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ABSTRACT

Teamwork skills are crucial to college students, both at university and afterwards. However, few tools
exist to monitor student teamwork and to help students develop teamwork skills. We present a tool
which collects the interactions of students who are using online platforms to complete a sustained
task as a team; conducts a range of analyses of these data; and then presents information about team
and team member behaviors in real time on a digital dashboard. This dashboard provides instructors
with a user-friendly picture of team and team-member dynamics, which can also be made available,
as appropriate, to both teams and team members. While some behaviors have been shown to be (or
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Figure 1: Number of words contributed
by individual team members to each
team’s total word count. Team rank re-
flects where team’s final project presenta-
tion was ranked, from first to twelfth.

are self-evidently) beneficial or harmful to team performance, these data and analyses also make
possible exploration of whether less obvious behaviors affect team outcomes and performance.

INTRODUCTION

Teamwork skills are crucial for college students, both for their learning while at university [9] and
for their employability and career success after graduation [1, 2]. However, relatively few tools are
available to effectively assess the teamwork skills of students and provide a basis for improving them
[4], and those that do exist suffer from a variety of shortcomings [8, 16]. In addition, almost all tools
provide only episodic information: snapshots of team and team member performance at widely-spaced
intervals, with the major and sometimes only evaluation often taking place at or even after a team’s
activity ends. A recent article argued that "no study has shown that technological support for group
regulation can help teams to improve their course-based, collaborative discourse over time,” [3] so
there is clearly a need for work in this area.

This project describes the development of a dashboard that allows real-time monitoring and
assessment of student teams working online, and enables instructors to provide regular and ongoing
feedback to support teams and team members. This paper uses the data collected in a pilot study in Fall
2018 to demonstrate proof of concept and to do some initial analytical work, and the corresponding
poster presentation will include a live demonstration of the dashboard, using data being collected at
the time of the presentation.

METHODS AND ANALYSIS

With informed consent from participants, we collected the textual interactions of the members of
twelve teams from a freshman Honors College class at a midsize American university. These team
members collaborated on team projects during the Fall 2018 semester using an online platform
(GroupMe). Using an APl and a silent dummy group member, data collection was non-intrusive and
required no extra action of students or instructors. Valuable information about team and team member
performance was then gleaned from analyzing both the form [13] and the content [10, 12] of these
interactions.

Formal analysis involves statistical and numerical examination of the characteristics and patterns of
team member interactions, without reference to what the interaction-constituting messages are about.
Amongst such characteristics are the frequency/number/length of team member contributions; total
words exchanged per team or team member by time period; number of team members involved in a
set number of interactions; and many others. Content analysis is currently performed automatically
using off the shelf linguistic analysis tools, specifically Linguistic Inquiry and Word Count (LIWC).
LIWC [15] categorizes words into roughly eighty different psychologically meaningful categories,
signaling attentional focus, attitudes, perceptions, emotionality, social relationships, thinking styles,
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Figure 2: LIWC risk scores for each of
twelve undergraduate freshman teams.
Teams whose final projects were ranked
higher (ranks along the x-axis) tended to
have lower risk scores than teams which
ranked lower.
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Figure 3: Dropdown menus on a Team-
work Analysis Dashboard, allowing in-
structors to explore LIWC features for ei-
ther teams or individual team members.

authenticity, etc. Using LIWC, we can chart the distributions of words in different categories and
how these distributions change over time. The insights resulting from such formal and content
analysis, in conjunction with the insights from the well-developed literature on teamwork about the
behaviors and practices characteristic of successful teams, provide a basis for assessing the level of
performance of teams and team members. In addition, examining the interactions of teams that are
successful by external measures (grades for team products or final projects, peer assessments, instructor
observations, etc.) may reveal so far unrecognized behaviors that are typical of high-performing (or of
under-performing) teams.

One example of formal analysis comes from Project Aristotle, Google’s multi-year study of teams
and team performance. Project Aristotle found that a team behavior that strongly predicted team
success was that "members spoke in roughly the same proportion” [6]. Accordingly, it might be
valuable to know how equally team members contributed to the conversation of their team. Figure 1
shows radar graphs representing the number of words contributed by each team member to the total
number of words exchanged online by that team during discussion of the project. The teams’ final
projects were also assessed according to a rubric and ranked, though there do not appear to be any
strong relationships between how equal the word contributions of team members were and those
rankings.

Another central finding of Project Aristotle, corresponding to content analysis, was that successful
teams were characterized by “interpersonal trust” and “mutual respect” and did not punish risk-taking.
Put another way, members of high-performing teams felt a sense of “psychological safety.” [6] This
conclusion is reinforced by teamwork research in psychology[5], human resources [14] business [11]
and organizational studies [7]. One of the LIWC categories is “risk”- the higher the risk score for a
text, the greater the prevalence in that text of risk or threat language (for example, words like caution,
beware, careful, doubt, distrust, wrong, fail, problem, inhibit, fault, difficult, crisis). LIWC generated a
risk score for each team, and those risk scores are represented in Figure 2.

The dashboard draws on analyses like this to provide information in two forms. First, it includes a
set of standard, easily-interpreted graphical indicators about teams in instructor classes, such as those
in Figure 1 and Figure 2. These indicators present a real time picture of the state of affairs in each
team. Second, it enables instructors to explore the aspects of team and team-member performance
that interest them in more depth. Instructors can ask about teams or individual team members, select
queries about either target, and retrieve information about these from the dashboard using drop
down menus (Figure 3).

PRELIMINARY RESULTS

Our work so far has served mainly as proof of concept, with the goal of showing that data can be
effectively and efficiently collected from students working in online teams, analyzed, and presented



Figure 4: A correlation matrix relating
LIWC features with one another and team
scores. The colormap on the right of the
matrix describes the range of correlation,
from positive (blue) to negative (red). We
can see a negative correlation between the
presentation points and the risk value (cir-
cled in green.)
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intelligibly and in ways that enable instructors to understand and support teams in their classes. A
secondary goal has been to identify interesting correlations, especially between between features of
team-member interactions we have analyzed and any existing assessments of the performance of
these teams. The data we collected in this initial phase came from a freshman Honors College class,
which is intended as much to socialize students into university life as to provide a rigorous academic
experience, and which is graded on a pass-fail basis. Accordingly, the commitment of students to
their team processes and projects may have been lower than it would have been in other, graded
classes. Nonetheless, we did find some interesting correlations between team behaviors and success
according to the standards of the course (final team presentations were assessed and teams were
ranked). For example, in Figure 2, teams are arranged left to right in order of their final presentation
rankings. It is evident that most of the teams which were ranked higher had a lower LIWC risk score
than most of the teams that were ranked lower. The same phenomenon is reflected in Figure 4, a
matrix which correlates LIWC features with one another, as well as LIWC features and the scores
used to determine rankings for team final projects. The circled cell in the bottom left of the diagram
indicates that a higher team score was negatively correlated with LIWC’s risk feature.

FUTURE WORK

Future work will take several directions. First, we will continue to refine the usability, accuracy and
comprehensiveness of the dashboard and its underlying data. For instance, LIWC and similar tools
can provide useful insights into team dynamics and behaviors, but such tools were not specifically
designed for understanding teamwork. An important next step will be to develop linguistic analysis
tools purpose-built for analyzing teamwork interactions, and especially sensitive to whatever we
learn to be predictive of team success or failure. We have already begun to code a set of about
5,000 team member messages by hand, with labels which we believe are predictive in these ways,
and will use this label set, and others which follow, to train a neural network to complete this
coding automatically. Second, we plan to explore whether and how to present data about their team
interactions and behaviors to student teams and team members themselves, and what forms of
accompanying messaging and feedback- beyond simple mirroring- will most effectively help them
reflect on, regulate and improve their collective processes. Insights from behavioral psychology are
likely to be instructive in this regard. Third, though online and distributed teamwork is likely to
become ever more common, face-to-face teamwork is still very much with us, and will remain with us
for the foreseeable future. We therefore intend to expand our scope to the capture and analysis of
face-to-face team interactions.
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