of residual on the gPC basis, that is,

(3.11) r̃sk = 〈Aus − λsus, ψk〉 , k = 1, . . . , nξ, s = 1, . . . , ns.

One could assess accuracy using Monte Carlo sampling of this residual by computing

rs
(
ξi
)

= A
(
ξi
)
us
(
ξi
)
− λs

(
ξi
)
us
(
ξi
)
, i = 1, . . . , NMC , s = 1, . . . , ns.

However, in the numerical experiments we use a much less expensive computation, which is
based on using coefficients r̃sk directly as an error indicator. In particular, we monitor the
norms of the terms of r̃sk corresponding to expected value and variance,

(3.12) ε
s,(it)
1 =

∥∥∥r̃s,(n)
1

∥∥∥
2
, ε

s,(it)
σ2 =

∥∥∥∥∥
nξ∑
k=2

(
r̃
s,(n)
k

)2
∥∥∥∥∥

2

, s = 1, . . . , ns.

3.1. Preconditioners for the stochastic inverse iteration. We use two preconditioners
for problem (3.3)—the mean-based preconditioner [29, 30] and the hierarchical Gauss–Seidel
preconditioner [35]. Both preconditioners are formulated in the Kronecker-product format,
and we also comment on the matricized formulation. We assume that a preconditioner M1

for the mean matrix A1 is available.
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1752 KOOKJIN LEE AND BEDŘICH SOUSEDÍK

The mean-based preconditioner (MB) is given in Algorithm 2. Since H1 = Inξ , the
preconditioner entails nξ block diagonal solves with M1, and recalling that we can write
R̄s = mat(r̄s), V̄ s = mat(v̄s), its action can be equivalently obtained by solving

(3.13) M1V̄
s = R̄s.

The hierarchical Gauss–Seidel preconditioner (hGS) is given in Algorithm 3. We will
denote by vs(i:n) a subvector of v̄s containing gPC coefficients i, i+1, . . . , n, and, in particular,

Algorithm 2 [29, 30] Mean-based preconditioner (MB).

The preconditioner MMB : r̄s 7−→ v̄s for (3.3) is defined as

(H1 ⊗M1) v̄s = r̄s.

Algorithm 3 [35, Algorithm 3] Hierarchical Gauss–Seidel preconditioner (hGS).

The preconditioner MhGS : r̄s 7−→ v̄s for (3.3) is defined as follows.

1: Set the initial solution v̄s to zero and update in the following steps:
2: Solve

(3.14) M1v
s
1 = rs1 −F1v

s
(2:nξ)

, where F1 =
∑
t∈It

([
ht,(1)(2:nξ)

]
⊗At

)
.

3: for d = 1, . . . , p− 1 do
4: Set ` = (n` + 1 : nu) , where n` =

(mξ+d−1
d−1

)
and nu =

(mξ+d
d

)
.

5: Solve

(3.15) (Inu−n` ⊗M1) vs(`) = rs(`) − Ed+1v
s
(1:n`)

−Fd+1v
s
(nu+1:nξ)

,

where

Ed+1 =
∑
t∈It

([
ht,(`)(1:n`)

]
⊗At

)
, Fd+1 =

∑
t∈It

([
ht,(`)(nu+1:nξ)

]
⊗At

)
.

6: end for
7: Set ` = (nu + 1 : nξ).
8: Solve(

Inξ−nu ⊗M1

)
vs(`) = rs(`) − Ep+1v

s
(1:nu), where Ep+1 =

∑
t∈It

([
ht,(`)(1:nu)

]
⊗At

)
.

9: for d = p− 1, . . . , 1 do
10: Set ` = (n` + 1 : nu) , where n` =

(mξ+d−1
d−1

)
and nu =

(mξ+d
d

)
.

11: Solve (3.15).
12: end for
13: Solve (3.14).D
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v̄s = vs
(1:nξ)

. There are two components of the preconditioner. The first component consists

of block-diagonal solves with blocks of varying sizes but is computed just as in Algorithm 2,
resp., in (3.13). The second component is used in the setup of the right-hand sides for the
solves and consists of matrix-vector products by certain subblocks of the stochastic Galerkin
matrix by vectors of corresponding sizes. To this end, we will write

[
ht,(`)(k)

]
, with (`) and

(k) denoting a set of (consecutive) rows and columns of matrix Ht so that, in particular,
Ht = [ht,(1:nξ)(1:nξ)]. Then, the matrix-vector products can be written (cf. (3.4) and note the
symmetry of Ht) as

(3.16) vs(`) =
∑
t∈It

(
[
ht,(`)(k)

]
⊗At)us(k) ⇔ V s

(`) =
∑
t∈It

AtU
s
(k)

[
ht,(k)(`)

]
,

where It is an index set It ⊆ {1, . . . , nξ} indicating that the matrix-vector products may
be truncated. Possible strategies for truncation are discussed in [35]. In this study, we use
It = {1, . . . , nt} with nt =

(
mξ+pt
pt

)
for some pt ≤ p and, in particular, we set t = {0, 1, 2}. We

also note that, since the initial guess is zero in Algorithm 3, the multiplications by F1 and
Fd+1 vanish from (3.14)–(3.15).

4. Newton iteration. Use of the Newton iteration to solve (2.9)–(2.10) was proposed
in [6] and most recently studied in [1]. We use a similar strategy here and formulate a
line-search Newton method as Algorithm 4. To begin, we consider the system of nonlinear
equations (2.14)–(2.15) and rewrite it as

(4.1)

[
F (ūs, λ̄

s
)

G(ūs)

]
= 0, s = 1, . . . , ns,

where

F (ūs, λ̄
s
) ≡ E[ΨΨT ⊗A]ūs − E[((λ̄

s
)TΨ)ΨΨT ⊗ Inx ]ūs,(4.2)

G(ūs) ≡ E[Ψ⊗
(
(ūsT (ΨΨT ⊗ Inx)ūs)− 1

)
].(4.3)

The Jacobian matrix of (4.1) is

(4.4) J (ūs, λ̄
s
) =

[ ∂F
∂ūs

∂F
∂λ̄

s

∂G
∂ūs 0

]
,

where

∂F

∂ūs
(λ̄
s
) = E[ΨΨT ⊗A]− E[((λ̄

s
)TΨ)ΨΨT ⊗ Inx ],(4.5)

∂F

∂λ̄
s (ūs) = −E[ΨT ⊗ (ΨΨT ⊗ Inx)ūs],(4.6)

∂G

∂ūs
(ūs) = 2E[Ψ⊗ ((ūs)T (ΨΨT ⊗ Inx))].(4.7)

Step n of Newton iteration entails solving a linear system

(4.8)

[
∂F
∂ūs (λ̄

s,(n)
) ∂F

∂λ̄
s (ūs,(n))

∂G
∂ūs (ūs,(n)) 0

] [
δus

δλ
s

]
= −

[
F (ūs,(n), λ̄

s,(n)
)

G(ūs,(n))

]
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1754 KOOKJIN LEE AND BEDŘICH SOUSEDÍK

Figure 4.1. Hierarchical structure of the symmetric Jacobian matrix from (4.10) (left) and splitting operator
for the constraint hierarchical Gauss–Seidel preconditioner from Algorithm 7–8 (right).

followed by an update of the solution

(4.9)

[
us,(n+1)

λ
s,(n+1)

]
=

[
us,(n)

λ
s,(n)

]
+

[
δus

δλ
s

]
.

The matrix J (ūs, λ̄
s
) is nonsymmetric, but since ∂F

∂λ̄
s (ūs,(n)) =

[
−1

2
∂G
∂ūs (ūs,(n))

]T
, we modify

linear system (4.8) in our implementation as

(4.10)

 ∂F
∂us (λ̄

s,(n)
) ∂F

∂λ̄
s (ūs,(n))[

∂F
∂λ̄

s (ūs,(n))
]T

0

[ δus
δλ

s

]
=

[
−F (ūs,(n), λ̄

s,(n)
)

1
2G(ūs,(n))

]
,

which restores symmetry of linear systems solved in each step of Newton iteration. The sym-

metric Jacobian matrix in (4.10) will be denoted by J(ūs,(n), λ̄
s,(n)

). The hierarchical structure
of the Jacobian matrix, which is due to the stochastic Galerkin projection, is illustrated by the
left panel of Figure 4.1. The systems (4.10) are solved inexactly using a preconditioned Krylov
subspace method, and the details of evaluation of the right-hand side and the matrix-vector
product are given in Appendix A.

4.1. Inexact line-search Newton method. In order to improve global convergence behav-
ior of the Newton iteration, we consider a line-search modification of the method following [26,
Algorithm 11.4]. To begin, let us define the merit function as the sum of squares,

f(ūs,(n), λ̄
s,(n)

) =
1

2
‖r(ūs,(n), λ̄

s,(n)
)‖22,

where r is the residual of (4.1), and denote

fn = f(ūs,(n), λ̄
s,(n)

), rn = r(ūs,(n), λ̄
s,(n)

), Jn = J(ūs,(n), λ̄
s,(n)

).
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As the initial approximation of the solution, we use the eigenvectors and eigenvalues of the
associated mean problem given by the matrix A1 concatenated by zeros, that is, ūs,(0) =

[(u
s,(0)
1 )T , 0, . . .]T and λ̄

s,(0)
= [λ

s,(0)
1 , 0, . . .]T , and the initial residual is

r0 =

[
F (ūs,(0), λ̄

s,(0)
)

G(ūs,(0))

]
.

The line-search Newton method is summarized in our setting as Algorithm 4, and the choice
of parameters ρ and c in the numerical experiments is discussed in section 5.1.

Algorithm 4 [26, Algorithm 11.4] Line-search Newton method.

1: Given ρ, c ∈ (0, 1), set α∗ = 1.

2: Set ū(0) and λ̄
(0)

.
3: for n = 0, 1, 2, . . . do
4: Jnpn = −rn (Find the Newton update pn.)

5:

[
δū(n)

δλ̄
(n)

]
= pn

6: αn = α∗

7: while f(ū(n) + αnδū
(n), λ̄

(n)
+ αnδλ̄

(n)
) > fn + c αn∇fTn pn do

8: αn ← ραn
9: end while

10: ū(n+1) ← ū(n) + αnδū
(n)

11: λ̄
(n+1) ← λ̄

(n)
+ αnδλ̄

(n)

12: Check for convergence.
13: end for

The inexact iteration entails in each step a solution of the stochastic Galerkin linear system
in line 4 of Algorithm 4 given by (4.10) using a Krylov subspace method. In our algorithm
we use the adaptive stopping criteria for the method,

(4.11)
‖rn + Jnpn‖2
‖rn‖2

< τ ‖rn−1‖2 ,

where τ = 10−1. The for-loop is terminated when the convergence check in line 12 is satisfied;
in our numerical experiments we check if ‖rn‖2 < 10−10.

4.2. Preconditioners for the Newton iteration. The Jacobian matrices in (4.10) are
symmetric, indefinite, and so the linear systems can be ideally solved using the MINRES
iterative method. It is well known that a preconditioner for MINRES must be symmetric and
positive definite; cf., e.g., [39]. A popular choice is a block diagonal preconditioner (cf. [24]),[

Ã 0

0 S̃

]
,

where Ã ≈ A and the Schur complement S̃ ≈ BA−1BT are obtained as approximations of the
blocks in (A.4). Such a preconditioner, based on truncation of the series in (A.1) and (A.2)
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to the very first term, was used in [1]. In such a setup, we get

Ã = Inξ ⊗A1 − (λs1Inξ ⊗ Inx) = Inξ ⊗ (A1 − λs1Inx)

≈ Inξ ⊗ (1− λs1)(A1 − Inx)

≈ Inξ ⊗M
s
1 ,

where the second line was used in [1]. In this study, we use the third line with

(4.12) M s
1 = A1 − εM µsInx ,

where µs is the eigenvalue of the mean problem; cf. (3.1). We note that it might be desirable
to set the parameter εM ≈ 1, but εM 6= 1 in order to guarantee nonsingular M s

1 , however;
more details for setup and use of (4.12) are given in numerical experiments. Considering the
first column of (A.2) (cf. (4.6) and (A.3)), we get

B̃T = −(Inξ ⊗ u
s
1),

and the approximation S̃ is

S̃ = (Inξ ⊗ u
sT
1 )
[
Inξ ⊗ (A1 − λs1Inx)

]−1
(Inξ ⊗ u

s
1)

≈ Inξ ⊗
[
usT1 (1− λs1)−1 (A1 − Inx)−1 us1

]
≈ Inξ ⊗

[
usT1 (M s

1 )−1 us1

]
,

where the second line was used in [1]. In this study, we use the third line with (M s
1 )−1 us1

denoting an application of M s
1 to us1. The ideal choice of us1 are the coefficients of the mean

of eigenvector s, and we consider two approximations here: (a) us1 is set as the corresponding
eigenvector of the mean matrix A1, or (b) us1 is the approximation of the gPC coefficients
of the corresponding eigenvector updated after each step of Newton iteration (Algorithm 4).
The preconditioners are thus either (a) fixed during Newton iteration or (b) updated after
each step. These two variants and our version of the mean-based preconditioner (NMB)
for problem (4.10) are summarized in Algorithm 5. Clearly, if M s

1 is symmetric, positive
definite, so is the preconditioner MNMB, but the preconditioner loses positive definiteness
if the eigenvalue of interest is not the smallest one (cf. (4.12)), and therefore, along with
MINRES, we also use GMRES and develop several preconditioners for this method.

Next, we propose a variant of the so-called constraint preconditioner (cf. [16]),[
Ã B̃T

B̃ 0

]
.

Similarly as above, both Ã and B̃ are approximations of the blocks in (A.4). The precondi-
tioner is clearly indefinite (which also precludes use of MINRES). Our variant of the constraint
mean-based preconditioner (cMB) is listed as Algorithm 6.
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Algorithm 5 Mean-based preconditioner for the Newton iteration (NMB).

The preconditioner MNMB :
(
r̄(u),s, r̄(λ),s

)
7−→

(
v̄(u),s, v̄(λ),s

)
is defined as

(4.13)

[
Inξ ⊗M s

1 0

0 Inξ ⊗
[
ws,(n)T (M s

1 )−1ws,(n)
] ] [ v̄(u),s

v̄(λ),s

]
=

[
r̄(u),s

r̄(λ),s

]
,

where ws,(n) is (a) eigenvector ws of A1 corresponding to eigenvalue µs (cf. (3.1)) or (b) the

first (mean) gPC coefficients u
s,(n)
1 of eigenvector s at step n of Algorithm 4.

Algorithm 6 Constraint mean-based preconditioner (cMB).

The preconditioner McMB :
(
r̄(u),s, r̄(λ),s

)
7−→

(
v̄(u),s, v̄(λ),s

)
is defined as

(4.14)

[
Inξ ⊗M s

1 −Inξ ⊗ ws,(n)

−Inξ ⊗ ws,(n)T 0

] [
v̄(u),s

v̄(λ),s

]
=

[
r̄(u),s

r̄(λ),s

]
,

where ws,(n) is set as in Algorithm 5.

In an analogy to Algorithm 2 and (3.13), the action of the preconditioners from Algo-
rithms 5 and 6 can be equivalently obtained by solving

(4.15) M1

[
V̄ (u),s

V̄ (λ),s

]
=

[
R̄(u),s

R̄(λ),s

]
,

where M1 is the deterministic part the preconditioners from (4.13) or (4.14), that is,

M1 =

[
M s

1 0

0 ws,(n)T (M s
1 )−1ws(n)

]
or M1 =

[
M s

1 −ws(n)

−ws,(n)T 0

]
.

We also formulate a constraint version of the preconditioner from Algorithm 3, which
is called a constraint hierarchical Gauss–Seidel preconditioner (chGS). It is formulated as
Algorithm 7–8, and a scheme of the splitting operator is illustrated by the right panel of
Figure 4.1. There are two components of the preconditioner. The first component con-
sists of block-diagonal solves with blocks of varying sizes computed just as in Algorithm 6,
resp., (4.15). The second component is used in the setup of the right-hand sides for the solves
and consists of matrix-vector products by certain subblocks of the stochastic Jacobian matri-
ces by vectors of corresponding sizes. An example of matrix-vector product with a subblock
of the stochastic Jacobian matrix is given in Appendix B. We also note that, since the initial
guess is zero, the multiplications by F1 and Fd+1 vanish from (4.16)–(4.17).

5. Numerical experiments. We implemented the methods in MATLAB, and in this sec-
tion we present the results of numerical experiments in which the proposed inexact solvers
are applied to two benchmark problems: a diffusion problem with stochastic coefficient and
stiffness of Mindlin plate with stochastic Young’s modulus.
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Algorithm 7 Constraint hierarchical Gauss–Seidel preconditioner (chGS).

The preconditioner MchGS :
(
r̄(u),s, r̄(λ),s

)
7−→

(
v̄(u),s, v̄(λ),s

)
is defined as follows.

1: Set the initial solution
(
v̄(u),s, v̄(λ),s

)
to zero and update in the following steps:

2: Solve

(4.16) M1

[
v
(u),s
1

v
(λ),s
1

]
=

[
r
(u),s
1

r
(λ),s
1

]
−F1

[
v
(u),s
(2:nξ)

v
(λ),s
(2:nξ)

]
,

where

M1 =

[
Ms

1 −ws,(n)
−ws,(n)T 0

]
,where ws,(n) is set as in Algorithm 5,

F1 =

[ ∑
t∈It

[
ht,(1)(2:nξ)

]
⊗At −

∑
t∈It

[
ht,(1)(2:nξ)

]
⊗ λs,(n)t Inx G1

H1 0

]
,

G1 =
∑
t∈It

[
ht,(1)(2:nξ)

]
⊗ ws,(n)t ,

H1 =
∑
t∈It

[
ht,(1)(2:nξ)

]
⊗ (w

s,(n)
t )T ,

where w
s,(n)
t is the eigenvector s at step n of Algorithm 4.

3: for d = 1, . . . , p− 1 do
4: Set ` = (n` + 1 : nu) , where n` =

(
nξ+d−1
d−1

)
and nu =

(
nξ+d
d

)
.

5: Solve

(4.17) Md+1

[
v
(u),s
(`)

v
(λ),s
(`)

]
=

[
r
(u),s
(`)

r
(λ),s
(`)

]
− Ed+1

[
v
(u),s
(1:n`)

v
(λ),s
(1:n`)

]
−Fd+1

[
v
(u),s
(nu+1:nξ)

v
(λ),s
(nu+1:nξ)

]
,

where

Md+1 =

(
Inu−n`⊗

[
Ms

1 −ws,(n)
−ws,(n)T 0

])
,where ws,(n) is set as in Algorithm 5,

Ed+1 =

[ ∑
t∈It

[
ht,(`)(1:n`)

]
⊗At −

∑
t∈It

[
ht,(`)(1:n`)

]
⊗ λs,(n)t Inx GEd+1

HEd+1 0

]
,

GEd+1 =
∑
t∈It

[
ht,(`)(1:n`)

]
⊗ ws,(n)t ,

HEd+1 =
∑
t∈It

[
ht,(`)(1:n`)

]
⊗ (w

s,(n)
t )T ,

Fd+1 =

[ ∑
t∈It

[
ht,(`)(nu+1:nξ)

]
⊗At−

∑
t∈It

[
ht,(`)(nu+1:nξ)

]
⊗λs,(n)t Inx GFd+1

HFd+1 0

]
,

GFd+1 =
∑
t∈It

[
ht,(`)(nu+1:nξ)

]
⊗ ws,(n)t ,

HFd+1 =
∑
t∈It

[
ht,(`)(nu+1:nξ)

]
⊗ (w

s,(n)
t )T .

6: end for
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Algorithm 8 Constraint hierarchical Gauss–Seidel preconditioner (chGS), continued.

7: Set ` = (nu + 1 : nξ).
8: Solve*

Mp+1

[
v

(u),s
(`)

v
(λ),s
(`)

]
=

[
r

(u),s
(`)

r
(λ),s
(`)

]
− Ep+1

[
v

(u),s
(1:nu)

v
(λ),s
(1:nu)

]
,

where

Mp+1 =

(
Inξ−nu⊗

[
M s

1 −ws,(n)

−ws,(n)T 0

])
,where ws,(n) is set as in Algorithm 5,

Ep+1 =

[ ∑
t∈It

[
ht,(`)(1:nu)

]
⊗At −

∑
t∈It

[
ht,(`)(1:nu)

]
⊗ λs,(n)

t Inx GEp+1

HEp+1 0

]
,

GEp+1 =
∑
t∈It

[
ht,(`)(1:nu)

]
⊗ ws,(n)

t ,

HEp+1 =
∑
t∈It

[
ht,(`)(1:nu)

]
⊗ (w

s,(n)
t )T .

where w
s,(n)
t is the eigenvector s at step n of Algorithm 4.

9: for d = p− 1, . . . , 1 do
10: Set ` = (n` + 1 : nu) , where n` =

(nξ+d−1
d−1

)
and nu =

(nξ+d
d

)
.

11: Solve (4.17).
12: end for
13: Solve (4.16).

5.1. Stochastic diffusion problem with lognormal coefficient. For the first benchmark
problem we consider the elliptic equation with stochastic coefficient and deterministic Dirichlet
boundary condition

−∇ · (a(x, ξ)∇u(x, ξ)) = λ(ξ)u(x, ξ) in D × Γ,

u(x, ξ) = 0 on ∂D × Γ,

where D is a two-dimensional physical domain. The uncertainty in the model is introduced
by the stochastic expansion of the diffusion coefficient, considered as

(5.1) a(x, ξ) =

na∑
`=1

a`(x)ψ`(ξ),

to be a truncated lognormal process transformed from the underlying Gaussian process [5].
That it, ψ`(ξ), ` = 1, . . . , na, is a set of Hermite polynomials and, denoting the coefficients
of the Karhunen–Loève expansion of the Gaussian process by gj(x) and ηj = ξj − gj , j =
1, . . . ,mξ, the coefficients in expansion (5.1) are computed as

a`(x) =
E [ψ`(η)]

E
[
ψ2
` (η)

] exp

g0 +
1

2

mξ∑
j=1

(gj(x))2

 .D
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The covariance function of the Gaussian field, for points X1 = (x1, y1) and X2 = (x2, y2) in D,
was chosen to be

(5.2) C (X1, X2) = σ2
g exp

(
−|x2 − x1|

Lx
− |y2 − y1|

Ly

)
,

where Lx and Ly are the correlation lengths of the random variables ξi, i = 1, . . . ,mξ, in the
x and y directions, respectively, and σg is the standard deviation of the Gaussian random
field. According to [21], in order to guarantee a complete representation of the lognormal
process by (5.1), the degree of polynomial expansion of a(x, ξ) should be twice the degree
of the expansion of the solution. We follow the same strategy here. Therefore, the values

of nξ and na are (cf., e.g., [7, p. 87] or [43, section 5.2]) nξ =
(mξ+p)!

mξ!p!
, na =

(mξ+2p)!

mξ!(2p)!
. In the

numerical experiments, the lognormal diffusion coefficient (5.1) is parameterized using mξ = 3
random variables. The correlation length is Lcorr = 2, and the coefficient of variation (CoV )
of the lognormal process is set to either 0.1 (10%) or 0.25 (25%), where CoV = σ/a1, the
ratio of the standard deviation σ, and the mean of the diffusion coefficient a1. For the gPC
expansion of eigenvalues/eigenvectors (2.5), the maximal degree of gPC expansion is p = 3,
so then nξ = 20 and na = 84.

Finite element discretization leads to a generalized eigenvalue problem

(5.3) K(ξ)u = λMu,

where K(ξ) =
∑na

`=1K`ψ`(ξ) is the stochastic expansion of the stiffness matrix, and the mass
matrix M is deterministic. Using Cholesky factorization M = LLT , the generalized eigenvalue
problem (5.3) can be transformed into the standard form

(5.4) A(ξ)w = λw,

where u = L−Tw and the expansion of A corresponding to (2.2) is

(5.5) A =

na∑
`=1

A`ψ`(ξ) =

na∑
`=1

[
L−1K`L

−T ]ψ`(ξ).
We consider the physical domain D = [−1, 1]2, discretized using a structured grid using

256 bilinear finite elements, that is, with 225 nodes interior to D, which determines the size
of matrices A` in (5.5). The 25 smallest eigenvalues of the mean matrix A1 are displayed in
Figure 5.1. For the quadrature rule, in section 2.1, we use Smolyak sparse grid with Gauss–
Hermite quadrature and grid level 4 and 104 samples for the Monte Carlo method. With
these settings, the size of h`,kj in (2.11) was 84 × 20 × 20 with 806 nonzeros, and there were
69 points on the sparse grid.

Inexact stochastic inverse subspace iteration. First, we examine the performance of the
inexact SISI from Algorithm 1 for computing the five smallest eigenvalues and corresponding
eigenvectors of problem (5.4). Linear systems (3.3) are solved using the PCG method with
the mean-based preconditioner (Algorithm 2) and the hierarchical Gauss–Seidel preconditioner
(Algorithm 3). We ran the SISI algorithm with a fixed number of steps set to 20. Figure 5.2
illustrates convergence history in terms of the two error indicators ε1 and εσ2 from (3.12) with
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Figure 5.1. The smallest 25 eigenvalues of the mean matrix A1.

Figure 5.2. Convergence history of the inexact SISI in terms of indicators ε1 (top) and εσ2 (bottom) defined
by (3.12) with CoV = 10% (left) and 25% (right).

CoV = 10% (left panels) and 25% (right panels). The plots were generated using the hGS
preconditioner with pt = 2 (It = {1, . . . , 10}), but convergence with other preconditioners was
virtually identical.

Next, we examine performance of PCG with the two preconditioners used to solve linear
systems (3.3) with zero initial guess and stopping criterion (3.10). We computed the five small-
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Table 5.1
Average number of PCG iterations for computing the five smallest eigenvalues and corresponding eigen-

vectors of the diffusion problem with CoV = 10% (left) and 25% (right) using the inexact SISI (Algorithm 1).

CoV = 10% CoV = 25%

Preconditioner 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

MB 6.45 3.90 3.90 4.60 3.75 8.60 5.55 5.55 6.05 4.75

hGS (pt = 1) 3.10 1.95 1.95 2.25 1.95 3.65 2.75 2.75 2.65 2.00

hGS (pt = 2) 2.35 1.70 1.70 1.65 1.00 2.60 1.90 1.90 1.85 1.75

hGS (no trunc.) 2.15 1.00 1.00 1.45 1.00 2.60 1.80 1.80 1.75 1.65

est eigenvalues using 20 steps of the inexact SISI method. Table 5.1 shows the number of the
PCG iterations required by the inexact solves, averaged over the 20 steps of the inexact SISI
method for the model eigenvalue problem with CoV = 10% and 25%. Specifically, we com-
pare the mean-based preconditioner from Algorithm 2 and the hGS preconditioner from Al-
gorithm 3 with varying levels of truncation of the matrix-vector multiplications (pt = {0, 1, 2}
and pt = 3, i.e., no truncation). In both preconditioners we used Cholesky factorization of
A1 for the solves with M1. We note that with pt = 0 the hGS preconditioner reduces to
the mean-based preconditioner. In both cases CoV = 10% and 25% the hGS preconditioner
outperforms the mean-based preconditioner in terms of the number of PCG iterations for each
of the five eigenpairs. Table 5.1 also shows that solving the eigenvalue problem with higher
CoV leads to only a slight increase in the number of iterations.

Newton iteration. Next, we examine the inexact line-search Newton method from Algo-
rithm 4 for computing the five smallest eigenvalues and corresponding eigenvectors of prob-
lem (5.4). For the line-search method, we set ρ = 0.9 for the backtracking and limit the
maximum number of backtracks to 25, and c = 0.05. The initial guess for the nonlinear
iteration is set using the (five smallest) eigenvalues and corresponding eigenvectors of the
eigenvalue problem associated with the mean matrix A1 as discussed in section 4.1. The non-
linear iteration terminates when the norm of the residual ‖rn‖2 < 10−10. The linear systems
in Line 4 in Algorithm 4 are solved using either MINRES or GMRES with the mean-based
preconditioner (Algorithm 5), the constraint mean-based preconditioner (Algorithm 6), and
the contraint hierarchical Gauss–Seidel preconditioner (Algorithm 7–8). Figure 5.3 illustrates
the convergence history of the inexact line-search Newton method in terms of norm of the
residual ‖rn‖2 with CoV = 10% (left panel) and 25% (right panel). The plots were generated
using GMRES with the chGS preconditioner (Algorithm 7–8) with pt = 2 (It = {1, . . . , 10}),
but convergence with other preconditioners was virtually identical.

Next, we compare performance of MINRES and GMRES with the preconditioners from
Algorithms 5–8 used to solve linear systems at line 4 in Algorithm 4 with zero initial guess and
the stopping criterion (4.11). Table 5.2 shows the numbers of MINRES or GMRES iterations
required by the inexact solves, averaged over the number of the nonlinear steps. Specifi-
cally, we compare the mean-based preconditioner (NMB) from Algorithm 5, the constraint
mean-based preconditioner (cMB) from Algorithm 6, and the constraint hierarchical Gauss–
Seidel preconditioner (chGS) from Algorithm 7–8. For all preconditioners, we need to select
the vector ws,(n) as discussed in Algorithm 5. Choice (a) is referred to as fixed because the
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Figure 5.3. Convergence history in terms of the nonlinear residual ‖rn‖2 of the inexact line-search Newton
method with CoV = 10% (left) and 25% (right).

Table 5.2
Average number of MINRES/GMRES iterations for computing the five smallest eigenvalues and corre-

sponding eigenvectors of the diffusion problem with CoV = 10% (left) and 25% (right) using the inexact
line-search Newton method (Algorithm 4) with the stopping criteria ‖rn‖2 < 10−10.

CoV = 10% CoV = 25%

Preconditioner 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

NMB (MINRES) 11.5 59.3 60.2 23.3 217.6 13.3 110.0 109.4 49.3 142.9

NMB (fixed) 11.3 71.5 59.9 29.6 120.5 15.2 79.3 79.5 43.8 101.1

NMB (updated) 13.3 28.9 27.8 16.2 43.0 19.0 68.9 64.5 87.3 122.9

cMB (fixed) 7.0 37.9 39.5 8.8 28.1 13.3 56.6 56.6 14.6 32.4

cMB (updated) 4.3 24.7 25.4 5.3 28.0 7.8 33.4 33.1 8.6 15.6

chGS(pt = 1) 2.3 17.9 17.1 2.8 15.4 3.3 18.3 18.1 2.8 18.9

chGS(pt = 2) 2.0 12.4 12.5 2.0 8.5 3.3 18.9 19.4 2.4 10.3

chGS(full) 2.0 13.8 13.5 2.0 12.3 3.3 15.1 15.1 2.8 14.4

vector ws,(n) is the corresponding eigenvector of the mean matrix A1, and choice (b) is referred
to as updated because the vector is updated after each step of Newton iteration. Only the
variant (b) was used for the chGS preconditioner. We also need to specify (the solves with)
the matrix M s

1 , in particular the choice of εM in (4.12). We report values of εM that, in our
experience, worked best. For (both fixed) NMB and cMB, we set εM = 0.95. For (updated)

cMB and chGS, we set εM = 1 and use the SVD decomposition as M1 =
∑rank(M1)

i=1 diyiz
T
i

to solve linear systems in (4.15). If M1 appears to be numerically singular, the action of the

inverse of M1 is replaced by a pseudoinverse
∑rank(M1)

i=1 d−1
i ziy

T
i . We note that with pt = 0

the chGS preconditioner reduces to the (updated) cMB preconditioner. With all precondi-
tioners the convergence was faster for simple eigenvalues, and the iteration counts increased
in the course of Newton iteration. In both cases with CoV = 10% and 25% the constraint
preconditioners outperform the mean-based preconditioners, and updating the vector ws,(n)D
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Table 5.3
The number of GMRES iterations for computing the five smallest eigenvalues and corresponding eigen-

vectors of the diffusion problem with CoV = 10% (left) and 25% (right) using the inexact line-search Newton
method (Algorithm 4) with preconditioners cMB (top) and chGS(pt = 2) (bottom) and with the stopping criteria
‖rn‖2 < 10−10.

CoV = 10% CoV = 25%

1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

Nonlinear step cMB (updated)

1 2 2 2 1 1 2 2 2 1 1

2 4 8 8 3 35 5 8 8 3 3

3 7 10 10 6 35 9 11 11 6 10

4 13 14 11 21 15 18 17 12 12

5 23 26 17 34 34 21 16

6 45 46 23 75 74 22

7 72 72 41 86 86 45

8 51

Nonlinear step chGS(pt = 2)

1 1 1 1 1 1 1 1 1 1 1

2 2 5 5 1 5 2 6 6 1 2

3 3 6 6 2 5 4 4 4 2 5

4 6 6 4 8 6 10 10 3 7

5 7 7 10 12 12 5 11

6 12 12 22 18 22 14

7 21 21 45 45 32

8 41 42 55 55

improves the convergence. The lowest iteration counts were obtained with the chGS precondi-
tioner, in particular with pt = 2 and full, and we note that the computational cost with pt = 2
is lower due to the truncation of the matrix-vector products. For these two preconditioners,
Tables 5.2 and 5.3 show that solving the eigenvalue problem with higher CoV leads to only
a slight increase in the number of iterations, and for simple eigenvalues the average iteration
counts are only slightly larger than those of SISI.

A comparison of the inexact SISI and the inexact Newton iteration is provided by Fig-

ure 5.4, which shows the 2-norms of the residual indicator ¯̃r
s,(n)

= [r̃
s,(n)T
1 , . . . , r̃

s,(n)T
nξ ]T

from (3.11) and the part of the residual in the Newton method given by F (ūs,(n), λ̄
s,(n)

);
cf. (4.1). These quantities correspond to the residual of (2.9), through (2.12) and equiva-
lent equation (2.14). It can be seen that it takes approximately the same number of steps for
the Newton iteration to converge and for the SISI residuals to become flat in case of repeated
eigenvalues, but more steps of SISI are needed for simple eigenvalues. With respect to the av-
erage number of Krylov iterations per a step of SISI and Newton iteration, the computational
cost of the two methods is comparable for simple eigenvalues, but SISI is significantly more
efficient for repeated eigenvalues. On the other hand, Newton iteration outperforms SISI in
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Figure 5.4. Comparison of convergence of the inexact SISI in terms of residual indicator ‖¯̃r
s,(n)‖2 and the

inexact line-search Newton method in terms of ‖F (ūs,(n), λ̄
s,(n)

)‖2 with CoV = 10% (left) and 25% (right).

Table 5.4
The first 10 coefficients of the gPC expansion of the smallest eigenvalue of the diffusion problem with

CoV = 10% (left) and 25% (right) using stochastic collocation (SC), SISI, and inexact line-search Newton
method with the stopping criteria ‖rn‖2 < 10−10. Here d is the polynomial degree and k is the index of basis
function in expansion (2.5).

CoV = 10% CoV = 25%

d k SC SISI NI SC SISI NI

0 1 4.9431E+00 4.9431E+00 4.9431E+00 4.9052E+00 4.9052E+00 4.9052E+00

1

2 3.6197E-01 3.6197E-01 3.6197E-01 8.8127E-01 8.8127E-01 8.8127E-01

3 1.4477E-13 -1.6489E-14 -7.9829E-16 2.0162E-13 -1.5964E-14 -7.3784E-16

4 -6.6436E-13 -1.7135E-14 -1.3429E-15 9.9476E-14 -1.8588E-14 -1.4099E-15

2

5 1.8642E-02 1.8642E-02 1.8642E-02 1.1205E-01 1.1201E-01 1.1204E-01

6 -5.4534E-13 -9.5178E-17 -7.4261E-17 -7.1498E-14 -2.9421E-15 -1.6150E-16

7 -3.0909E-13 -1.1628E-15 -9.5249E-17 -9.4147E-14 -2.4433E-15 -3.7169E-16

8 -1.5442E-03 -1.5442E-03 -1.5442E-03 -9.1479E-03 -9.1520E-03 -9.1493E-03

9 -9.7700E-15 -1.1200E-15 1.3125E-18 -8.4643E-13 7.4442E-16 -1.2278E-17

10 -1.5442E-03 -1.5442E-03 -1.5442E-03 -9.1479E-03 -9.1520E-03 -9.1493E-03

terms of accuracy of the solution residual, which is quite natural since Newton iteration is
formulated as a minimization algorithm unlike SISI.

We also compare the gPC coefficients of eigenvalue expansions computed using the three
different methods: the stochastic collocation method, the inexact SISI method, and the inexact
line-search Newton method. In Table 5.4, we tabulate the first 10 coefficients of the gPC
expansion of the smallest eigenvalues computed using the three methods. A good agreement
of coefficients can be seen, in particular for coefficients with values much larger than zero,
specifically with indices k = 1, 2, 5, 8, and 10. Figure 5.5 plots the probability density function
(pdf) estimates of the five smallest eigenvalues obtained directly by Monte Carlo and the three
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Figure 5.5. pdf estimates of the five smallest eigenvalues with CoV = 10% (left) and 25% (right).

Table 5.5
Average number of PCG iterations for computing the five smallest eigenvalues and corresponding eigenvec-

tors of the diffusion problem with CoV = 10% (left) and 25% (right) using exact and inexact SISI (Algorithm 1).

CoV = 10% CoV = 25%

1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

MB
Inexact 6.45 3.90 3.90 4.60 3.75 8.60 5.55 5.55 6.05 4.75

Exact 11.00 10.95 10.95 10.85 10.00 17.00 16.90 16.90 16.90 16.90

hGS Inexact 2.35 1.70 1.70 1.65 1.00 2.60 1.90 1.90 1.85 1.75

(pt=2) Exact 3.00 3.00 3.00 3.00 3.00 5.00 5.00 5.00 4.00 4.00

methods, for which the estimates were obtained using MATLAB function ksdensity used for
sampled gPC expansions. It can be seen that the pdf estimates overlap in all cases.

Inexact versus exact solves. We present numerical experiments that show the effectiveness
of the inexact solvers by comparing them with the exact solvers, for which we fix the stopping
tolerance of the PCG and GMRES methods to 10−12. For the inexact methods we use the
adaptive stopping tolerance given for SISI by (3.10) and for the Newton iteration by (4.11). A
comparison of the inexact and exact solves in terms of the PCG iteration counts for computing
the smallest five eigenvalues of the diffusion problem is shown in Table 5.5, and a comparison
in terms of the GMRES iterations counts for computing the first and fourth smallest eigen-
values of the diffusion problem is shown in Table 5.6. In both cases, for given CoV and the
choice of the preconditioner, we observe that the exact methods require more Krylov subspace
iterations. It can be seen from Table 5.6 that virtually the same number of GMRES iterations
is required in each nonlinear step of Newton iteration since the stopping tolerance of the exact
solves is not adjusted to the nonlinear residual.

Effect of increasing the stochastic dimension. Table 5.7 shows the PCG iteration counts
required to compute the smallest five eigenvalues of the diffusion problem for varying number
of random variables mξ = {3, 5, 7} with CoV = 10% and 25%, and Table 5.8 shows the
GMRES iteration counts for computing the first and fourth smallest eigenvalues for the same
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Table 5.6
The number of GMRES iterations for computing the first and fourth smallest eigenvalues and corresponding

eigenvectors of the diffusion problem with CoV = 10% (left) and 25% (right) using exact and inexact line-
search Newton methods (Algorithm 4) with preconditioners cMB (top) and chGS(pt = 2) (bottom), and with
the stopping criteria ‖rn‖2 < 10−10.

CoV = 10% CoV = 25%

Inexact Exact Inexact Exact

1st 4th 1st 4th 1st 4th 1st 4th

Nonlinear step cMB (updated)

1 2 1 13 16 2 1 22 39

2 4 3 13 15 5 3 22 27

3 7 6 14 16 9 6 22 27

4 11 16 15 12 22 27

5 21 27

Nonlinear step chGS(pt = 2)

1 1 1 5 7 1 1 7 16

2 2 1 5 7 2 1 8 15

3 3 2 6 7 4 2 8 11

4 4 7 6 3 8 11

5 5 10

6 10

Table 5.7
Average number of PCG iterations for computing the five smallest eigenvalues and corresponding eigenvec-

tors of the diffusion problem with CoV = 10% (left) and 25% (right) for varying mξ = {3, 5, 7} using inexact
SISI (Algorithm 1).

CoV = 10% CoV = 25%

mξ Preconditioner 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

3
MB 6.45 3.90 3.90 4.60 3.75 8.60 5.55 5.55 6.05 4.75

hGS (pt = 2) 2.35 1.70 1.70 1.65 1.00 2.60 1.90 1.90 1.85 1.75

5
MB 6.50 3.90 3.90 4.50 3.85 8.00 4.85 4.85 6.50 4.70

hGS (pt = 2) 2.35 1.00 1.00 1.70 1.00 2.60 1.95 1.95 1.90 1.85

7
MB 6.40 3.95 3.95 4.55 3.85 8.00 4.85 4.85 6.50 4.70

hGS (pt = 2) 2.35 1.00 1.00 1.70 1.00 2.60 1.95 1.95 1.90 1.85

problem and setup. While in both cases we see a relatively small increase in iteration counts
for larger CoV , increasing the stochastic dimension by setting larger mξ appears to have no
effect on the iteration counts.

5.2. Stiffness of Mindlin plate with uniformly distributed Young’s modulus. As the
second example, we study eigenvalues of the stiffness of Mindlin plate with Young’s modulus
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Table 5.8
The number of GMRES iterations for computing the first and fourth smallest eigenvalues and corresponding

eigenvectors of the diffusion problem with CoV = 10% (left) and 25% (right) for varying mξ using the inexact
line-search Newton method (Algorithm 4) with preconditioners cMB (top) and chGS(pt = 2) (bottom), and with
the stopping criteria ‖rn‖2 < 10−10.

CoV = 10% CoV = 25%

mξ 3 5 7 3 5 7

1st 4th 1st 4th 1st 4th 1st 4th 1st 4th 1st 4th

Nonlinear step cMB (updated)

1 2 1 2 1 2 1 2 1 2 1 2 1

2 4 3 4 3 4 3 5 3 5 3 4 3

3 7 6 7 6 7 6 9 6 9 6 8 6

4 11 11 11 15 12 15 12 16 12

5 21 21 21

Nonlinear step chGS(pt = 2)

1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 1 2 1 2 1 2 1 2 1 2 1

3 3 2 3 2 3 2 4 2 3 2 4 2

4 4 4 4 6 3 5 3 5 3

5 5 5 5

given by the stochastic expansion

(5.6) E(x, ξ) = E1 +

mξ+1∑
`=2

E`ξ`−1,

where E`+1 =
√
λ`v`(x) with {(λ`, v`)}

mξ
`=1 are the eigenpairs of the eigenvalue problem asso-

ciated with the covariance kernel,

(5.7) C (X1, X2) =
1

3
σ2
u exp

(
−|x2 − x1|

Lx
− |y2 − y1|

Ly

)
,

where Lx, Ly are as in (5.2), and σu is the standard deviation of the random field, the
random variables ξ` are uniformly distributed over the interval (−1, 1), E1 = 10920 and other
parameters are set as in [33]. The plate is discretized using 10 × 10 bilinear (Q4) finite
elements with 243 physical degrees of freedom. We note that we consider only the stiffness
matrix in the problem setup, and the mass matrix is taken as identity. For the uniform random
variables, the set {ψk}

nξ
k=1 is given by Legendre polynomials and the Smolyak sparse grid with

Gauss–Legendre quadrature is considered for the quadrature rule.
Table 5.9 shows the average numbers of PCG iterations required to solve linear system (3.3)

with zero initial guess and the adaptive stopping criteria (3.10). As we observed in the results
of the diffusion problem in Table 5.1, PCG with the hGS preconditioning requires less than
half of the iteration counts with the MB preconditioner. Table 5.10 shows the average numbers
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Table 5.9
Average number of PCG iterations for computing the five smallest eigenvalues and corresponding eigen-

vectors of the Mindlin plate problem with CoV = 10% (left) and 25% (right) using inexact SISI (Algorithm 1).

CoV = 10% CoV = 25%

Preconditioner 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

MB 6.20 4.65 4.65 4.70 4.20 8.15 6.55 6.55 6.75 6.05

hGS (pt = 1) 2.45 1.95 1.95 1.95 1.95 3.40 2.75 2.75 2.65 2.60

hGS (pt = 2) 2.45 1.95 1.95 1.95 1.95 3.40 2.75 2.75 2.65 2.60

hGS (no trunc.) 2.45 1.95 1.95 1.95 1.95 3.40 2.75 2.75 2.65 2.60

Table 5.10
The average number of GMRES iterations for computing the first and fourth smallest eigenvalues and

corresponding eigenvectors of the Mindlin plate problem with CoV = 10% and 25% for varying mξ (the number
of random variables) using the inexact line-search Newton method (Algorithm 4) with preconditioners cMB
(top) and chGS(pt = 2) (bottom), and with the stopping criteria ‖rn‖2 < 10−10.

mξ 3 5 7 9

1st 4th 1st 4th 1st 4th 1st 4th

CoV = 10%

NMB (fixed) 14.25 26.50 15.25 30.75 15.25 33.25 15.25 34.00

NMB (updated) 12.00 12.00 15.00 13.75 15.00 14.00 15.00 14.25

cMB (fixed) 10.25 10.25 10.75 11.25 11.00 11.50 11.00 11.75

cMB (updated) 6.00 5.25 6.25 5.75 6.25 6.00 6.75 6.00

chGS(pt = 1) 3.00 2.75 3.00 3.00 3.00 3.00 3.00 3.00

chGS(pt = 2) 3.00 2.75 3.00 2.75 3.00 3.00 3.00 3.00

chGS(full) 3.00 2.75 3.00 2.75 3.00 3.00 3.00 3.00

CoV = 25%

NMB (fixed) 13.25 32.40 14.50 42.80 14.75 61.20 20.00 63.60

NMB (updated) 14.75 16.60 19.75 29.17 26.40 40.00 27.60 42.67

cMB (fixed) 11.25 18.17 12.50 22.33 12.50 28.83 17.40 29.50

cMB (updated) 6.50 10.83 7.25 12.67 10.20 16.33 10.20 17.00

chGS(pt = 1) 3.25 4.83 3.25 5.33 3.25 7.17 4.60 7.67

chGS(pt = 2) 3.25 4.83 3.25 5.33 3.25 7.17 4.40 7.50

chGS(full) 3.25 4.83 3.25 5.50 3.25 6.83 4.40 7.33

of GMRES iterations required to solve the linear systems at line 4 in Algorithm 4 with zero
initial guess and the adaptive stopping criteria (4.11). As in the results of the diffusion problem
in Table 5.2, we again observe that the updated versions of the preconditioners yield lower
iteration counts compared to their fixed variants and the lowest counts are achieved with the
chGS preconditioner. Increasing both CoV and stochastic dimension mξ leads to only a mild
increase in iteration counts. Finally, Table 5.11 shows the first 10 coefficients of the gPC
expansion of the smallest eigenvalue of the Mindlin plate. As for the solution coefficients of
the diffusion problem shown in Table 5.4, a good agreement of coefficients can be seen also
here.D
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Table 5.11
The first 10 coefficients of the gPC expansion of the smallest eigenvalue of the Mindlin plate problem with

CoV = 10% (left) and 25% (right) using stochastic collocation (SC), inexact SISI, and, the inexact line-search
Newton method with the stopping criteria ‖rn‖2 < 10−10. Here d is the polynomial degree and k is the index
of basis function in expansion (2.5).

CoV = 10% CoV = 25%

d k SC SISI NI SC SISI NI

0 1 4.6271E-01 4.6271E-01 4.6271E-01 4.5784E-01 4.5784E-01 4.5784E-01

1

2 -2.2476E-02 -2.2476E-02 -2.2476E-02 -5.6737E-02 -5.6734E-02 -5.6735E-02

3 6.6391E-14 -3.5389E-16 -8.0416E-18 -1.7453E-13 -6.5624E-16 -1.1174E-17

4 3.2080E-13 -4.2037E-16 1.4672E-17 6.0396E-14 -4.8016E-16 2.5675E-17

2

5 -3.1659E-05 -3.1607E-05 -3.1634E-05 -2.5953E-04 -2.4582E-04 -2.5268E-04

6 -7.8920E-14 1.7146E-16 -1.0762E-18 -2.2204E-16 9.0132E-16 4.9237E-18

7 3.1186E-13 3.8511E-16 -4.5709E-19 -6.1270E-15 9.5916E-16 8.0412E-18

8 -3.8995E-04 -3.8995E-04 -3.8995E-04 -2.5032E-03 -2.5021E-03 -2.5030E-03

9 -2.8144E-14 -9.5150E-17 -5.8430E-19 1.1297E-13 -9.2077E-17 -1.5950E-18

10 -3.8995E-04 -3.8995E-04 -3.8995E-04 -2.5032E-03 -2.5021E-03 -2.5030E-03

6. Conclusion. We studied inexact methods for symmetric eigenvalue problems in the con-
text of spectral stochastic finite element discretizations. The performance was compared using
eigenvalue problems given by the stochastic diffusion equation with lognormally distributed
diffusion coefficient and by the stiffness of Mindlin plate with Young’s modulus depending
on uniformly distributed random variables. Both problems were given in a two-dimensional
physical domain. The methods were formulated on the basis of the SISI and the line-search
Newton methods. In both formulations we obtained symmetric stochastic Galerkin matrices.
In the first case the matrices were also positive definite, so the associated linear systems were
solved using PCG method. For the PCG we used mean-based and hierarchical Gauss–Seidel
preconditioners. The second preconditioner slightly decreased the overall iteration count, but
in all cases only a handful of iterations were required for convergence per one step of SISI.
The iteration count for PCG also did not appear to be sensitive to algebraic multiplicity of
eigenvalues, but in terms of SISI we observed somewhat slower convergence for simple eigen-
values (i.e., those with algebraic multiplicity one). For the second method based on Newton
iteration, we proposed several novel preconditioners adapted to the structure of the Jacobian
matrices obtained from the stochastic Galerkin discretization. The linear systems were solved
using the GMRES method (and in a few cases also MINRES) with various preconditioners.
We analytically show that chGS preconditioner with a truncated matrix-vector product is the
most efficient one for high-dimensional problems. The overall iteration count of GMRES was
higher compared to PCG, in particular for eigenvalues with algebraic multiplicity larger than
one. On the other hand, only a handful of iterations were required with the chGS precondi-
tioner for simple eigenvalues. In terms of the iteration count of SISI and the Newton iteration,
we observed that the two methods are comparable for simple eigenvalues, but SISI appeared
more efficient for repeated eigenvalues. Increasing either the value of CoV or the stochastic
dimension lead to only a slight increase of the number of iterations, in particular when the

D
ow

nl
oa

de
d 

10
/2

2/
21

 to
 6

9.
14

3.
89

.8
6 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

INEXACT METHODS FOR STOCHASTIC EIGENVALUE PROBLEMS 1771

constraint hierarchical preconditioners were used. Comparing the accuracy in terms of the
solution residual, Newton iteration naturally outperformed SISI. Nevertheless both methods
identified the coefficients of polynomial chaos expansion of the smallest eigenvalue in a close
agreement and matched well those computed by the stochastic collocation. The probability
density estimates of all eigenvalues matched, also with the direct Monte Carlo simulation.

From a user’s perspective, SISI is straightforward to use and in combination with the
stochastic modified Gram–Schmidt process allows us to compute coefficients of polynomial
chaos expansions of several eigenvalues and eigenvectors, while the Newton iteration requires
some setup of parameters for the line search and backtracking. On the other hand, Newton
iteration may be more suitable when interior eigenvalues are sought, since SISI assumes that
all smaller eigenvalues were deflated from the mean matrix.

Appendix A. Inexact Newton iteration. The inexact nonlinear iteration is based on
the Newton–Krylov method, in which each step entails solving the linear system (4.10) by a
Krylov subspace method followed by an update (4.9). But first, let us describe the evaluation

of F (ūs,(n), λ̄
s,(n)

) and G(ūs,(n)). The vector F (ūs,(n), λ̄
s,(n)

), defined by (4.2), consists of two
terms: the first term is evaluated as

E[ΨΨT ⊗A]ūs,(n) =

na∑
`=1

(H` ⊗A`)ūs,(n) = vec

(
na∑
`=1

A`Ū
s,(n)HT

`

)
,

which is the same as (3.4), and the second term is evaluated as

E[((λ̄
s,(n)

)TΨ)ΨΨT ⊗ Inx ]ūs,(n) =

nξ∑
i=1

(λ
s,(n)
i Hi ⊗ Inx)ūs,(n) = vec

( nξ∑
i=1

λ
s,(n)
i Ū s,(n)HT

i

)
.

The vector G(ūs,(n)), defined by (4.3), is evaluated as

G(ūs,(n)) = E
[
Ψ⊗

(
(ūs,(n)T (ΨΨT ⊗ Inx)ūs,(n))− 1

)]
,

where the ith row of G(ūs,(n)) is[
G(ūs,(n))

]
i

= E[ψi(ū
s,(n)T (ΨΨT ⊗ Inx)ūs,(n))− ψi]

= ūs,(n)TE[ψiΨΨT ⊗ Inx ]ūs,(n) − δ1i,

and the first term above is evaluated as

ūs,(n)TE[ψiΨΨT ⊗ Inx ]ūs,(n) = ūs,(n)T (Hi ⊗ Inx)ūs,(n),

or, denoting the trace operator by tr, this term also can be evaluated as

ūs,(n)TE[ψiΨΨT ⊗ Inx ]ūs,(n) = tr(Ū s,(n)HiŪ
s,(n)T ) = tr(Ū s,(n)T Ū s,(n)Hi).D
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Remark A.1. For completeness, let us describe a possible setup of the Jacobian matrices
in (4.8) or (4.10). Block (4.5) can be set up as

(A.1) E[ΨΨT ⊗A]− E[((λ̄
s,(n)

)TΨ)ΨΨT ⊗ Inx ] =

na∑
i=1

Hi ⊗Ai −
nξ∑
i=1

(λ
s,(n)
i Hi ⊗ Inx).

Block (4.6) can be set up as

(A.2) E[ΨT ⊗ (ΨΨT ⊗ Inx)ūs,(n)] = E[(ψ1ΨΨT ⊗ Inx)ūs,(n), . . . , (ψnξΨΨT ⊗ Inx)ūs,(n)],

and the ith column of this block is

(A.3) E[(ψiΨΨT ⊗ Inx)ūs,(n)] = (Hi ⊗ Inx)ūs,(n) = vec
(
Ū s,(n)HT

i

)
.

Finally, block (4.7) is the transpose of (4.6) scaled by a factor of −2; cf. (4.10).

In implementation, the explicit setup described in Remark A.1 is avoided because Krylov
subspace methods require only matrix-vector products. Let us write a product with Jacobian
matrix from (4.10) at step n of the nonlinear iteration as

(A.4) J(ūs,(n), λ̄
s,(n)

)

[
δū
δλ̄

]
, where J(ūs,(n), λ̄

s,(n)
) =

[
A BT

B 0

]
,

with A and BT denoting the matrices in (4.5) and (4.6), resp. Then,

Aδū=

(
na∑
`=1

H`⊗A`−
nξ∑
i=1

Hi⊗λs,(n)
i Inx

)
δū=vec

(
na∑
`=1

A`δŪH
T
` −

nξ∑
i=1

λ
s,(n)
i δŪHT

i

)
,(A.5)

BT δλ̄=−
nξ∑
i=1

δλiE[ΨT⊗(ΨΨT⊗Inx)]ūs,(n) =−vec

( nξ∑
i=1

δλiŪ
s,(n)HT

i

)
,(A.6)

and

B δū = −E[Ψ⊗ (ūs,(n)T (ΨΨT ⊗ Inx))]δū = −

 ū
s,(n)T (H1 ⊗ Inx)δū

...

ūs,(n)T (Hnξ ⊗ Inx)δū

 ,(A.7)

where the ith row can be equivalently evaluated as tr(HT
i Ū

s,(n)T δŪ).

Appendix B. Matrix-vector product in the chGS preconditioner. The matrix-vector
product with subblocks of the stochastic Jacobian matrices is performed as in (A.4)–(A.7).
For example, the matrix-vector product with a subblock of the A-part of the Jacobian matrix
(cf. (A.5)) can be written as

∑
t∈It

(
[
ht,(`)(k)

]
⊗At)vs(k) = vec

(∑
t∈It

AtV
s

(k)

[
ht,(k)(`)

])
,(B.1)

∑
t∈It

(
[
ht,(`)(k)

]
⊗ λs,(n)

t Inx)vs(k) = vec

(∑
t∈It

λ
s,(n)
t V s

(k)

[
ht,(k)(`)

]T)
,(B.2)D
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where V s
(k) is a subset of the columns of V s specified by the index set (k). We note that the

matrix-vector products in (B.2) depend on the eigenvalue approximation at step n of Newton
iteration. The truncation of the matrix-vector products, indicated by summing up over index
set It, is performed using the same strategy as in Algorithm 3.

Appendix C. Computational cost. Here, we discuss the computational costs of the
GMRES method with different preconditioners. The most computationally intensive oper-
ations in the GMRES are matrix-vector products and preconditioning. Each step of the
GMRES thus requires cost of cmvp + cprec, where

cmvp: cost of matrix-vector products described in eqs. (A.5)–(A.7),

cprec: cost of preconditioning.

Then the total computational cost of the GMRES is niter(cmvp+cprec), where niter refers to the
total iteration count. The cost of matrix-vector products is largely due to evaluating the first
term,

∑na
`=1A`δŪH

T
` , in (A.5) and, thus, the cost can be approximately measured as cmvp ≈

na(cx+cξ), where cx and cξ are the costs for matrix-matrix products associated with A` andH`,
resp., in the expression A`δŪH

T
` . For the preconditioning, we compare the two most efficient

preconditioners, cMB and truncated chGS with pt < p. Let us denote the computational
cost of a solve with M1 in (4.15) by cM1 . The cMB preconditioner (Algorithm 5) requires
cprec = cM1 and the computational cost of the GMRES with the cMB preconditioner can be
approximated as

ccMB = ncMB
iter (na(cx + cξ)︸ ︷︷ ︸

cmvp

+ cM1︸︷︷︸
cprec

).

The chGS preconditioner (Algorithm 7–8) requires two truncated matrix-vector products
(B.1)–(B.2), where the truncation is specified by the set It and applications of the cMB
preconditioners for 2p times (in the forward and the backward sweep of the Algorithm 7–8)
and, thus, the cost can be assessed as cprec ≈ 2nt(cx+cξ)+2pcM1 , where nt = dim(It). Now we
can write the total computational cost of the GMRES method with the chGS preconditioner
as

cchGS = nchGS
iter (na(cx + cξ)︸ ︷︷ ︸

cmvp

+ 2nt(cx + cξ) + 2p cM1︸ ︷︷ ︸
cprec

).

From the analytic expressions of the costs, we can see that cprec for chGS is larger than cprec

for cMB as chGS requires two truncated matrix-vector products 2nt(cx + cξ) at each GMRES
iteration. On the other hand, typically, ncMB

iter � nchGS
iter , that is the cMB preconditioner requires

more iterations. Specifically, the cMB preconditioner needs to perform extra ncMB
iter − nchGS

iter

matrix-vector products, with cost na(cx + cξ). To compare the computational costs of the
two methods cMB and chGS(pt = 2) in practice, we tabulate the values of nξ, na, and nt
for varying mξ = {3, 5, 7} and p = {3, 4, 5}; see Table C.1. For problems with coefficients
characterized by linear expansion in ξ such as (5.6), cMB could be less expensive since na
is typically smaller than nt. For problems with coefficients characterized by more general
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Table C.1
The number of terms, na, in the expansion (2.2) modeling linear and nonlinear coefficient expansions such

as (5.1) and (5.6), resp., and the number of terms nt in the truncation set It with pt = 2 for varying number
of random variables mξ and the maximum polynomial degree p of the solution expansion (2.5).

mξ 3 5 7

p 3 4 5 3 4 5 3 4 5

nξ 20 35 56 56 126 252 120 330 792

na (nonlinear) 84 165 286 462 1287 3003 1716 6435 19448

na (linear) 4 6 8

nt 10 21 36

(nonlinear) expansions such as (5.1), chGS with truncated matrix-vector products become
more cost efficient because na grows exponentially as mξ and p become larger, whereas nt
remains small. Note that an analogous comparison can be made for chGS and NMB.
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